Science.gov

Sample records for ia supernova light

  1. Light Curve Models for Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Dominguez, Inmaculada

    1993-05-01

    The most widely accepted scenario for Type Ia supernovae is the thermonuclear explosion of a C+O white dwarf which, by accretion from a companion, approaches the Chandrasekhar mass. Whilst this scenario can account for most of the observed properties of SNe Ia, the exact nature of the explosion mechanism remains uncertain. This thesis presents the results obtained from hydrodynamical model calculations of post-explosion envelope expansion. The hydrodynamics are followed in spherical symmetry using a Lagrangean code, the energy equation being solved in the diffusion approximation. The conversion of decay gamma-rays into thermal energy is treated as an absorption process, while the time-dependent opacity is calculated as a function of composition, density, temperature and velocity gradient. The results of these models--light-curve shape, maximum luminosities, and expansion velocity profiles---are compared with the bolometric observational data (SN1981B, SN1972E and the composite light curve obtained by Leibundgut for 9 SNe Ia in Virgo) and current theoretical models of the explosion mechanism. Delayed detonation and deflagration models (Bravo 1990), adopting different C ignition densities, have been investigated. In all cases, the resulting light curve is in satisfactory agreement with observations. As the ignition density varies, the maximum of light remains nearly constant and the dispersion in the rates of decline of the light curve is compatible with observations. Moreover, variation in the ignition density readily accounts for the dispersion of 1000 km s^-1 in the observed expansion velocities. Delayed detonation models yield high kinetic energies, that result in (especially for the highest ignition densities) high expansion velocities, steep post-peak declines of the light curves and velocity distribution of intermediate-mass elements that are higher than that inferred from observations. Conversely, deflagration models provide less energetic explosions. However

  2. The rising light curves of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Firth, R. E.; Sullivan, M.; Gal-Yam, A.; Howell, D. A.; Maguire, K.; Nugent, P.; Piro, A. L.; Baltay, C.; Feindt, U.; Hadjiyksta, E.; McKinnon, R.; Ofek, E.; Rabinowitz, D.; Walker, E. S.

    2015-02-01

    We present an analysis of the early, rising light curves of 18 Type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory and the La Silla-QUEST variability survey. We fit these early data flux using a simple power law (f(t) = α × tn) to determine the time of first light (t0), and hence the rise time (trise) from first light to peak luminosity, and the exponent of the power-law rise (n). We find a mean uncorrected rise time of 18.98 ± 0.54 d, with individual supernova (SN) rise times ranging from 15.98 to 24.7 d. The exponent n shows significant departures from the simple `fireball model' of n = 2 (or f(t) ∝ t2) usually assumed in the literature. With a mean value of n = 2.44 ± 0.13, our data also show significant diversity from event to event. This deviation has implications for the distribution of 56Ni throughout the SN ejecta, with a higher index suggesting a lesser degree of 56Ni mixing. The range of n found also confirms that the 56Ni distribution is not standard throughout the population of SNe Ia, in agreement with earlier work measuring such abundances through spectral modelling. We also show that the duration of the very early light curve, before the luminosity has reached half of its maximal value, does not correlate with the light-curve shape or stretch used to standardize SNe Ia in cosmological applications. This has implications for the cosmological fitting of SN Ia light curves.

  3. RADIOACTIVELY POWERED RISING LIGHT CURVES OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Piro, Anthony L.

    2012-11-10

    The rising luminosity of the recent, nearby supernova 2011fe shows a quadratic dependence with time during the first Almost-Equal-To 0.5-4 days. In addition, studies of the composite light curves formed from stacking together many Type Ia supernovae (SNe Ia) have found similar power-law indices for the rise, but may also show some dispersion that may indicate diversity. I explore what range of power-law rises are possible due to the presence of radioactive material near the surface of the exploding white dwarf (WD). I summarize what constraints such a model places on the structure of the progenitor and the distribution and velocity of ejecta. My main conclusion is that for the inferred explosion time for SN 2011fe, its rise requires an increasing mass fraction X {sub 56} Almost-Equal-To (4-6) Multiplication-Sign 10{sup -2} of {sup 56}Ni distributed between a depth of Almost-Equal-To 10{sup -2} and 0.3 M {sub Sun} below the WD's surface. Radioactive elements this shallow are not found in simulations of a single C/O detonation. Scenarios that may produce this material include helium-shell burning during a double-detonation ignition, a gravitationally confined detonation, and a subset of deflagration to detonation transition models. In general, the power-law rise can differ from quadratic depending on the details of the velocity, density, and radioactive deposition gradients in a given event. Therefore, comparisons of this work with observed bolometric rises of SNe Ia would place strong constraints on the properties of the shallow outer layers, providing important clues for identifying the elusive progenitors of SNe Ia.

  4. Radioactively Powered Rising Light Curves of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.

    2012-11-01

    The rising luminosity of the recent, nearby supernova 2011fe shows a quadratic dependence with time during the first ≈0.5-4 days. In addition, studies of the composite light curves formed from stacking together many Type Ia supernovae (SNe Ia) have found similar power-law indices for the rise, but may also show some dispersion that may indicate diversity. I explore what range of power-law rises are possible due to the presence of radioactive material near the surface of the exploding white dwarf (WD). I summarize what constraints such a model places on the structure of the progenitor and the distribution and velocity of ejecta. My main conclusion is that for the inferred explosion time for SN 2011fe, its rise requires an increasing mass fraction X 56 ≈ (4-6) × 10-2 of 56Ni distributed between a depth of ≈10-2 and 0.3 M ⊙ below the WD's surface. Radioactive elements this shallow are not found in simulations of a single C/O detonation. Scenarios that may produce this material include helium-shell burning during a double-detonation ignition, a gravitationally confined detonation, and a subset of deflagration to detonation transition models. In general, the power-law rise can differ from quadratic depending on the details of the velocity, density, and radioactive deposition gradients in a given event. Therefore, comparisons of this work with observed bolometric rises of SNe Ia would place strong constraints on the properties of the shallow outer layers, providing important clues for identifying the elusive progenitors of SNe Ia.

  5. Theoretical light curves for deflagration models of type Ia supernova

    NASA Astrophysics Data System (ADS)

    Blinnikov, S. I.; Röpke, F. K.; Sorokina, E. I.; Gieseler, M.; Reinecke, M.; Travaglio, C.; Hillebrandt, W.; Stritzinger, M.

    2006-07-01

    Aims.We present synthetic bolometric and broad-band UBVRI light curves of SNe Ia for four selected 3D deflagration models of thermonuclear supernovae. Methods: .The light curves are computed with the 1D hydro code stella, which models (multi-group time-dependent) non-equilibrium radiative transfer inside SN ejecta. Angle-averaged results from 3D hydrodynamical explosion simulations with the composition determined in a nucleosynthetic postprocessing step served as the input to the radiative transfer model. Results: .The predicted model {UBV} light curves do agree reasonably well with the observed ones for SNe Ia in the range of low to normal luminosities, although the underlying hydrodynamical explosion models produced only a modest amount of radioactive {}56Ni(i.e. 0.24-0.42 M⊙) and relatively low kinetic energy in the explosion (less than 0.7 × 1051 erg). The evolution of predicted B and V fluxes in the model with a {}56Nimass of 0.42 M⊙ follows the observed decline rate after the maximum very well, although the behavior of fluxes in other filters deviates somewhat from observations, and the bolometric decline rate is a bit slow. The material velocity at the photospheric level is on the order of 104 km s-1 for all models. Using our models, we check the validity of Arnett's rule, relating the peak luminosity to the power of the deposited radioactive heating, and we also check the accuracy of the procedure for extracting the {}56Nimass from the observed light curves. Conclusions: .We find that the comparison between theoretical light curves and observations provides a useful tool to validate SN Ia models. The steps necessary for improving the agreement between theory and observations are set out.

  6. The effect of background galaxy contamination on the absolute magnitude and light curve speed class of type Ia supernovae

    NASA Technical Reports Server (NTRS)

    Boisseau, John R.; Wheeler, J. Craig

    1991-01-01

    Observational data are presented in support of the hypothesis that background galaxy contamination is present in the photometric data of Ia supernovae and that this effect can account for the observed dispersion in the light curve speeds of most of Ia supernovae. The implication is that the observed dispersion in beta is artificial and that most of Ia supernovae have nearly homogeneous light curves. The result supports the notion that Ia supernovae are good standard candles.

  7. Late Light Curves of SN 2002cx-like Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Lair, Jessica C.; Kilgore, E. E.; Milne, P.; Bryngelson, G. L.; Leising, M. D.

    2013-01-01

    The use of Type Ia Supernovae (SNe Ia) in cosmological studies as “standard candle” distance indicators lead to the need for a better understanding of these objects. SN 2002cx was a very peculiar SNe Ia that did not fit into any of the known subclasses of SNe Ia and needs to be further understood. We present late-time optical photometry of three more recently discovered objects that have been determined to be SN 2002cx-like Type Ia supernovae: SN 2005hk, SN 2008A, and SN 2008ae. The light curves of these objects show late-time decline rates that are slower than what is seen in normal SNe Ia in the V,R, and I bands, but faster in the B-band.

  8. Preliminary NIR Late Light Curve of the Type Ia Supernova SN2009nr

    NASA Astrophysics Data System (ADS)

    Heath, Jonathan; Bryngelson, G.

    2013-01-01

    Type Ia supernovae (SNe Ia) are important in determining the expansion of the universe based on the uniformity of their light curves. It is essential to understand the behavior of these supernovae in order to strengthen our confidence in their use as standard candles. A small, but increasing number of SNe Ia have been observed later than the 200 day epoch in the near-infrared (NIR). Most of these exhibit a flattening of the NIR power, even as the visible light declines at a steady rate. It is unclear as to exactly what causes this behavior, and how typical it is. In order to characterize the late behavior of SNe Ia, images of the supernova SN2009nr were analyzed using the Image Reduction and Analysis Facility (IRAF). These images were taken with the 4m Mayall Telescope at Kitt Peak National-Observatory using the FLAMINGOS IR Imaging Spectrometer. The supernova’s magnitude was normalized with respect to the magnitudes of known stars so that traits related to the supernova may be compared to others. We present preliminary NIR (J, H, K) light curves of the observed supernova and compare them to other SNe Ia observed at these epochs.

  9. Type Ia supernovae: Pulsating delayed detonation models, IR light curves, and the formation of molecules

    NASA Technical Reports Server (NTRS)

    Hoflich, Peter; Khokhlov, A.; Wheeler, C.

    1995-01-01

    We computed optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SNe Ia). It is demonstrated that observations of the IR light curves can be used to identify subluminous SNe Ia by testing whether secondary maxima occur in the IR. Our pulsating delayed detonation models are in agreement with current observations both for subluminous and normal bright SN Ia, namely SN1991bg, SN1992bo, and SN1992bc. Observations of molecular bands provide a test to distinguish whether strongly subluminous supernovae are a consequence of the pulsating mechanism occurring in a high-mass white dwarf (WD) or, alternatively, are formed by the helium detonation in a low-mass WD as was suggested by Woosley. In the latter case, no carbon is left after the explosion of low-mass WDs whereas a log of C/O-rich material is present in pulsating delayed detonation models.

  10. SALT spectroscopic classification of PS15bzz as a type-Ia supernova at maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Miszalski, B.

    2015-09-01

    We obtained SALT (+RSS) spectroscopy of PS15bzz on 2015 Aug 16.9 UT, covering the wavelength range 360-820 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows PS15bzz is a type-Ia supernova within a few days of maximum light.

  11. Light Echoes and Late-Time Emissions of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Drozdov, Dina

    2016-05-01

    Type Ia supernovae have many applications in astronomy, yet with fundamental properties still not fully understood, new methods for investigating the environment of a supernova need to be developed. A light echo is produced from the scattering of light from a bright source and can be used to analyze the dust in the vicinity of the supernova and learn invaluable information about the source. These techniques can put constraints on explosion and progenitor models. Although light echo detections from Type Ia supernovae are rare, with only seven total extragalactic detections, this could be due to the lack of thorough late-epoch monitoring. Since key information is determined from even a single light echo detection, light echo searches should be undertaken in the future to supplement our understanding of supernovae. As part of our collaborative campaign for studying the emission of supernovae at late epochs, we have added two light echoes to a small sample size of Type Ia supernova light echo detections: SN 2009ig in NGC 1015 and a dual echo from SN 2007af in NGC 5584. Both echoes were observed with the Hubble Space Telescope and allow for the most detailed images of Type Ia supernova light echoes to date. Three filters (F555W, F814W, and F350LP) captured the echoes obtained with the Wide Field Camera 3, and since both host galaxies were imaged as part of the same observing program, these cases will be the best comparable light echo pairs. We also further investigate the light echoes from SN 2006X in NGC 4321 and SN 1998bu in NGC 3368 from Hubble Space Telescope archival images. Analyses performed on the images gives crucial insight into the dusty environment of the host galaxy and the surroundings of the supernova. The outer echo from SN 2007af was created from an interstellar dust sheet located ~800 pc in front of the supernova, while the inner echo could be from interstellar or circumstellar origin. A circumstellar light echo could imply a single degenerate

  12. CfA3: 185 TYPE Ia SUPERNOVA LIGHT CURVES FROM THE CfA

    SciTech Connect

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Cho, Richard; Contreras, Maria; Jha, Saurabh; Matheson, Tom; Modjaz, Maryam; Rest, Armin; Michael Wood-Vasey, W.; Barton, Elizabeth J.; Bragg, Ann; Briceno, Cesar; Ciupik, Larry; Dendy, Kristi-Concannon E-mail: kirshner@cfa.harvard.edu

    2009-07-20

    We present multiband photometry of 185 type-Ia supernovae (SNe Ia), with over 11,500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously observed and reduced nearby SNe Ia (z {approx}< 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of {approx}<0.02 mag in BVRIr'i' and {approx}<0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SNe Ia are sufficiently distinct from other SNe Ia in their color and light-curve-shape/luminosity relation that they should be treated separately in light-curve/distance fitter training samples. The CfA3 sample will contribute to the development of better light-curve/distance fitters, particularly in the few dozen cases where near-infrared photometry has been obtained and, together, can help disentangle host-galaxy reddening from intrinsic supernova color, reducing the systematic uncertainty in SN Ia distances due to dust.

  13. TYPE Ia SUPERNOVA LIGHT-CURVE INFERENCE: HIERARCHICAL BAYESIAN ANALYSIS IN THE NEAR-INFRARED

    SciTech Connect

    Mandel, Kaisey S.; Friedman, Andrew S.; Kirshner, Robert P.; Wood-Vasey, W. Michael

    2009-10-10

    We present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error, peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference. SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs sampling. We apply this framework to the JHK{sub s} SN Ia light-curve data. A new light-curve model captures the observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are sigma(M{sub J}) = 0.17 +- 0.03, sigma(M{sub H}) = 0.11 +- 0.03, and sigma(M{sub Ks}) = 0.19 +- 0.04. We describe the first quantitative evidence for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000kms{sup -1} is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.

  14. Standardization of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Coelho, Rodrigo C. V.; Calvão, Maurício O.; Reis, Ribamar R. R.; Siffert, Beatriz B.

    2015-01-01

    Type Ia supernovae (SNe Ia) have been intensively investigated due to their great homogeneity and high luminosity, which make it possible to use them as standardizable candles for the determination of cosmological parameters. In 2011, the physics Nobel prize was awarded ‘for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.’ This is a pedagogical article, aimed at those starting their study of that subject, in which we dwell on some topics related to the analysis of SNe Ia and their use in luminosity distance estimators. Here, we investigate their spectral properties and light curve standardization, paying careful attention to the fundamental quantities directly related to the SNe Ia observables. Finally, we describe our own step-by-step implementation of a classical light curve fitter, the stretch, applying it to real data from the Carnegie Supernova Project.

  15. Improved Distances to Type Ia Supernovae withMulticolor Light Curve Shapes: MLCS2k2

    SciTech Connect

    Jha, Saurabh; Riess, Adam G.; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2007-01-05

    We present an updated version of the Multicolor Light Curve Shape method to measure distances to type Ia supernovae (SN Ia), incorporating new procedures for K-correction and extinction corrections. We also develop a simple model to disentangle intrinsic color variations and reddening by dust, and expand the method to incorporate U-band light curves and to more easily accommodate prior constraints on any of the model parameters. We apply this method to 133 nearby SN Ia, including 95 objects in the Hubble flow (cz {ge} 2500 km s{sup -1}), which give an intrinsic dispersion of less than 7% in distance. The Hubble flow sample, which is of critical importance to all cosmological uses of SN Ia, is the largest ever presented with homogeneous distances. We find the Hubble flow supernovae with H{sub 0}d{sub SN} {ge} 7400 km s{sup -1} yield an expansion rate that is 6.5 {+-} 1.8% lower than the rate determined from supernovae within that distance, and this can have a large effect on measurements of the dark energy equation of state with SN Ia. Peculiar velocities of SN Ia host galaxies in the rest frame of the Local Group are consistent with the dipole measured in the Cosmic Microwave Background. Direct fits of SN Ia that are significantly reddened by dust in their host galaxies suggest their mean extinction law may be described by R{sub V} {approx_equal} 2.7, but optical colors alone provide weak constraints on R{sub V}.

  16. CfAIR2: Near-infrared Light Curves of 94 Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Friedman, Andrew S.; Wood-Vasey, W. M.; Marion, G. H.; Challis, Peter; Mandel, Kaisey S.; Bloom, Joshua S.; Modjaz, Maryam; Narayan, Gautham; Hicken, Malcolm; Foley, Ryan J.; Klein, Christopher R.; Starr, Dan L.; Morgan, Adam; Rest, Armin; Blake, Cullen H.; Miller, Adam A.; Falco, Emilio E.; Wyatt, William F.; Mink, Jessica; Skrutskie, Michael F.; Kirshner, Robert P.

    2015-09-01

    CfAIR2 is a large, homogeneously reduced set of near-infrared (NIR) light curves (LCs) for Type Ia supernovae (SNe Ia) obtained with the 1.3 m Peters Automated InfraRed Imaging TELescope. This data set includes 4637 measurements of 94 SNe Ia and 4 additional SNe Iax observed from 2005 to 2011 at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona. CfAIR2 includes {{JHK}}s photometric measurements for 88 normal and 6 spectroscopically peculiar SN Ia in the nearby universe, with a median redshift of z ˜ 0.021 for the normal SN Ia. CfAIR2 data span the range from -13 days to +127 days from B-band maximum. More than half of the LCs begin before the time of maximum, and the coverage typically contains ˜13-18 epochs of observation, depending on the filter. We present extensive tests that verify the fidelity of the CfAIR2 data pipeline, including comparison to the excellent data of the Carnegie Supernova Project. CfAIR2 contributes to a firm local anchor for SN cosmology studies in the NIR. Because SN Ia are more nearly standard candles in the NIR and are less vulnerable to the vexing problems of extinction by dust, CfAIR2 will help the SN cosmology community develop more precise and accurate extragalactic distance probes to improve our knowledge of cosmological parameters, including dark energy and its potential time variation.

  17. Near-infrared light curves of Type Ia supernovae: studying properties of the second maximum

    NASA Astrophysics Data System (ADS)

    Dhawan, S.; Leibundgut, B.; Spyromilio, J.; Maguire, K.

    2015-04-01

    Type Ia supernovae (SNe Ia) have been proposed to be much better distance indicators at near-infrared (NIR) compared to optical wavelengths - the effect of dust extinction is expected to be lower and it has been shown that SNe Ia behave more like `standard candles' at NIR wavelengths. To better understand the physical processes behind this increased uniformity, we have studied the Y, J and H-filter light curves of 91 SNe Ia from the literature. We show that the phases and luminosities of the first maximum in the NIR light curves are extremely uniform for our sample. The phase of the second maximum, the late-phase NIR luminosity and the optical light-curve shape are found to be strongly correlated, in particular more luminous SNe Ia reach the second maximum in the NIR filters at a later phase compared to fainter objects. We also find a strong correlation between the phase of the second maximum and the epoch at which the SN enters the Lira law phase in its optical colour curve (epochs ˜ 15 to 30 d after B-band maximum). The decline rate after the second maximum is very uniform in all NIR filters. We suggest that these observational parameters are linked to the nickel and iron mass in the explosion, providing evidence that the amount of nickel synthesized in the explosion is the dominating factor shaping the optical and NIR appearance of SNe Ia.

  18. Cosmological Parameter Uncertainties from SALT-II Type Ia Supernova Light Curve Models

    SciTech Connect

    Mosher, J.; Guy, J.; Kessler, R.; Astier, P.; Marriner, J.; Betoule, M.; Sako, M.; El-Hage, P.; Biswas, R.; Pain, R.; Kuhlmann, S.; Regnault, N.; Frieman, J. A.; Schneider, D. P.

    2014-08-29

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ~120 low-redshift (z < 0.1) SNe Ia, ~255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ~290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w (input) – w (recovered)) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty, the average bias on w is –0.014 ± 0.007.

  19. Cosmological parameter uncertainties from SALT-II type Ia supernova light curve models

    SciTech Connect

    Mosher, J.; Sako, M.; Guy, J.; Astier, P.; Betoule, M.; El-Hage, P.; Pain, R.; Regnault, N.; Marriner, J.; Biswas, R.; Kuhlmann, S.; Schneider, D. P.

    2014-09-20

    We use simulated type Ia supernova (SN Ia) samples, including both photometry and spectra, to perform the first direct validation of cosmology analysis using the SALT-II light curve model. This validation includes residuals from the light curve training process, systematic biases in SN Ia distance measurements, and a bias on the dark energy equation of state parameter w. Using the SN-analysis package SNANA, we simulate and analyze realistic samples corresponding to the data samples used in the SNLS3 analysis: ∼120 low-redshift (z < 0.1) SNe Ia, ∼255 Sloan Digital Sky Survey SNe Ia (z < 0.4), and ∼290 SNLS SNe Ia (z ≤ 1). To probe systematic uncertainties in detail, we vary the input spectral model, the model of intrinsic scatter, and the smoothing (i.e., regularization) parameters used during the SALT-II model training. Using realistic intrinsic scatter models results in a slight bias in the ultraviolet portion of the trained SALT-II model, and w biases (w {sub input} – w {sub recovered}) ranging from –0.005 ± 0.012 to –0.024 ± 0.010. These biases are indistinguishable from each other within the uncertainty; the average bias on w is –0.014 ± 0.007.

  20. Comparing the Light Curves of Simulated Type Ia Supernovae with Observations Using Data-driven Models

    NASA Astrophysics Data System (ADS)

    Diemer, Benedikt; Kessler, Richard; Graziani, Carlo; Jordan, George C., IV; Lamb, Donald Q.; Long, Min; van Rossum, Daniel R.

    2013-08-01

    We propose a robust, quantitative method to compare the synthetic light curves of a Type Ia supernova (SN Ia) explosion model with a large set of observed SNe Ia, and derive a figure of merit for the explosion model's agreement with observations. The synthetic light curves are fit with the data-driven model SALT2 which returns values for stretch, color, and magnitude at peak brightness, as well as a goodness-of-fit parameter. Each fit is performed multiple times with different choices of filter bands and epoch range in order to quantify the systematic uncertainty on the fitted parameters. We use a parametric population model for the distribution of observed SN Ia parameters from large surveys, and extend it to represent red, dim, and bright outliers found in a low-redshift SN Ia data set. We discuss the potential uncertainties of this population model and find it to be reliable given the current uncertainties on cosmological parameters. Using our population model, we assign each set of fitted parameters a likelihood of being observed in nature, and a figure of merit based on this likelihood. We define a second figure of merit based on the quality of the light curve fit, and combine the two measures into an overall figure of merit for each explosion model. We compute figures of merit for a variety of one-, two-, and three-dimensional explosion models and show that our evaluation method allows meaningful inferences across a wide range of light curve quality and fitted parameters.

  1. TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED

    SciTech Connect

    Mandel, Kaisey S.; Narayan, Gautham; Kirshner, Robert P.

    2011-04-20

    We have constructed a comprehensive statistical model for Type Ia supernova (SN Ia) light curves spanning optical through near-infrared (NIR) data. A hierarchical framework coherently models multiple random and uncertain effects, including intrinsic supernova (SN) light curve covariances, dust extinction and reddening, and distances. An improved BAYESN Markov Chain Monte Carlo code computes probabilistic inferences for the hierarchical model by sampling the global probability density of parameters describing individual SNe and the population. We have applied this hierarchical model to optical and NIR data of 127 SNe Ia from PAIRITEL, CfA3, Carnegie Supernova Project, and the literature. We find an apparent population correlation between the host galaxy extinction A{sub V} and the ratio of total-to-selective dust absorption R{sub V} . For SNe with low dust extinction, A{sub V} {approx}< 0.4, we find R{sub V} {approx} 2.5-2.9, while at high extinctions, A{sub V} {approx}> 1, low values of R{sub V} < 2 are favored. The NIR luminosities are excellent standard candles and are less sensitive to dust extinction. They exhibit low correlation with optical peak luminosities, and thus provide independent information on distances. The combination of NIR and optical data constrains the dust extinction and improves the predictive precision of individual SN Ia distances by about 60%. Using cross-validation, we estimate an rms distance modulus prediction error of 0.11 mag for SNe with optical and NIR data versus 0.15 mag for SNe with optical data alone. Continued study of SNe Ia in the NIR is important for improving their utility as precise and accurate cosmological distance indicators.

  2. The Rise and Fall of Type Ia Supernova Light Curves in the SDSS-II Supernova Survey

    SciTech Connect

    Hayden, Brian T.; Garnavich, Peter M.; Kessler, Richard; Frieman, Joshua A.; Jha, Saurabh W.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Kasen, Daniel; Marriner, John; Nichol, Robert C.; /Portsmouth U., ICG /Baltimore, Space Telescope Sci. /Johns Hopkins U.

    2010-01-01

    We analyze the rise and fall times of Type Ia supernova (SN Ia) light curves discovered by the Sloan Digital Sky Survey-II (SDSS-II) Supernova Survey. From a set of 391 light curves k-corrected to the rest-frame B and V bands, we find a smaller dispersion in the rising portion of the light curve compared to the decline. This is in qualitative agreement with computer models which predict that variations in radioactive nickel yield have less impact on the rise than on the spread of the decline rates. The differences we find in the rise and fall properties suggest that a single 'stretch' correction to the light curve phase does not properly model the range of SN Ia light curve shapes. We select a subset of 105 light curves well observed in both rise and fall portions of the light curves and develop a '2-stretch' fit algorithm which estimates the rise and fall times independently. We find the average time from explosion to B-band peak brightness is 17.38 {+-} 0.17 days, but with a spread of rise times which range from 13 days to 23 days. Our average rise time is shorter than the 19.5 days found in previous studies; this reflects both the different light curve template used and the application of the 2-stretch algorithm. The SDSS-II supernova set and the local SNe Ia with well-observed early light curves show no significant differences in their average rise-time properties. We find that slow-declining events tend to have fast rise times, but that the distribution of rise minus fall time is broad and single peaked. This distribution is in contrast to the bimodality in this parameter that was first suggested by Strovink (2007) from an analysis of a small set of local SNe Ia. We divide the SDSS-II sample in half based on the rise minus fall value, t{sub r} - t{sub f} {approx}< 2 days and t{sub r} - t{sub f} > 2 days, to search for differences in their host galaxy properties and Hubble residuals; we find no difference in host galaxy properties or Hubble residuals in our

  3. Dust around Type Ia supernovae

    SciTech Connect

    Wang, Lifan

    2005-10-20

    An explanation is given of the low value of R lambda triple bond A lambda/E(B - V), the ratio of absolute to selective extinction deduced from Type Ia supernova observations. The idea involves scattering by dust clouds located in the circumstellar environment, or at the highest velocity shells of the supernova ejecta. The scattered light tends to reduce the effective R lambda in the optical, but has an opposite effect in the ultraviolet. The presence of circumstellar dust can be tested by ultraviolet to near infrared observations and by multi-epoch spectropolarimetry of SNe Ia.

  4. Tycho Brahe's 1572 supernova as a standard type Ia as revealed by its light-echo spectrum.

    PubMed

    Krause, Oliver; Tanaka, Masaomi; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-12-01

    Type Ia supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN 1572) is thought to be one of the best candidates for a type Ia supernova in the Milky Way. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of type Ia supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN 1572 belongs to the majority class of normal type Ia supernovae. PMID:19052622

  5. Tycho Brahe's 1572 supernova as a standard typeIa as revealed by its light-echo spectrum

    NASA Astrophysics Data System (ADS)

    Krause, Oliver; Tanaka, Masaomi; Usuda, Tomonori; Hattori, Takashi; Goto, Miwa; Birkmann, Stephan; Nomoto, Ken'ichi

    2008-12-01

    TypeIa supernovae are thermonuclear explosions of white dwarf stars in close binary systems. They play an important role as cosmological distance indicators and have led to the discovery of the accelerated expansion of the Universe. Among the most important unsolved questions about supernovae are how the explosion actually proceeds and whether accretion occurs from a companion or by the merging of two white dwarfs. Tycho Brahe's supernova of 1572 (SN1572) is thought to be one of the best candidates for a typeIa supernova in the Milky Way. The proximity of the SN1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. The determination of the hitherto unknown spectroscopic type of this supernova is crucial in relating these results to the diverse population of typeIa supernovae. Here we report an optical spectrum of Tycho's supernova near maximum brightness, obtained from a scattered-light echo more than four centuries after the direct light from the explosion swept past the Earth. We find that SN1572 belongs to the majority class of normal typeIa supernovae.

  6. Multidimensional radiative transfer calculations of the light curves and spectra of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Kasen, D.; Thomas, R. C.; Röpke, F.; Woosley, S. E.

    2008-07-01

    The explosion of a white dwarf star in a Type Ia supernova (SN Ia) explosion leads to the burning and ejection of stellar material at a few percent of the speed of light. The spectacle we observe in the months that follow is from the leaking of radiation from this glowing mass of radioactive debris. The modeling of SN Ia light curves and spectra represents a complex problem in time-dependent radiative transfer. Here we discuss numerical methods, in particular Monte Carlo methods, for calculating 3D multi-wavelength radiative transport on massively parallel machines. Our approach involves a newly developed domain decomposition technique in which the memory load is distributed over multiple processors and photon packets are communicated from node to node. We present results for 2-dimensional models that explore white dwarf explosions over a range of explosion paradigms and ignition conditions. These models give insight into how variations in the initial conditions of the explosion affect the light curve we finally observe. We conclude with an outlook (and some initial results) for large scale 3D radiation transport calculations of SNe Ia in an era of petascale computing.

  7. PSN J01440799-6107074 is a type-Ia supernova near maximum light

    NASA Astrophysics Data System (ADS)

    Cao, Y.; Kasliwal, M.; Parker, S.; Hsiao, E. Y.; Gonzalez, C.; Phillips, M. M.; Morrell, N.; Contreras, C.

    2014-03-01

    We report on the spectroscopic classification of PSN J01440799-6107074 using a near-infrared spectrogram (range 800-2500 nm) obtained on Mar. 8.02 UT with the FoldedPort Infrared Echellette (FIRE) spectrograph on the 6.5-m Magellan Baade Telescope at Las Campanas Observatory. The near-infrared spectrum shows that it is a type-Ia supernova. The spectrum resembles the near-infrared spectrum of SN 2011fe at maximum light (Hsiao et al.

  8. Type IA Supernovae

    NASA Technical Reports Server (NTRS)

    Wheeler, J. Craig

    1992-01-01

    Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.

  9. Improved Dark Energy Constraints From ~ 100 New CfA Supernova Type Ia Light Curves

    SciTech Connect

    Hicken, Malcolm; Wood-Vasey, W.Michael; Blondin, Stephane; Challis, Peter; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin; Kirshner, Robert P.; /Harvard-Smithsonian Ctr. Astrophys.

    2012-04-06

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013{sub -0.068}{sup +0.066} (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R{sub V} = 3.1), and MLCS2k2 (R{sub V} = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < {Delta} < 1.2. MLCS2k2 with R{sub V} = 3.1 overestimates host-galaxy extinction while R{sub V} {approx} 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2{sigma}, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  10. IMPROVED DARK ENERGY CONSTRAINTS FROM {approx}100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES

    SciTech Connect

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Wood-Vasey, W. Michael; Blondin, Stephane; Jha, Saurabh; Kelly, Patrick L.; Rest, Armin E-mail: kirshner@cfa.harvard.edu

    2009-08-01

    We combine the CfA3 supernovae Type Ia (SN Ia) sample with samples from the literature to calculate improved constraints on the dark energy equation of state parameter, w. The CfA3 sample is added to the Union set of Kowalski et al. to form the Constitution set and, combined with a BAO prior, produces 1 + w = 0.013{sup +0.066} {sub -0.068} (0.11 syst), consistent with the cosmological constant. The CfA3 addition makes the cosmologically useful sample of nearby SN Ia between 2.6 and 2.9 times larger than before, reducing the statistical uncertainty to the point where systematics play the largest role. We use four light-curve fitters to test for systematic differences: SALT, SALT2, MLCS2k2 (R{sub V} = 3.1), and MLCS2k2 (R{sub V} = 1.7). SALT produces high-redshift Hubble residuals with systematic trends versus color and larger scatter than MLCS2k2. MLCS2k2 overestimates the intrinsic luminosity of SN Ia with 0.7 < {delta} < 1.2. MLCS2k2 with R{sub V} = 3.1 overestimates host-galaxy extinction while R{sub V} {approx} 1.7 does not. Our investigation is consistent with no Hubble bubble. We also find that, after light-curve correction, SN Ia in Scd/Sd/Irr hosts are intrinsically fainter than those in E/S0 hosts by 2{sigma}, suggesting that they may come from different populations. We also find that SN Ia in Scd/Sd/Irr hosts have low scatter (0.1 mag) and reddening. Current systematic errors can be reduced by improving SN Ia photometric accuracy, by including the CfA3 sample to retrain light-curve fitters, by combining optical SN Ia photometry with near-infrared photometry to understand host-galaxy extinction, and by determining if different environments give rise to different intrinsic SN Ia luminosity after correction for light-curve shape and color.

  11. CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE

    SciTech Connect

    Hicken, Malcolm; Challis, Peter; Kirshner, Robert P.; Bakos, Gaspar; Berlind, Perry; Brown, Warren R.; Caldwell, Nelson; Calkins, Mike; Falco, Emilio; Fernandez, Jose; Friedman, Andrew S.; Groner, Ted; Hartman, Joel; Rest, Armin; Cramer, Claire E.; Wood-Vasey, W. Michael; Currie, Thayne; De Kleer, Kathy; Esquerdo, Gil; Everett, Mark; and others

    2012-06-01

    We present multi-band optical photometry of 94 spectroscopically confirmed Type Ia supernovae (SNe Ia) in the redshift range 0.0055-0.073, obtained between 2006 and 2011. There are a total of 5522 light-curve points. We show that our natural-system SN photometry has a precision of {approx}< 0.03 mag in BVr'i', {approx}< 0.06 mag in u', and {approx}< 0.07 mag in U for points brighter than 17.5 mag and estimate that it has a systematic uncertainty of 0.014, 0.010, 0.012, 0.014, 0.046, and 0.073 mag in BVr'i'u'U, respectively. Comparisons of our standard-system photometry with published SN Ia light curves and comparison stars reveal mean agreement across samples in the range of {approx}0.00-0.03 mag. We discuss the recent measurements of our telescope-plus-detector throughput by direct monochromatic illumination by Cramer et al. This technique measures the whole optical path through the telescope, auxiliary optics, filters, and detector under the same conditions used to make SN measurements. Extremely well characterized natural-system passbands (both in wavelength and over time) are crucial for the next generation of SN Ia photometry to reach the 0.01 mag accuracy level. The current sample of low-z SNe Ia is now sufficiently large to remove most of the statistical sampling error from the dark-energy error budget. But pursuing the dark-energy systematic errors by determining highly accurate detector passbands, combining optical and near-infrared (NIR) photometry and spectra, using the nearby sample to illuminate the population properties of SNe Ia, and measuring the local departures from the Hubble flow will benefit from larger, carefully measured nearby samples.

  12. SUPER-CHANDRASEKHAR-MASS LIGHT CURVE MODELS FOR THE HIGHLY LUMINOUS TYPE Ia SUPERNOVA 2009dc

    SciTech Connect

    Kamiya, Yasuomi; Tanaka, Masaomi; Nomoto, Ken'ichi; Blinnikov, Sergei I.; Sorokina, Elena I.; Suzuki, Tomoharu

    2012-09-10

    Several highly luminous Type Ia supernovae (SNe Ia) have been discovered. Their high luminosities are difficult to explain with the thermonuclear explosions of Chandrasekhar-mass white dwarfs (WDs). In the present study, we estimate the progenitor mass of SN 2009dc, one of the extremely luminous SNe Ia, using the hydrodynamical models as follows. Explosion models of super-Chandrasekhar-mass (super-Ch-mass) WDs are constructed, and multi-color light curves (LCs) are calculated. The comparison between our calculations and the observations of SN 2009dc suggests that the exploding WD has a super-Ch mass of 2.2-2.4 M{sub Sun }, producing 1.2-1.4 M{sub Sun} of {sup 56}Ni, if the extinction by its host galaxy is negligible. If the extinction is significant, the exploding WD is as massive as {approx}2.8 M{sub Sun }, and {approx}1.8 M{sub Sun} of {sup 56}Ni is necessary to account for the observations. Whether the host-galaxy extinction is significant or not, the progenitor WD must have a thick carbon-oxygen layer in the outermost zone (20%-30% of the WD mass), which explains the observed low expansion velocity of the ejecta and the presence of carbon. Our estimate of the mass of the progenitor WD, especially for the extinction-corrected case, is challenging to the current scenarios of SNe Ia. Implications for the progenitor scenarios are also discussed.

  13. VizieR Online Data Catalog: Light curves of type Ia supernovae in SNLS (Guy+, 2010)

    NASA Astrophysics Data System (ADS)

    Guy, J.; Sullivan, M.; Conley, A.; Regnault, N.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Fouchez, D.; Hardin, D.; Hook, I. M.; Howell, D. A.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K. M.; Pritchet, C. J.; Rich, J.; Ruhlmann-Kleider, V.; Balam, D.; Baumont, S.; Ellis, R. S.; Fabbro, S.; Fakhouri, H. K.; Fourmanoit, N.; Gonzalez-Gaitan, S.; Graham, M. L.; Hsiao, E.; Kronborg, T.; Lidman, C.; Mourao, A. M.; Perlmutter, S.; Ripoche, P.; Suzuki, N.; Walker, E. S.

    2010-07-01

    The following files contain the Type Ia supernovae light curves of the Supernova Legacy Survey 3-year sample and the parameters needed to estimate luminosity distances: the apparent rest-frame B-band magnitude at maximum light, a shape parameter (stretch factor or X1) and a colour that approximately corresponds to the rest-frame B-V colour (plus a constant offset) at maximum light in B-band. Those parameters were obtained with two light curve fitters: SALT2 (Guy et al., 2007A&A...466...11G) and SiFTO (Conley et al., 2008ApJ...681..482C). The light curves are in the magnitude system defined in Regnault et al. (2009, Cat. J/A+A/506/999). Fluxes and uncertainties are given for a fiducial zero point of 30, a magnitude is mag=-2.5log10(Flux)+30. An additional table that is not in the paper gives the approximate coordinates of SNe images in MegaCam focal plane. They are needed to estimate the filter transmission function. This data can also be downloaded at the University of Toronto's Research Repository https://tspace.library.utoronto.ca/handle/1807/24512 (3 data files).

  14. Timescale stretch parameterization of Type Ia supernova B-band light curves

    SciTech Connect

    Goldhaber, G.; Groom, D.E.; Kim, A.; Aldering, G.; Astier, P.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fruchter, A.S.; Goobar, A.; Hook, I.; Irwin, M.; Kim, M.; Knop, R.A.; Lidman, C.; McMahon, R.; Nugent, P.E.; Pain, R.; Panagia, N.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.A.; York, T.

    2001-04-01

    R-band intensity measurements along the light curve of Type Ia supernovae discovered by the Cosmology Project (SCP) are fitted in brightness to templates allowing a free parameter the time-axis width factor w identically equal to s times (1+z). The data points are then individually aligned in the time-axis, normalized and K-corrected back to the rest frame, after which the nearly 1300 normalized intensity measurements are found to lie on a well-determined common rest-frame B-band curve which we call the ''composite curve.'' The same procedure is applied to 18 low-redshift Calan/Tololo SNe with Z < 0.11; these nearly 300 B-band photometry points are found to lie on the composite curve equally well. The SCP search technique produces several measurements before maximum light for each supernova. We demonstrate that the linear stretch factor, s, which parameterizes the light-curve timescale appears independent of z, and applies equally well to the declining and rising parts of the light curve. In fact, the B band template that best fits this composite curve fits the individual supernova photometry data when stretched by a factor s with chi 2/DoF {approx} 1, thus as well as any parameterization can, given the current data sets. The measurement of the data of explosion, however, is model dependent and not tightly constrained by the current data. We also demonstrate the 1 + z light-cure time-axis broadening expected from cosmological expansion. This argues strongly against alternative explanations, such as tired light, for the redshift of distant objects.

  15. TYPE Ia SUPERNOVA CARBON FOOTPRINTS

    SciTech Connect

    Thomas, R. C.; Nugent, P.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Paech, K.; Chotard, N.; Copin, Y.; Gangler, E.; and others

    2011-12-10

    We present convincing evidence of unburned carbon at photospheric velocities in new observations of five Type Ia supernovae (SNe Ia) obtained by the Nearby Supernova Factory. These SNe are identified by examining 346 spectra from 124 SNe obtained before +2.5 days relative to maximum. Detections are based on the presence of relatively strong C II {lambda}6580 absorption 'notches' in multiple spectra of each SN, aided by automated fitting with the SYNAPPS code. Four of the five SNe in question are otherwise spectroscopically unremarkable, with ions and ejection velocities typical of SNe Ia, but spectra of the fifth exhibit high-velocity (v > 20, 000 km s{sup -1}) Si II and Ca II features. On the other hand, the light curve properties are preferentially grouped, strongly suggesting a connection between carbon-positivity and broadband light curve/color behavior: three of the five have relatively narrow light curves but also blue colors and a fourth may be a dust-reddened member of this family. Accounting for signal to noise and phase, we estimate that 22{sup +10}{sub -6%} of SNe Ia exhibit spectroscopic C II signatures as late as -5 days with respect to maximum. We place these new objects in the context of previously recognized carbon-positive SNe Ia and consider reasonable scenarios seeking to explain a physical connection between light curve properties and the presence of photospheric carbon. We also examine the detailed evolution of the detected carbon signatures and the surrounding wavelength regions to shed light on the distribution of carbon in the ejecta. Our ability to reconstruct the C II {lambda}6580 feature in detail under the assumption of purely spherical symmetry casts doubt on a 'carbon blobs' hypothesis, but does not rule out all asymmetric models. A low volume filling factor for carbon, combined with line-of-sight effects, seems unlikely to explain the scarcity of detected carbon in SNe Ia by itself.

  16. SALT spectroscopic classification of PS16atu (SN 2016atv) as a type-Ia supernova after maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-03-01

    We obtained SALT (+RSS) spectroscopy of PS16atu (SN 2016atv) on 2016 Mar 10.1 UT, covering the wavelength range 350-920 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows PS16atu is a type-Ia supernova approximately a week past maximum light.

  17. Constraints on shallow {sup 56}Ni from the early light curves of type Ia supernovae

    SciTech Connect

    Piro, Anthony L.

    2014-03-20

    Ongoing transient surveys are presenting an unprecedented account of the rising light curves of Type Ia supernovae (SNe Ia). This early emission probes the shallowest layers of the exploding white dwarf (WD), which can provide constraints on the progenitor star and the properties of the explosive burning. We use semianalytic models of radioactively powered rising light curves to analyze these observations. As we have summarized in previous work, the main limiting factor in determining the surface distribution of {sup 56}Ni is the lack of an unambiguously identified time of explosion, as would be provided by detection of shock breakout or shock-heated cooling. Without this the SN may in principle exhibit a 'dark phase' for a few hours to days, where the only emission is from shock-heated cooling that is too dim to be detected. We show that by assuming a theoretically motivated time-dependent velocity evolution, the explosion time can be better constrained, albeit with potential systematic uncertainties. This technique is used to infer the surface {sup 56}Ni distributions of three recent SNe Ia that were caught especially early in their rise. In all three we find fairly similar {sup 56}Ni distributions. Observations of SN 2011fe and SN 2012cg probe shallower depths than SN 2009ig, and in these two cases {sup 56}Ni is present merely ∼10{sup –2} M {sub ☉} from the WDs' surfaces. The uncertainty in this result is up to an order of magnitude given the difficulty of precisely constraining the explosion time. We also use our conclusions about the explosion times to reassess radius constraints for the progenitor of SN 2011fe, as well as discuss the roughly t {sup 2} power law that is inferred for many observed rising light curves.

  18. The Sloan Digital Sky Survey-II: Photometry and Supernova Ia Light Curves from the 2005 Data

    SciTech Connect

    Holtzman, Jon A.; Marriner, John; Kessler, Richard; Sako, Masao; Dilday, Ben; Frieman, Joshua A.; Schneider, Donald P.; Bassett, Bruce; Becker, Andrew; Cinabro, David; DeJongh, Fritz; Depoy, Darren L.; Doi, Mamoru; Garnavich, Peter M.; Hogan, Craig J.; Jha, Saurabh; Konishi, Kohki; Lampeitl, Hubert; Marshall, Jennifer L.; McGinnis, David; Miknaitis, Gajus; /KICP, Chicago /Portsmouth U., ICG /Ohio State U., Dept. Astron. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Rochester Inst. Tech. /KIPAC, Menlo Park /Portsmouth U., ICG /Tokyo U., Inst. Astron. /South African Astron. Observ. /Cape Town U. /Tokyo U., ICRR /KIPAC, Menlo Park

    2010-08-26

    We present ugriz light curves for 146 spectroscopically confirmed or spectroscopically probable Type Ia supernovae from the 2005 season of the SDSS-II Supernova survey. The light curves have been constructed using a photometric technique that we call scene modeling, which is described in detail here; the major feature is that supernova brightnesses are extracted from a stack of images without spatial resampling or convolution of the image data. This procedure produces accurate photometry along with accurate estimates of the statistical uncertainty, and can be used to derive photometry taken with multiple telescopes. We discuss various tests of this technique that demonstrate its capabilities. We also describe the methodology used for the calibration of the photometry, and present calibrated magnitudes and fluxes for all of the spectroscopic SNe Ia from the 2005 season.

  19. Exploring the Potential Diversity of Early Type Ia Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    Piro, Anthony L.; Morozova, Viktoriya S.

    2016-07-01

    During the first several days after explosion, Type Ia supernova light curves probe the outer layers of the exploding star, and therefore provide important clues for identifying their progenitors. We investigate how both the shallow 56Ni distribution and the presence of circumstellar material shape these early light curves. This is performed using a series of numerical experiments with parameterized properties for systematic exploration. Although not all of the considered models may be realized in nature (and indeed there are arguments why some of them should not occur), the spirit of this work is to provide a broader exploration of the diversity of possibilities. We find that shallower 56Ni leads to steeper, bluer light curves. Differences in the shape of the rise can introduce errors in estimating the explosion time, and thus impact efforts to infer upper limits on the progenitor or companion radius from a lack of observed shock cooling emission. Circumstellar material can lead to significant luminosity during the first few days, but its presence can be difficult to identify depending on the degree of nickel mixing. In some cases, the hot emission of circumstellar material may even lead to a signature similar to an interaction with a companion, and thus in the future additional diagnostics should be gathered for properly assessing early light curves.

  20. Integration of Near-Maximum-Light Type Ia Supernova Spectra as a Method of High-z Identification

    NASA Astrophysics Data System (ADS)

    Troxel, M. A.; Ketchum, W. R.; Branch, D.; Garnavich, P.; Baron, E.; Wang, Y.

    2005-12-01

    Spectral identification of Type Ia supernovae (SNe Ia) has been limited in the past to approximately z = 1.7 due to noise. In order to extend this limit and allow identification of higher-z SNe Ia, we use a simple integration technique to sum near-maximum-light spectra weighted according to their relative fluxes. We show that this combination of near-maximum spectra statistically increases the available signal to noise ratio while preserving not only the signature spectral features of SNe Ia, but also the more specific spectral features that identify sub-types of SNe Ia. In the cases of some peculiar SNe Ia, the unique identity of the supernovae being integrated is preserved as well. This increases the redshift at which SNe Ia, used as standard candles in cosmology, can be identified and thus increases our ability to probe the expansion history of the universe. This work has been supported by NSF grants AST-0204771 and AST-0506028, and NASA grant NNG04GD36G.

  1. Progenitor's Signatures in Type Ia Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Chiotellis, A.; Kosenko, D.; Schure, K. M.; Vink, J.

    2013-01-01

    The remnants of Type Ia supernovae (SNe Ia) can provide important clues about their progenitor histories. We discuss two well-observed supernova remnants (SNRs) that are believed to have resulted from SNe Ia, and use various tools to shed light on the possible progenitor histories. We find that Kepler's SNR is consistent with a symbiotic binary progenitor consisting of a white dwarf and an AGB star. Our hydrosimulations can reproduce the observed kinematic and morphological properties. For Tycho's remnant we use the characteristics of the X-ray spectrum and kinematics to show that the ejecta has likely interacted with dense circumstellar gas.

  2. Defining photometric peculiar type Ia supernovae

    SciTech Connect

    González-Gaitán, S.; Pignata, G.; Förster, F.; Gutiérrez, C. P.; Bufano, F.; Galbany, L.; Hamuy, M.; De Jaeger, T.; Hsiao, E. Y.; Phillips, M. M.; Folatelli, G.; Anderson, J. P.

    2014-11-10

    We present a new photometric identification technique for SN 1991bg-like type Ia supernovae (SNe Ia), i.e., objects with light curve characteristics such as later primary maxima and the absence of a secondary peak in redder filters. This method is capable of selecting this sub-group from the normal type Ia population. Furthermore, we find that recently identified peculiar sub-types such as SNe Iax and super-Chandrasekhar SNe Ia have photometric characteristics similar to 91bg-like SNe Ia, namely, the absence of secondary maxima and shoulders at longer wavelengths, and can also be classified with our technique. The similarity of these different SN Ia sub-groups perhaps suggests common physical conditions. This typing methodology permits the photometric identification of peculiar SNe Ia in large upcoming wide-field surveys either to study them further or to obtain a pure sample of normal SNe Ia for cosmological studies.

  3. Against the Wind: Radio Light Curves of Type Ia Supernovae Interacting with Low-density Circumstellar Shells

    NASA Astrophysics Data System (ADS)

    Harris, Chelsea E.; Nugent, Peter E.; Kasen, Daniel N.

    2016-06-01

    For decades a wide variety of observations spanning the radio through optical and on to the X-ray have attempted to uncover signs of type Ia supernovae (SNe Ia) interacting with a circumstellar medium (CSM). The goal of these studies is to constrain the nature of the hypothesized SN Ia mass-donor companion. A continuous CSM is typically assumed when interpreting observations of interaction. However, while such models have been successfully applied to core-collapse SNe, the assumption of continuity may not be accurate for SNe Ia, because shells of CSM could be formed by pre-supernova eruptions (novae). In this work, we model the interaction of SNe with a spherical, low-density, finite-extent CSM and create a suite of synthetic radio synchrotron light curves. We find that CSM shells produce sharply peaked light curves. We also identify a fiducial set of models that obey a common evolution and can be used to generate radio light curves for an interaction with an arbitrary shell. The relations obeyed by the fiducial models can be used to deduce CSM properties from radio observations; we demonstrate this by applying them to the nondetections of SN 2011fe and SN 2014J. Finally, we explore a multiple shell CSM configuration and describe its more complicated dynamics and the resultant radio light curves.

  4. ESTIMATING THE FIRST-LIGHT TIME OF THE TYPE IA SUPERNOVA 2014J IN M82

    SciTech Connect

    Zheng, WeiKang; Shivvers, Isaac; Filippenko, Alexei V.; Clubb, Kelsey I.; Fox, Ori D.; Graham, Melissa L.; Kelly, Patrick L.; Mauerhan, Jon C.; Itagaki, Koichi

    2014-03-01

    The Type Ia supernova (SN Ia) 2014J in M82 (d ≈ 3.5 Mpc) was serendipitously discovered by S. Fossey's group on 2014 January 21 UT and has been confirmed to be the nearest known SN Ia since at least SN 1986G. Although SN 2014J was not discovered until ∼7 days after first light, both the Katzman Automatic Imaging Telescope at Lick Observatory and K. Itagaki obtained several prediscovery observations of SN 2014J. With these data, we are able to constrain the object's time of first light to be January 14.75 UT, only 0.82 ± 0.21 days before our first detection. Interestingly, we find that the light curve is well described by a varying power law, much like SN 2013dy, which makes SN 2014J the second example of a changing power law in early-time SN Ia light curves. A low-resolution spectrum taken on January 23.388 UT, ∼8.70 days after first light, shows that SN 2014J is a heavily reddened but otherwise spectroscopically normal SN Ia.

  5. New approaches for modeling type Ia supernovae

    SciTech Connect

    Zingale, Michael; Almgren, Ann S.; Bell, John B.; Day, Marcus S.; Rendleman, Charles A.; Woosley, Stan

    2007-06-25

    Type Ia supernovae (SNe Ia) are the largest thermonuclearexplosions in the Universe. Their light output can be seen across greatstances and has led to the discovery that the expansion rate of theUniverse is accelerating. Despite the significance of SNe Ia, there arestill a large number of uncertainties in current theoretical models.Computational modeling offers the promise to help answer the outstandingquestions. However, even with today's supercomputers, such calculationsare extremely challenging because of the wide range of length and timescales. In this paper, we discuss several new algorithms for simulationsof SNe Ia and demonstrate some of their successes.

  6. Progenitors of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Maeda, Keiichi; Terada, Yukikatsu

    2016-07-01

    Natures of progenitors of type Ia Supernovae (SNe Ia) have not yet been clarified. There has been long and intensive discussion on whether the so-called single degenerate (SD) scenario or the double degenerate (DD) scenario, or anything else, could explain a major population of SNe Ia, but the conclusion has not yet been reached. With rapidly increasing observational data and new theoretical ideas, the field of studying the SN Ia progenitors has been quickly developing, and various new insights have been obtained in recent years. This paper aims at providing a summary of the current situation regarding the SN Ia progenitors, both in theory and observations. It seems difficult to explain the emerging diversity seen in observations of SNe Ia by a single population, and we emphasize that it is important to clarify links between different progenitor scenarios and different sub-classes of SNe Ia.

  7. Diffuse gas in galaxies sheds new light on the origin of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Johansson, Jonas; Woods, Tyrone E.; Gilfanov, Marat; Sarzi, Marc; Chen, Yan-Mei; Oh, Kyuseok

    2014-08-01

    We measure the strength of He II λ4686 nebular emission in passively evolving (`retired') galaxies, aiming to constrain their populations of hot accreting white dwarfs (WDs) in the context of the single-degenerate (SD) scenario of Type Ia supernovae (SNe Ia). In the SD scenario, as a WD burns hydrogen-rich material accreted from a companion star, it becomes a powerful source of ionizing ultraviolet emission. If significant populations of such sources exist in galaxies, strong emission in the recombination lines of He II should be expected from the interstellar medium. To explore this conjecture, we select from the Sloan Digital Sky Survey ˜11 500 emission-line galaxies with stellar ages >1 Gyr showing no signs of active galactic nuclei activity and co-add their spectra in bins of stellar population age. For the first time, we detect He II λ4686 nebular emission in retired galaxies and find it to be significantly weaker than that expected in the SD scenario, especially in the youngest age bin (1-4 Gyr) where the SN Ia rate is the highest. Instead, the strength of the observed He II λ4686 nebular emission is consistent with post-asymptotic giant branch stars being the sole ionizing source in all age bins. These results limit populations of accreting WDs with photospheric temperatures (Teff) in the range ˜(1.5-6) × 105 K to the level at which they can account for no more than ˜5-10 per cent of the observed SN Ia rate. Conversely, should all WD progenitors of SN Ia go through the phase of steady nuclear burning with Teff ˜ (1.5-6) × 105 K, they do not increase their mass by more than ˜0.03 M⊙ in this regime.

  8. Light Curves of 213 Type Ia Supernovae from the ESSENCE Survey

    NASA Astrophysics Data System (ADS)

    Narayan, G.; Rest, A.; Tucker, B. E.; Foley, R. J.; Wood-Vasey, W. M.; Challis, P.; Stubbs, C.; Kirshner, R. P.; Aguilera, C.; Becker, A. C.; Blondin, S.; Clocchiatti, A.; Covarrubias, R.; Damke, G.; Davis, T. M.; Filippenko, A. V.; Ganeshalingam, M.; Garg, A.; Garnavich, P. M.; Hicken, M.; Jha, S. W.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miknaitis, G.; Pignata, G.; Prieto, J. L.; Riess, A. G.; Schmidt, B. P.; Silverman, J. M.; Smith, R. C.; Sollerman, J.; Spyromilio, J.; Suntzeff, N. B.; Tonry, J. L.; Zenteno, A.

    2016-05-01

    The ESSENCE survey discovered 213 Type Ia supernovae at redshifts 0.1\\lt z\\lt 0.81 between 2002 and 2008. We present their R- and I-band photometry, measured from images obtained using the MOSAIC II camera at the CTIO Blanco, along with rapid-response spectroscopy for each object. We use our spectroscopic follow-up observations to determine an accurate, quantitative classification, and precise redshift. Through an extensive calibration program we have improved the precision of the CTIO Blanco natural photometric system. We use several empirical metrics to measure our internal photometric consistency and our absolute calibration of the survey. We assess the effect of various potential sources of systematic bias on our measured fluxes, and estimate the dominant term in the systematic error budget from the photometric calibration on our absolute fluxes is ∼1%.

  9. The Union3 Supernova Ia Compilation

    NASA Astrophysics Data System (ADS)

    Rubin, David; Aldering, Greg Scott; Amanullah, Rahman; Barbary, Kyle H.; Bruce, Adam; Chappell, Greta; Currie, Miles; Dawson, Kyle S.; Deustua, Susana E.; Doi, Mamoru; Fakhouri, Hannah; Fruchter, Andrew S.; Gibbons, Rachel A.; Goobar, Ariel; Hsiao, Eric; Huang, Xiaosheng; Ihara, Yutaka; Kim, Alex G.; Knop, Robert A.; Kowalski, Marek; Krechmer, Evan; Lidman, Chris; Linder, Eric; Meyers, Joshua; Morokuma, Tomoki; Nordin, Jakob; Perlmutter, Saul; Ripoche, Pascal; Ruiz-Lapuente, Pilar; Rykoff, Eli S.; Saunders, Clare; Spadafora, Anthony L.; Suzuki, Nao; Takanashi, Naohiro; Yasuda, Naoki; Supernova Cosmology Project

    2016-01-01

    High-redshift supernovae observed with the Hubble Space Telescope (HST) are crucial for constraining any time variation in dark energy. In a forthcoming paper (Rubin+, in prep), we will present a cosmological analysis incorporating existing supernovae with improved calibrations, and new HST-observed supernovae (six above z=1). We combine these data with current literature data, and fit them using SALT2-4 to create the Union3 Supernova compilation. We build on the Unified Inference for Type Ia cosmologY (UNITY) framework (Rubin+ 2015b), incorporating non-linear light-curve width and color relations, a model for unexplained dispersion, an outlier model, and a redshift-dependent host-mass correction.

  10. Type Ia supernovae as standard candles

    NASA Technical Reports Server (NTRS)

    Branch, David; Miller, Douglas L.

    1993-01-01

    The distribution of absolute blue magnitudes among Type Ia supernovae (SNs Ia) is studied. Supernovae were used with well determined apparent magnitudes at maximum light and parent galaxies with relative distances determined by the Tully-Fisher or Dn - sigma techniques. The mean absolute blue magnitude is given and the observational dispersion is only sigma(MB) 0.36, comparable to the expected combined errors in distance, apparent magnitude, and extinction. The mean (B-V) color at maximum light is 0.03 +/- 0.04, with a dispersion sigma(B-V) = 0.20. The Cepheid-based distance to IC 4182, the parent galaxy of the normal and unextinguished Type Ia SN 1937C, leads to a Hubble constant of H(0) + 51 +/- 12 km/s Mpc. The existence of a few SNs Ia that appear to have been reddened and dimmed by dust in their parent galaxies does not seriously compromise the use of SNs Ia as distance indicators.

  11. THE SPECTROSCOPIC DIVERSITY OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Blondin, S.; Kirshner, R. P.; Mandel, K. S.; Challis, P.; Berlind, P.; Calkins, M.; Garnavich, P. M.; Jha, S. W.; Modjaz, M.; Riess, A. G.; Schmidt, B. P.

    2012-05-15

    We present 2603 spectra of 462 nearby Type Ia supernovae (SNe Ia), including 2065 previously unpublished spectra, obtained during 1993-2008 through the Center for Astrophysics Supernova Program. There are on average eight spectra for each of the 313 SNe Ia with at least two spectra. Most of the spectra were obtained with the FAST spectrograph at the Fred Lawrence Whipple Observatory 1.5 m telescope and reduced in a consistent manner, making this data set well suited for studies of SN Ia spectroscopic diversity. Using additional data from the literature, we study the spectroscopic and photometric properties of SNe Ia as a function of spectroscopic class using the classification schemes of Branch et al. and Wang et al. The width-luminosity relation appears to be steeper for SNe Ia with broader lines, although the result is not statistically significant with the present sample. Based on the evolution of the characteristic Si II {lambda}6355 line, we propose improved methods for measuring velocity gradients, revealing a larger range than previously suspected, from {approx}0 to {approx}400 km s{sup -1} day{sup -1} considering the instantaneous velocity decline rate at maximum light. We find a weaker and less significant correlation between Si II velocity and intrinsic B - V color at maximum light than reported by Foley et al., owing to a more comprehensive treatment of uncertainties and host galaxy dust. We study the extent of nuclear burning and the presence of unburnt carbon in the outermost layers of the ejecta and report new detections of C II {lambda}6580 in 23 early-time SN Ia spectra. The frequency of C II detections is not higher in SNe Ia with bluer colors or narrower light curves, in conflict with the recent results of Thomas et al. Based on nebular spectra of 27 SNe Ia, we find no relation between the FWHM of the iron emission feature at {approx}4700 A and {Delta}m{sub 15}(B) after removing the two low-luminosity SN 1986G and SN 1991bg, suggesting that the

  12. Ultraviolet diversity of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Foley, Ryan J.; Pan, Yen-Chen; Brown, P.; Filippenko, A. V.; Fox, O. D.; Hillebrandt, W.; Kirshner, R. P.; Marion, G. H.; Milne, P. A.; Parrent, J. T.; Pignata, G.; Stritzinger, M. D.

    2016-09-01

    Ultraviolet (UV) observations of Type Ia supernovae (SNe Ia) probe the outermost layers of the explosion, and UV spectra of SNe Ia are expected to be extremely sensitive to differences in progenitor composition and the details of the explosion. Here, we present the first study of a sample of high signal-to-noise ratio SN Ia spectra that extend blueward of 2900 Å. We focus on spectra taken within 5 d of maximum brightness. Our sample of 10 SNe Ia spans, the majority of the parameter space of SN Ia optical diversity. We find that SNe Ia have significantly more diversity in the UV than in the optical, with the spectral variance continuing to increase with decreasing wavelengths until at least 1800 Å (the limit of our data). The majority of the UV variance correlates with optical light-curve shape, while there are no obvious and unique correlations between spectral shape and either ejecta velocity or host-galaxy morphology. Using light-curve shape as the primary variable, we create a UV spectral model for SNe Ia at peak brightness. With the model, we can examine how individual SNe vary relative to expectations based on only their light-curve shape. Doing this, we confirm an excess of flux for SN 2011fe at short wavelengths, consistent with its progenitor having a subsolar metallicity. While most other SNe Ia do not show large deviations from the model, ASASSN-14lp has a deficit of flux at short wavelengths, suggesting that its progenitor was relatively metal rich.

  13. THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Neill, James D.; Martin, D. Christopher; Barlow, Tom A.; Foster, Karl; Friedman, Peter G.; Morrissey, Patrick; Wyder, Ted K.; Sullivan, Mark; Howell, D. Andrew; Conley, Alex; Seibert, Mark; Madore, Barry F.; Neff, Susan G.; Schiminovich, David; Bianchi, Luciana; Donas, Jose; Milliard, Bruno; Heckman, Timothy M.; Lee, Young-Wook; Rich, R. Michael

    2009-12-20

    We use multi-wavelength, matched aperture, integrated photometry from the Galaxy Evolution Explorer (GALEX), the Sloan Digital Sky Survey, and the RC3 to estimate the physical properties of 166 nearby galaxies hosting 168 well-observed Type Ia supernovae (SNe Ia). The ultraviolet (UV) imaging of local SN Ia hosts from GALEX allows a direct comparison with higher-redshift hosts measured at optical wavelengths that correspond to the rest-frame UV. Our data corroborate well-known features that have been seen in other SN Ia samples. Specifically, hosts with active star formation produce brighter and slower SNe Ia on average, and hosts with luminosity-weighted ages older than 1 Gyr produce on average more faint, fast, and fewer bright, slow SNe Ia than younger hosts. New results include that in our sample, the faintest and fastest SNe Ia occur only in galaxies exceeding a stellar mass threshold of approx10{sup 10} M{sub sun}, leading us to conclude that their progenitors must arise in populations that are older and/or more metal rich than the general SN Ia population. A low host extinction subsample hints at a residual trend in peak luminosity with host age, after correcting for light-curve shape, giving the appearance that older hosts produce less-extincted SNe Ia on average. This has implications for cosmological fitting of SNe Ia, and suggests that host age could be useful as a parameter in the fitting. Converting host mass to metallicity and computing {sup 56}Ni mass from the supernova light curves, we find that our local sample is consistent with a model that predicts a shallow trend between stellar metallicity and the {sup 56}Ni mass that powers the explosion, but we cannot rule out the absence of a trend. We measure a correlation between {sup 56}Ni mass and host age in the local universe that is shallower and not as significant as that seen at higher redshifts. The details of the age-{sup 56}Ni mass correlations at low and higher redshift imply a luminosity

  14. SPECTROSCOPY OF TYPE Ia SUPERNOVAE BY THE CARNEGIE SUPERNOVA PROJECT

    SciTech Connect

    Folatelli, Gaston; Morrell, Nidia; Phillips, Mark M.; Hsiao, Eric; Campillay, Abdo; Contreras, Carlos; Castellon, Sergio; Roth, Miguel; Hamuy, Mario; Anderson, Joseph P.; Krzeminski, Wojtek; Stritzinger, Maximilian; Burns, Christopher R.; Freedman, Wendy L.; Madore, Barry F.; Murphy, David; Persson, S. E.; Prieto, Jose L.; Suntzeff, Nicholas B.; Krisciunas, Kevin; and others

    2013-08-10

    This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days before to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature, we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely, SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2 (Si II 4130) and pW6 (Si II 5972) provide precise calibrations of the peak B-band luminosity with dispersions of Almost-Equal-To 0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a Almost-Equal-To 2{sigma}-3{sigma} correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.

  15. TYPE Ia SUPERNOVA DISTANCE MODULUS BIAS AND DISPERSION FROM K-CORRECTION ERRORS: A DIRECT MEASUREMENT USING LIGHT CURVE FITS TO OBSERVED SPECTRAL TIME SERIES

    SciTech Connect

    Saunders, C.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Kim, A. G.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Chotard, N.; Copin, Y.; Gangler, E.; and others

    2015-02-10

    We estimate systematic errors due to K-corrections in standard photometric analyses of high-redshift Type Ia supernovae. Errors due to K-correction occur when the spectral template model underlying the light curve fitter poorly represents the actual supernova spectral energy distribution, meaning that the distance modulus cannot be recovered accurately. In order to quantify this effect, synthetic photometry is performed on artificially redshifted spectrophotometric data from 119 low-redshift supernovae from the Nearby Supernova Factory, and the resulting light curves are fit with a conventional light curve fitter. We measure the variation in the standardized magnitude that would be fit for a given supernova if located at a range of redshifts and observed with various filter sets corresponding to current and future supernova surveys. We find significant variation in the measurements of the same supernovae placed at different redshifts regardless of filters used, which causes dispersion greater than ∼0.05 mag for measurements of photometry using the Sloan-like filters and a bias that corresponds to a 0.03 shift in w when applied to an outside data set. To test the result of a shift in supernova population or environment at higher redshifts, we repeat our calculations with the addition of a reweighting of the supernovae as a function of redshift and find that this strongly affects the results and would have repercussions for cosmology. We discuss possible methods to reduce the contribution of the K-correction bias and uncertainty.

  16. Type Ia supernova rate studies from the SDSS-II Supernova Study

    SciTech Connect

    Dilday, Benjamin

    2008-08-01

    The author presents new measurements of the type Ia SN rate from the SDSS-II Supernova Survey. The SDSS-II Supernova Survey was carried out during the Fall months (Sept.-Nov.) of 2005-2007 and discovered ~ 500 spectroscopically confirmed SNe Ia with densely sampled (once every ~ 4 days), multi-color light curves. Additionally, the SDSS-II Supernova Survey has discovered several hundred SNe Ia candidates with well-measured light curves, but without spectroscopic confirmation of type. This total, achieved in 9 months of observing, represents ~ 15-20% of the total SNe Ia discovered worldwide since 1885. The author describes some technical details of the SN Survey observations and SN search algorithms that contributed to the extremely high-yield of discovered SNe and that are important as context for the SDSS-II Supernova Survey SN Ia rate measurements.

  17. Luminosity distributions of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Ashall, C.; Mazzali, P.; Sasdelli, M.; Prentice, S. J.

    2016-08-01

    We have assembled a dataset of 165 low redshift, $z<$0.06, publicly available type Ia supernovae (SNe Ia). We produce maximum light magnitude ($M_{B}$ and $M_{V}$) distributions of SNe Ia to explore the diversity of parameter space that they can fill. Before correction for host galaxy extinction we find that the mean $M_{B}$ and $M_{V}$ of SNe Ia are $-18.58\\pm0.07$mag and $-18.72\\pm0.05$mag respectively. Host galaxy extinction is corrected using a new method based on the SN spectrum. After correction, the mean values of $M_{B}$ and $M_{V}$ of SNe Ia are $-19.10\\pm0.06$ and $-19.10\\pm0.05$mag respectively. After correction for host galaxy extinction, `normal' SNeIa ($\\Delta m_{15}(B)<1.6$mag) fill a larger parameter space in the Width-Luminosity Relation (WLR) than previously suggested, and there is evidence for luminous SNe Ia with large $\\Delta m_{15}(B)$. We find a bimodal distribution in $\\Delta m_{15}(B)$, with a pronounced lack of transitional events at $\\Delta m_{15}(B)$=1.6 mag. We confirm that faster, low-luminosity SNe tend to come from passive galaxies. Dividing the sample by host galaxy type, SNe Ia from star-forming (S-F) galaxies have a mean $M_{B}=-19.20 \\pm 0.05$ mag, while SNe Ia from passive galaxies have a mean $M_{B}=-18.57 \\pm 0.24$ mag. Even excluding fast declining SNe, `normal' ($M_{B}<-18$ mag) SNe Ia from S-F and passive galaxies are distinct. In the $V$-band, there is a difference of 0.4$ \\pm $0.13 mag between the median ($M_{V}$) values of the `normal' SN Ia population from passive and S-F galaxies. This is consistent with ($\\sim 15 \\pm $10)% of `normal' SNe Ia from S-F galaxies coming from an old stellar population.

  18. Luminosity distributions of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Ashall, C.; Mazzali, P.; Sasdelli, M.; Prentice, S. J.

    2016-08-01

    We have assembled a data set of 165 low redshift, z < 0.06, publicly available Type Ia supernovae (SNe Ia). We produce maximum light magnitude (MB and MV) distributions of SNe Ia to explore the diversity of parameter space that they can fill. Before correction for host galaxy extinction we find that the mean MB and MV of SNe Ia are -18.58 ± 0.07 and -18.72 ± 0.05 mag, respectively. Host galaxy extinction is corrected using a new method based on the SN spectrum. After correction, the mean values of MB and MV of SNe Ia are -19.10 ± 0.06 and -19.10 ± 0.05 mag, respectively. After correction for host galaxy extinction, `normal' SNe Ia (Δm15(B) < 1.6 mag) fill a larger parameter space in the width-luminosity relation than previously suggested, and there is evidence for luminous SNe Ia with large Δm15(B). We find a bimodal distribution in Δm15(B), with a pronounced lack of transitional events at Δm15(B) = 1.6 mag. We confirm that faster, low-luminosity SNe tend to come from passive galaxies. Dividing the sample by host galaxy type, SNe Ia from star-forming (S-F) galaxies have a mean MB = -19.20 ± 0.05 mag, while SNe Ia from passive galaxies have a mean MB = -18.57 ± 0.24 mag. Even excluding fast declining SNe, `normal' (MB < -18 mag) SNe Ia from S-F and passive galaxies are distinct. In the V band, there is a difference of 0.4 ± 0.13 mag between the median (MV) values of the `normal' SN Ia population from passive and S-F galaxies. This is consistent with (˜15 ± 10) per cent of `normal' SNe Ia from S-F galaxies coming from an old stellar population.

  19. K-corrections and extinction corrections for Type Ia supernovae

    SciTech Connect

    Nugent, Peter; Kim, Alex; Perlmutter, Saul

    2002-05-21

    The measurement of the cosmological parameters from Type Ia supernovae hinges on our ability to compare nearby and distant supernovae accurately. Here we present an advance on a method for performing generalized K-corrections for Type Ia supernovae which allows us to compare these objects from the UV to near-IR over the redshift range 0 < z < 2. We discuss the errors currently associated with this method and how future data can improve upon it significantly. We also examine the effects of reddening on the K-corrections and the light curves of Type Ia supernovae. Finally, we provide a few examples of how these techniques affect our current understanding of a sample of both nearby and distant supernovae.

  20. SALT spectroscopic classification of LSQ16acz (= PS16bby = SN 2016bew) as a type-Ia supernova approaching maximum light

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Kotze, M.

    2016-03-01

    We obtained SALT (+RSS) spectroscopy of LSQ16acz (= PS16bby = SN 2016bew; Baltay et al. 2013, PASP, 125, 683) on 2016 Mar 14.9 UT, covering the wavelength range 340-920 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows LSQ16acz is a type-Ia supernova a few days before maximum light.

  1. Rates and progenitors of type Ia supernovae

    SciTech Connect

    Wood-Vasey, William Michael

    2004-08-16

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  2. Rates and progenitors of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Wood-Vasey, William Michael

    The remarkable uniformity of Type Ia supernovae has allowed astronomers to use them as distance indicators to measure the properties and expansion history of the Universe. However, Type Ia supernovae exhibit intrinsic variation in both their spectra and observed brightness. The brightness variations have been approximately corrected by various methods, but there remain intrinsic variations that limit the statistical power of current and future observations of distant supernovae for cosmological purposes. There may be systematic effects in this residual variation that evolve with redshift and thus limit the cosmological power of SN Ia luminosity-distance experiments. To reduce these systematic uncertainties, we need a deeper understanding of the observed variations in Type Ia supernovae. Toward this end, the Nearby Supernova Factory has been designed to discover hundreds of Type Ia supernovae in a systematic and automated fashion and study them in detail. This project will observe these supernovae spectrophotometrically to provide the homogeneous high-quality data set necessary to improve the understanding and calibration of these vital cosmological yardsticks. >From 1998 to 2003, in collaboration with the Near-Earth Asteroid Tracking group at the Jet Propulsion Laboratory, a systematic and automated searching program was conceived and executed using the computing facilities at Lawrence Berkeley National Laboratory and the National Energy Research Supercomputing Center. An automated search had never been attempted on this scale. A number of planned future large supernovae projects are predicated on the ability to find supernovae quickly, reliably, and efficiently in large datasets. A prototype run of the SNfactory search pipeline conducted from 2002 to 2003 discovered 83 SNe at a final rate of 12 SNe/month. A large, homogeneous search of this scale offers an excellent opportunity to measure the rate of Type Ia supernovae. This thesis presents a new method for

  3. The Carnegie Supernova Project: Intrinsic colors of type Ia supernovae

    SciTech Connect

    Burns, Christopher R.; Persson, S. E.; Freedman, Wendy L.; Madore, Barry F.; Stritzinger, Maximilian; Contreras, Carlos; Phillips, M. M.; Hsiao, E. Y.; Boldt, Luis; Campillay, Abdo; Castellón, Sergio; Morrell, Nidia; Salgado, Francisco; Folatelli, Gaston; Suntzeff, Nicholas B.

    2014-07-01

    We present an updated analysis of the intrinsic colors of Type Ia supernova (SNe Ia) using the latest data release of the Carnegie Supernova Project. We introduce a new light-curve parameter very similar to stretch that is better suited for fast-declining events, and find that these peculiar types can be seen as extensions to the population of 'normal' SNe Ia. With a larger number of objects, an updated fit to the Lira relation is presented along with evidence for a dependence on the late-time slope of the B – V light-curves with stretch and color. Using the full wavelength range from u to H band, we place constraints on the reddening law for the sample as a whole and also for individual events/hosts based solely on the observed colors. The photometric data continue to favor low values of R{sub V} , though with large variations from event to event, indicating an intrinsic distribution. We confirm the findings of other groups that there appears to be a correlation between the derived reddening law, R{sub V} , and the color excess, E(B – V), such that larger E(B – V) tends to favor lower R{sub V} . The intrinsic u-band colors show a relatively large scatter that cannot be explained by variations in R{sub V} or by the Goobar power-law for circumstellar dust, but rather is correlated with spectroscopic features of the supernova and is therefore likely due to metallicity effects.

  4. Type Ia supernovae: their origin and possible applications in cosmology.

    PubMed

    Nomoto, K; Iwamoto, K; Kishimoto, N

    1997-05-30

    Spectroscopic and photometric evidence indicates that Type Ia supernovae (SNe Ia) are the thermonuclear explosions of accreting white dwarfs. However, the progenitor binary systems and hydrodynamical models for SNe Ia are still controversial. The relatively uniform light curves and spectral evolution of SNe Ia have led to their use as a standard candle for determining cosmological parameters, such as the Hubble constant, the density parameter, and the cosmological constant. Recent progress includes the calibration of the absolute maximum brightness of SNe Ia with the Hubble Space Telescope, the reduction of the dispersion in the Hubble diagram through the use of the relation between the light curve shape and the maximum brightness of SNe Ia, and the discovery of many SNe Ia with high red shifts. PMID:9190677

  5. Type Ia Supernova Progenitors, Cosmology, and Systematics

    NASA Astrophysics Data System (ADS)

    Hayden, Brian

    2013-01-01

    Type Ia supernovae have become fundamental tools for cosmology, but their progenitors, explosion mechanism, and dependence on environment remain key problems to be solved to improve their reliability as cosmological distance estimators. In this talk I will present my research into the nature of SN Ia explosions and their environments, and discuss ongoing efforts to understand systematic errors in SN Ia distance measurements. Using SDSS-II SNe, I developed the 2-stretch fitting method for SN Ia light curves. The 2-stretch method allows the rise and decline portions of the light curve to be fit separately, and as a result I discovered that SN Ia light curves with a normal decline rate show a large variation in rise times. This departure from the single stretch model also results in an average rise time of about 17.5 days, 2 days shorter than previously accepted results. While accurate measurements of the rise time do not significantly improve cosmological results, they do improve the estimate of 56-Ni yield, which is an important constraint in theoretical modeling of SN Ia explosions. Using the 2-stretch fitter, I conducted the first search for shock interactions between the exploding white dwarf and a potential companion star in the single degenerate channel. I found no evidence for shocks in an SDSS-II sample of about 100 SNe, and showed using simulations that this rules out shocks above about 9% of peak SN flux. Comparing to theoretical models of single degenerate progenitors, I rule out red giant companions and main sequence stars above 6 solar masses as common companions to SNe Ia. More recent work has focused on the effect of the SN environment, as multiple studies have shown a correlation between host galaxy mass and SN distances. The source of this mass correlation is unknown, but both metallicity and progenitor age are candidate explanations for the observed correlation. I will present new research that attempts to determine the underlying source of the mass

  6. Turbulence in Type Ia Supernovae Simulations

    NASA Astrophysics Data System (ADS)

    Fisher, Robert

    2012-03-01

    Type Ia supernovae are among the most energetic explosions in the known universe, releasing 10^51 ergs of kinetic energy in their ejecta, with 0.7 solar masses of radioactive Ni-56 synthesized during the explosion. The discovery of the Phillips relation enabled the use of Type Ia supernova (SN Ia) as standardizable cosmological candles, and has ushered in a new era of astronomy leading to the discovery of the acceleration of the universe, leading to the 2011 Nobel Prize in physics. The nature of the Type Ia progenitors, as well as their precise explosion mechanism, remains a subject of active investigation, both observationally as well as theoretically. It is known that the progenitors of Type Ia supernovae are near-Chandrasekhar mass white dwarfs in binary systems, though competing models suggest the companion is either a red giant or main sequence star (the so-called ``single-degenerate channel'') or another white dwarf (the ``double-degenerate channel''). In this talk, I will present recent results of three -dimensional models of the single-degenerate channel of Type Ia supernovae. I will also discuss prospects for modeling the double-degenerate channel of Type Ia supernovae, which have recently enjoyed increased favor from observers and theorists.

  7. Multi-color light curves of type Ia supernovae on thecolor-magnitude diagram: A novel step toward more precise distance andextinction estimates

    SciTech Connect

    Wang, Lifan; Goldhaber, Gerson; Aldering, Greg; Perlmutter, Saul

    2003-01-31

    We show empirically that fits to the color-magnituderelation of Type Ia supernovae after optical maximum can provide accuraterelative extragalactic distances. We report the discovery of an empiricalcolor relation for Type Ia light curves: During much of the first monthpast maximum, the magnitudes of Type Ia supernovae defined at a givenvalue of color index have a very small magnitude dispersion; moreover,during this period the relation between B magnitude and B-V color (or B-Ror B-I color) is strikingly linear, to the accuracy of existingwell-measured data. These linear relations can provide robust distanceestimates, in particular, by using the magnitudes when the supernovareaches a given color. After correction for light curve stretch factor ordecline rate, the dispersion of the magnitudes taken at the intercept ofthe linear color-magnitude relation are found to be around 0^m .08 forthe sub-sample of supernovae with (B_max - V_max) ?= 0^m 0.5, andaround 0^m.11 for the sub-sample with (B_max - V_max) ?= 0^m .2.This small dispersion is consistent with being mostly due toobservational errors. The method presented here and the conventionallight curve fitting methods can be combined to further improvestatistical dispersions of distance estimates. It can be combined withthe magnitude at maximum to deduce dust extinction. Theslopes of thecolor-magnitude relation may also be used to identify intrinsicallydifferent SN Ia systems. The method provides a tool that is fundamentalto using SN Ia to estimate cosmological parameters such as the Hubbleconstant and the mass and dark energy content of theuniverse.

  8. Quantitative Spectroscopy of Distant Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Bronder, T. J.; Hook, I.; Howell, D. A.; Sullivan, M.; Perrett, K.; Conley, A.; Astier, P.; Basa, S.; Carlberg, R. G.; Guy, J.; Pain, R.; Pritchet, C. J.; Neill, James D.

    2007-08-01

    Quantitative analysis of 24 high-z (zmed = 0.81) Type Ia supernovae (SNe Ia) spectra observed at the Gemini Telescopes for the Supernova Legacy Survey (SNLS) is presented. This analysis includes equivalent width measurements of SNe Ia-specific absorption features with methods tailored to the reduced signal-to-noise and host galaxy contamination present in these distant spectra. The results from this analysis are compared to corresponding measurements of a large set of low-z SNe Ia from the literature. This comparison showed no significant difference (less than 2σ) between the spectroscopic features of the distant and nearby SNe; a result that supports the assumption that SNe Ia are not evolving with redshift. Additionally, a new correlation between SiII absorption (observed near peak luminosity) and SNe Ia peak magnitudes is presented.

  9. Could there be a hole in type Ia supernovae?

    SciTech Connect

    Kasen, Daniel; Nugent, Peter; Thomas, R.C.; Wang, Lifan

    2004-04-23

    In the favored progenitor scenario, Type Ia supernovae (SNe Ia) arise from a white dwarf accreting material from a non-degenerate companion star. Soon after the white dwarf explodes, the ejected supernova material engulfs the companion star; two-dimensional hydrodynamical simulations by Marietta et al. (2001) show that, in the interaction, the companion star carves out a conical hole of opening angle 30-40 degrees in the supernova ejecta. In this paper we use multi-dimensional Monte Carlo radiative transfer calculations to explore the observable consequences of an ejecta-hole asymmetry. We calculate the variation of the spectrum, luminosity, and polarization with viewing angle for the aspherical supernova near maximum light. We find that the supernova looks normal from almost all viewing angles except when one looks almost directly down the hole. In the latter case, one sees into the deeper, hotter layers of ejecta. The supernova is relatively brighter and has a peculiar spectrum characterized by more highly ionized species, weaker absorption features, and lower absorption velocities. The spectrum viewed down the hole is comparable to the class of SN 1991T-like supernovae. We consider how the ejecta-hole asymmetry may explain the current spectropolarimetric observations of SNe Ia, and suggest a few observational signatures of the geometry. Finally, we discuss the variety currently seen in observed SNe Ia and how an ejecta-hole asymmetry may fit in as one of several possible sources of diversity.

  10. Constraining Cosmic Evolution of Type Ia Supernovae

    SciTech Connect

    Foley, Ryan J.; Filippenko, Alexei V.; Aguilera, C.; Becker, A.C.; Blondin, S.; Challis, P.; Clocchiatti, A.; Covarrubias, R.; Davis, T.M.; Garnavich, P.M.; Jha, S.; Kirshner, R.P.; Krisciunas, K.; Leibundgut, B.; Li, W.; Matheson, T.; Miceli, A.; Miknaitis, G.; Pignata, G.; Rest, A.; Riess, A.G.; /UC, Berkeley, Astron. Dept. /Cerro-Tololo InterAmerican Obs. /Washington U., Seattle, Astron. Dept. /Harvard-Smithsonian Ctr. Astrophys. /Chile U., Catolica /Bohr Inst. /Notre Dame U. /KIPAC, Menlo Park /Texas A-M /European Southern Observ. /NOAO, Tucson /Fermilab /Chile U., Santiago /Harvard U., Phys. Dept. /Baltimore, Space Telescope Sci. /Johns Hopkins U. /Res. Sch. Astron. Astrophys., Weston Creek /Stockholm U. /Hawaii U. /Illinois U., Urbana, Astron. Dept.

    2008-02-13

    We present the first large-scale effort of creating composite spectra of high-redshift type Ia supernovae (SNe Ia) and comparing them to low-redshift counterparts. Through the ESSENCE project, we have obtained 107 spectra of 88 high-redshift SNe Ia with excellent light-curve information. In addition, we have obtained 397 spectra of low-redshift SNe through a multiple-decade effort at Lick and Keck Observatories, and we have used 45 ultraviolet spectra obtained by HST/IUE. The low-redshift spectra act as a control sample when comparing to the ESSENCE spectra. In all instances, the ESSENCE and Lick composite spectra appear very similar. The addition of galaxy light to the Lick composite spectra allows a nearly perfect match of the overall spectral-energy distribution with the ESSENCE composite spectra, indicating that the high-redshift SNe are more contaminated with host-galaxy light than their low-redshift counterparts. This is caused by observing objects at all redshifts with similar slit widths, which corresponds to different projected distances. After correcting for the galaxy-light contamination, subtle differences in the spectra remain. We have estimated the systematic errors when using current spectral templates for K-corrections to be {approx}0.02 mag. The variance in the composite spectra give an estimate of the intrinsic variance in low-redshift maximum-light SN spectra of {approx}3% in the optical and growing toward the ultraviolet. The difference between the maximum-light low and high-redshift spectra constrain SN evolution between our samples to be < 10% in the rest-frame optical.

  11. Photometric selection of Type Ia supernovae in the Supernova Legacy Survey

    NASA Astrophysics Data System (ADS)

    Bazin, G.; Ruhlmann-Kleider, V.; Palanque-Delabrouille, N.; Rich, J.; Aubourg, E.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I. M.; Howell, D. A.; Pain, R.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Sullivan, M.; Fourmanoit, N.; González-Gaitán, S.; Lidman, C.; Perlmutter, S.; Ripoche, P.; Walker, E. S.

    2011-10-01

    We present a sample of 485 photometrically identified Type Ia supernova candidates mined from the first three years of data of the CFHT SuperNova Legacy Survey (SNLS). The images were submitted to a deferred processing independent of the SNLS real-time detection pipeline. Light curves of all transient events were reconstructed in the gM, rM, iM and zM filters and submitted to automated sequential cuts in order to identify possible supernovae. Pure noise and long-term variable events were rejected by light curve shape criteria. Type Ia supernova identification relied on event characteristics fitted to their light curves assuming the events to be normal SNe Ia. The light curve fitter SALT2 was used for this purpose, assigning host galaxy photometric redshifts to the tested events. The selected sample of 485 candidates is one magnitude deeper than that allowed by the SNLS spectroscopic identification. The contamination by supernovae of other types is estimated to be 4%. Testing Hubble diagram residuals with this enlarged sample allows us to measure the Malmquist bias due to spectroscopic selections directly. The result is fully consistent with the precise Monte Carlo based estimate used to correct SN Ia distance moduli in the SNLS 3-year cosmological analyses. This paper demonstrates the feasibility of a photometric selection of high redshift supernovae with known host galaxy redshifts, opening interesting prospects for cosmological analyses from future large photometric SN Ia surveys.

  12. SHOCK BREAKOUT FROM TYPE Ia SUPERNOVA

    SciTech Connect

    Piro, Anthony L.; Chang, Philip; Weinberg, Nevin N. E-mail: pchang@astro.berkeley.ed

    2010-01-01

    The mode of explosive burning in Type Ia supernovae (SNe Ia) remains an outstanding problem. It is generally thought to begin as a subsonic deflagration, but this may transition into a supersonic detonation (the delayed detonation transition, DDT). We argue that this transition leads to a breakout shock, which would provide the first unambiguous evidence that DDTs occur. Its main features are a hard X-ray flash (approx20 keV) lasting approx10{sup -2} s with a total radiated energy of approx10{sup 40} erg, followed by a cooling tail. This creates a distinct feature in the visual light curve, which is separate from the nickel decay. This cooling tail has a maximum absolute visual magnitude of M{sub V} approx -9 to -10 at approx1 day, which depends most sensitively on the white dwarf radius at the time of the DDT. As the thermal diffusion wave moves in, the composition of these surface layers may be imprinted as spectral features, which would help to discern between SN Ia progenitor models. Since this feature should accompany every SNe Ia, future deep surveys (e.g., m = 24) will see it out to a distance of approx80 Mpc, giving a maximum rate of approx60 yr{sup -1}. Archival data sets can also be used to study the early rise dictated by the shock heating (at approx20 days before maximum B-band light). A similar and slightly brighter event may also accompany core bounce during the accretion-induced collapse to a neutron star, but with a lower occurrence rate.

  13. Theoretical cosmic Type Ia supernova rates

    NASA Astrophysics Data System (ADS)

    Valiante, R.; Matteucci, F.; Recchi, S.; Calura, F.

    2009-10-01

    The purpose of this work is the computation of the cosmic Type Ia supernova rates, namely the frequency of Type Ia supernovae per unit time in a unitary volume of the Universe. Our main goal in this work is to predict the Type Ia supernova rates at very high redshifts and to check whether it is possible to select the best delay time distribution model, on the basis of the available observations of Type Ia supernovae. We compute the cosmic Type Ia supernova rates in different scenarios for galaxy formation and predict the expected number of explosions at high redshift ( z⩾2). Moreover, we adopt various progenitor models in order to compute the Type Ia supernova rate in typical elliptical galaxies of initial luminous masses of 1010M⊙,1011M⊙ and 1012M⊙, and compute the total amount of iron produced by Type Ia supernovae in each case. In this analysis we assume that Type Ia supernovae are caused by thermonuclear explosions of C-O white dwarfs in binary systems and we consider the most popular frameworks: the single degenerate and the double degenerate scenarios. The two competing schemes for the galaxy formation, namely the monolithic collapse and the hierarchical clustering, are also taken into account, by considering the histories of star formation increasing and decreasing with redshift, respectively. We calculate the Type Ia supernova rates through an analytical formulation which rests upon the definition of the SN Ia rate following an instantaneous burst of star formation as a function of the time elapsed from the birth of the progenitor system to its explosion as a Type Ia supernova (i.e. the delay time). What emerges from this work is that: (i) we confirm the result of previous papers that it is not easy to select the best delay time distribution scenario from the observational data and this is because the cosmic star formation rate dominates over the distribution function of the delay times; (ii) the monolithic collapse scenario for galaxy formation

  14. Finding Distances to Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-03-01

    Type Ia supernovae are known as standard candles due to their consistency, allowing us to measure distances based on their brightness. But what if these explosions arent quite as consistent as we thought? Due scientific diligence requires careful checks, so a recent study investigates whether the metallicity of a supernovas environment affects the peak luminosity of the explosion.Metallicity Dependence?Type Ia supernovae are incredibly powerful tools for determining distances in our universe. Because these supernovae are formed by white dwarfs that explode when they reach a uniform accreted mass, the supernova peak luminosity is thought to be very consistent. This consistency allows these supernovae to be used as standard candles to measure distances to their host galaxies.But what if that peak luminosity is affected by a factor that we havent taken into account? Theorists have proposed that the luminosities of Type Ia supernovae might depend on the metallicity of their environments with high-metallicity environments suppressing supernova luminosities. If this is true, then we could be systematically mis-measuring cosmological distances using these supernovae.Testing AbundancesSupernova brightnesses vs. the metallicity of their environments. Low-metallicity supernovae (blue shading) and high-metallicity supernovae (red shading) have an average magnitude difference of ~0.14. [Adapted from Moreno-Raya et al. 2016]A team led by Manuel Moreno-Raya, of the Center for Energy, Environment and Technology (CIEMAT) in Spain, has observed 28 Type Ia supernovae in an effort to test for such a metallicity dependence. These supernovae each have independent distance measurements (e.g., from Cepheids or the Tully-Fisher relation).Moreno-Raya and collaborators used spectra from the 4.2-m William Herschel Telescope to estimate oxygen abundances in the region where each of these supernovae exploded. They then used these measurements to determine if metallicity of the local region

  15. Dark Matter Admixed Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Leung, S.-C.; Chu, M.-C.; Lin, L.-M.

    2015-10-01

    We perform two-dimensional hydrodynamic simulations for the thermonuclear explosion of Chandrasekhar-mass white dwarfs with dark matter (DM) cores in Newtonian gravity. We include a 19-isotope nuclear reaction network and make use of the pure turbulent deflagration model as the explosion mechanism in our simulations. Our numerical results show that the general properties of the explosion depend quite sensitively on the mass of the DM core M DM: a larger M DM generally leads to a weaker explosion and a lower mass of synthesized iron-peaked elements. In particular, the total mass of produced can drop from about 0.3 to 0.03 M ⊙ as M DM increases from 0.01 to 0.03 M ⊙. We have also constructed the bolometric light curves obtained from our simulations and found that our results match well with the observational data of sub-luminous Type Ia supernovae.

  16. A common explosion mechanism for type Ia supernovae.

    PubMed

    Mazzali, Paolo A; Röpke, Friedrich K; Benetti, Stefano; Hillebrandt, Wolfgang

    2007-02-01

    Type Ia supernovae, the thermonuclear explosions of white dwarf stars composed of carbon and oxygen, were instrumental as distance indicators in establishing the acceleration of the universe's expansion. However, the physics of the explosion are debated. Here we report a systematic spectral analysis of a large sample of well-observed type Ia supernovae. Mapping the velocity distribution of the main products of nuclear burning, we constrain theoretical scenarios. We find that all supernovae have low-velocity cores of stable iron-group elements. Outside this core, nickel-56 dominates the supernova ejecta. The outer extent of the iron-group material depends on the amount of nickel-56 and coincides with the inner extent of silicon, the principal product of incomplete burning. The outer extent of the bulk of silicon is similar in all supernovae, having an expansion velocity of approximately 11,000 kilometers per second and corresponding to a mass of slightly over one solar mass. This indicates that all the supernovae considered here burned similar masses and suggests that their progenitors had the same mass. Synthetic light-curve parameters and three-dimensional explosion simulations support this interpretation. A single explosion scenario, possibly a delayed detonation, may thus explain most type Ia supernovae. PMID:17289993

  17. Dark Matter Ignition of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Bramante, Joseph

    2015-10-01

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8 σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10 Myr old pulsars at the center of the Milky Way.

  18. Dark Matter Ignition of Type Ia Supernovae.

    PubMed

    Bramante, Joseph

    2015-10-01

    Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10  Myr old pulsars at the center of the Milky Way. PMID:26551803

  19. PROMPT Ia SUPERNOVAE ARE SIGNIFICANTLY DELAYED

    SciTech Connect

    Raskin, Cody; Scannapieco, Evan; Rhoads, James; Della Valle, Massimo

    2009-12-10

    The time delay between the formation of a population of stars and the onset of type Ia supernovae (SNe Ia) sets important limits on the masses and nature of SN Ia progenitors. Here, we use a new observational technique to measure this time delay by comparing the spatial distributions of SNe Ia to their local environments. Previous work attempted such analyses encompassing the entire host of each SN Ia, yielding inconclusive results. Our approach confines the analysis only to the relevant portions of the hosts, allowing us to show that even so-called prompt SNe Ia that trace star formation on cosmic timescales exhibit a significant delay time of 200-500 million years. This implies that either the majority of Ia companion stars have main-sequence masses less than 3 M {sub sun}, or that most SNe Ia arise from double white dwarf binaries. Our results are also consistent with a SNe Ia rate that traces the white dwarf formation rate, scaled by a fixed efficiency factor.

  20. Supernova Acceleration Probe: Studying Dark Energy with Type Ia Supernovae

    SciTech Connect

    Albert, J.; Aldering, G.; Allam, S.; Althouse, W.; Amanullah, R.; Annis, J.; Astier, P.; Aumeunier, M.; Bailey, S.; Baltay, C.; Barrelet, E.; Basa, S.; Bebek, C.; Bergstom, L.; Bernstein, G.; Bester, M.; Besuner, B.; Bigelow, B.; Blandford, R.; Bohlin, R.; Bonissent, A.; /Caltech /LBL, Berkeley /Fermilab /SLAC /Stockholm U. /Paris, IN2P3 /Marseille, CPPM /Marseille, Lab. Astrophys. /Yale U. /Pennsylvania U. /UC, Berkeley /Michigan U. /Baltimore, Space Telescope Sci. /Indiana U. /Caltech, JPL /Australian Natl. U., Canberra /American Astron. Society /Chicago U. /Cambridge U. /Saclay /Lyon, IPN

    2005-08-08

    The Supernova Acceleration Probe (SNAP) will use Type Ia supernovae (SNe Ia) as distance indicators to measure the effect of dark energy on the expansion history of the Universe. (SNAP's weak-lensing program is described in a separate White Paper.) The experiment exploits supernova distance measurements up to their fundamental systematic limit; strict requirements on the monitoring of each supernova's properties leads to the need for a space-based mission. Results from pre-SNAP experiments, which characterize fundamental SN Ia properties, will be used to optimize the SNAP observing strategy to yield data, which minimize both systematic and statistical uncertainties. With early R&D funding, we have achieved technological readiness and the collaboration is poised to begin construction. Pre-JDEM AO R&D support will further reduce technical and cost risk. Specific details on the SNAP mission can be found in Aldering et al. (2004, 2005). The primary goal of the SNAP supernova program is to provide a dataset which gives tight constraints on parameters which characterize the dark-energy, e.g. w{sub 0} and w{sub a} where w(a) = w{sub 0} + w{sub a}(1-a). SNAP data can also be used to directly test and discriminate among specific dark energy models. We will do so by building the Hubble diagram of high-redshift supernovae, the same methodology used in the original discovery of the acceleration of the expansion of the Universe that established the existence of dark energy (Perlmutter et al. 1998; Garnavich et al. 1998; Riess et al. 1998; Perlmutter et al. 1999). The SNAP SN Ia program focuses on minimizing the systematic floor of the supernova method through the use of characterized supernovae that can be sorted into subsets based on subtle signatures of heterogeneity. Subsets may be defined based on host-galaxy morphology, spectral-feature strength and velocity, early-time behavior, inter alia. Independent cosmological analysis of each subset of ''like'' supernovae can be

  1. The Metrology of Type IA Supernova Lightcurves

    NASA Astrophysics Data System (ADS)

    Rust, Bert W.

    2015-01-01

    The use of Type IA supernovae as standard candles depends crucially on precise measurements of the properties of their light curves. The currently most widely used indicator is Δm15(B), the luminosity drop, measured in magnitudes, in the first 15 days after maximum luminosity. It was selected instead of an estimate of the luminosity decline rate in order to avoid the well known numerical instability in estimating derivatives for measured data. Unfortunately it does not really succeed in this goal, but it is still possible to correlate the widely scattered Δm15 estimates with the absolute magnitude at peak luminosity. The estimation procedure is improved by fitting an accelerated radioactive decay (ARD) model to the measured light curve and making the estimate from that fit. Such fits typically have R2 values greater than 0.99 and produce the expected normally distributed residuals, but still the instability in estimating Δm15 persists. The model has 7 adjustable parameters, one of which, α4, is the acceleration rate for the Ni→Co→Fe nuclear decays. This rate is estimated from the fit to the whole light curve rather than to just a section of it, and α4 is much more tightly correlated with the absolute magnitude at maximum than is Δm15. This paper will compare the two indicators and also suggest two others they may prove useful in the future.

  2. Breaking the color-reddening degeneracy in type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Sasdelli, Michele; Ishida, E. E. O.; Hillebrandt, W.; Ashall, C.; Mazzali, P. A.; Prentice, S.

    2016-04-01

    A new method to study the intrinsic color and luminosity of type Ia supernovae (SNe Ia) is presented. A metric space built using principal component analysis (PCA) on spectral series SNe Ia between -12.5 and +17.5 days from B maximum is used as a set of predictors. This metric space is built to be insensitive to reddening. Hence, it does not predict the part of color excess due to dust-extinction. At the same time, the rich variability of SN Ia spectra is a good predictor of a large fraction of the intrinsic color variability. Such metric space is a good predictor of the epoch when the maximum in the B - V color curve is reached. Multivariate Partial Least Square (PLS) regression predicts the intrinsic B band light-curve and the intrinsic B - V color curve up to a month after maximum. This allows to study the relation between the light curves of SNe Ia and their spectra. The total-to-selective extinction ratio RV in the host-galaxy of SNe Ia is found, on average, to be consistent with typical Milky-Way values. This analysis shows the importance of collecting spectra to study SNe Ia, even with large sample publicly available. Future automated surveys as LSST will provide a large number of light curves. The analysis shows that observing accompaning spectra for a significative number of SNe will be important even in the case of "normal" SNe Ia.

  3. Breaking the colour-reddening degeneracy in Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Sasdelli, Michele; Ishida, E. E. O.; Hillebrandt, W.; Ashall, C.; Mazzali, P. A.; Prentice, S. J.

    2016-07-01

    A new method to study the intrinsic color and luminosity of type Ia supernovae (SNe Ia) is presented. A metric space built using principal component analysis (PCA) on spectral series SNe Ia between -12.5 and +17.5 days from B maximum is used as a set of predictors. This metric space is built to be insensitive to reddening. Hence, it does not predict the part of color excess due to dust-extinction. At the same time, the rich variability of SN Ia spectra is a good predictor of a large fraction of the intrinsic color variability. Such metric space is a good predictor of the epoch when the maximum in the B-V color curve is reached. Multivariate Partial Least Square (PLS) regression predicts the intrinsic B band light-curve and the intrinsic B-V color curve up to a month after maximum. This allows to study the relation between the light curves of SNe Ia and their spectra. The total-to-selective extinction ratio RV in the host-galaxy of SNe Ia is found, on average, to be consistent with typical Milky-Way values. This analysis shows the importance of collecting spectra to study SNe Ia, even with large sample publicly available. Future automated surveys as LSST will provide a large number of light curves. The analysis shows that observing accompaning spectra for a significative number of SNe will be important even in the case of "normal" SNe Ia.

  4. Breaking the colour-reddening degeneracy in Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Sasdelli, Michele; Ishida, E. E. O.; Hillebrandt, W.; Ashall, C.; Mazzali, P. A.; Prentice, S. J.

    2016-07-01

    A new method to study the intrinsic colour and luminosity of Type Ia supernovae (SNe Ia) is presented. A metric space built using principal component analysis on a spectral series for SNe Ia between -12.5 and +17.5 d from the B maximum is used as a set of predictors. This metric space is built to be insensitive to reddening. Hence, it does not predict the part of the colour excess due to dust extinction. At the same time, the rich variability of SN Ia spectra is a good predictor of a large fraction of the intrinsic colour variability. Such a metric space is a good predictor of the epoch when the maximum in the B - V colour curve is reached. Multivariate partial least-squares regression predicts the intrinsic B-band light curve and the intrinsic B - V colour curve up to a month after the maximum. This allows us to study the relation between the light curves of SNe Ia and their spectra. The total-to-selective extinction ratio RV in the host galaxy of SNe Ia is found, on average, to be consistent with typical Milky Way values. This analysis shows the importance of collecting spectra to study SNe Ia, even with a large sample publicly available. Future automated surveys, such as the Large Synoptic Survey Telescope, will provide a large number of light curves. The analysis shows that observing accompanying spectra for a significant number of SNe will be important even for normal SNe Ia.

  5. The distant type Ia supernova rate

    SciTech Connect

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R.S.; Aldering, G.; Astier, P.; Deustua, S.E.; Fruchter, A.S.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Hardin, D.; Hook, I.M.; Howell, D.A.; Irwin, M.J.; Kim, A.G.; Kim, M.Y.; Knop, R.A.; Lee, J.C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N.A.

    2002-05-20

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample,which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  6. The Distant Type Ia Supernova Rate

    DOE R&D Accomplishments Database

    Pain, R.; Fabbro, S.; Sullivan, M.; Ellis, R. S.; Aldering, G.; Astier, P.; Deustua, S. E.; Fruchter, A. S.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hardin, D.; Hook, I. M.; Howell, D. A.; Irwin, M. J.; Kim, A. G.; Kim, M. Y.; Knop, R. A.; Lee, J. C.; Perlmutter, S.; Ruiz-Lapuente, P.; Schahmaneche, K.; Schaefer, B.; Walton, N. A.

    2002-05-28

    We present a measurement of the rate of distant Type Ia supernovae derived using 4 large subsets of data from the Supernova Cosmology Project. Within this fiducial sample, which surveyed about 12 square degrees, thirty-eight supernovae were detected at redshifts 0.25--0.85. In a spatially flat cosmological model consistent with the results obtained by the Supernova Cosmology Project, we derive a rest-frame Type Ia supernova rate at a mean red shift z {approx_equal} 0.55 of 1.53 {sub -0.25}{sub -0.31}{sup 0.28}{sup 0.32} x 10{sup -4} h{sup 3} Mpc{sup -3} yr{sup -1} or 0.58{sub -0.09}{sub -0.09}{sup +0.10}{sup +0.10} h{sup 2} SNu(1 SNu = 1 supernova per century per 10{sup 10} L{sub B}sun), where the first uncertainty is statistical and the second includes systematic effects. The dependence of the rate on the assumed cosmological parameters is studied and the redshift dependence of the rate per unit comoving volume is contrasted with local estimates in the context of possible cosmic star formation histories and progenitor models.

  7. VELOCITY EVOLUTION AND THE INTRINSIC COLOR OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Foley, Ryan J.; Sanders, Nathan E.; Kirshner, Robert P.

    2011-12-01

    To understand how best to use observations of Type Ia supernovae (SNe Ia) to obtain precise and accurate distances, we investigate the relations between spectra of SNe Ia and their intrinsic colors. Using a sample of 1630 optical spectra of 255 SNe, based primarily on data from the CfA Supernova Program, we examine how the velocity evolution and line strengths of Si II {lambda}6355 and Ca II H and K are related to the B - V color at peak brightness. We find that the maximum-light velocity of Si II {lambda}6355 and Ca II H and K and the maximum-light pseudo-equivalent width of Si II {lambda}6355 are correlated with intrinsic color, with intrinsic color having a linear relation with the Si II {lambda}6355 measurements. Ca II H and K does not have a linear relation with intrinsic color, but lower-velocity SNe tend to be intrinsically bluer. Combining the spectroscopic measurements does not improve intrinsic color inference. The intrinsic color scatter is larger for higher-velocity SNe Ia-even after removing a linear trend with velocity-indicating that lower-velocity SNe Ia are more 'standard crayons'. Employing information derived from SN Ia spectra has the potential to improve the measurements of extragalactic distances and the cosmological properties inferred from them.

  8. The Fast Declining Type Ia Supernova 2003gs, and Evidence for a Significant Dispersion in Near-Infrared Absolute Magnitudes of Fast Decliners at Maximum Light

    NASA Astrophysics Data System (ADS)

    Krisciunas, Kevin; Marion, G. H.; Suntzeff, Nicholas B.; Blanc, Guillaume; Bufano, Filomena; Candia, Pablo; Cartier, Regis; Elias-Rosa, Nancy; Espinoza, Juan; Gonzalez, David; Gonzalez, Luis; Gonzalez, Sergio; Gooding, Samuel D.; Hamuy, Mario; Knox, Ethan A.; Milne, Peter A.; Morrell, Nidia; Phillips, Mark M.; Stritzinger, Maximilian; Thomas-Osip, Joanna

    2009-12-01

    We obtained optical photometry of SN 2003gs on 49 nights, from 2 to 494 days after T(B max). We also obtained near-IR photometry on 21 nights. SN 2003gs was the first fast declining Type Ia SN that has been well observed since SN 1999by. While it was subluminous in optical bands compared to more slowly declining Type Ia SNe, it was not subluminous at maximum light in the near-IR bands. There appears to be a bimodal distribution in the near-IR absolute magnitudes of Type Ia SNe at maximum light. Those that peak in the near-IR after T(B max) are subluminous in the all bands. Those that peak in the near-IR prior to T(B max), such as SN 2003gs, have effectively the same near-IR absolute magnitudes at maximum light regardless of the decline rate Δm 15(B). Near-IR spectral evidence suggests that opacities in the outer layers of SN 2003gs are reduced much earlier than for normal Type Ia SNe. That may allow γ rays that power the luminosity to escape more rapidly and accelerate the decline rate. This conclusion is consistent with the photometric behavior of SN 2003gs in the IR, which indicates a faster than normal decline from approximately normal peak brightness. Based in part on observations taken at the Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation. The near-IR photometry from La Silla and Paranal was obtained by the European Supernova Collaboration (ESC).

  9. THE ULTRAVIOLET BRIGHTEST TYPE Ia SUPERNOVA 2011de

    SciTech Connect

    Brown, Peter J.

    2014-11-20

    We present and discuss the ultraviolet (UV)/optical photometric light curves and absolute magnitudes of the Type Ia supernova (SN Ia) 2011de from the Swift Ultraviolet/Optical Telescope. We find it to be the UV brightest SN Ia yet observed—more than a factor of 10 brighter than normal SNe Ia in the mid-ultraviolet. We find that the UV/optical brightness and broad light curve evolution can be modeled with additional flux from the shock of the ejecta hitting a relatively large red giant companion separated by 6 × 10{sup 13} cm. However, the post-maximum behavior of other UV-bright SNe Ia can also be modeled in a similar manner, including objects with UV spectroscopy or pre-maximum photometry which is inconsistent with this model. This suggests that similar UV luminosities can be intrinsic or caused by other forms of shock interaction. The high velocities reported for SN 2011de make it distinct from the UV-bright ''super-Chandrasekhar'' SNe Ia and the NUV-blue group of normal SNe Ia. SN 2011de is an extreme example of the UV variations in SNe Ia.

  10. Type IA supernovae: Their progenitors and use as cosmological probes

    NASA Astrophysics Data System (ADS)

    Patel, Brandon

    Type Ia supernovae (SNe Ia) are important cosmological probes, but we are uncertain how they explode. There are two progenitor channels for SNe Ia: single and double degenerate white dwarf (WD) systems. In either model, we expect the system to be detectable as a Supersoft X-ray Source (SSS) for a significant amount of time before the explosion. By studying these SSSs, we hope to improve our understanding of SNe Ia. In Chapter 2, we analyze an interesting source (r1-25) in M31. We found that the source exhibited spectral changes to harder X-ray states. r1-25 is the first source of its kind, and we require unique physical models to fit its behavior. We find that existing WD models are inconsistent with the spectra of the source. We explore new black hole and neutron star models, and find that they can model the unusual behavior of r1-25. In Chapter 3, we study three gravitationally lensed SNe from the Cluster Lensing And Supernova survey with Hubble (CLASH). Based on photometric classification, we found that two SNe (SN CLO12Car and CLN12Did) are likely to be SNe Ia, while the classification of the third is inconclusive. Using multi-color light-curve fits to determine a standardized SN Ia luminosity distance, we infer that SN CLO12Car was ˜ 1.0 +/- 0.2 mag brighter than field SNe Ia at a similar redshift and ascribe this to gravitational lens magnification. Similarly, SN CLN12Did is ˜ 0.2 +/- 0.2 mag brighter than field SNe Ia. From independent CLASH strong+weak lensing maps of the clusters , we derived similar magnifications for the two SNe Ia. The two SNe Ia provide a new test of the cluster lens model predictions: we find that the magnifications based on the SN Ia brightness and those predicted by the lens maps are consistent. Finally, in Chapter 4 we discuss a new light curve fitter for SNe Ia, which we call Multicolor Light Curve Shapes 3 (MLCS3). The project has not been completed, but we discuss some of the features, and the expected improvements from MLCS3

  11. Photometric Selection of High-Redshift Type Ia Supernova Candidates

    NASA Astrophysics Data System (ADS)

    Sullivan, M.; Howell, D. A.; Perrett, K.; Nugent, P. E.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Baumont, S.; Bronder, J.; Filiol, M.; Knop, R. A.; Perlmutter, S.; Tao, C.

    2006-02-01

    We present a method for selecting high-redshift Type Ia supernovae (SNe Ia) located via rolling SN searches. The technique, using both color and magnitude information of events from only two to three epochs of multiband real-time photometry, is able to discriminate between SNe Ia and core-collapse SNe. Furthermore, for SNe Ia the method accurately predicts the redshift, phase, and light-curve parameterization of these events based only on pre-maximum-light data. We demonstrate the effectiveness of the technique on a simulated survey of SNe Ia and core-collapse SNe, where the selection method effectively rejects most core-collapse SNe while retaining SNe Ia. We also apply the selection code to real-time data acquired as part of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). During the period 2004 May to 2005 January in the SNLS, 440 SN candidates were discovered, of which 70 were confirmed spectroscopically as SNe Ia and 15 as core-collapse events. For this test data set, the selection technique correctly identifies 100% of the identified SNe II as non-SNe Ia with only a 1%-2% false rejection rate. The predicted parameterization of the SNe Ia has a precision of Δz/(1+zspec)<0.09 in redshift and +/-2-3 rest-frame days in phase, providing invaluable information for planning spectroscopic follow-up observations. We also investigate any bias introduced by this selection method on the ability of surveys such as SNLS to measure cosmological parameters (e.g., w and ΩM) and find any effect to be negligible.

  12. The progenitors of supernovae Type Ia

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia

    2014-09-01

    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. SNeIa are generally thought to be thermonuclear explosions of carbon/oxygen (CO) white dwarfs (WDs). The canonical scenarios involve white dwarfs reaching the Chandrasekhar mass, either by accretion from a non-degenerate companion (single-degenerate channel, SD) or by a merger of two CO WDs (double-degenerate channel, DD). The study of SNeIa progenitors is a very active field of research for binary population synthesis (BPS) studies. The strength of the BPS approach is to study the effect of uncertainties in binary evolution on the macroscopic properties of a binary population, in order to constrain binary evolutionary processes. I will discuss the expected SNeIa rate from the BPS approach and the uncertainties in their progenitor evolution, and compare with current observations. I will also discuss the results of the POPCORN project in which four BPS codes were compared to better understand the differences in the predicted SNeIa rate of the SD channel. The goal of this project is to investigate whether differences in the simulated populations are due to numerical effects or whether they can be explained by differences in the input physics. I will show which assumptions in BPS codes affect the results most and hence should be studied in more detail.

  13. Precision Constraints from Computational Cosmology and Type Ia Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Bernstein, Joseph P.; Kuhlmann, S. E.; Norris, B.; Biswas, R.

    2011-01-01

    The evidence for dark energy represents one of the greatest mysteries of modern science. The research undertaken probes the implications of dark energy via analysis of large scale structure and detonation-based Type Ia supernova light curve simulations. It is presently an exciting time to be involved in cosmology because planned astronomical surveys will effectively result in dark sector probes becoming systematics-limited, making numerical simulations crucial to the formulation of precision constraints. This work aims to assist in reaching the community goal of 1% constraints on the dark energy equation of state parameter. Reaching this goal will require 1) hydrodynamic+N-body simulations with a minimum of a 1 Gpc box size, 20483 hydrodynamic cells, and 1011 dark matter particles, which push the limits of existing codes, and 2) a better understanding of the explosion mechanism(s) for Type Ia supernovae, together with larger, high-quality data sets from present and upcoming supernova surveys. Initial results are discussed from two projects. The first is computational cosmology studies aimed at enabling the large simulations discussed above. The second is radiative transfer calculations drawn from Type Ia supernova explosion simulations aimed at bridging the gap between simulated light curves and those observed from, e.g., the Sloan Digital Sky Survey II and, eventually, the Dark Energy Survey.

  14. Radiation Transport in Type IA Supernovae

    SciTech Connect

    Eastman, R

    1999-11-16

    It has been said more than once that the critical link between explosion models and observations is the ability to accurately simulate cooling and radiation transport in the expanding ejecta of Type Ia supernovae. It is perhaps frustrating to some of the theorists who study explosion mechanisms, and to some of the observers too, that more definitive conclusions have not been reached about the agreement, or lack thereof, between various Type Ia supernova models and the data. Although claims of superlative accuracy in transport simulations are sometimes made, I will argue here that there are outstanding issues of critical importance and in need of addressing before radiation transport calculations are accurate enough to discriminate between subtly different explosion models.

  15. Genetic algorithms and supernovae type Ia analysis

    SciTech Connect

    Bogdanos, Charalampos; Nesseris, Savvas E-mail: nesseris@nbi.dk

    2009-05-15

    We introduce genetic algorithms as a means to analyze supernovae type Ia data and extract model-independent constraints on the evolution of the Dark Energy equation of state w(z) {identical_to} P{sub DE}/{rho}{sub DE}. Specifically, we will give a brief introduction to the genetic algorithms along with some simple examples to illustrate their advantages and finally we will apply them to the supernovae type Ia data. We find that genetic algorithms can lead to results in line with already established parametric and non-parametric reconstruction methods and could be used as a complementary way of treating SNIa data. As a non-parametric method, genetic algorithms provide a model-independent way to analyze data and can minimize bias due to premature choice of a dark energy model.

  16. The Effect of Host Galaxies on Type Ia Supernovae in the SDSS-II Supernova Survey

    SciTech Connect

    Lampeitl, Hubert; Smith, Mathew; Nichol, Robert C.; Bassett, Bruce; Cinabro, David; Dilday, Benjamin; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter M.; Goobar, Ariel; Im, Myungshin; /Seoul Natl. U. /Rutgers U., Piscataway

    2010-05-01

    We present an analysis of the host galaxy dependencies of Type Ia Supernovae (SNe Ia) from the full three year sample of the SDSS-II Supernova Survey. We re-discover, to high significance, the strong correlation between host galaxy type and the width of the observed SN light curve, i.e., fainter, quickly declining SNe Ia favor passive host galaxies, while brighter, slowly declining Ia's favor star-forming galaxies. We also find evidence (at between 2 to 3{sigma}) that SNe Ia are {approx_equal} 0.1 magnitudes brighter in passive host galaxies, than in star-forming hosts, after the SN Ia light curves have been standardized using the light curve shape and color variations: This difference in brightness is present in both the SALT2 and MCLS2k2 light curve fitting methodologies. We see evidence for differences in the SN Ia color relationship between passive and star-forming host galaxies, e.g., for the MLCS2k2 technique, we see that SNe Ia in passive hosts favor a dust law of R{sub V} {approx_equal} 1, while SNe Ia in star-forming hosts require R{sub V} {approx} 2. The significance of these trends depends on the range of SN colors considered. We demonstrate that these effects can be parameterized using the stellar mass of the host galaxy (with a confidence of > 4{sigma}) and including this extra parameter provides a better statistical fit to our data. Our results suggest that future cosmological analyses of SN Ia samples should include host galaxy information.

  17. Type Ia supernovae yielding distances with 3-4% precision

    SciTech Connect

    Kelly, Patrick L.; Filippenko, Alexei V.; Burke, David L.; Hicken, Malcolm; Ganeshalingam, Mohan; Zheng, Weikang

    2015-01-26

    The luminosities of Type Ia supernovae (SN), the thermonuclear explosions of white dwarf stars, vary systematically with their intrinsic color and light-curve decline rate. These relationships have been used to calibrate their luminosities to within ~0.14–0.20 mag from broadband optical light curves, yielding individual distances accurate to ~7–10%. Here we identify a subset of SN Ia that erupt in environments having high ultraviolet surface brightness and star-formation surface density. When we apply a steep model extinction law, these SN can be calibrated to within ~0.065–0.075 mag, corresponding to ~3–4% in distance — the best yet with SN Ia by a substantial margin. The small scatter suggests that variations in only one or two progenitor properties account for their light-curve-width/color/luminosity relation.

  18. On the environments of Type Ia supernovae within host galaxies

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; James, P. A.; Förster, F.; González-Gaitán, S.; Habergham, S. M.; Hamuy, M.; Lyman, J. D.

    2015-03-01

    We present constraints on Type Ia supernovae (SNe Ia) progenitors through an analysis of the environments found at the explosion sites of 102 events within star-forming host galaxies. Hα and Galaxy Evolution Explorer near-ultraviolet (UV) images are used to trace on-going and recent star formation (SF), while broad-band B, R, J, K imaging is also analysed. Using pixel statistics we find that SNe Ia show the lowest degree of association with Hα emission of all supernova (SN) types. It is also found that they do not trace near-UV emission. As the latter traces SF on time-scales less than 100 Myr, this rules out any extreme `prompt' delay times as the dominant progenitor channel of SNe Ia. SNe Ia best trace the B-band light distribution of their host galaxies. This implies that the population within star-forming galaxies is dominated by relatively young progenitors. Splitting SNe by their (B - V) colours at maximum light, `redder' events show a higher degree of association with H II regions and are found more centrally within hosts. We discuss possible explanations of this result in terms of line-of-sight extinction and progenitor effects. No evidence for correlations between SN stretch and environment properties is observed.

  19. Type IA Supernova Cosmology: Past and Future

    NASA Astrophysics Data System (ADS)

    Goobar, Ariel

    2015-01-01

    Type Ia supernovae (SNe Ia) have been used with remarkable success to map the expansion history of the Universe. These measurements dramatically changed our description of nature as they revealed cosmic acceleration, indicating the presence of new physics, dark energy, counteracting the effect of gravity at the largest scales. Understanding the source of the acceleration ranks among the most pressing undertakings in fundamental physics. Current and future surveys are challenged to accurately measure the equation state of dark energy, the parameter used to explore its nature. Distances measurements using SNe Ia remain among the most powerful techniques in observational cosmologists. The recent history of the field is reviewed, as well as current limitations and opportunities for the future.

  20. The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-time Observations, First-light Time, Distance to NGC 4666, and Progenitor Constraints

    NASA Astrophysics Data System (ADS)

    Shappee, B. J.; Piro, A. L.; Holoien, T. W.-S.; Prieto, J. L.; Contreras, C.; Itagaki, K.; Burns, C. R.; Kochanek, C. S.; Stanek, K. Z.; Alper, E.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Conseil, E.; Danilet, A. B.; Dong, Subo; Falco, E.; Grupe, D.; Hsiao, E. Y.; Kiyota, S.; Morrell, N.; Nicolas, J.; Phillips, M. M.; Pojmanski, G.; Simonian, G.; Stritzinger, M.; Szczygieł, D. M.; Taddia, F.; Thompson, T. A.; Thorstensen, J.; Wagner, M. R.; Woźniak, P. R.

    2016-08-01

    On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or “Assassin”) discovered ASASSN-14lp just ∼2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve ({{Δ }}{m}15(B)=0.80+/- 0.05), a B-band maximum at 2457015.82 ± 0.03, a rise time of {16.94}-0.10+0.11 days, and moderate host-galaxy extinction (E{(B-V)}{host}=0.33+/- 0.06). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of μ =30.8+/- 0.2, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 {R}ȯ .

  1. The Young and Bright Type Ia Supernova ASASSN-14lp: Discovery, Early-time Observations, First-light Time, Distance to NGC 4666, and Progenitor Constraints

    NASA Astrophysics Data System (ADS)

    Shappee, B. J.; Piro, A. L.; Holoien, T. W.-S.; Prieto, J. L.; Contreras, C.; Itagaki, K.; Burns, C. R.; Kochanek, C. S.; Stanek, K. Z.; Alper, E.; Basu, U.; Beacom, J. F.; Bersier, D.; Brimacombe, J.; Conseil, E.; Danilet, A. B.; Dong, Subo; Falco, E.; Grupe, D.; Hsiao, E. Y.; Kiyota, S.; Morrell, N.; Nicolas, J.; Phillips, M. M.; Pojmanski, G.; Simonian, G.; Stritzinger, M.; Szczygieł, D. M.; Taddia, F.; Thompson, T. A.; Thorstensen, J.; Wagner, M. R.; Woźniak, P. R.

    2016-08-01

    On 2014 December 9.61, the All-sky Automated Survey for SuperNovae (ASAS-SN or “Assassin”) discovered ASASSN-14lp just ˜2 days after first light using a global array of 14 cm diameter telescopes. ASASSN-14lp went on to become a bright supernova (V = 11.94 mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve ({{Δ }}{m}15(B)=0.80+/- 0.05), a B-band maximum at 2457015.82 ± 0.03, a rise time of {16.94}-0.10+0.11 days, and moderate host-galaxy extinction (E{(B-V)}{host}=0.33+/- 0.06). Using ASASSN-14lp, we derive a distance modulus for NGC 4666 of μ =30.8+/- 0.2, corresponding to a distance of 14.7 ± 1.5 Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any nondegenerate companion larger than 0.34 {R}ȯ .

  2. Type Ia supernovae: explosions and progenitors

    NASA Astrophysics Data System (ADS)

    Kerzendorf, Wolfgang Eitel

    2011-08-01

    Supernovae are the brightest explosions in the universe. Supernovae in our Galaxy, rare and happening only every few centuries, have probably been observed since the beginnings of mankind. At first they were interpreted as religious omens but in the last half millennium they have increasingly been used to study the cosmos and our place in it. Tycho Brahe deduced from his observations of the famous supernova in 1572, that the stars, in contrast to the widely believe Aristotelian doctrine, were not immutable. More than 400 years after Tycho made his paradigm changing discovery using SN 1572, and some 60 years after supernovae had been identified as distant dying stars, two teams changed the view of the world again using supernovae. The found that the Universe was accelerating in its expansion, a conclusion that could most easily be explained if more than 70% of the Universe was some previously un-identified form of matter now often referred to as `Dark Energy'. Beyond their prominent role as tools to gauge our place in the Universe, supernovae themselves have been studied well over the past 75 years. We now know that there are two main physical causes of these cataclysmic events. One of these channels is the collapse of the core of a massive star. The observationally motivated classes Type II, Type Ib and Type Ic have been attributed to these events. This thesis, however is dedicated to the second group of supernovae, the thermonuclear explosions of degenerate carbon and oxygen rich material and lacking hydrogen - called Type Ia supernovae (SNe Ia). White dwarf stars are formed at the end of a typical star's life when nuclear burning ceases in the core, the outer envelope is ejected, with the degenerate core typically cooling for eternity. Theory predicts that such stars will self ignite when close to 1.38 Msun (called the Chandrasekhar Mass). Most stars however leave white dwarfs with 0.6 Msun, and no star leaves a remnant as heavy as 1.38 M! sun, which suggests

  3. K-corrections and spectral templates of Type Ia supernovae

    SciTech Connect

    Nugent, Peter E; Hsiao, E.Y.; Conley, A.; Howell, D.A.; Sullivan, M.; Pritchet, C.J.; Carlberg, R.G.; Nugent, P.E.; Phillips, M.M.

    2007-03-20

    With the advent of large dedicated Type Ia supernova (SN Ia) surveys, K-corrections of SNe Ia and their uncertainties have become especially important in the determination of cosmological parameters. While K-corrections are largely driven by SN Ia broadband colors, it is shown here that the diversity in spectral features of SNe Ia can also be important. For an individual observation, the statistical errors from the inhomogeneity in spectral features range from 0.01 (where the observed and rest-frame filters are aligned) to 0.04 (where the observed and rest-frame filters are misaligned). To minimize the systematic errors caused by an assumed SN Ia spectral energy distribution (SED), we outline a prescription for deriving a mean spectral template time series that incorporates a large and heterogeneous sample of observed spectra. We then remove the effects of broadband colors and measure the remaining uncertainties in the K-corrections associated with the diversity in spectral features. Finally, we present a template spectroscopic sequence near maximum light for further improvement on the K-correction estimate. A library of ~;;600 observed spectra of ~;;100 SNe Ia from heterogeneous sources is used for the analysis.

  4. FIXING THE U-BAND PHOTOMETRY OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Krisciunas, Kevin; Bastola, Deepak; Suntzeff, Nicholas B.; Espinoza, Juan; Gonzalez, David; Gonzalez, Luis; Gonzalez, Sergio; Hsiao, Eric Y.; Morrell, Nidia; Phillips, Mark M.; Hamuy, Mario E-mail: suntzeff@physics.tamu.edu E-mail: hsiao@lco.cl E-mail: mmp@lco.cl

    2013-01-01

    We present previously unpublished photometry of supernovae 2003gs and 2003hv. Using spectroscopically derived corrections to the U-band photometry, we reconcile U-band light curves made from imagery with the Cerro Tololo 0.9 m, 1.3 m, and Las Campanas 1 m telescopes. Previously, such light curves showed a 0.4 mag spread at one month after maximum light. This gives us hope that a set of corrected ultraviolet light curves of nearby objects can contribute to the full utilization of rest-frame U-band data of supernovae at redshift {approx}0.3-0.8. As pointed out recently by Kessler et al. in the context of the Sloan Digital Sky Survey supernova search, if we take the published U-band photometry of nearby Type Ia supernovae at face value, there is a 0.12 mag U-band anomaly in the distance moduli of higher redshift objects. This anomaly led the Sloan survey to eliminate from their analyses all photometry obtained in the rest-frame U-band. The Supernova Legacy Survey eliminated observer frame U-band photometry, which is to say nearby objects observed in the U-band, but they used photometry of high-redshift objects no matter in which band the photons were emitted.

  5. The Impact of Hosts on Type Ia Supernovae Cosmology

    NASA Astrophysics Data System (ADS)

    Ashraf Uddin, Syed; Mould, Jeremy; Lidman, Chris

    2015-08-01

    We compile a sample of 595 spectroscopically confirmed Type Ia Supernovae (SNe Ia), with consistently derived host galaxy properties such as stellar mass, specific star-formation rate and projected distances of SNe Ia from host centers, from the CSP, CfA, SDSS, and SNLS surveys. Our results confirm previous findings that SNe Ia are on average significantly brighter in more massive and low-specific star-formation rate hosts after correcting for light-curve parameters. We study, for the first time, the variation of SNe Ia - host correlations with redshift and detect no evolution. We find new evidence that the slope of the stretch-luminosity relation is steeper in SNe Ia that are exploding farther out from host centers and confirm previous finding that the slope of the color-luminosity relation is shallower in massive hosts. We split the sample into pairs of subsets that are based on the properties of the hosts, and fit cosmological models to each subset. We do not find any dependence of the cosmology between the pairs of subsets used. Among different subsets, we find SNe Ia in high-specific star-formation rate have the least intrinsic scatter in luminosity, which supports theoretical prediction. Host stellar mass is the dominant host property for the observed correlations. Adding host mass as the third correction factor in distance measurement, we find no significant change in the measurements of cosmological parameters. Furthermore, we show that the best-fit cosmology is not biased between the SNe Ia samples where redshifts come from hosts and SNe Ia respectively - an important result for future SNe Ia cosmology surveys, such as the Dark Energy Survey.

  6. Spectrum synthesis of the Type Ia supernovae SN 1992A and SN 1981B

    NASA Technical Reports Server (NTRS)

    Nugent, Peter; Baron, E.; Hauschildt, Peter H.; Branch, David

    1995-01-01

    We present non-local thermodynamic equilibrium (non-LTE) synthetic spectra for the Type Ia supernovae SN 1992A and SN 1981B, near maximum light. At this epoch both supernovae were observed from the UV through the optical. This wide spectral coverage is essential for determining the density structure of a SN Ia. Our fits are in good agreement with observation and provide some insight as to the differences between these supernovae. We also discuss the application of the expanding photosphere method to SNe Ia which gives a distance that is independent of those based on the decay of Ni-56 and Cepheid variable stars.

  7. THE CARNEGIE SUPERNOVA PROJECT: FIRST PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE

    SciTech Connect

    Contreras, Carlos; Phillips, M. M.; Folatelli, Gaston; Stritzinger, Maximilian; Boldt, Luis; Gonzalez, Sergio; Krzeminski, Wojtek; Morrell, Nidia; Roth, Miguel; Salgado, Francisco; Hamuy, Mario; Maureira, MarIa Jose; Suntzeff, Nicholas B.; Persson, S. E.; Burns, Christopher R.; Freedman, W. L.; Madore, Barry F.; Murphy, David; Wyatt, Pamela

    2010-02-15

    The Carnegie Supernova Project (CSP) is a five-year survey being carried out at the Las Campanas Observatory to obtain high-quality light curves of {approx}100 low-redshift Type Ia supernovae (SNe Ia) in a well-defined photometric system. Here we present the first release of photometric data that contains the optical light curves of 35 SNe Ia, and near-infrared light curves for a subset of 25 events. The data comprise 5559 optical (ugriBV) and 1043 near-infrared (Y JHK{sub s} ) data points in the natural system of the Swope telescope. Twenty-eight SNe have pre-maximum data, and for 15 of these, the observations begin at least 5 days before B maximum. This is one of the most accurate data sets of low-redshift SNe Ia published to date. When completed, the CSP data set will constitute a fundamental reference for precise determinations of cosmological parameters, and serve as a rich resource for comparison with models of SNe Ia.

  8. The Nature of Dark Energy from Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Hook, Isobel

    2007-02-01

    Type Ia supernovae (SNe Ia) currently provide the most direct evidence for an accelerating Universe and for the existence of an unknown "dark energy". The 5-year Supernova Legacy Survey (SNLS) is generating a definitive dataset with well-sampled g'r'i'z' light curves and spectroscopic confirmation, which together allow precise measurement of the cosmological parameters. We are now entering the final 18 months of this highly successful survey. With the full, final sample we expect to determine the cosmological equation of state parameter "w" to a statistical precision of +/-0.05 or better, testing theories for the origin of the universal acceleration. The amount of spectroscopic follow-up performed is central to the success of the survey. Approximately 500 SNe Ia will be spectroscopically confirmed in a coherent program involving Gemini, VLT and Keck. Nod-and-shuffle observations at Gemini play a pivotal role. The goal for Gemini this semester is to obtain types and redshifts for 30 SN Ia candidates with redshifts 0.6-0.9, contributing to a dataset superior to any existing - or planned - sample. This is a continuing QR (quick response) proposal for GMOS-N.

  9. Near-Infrared Spectra of Type Ia Supernovae

    NASA Technical Reports Server (NTRS)

    Marion, G. H.; Hoeflich, P.; Vacca, W. D.; Wheeler, J. C.

    2003-01-01

    We report near-infrared (NIR) spectroscopic observations of 12 'branch-normal' Type Ia supernovae (SNe Ia) that cover the wavelength region from 0.8 to 2.5 microns. Our sample more than doubles the number of SNe Ia with published NIR spectra within 3 weeks of maximum light. The epochs of observation range from 13 days before maximum light to 18 days after maximum light. A detailed model for a Type Ia supernovae is used to identify spectral features. The Doppler shifts of lines are measured to obtain the velocity and thus the radial distribution of elements. The NIR is an extremely useful tool to probe the chemical structure in the layers of SNe Ia ejecta. This wavelength region is optimal for examining certain products of the SNe Ia explosion that may be blended or obscured in other spectral regions. We identify spectral features from Mg II, Ca II, Si II, Fe II, Co II, Ni II, and possibly Mn II. We find no indications for hydrogen, helium, or carbon in the spectra. The spectral features reveal important clues about the physical characteristics of SNe Ia. We use the features to derive upper limits for the amount of unburned matter, to identify the transition regions from explosive carbon to oxygen burning and from partial to complete silicon burning, and to estimate the level of mixing during and after the explosion. Elements synthesized in the outer layers during the explosion appear to remain in distinct layers. That provides strong evidence for the presence of a detonation phase during the explosion as it occurs in delayed detonation or merger models. Mg II velocities are found to exceed 11,000 - 15,000 km/s, depending on the individual SNe Ia. That result suggests that burning during the explosion reaches the outermost layers of the progenitor and limits the amount of unburned material to less than 10% of the mass of the progenitor. Small residuals of unburned material are predicted by delayed detonation models but are inconsistent with pure deflagration or

  10. A New Empirical Model for Type Ia Supernovae Using Spectrophotometry from the Nearby Supernova Factory

    NASA Astrophysics Data System (ADS)

    Saunders, Clare; Nearby Supernova Factory

    2016-01-01

    Type Ia supernovae are currently limited in their use for cosmology by dispersion in standardized magnitudes. A large part of this dispersion is due to the fact that the current lightcurve fitters do not describe the full range of Type Ia supernova diversity. I will present an empirical model of Type Ia supernovae that captures a wider range of supernova behavior and can improve magnitude standardization. This model is constructed using over 2000 spectrophotometric observations of Type Ia supernovae from the Nearby Supernova Factory. The true spectral time series for each supernova is modeled using Gaussian Processes. The supernova model predictions are used to calculate the principal components of the full set of supernova spectral time series. K-fold cross-validation is used to determine how many components correlate to absolute magnitude. Future work will test this method on independent photometric data sets.

  11. White Dwarf Convection Preceding Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zingale, Michael; Almgren, A. S.; Bell, J. B.; Malone, C. M.; Nonaka, A.; Woosley, S. E.

    2010-01-01

    In the single degenerate scenario for Type Ia supernovae, a Chandrasekhar mass white dwarf `simmers' for centuries preceding the ultimate explosion. During this period, reactions near the center drive convection throughout most of the interior of the white dwarf. The details of this convective flow determine how the first flames in the white dwarf ignite. Simulating this phase is difficult because the flows are highly subsonic. Using the low Mach number hydrodynamics code, MAESTRO, we present 3-d, full star models of the final hours of this convective phase, up to the point of ignition of a Type Ia supernova. We discuss the details of the convective velocity field and the locations of the initial hot spots. Finally, we show some preliminary results with rotation. Support for this work came from the DOE/Office of Nuclear Physics, grant No. DE-FG02-06ER41448 (Stony Brook), the SciDAC Program of the DOE Office of Mathematics, Information, and Computational Sciences under the DOE under contract No. DE-AC02-05CH11231 (LBNL), and the DOE SciDAC program, under grant No. DE-FC02-06ER41438 (UCSC). We made use of the jaguar machine via a DOE INCITE allocation at the Oak Ridge Leadership Computational Facility.

  12. The Nuclear Physics of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Brown, Edward

    2016-03-01

    Type Ia supernovae (SNe Ia) are the thermonuclear incineration of white dwarfs, which are the evolutionary terminus of low-mass stars; these supernovae are a primary source of iron in the universe and the premier distance indicator for cosmological studies. Current and future observational surveys are uncovering tantalizing clues about the as-yet-unknown progenitors of these explosions. In this talk, I shall review the nuclear physics of the explosion, with a particular emphasis on the role of weak interactions. Electron captures during the pre-explosive ``simmering'' and the explosion make the nucleosynthetic yields more neutron-rich. This provides in principle a way to constrain the nature of the progenitor from observations. I shall also highlight recent experimental constraints on electron-capture rates and prospects for further experimental studies, such as at the Facility for Rare Isotope Beams. Support by the National Science Foundation under Grant No. PHY-1430152 (JINA Center for the Evolution of the Elements) is gratefully acknowledged.

  13. Imaging the Distribution of Iron in a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Fesen, Robert

    2009-07-01

    We know Type Ia supernovae are thermonuclear explosions of CO white dwarfs, but we don't know the specifics of how the nuclear burning proceeds from the core outward to the surface once it starts. Thermonuclear instability in a WD core is thought to start off as a subsonic, turbulent deflagration wave or "burning" wave but then may, at some point, transition into a supernova blast or detonation wave. In such a "delayed detonation" model, differences between normal and subluminous Type Ia SNe reflect differences in the amount of burning that has occurred in the pre-detonation phase. More burning helps to pre-expand the WD before passage of the detontation wave which then lowers the density of the outer layers and, in turn, results in a different element production and internal structure.Directly imaging the 2D chemical distribution of ejecta from a Type Ia SN is actually possible in the case of the subluminous Type Ia SN 1885 which occurred on the near-side of M31's central bulge. The entire 123 year old remnant -- core to outer edge -- is visible via strong near-UV, Ca and Fe line absorptions, and remarkably, is still in near free expansion. This means that elemental stratification seen today is likely to accurately reflect the explosive nucleosynthesis physics.We propose ACS WFC images of SN 1885 to take advantage of this extraordinary situation: Having a young, nearby Type Ia SN remnant visible in silhouette against a galaxy-size light table. The proposed observations will reveal the Fe ejecta distribution, density structure, sphericity, and ionization state as a function of expansion velocity, thereby testing SN Ia explosion models with direct Fe-rich ejecta mapping data.

  14. Supernova 2010ev: A reddened high velocity gradient type Ia supernova

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.

    2016-05-01

    Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si iiλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe ii]λ7155 and [Ni ii]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).

  15. Supernova 2010ev: A reddened high velocity gradient type Ia supernova

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Claudia P.; González-Gaitán, Santiago; Folatelli, Gastón; Pignata, Giuliano; Anderson, Joseph P.; Hamuy, Mario; Morrell, Nidia; Stritzinger, Maximilian; Taubenberger, Stefan; Bufano, Filomena; Olivares E., Felipe; Haislip, Joshua B.; Reichart, Daniel E.

    2016-04-01

    Aims: We present and study the spectroscopic and photometric evolution of the type Ia supernova (SN Ia) 2010ev. Methods: We obtain and analyze multiband optical light curves and optical/near-infrared spectroscopy at low and medium resolution spanning -7 days to +300 days from the B-band maximum. Results: A photometric analysis shows that SN 2010ev is a SN Ia of normal brightness with a light-curve shape of Δm15(B) = 1.12 ± 0.02 and a stretch s = 0.94 ± 0.01 suffering significant reddening. From photometric and spectroscopic analysis, we deduce a color excess of E(B - V) = 0.25 ± 0.05 and a reddening law of Rv = 1.54 ± 0.65. Spectroscopically, SN 2010ev belongs to the broad-line SN Ia group, showing stronger than average Si iiλ6355 absorption features. We also find that SN 2010ev is a high velocity gradient SN with v˙Si = 164 ± 7 km s-1 d-1. The photometric and spectral comparison with other supernovae shows that SN 2010ev has similar colors and velocities to SN 2002bo and SN 2002dj. The analysis of the nebular spectra indicates that the [Fe ii]λ7155 and [Ni ii]λ7378 lines are redshifted, as expected for a high velocity gradient supernova. All these common intrinsic and extrinsic properties of the high velocity gradient (HVG) group are different from the low velocity gradient (LVG) normal SN Ia population and suggest significant variety in SN Ia explosions. This paper includes data gathered with the Du Pont Telescope at Las Campanas Observatory, Chile; and the Gemini Observatory, Cerro Pachon, Chile (Gemini Program GS-2010A-Q-14). Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (ESO Programme 085.D-0577).

  16. Type Ia Supernova Models and Progenitor Scenarios

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Kamiya, Yasuomi; Nakasato, Naohito

    2013-01-01

    We review some recent developments in theoretical studies on the connection between the progenitor systems of Type Ia supernovae (SNe Ia) and the explosion mechanisms. (1) DD-subCh: In the merging of double C+O white dwarfs (DD scenario), if the carbon detonation is induced near the white dwarf (WD) surface in the early dynamical phase, it could result in the (effectively) sub-Chandrasekhar mass explosion. (2) DD-Ch: If no surface C-detonation is ignited, the WD could grow until the Chandrasekhar mass is reached, but the outcome depends on whether the quiescent carbon shell burning is ignited and burns C+O into O+Ne+Mg. (3) SD-subCh: In the single degenerate (SD) scenario, if the He shell-flashes grow strong to induce a He detonation, it leads to the sub-Chandra explosion. (4) SD-Ch: If the He-shell flashes are not strong enough, they still produce interesting amounts of Si and S near the surface of the C+O WD before the explosion. In the Chandra mass explosion, the central density is high enough to produce electron capture elements, e.g., stable 58Ni. Observations of the emission lines of Ni in the nebular spectra provides useful diagnostics of the sub-Chandra vs. Chandra issue. The recent observations of relatively low velocity carbon near the surface of SNe Ia provide also an interesting constraint on the explosion models.

  17. Type Ia supernovae from merging white dwarfs. I. Prompt detonations

    SciTech Connect

    Moll, R.; Woosley, S. E.; Raskin, C.; Kasen, D.

    2014-04-20

    Merging white dwarfs are a possible progenitor of Type Ia supernovae (SNe Ia). Numerical models suggest that a detonation might be initiated before the stars have coalesced to form a single compact object. Here we study such prompt detonations by means of numerical simulations, modeling the disruption and nucleosynthesis of the stars until the ejecta reach the coasting phase, and generating synthetic light curves and spectra. Three models are considered with primary masses 0.96 M {sub ☉}, 1.06 M {sub ☉}, and 1.20 M {sub ☉}. Of these, the 0.96 M {sub ☉} dwarf merging with a 0.81 M {sub ☉} companion, with an {sup 56}Ni yield of 0.58 M {sub ☉}, is the most promising candidate for reproducing common SNe Ia. The more massive mergers produce unusually luminous SNe Ia with peak luminosities approaching those attributed to 'super-Chandrasekhar' mass SNe Ia. While the synthetic light curves and spectra of some of the models resemble observed SNe Ia, the significant asymmetry of the ejecta leads to large orientation effects. The peak bolometric luminosity varies by more than a factor of two with the viewing angle, and the velocities of the spectral absorption features are lower when observed from angles where the light curve is brightest. The largest orientation effects are seen in the ultraviolet, where the flux varies by more than an order of magnitude. The set of three models roughly obeys a width-luminosity relation, with the brighter light curves declining more slowly in the B band. Spectral features due to unburned carbon from the secondary star are also seen in some cases.

  18. Berkeley SuperNova Ia Program (BSNIP): Initial Spectral Analysis

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey; Kong, J.; Ganeshalingam, M.; Li, W.; Filippenko, A. V.

    2011-01-01

    The Berkeley SuperNova Ia Program (BSNIP) has been observing nearby (z < 0.1) Type Ia supernovae (SNe Ia) both photometrically and spectroscopically for over two decades. Using telescopes at both Lick and Keck Observatories, we have amassed an extensive collection of well-sampled optical light curves with complementary spectra covering, on average, 3400-10,000 Å. In total, we have obtained nearly 600 spectra of over 200 SNe Ia with densely sampled multi-color light curves. The initial analysis of this dataset consists of accurately and robustly measuring the strength and position of various spectral features near maximum brightness. We determine the endpoints, pseudo-continuum, expansion velocity, equivalent width, and depth of each major feature observed in our wavelength range. For objects with multiple spectra near maximum brightness we investigate how these values change with time. From these measurements we also calculate velocity gradients and various flux ratios within a given spectrum which will allow us to explore correlations between spectral and photometric observables. Some possible correlations have been studied previously, but our dataset is unique in how self-consistent the data reduction and spectral feature measurements have been, and it is a factor of a few larger than most earlier studies. We will briefly summarize the contents of the full dataset as an introduction to our initial analysis. Some of our measurements of SN Ia spectral features, along with a few initial results from those measurements, will be presented. Finally, we will comment on our current progress and planned future work. We gratefully acknowledge the financial support of NSF grant AST-0908886, the TABASGO Foundation, and the Marc J. Staley Graduate Fellowship in Astronomy.

  19. The diversity of type Ia supernovae from broken symmetries.

    PubMed

    Kasen, D; Röpke, F K; Woosley, S E

    2009-08-13

    Type Ia supernovae result when carbon-oxygen white dwarfs in binary systems accrete mass from companion stars, reach a critical mass and explode. The near uniformity of their light curves makes these supernovae good 'standard candles' for measuring cosmic expansion, but a correction must be applied to account for the fact that the brighter ones have broader light curves. One-dimensional modelling, with a certain choice of parameters, can reproduce this general trend in the width-luminosity relation; but the processes of ignition and detonation have recently been shown to be intrinsically asymmetric, so parameterization must have its limits. Here we report multi-dimensional modelling of the explosion physics and radiative transfer, which reveals that the breaking of spherical symmetry is a critical factor in determining both the width-luminosity relation and the observed scatter about it. The deviation from spherical symmetry can also explain the finite polarization detected in the light from some supernovae. The slope and normalization of the width-luminosity relation has a weak dependence on certain properties of the white dwarf progenitor, in particular the trace abundances of elements other than carbon and oxygen. Failing to correct for this effect could lead to systematic overestimates of up to 2 per cent in the distance to remote supernovae. PMID:19675647

  20. Constraints on the explosion mechanism and progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Blondin, S.

    2015-12-01

    We present 1D non-LTE time-dependent radiative-transfer simulations of Type Ia supernova ejecta resulting from different explosion mechanisms and white dwarf (WD) progenitor masses, and confront our results to Type Ia supernova observations over the first ˜ 100 d of their evolution. While the ``standard'' Chandrasekhar-mass delayed-detonation model reproduces the observed properties of Type Ia supernova ejecta near maximum light over a wide range of peak luminosities, the high luminosity and blue optical colours seen at early times in several Type Ia supernova ejecta appears to require some hydrodynamical interaction affecting the outermost ejecta layers, here in the form of a strong pulsation. Moreover, the fast light-curve evolution of the least luminous Type Ia supernova ejecta seem to require WD progenitors below the Chandrasekhar mass. The observed diversity of the Type Ia supernova population can thus be reproduced with multiple progenitor channels and explosion mechanisms. In this context, departures from spherical symmetry only play a minor role.

  1. Type Ia supernova Hubble residuals and host-galaxy properties

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Fleury, M.; Guy, J.; Baltay, C.; Buton, C.; Feindt, U.; Greskovic, P.; Kowalski, M.; Childress, M.; Chotard, N.; Copin, Y.; Gangler, E. [Université de Lyon, F-69622 Lyon; Université de Lyon 1, Villeurbanne; CNRS and others

    2014-03-20

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at <<1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm {sub 15} and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  2. Type Ia Supernova Hubble Residuals and Host-Galaxy Properties

    SciTech Connect

    Nearby Supernova Factory; Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-01-17

    Kim et al. (2013) [K13] introduced a new methodology for determining peak- brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spec- trophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ? 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at ? 1?, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement the Hubble residual step with host mass is 0.045 ? 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch param- eters: Steps at> 2? significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light- curve width and color around peak (similar to the∆m15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20 to 30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  3. Type Ia Supernova Hubble Residuals and Host-galaxy Properties

    NASA Astrophysics Data System (ADS)

    Kim, A. G.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Feindt, U.; Fleury, M.; Gangler, E.; Greskovic, P.; Guy, J.; Kowalski, M.; Lombardo, S.; Nordin, J.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.

    2014-03-01

    Kim et al. introduced a new methodology for determining peak-brightness absolute magnitudes of type Ia supernovae from multi-band light curves. We examine the relation between their parameterization of light curves and Hubble residuals, based on photometry synthesized from the Nearby Supernova Factory spectrophotometric time series, with global host-galaxy properties. The K13 Hubble residual step with host mass is 0.013 ± 0.031 mag for a supernova subsample with data coverage corresponding to the K13 training; at Lt1σ, the step is not significant and lower than previous measurements. Relaxing the data coverage requirement of the Hubble residual step with the host mass is 0.045 ± 0.026 mag for the larger sample; a calculation using the modes of the distributions, less sensitive to outliers, yields a step of 0.019 mag. The analysis of this article uses K13 inferred luminosities, as distinguished from previous works that use magnitude corrections as a function of SALT2 color and stretch parameters: steps at >2σ significance are found in SALT2 Hubble residuals in samples split by the values of their K13 x(1) and x(2) light-curve parameters. x(1) affects the light-curve width and color around peak (similar to the Δm 15 and stretch parameters), and x(2) affects colors, the near-UV light-curve width, and the light-curve decline 20-30 days after peak brightness. The novel light-curve analysis, increased parameter set, and magnitude corrections of K13 may be capturing features of SN Ia diversity arising from progenitor stellar evolution.

  4. The VLT Measures the Shape of a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    2003-08-01

    clear until now how similar such an event would appear to observers who view it from different directions. All eggs look similar and indistinguishable from each other when viewed from the same angle, but the side view (oval) is obviously different from the end view (round). And indeed, if Type Ia supernova explosions were asymmetric, they would shine with different brightness in different directions. Observations of different supernovae - seen under different angles - could therefore not be directly compared. Not knowing these angles, however, the astronomers would then infer incorrect distances and the precision of this fundamental method for gauging the structure of the Universe would be in question. Polarimetry to the rescue A simple calculation shows that even to the eagle eyes of the VLT Interferometer (VLTI), all supernovae at cosmological distances will appear as unresolved points of light; they are simply too far. But there is another way to determine the angle at which a particular supernova is viewed: polarimetry is the name of the trick! Polarimetry works as follows: light is composed of electromagnetic waves (or photons) which oscillate in certain directions (planes). Reflection or scattering of light favours certain orientations of the electric and magnetic fields over others. This is why polarising sunglasses can filter out the glint of sunlight reflecting off a pond. When light scatters through the expanding debris of a supernova, it retains information about the orientation of the scattering layers. If the supernova is spherically symmetric, all orientations will be present equally and will average out, so there will be no net polarisation . If, however, the gas shell is not round, a slight net polarisation will be imprinted on the light. " Even for quite noticable asymmetries, however, the polarisation is very small and barely exceeds the level of one percent ", says Dietrich Baade, ESO astronomer and a member of the team that performed the observations

  5. Spectra of High-Redshift Type Ia Supernovae and a Comparison withtheir Low-Redshift Counterparts

    SciTech Connect

    Hook, I.M.; Howell, D.A.; Aldering, G.; Amanullah, R.; Burns,M.S.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fadeyev, V.; Folatelli, G.; Garavini, G.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Lidman, C.; Nobili, S.; Nugent, P.E.; Pain, R.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente,P.; Sainton, G.; Schaefer, B.E.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-07-20

    We present spectra for 14 high-redshift (0.17 < z < 0.83) supernovae, which were discovered by the Supernova Cosmology Project as part of a campaign to measure cosmological parameters. The spectra are used to determine the redshift and classify the supernova type, essential information if the supernovae are to be used for cosmological studies. Redshifts were derived either from the spectrum of the host galaxy or from the spectrum of the supernova itself. We present evidence that these supernovae are of Type Ia by matching to spectra of nearby supernovae. We find that the dates of the spectra relative to maximum light determined from this fitting process are consistent with the dates determined from the photometric light curves, and moreover the spectral time-sequence for SNe Type Ia at low and high redshift is indistinguishable. We also show that the expansion velocities measured from blueshifted Ca H&K are consistent with those measured for low-redshift Type Ia supernovae. From these first-level quantitative comparisons we find no evidence for evolution in SNIa properties between these low- and high-redshift samples. Thus even though our samples may not be complete, we conclude that there is a population of SNe Ia at high redshift whose spectral properties match those at low redshift.

  6. Spectra and Hubble Space Telescope Light Curves of Six Type Ia Supernovae at 0.511 < z < 1.12 and the Union2 Compilation

    NASA Astrophysics Data System (ADS)

    Amanullah, R.; Lidman, C.; Rubin, D.; Aldering, G.; Astier, P.; Barbary, K.; Burns, M. S.; Conley, A.; Dawson, K. S.; Deustua, S. E.; Doi, M.; Fabbro, S.; Faccioli, L.; Fakhouri, H. K.; Folatelli, G.; Fruchter, A. S.; Furusawa, H.; Garavini, G.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Knop, R. A.; Kowalski, M.; Linder, E.; Meyers, J.; Morokuma, T.; Nobili, S.; Nordin, J.; Nugent, P. E.; Östman, L.; Pain, R.; Panagia, N.; Perlmutter, S.; Raux, J.; Ruiz-Lapuente, P.; Spadafora, A. L.; Strovink, M.; Suzuki, N.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.; Supernova Cosmology Project, The

    2010-06-01

    We report on work to increase the number of well-measured Type Ia supernovae (SNe Ia) at high redshifts. Light curves, including high signal-to-noise Hubble Space Telescope data, and spectra of six SNe Ia that were discovered during 2001, are presented. Additionally, for the two SNe with z > 1, we present ground-based J-band photometry from Gemini and the Very Large Telescope. These are among the most distant SNe Ia for which ground-based near-IR observations have been obtained. We add these six SNe Ia together with other data sets that have recently become available in the literature to the Union compilation. We have made a number of refinements to the Union analysis chain, the most important ones being the refitting of all light curves with the SALT2 fitter and an improved handling of systematic errors. We call this new compilation, consisting of 557 SNe, the Union2 compilation. The flat concordance ΛCDM model remains an excellent fit to the Union2 data with the best-fit constant equation-of-state parameter w = -0.997+0.050 -0.054(stat)+0.077 -0.082(stat + sys together) for a flat universe, or w = -1.038+0.056 -0.059(stat)+0.093 -0.097(stat + sys together) with curvature. We also present improved constraints on w(z). While no significant change in w with redshift is detected, there is still considerable room for evolution in w. The strength of the constraints depends strongly on redshift. In particular, at z >~ 1, the existence and nature of dark energy are only weakly constrained by the data. Based in part on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science Institute (STScI). STScI is operated by the Association of Universities for Research in Astronomy (AURA), Inc. under the NASA contract NAS 5-26555. The observations are associated with programs HST-GO-08585 and HST-GO-09075. Based, in part, on observations obtained at the ESO La Silla Paranal Observatory (ESO programs 67.A-0361 and 169

  7. A Study of Carbon Features in Type Ia Supernova Spectra

    NASA Astrophysics Data System (ADS)

    Parrent, Jerod T.; Thomas, R. C.; Fesen, Robert A.; Marion, G. H.; Challis, Peter; Garnavich, Peter M.; Milisavljevic, Dan; Vinkò, Jòzsef; Wheeler, J. Craig

    2011-05-01

    One of the major differences between various explosion scenarios of Type Ia supernovae (SNe Ia) is the remaining amount of unburned (C+O) material and its velocity distribution within the expanding ejecta. While oxygen absorption features are not uncommon in the spectra of SNe Ia before maximum light, the presence of strong carbon absorption has been reported only in a minority of objects, typically during the pre-maximum phase. The reported low frequency of carbon detections may be due to low signal-to-noise data, low abundance of unburned material, line blending between C II λ6580 and Si II λ6355, ejecta temperature differences, asymmetrical distribution effects, or a combination of these. However, a survey of published pre-maximum spectra reveals that more SNe Ia than previously thought may exhibit C II λ6580 absorption features and relics of line blending near ~6300 Å. Here we present new SN Ia observations where spectroscopic signatures of C II λ6580 are detected and investigate the presence of C II λ6580 in the optical spectra of 19 SNe Ia using the parameterized spectrum synthesis code, SYNOW. Most of the objects in our sample that exhibit C II λ6580 absorption features are of the low-velocity gradient subtype. Our study indicates that the morphology of carbon-rich regions is consistent with either a spherical distribution or a hemispheric asymmetry, supporting the recent idea that SN Ia diversity may be a result of off-center ignition coupled with observer line-of-sight effects.

  8. THE CARNEGIE SUPERNOVA PROJECT: SECOND PHOTOMETRY DATA RELEASE OF LOW-REDSHIFT TYPE Ia SUPERNOVAE

    SciTech Connect

    Stritzinger, Maximilian D.; Phillips, M. M.; Campillay, Abdo; Morrell, Nidia; Krzeminski, Wojtek; Roth, Miguel; Boldt, Luis N.; Burns, Chris; Freedman, Wendy L.; Madore, Barry F.; Persson, Sven E.; Contreras, Carlos; Gonzalez, Sergio; Salgado, Francisco; DePoy, D. L.; Marshall, J. L.; Rheault, Jean-Philippe; Suntzeff, Nicholas B.; Hamuy, Mario E-mail: max@dark-cosmology.dk

    2011-11-15

    The Carnegie Supernova Project (CSP) was a five-year observational survey conducted at Las Campanas Observatory that obtained, among other things, high-quality light curves of {approx}100 low-redshift Type Ia supernovae (SNe Ia). Presented here is the second data release of nearby SN Ia photometry consisting of 50 objects, with a subset of 45 having near-infrared follow-up observations. Thirty-three objects have optical pre-maximum coverage with a subset of 15 beginning at least five days before maximum light. In the near-infrared, 27 objects have coverage beginning before the epoch of B-band maximum, with a subset of 13 beginning at least five days before maximum. In addition, we present results of a photometric calibration program to measure the CSP optical (uBgVri) bandpasses with an accuracy of {approx}1%. Finally, we report the discovery of a second SN Ia, SN 2006ot, similar in its characteristics to the peculiar SN 2006bt.

  9. Type Ia Supernova Spectral Line Ratios as LuminosityIndicators

    SciTech Connect

    Bongard, Sebastien; Baron, E.; Smadja, G.; Branch, David; Hauschildt, Peter H.

    2005-12-07

    Type Ia supernovae have played a crucial role in thediscovery of the dark energy, via the measurement of their light curvesand the determination of the peak brightness via fitting templates to theobserved lightcurve shape. Two spectroscopic indicators are also known tobe well correlated with peak luminosity. Since the spectroscopicluminosity indicators are obtained directly from observed spectra, theywill have different systematic errors than do measurements usingphotometry. Additionally, these spectroscopic indicators may be usefulfor studies of effects of evolution or age of the SNe~;Ia progenitorpopulation. We present several new variants of such spectroscopicindicators which are easy to automate and which minimize the effects ofnoise. We show that these spectroscopic indicators can be measured byproposed JDEM missions such as snap and JEDI.

  10. Critical ingredients of Type Ia supernova radiative-transfer modelling

    NASA Astrophysics Data System (ADS)

    Dessart, Luc; Hillier, D. John; Blondin, Stéphane; Khokhlov, Alexei

    2014-07-01

    We explore the physics of Type Ia supernova (SN Ia) light curves and spectra using the 1D non-local thermodynamic equilibrium (non-LTE) time-dependent radiative-transfer code CMFGEN. Rather than adjusting ejecta properties to match observations, we select as input one `standard' 1D Chandrasekhar-mass delayed-detonation hydrodynamical model, and then explore the sensitivity of radiation and gas properties of the ejecta on radiative-transfer modelling assumptions. The correct computation of SN Ia radiation is not exclusively a solution to an `opacity problem', characterized by the treatment of a large number of lines. We demonstrate that the key is to identify and treat important atomic processes consistently. This is not limited to treating line blanketing in non-LTE. We show that including forbidden-line transitions of metals, and in particular Co, is increasingly important for the temperature and ionization of the gas beyond maximum light. Non-thermal ionization and excitation are also critical since they affect the colour evolution and the ΔM15 decline rate of our model. While impacting little the bolometric luminosity, a more complete treatment of decay routes leads to enhanced line blanketing, e.g. associated with 48Ti in the U and B bands. Overall, we find that SN Ia radiation properties are influenced in a complicated way by the atomic data we employ, so that obtaining converged results is a real challenge. Nonetheless, with our fully fledged CMFGEN model, we obtain good agreement with the golden standard Type Ia SN 2005cf in the optical and near-IR, from 5 to 60 d after explosion, suggesting that assuming spherical symmetry is not detrimental to SN Ia radiative-transfer modelling at these times. Multi-D effects no doubt matter, but they are perhaps less important than accurately treating the non-LTE processes that are crucial to obtain reliable temperature and ionization structures.

  11. Building a Type Ia Supernova Model with SNfactory Spectrophotometric Time Series

    NASA Astrophysics Data System (ADS)

    Saunders, Clare; Nearby Supernova Factory

    2015-01-01

    We present a spectral time series model built using Nearby Supernova Factory (SNfactory) data. The spectrophotometric time series of over one hundred Type Ia supernovae in the data set offer much more information than photometric light curves for use in improving the standardization of Type Ia supernova magnitudes: spectrophotometric observations are interpolated onto a spectral time series surface using Gaussian processes, then Principal Component Analysis (PCA) is used to calculate spectral time series templates. The model is verified using K-fold cross-validation. We discuss the potential for using the PCA coefficients to lower the dispersion in standardized magnitudes on the Hubble diagram.

  12. A Model-independent Photometric Redshift Estimator for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Yun

    2007-01-01

    The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is fundamental in modern observational cosmology. In this Letter, we derive a simple empirical photometric redshift estimator for SNe Ia using a training set of SNe Ia with multiband (griz) light curves and spectroscopic redshifts obtained by the Supernova Legacy Survey (SNLS). This estimator is analytical and model-independent it does not use spectral templates. We use all the available SNe Ia from SNLS with near-maximum photometry in griz (a total of 40 SNe Ia) to train and test our photometric redshift estimator. The difference between the estimated redshifts zphot and the spectroscopic redshifts zspec, (zphot-zspec)/(1+zspec), has rms dispersions of 0.031 for 20 SNe Ia used in the training set, and 0.050 for 20 SNe Ia not used in the training set. The dispersion is of the same order of magnitude as the flux uncertainties at peak brightness for the SNe Ia. There are no outliers. This photometric redshift estimator should significantly enhance the ability of observers to accurately target high-redshift SNe Ia for spectroscopy in ongoing surveys. It will also dramatically boost the cosmological impact of very large future supernova surveys, such as those planned for the Advanced Liquid-mirror Probe for Astrophysics, Cosmology, and Asteroids (ALPACA) and the Large Synoptic Survey Telescope (LSST).

  13. Tycho Brahe's Supernova: Light from Centuries Past

    NASA Astrophysics Data System (ADS)

    Ruiz-Lapuente, Pilar

    2004-09-01

    The light curve of SN 1572 is described in the terms used nowadays to characterize Type Ia supernovae (SNe Ia). By assembling the records of the observations done in 1572-1574 and evaluating their uncertainties, it is possible to recover the light curve and the color evolution of this supernova. It is found that within the SN Ia family, the event should have been an SN Ia with a normal rate of decline, its stretch factor being s~0.9. The visual light curve near maximum, late-time decline, and color evolution sustain this conclusion. After correcting for extinction, the luminosity of this supernova as observed at maximum is found to be MV=-19.24-5log(D/3.0kpc)+/-0.42. From stretch fitting of the overall light curve, the maximum in V would imply a luminosity difference of +0.17+/-0.1 mag, with the maximum brightness of an s=1 SN Ia. The quantity MV is consistent with a distance of 2.8+/-0.4 kpc for the scale of H0=65 km s-1 Mpc-1.

  14. Could edge-lit type Ia supernovae be standard candles?

    NASA Astrophysics Data System (ADS)

    Regős, Enikő; Tout, Christopher A.; Wickramasinghe, Dayal; Hurley, Jarrod R.; Pols, Onno R.

    2003-05-01

    The progenitors of Type Ia supernovae (SNe Ia) have not been identified. Though they are no longer fashionable, we investigate the consequences if a significant number of SNe Ia were edge-lit detonations (ELDs) of carbon/oxygen white dwarfs that have accreted a critical mass of helium. Our best understanding of the Phillips relation between light curve speed and peak luminosity assigns both these phenomena to the amount of 56Ni produced. In ELDs there are two sites of 56Ni synthesis. If the peak luminosity is determined primarily by the CO ratio in the core it is primarily a function of the initial main-sequence mass of the progenitor of the CO white dwarf. If the light curve decay speed is determined by the total mass of iron group elements ejected this is a function of the total mass of the ELD at the time of explosion because both the CO core and the He envelope are substantially converted to 56Ni. In general, binary star evolution ensures that these two masses are correlated and an empirical relation between peak luminosity and light curve shape can be expected. However when we perform population synthesis for progenitors of different metallicities we find a systematic shift in this relation that would make distant ELD SNe Ia fainter than those nearby. The abundances of alpha-rich isotopes, such as 44Ca, in the solar system indicate that only about 40 per cent of SNe Ia could be edge-lit so any systematic effect that could be present would be correspondingly diluted. A systematic effect is still expected even if we examine only the small subset of ELDs that accrete from a naked helium star, rather than a He white dwarf.

  15. Radiative transfer and type Ia supernovae spectra analysis in the context of supernovae factory

    NASA Astrophysics Data System (ADS)

    Bongard, Sebastien

    This co-supervised dissertation was conducted in collaboration between The University of Oklahoma City (USA) and University Claude Bernard of Lyon (France). It addresses the radiative transfer issue in type Ia supernovae expanding envelopes, in the context of the SupernovaFactory. We used the multi-purpose radiative transfer code phoenix, developed by P. Hauschildt, F. Allard and E. Baron to produce a grid of synthetic spectra sampling dates from 10 to 25 days after explosion and bolometric magnitudes from -18.0 to -19.7. We also developed an adaptive grid scheme in order to stabilize phoenix convergence. We showed the spectrum formation in SNeIa around maximum light to be a multi- layered process involving regions from 5000 km per s to 20000 km per s, interacting not only through scattering but also through pure emission. This new understanding allowed us to introduce a new spectral indicators we called RSiSu, which can be used to measure SNeIa blue magnitudes with a precision comparable to the stretch factor. This makes it possible to independently constraint the evolutionary effect on SNeIa that are of crucial importance for high z surveys.

  16. FLOYDS Classification of ASASSN-15rv as a Post-Peak Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh, G.; Howell, D. A.; Arcavi, I.; McCully, C.; Valenti, S.

    2015-10-01

    We obtained a spectrum of ASASSN-15rv (ATel #8211) on 2015 October 29.6 UT with the robotic FLOYDS instrument mounted on the Faulkes Telescope South. Using Superfit (Howell et al. 2005, ApJ, 634, 119) and SNID (Blondin & Tonry 2007, ApJ, 666, 1024), we find good fits both to Type Ia supernovae 1-2 weeks after maximum light and Type Ic supernovae near maximum light at redshifts around z=0.04.

  17. Using Twin Type Ia Supernovae to Improve Cosmological Distance Measurements

    NASA Astrophysics Data System (ADS)

    Boone, Kyle; Fakhouri, Hannah; Aldering, Greg Scott; Antilogus, Pierre; Aragon, Cecilia; Bailey, Stephen J.; Baltay, Charles; Barbary, Kyle H.; Baugh, Derek; Birchall, Dan; Bongard, Sebastien; Buton, Clement; Cellier-Holzem, Flora; Chen, Juncheng; Childress, Michael; Chotard, Nicolas; Copin, Yannick; Fagrelius, Parker; Feindt, Ulrich; Fleury, Mathilde; Fouchez, Dominique; Gangler, Emmanuel; Hayden, Brian; Kim, Alex G.; Kowalski, Marek; Leget, Pierre-Francois; Lombardo, Simona; Nordin, Jakob; Nugent, Peter E.; Pain, Reynald; Pecontal, Emmanuel; Pereira, Rui; Perlmutter, Saul; Rabinowitz, David L.; Ren, James; Rigault, Mickael; Rubin, David; Runge, Karl; Saunders, Clare; Scalzo, Richard A.; Smadja, Gerard; Sofiatti, Caroline; Strovink, Mark; Suzuki, Nao; Tao, Charling; Thomas, Rollin; Weaver, Benjamin; Nearby Supernova Factory (SNfactory)

    2016-01-01

    The Nearby Supernova Factory has collected spectrophotometric timeseries of many Hubble-flow type Ia supernovae. Using this dataset, we introduce a novel method of identifying "twin" Type Ia supernovae by matching spectral data. For this initial set of SNfactory twin supernovae, we find a dispersion in luminosity of 0.083 ± 0.012 magnitudes between twins, implying a dispersion of 0.072 ± 0.010 magnitudes in the absence of peculiar velocities. This shows that at least 3/4 of the variance in Hubble residuals in current supernova cosmology analyses is due to previously unaccounted-for astrophysical differences among the supernovae -- differences captured by spectrophotometric twinning. We discuss both the usage of this method and the data requirements to implement it.

  18. CONSTRAINING TYPE Ia SUPERNOVAE PROGENITORS FROM THREE YEARS OF SUPERNOVA LEGACY SURVEY DATA

    SciTech Connect

    Bianco, F. B.; Howell, D. A.; Sullivan, M.; Hook, I.; Conley, A.; Kasen, D.; Perlmutter, S.; Gonzalez-Gaitan, S.; Carlberg, R. G.; Perrett, K. M.; Guy, J.; Astier, P.; Balland, C.; Fourmanoit, N.; Hardin, D.; Pain, R.; Fouchez, D.; Lidman, C.; Palanque-Delabrouille, N.

    2011-11-01

    While it is generally accepted that Type Ia supernovae are the result of the explosion of a carbon-oxygen white dwarf accreting mass in a binary system, the details of their genesis still elude us, and the nature of the binary companion is uncertain. Kasen points out that the presence of a non-degenerate companion in the progenitor system could leave an observable trace: a flux excess in the early rise portion of the light curve caused by the ejecta impact with the companion itself. This excess would be observable only under favorable viewing angles, and its intensity depends on the nature of the companion. We searched for the signature of a non-degenerate companion in three years of Supernova Legacy Survey data by generating synthetic light curves accounting for the effects of shocking and comparing true and synthetic time series with Kolmogorov-Smirnov tests. Our most constraining result comes from noting that the shocking effect is more prominent in the rest-frame B than V band: we rule out a contribution from white dwarf-red giant binary systems to Type Ia supernova explosions greater than 10% at the 2{sigma}, and greater than 20% at the 3{sigma} level.

  19. Turbulence and Combustion in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Jackson, Aaron; Townsley, Dean; Calder, Alan

    2011-11-01

    Turbulent combustion plays a critical role in Type Ia supernovae, bright astrophysical explosions that serve as cosmological distance indicators. The most successful scenario for reproducing observations involves a deflagration born in the turbulent core a massive C/O white dwarf that subsequently experiences a deflagration-to-detonation transition (DDT) due to turbulence-flame interaction (TFI), although unconfined DDT is poorly understood. Due to the highly non-linear nature of the explosion, the early flame propagation is critically important for determining the explosion outcome. We present full-star, 3D calculations of the deflagration phase of a SNIa explosion. As the flame evolves, it is subject to the Rayleigh-Taylor and Kelvin-Helmholtz instabilities as well as TFI. We analyze the resolved turbulence at the flame front throughout the evolution of the explosion and consider the necessity of modeling unresolved TFI. Furthermore, we consider whether conditions estimated for DDT are likely to occur given the turbulent intensity at the flame front.

  20. EARLY EMISSION FROM TYPE Ia SUPERNOVAE

    SciTech Connect

    Rabinak, Itay; Waxman, Eli; Livne, Eli

    2012-09-20

    A unique feature of deflagration-to-detonation (DDT) white dwarf explosion models of supernovae of type Ia is the presence of a strong shock wave propagating through the outer envelope. We consider the early emission expected in such models, which is produced by the expanding shock-heated outer part of the ejecta and precedes the emission driven by radioactive decay. We expand on earlier analyses by considering the modification of the pre-detonation density profile by the weak shocks generated during the deflagration phase, the time evolution of the opacity, and the deviation of the post-shock equation of state from that obtained for radiation pressure domination. A simple analytic model is presented and shown to provide an acceptable approximation to the results of one-dimensional numerical DDT simulations. Our analysis predicts a {approx}10{sup 3} s long UV/optical flash with a luminosity of {approx}1 to {approx}3 Multiplication-Sign 10{sup 39} erg s{sup -1}. Lower luminosity corresponds to faster (turbulent) deflagration velocity. The luminosity of the UV flash is predicted to be strongly suppressed at t > t{sub drop} {approx} 1 hr due to the deviation from pure radiation domination.

  1. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET

    SciTech Connect

    Brown, Peter J.; Roming, Peter W. A.; Ciardullo, Robin; Gronwall, Caryl; Hoversten, Erik A.; Pritchard, Tyler; Milne, Peter; Bufano, Filomena; Mazzali, Paolo; Elias-Rosa, Nancy; Filippenko, Alexei V.; Li Weidong; Foley, Ryan J.; Hicken, Malcolm; Kirshner, Robert P.; Gehrels, Neil; Holland, Stephen T.; Immler, Stefan; Phillips, Mark M.; Still, Martin

    2010-10-01

    We examine the absolute magnitudes and light-curve shapes of 14 nearby (redshift z = 0.004-0.027) Type Ia supernovae (SNe Ia) observed in the ultraviolet (UV) with the Swift Ultraviolet/Optical Telescope. Colors and absolute magnitudes are calculated using both a standard Milky Way extinction law and one for the Large Magellanic Cloud that has been modified by circumstellar scattering. We find very different behavior in the near-UV filters (uvw1{sub rc} covering {approx}2600-3300 A after removing optical light, and u {approx} 3000-4000 A) compared to a mid-UV filter (uvm2 {approx}2000-2400 A). The uvw1{sub rc} - b colors show a scatter of {approx}0.3 mag while uvm2-b scatters by nearly 0.9 mag. Similarly, while the scatter in colors between neighboring filters is small in the optical and somewhat larger in the near-UV, the large scatter in the uvm2 - uvw1 colors implies significantly larger spectral variability below 2600 A. We find that in the near-UV the absolute magnitudes at peak brightness of normal SNe Ia in our sample are correlated with the optical decay rate with a scatter of 0.4 mag, comparable to that found for the optical in our sample. However, in the mid-UV the scatter is larger, {approx}1 mag, possibly indicating differences in metallicity. We find no strong correlation between either the UV light-curve shapes or the UV colors and the UV absolute magnitudes. With larger samples, the UV luminosity might be useful as an additional constraint to help determine distance, extinction, and metallicity in order to improve the utility of SNe Ia as standardized candles.

  2. Circumstellar material in type Ia supernovae via sodium absorption features.

    PubMed

    Sternberg, A; Gal-Yam, A; Simon, J D; Leonard, D C; Quimby, R M; Phillips, M M; Morrell, N; Thompson, I B; Ivans, I; Marshall, J L; Filippenko, A V; Marcy, G W; Bloom, J S; Patat, F; Foley, R J; Yong, D; Penprase, B E; Beeler, D J; Allende Prieto, C; Stringfellow, G S

    2011-08-12

    Type Ia supernovae are key tools for measuring distances on a cosmic scale. They are generally thought to be the thermonuclear explosion of an accreting white dwarf in a close binary system. The nature of the mass donor is still uncertain. In the single-degenerate model it is a main-sequence star or an evolved star, whereas in the double-degenerate model it is another white dwarf. We show that the velocity structure of absorbing material along the line of sight to 35 type Ia supernovae tends to be blueshifted. These structures are likely signatures of gas outflows from the supernova progenitor systems. Thus, many type Ia supernovae in nearby spiral galaxies may originate in single-degenerate systems. PMID:21836010

  3. A strong ultraviolet pulse from a newborn type Ia supernova.

    PubMed

    Cao, Yi; Kulkarni, S R; Howell, D Andrew; Gal-Yam, Avishay; Kasliwal, Mansi M; Valenti, Stefano; Johansson, J; Amanullah, R; Goobar, A; Sollerman, J; Taddia, F; Horesh, Assaf; Sagiv, Ilan; Cenko, S Bradley; Nugent, Peter E; Arcavi, Iair; Surace, Jason; Woźniak, P R; Moody, Daniela I; Rebbapragada, Umaa D; Bue, Brian D; Gehrels, Neil

    2015-05-21

    Type Ia supernovae are destructive explosions of carbon-oxygen white dwarfs. Although they are used empirically to measure cosmological distances, the nature of their progenitors remains mysterious. One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion. Here we report observations with the Swift Space Telescope of strong but declining ultraviolet emission from a type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star, and therefore provides evidence that some type Ia supernovae arise from the single degenerate channel. PMID:25993962

  4. THE EXCEPTIONALLY LUMINOUS TYPE Ia SUPERNOVA 2007if

    SciTech Connect

    Yuan, F.; Akerlof, C. W.; Miller, J. M.; McKay, T. A.; Quimby, R. M.; Kulkarni, S.; Wheeler, J. C.; Vinko, J.; Chatzopoulos, E.; Aharonian, F.

    2010-06-01

    SN 2007if was the third over-luminous Type Ia supernova (SN Ia) detected after 2003fg and 2006gz. We present the photometric and spectroscopic observations of the SN and its host by ROTSE-III, HET, and Keck. From the H{sub {alpha}} line identified in the host spectra, we determine a redshift of 0.0736. At this distance, the SN reached an absolute magnitude of -20.4, brighter than any other SNe Ia ever observed. If the source of luminosity is radioactive decay, a large amount of radioactive nickel ({approx}1.5 M {sub sun}) is required to power the peak luminosity, more than can be produced realistically in a Chandrasekhar mass progenitor. Low expansion velocity, similar to that of 2003fg, is also measured around the maximum light. The observations may suggest that SN 2007if was from a massive white dwarf progenitor, plausibly exploding with mass well beyond 1.4 M {sub sun}. Alternatively, we investigate circumstellar interaction that may contribute to the excess luminosity.

  5. Supernova Legacy Survey: using spectral signatures to improve Type Ia supernovae as distance indicators

    NASA Astrophysics Data System (ADS)

    Walker, E. S.; Hook, I. M.; Sullivan, M.; Howell, D. A.; Astier, P.; Balland, C.; Basa, S.; Bronder, T. J.; Carlberg, R.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Pain, R.; Perrett, K.; Pritchet, C.; Regnault, N.; Rich, J.; Aldering, G.; Fakhouri, H. K.; Kronborg, T.; Palanque-Delabrouille, N.; Perlmutter, S.; Ruhlmann-Kleider, V.; Zhang, T.

    2011-01-01

    Optical long-slit spectroscopy at the Gemini-North telescope using the Gemini Multi-Object Spectrograph (GMOS) was used to classify targets from the Supernova Legacy Survey (SNLS) from 2005 July and 2006 May-2008 May. During this time, 95 objects were observed. Where possible, the objects' redshifts (z) were measured from narrow emission or absorption features in the host galaxy spectrum, otherwise they were measured from the broader supernova features. We present spectra of 68 confirmed or probable SNe Ia from SNLS with redshifts in the range 0.17 ≤z≤ 1.02. In combination with earlier SNLS Gemini and VLT spectra, we used these new observations to measure pseudo-equivalent widths (EWs) of three spectral features - Ca II H&K, Si II and Mg II- in 144 objects and compared them to the EWs of low-redshift SNe Ia from a sample drawn from the literature. No signs of changes with z are seen for the Ca II H&K and Mg II features. Systematically lower EW Si II is seen at high redshift, but this can be explained by a change in demographics of the SNe Ia population within a two-component model combined with an observed correlation between EW Si II and photometric light-curve stretch.

  6. Optimizing the WFIRST Type Ia Supernova Survey

    NASA Astrophysics Data System (ADS)

    Foley, Ryan

    Observations of Type Ia supernovae (SN Ia) led to the discovery that the Universe's expansion is currently accelerating. WFIRST-AFTA is well positioned to provide a generation-defining measurement of the nature of dark energy through its multiple probes, with the WFIRST SN survey projected to have twice the impact as its other probes. Our experienced team includes some of the original discoverers of the accelerating universe, two of the selected ROSES WFIRST preparatory science teams, and the key scientific expertise for the most current and precise SN cosmology results. Our expertise in SN cosmology, SN physics, space-based imaging and spectroscopy, and calibration provide the best foundation upon which a WFIRST SN SIT can be formed. As dark energy is central to NASA's Physics of the Cosmos program, we directly address major objectives of NASA's science program. Moreover, WFIRST is NASA's top priority in the next decade, and preparations now are critical for its eventual success. We present a comprehensive plan to investigate multiple strategies for both optimization and risk mitigation. We have built a simulation framework based on publicly available tools for these evaluations at no cost to this program. Our team has produced the first realistic, full end-to-end simulation of the DRM SN survey, finding that it is suboptimal. After a cursory search of the available parameter space, we were able to find alternative strategies that are significantly better than the DRM strategy. Of course the most optimal strategy will depend on (1) our ability to properly calibrate our data, (2) the data analysis tools available, and (3) our understanding of astrophysical systematic uncertainties. We plan to use much of the next five years to develop strategies to properly calibrate our data, generate software to analyze data from the pixel level to cosmology, and further understand all systematic uncertainties. With the results of these investigations combined with an expanded

  7. Selections from 2015: Two Kinds of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-03-01

    Editors Note:In these last two weeks of 2015, well be looking at a few selections from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.The Changing Fractions of Type Ia Supernova NUVOptical Subclasses with RedshiftPublished April2015Main takeaway:A team of scientists led by Peter Milne (University of Arizona) used ultraviolet observations from the Swift spacecraft to determine that type Ia supernovae, stellar explosions previously thought to all belong in the same class, actually fall into two subgroups: those that are slightly redder in NUV wavelengths and those that are slightly bluer.Plot of the percentage of supernovae that are NUV-blue (rather than NUV-red), as a function of redshift. NUV-blue supernovae dominate at higher redshifts. [Milne et al. 2015]Why its interesting:It turns out that the fraction of supernovae in each of these two groups is redshift-dependent. At low redshifts (i.e., nearby), the population of type Ia supernovae is dominated by NUV-red supernovae. At high redshifts (i.e., far away), the population is dominated by NUV-blue supernovae. Since cosmological distances are measured using Type Ia supernovae as standard candles, the fact that weve been modeling these supernovae all the same way (rather than treating them as two separate subclasses) means we may have been systematically misinterpreting distances.What this means for the universes expansion:This seemingly simple discovery carries hefty repercussions in fact, our estimates of the expansion rate of the universe may be incorrect! The authors believe that if we correct for this error, well find that the universe is not expanding as quickly as we thought.CitationPeter A. Milne et al 2015 ApJ 803 20. doi:10.1088/0004-637X/803/1/20

  8. Unburned Material in the Ejecta of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Folatelli, Gastón; Phillips, M. M.; Morrell, Nidia; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi; Stritzinger, Maximilian; Burns, Christopher R.; Hamuy, Mario; Mazzali, Paolo; Boldt, Luis; Campillay, Abdo; Contreras, Carlos; González, Sergio; Roth, Miguel; Salgado, Francisco; Freedman, W. L.; Madore, Barry F.; Persson, S. E.; Suntzeff, Nicholas B.

    2012-01-01

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at ≈6300 Å which is attributed to C II λ6580. An alternative identification of this absorption as Hα is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 Å absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely ≈1000 km s-1 above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10-3 to 10-2 M ⊙. The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for objects which show carbon. This paper includes data gathered with

  9. UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Folatelli, Gaston; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi; Phillips, M. M.; Morrell, Nidia; Campillay, Abdo; Gonzalez, Sergio; Roth, Miguel; Stritzinger, Maximilian; Burns, Christopher R.; Freedman, W. L.; Madore, Barry F; Persson, S. E.; Hamuy, Mario; Mazzali, Paolo; Boldt, Luis; Contreras, Carlos; Salgado, Francisco; Suntzeff, Nicholas B.

    2012-01-20

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at Almost-Equal-To 6300 A which is attributed to C II {lambda}6580. An alternative identification of this absorption as H{alpha} is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 A absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely Almost-Equal-To 1000 km s{sup -1} above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10{sup -3} to 10{sup -2} M{sub Sun }. The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for

  10. Signatures of Explosion Models of Type Ia Supernovae and Cosmology

    NASA Astrophysics Data System (ADS)

    Höflich, P.

    2005-12-01

    Based on detailed models for the progenitors, explosions, light curves (LCs) and spectra, we discuss signatures of thermonuclear explosions, and the implications for cosmology. Consistency is needed to link observables and explosion physics. Type Ia supernovae (SNe Ia) most probably result from the explosion of a degenerate C/O-White Dwarf (WD) close to the Chandrasekhar mass. There is strong evidence that most of the WD is burned with an extended outer layer of explosive C-burning products (O, Ne, Mg) and very little C remaining. Overall, the chemical structure is radially stratified. This leads to the currently favored delayed detonation model in which a phase of slow nuclear burning as a deflagration front is followed by a detonation phase. The importance of pre-conditioning became obvious. Within an unified scenario, spherical models allow to understand both the homogeneity and basic properties of LCs and spectra, and they allow to probe for their diversity which is a key for high precision cosmology by SNe Ia. For local SNe Ia, the diversity becomes apparent by the combination of high-quality spectra and LCs whereas, for high-z objects, we will rely mostly on information from light curves. Therefore, we emphasize the relation between LC and spectral features. We show how we can actually probe the properties of the progenitor, its environment, and details of the explosion physics. We demonstrate the influence of the metallicity Z on the progenitors, explosion physics and the combined effect on light curves. By and large, a change of Z causes a shift of along the brightness-decline relation because Z shifts the balance between ^{56}Ni and non-radioactive isotopes but hardly changes the energetics or the ^{56}Ni distribution. However, the diversity of the progenitors produces an intrinsic dispersion in B-V which may pose a problem for reddening corrections. We discuss the nature of subluminous SN1999by, and how it can be understood in the same framework as

  11. SNLS: Relating the properties of type Ia supernovae to the stellar populations of their host galaxies

    NASA Astrophysics Data System (ADS)

    Sullivan, M.; Pritchet, C. J.; Le Borgne, D.; Hodsman, A.; Howell, D. A.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K.; Regnault, N.; Rich, J.; Taillet, R.; Baumont, S.; Bronder, J.; Filliol, M.; Perlmutter, S.; Tao, C.; SNLS Collaboration

    2005-12-01

    We examine the rates and properties of type Ia supernovae (SNe Ia) in relation to the physical parameters defining their host galaxy stellar populations. Using a sample of 114 spectroscopically confirmed SNe Ia discovered via the Supernova Legacy Survey (SNLS) distributed over 0.2Ia rate is proportional to the mass-normalised star-formation rate (SFR) of the parent galaxies - more vigorously star-forming galaxies have a higher SN Ia rate. Further, we identify a dependence of the SN rate on both the stellar mass and the current total SFRs of the host systems, suggesting SNe Ia can be generated from both very young and old stellar populations. We further demonstrate a dependence of SN light-curve shapes on the mean age of the stellar population from which the progenitor is drawn -- older systems preferentially host faster/dimmer SNe Ia, as observed in the local Universe. Though with current sample sizes, existing analysis techniques adequately account for these trends when using SNe Ia to constrain cosmological parameters, identifying and understanding the relationship between SNe Ia and their environments will lead to a future improved cosmological candle.

  12. THE MOST SLOWLY DECLINING TYPE Ia SUPERNOVA 2001ay

    SciTech Connect

    Krisciunas, Kevin; Gooding, Samuel D.; Li Weidong E-mail: sam.gooding86@gmail.com

    2011-09-15

    We present optical and near-infrared photometry, as well as ground-based optical spectra and Hubble Space Telescope ultraviolet spectra, of the Type Ia supernova (SN) 2001ay. At maximum light the Si II and Mg II lines indicated expansion velocities of 14,000 km s{sup -1}, while Si III and S II showed velocities of 9000 km s{sup -1}. There is also evidence for some unburned carbon at 12,000 km s{sup -1}. SN 2001ay exhibited a decline-rate parameter of {Delta}m{sub 15}(B) = 0.68 {+-} 0.05 mag; this and the B-band photometry at t {approx}> +25 day past maximum make it the most slowly declining Type Ia SN yet discovered. Three of the four super-Chandrasekhar-mass candidates have decline rates almost as slow as this. After correction for Galactic and host-galaxy extinction, SN 2001ay had M{sub B} = -19.19 and M{sub V} = -19.17 mag at maximum light; thus, it was not overluminous in optical bands. In near-infrared bands it was overluminous only at the 2{sigma} level at most. For a rise time of 18 days (explosion to bolometric maximum) the implied {sup 56}Ni yield was (0.58 {+-} 0.15)/{alpha} M{sub sun}, with {alpha} = L{sub max}/E{sub Ni} probably in the range 1.0-1.2. The {sup 56}Ni yield is comparable to that of many Type Ia SNe. The 'normal' {sup 56}Ni yield and the typical peak optical brightness suggest that the very broad optical light curve is explained by the trapping of {gamma} rays in the inner regions.

  13. COSMOLOGY WITH PHOTOMETRIC SURVEYS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Gong Yan; Cooray, Asantha; Chen Xuelei

    2010-02-01

    We discuss the extent to which photometric measurements alone can be used to identify Type Ia supernovae (SNIa) and to determine the redshift and other parameters of interest for cosmological studies. We fit the light curve data of the type expected from a survey such as the one planned with the Large Synoptic Survey Telescope (LSST) and also remove the contamination from the core-collapse SNe to SNIa samples. We generate 1000 SNIa mock flux data for each of the LSST filters based on existing design parameters, then use a Markov Chain Monte Carlo analysis to fit the redshift, apparent magnitude, stretch factor, and the phase of the SNIa. We find that the model fitting works adequately well when the true SNe redshift is below 0.5, while at z < 0.2 the accuracy of the photometric data is almost comparable with spectroscopic measurements of the same sample. We discuss the contamination of Type Ib/c (SNIb/c) and Type II supernova (SNII) on the SNIa data set. We find that it is easy to distinguish the SNII through the large chi{sup 2} mismatch when fitting to photometric data with Ia light curves. This is not the case for SNIb/c. We implement a statistical method based on the Bayesian estimation in order to statistically reduce the contamination from SNIb/c for cosmological parameter measurements from the whole SNe sample. The proposed statistical method also evaluates the fraction of the SNIa in the total SNe data set, which provides a valuable guide to establish the degree of contamination.

  14. The Supernova Type Ia Rate Evolution with SNLS

    NASA Astrophysics Data System (ADS)

    Neill, James D.; Sullivan, M.; Balam, D.; Pritchet, C. J.; Howell, D. A.; Perrett, K.; Astier, P.; Aubourg, E.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Pain, R.; Palanque-Delabrouille, N.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Ellis, R. S.; Filiol, M.; Gonçalves, A. C.; Hardin, D.; Kowalski, M.; Lidman, C.; Lusset, V.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Schlegel, D.; Tao, C.

    2007-08-01

    We present a progress report on a project to derive the evolution of the volumetric supernova Type Ia rate from the Supernova Legacy Survey. Our preliminary estimate of the rate evolution divides the sample from Neill et al. into two redshift bins: 0.2 < z < 0.4, and 0.4 < z < 0.6. We extend this by adding a bin from the sample analyzed in Sullivan et al. in the range 0.6 < z < 0.75 from the same time period. We compare the derived trend with previously published rates and a supernova Type Ia production model having two components: one component associated closely with star formation and an additional component associated with host galaxy mass. Our observed trend is consistent with this model, which predicts a rising SN Ia rate out to at least z = 2.

  15. SALT spectroscopic classification of PS15bjg as a type-Ia supernova

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Colmenero, E. Romero

    2015-07-01

    We obtained SALT (+RSS) spectroscopy of PS15bjg on 2015 July 27.0 UT, covering the wavelength range 350-900 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows PS15bjg to be a normal type-Ia supernova several days before maximum light.

  16. SALT spectroscopic classification of PS15atx as a type-Ia supernova

    NASA Astrophysics Data System (ADS)

    Jha, S. W.; Pan, Y.-C.; Foley, R. J.; Rest, A.; Scolnic, D.; Smith, K. W.; Wright, D.; Smartt, S. J.; Huber, M.; Chambers, K. C.; Flewelling, H.; Willman, M.; Primak, N.; Schultz, A.; Gibson, B.; Magnier, E.; Waters, C.; Tonry, J.; Wainscoat, R. J.; Depagne, E.

    2015-06-01

    We obtained SALT (+RSS) spectroscopy of PS15atx on 2015 June 20.8 UT, covering the wavelength range 400-950 nm. Cross-correlation of the spectrum with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows PS15atx to be a normal type-Ia supernova a few days before maximum light.

  17. LINKING TYPE Ia SUPERNOVA PROGENITORS AND THEIR RESULTING EXPLOSIONS

    SciTech Connect

    Foley, Ryan J.; Kirshner, Robert P.; Simon, Joshua D.; Burns, Christopher R.; Gal-Yam, Avishay; Hamuy, Mario; Morrell, Nidia I.; Phillips, Mark M.; Shields, Gregory A.; Sternberg, Assaf

    2012-06-20

    Comparing the ejecta velocities at maximum brightness and narrow circumstellar/interstellar Na D absorption line profiles of a sample of 23 Type Ia supernovae (SNe Ia), we determine that the properties of SN Ia progenitor systems and explosions are intimately connected. As demonstrated by Sternberg et al., half of all SNe Ia with detectable Na D absorption at the host-galaxy redshift in high-resolution spectroscopy have Na D line profiles with significant blueshifted absorption relative to the strongest absorption component, which indicates that a large fraction of SN Ia progenitor systems have strong outflows. In this study, we find that SNe Ia with blueshifted circumstellar/interstellar absorption systematically have higher ejecta velocities and redder colors at maximum brightness relative to the rest of the SN Ia population. This result is robust at a 98.9%-99.8% confidence level, providing the first link between the progenitor systems and properties of the explosion. This finding is further evidence that the outflow scenario is the correct interpretation of the blueshifted Na D absorption, adding additional confirmation that some SNe Ia are produced from a single-degenerate progenitor channel. An additional implication is that either SN Ia progenitor systems have highly asymmetric outflows that are also aligned with the SN explosion or SNe Ia come from a variety of progenitor systems where SNe Ia from systems with strong outflows tend to have more kinetic energy per unit mass than those from systems with weak or no outflows.

  18. Prospective Type Ia Supernova Surveys From Dome A

    SciTech Connect

    Kim, A.; Bonissent, A.; Christiansen, J.L.; Ealet, A.; Faccioli, L.; Gladney, L.; Kushner, G.; Linder, E.; Stoughton, C.; Wang, L.; /Texas A-M /Purple Mountain Observ.

    2010-02-01

    Dome A, the highest plateau in Antarctica, is being developed as a site for an astronomical observatory. The planned telescopes and instrumentation and the unique site characteristics are conducive toward Type Ia supernova surveys for cosmology. A self-contained search and survey over five years can yield a spectro-photometric time series of {approx}1000 z < 0.08 supernovae. These can serve to anchor the Hubble diagram and quantify the relationship between luminosities and heterogeneities within the Type Ia supernova class, reducing systematics. Larger aperture ({approx}>4-m) telescopes are capable of discovering supernovae shortly after explosion out to z {approx} 3. These can be fed to space telescopes, and can isolate systematics and extend the redshift range over which we measure the expansion history of the universe.

  19. Prospective Type Ia supernova surveys from Dome A

    SciTech Connect

    Kim, A.; Bonissent, A.; Christiansen, J. L.; Ealet, A.; Faccioli, L.; Gladney, L.; Kushner, G.; Linder, E.; Stoughton, C.; Wang, L.

    2010-03-10

    Dome A, the highest plateau in Antarctica, is being developed as a site for an astronomical observatory. The planned telescopes and instrumentation and the unique site characteristics are conducive toward Type Ia supernova surveys for cosmology. A self-contained search and survey over 5 years can yield a spectro-photometric time series of ~;; 1000 z< 0:08 supernovae. These can serve to anchor the Hubble diagram and quantify the relationship between luminosities and heterogeneities within the Type Ia supernova class, reducing systematics. Larger aperture (>=4-m) telescopes are capable of discovering supernovae shortly after explosion out to z ~;; 3. These can be fed to space telescopes, and can isolate systematics and extend the redshift range over which we measure the expansion history of the universe.

  20. Progenitors of type Ia supernovae in elliptical galaxies

    SciTech Connect

    Gilfanov, M.; Bogdan, A.

    2011-09-21

    Although there is a nearly universal agreement that type Ia supernovae are associated with the thermonuclear disruption of a CO white dwarf, the exact nature of their progenitors is still unknown. The single degenerate scenario envisages a white dwarf accreting matter from a non-degenerate companion in a binary system. Nuclear energy of the accreted matter is released in the form of electromagnetic radiation or gives rise to numerous classical nova explosions prior to the supernova event. We show that combined X-ray output of supernova progenitors and statistics of classical novae predicted in the single degenerate scenario are inconsistent with X-ray and optical observations of nearby early type galaxies and galaxy bulges. White dwarfs accreting from a donor star in a binary system and detonating at the Chandrasekhar mass limit can account for no more than {approx}5% of type Ia supernovae observed in old stellar populations.

  1. The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode As Deflagrations?

    SciTech Connect

    Phillips, M.M.; Li, W.; Frieman, J.A.; Blinnikov, S.I.; DePoy, D.; Prieto, J.L.; Milne, P.; Contreras, C.; Folatelli, Gaston; Morrell, N.; Hamuy, M.; Suntzeff, N.B.; Roth, M.; Gonzalez, S.; Krzeminski, W.; Filippenko, A.V.; Freedman, W.L.; Chornock, R.; Jha, S.; Madore, B.F.; Persson, S.E.; /Las Campanas Observ. /UC, Berkeley, Astron. Dept. /Chicago U., Astron. Astrophys. Ctr. /KICP, Chicago /Fermilab /Moscow, ITEP /Garching, Max Planck Inst. /Ohio State U., Dept. Astron. /Arizona U., Astron. Dept. - Steward Observ. /Chile U., Santiago /Texas A-M /Carnegie Inst. Observ. /KIPAC, Menlo Park /Caltech, IPAC /Notre Dame U. /South African Astron. Observ. /Cape Town U. /Washington U., Seattle, Astron. Dept. /New Mexico State U. /Chicago U., FLASH /Baltimore, Space Telescope Sci.

    2006-11-14

    We present extensive u{prime}g{prime}r{prime}i{prime} BV RIY JHK{sub s} photometry and optical spectroscopy of SN 2005hk. These data reveal that SN 2005hk was nearly identical in its observed properties to SN 2002cx, which has been called 'the most peculiar known type Ia supernova'. Both supernovae exhibited high ionization SN 1991T-like pre-maximum spectra, yet low peak luminosities like SN 1991bg. The spectra reveal that SN 2005hk, like SN 2002cx, exhibited expansion velocities that were roughly half those of typical type Ia supernovae. The R and I light curves of both supernovae were also peculiar in not displaying the secondary maximum observed for normal type Ia supernovae. Our Y JH photometry of SN 2005hk reveals the same peculiarity in the near-infrared. By combining our optical and near-infrared photometry of SN 2005hk with published ultraviolet light curves obtained with the Swift satellite, we are able to construct a bolometric light curve from {approx} 10 days before to {approx}60 days after B maximum. The shape and unusually low peak luminosity of this light curve, plus the low expansion velocities and absence of a secondary maximum at red and near-infrared wavelengths, are all in reasonable agreement with model calculations of a 3D deflagration which produces {approx} 0.25 M{sub {circle_dot}} of {sup 56}Ni.

  2. SPECTRA AND LIGHT CURVES OF FAILED SUPERNOVAE

    SciTech Connect

    Fryer, Chris L.; Dahl, Jon A.; Fontes, Christopher J. E-mail: dahl@lanl.go

    2009-12-10

    Astronomers have proposed a number of mechanisms to produce supernova explosions. Although many of these mechanisms are now not considered primary engines behind supernovae (SNe), they do produce transients that will be observed by upcoming ground-based surveys and NASA satellites. Here, we present the first radiation-hydrodynamics calculations of the spectra and light curves from three of these 'failed' SNe: SNe with considerable fallback, accretion-induced collapse of white dwarfs, and energetic helium flashes (also known as type Ia SNe).

  3. The cosmic gamma-ray background from Type Ia supernovae

    NASA Technical Reports Server (NTRS)

    The, Lih-Sin; Leising, Mark D.; Clayton, Donald D.

    1993-01-01

    We present an improved calculation of the cumulative gamma-ray spectrum of Type Ia supernovae during the history of the universe. We follow Clayton & Ward (1975) in using a few Friedmann models and two simple histories of the average galaxian nucleosynthesis rate, but we improve their calculation by modeling the gamma-ray scattering in detailed numerical models of SN Ia's. The results confirm that near 1 MeV the SN Ia background may dominate, and that it is potentially observable, with high scientific importance. A very accurate measurement of the cosmic background spectrum between 0.1 and 1.0 MeV may reveal the turn-on time and the evolution of the rate of Type Ia supernova nucleosynthesis in the universe.

  4. Improved Constraints on Type Ia Supernova Host Galaxy Properties using Multi-Wavelength Photometry and their Correlations with Supernova Properties

    SciTech Connect

    Gupta, Ravi R.; D'Andrea, Chris B.; Sako, Masao; Conroy, Charlie; Smith, Mathew; Bassett, Bruce; Frieman, Joshua A.; Garnavich, Peter M.; Jha, Saurabh W.; Kessler, Richard; Lampeitl, Hubert; /Portsmouth U., ICG /Fermilab

    2011-07-01

    We improve estimates of the stellar mass and mass-weighted average age of Type Ia supernova (SN Ia) host galaxies by combining UV and near-IR photometry with optical photometry in our analysis. Using 206 SNe Ia drawn from the full three-year Sloan Digital Sky Survey (SDSS-II) Supernova Survey (median redshift of z {approx} 0.2) and multi-wavelength host-galaxy photometry from SDSS, the Galaxy Evolution Explorer, and the United Kingdom Infrared Telescope Infrared Deep Sky Survey, we present evidence of a correlation (1.9{sigma} confidence level) between the residuals of SNe Ia about the best-fit Hubble relation and the mass-weighted average age of their host galaxies. The trend is such that older galaxies host SNe Ia that are brighter than average after standard light-curve corrections are made. We also confirm, at the 3.0{sigma} level, the trend seen by previous studies that more massive galaxies often host brighter SNe Ia after light-curve correction.

  5. Light echoes from ancient supernovae in the Large Magellanic Cloud.

    PubMed

    Rest, Armin; Suntzeff, Nicholas B; Olsen, Knut; Prieto, Jose Luis; Smith, R Chris; Welch, Douglas L; Becker, Andrew; Bergmann, Marcel; Clocchiatti, Alejandro; Cook, Kem; Garg, Arti; Huber, Mark; Miknaitis, Gajus; Minniti, Dante; Nikolaev, Sergei; Stubbs, Christopher

    2005-12-22

    The light from historical supernovae could in principle still be visible as scattered-light echoes centuries after the explosion. The detection of light echoes could allow us to pinpoint the supernova event both in position and age and, most importantly, permit the acquisition of spectra to determine the 'type' of the supernova centuries after the direct light from the explosion first reached Earth. Although echoes have been discovered around some nearby extragalactic supernovae, targeted searches have not found any echoes in the regions of historical Galactic supernovae. Here we report three faint variable-surface-brightness complexes with high apparent proper motions pointing back to three of the six smallest (and probably youngest) previously catalogued supernova remnants in the Large Magellanic Cloud, which are believed to have been thermonuclear (type Ia) supernovae. Using the distance and apparent proper motions of these echo arcs, we estimate ages of 610 and 410 years for two of them. PMID:16372003

  6. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators

    NASA Astrophysics Data System (ADS)

    Guy, J.; Astier, P.; Baumont, S.; Hardin, D.; Pain, R.; Regnault, N.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Hook, I. M.; Howell, D. A.; Perrett, K.; Pritchet, C. J.; Rich, J.; Sullivan, M.; Antilogus, P.; Aubourg, E.; Bazin, G.; Bronder, J.; Filiol, M.; Palanque-Delabrouille, N.; Ripoche, P.; Ruhlmann-Kleider, V.

    2007-04-01

    Aims:We present an empirical model of type Ia supernovae spectro-photometric evolution with time. Methods: The model is built using a large data set including light-curves and spectra of both nearby and distant supernovae, the latter being observed by the SNLS collaboration. We derive the average spectral sequence of type Ia supernovae and their main variability components including a color variation law. The model allows us to measure distance moduli in the spectral range 2500-8000 Å with calculable uncertainties, including those arising from variability of spectral features. Results: Thanks to the use of high-redshift SNe to model the rest-frame UV spectral energy distribution, we are able to derive improved distance estimates for SNe Ia in the redshift range 0.8Ia supernovae. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on observations obtained at the European Southern Observatory using the Very Large Telescope on the Cerro Paranal (ESO Large Programme 171.A-0486). Based on observations (programs GN-2004A-Q-19, GS-2004A-Q-11, GN-2003B-Q-9, and GS-2003B-Q-8) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and

  7. Search for surviving companions in type Ia supernova remnants

    SciTech Connect

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E. E-mail: pmricker@illinois.edu E-mail: taam@asiaa.sinica.edu.tw

    2014-09-01

    The nature of the progenitor systems of type Ia supernovae (SNe Ia) is still unclear. One way to distinguish between the single-degenerate scenario and double-degenerate scenario for their progenitors is to search for the surviving companions (SCs). Using a technique that couples the results from multi-dimensional hydrodynamics simulations with calculations of the structure and evolution of main-sequence- (MS-) and helium-rich SCs, the color and magnitude of MS- and helium-rich SCs are predicted as functions of time. The SC candidates in Galactic type Ia supernova remnants (Ia SNR) and nearby extragalactic Ia SNRs are discussed. We find that the maximum detectable distance of MS SCs (helium-rich SCs) is 0.6-4 Mpc (0.4-16 Mpc), if the apparent magnitude limit is 27 in the absence of extinction, suggesting that the Large and Small Magellanic Clouds and the Andromeda Galaxy are excellent environments in which to search for SCs. However, only five Ia SNRs have been searched for SCs, showing little support for the standard channels in the singe-degenerate scenario. To better understand the progenitors of SNe Ia, we encourage the search for SCs in other nearby Ia SNRs.

  8. Search for Surviving Companions in Type Ia Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Pan, Kuo-Chuan; Ricker, Paul M.; Taam, Ronald E.

    2014-09-01

    The nature of the progenitor systems of type Ia supernovae (SNe Ia) is still unclear. One way to distinguish between the single-degenerate scenario and double-degenerate scenario for their progenitors is to search for the surviving companions (SCs). Using a technique that couples the results from multi-dimensional hydrodynamics simulations with calculations of the structure and evolution of main-sequence- (MS-) and helium-rich SCs, the color and magnitude of MS- and helium-rich SCs are predicted as functions of time. The SC candidates in Galactic type Ia supernova remnants (Ia SNR) and nearby extragalactic Ia SNRs are discussed. We find that the maximum detectable distance of MS SCs (helium-rich SCs) is 0.6-4 Mpc (0.4-16 Mpc), if the apparent magnitude limit is 27 in the absence of extinction, suggesting that the Large and Small Magellanic Clouds and the Andromeda Galaxy are excellent environments in which to search for SCs. However, only five Ia SNRs have been searched for SCs, showing little support for the standard channels in the singe-degenerate scenario. To better understand the progenitors of SNe Ia, we encourage the search for SCs in other nearby Ia SNRs.

  9. Neutrino event counts from Type Ia supernova models

    NASA Astrophysics Data System (ADS)

    Nagaraj, Gautam; Scholberg, Kate

    2016-01-01

    Core collapse supernovae (SNe) are widely known to be among the universe's primary neutrino factories, releasing ˜99% of their energy, or ˜1053 ergs, in the form of the tiny leptons. On the other hand, less than 4% of the energy of Type Ia SNe is released via neutrinos, hence making Ia SNe impossible to detect (through neutrino observations) at typical supernova distances. For this reason, neutrino signatures from these explosions have very rarely been modeled. We ran time-sliced fluences from non-oscillation pure deflagration and delayed detonation (DDT) Ia models by Odrzywolek and Plewa (2011) through SNOwGLoBES, a software that calculates event rates and other observed quantities of supernova neutrinos in various detectors. We determined Ia neutrino event rates in Hyper-K, a proposed water Cherenkov detector, JUNO, a scintillator detector under construction, and DUNE, a proposed argon detector, and identified criteria to distinguish between the two models (pure deflagration and DDT) based on data from a real supernova (statistically represented by a Poisson distribution around the expected result). We found that up to distances of 8.00, 1.54, and 2.37 kpc (subject to change based on oscillation effects and modified detector efficiencies), we can discern the explosion mechanism with ≥90% confidence in Hyper-K, JUNO, and DUNE, respectively, thus learning more about Ia progenitors.

  10. REVEALING TYPE Ia SUPERNOVA PHYSICS WITH COSMIC RATES AND NUCLEAR GAMMA RAYS

    SciTech Connect

    Horiuchi, Shunsaku; Beacom, John F. E-mail: beacom@mps.ohio-state.ed

    2010-11-01

    Type Ia supernovae (SNe Ia) remain mysterious despite their central importance in cosmology and their rapidly increasing discovery rate. The progenitors of SNe Ia can be probed by the delay time between progenitor birth and explosion as SNe Ia. The explosions and progenitors of SNe Ia can be probed by MeV nuclear gamma rays emitted in the decays of radioactive nickel and cobalt into iron. We compare the cosmic star formation and SN Ia rates, finding that their different redshift evolution requires a large fraction of SNe Ia to have large delay times. A delay-time distribution of the form t {sup -}{alpha} with {alpha} = 1.0 {+-} 0.3 provides a good fit, implying that 50% of SNe Ia explode more than {approx}1 Gyr after progenitor birth. The extrapolation of the cosmic SN Ia rate to z = 0 agrees with the rate we deduce from catalogs of local SNe Ia. We investigate prospects for gamma-ray telescopes to exploit the facts that escaping gamma rays directly reveal the power source of SNe Ia and uniquely provide tomography of the expanding ejecta. We find large improvements relative to earlier studies by Gehrels et al. in 1987 and Timmes and Woosley in 1997 due to larger and more certain SN Ia rates and advances in gamma-ray detectors. The proposed Advanced Compton Telescope, with a narrow-line sensitivity {approx}60 times better than that of current satellites, would, on an annual basis, detect up to {approx}100 SNe Ia (3{sigma}) and provide revolutionary model discrimination for SNe Ia within 20 Mpc, with gamma-ray light curves measured with {approx}10{sigma} significance daily for {approx}100 days. Even more modest improvements in detector sensitivity would open a new and invaluable astronomy with frequent SN Ia gamma-ray detections.

  11. The progenitors of subluminous type Ia supernovae

    SciTech Connect

    Howell, D. Andrew

    2001-02-01

    We find that spectroscopically peculiar subluminous SNe Ia come from an old population. Of the thirteen subluminous SNe Ia known, nine are found in E/S0 galaxies, and the remainder are found in early-type spirals. The probability that this is a chance occurrence is only 0.1%. The finding that subluminous SNe Ia are associated with an older stellar population indicates that for a sufficiently large lookback time (already accessible in current high redshift searches) they will not be found. Due to a scarcity in old populations, hydrogen and helium main sequence stars and He red giant stars that undergo Roche lobe overflow are unlikely to be the progenitors of subluminous SNe Ia. Earlier findings that overluminous SNe Ia (DELTA m{sub 15} (B) < 0.94) come from a young progenitor population are confirmed. The fact that subluminous SNe Ia and overluminous SNe Ia come from different progenitor populations and also have different properties is a prediction of the CO white dwarf merger progenitor scenario.

  12. THE LOW-VELOCITY, RAPIDLY FADING TYPE Ia SUPERNOVA 2002es

    SciTech Connect

    Ganeshalingam, Mohan; Li Weidong; Filippenko, Alexei V.; Silverman, Jeffrey M.; Shen, Ken J.; Chornock, Ryan; Foley, Ryan J.; Kirshner, Robert P.; Calkins, Mike; Matheson, Thomas; Milne, Peter

    2012-06-01

    SN 2002es is a peculiar subluminous Type Ia supernova (SN Ia) with a combination of observed characteristics never before seen in an SN Ia. At maximum light, SN 2002es shares spectroscopic properties with the underluminous SN 1991bg subclass of SNe Ia, but with substantially lower expansion velocities ({approx}6000 km s{sup -1}) more typical of the peculiar SN 2002cx subclass. Photometrically, SN 2002es differs from both SN 1991bg-like and SN 2002cx-like supernovae. Although at maximum light it is subluminous (M{sub B} = -17.78 mag), SN 2002es has a relatively broad light curve ({Delta}m{sub 15}(B) = 1.28 {+-} 0.04 mag), making it a significant outlier in the light-curve width versus luminosity relationship. We estimate a {sup 56}Ni mass of 0.17 {+-} 0.05 M{sub Sun} synthesized in the explosion, relatively low for an SN Ia. One month after maximum light, we find an unexpected plummet in the bolometric luminosity. The late-time decay of the light curves is inconsistent with our estimated {sup 56}Ni mass, indicating that either the light curve was not completely powered by {sup 56}Ni decay or the ejecta became optically thin to {gamma}-rays within a month after maximum light. The host galaxy is classified as an S0 galaxy with little to no star formation, indicating that the progenitor of SN 2002es is likely from an old stellar population. We also present a less extensive data set for SN 1999bh, an object which shares similar photometric and spectroscopic properties. Both objects were found as part of the Lick Observatory Supernova Search, allowing us to estimate that these objects should account for 2.5% of SNe Ia within a fixed volume. Current theoretical models are unable to explain the observed characteristics of SN 2002es.

  13. Type Ia supernova remnants: shaping by iron bullets

    NASA Astrophysics Data System (ADS)

    Tsebrenko, Danny; Soker, Noam

    2015-10-01

    Using 2D numerical hydrodynamical simulations of Type Ia supernova remnants (SNR Ia) we show that iron clumps few times denser than the rest of the SN ejecta might form protrusions in an otherwise spherical SNR. Such protrusions exist in some SNR Ia, e.g. SNR 1885 and Tycho. Iron clumps are expected to form in the deflagration to detonation explosion model. In SNR Ia where there are two opposite protrusions, termed `ears', such as Kepler's SNR and SNR G1.9+0.3, our scenario implies that the dense clumps, or iron bullets, were formed along an axis. Such a preferred axis can result from a rotating white dwarf progenitor. If our claim holds, this offers an important clue to the SN Ia explosion scenario.

  14. Asymmetric Explosion of Type Ia Supernovae and Their Observational Signatures

    NASA Astrophysics Data System (ADS)

    Maeda, Keiichi

    2010-06-01

    The nature of Type Ia supernova (SN Ia) explosions has not yet been clarified, despite their importance in astrophysics and cosmology. Recent theoretical investigations suggest that asymmetric distribution of initial thermonuclear sparks may be a key in the SN Ia explosion mechanism. In this paper, the first observational evidence of the asymmetry in SN Ia explosions is presented: We have found that late-time nebular spectra of various SNe Ia show a diversity in wavelengths of emission lines. This feature is inconsistent with any spherically symmetric explosion models, and indicates that the innermost region, a likely product of the deflagration wave propagation, shows an off-set with respect to the explosion center. The diversity in the emission-line wavelengths could naturally be explained by a combination of different viewing angles.

  15. DISTRIBUTED FLAMES IN TYPE Ia SUPERNOVAE

    SciTech Connect

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.

    2010-02-20

    At a density near a few x10{sup 7} g cm{sup -3}, the subsonic burning in a Type Ia supernova (SN) enters the distributed regime (high Karlovitz number). In this regime, turbulence disrupts the internal structure of the flame, and so the idea of laminar burning propagated by conduction is no longer valid. The nature of the burning in this distributed regime depends on the turbulent Damkoehler number (Da{sub T}), which steadily declines from much greater than one to less than one as the density decreases to a few x10{sup 6} g cm{sup -3}. Classical scaling arguments predict that the turbulent flame speed s{sub T} , normalized by the turbulent intensity u-check, follows s{sub T}/u-check = Da{sub T}{sup 1/2} for Da{sub T} {approx}< 1. The flame in this regime is a single turbulently broadened structure that moves at a steady speed, and has a width larger than the {integral} scale of the turbulence. The scaling is predicted to break down at Da{sub T} {approx} 1, and the flame burns as a turbulently broadened effective unity Lewis number flame. This flame burns locally with speed s{sub l}ambda and width l{sub l}ambda, and we refer to this kind of flame as a lambda-flame. The burning becomes a collection of lambda-flames spread over a region approximately the size of the {integral} scale. While the total burning rate continues to have a well-defined average, s{sub T}{approx}u-check, the burning is unsteady. We present a theoretical framework, supported by both one-dimensional and three-dimensional numerical simulations, for the burning in these two regimes. Our results indicate that the average value of s{sub T} can actually be roughly twice u-check for Da{sub T} {approx}> 1, and that localized excursions to as much as 5 times u-check can occur. We also explore the properties of the individual flames, which could be sites for a transition to detonation when Da{sub T} {approx} 1. The lambda-flame speed and width can be predicted based on the turbulence in the star

  16. Evidence for Ni-56 yields Co-56 yields Fe-56 decay in type Ia supernovae

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.; Kirshner, Robert P.; Pinto, Philip A.; Leibundgut, Bruno

    1994-01-01

    In the prevailing picture of Type Ia supernovae (SN Ia), their explosive burning produces Ni-56, and the radioactive decay chain Ni-56 yields Co-56 yields Fe-56 powers the subsequent emission. We test a central feature of this theory by measuring the relative strengths of a (Co III) emission feature near 5900 A and a (Fe III) emission feature near 4700 A. We measure 38 spectra from 13 SN Ia ranging from 48 to 310 days after maximum light. When we compare the observations with a simple multilevel calculation, we find that the observed Fe/Co flux ratio evolves as expected when the Fe-56/Co-56 abundance ratio follows from Ni-56 yields Co-56 yields Fe-56 decay. From this agreement, we conclude that the cobalt and iron atoms we observe through SN Ia emission lines are produced by the radioactive decay of Ni-56, just as predicted by a wide range of models for SN Ia explosions.

  17. Testing the Standardizability of Type Ia Supernovae with the Cepheid Distance of a Twin Supernova

    NASA Astrophysics Data System (ADS)

    Foley, Ryan

    2014-10-01

    Having nearly identical optical light-curve shapes, colors, and spectra, SN 2011by and 2011fe are "twin" Type Ia supernovae (SN Ia). As such, these "standardizable candles" should have identical luminosities. But using independent distance measurements to these SN, their peak luminosity differs by 0.6 mag --- significantly larger than the typical scatter amongst all SN Ia. Differences in their UV spectra indicate that the SN have different metallicities, which could account for the luminosity difference. On the other hand, the distance to SN 2011by, from a Tully-Fisher measurement, may be wrong. We propose to measure a Cepheid distance to SN 2011by to determine if metallicity or an imprecise measurement is causing this large difference.The implications are far reaching for SN cosmology. If the current distance is correct, changing progenitor metallicity could cause large distance biases with redshift. If the distance is revised to bring SN 2011by in line with SN 2011fe, we will infer that metallicity differences are not a large bias for SN cosmology.In the latter case, these data will also provide an additional SN with which we can measure the Hubble constant. Since the number of SN calibrators (only 8 published) limits the precision of our measurement of the Hubble constant, these observations can have a large impact on this measurement.

  18. Near-infrared spectroscopy of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Hsiao, Eric; Phillips, Mark; Burns, Christopher R.; Contreras, Carlos; Gall, Christa; Hoeflich, Peter; Kirshner, Robert P.; Marion, Howie H.; Morrell, Nidia; Sand, David J.; Stritzinger, Maximillian; Carnegie Supernova Project

    2016-01-01

    Improving the cosmological experiments with Type Ia supernovae (SNe Ia) is now not simply a question of observing more supernovae, since any survey, no matter how large, will ultimately be limited by the systematic errors. It has been clearly demonstrated in a number of studies that SNe Ia are better distance indicators in the near-infrared compared to the optical. As exciting as these new results are, SNe Ia in the NIR are expected to be even better than these studies indicate. A key ingredient for improving SN Ia in the NIR as distance indicators is to obtain NIR spectroscopy to determine precise k-corrections, which account for the effect of cosmological expansion upon the measured magnitudes. Better knowledge of the NIR spectroscopic behaviors, akin to that in the optical, is necessary to reach the distance precision required to identify viable models for dark energy. Carnegie Supernova Project II has built a definitive data set, much improved from previous samples, both in size and quality. With this previously unavailable window, we are also beginning to gain new insight on the physics of these events.

  19. Detection of circumstellar material in a normal type Ia supernova.

    PubMed

    Patat, F; Chandra, P; Chevalier, R; Justham, S; Podsiadlowski, Ph; Wolf, C; Gal-Yam, A; Pasquini, L; Crawford, I A; Mazzali, P A; Pauldrach, A W A; Nomoto, K; Benetti, S; Cappellaro, E; Elias-Rosa, N; Hillebrandt, W; Leonard, D C; Pastorello, A; Renzini, A; Sabbadin, F; Simon, J D; Turatto, M

    2007-08-17

    Type Ia supernovae are important cosmological distance indicators. Each of these bright supernovae supposedly results from the thermonuclear explosion of a white dwarf star that, after accreting material from a companion star, exceeds some mass limit, but the true nature of the progenitor star system remains controversial. Here we report the spectroscopic detection of circumstellar material in a normal type Ia supernova explosion. The expansion velocities, densities, and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. In particular, the relatively low expansion velocities suggest that the white dwarf was accreting material from a companion star that was in the red-giant phase at the time of the explosion. PMID:17626848

  20. Neutron excess number and nucleosynthesis of heavy elements in a type Ia supernova explosion

    NASA Astrophysics Data System (ADS)

    Panov, I. V.; Korneev, I. Y.; Blinnikov, S. I.; Röpke, F.

    2016-04-01

    Type Ia supernovae produce very powerful burst of light, which can be observed to high redshift. This fact is very attractive for cosmological applications. For supernova light curve modeling, it is very important to know the amount of Fe and Ni, formed during the explosion. In this paper, we explore both the chemical composition of the ejected supernova shells and the possibility of weak r-process under increased neutron excess number based on a set of trajectories of tracer particles, calculated in a hydrodynamic model of SNIa explosion. It is shown that no r-process elements are synthesized in the considered supernova model, even for an increased neutron excess number ( Y e ˜ 0.4) because of the slow evolution of temperature and density along chosen trajectories. The results of explosive nucleosynthesis are discussed.

  1. The Host Galaxies of Local PTF Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Sullivan, Mark; Howell, D. Andrew; Nugent, Peter; Hook, Isobel; Maguire, Kate; Blake, Sarah; Pan, Yen-Chen

    2012-02-01

    The discovery of correlations between Type Ia Supernova (SN Ia) peak luminosity and the parameters defining their host galaxy stellar populations has important implications for their use as standardised candles. Using new samples of low-redshift SNe Ia located with the Palomar Transient Factory (PTF), a rolling transient search in the local universe, we propose to continue our campaign to study in detail the host galaxies in which SNe Ia explode. We aim to establish which physical variable (metallicity or age) primarily drives the SN Ia luminosity variations using high signal-to-noise spectroscopy of their environments. These data will also improve the derivation of SN Ia "delay-time" distributions, and place tighter constraints on the nature of their progenitor systems. Evolution in SN Ia properties is now the largest single astrophysical systematic in SN Ia cosmology, with host galaxies playing a critical role in cosmological studies, and detailed study of their environments provides a realistic opportunity to improve their use for studying dark energy. We give a status report on the progress of this program to date, and demonstrate the feasibility of our study using our observations from earlier semesters.

  2. Type Ia Supernovae Strongly Interacting with Their Circumstellar Medium

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey M.; Nugent, Peter E.; Gal-Yam, Avishay; Sullivan, Mark; Howell, D. Andrew; Filippenko, Alexei V.; Arcavi, Iair; Ben-Ami, Sagi; Bloom, Joshua S.; Cenko, S. Bradley; Cao, Yi; Chornock, Ryan; Clubb, Kelsey I.; Coil, Alison L.; Foley, Ryan J.; Graham, Melissa L.; Griffith, Christopher V.; Horesh, Assaf; Kasliwal, Mansi M.; Kulkarni, Shrinivas R.; Leonard, Douglas C.; Li, Weidong; Matheson, Thomas; Miller, Adam A.; Modjaz, Maryam; Ofek, Eran O.; Pan, Yen-Chen; Perley, Daniel A.; Poznanski, Dovi; Quimby, Robert M.; Steele, Thea N.; Sternberg, Assaf; Xu, Dong; Yaron, Ofer

    2013-07-01

    Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well studied previously, three were previously known but are analyzed in depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by Hα emission (with widths of ~2000 km s-1) and exhibit large Hα/Hβ intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of Hα 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 mag <= MR <= -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population. This work represents the most detailed analysis of the SN Ia-CSM class to date.

  3. PHOTOMETRIC ESTIMATES OF REDSHIFTS AND DISTANCE MODULI FOR TYPE Ia SUPERNOVAE

    SciTech Connect

    Kessler, Richard; Frieman, Joshua A.; Cinabro, David; Bassett, Bruce; Smith, Mathew; Dilday, Benjamin; Jha, Saurabh; Garnavich, Peter M.; Marriner, John; Nichol, Robert C.; Sako, Masao; Bernstein, Joseph P.; Kuhlmann, Stephen; Bizyaev, Dmitry; Goobar, Ariel; Schneider, Donald P.; Stritzinger, Maximilian

    2010-07-01

    Large planned photometric surveys will discover hundreds of thousands of supernovae (SNe), outstripping the resources available for spectroscopic follow-up and necessitating the development of purely photometric methods to exploit these events for cosmological study. We present a light curve fitting technique for type Ia supernova (SN Ia) photometric redshift (photo-z) estimation in which the redshift is determined simultaneously with the other fit parameters. We implement this 'LCFIT+Z' technique within the frameworks of the MLCS2K2 and SALTII light curve fit methods and determine the precision on the redshift and distance modulus. This method is applied to a spectroscopically confirmed sample of 296 SNe Ia from the Sloan Digital Sky Survey-II (SDSS-II) SN Survey and 37 publicly available SNe Ia from the Supernova Legacy Survey (SNLS). We have also applied the method to a large suite of realistic simulated light curves for existing and planned surveys, including the SDSS, SNLS, and the Large Synoptic Survey Telescope. When intrinsic SN color fluctuations are included, the photo-z precision for the simulation is consistent with that in the data. Finally, we compare the LCFIT+Z photo-z precision with previous results using color-based SN photo-z estimates.

  4. HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY

    SciTech Connect

    Childress, M.; Aldering, G.; Aragon, C.; Bailey, S.; Fakhouri, H. K.; Hsiao, E. Y.; Kim, A. G.; Loken, S.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E. [Universite de Lyon, F-69622, Lyon; Universite de Lyon 1, Villeurbanne; CNRS and others

    2013-06-20

    We examine the relationship between Type Ia supernova (SN Ia) Hubble residuals and the properties of their host galaxies using a sample of 115 SNe Ia from the Nearby Supernova Factory. We use host galaxy stellar masses and specific star formation rates fitted from photometry for all hosts, as well as gas-phase metallicities for a subset of 69 star-forming (non-active galactic nucleus) hosts, to show that the SN Ia Hubble residuals correlate with each of these host properties. With these data we find new evidence for a correlation between SN Ia intrinsic color and host metallicity. When we combine our data with those of other published SN Ia surveys, we find the difference between mean SN Ia brightnesses in low- and high-mass hosts is 0.077 {+-} 0.014 mag. When viewed in narrow (0.2 dex) bins of host stellar mass, the data reveal apparent plateaus of Hubble residuals at high and low host masses with a rapid transition over a short mass range (9.8 {<=} log (M{sub *}/M{sub Sun }) {<=} 10.4). Although metallicity has been a favored interpretation for the origin of the Hubble residual trend with host mass, we illustrate how dust in star-forming galaxies and mean SN Ia progenitor age both evolve along the galaxy mass sequence, thereby presenting equally viable explanations for some or all of the observed SN Ia host bias.

  5. Detection of the gravitational lens magnifying a type Ia supernova.

    PubMed

    Quimby, Robert M; Oguri, Masamune; More, Anupreeta; More, Surhud; Moriya, Takashi J; Werner, Marcus C; Tanaka, Masayuki; Folatelli, Gaston; Bersten, Melina C; Maeda, Keiichi; Nomoto, Ken'ichi

    2014-04-25

    Objects of known brightness, like type Ia supernovae (SNIa), can be used to measure distances. If a massive object warps spacetime to form multiple images of a background SNIa, a direct test of cosmic expansion is also possible. However, these lensing events must first be distinguished from other rare phenomena. Recently, a supernova was found to shine much brighter than normal for its distance, which resulted in a debate: Was it a new type of superluminous supernova or a normal SNIa magnified by a hidden gravitational lens? Here, we report that a spectrum obtained after the supernova faded away shows the presence of a foreground galaxy-the first found to strongly magnify a SNIa. We discuss how more lensed SNIa can be found than previously predicted. PMID:24763586

  6. An Accelerated Radioactive Decay (ARD) Model for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Rust, Bert W.; Leventhal, Marvin

    2016-01-01

    In 1975, Leventhal and McCall [Nature, 255, 690-692] presented a radioactive decay model 56N i --> 56Co --> 56Fe for the post-peak luminosity decay of Type I supernovae light curves, in which the two decay rates are both accelerated by a common factor. In 1976, Rust, Leventhal and McCall [Nature, 262, 118-120] used sums of exponentials fitting to confirm the acceleration hypothesis, but their result was nevertheless rejected by the astronomical community. Here, we model Type Ia light curves with a system of ODEs (describing the nuclear decays) forced by a Ni-deposition pulse modelled by a 3-parameter Weibull pdf, with all of this occuring in the center of a pre-existing, optically thick, spherical shell which thermalizes the emitted gamma rays. Fitting this model to observed light curves routinely gives fits which account for 99.9+% of the total variance in the observed record. The accelerated decay rates are so stable, for such a long time, that they must occur in an almost unchanging environment -- not it a turbulent expanding atmosphere. The amplitude of the Ni-deposition pulse indicates that its source is the fusion of hydrogen. Carbon and oxygen could not supply the large energy/nucleon that is observed. The secondary peak in the infrared light curve can be easily modelled as a light echo from dust in the back side of the pre-existing shell, and the separation between the peaks indicates a radius of ≈15 light days for the shell. The long-term stability of the acceleration suggests that it is a kinematic effect arising because the nuclear reactions occur either on the surface of a very rapidly rotating condensed object, or in a very tight orbit around such an object, like the fusion pulse in a tokomak reactor.

  7. CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE

    SciTech Connect

    Shen, Ken J.; Guillochon, James; Foley, Ryan J.

    2013-06-20

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  8. Circumstellar Absorption in Double Detonation Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Shen, Ken J.; Guillochon, James; Foley, Ryan J.

    2013-06-01

    Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

  9. Four papers by the Supernova Cosmology Project: (1) Scheduled discoveries of 7+ high-redshift supernovae -- First cosmology results and bounds on q{sub 0}; (2) K corrections for Type Ia supernovae and a test for spatial variation of the Hubble constant; (3) Observation of cosmological time dilation using Type Ia supernovae as clocks; (4) The Type Ia supernova rate at z {approximately} 0.4

    SciTech Connect

    Perlmutter, S.; Deustua, S.; Gabi, S. |

    1995-06-01

    The search for high-redshift Type Ia supernovae discovered, in its first years, a sample of seven supernovae. Using a ``batch`` search strategy, almost all were discovered before maximum light and were observed over the peak of their light curves. The spectra and light curves indicate that almost all were Type Ia supernovae at redshifts z = 0.35--0.5. These high-redshift supernovae can provide a distance indicator and ``standard clock`` to study the cosmological parameters q{sub 0}, {Lambda}, {Omega}{sub 0}, and H{sub 0}. These four presentations discuss observation strategies and rates, analysis and calibration issues, the sources of measurement uncertainty, and the cosmological implications, including bounds on q{sub 0}, of these first high-redshift supernovae from the ongoing search.

  10. Instrument Requirements for Type Ia Supernova Gamma-Ray Studies

    NASA Astrophysics Data System (ADS)

    Leising, M.; Milne, P.; Lara, J.; The, L.

    2004-12-01

    Thermonuclear supernovae are widely used as distance indicators, which yields profound implications, yet details of their progenitor systems and explosion physics remain elusive. It has been argued for thirty-five years that these thoroughly radioactive objects can be understood through detailed gamma-ray line studies, but despite twenty years of gamma-ray instruments in orbit, no Type Ia supernova (SN Ia) has been detected in gamma-ray lines. Still the great promise of gamma-ray studies of SN Ia remains, but the instrument requirements, especially on line sensitivity, are substantial. Finally, a second-generation gamma-ray spectrometer, known now as the Advanced Compton Telescope, is being planned. Considering current SN Ia models of various types, including deflagrations, delayed detonations, and sub-Chandrasekhar-mass detonations, we outline the gamma-ray instrument requirements, especially line flux sensitivity and energy resolution, needed to discriminate among the possible models. We consider realistic SN Ia rates and distributions in space, plausible observing intervals and durations, and the information available from both gamma-ray photometry and spectroscopy. For example, we find that a wide-field compton telescope with energy resolution E/Δ E= 100 in a scanning mode would require broad line sensitivity of 7×10-7 cm-2 s-1 at 847 keV to distinguish deflagration models from delayed detonation models at the rate of one per year.

  11. The host galaxies of local PTF Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Sullivan, Mark; Howell, D. Andrew; Hook, Isobel; Pan, Yen-Chen; Nugent, Peter; Maguire, Kate

    2012-08-01

    The discovery of correlations between Type Ia Supernova (SN Ia) peak luminosity and the parameters defining their host galaxy stellar populations has important implications for their use as standardised candles. Using new samples of low-redshift SNe Ia located with the Palomar Transient Factory (PTF), a rolling transient search in the local universe, we finish our campaign to study in detail the host galaxies in which SNe Ia explode. We aim to establish which physical variable (metallicity or age) primarily drives the SN Ia luminosity variations using high signal-to-noise spectroscopy of their environments. These data will also place tighter constraints on the nature of their progenitor systems. Evolution in SN Ia properties is now the largest single astrophysical systematic in SN Ia cosmology, with host galaxies playing a critical role in cosmological studies, and detailed study of their environments provides a realistic opportunity to improve their use for studying dark energy. We give a status report on the progress of this program to date, and demonstrate the feasibility of our study using our observations from earlier semesters.

  12. DIVERSITY OF TYPE Ia SUPERNOVAE IMPRINTED IN CHEMICAL ABUNDANCES

    SciTech Connect

    Tsujimoto, Takuji; Shigeyama, Toshikazu

    2012-12-01

    A time delay of Type Ia supernova (SN Ia) explosions hinders the imprint of their nucleosynthesis on stellar abundances. However, some occasional cases give birth to stars that avoid enrichment of their chemical compositions by massive stars and thereby exhibit an SN-Ia-like elemental feature including a very low [Mg/Fe] ( Almost-Equal-To - 1). We highlight the elemental feature of Fe-group elements for two low-Mg/Fe objects detected in nearby galaxies, and propose the presence of a class of SNe Ia that yield the low abundance ratios of [Cr, Mn, Ni/Fe]. Our novel models of chemical evolution reveal that our proposed class of SNe Ia (slow SNe Ia) is associated with ones exploding on a long timescale after their stellar birth and give a significant impact on the chemical enrichment in the Large Magellanic Cloud (LMC). In the Galaxy, on the other hand, this effect is unseen due to the overwhelming enrichment by the major class of SNe Ia that explode promptly (prompt SNe Ia) and eject a large amount of Fe-group elements. This nicely explains the different [Cr, Mn, Ni/Fe] features between the two galaxies as well as the puzzling feature seen in the LMC stars exhibiting very low Ca but normal Mg abundances. Furthermore, the corresponding channel of slow SN Ia is exemplified by performing detailed nucleosynthesis calculations in the scheme of SNe Ia resulting from a 0.8 + 0.6 M{sub Sun} white dwarf merger.

  13. ON IDENTIFYING THE PROGENITORS OF Type Ia SUPERNOVAE

    SciTech Connect

    Livio, Mario; Pringle, J. E.

    2011-10-10

    We propose two new means of identifying the main class of progenitors of Type Ia supernovae-single or double degenerate: (1) if the range of supernova properties is significantly determined by the range of viewing angles of non-spherically symmetric explosions, then the nature of the correlation between polarization and another property (for example, the velocity gradient) can be used to determine the geometry of the asymmetry and hence the nature of the progenitor, and (2) in the double- but not in the single-degenerate case, the range in the observed properties (e.g., velocity gradients) is likely to increase with the amount of carbon seen in the ejecta.

  14. Incorporating Astrophysical Systematics into a Generalized Likelihood for Cosmology with Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Ponder, Kara A.; Wood-Vasey, W. Michael; Zentner, Andrew R.

    2016-07-01

    Traditional cosmological inference using Type Ia supernovae (SNe Ia) have used stretch- and color-corrected fits of SN Ia light curves and assumed a resulting fiducial mean and symmetric intrinsic dispersion for the resulting relative luminosity. As systematics become the main contributors to the error budget, it has become imperative to expand supernova cosmology analyses to include a more general likelihood to model systematics to remove biases with losses in precision. To illustrate an example likelihood analysis, we use a simple model of two populations with a relative luminosity shift, independent intrinsic dispersions, and linear redshift evolution of the relative fraction of each population. Treating observationally viable two-population mock data using a one-population model results in an inferred dark energy equation of state parameter w that is biased by roughly 2 times its statistical error for a sample of N\\quad ≳ \\quad 2500 SNe Ia. Modeling the two-population data with a two-population model removes this bias at a cost of an approximately ∼ 20 % increase in the statistical constraint on w. These significant biases can be realized even if the support for two underlying SNe Ia populations, in the form of model selection criteria, is inconclusive. With the current observationally estimated difference in the two proposed populations, a sample of N\\quad ≳ \\quad 10,000 SNe Ia is necessary to yield conclusive evidence of two populations.

  15. Spectroscopic Classification of AT2016cvv as a normal Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Leonard, D. C.; Sheehan, P.; McCarthy, D.; Follette, K.; Moustakas, J.; Alaniz, M.; Beaumont, C.; Batterman, T.; Black, E.; Bowers, T.; Cryder, M.; Davis, C.; Dawsey, R.; Douglas, E.; Gordon, S.; Gramze, S.; Greiner, M.; Hart, K.; Holt, A.; Hu, J.; Ingebretsen, C.; Iyer, D.; Josephson, R.; Kapko, A.; Keane, J.; Kimberlin, T.; Kinman, S.; Klusmeyer, J.; Kolderup, E.; Kresina, K.; Madden, M.; Meiman, E.; Miniconi, S.; Morton, A.; Neumann, K.; Noguerra, T.; Regester, B.; Regester, J.; Rosenthal, M.; Schlingman, A.; Schlingman, W.; Schlingman, W.; Smith, A.; Svoboda, B.; Watson, L.; Whitesell, R.

    2016-06-01

    We report spectroscopic classification of AT2016cvv (also known as PTSS-16ijc), discovered 2016 June 16.709 UT by the PMO-Tsinghua Supernova Survey (PTSS) in CGCG 280-024 (z=0.044571; Falco et al. 1999, PASP 111, 438, via NED), through inspection of an optical spectrum (range 370-690 nm, resolution 0.8 nm) obtained with the 2.3-m Bok telescope (+ Boller & Chivens spectrograph) at Kitt Peak on 2016 June 19.347 UT. Cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, ApJ, 666, 1024) and GELATO (Harutyunyan et al. 2008, A & A, 488, 383) finds convincing spectral matches with a number of normal Type-Ia supernovae a few days before maximum light.

  16. Spectroscopic Classification of AT2016cvw as a normal Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Leonard, D. C.; Sheehan, P.; McCarthy, D.; Follette, K.; Moustakas, J.; Alaniz, M.; Beaumont, C.; Batterman, T.; Black, E.; Bowers, T.; Cryder, M.; Davis, C.; Dawsey, R.; Douglas, E.; Gordon, S.; Gramze, S.; Greiner, M.; Hart, K.; Holt, A.; Hu, J.; Ingebretsen, C.; Iyer, D.; Josephson, R.; Kapko, A.; Keane, J.; Kimberlin, T.; Kinman, S.; Klusmeyer, J.; Kolderup, E.; Kresina, K.; Madden, M.; Meiman, E.; Miniconi, S.; Morton, A.; Neumann, K.; Noguerra, T.; Regester, B.; Regester, J.; Rosenthal, M.; Schlingman, A.; Schlingman, W.; Schlingman, W.; Smith, A.; Svoboda, B.; Watson, L.; Whitesell, R.

    2016-06-01

    We report spectroscopic classification of AT2016cvw (also known as PTSS-16ipw), discovered 2016 June 18.813 UT by the PMO-Tsinghua Supernova Survey (PTSS) in MCG +02-58-008 (z=0.038877; Huchra et al. 2012, ApJS, 199, 26, via NED), through inspection of an optical spectrum (range 370-690 nm, resolution 0.8 nm) obtained with the 2.3-m Bok telescope (+ Boller & Chivens spectrograph) at Kitt Peak on 2016 June 20.423 UT. Cross-correlation with a library of supernova spectra using the "Supernova Identification" code (SNID; Blondin and Tonry 2007, ApJ, 666, 1024) and GELATO (Harutyunyan et al. 2008, A & A, 488, 383) finds convincing spectral matches with a number of normal Type-Ia supernovae roughly 3 days before maximum light.

  17. SNLS spectroscopy: testing for evolution in type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Bronder, T. J.; Hook, I. M.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R. G.; Conley, A.; Fouchez, D.; Guy, J.; Howell, D. A.; Neill, J. D.; Pain, R.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Sullivan, M.; Baumont, S.; Fabbro, S.; Filliol, M.; Perlmutter, S.; Ripoche, P.

    2008-01-01

    Aims:We present a quantitative study of a new data set of high redshift Type Ia supernovae spectra, observed at the Gemini telescopes during the first 34 months of the Supernova Legacy Survey. During this time 123 supernovae candidates were observed, of which 87 have been identified as SNe Ia at a median redshift of z=0.720. Spectra from the entire second year of the survey and part of the third year (59 total SNe candidates with 46 confirmed SNe Ia) are published here for the first time. The spectroscopic measurements made on this data set are used determine if these distant SNe comprise a population similar to those observed locally. Methods: Rest-frame equivalent width and ejection velocity measurements are made on four spectroscopic features. Corresponding measurements are presented for a set of 167 spectra from 24 low-z SNe Ia from the literature. Results: We show that there exists a sample at high redshift with properties similar to nearby SNe. The high-z measurements are consistent with the range of measurements at low-z and no significant difference was found between the distributions of measurements at low and high redsift for three of the features. The fourth feature displays a possible difference that should be investigated further. Correlations between Type Ia SNe properties and host galaxy morphology were also found to be similar at low and high z, and within each host galaxy class we see no evidence for redshift-evolution in SN properties. A new correlation between SNe Ia peak magnitude and the equivalent width of SiII absorption is presented. Tests on a sub-set of the SNLS SNe demonstrates that this correlation reduces the scatter in SNe Ia luminosity distances in a manner consistent with the lightcurve shape-luminosity corrections that are used for Type Ia SNe cosmology. Conclusions: We show that this new sample of SNLS SNe Ia has spectroscopic properties similar to nearby objects. Tables 6, Appendices A and B are are only available in electronic

  18. The Type-Ia Supernova 1998bu in M96 and the Hubble Constant

    NASA Astrophysics Data System (ADS)

    Jha, S.; Garnavich, P. M.; Challis, P. M.; Kirshner, R. P.; Riess, A. G.; Filippenko, A. V.; Li, W.; Modjaz, M.; Treffers, R. R.; Grebel, E. K.; Seitzer, P.; Jacoby, G. H.; Benson, P. J.; Rizvi, A.; Marschall, L. A.

    1998-12-01

    We present extensive early-time photometric and spectroscopic observations of the type-Ia SN 1998bu in the Leo I Group galaxy M96 (NGC 3368). The well-sampled optical light curves consist of 311 UBVRI observations obtained from several telescopes: the F. L. Whipple Observatory 1.2-m, the MDM Observatory 2.4-m, the WIYN Observatory 3.5-m, the Kitt Peak National Observatory 0.9-m, the Whitin Observatory 0.6-m at Wellesley College, the Gettysburg College Observatory 0.4-m and the 0.76-m Katzman Automatic Imaging Telescope operated by UC Berkeley. The supernova reached maximum brightness in the B band on JD 2450952.8 +/- 0.8, with B = 12.22 +/- 0.03 and V = 11.88 +/- 0.02. There is strong evidence for considerable interstellar extinction along the line of sight to the supernova, but the light curve is otherwise quite typical of type-Ia supernovae (SNe Ia). The distance to M96 has been measured via HST observations of Cepheids in the galaxy (Tanvir et al. 1995), making SN 1998bu very useful in determining the absolute luminosity of SNe Ia. We combine these observations with those of other Cepheid-calibrated SNe Ia and SNe Ia in the Hubble flow and perform a Multicolor Light Curve Shape analysis to derive a Hubble Constant of 64 +/- 4 km/s/Mpc (internal error), but subject to several sources of systematic uncertainty in the Cepheid distance scale.

  19. Learning from the scatter in type ia supernovae

    SciTech Connect

    Dodelson, Scott; Vallinotto, Alberto; /Fermilab /Chicago U.

    2005-11-01

    Type Ia Supernovae are standard candles so their mean apparent magnitude has been exploited to learn about the redshift-distance relationship. Besides intrinsic scatter in this standard candle, additional scatter is caused by gravitational magnification by large scale structure. Here they probe the dependence of this dispersion on cosmological parameters and show that information about the amplitude of clustering, {sigma}{sub s}, is contained in the scatter. In principle, it will be possible to constrain {sigma}{sub s} to within 5% with observations of 2000 Type Ia Supernovae. They identify three sources of systematic error--evolution of intrinsic scatter, baryon contributions to lensing, and non-Gaussianity of lensing--which will make this measurement difficult.

  20. Learning from the scatter in type Ia supernovae

    SciTech Connect

    Dodelson, Scott; Vallinotto, Alberto

    2006-09-15

    Type Ia Supernovae are standard candles so their mean apparent magnitude has been exploited to learn about the redshift-distance relationship. Besides intrinsic scatter in this standard candle, additional scatter is caused by gravitational magnification by large scale structure. Here we probe the dependence of this dispersion on cosmological parameters and show that information about the amplitude of clustering, {sigma}{sub 8}, is contained in the scatter. In principle, it will be possible to constrain {sigma}{sub 8} to within 5% with observations of 2000 Type Ia Supernovae. We identify three sources of systematic error - evolution of intrinsic scatter, baryon contributions to lensing, and non-Gaussianity of lensing - which will make this measurement difficult.

  1. A new hydrodynamics code for Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Leung, S.-C.; Chu, M.-C.; Lin, L.-M.

    2015-12-01

    A two-dimensional hydrodynamics code for Type Ia supernova (SNIa) simulations is presented. The code includes a fifth-order shock-capturing scheme WENO, detailed nuclear reaction network, flame-capturing scheme and sub-grid turbulence. For post-processing, we have developed a tracer particle scheme to record the thermodynamical history of the fluid elements. We also present a one-dimensional radiative transfer code for computing observational signals. The code solves the Lagrangian hydrodynamics and moment-integrated radiative transfer equations. A local ionization scheme and composition dependent opacity are included. Various verification tests are presented, including standard benchmark tests in one and two dimensions. SNIa models using the pure turbulent deflagration model and the delayed-detonation transition model are studied. The results are consistent with those in the literature. We compute the detailed chemical evolution using the tracer particles' histories, and we construct corresponding bolometric light curves from the hydrodynamics results. We also use a GPU to speed up the computation of some highly repetitive subroutines. We achieve an acceleration of 50 times for some subroutines and a factor of 6 in the global run time.

  2. Correlating Type Ia Supernova Properties with Their Local Environment Using HST Snapshots of Host Galaxies

    NASA Astrophysics Data System (ADS)

    Rose, Benjamin; Garnavich, Peter M.

    2016-01-01

    Type Ia supernovae (SN Ia) are important tools for precision cosmology. But there are still uncertainties about how the host galaxy properties and local environment influence the luminosity, color and Hubble residuals of SN Ia. We investigate these questions by analyzing high angular resolution Hubble Space Telescope (HST) imaging of SDSS-II host galaxies. These are "snapshot" images obtained while the telescope was slewing to new targets, so the total exposure times are less than 30 minutes. ACS images were obtained in F475W and F625W filters, similar to SDSS g and r-bands. In total, we observed 61 host galaxies in Stripe 82 that had SN Ia discovered by the SDSS-II SN Survey. HST's resolution and low background allow for detailed analysis of both the region around the SN Ia and the galaxy as a whole. Co-added SDSS-II images of the hosts are used to supplement the HST data in regions of low surface brightness. From this data set we estimate the fractional pixel rank and photometric color of the SN Ia's location and correlate the local environment variables with SN Ia luminosity, light curve width, color and Hubble residual. We assess the impact of these correlations on the accuracy of SN Ia distance estimates and possible biases in measuring the Hubble constant and dark energy parameters.

  3. Progenitors of Type Ia Supernovae: A Panel Discussion

    NASA Astrophysics Data System (ADS)

    Liu, Jifeng

    2011-09-01

    Are single-degenerate models ruled out by X-ray limits? Are double-degenerate models ruled out by insufficient candidates? Are any models consistent with current observations? What can the HEAD community do to address this important issue? Three speakers and a panel of four expert responders will discuss the current status of our understanding of the origins of Type Ia supernovae. Questions and comments from the audience will be welcomed.

  4. NORMAL TYPE Ia SUPERNOVAE FROM VIOLENT MERGERS OF WHITE DWARF BINARIES

    SciTech Connect

    Pakmor, R.; Kromer, M.; Taubenberger, S.; Hillebrandt, W.; Sim, S. A.; Roepke, F. K.

    2012-03-15

    One of the most important questions regarding the progenitor systems of Type Ia supernovae (SNe Ia) is whether mergers of two white dwarfs can lead to explosions that reproduce observations of normal events. Here we present a fully three-dimensional simulation of a violent merger of two carbon-oxygen white dwarfs with masses of 0.9 M{sub Sun} and 1.1 M{sub Sun} combining very high resolution and exact initial conditions. A well-tested combination of codes is used to study the system. We start with the dynamical inspiral phase and follow the subsequent thermonuclear explosion under the plausible assumption that a detonation forms in the process of merging. We then perform detailed nucleosynthesis calculations and radiative transfer simulations to predict synthetic observables from the homologously expanding supernova ejecta. We find that synthetic color light curves of our merger, which produces about 0.62 M{sub Sun} of {sup 56}Ni, show good agreement with those observed for normal SNe Ia in all wave bands from U to K. Line velocities in synthetic spectra around maximum light also agree well with observations. We conclude that violent mergers of massive white dwarfs can closely resemble normal SNe Ia. Therefore, depending on the number of such massive systems available these mergers may contribute at least a small fraction to the observed population of normal SNe Ia.

  5. Type Ia Supernovae Strongly Interacting with Their Circumstellar Medium

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey Michael; Nugent, Peter; Gal-Yam, Avishay; Howell, D. A.; Sullivan, Mark; Filippenko, Alex

    2015-08-01

    Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; these objects are referred to as SNe Ia-CSM. PTF11kx began life as a SN Ia, but after a month it began to show indications of significant interaction with its CSM. This well-studied object was revolutionary in that in solidified the connection between SNe Ia-CSM and more typical SNe Ia, despite their spectral similarity to Type IIn SNe (which likely come from massive star progenitors, as opposed to the white dwarf progenitors for the SNe Ia-CSM). There are currently nearly 20 SNe Ia-CSM with published data. The spectra of all SNe Ia-CSM are dominated by Hα emission (with widths of ~2000 km s-1) and exhibit large Hα/Hβ intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of Hα 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 mag ≤ MR ≤ -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population.

  6. Observational Clues to the Progenitors of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Maoz, Dan; Mannucci, Filippo; Nelemans, Gijs

    2014-08-01

    Type Ia supernovae (SNe Ia) are important distance indicators, element factories, cosmic-ray accelerators, kinetic-energy sources in galaxy evolution, and end points of stellar binary evolution. It has long been clear that a SN Ia must be the runaway thermonuclear explosion of a degenerate carbon-oxygen stellar core, most likely a white dwarf (WD). However, the specific progenitor systems of SNe Ia, and the processes that lead to their ignition, have not been identified. Two broad classes of progenitor binary systems have long been considered: single-degenerate (SD), in which a WD gains mass from a nondegenerate star; and double-degenerate (DD), involving the merger of two WDs. New theoretical work has enriched these possibilities with some interesting updates and variants. We review the significant recent observational progress in addressing the progenitor problem. We consider clues that have emerged from the observed properties of the various proposed progenitor populations, from studies of SN Ia sites—pre- and postexplosion—from analysis of the explosions themselves and from the measurement of event rates. The recent nearby and well-studied event, SN 2011fe, has been particularly revealing. The observational results are not yet conclusive and sometimes prone to competing theoretical interpretations. Nevertheless, it appears that DD progenitors, long considered the underdog option, could be behind some, if not all, SNe Ia. We point to some directions that may lead to future progress.

  7. IS THERE A HIDDEN HOLE IN TYPE Ia SUPERNOVA REMNANTS?

    SciTech Connect

    Garcia-Senz, D.; Badenes, C.; Serichol, N. E-mail: carles@astro.tau.ac.il

    2012-01-20

    In this paper, we report on the bulk features of the hole carved by the companion star in the material ejected during a Type Ia supernova (SN Ia) explosion. In particular we are interested in the long-term evolution of the hole as well as in its fingerprint in the geometry of the supernova remnant (SNR) after several centuries of evolution, which is a hot topic in current SN Ia studies. We use an axisymmetric smoothed particle hydrodynamics code to characterize the geometric properties of the SNR resulting from the interaction of this ejected material with the ambient medium. Our aim is to use SNR observations to constrain the single degenerate scenario for SN Ia progenitors. Our simulations show that the hole will remain open during centuries, although its partial or total closure at later times due to hydrodynamic instabilities is not excluded. Close to the edge of the hole, the Rayleigh-Taylor instability grows faster, leading to plumes that approach the edge of the forward shock. We also discuss other geometrical properties of the simulations, like the evolution of the contact discontinuity.

  8. Optical and NIR observations of the nearby type Ia supernova SN 2014J

    NASA Astrophysics Data System (ADS)

    Srivastav, Shubham; Ninan, J. P.; Kumar, B.; Anupama, G. C.; Sahu, D. K.; Ojha, D. K.; Prabhu, T. P.

    2016-03-01

    Optical and NIR observations of the Type Ia supernova SN 2014J in M82 are presented. The observed light curves are found to be similar to normal Type Ia supernovae (SNe Ia), with a decline rate parameter Δm15(B) = 1.08 ± 0.03. The supernova reached B-band maximum on JD 2456690.14, at an apparent magnitude mB(max) = 11.94. The optical spectra show a red continuum with deep interstellar Na I absorption, but otherwise resemble those of normal SNe Ia. The Si II λ6355 feature indicates a velocity of ˜12 000 km s-1 at B-band maximum, which places SN 2014J at the border of the normal velocity and high velocity group of SNe Ia. The velocity evolution of SN 2014J places it in the Low Velocity Gradient subclass, whereas the equivalent widths of Si II features near B-band maximum place it at the border of the core normal and Broad Line subclasses of SNe Ia. An analytic model fit to the bolometric light curve indicates that a total of ˜1.3 M⊙ was ejected in the explosion, and the ejected 56Ni mass MNi ˜ 0.6 M⊙. The low [Fe III] λ4701 to [Fe II] λ5200 ratio in the nebular spectra of SN 2014J hints towards clumpiness in the ejecta. Optical broad-band, linear polarimetric observations of SN 2014J obtained on four epochs indicate an almost constant polarization (PR ˜2.7 per cent; θ ˜ 37°), which suggests that the polarization signal is of interstellar origin.

  9. The Type Ia supernova 1989B in NGC 3627 (M66)

    NASA Technical Reports Server (NTRS)

    Wells, Lisa A.; Phillips, M. M.; Suntzeff, Nicholas B.; Heathcote, S. R.; Hamuy, Mario; Navarrete, M.; Fernandez, M.; Weller, W. G.; Schommer, R. A.; Kirshner, Robert P.

    1994-01-01

    We report extensive optical photometry and spectroscopy of the Type Ia supernova 1989B. Maximum light in B occurred approximately seven days after discovery on JD 2447565.3 +/- 1.0 (1989 February 7.8 +/- 1.0) at a magnitude of 12.34 +/- 0.05. The UBV light curves of this supernova were very similar to those of other well observed Type Ia events such as SN 1981B and SN 1980N. From a comparison of the UBVRIJHK photometry, we derive an extinction for SN 1989B of E(B-V) = 0.37 +/- 0.03 mags relative to the unobscured Type Ia SN 1980N. The properties of the dust responsible for the reddening of SN 1989B appear to have been similar to those of normal dust in the Milky Way. In particular, we find no evidence for an unusually low value of the ratio of the total to selective absorption. We derive a distance modulus of delta mu(sub 0) = -1.62 +/- 0.03 mag relative to the Type Ia SN 1980N. We present optical spectra which provide essentially continuous coverage of the spectral evolution of SN 1989B over the first month following B maximum. These data show the transition from the maximum-light spectrum, in which lines of elements such as Ca, Si, S, Mg, and O are most prominent, to the Fe-dominated spectrum observed a few weeks after maximum. This transition occurred quite smoothly over a two-week period following B maximum. Comparison of the spectra of SN 1989B with data for two other well observed Type Ia supernovae -- 1981B and 1986G -- reveals subtle differences in the relative strengths of the S II and Si II absorption lines at maximum light. However, these differences disappeared within a week or so after maximum with the onset of the Fe-dominated phase.

  10. Supernova Emulators: Connecting Massively Parallel SN Ia Radiative Transfer Simulations to Data with Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Goldstein, Daniel; Thomas, Rollin; Kasen, Daniel

    2015-01-01

    Collaboration between the type Ia supernova (SN Ia) modeling and observation communities hinges on our ability to directly connect simulations to data. Here we introduce supernova emulation, a method for facilitating such a connection. Emulation allows us to instantaneously predict the observables (light curves, spectra, spectral time series) generated by arbitrary SN Ia radiative transfer simulations, with estimates of prediction error. Emulators learn the mapping between physically meaningful simulation inputs and the resulting synthetic observables from a training set of simulation input-output pairs. In our emulation framework, we model PCA-decomposed representations of simulated observables as an ensemble of Gaussian Processes. As a proof of concept, we train a bolometric light curve (BLC) emulator on a grid of 400 simulation inputs and BLCs synthesized with the publicly available, gray, time-dependent Monte Carlo expanding atmospheres code, SMOKE. We emulate SMOKE simulations evaluated at a set of 100 out-of-sample input parameters, and achieve excellent agreement between the emulator predictions and the simulated BLCs. In addition to predicting simulation outputs, emulators allow us to infer the regions of simulation input parameter space that correspond to observed SN Ia light curves and spectra. We present a Bayesian framework for solving this inverse problem using Markov Chain Monte Carlo sampling. We fit published bolometric light curves with our emulator and obtain reconstructed masses (nickel mass, total ejecta mass) in agreement with reconstructions from semi-analytic models. We discuss applications of emulation to supernova cosmology and physics, including how emulators can be used to identify and quantify astrophysical sources of systematic error affecting SNe Ia as distance indicators for cosmology.

  11. THE SUBLUMINOUS SUPERNOVA 2007qd: A MISSING LINK IN A FAMILY OF LOW-LUMINOSITY TYPE Ia SUPERNOVAE

    SciTech Connect

    McClelland, Colin M.; Garnavich, Peter M.; Galbany, LluIs; Miquel, Ramon; Foley, Ryan J.; Filippenko, Alexei V.; Bassett, Bruce; Wheeler, J. Craig; Goobar, Ariel; Jha, Saurabh W.; Sako, Masao; Frieman, Joshua A.; Sollerman, Jesper; Vinko, Jozsef; Schneider, Donald P.

    2010-09-01

    We present multi-band photometry and multi-epoch spectroscopy of the peculiar Type Ia supernova (SN Ia) 2007qd, discovered by the SDSS-II Supernova Survey. It possesses physical properties intermediate to those of the peculiar SN 2002cx and the extremely low-luminosity SN 2008ha. Optical photometry indicates that it had an extraordinarily fast rise time of {approx}<10 days and a peak absolute B magnitude of -15.4 {+-} 0.2 at most, making it one of the most subluminous SN Ia ever observed. Follow-up spectroscopy of SN 2007qd near maximum brightness unambiguously shows the presence of intermediate-mass elements which are likely caused by carbon/oxygen nuclear burning. Near maximum brightness, SN 2007qd had a photospheric velocity of only 2800 km s{sup -1}, similar to that of SN 2008ha but about 4000 and 7000 km s{sup -1} less than that of SN 2002cx and normal SN Ia, respectively. We show that the peak luminosities of SN 2002cx like objects are highly correlated with both their light-curve stretch and photospheric velocities. Its strong apparent connection to other SN 2002cx like events suggests that SN 2007qd is also a pure deflagration of a white dwarf, although other mechanisms cannot be ruled out. It may be a critical link between SN 2008ha and the other members of the SN 2002cx like class of objects.

  12. The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints

    NASA Astrophysics Data System (ADS)

    Guy, J.; Sullivan, M.; Conley, A.; Regnault, N.; Astier, P.; Balland, C.; Basa, S.; Carlberg, R. G.; Fouchez, D.; Hardin, D.; Hook, I. M.; Howell, D. A.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K. M.; Pritchet, C. J.; Rich, J.; Ruhlmann-Kleider, V.; Balam, D.; Baumont, S.; Ellis, R. S.; Fabbro, S.; Fakhouri, H. K.; Fourmanoit, N.; González-Gaitán, S.; Graham, M. L.; Hsiao, E.; Kronborg, T.; Lidman, C.; Mourao, A. M.; Perlmutter, S.; Ripoche, P.; Suzuki, N.; Walker, E. S.

    2010-11-01

    Aims: We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Methods: Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. Results: A flat ΛCDM cosmological fit to 231 SNLS high redshift type Ia supernovae alone gives Ω_M = 0.211 ± 0.034(stat) ± 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of ±0.026 on Ω_M. No clear evidence is found for a possible evolution of the slope (β) of the colour-luminosity relation with redshift. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on observations obtained at the European Southern Observatory using the Very Large Telescope on the Cerro Paranal (ESO Large Programme 171.A-0486 & 176.A-0589). Based on

  13. Single-degenerate Type Ia Supernovae Are Preferentially Overluminous

    NASA Astrophysics Data System (ADS)

    Fisher, Robert; Jumper, Kevin

    2015-06-01

    Recent observational and theoretical progress has favored merging and helium-accreting sub-Chandrasekhar mass white dwarfs (WDs) in the double-degenerate and the double-detonation channels, respectively, as the most promising progenitors of normal Type Ia supernovae (SNe Ia). Thus the fate of rapidly accreting Chandrasekhar mass WDs in the single-degenerate channel remains more mysterious then ever. In this paper, we clarify the nature of ignition in Chandrasekhar-mass single-degenerate SNe Ia by analytically deriving the existence of a characteristic length scale which establishes a transition from central ignitions to buoyancy-driven ignitions. Using this criterion, combined with data from three-dimensional simulations of convection and ignition, we demonstrate that the overwhelming majority of ignition events within Chandrasekhar-mass WDs in the single-degenerate channel are buoyancy-driven, and consequently lack a vigorous deflagration phase. We thus infer that single-degenerate SNe Ia are generally expected to lead to overluminous 1991T-like SNe Ia events. We establish that the rates predicted from both the population of supersoft X-ray sources (SSSs) and binary population synthesis models of the single-degenerate channel are broadly consistent with the observed rates of overluminous SNe Ia, and suggest that the population of SSSs are the dominant stellar progenitors of SNe 1991T-like events. We further demonstrate that the single-degenerate channel contribution to the normal and failed 2002cx-like rates is not likely to exceed 1% of the total SNe Ia rate. We conclude with a range of observational tests of overluminous SNe Ia which will either support or strongly constrain the single-degenerate scenario.

  14. SN 1991bg - A type Ia supernova with a difference

    NASA Technical Reports Server (NTRS)

    Leibundgut, Bruno; Kirshner, Robert P.; Phillips, Mark M.; Wells, Lisa A.; Suntzeff, N. B.; Hamuy, Mario; Schommer, R. A.; Walker, A. R.; Gonzalez, L.; Ugarte, P.

    1993-01-01

    While SN 1991bg is an unusual type Ia SN in such a feature as the brief duration of the photospheric phase, which ended only two weeks after maximum, it shares with other Ia SNs strong Si II and Ca II lines near maximum light. In addition, the light and color curve slopes are almost identical with the templates at late times. The spectral evolution of SN 1991bg is also unique but not unrecognizable; nevertheless, the peculiarities associated with this event complicate the fundamental question as to whether the Ia SNs make good standard candles.

  15. Spectroscopic Properties of Star-Forming Host Galaxies and Type Ia Supernova Hubble Residuals in a Nearly Unbiased Sample

    SciTech Connect

    D'Andrea, Chris B.; et al.

    2011-12-20

    We examine the correlation between supernova host galaxy properties and their residuals on the Hubble diagram. We use supernovae discovered during the Sloan Digital Sky Survey II - Supernova Survey, and focus on objects at a redshift of z < 0.15, where the selection effects of the survey are known to yield a complete Type Ia supernova sample. To minimize the bias in our analysis with respect to measured host-galaxy properties, spectra were obtained for nearly all hosts, spanning a range in magnitude of -23 < M_r < -17. In contrast to previous works that use photometric estimates of host mass as a proxy for global metallicity, we analyze host-galaxy spectra to obtain gas-phase metallicities and star-formation rates from host galaxies with active star formation. From a final sample of ~ 40 emission-line galaxies, we find that light-curve corrected Type Ia supernovae are ~ 0.1 magnitudes brighter in high-metallicity hosts than in low-metallicity hosts. We also find a significant (> 3{\\sigma}) correlation between the Hubble residuals of Type Ia supernovae and the specific star-formation rate of the host galaxy. We comment on the importance of supernova/host-galaxy correlations as a source of systematic bias in future deep supernova surveys.

  16. Cosmology with Photometrically Classified Type Ia Supernovae from the SDSS-II Supernova Survey

    NASA Astrophysics Data System (ADS)

    Campbell, Heather; D'Andrea, Chris B.; Nichol, Robert C.; Sako, Masao; Smith, Mathew; Lampeitl, Hubert; Olmstead, Matthew D.; Bassett, Bruce; Biswas, Rahul; Brown, Peter; Cinabro, David; Dawson, Kyle S.; Dilday, Ben; Foley, Ryan J.; Frieman, Joshua A.; Garnavich, Peter; Hlozek, Renee; Jha, Saurabh W.; Kuhlmann, Steve; Kunz, Martin; Marriner, John; Miquel, Ramon; Richmond, Michael; Riess, Adam; Schneider, Donald P.; Sollerman, Jesper; Taylor, Matt; Zhao, Gong-Bo

    2013-02-01

    We present the cosmological analysis of 752 photometrically classified Type Ia Supernovae (SNe Ia) obtained from the full Sloan Digital Sky Survey II (SDSS-II) Supernova (SN) Survey, supplemented with host-galaxy spectroscopy from the SDSS-III Baryon Oscillation Spectroscopic Survey. Our photometric-classification method is based on the SN classification technique of Sako et al., aided by host-galaxy redshifts (0.05 < z < 0.55). SuperNova ANAlysis simulations of our methodology estimate that we have an SN Ia classification efficiency of 70.8%, with only 3.9% contamination from core-collapse (non-Ia) SNe. We demonstrate that this level of contamination has no effect on our cosmological constraints. We quantify and correct for our selection effects (e.g., Malmquist bias) using simulations. When fitting to a flat ΛCDM cosmological model, we find that our photometric sample alone gives Ω m = 0.24+0.07 -0.05 (statistical errors only). If we relax the constraint on flatness, then our sample provides competitive joint statistical constraints on Ω m and ΩΛ, comparable to those derived from the spectroscopically confirmed Three-year Supernova Legacy Survey (SNLS3). Using only our data, the statistics-only result favors an accelerating universe at 99.96% confidence. Assuming a constant wCDM cosmological model, and combining with H 0, cosmic microwave background, and luminous red galaxy data, we obtain w = -0.96+0.10 -0.10, Ω m = 0.29+0.02 -0.02, and Ω k = 0.00+0.03 -0.02 (statistical errors only), which is competitive with similar spectroscopically confirmed SNe Ia analyses. Overall this comparison is reassuring, considering the lower redshift leverage of the SDSS-II SN sample (z < 0.55) and the lack of spectroscopic confirmation used herein. These results demonstrate the potential of photometrically classified SN Ia samples in improving cosmological constraints.

  17. Neutronization During Carbon Simmering In Type Ia Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Martínez-Rodríguez, Héctor; Piro, Anthony L.; Schwab, Josiah; Badenes, Carles

    2016-07-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ˜103–104 years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10‑4. This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z ⊙. Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  18. Neutronization During Carbon Simmering In Type Ia Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Martínez-Rodríguez, Héctor; Piro, Anthony L.; Schwab, Josiah; Badenes, Carles

    2016-07-01

    When a Type Ia supernova (SN Ia) progenitor first ignites carbon in its core, it undergoes ∼103–104 years of convective burning prior to the onset of thermonuclear runaway. This carbon simmering phase is important for setting the thermal profile and composition of the white dwarf. Using the MESA stellar evolution code, we follow this convective burning and examine the production of neutron-rich isotopes. The neutron content of the SN fuel has important consequences for the ensuing nucleosynthesis, and in particular, for the production of secondary Fe-peak nuclei like Mn and stable Ni. These elements have been observed in the X-ray spectra of SN remnants like Tycho, Kepler, and 3C 397, and their yields can provide valuable insights into the physics of SNe Ia and the properties of their progenitors. We find that weak reactions during simmering can at most generate a neutron excess of ≈ 3 × 10‑4. This is ≈ 70% lower than that found in previous studies that do not take the full density and temperature profile of the simmering region into account. Our results imply that the progenitor metallicity is the main contributor to the neutron excess in SN Ia fuel for Z ≳ 1/3 Z ⊙. Alternatively, at lower metallicities, this neutron excess provides a floor that should be present in any centrally-ignited SN Ia scenario.

  19. SINGLE-DEGENERATE TYPE Ia SUPERNOVAE WITHOUT HYDROGEN CONTAMINATION

    SciTech Connect

    Justham, Stephen

    2011-04-01

    The lack of hydrogen in spectra of type Ia supernovae (SNe Ia) is often seen as troublesome for single-degenerate (SD) progenitor models. We argue that, since continued accretion of angular momentum can prevent explosion of the white dwarf, it may be natural for the donor stars in SD progenitors of SNe Ia to exhaust their envelopes and shrink rapidly before the explosion. This outcome seems most likely for SD SN Ia progenitors where mass transfer begins from a giant donor star and might extend to other SD systems. Not only is the amount of hydrogen left in such a system below the current detection limit, but the donor star is typically orders of magnitude smaller than its Roche lobe by the point when an SD SN Ia occurs, in which case attempts to observe collisions between SN shocks and giant donor stars seem unlikely to succeed. We consider the constraints on this model from the circumstellar structures seen in spectra of SN 2006X and suggest a novel explanation for the origin of this material.

  20. TYPE Ia SUPERNOVAE STRONGLY INTERACTING WITH THEIR CIRCUMSTELLAR MEDIUM

    SciTech Connect

    Silverman, Jeffrey M.; Nugent, Peter E.; Gal-Yam, Avishay; Arcavi, Iair; Ben-Ami, Sagi; Sullivan, Mark; Howell, D. Andrew; Graham, Melissa L.; Filippenko, Alexei V.; Bloom, Joshua S.; Cenko, S. Bradley; Clubb, Kelsey I.; Cao, Yi; Horesh, Assaf; Kulkarni, Shrinivas R.; Chornock, Ryan; Foley, Ryan J.; Coil, Alison L.; Griffith, Christopher V.; Kasliwal, Mansi M.; and others

    2013-07-01

    Owing to their utility for measurements of cosmic acceleration, Type Ia supernovae (SNe Ia) are perhaps the best-studied class of SNe, yet the progenitor systems of these explosions largely remain a mystery. A rare subclass of SNe Ia shows evidence of strong interaction with their circumstellar medium (CSM), and in particular, a hydrogen-rich CSM; we refer to them as SNe Ia-CSM. In the first systematic search for such systems, we have identified 16 SNe Ia-CSM, and here we present new spectra of 13 of them. Six SNe Ia-CSM have been well studied previously, three were previously known but are analyzed in depth for the first time here, and seven are new discoveries from the Palomar Transient Factory. The spectra of all SNe Ia-CSM are dominated by H{alpha} emission (with widths of {approx}2000 km s{sup -1}) and exhibit large H{alpha}/H{beta} intensity ratios (perhaps due to collisional excitation of hydrogen via the SN ejecta overtaking slower-moving CSM shells); moreover, they have an almost complete lack of He I emission. They also show possible evidence of dust formation through a decrease in the red wing of H{alpha} 75-100 days past maximum brightness, and nearly all SNe Ia-CSM exhibit strong Na I D absorption from the host galaxy. The absolute magnitudes (uncorrected for host-galaxy extinction) of SNe Ia-CSM are found to be -21.3 mag {<=} M{sub R} {<=} -19 mag, and they also seem to show ultraviolet emission at early times and strong infrared emission at late times (but no detected radio or X-ray emission). Finally, the host galaxies of SNe Ia-CSM are all late-type spirals similar to the Milky Way, or dwarf irregulars like the Large Magellanic Cloud, which implies that these objects come from a relatively young stellar population. This work represents the most detailed analysis of the SN Ia-CSM class to date.

  1. THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. VI. THE VOLUMETRIC TYPE Ia SUPERNOVA RATE

    SciTech Connect

    Barbary, K.; Amanullah, R.; Fakhouri, H. K.; Goldhaber, G.; Huang, X.; Aldering, G.; Dawson, K. S.; Hsiao, E.; Brodwin, M.; Connolly, N.; Doi, M.; Ihara, Y.; Eisenhardt, P.; Faccioli, L.; Goobar, A.; Fadeyev, V.; Fruchter, A. S.; Gilbank, D. G.; Gladders, M. D.; Hattori, T.; Collaboration: Supernova Cosmology Project; and others

    2012-01-20

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate out to z {approx_equal} 1.6 from the Hubble Space Telescope Cluster Supernova Survey. In observations spanning 189 orbits with the Advanced Camera for Surveys we discovered 29 SNe, of which approximately 20 are SNe Ia. Twelve of these SNe Ia are located in the foregrounds and backgrounds of the clusters targeted in the survey. Using these new data, we derive the volumetric SN Ia rate in four broad redshift bins, finding results consistent with previous measurements at z {approx}> 1 and strengthening the case for an SN Ia rate that is {approx}> 0.6 Multiplication-Sign 10{sup -4} h{sup 3}{sub 70} yr{sup -1} Mpc{sup -3} at z {approx} 1 and flattening out at higher redshift. We provide SN candidates and efficiency calculations in a form that makes it easy to rebin and combine these results with other measurements for increased statistics. Finally, we compare the assumptions about host-galaxy dust extinction used in different high-redshift rate measurements, finding that different assumptions may induce significant systematic differences between measurements.

  2. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    SciTech Connect

    Dilday, Benjamin; Smith, Mathew; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Filippenko, Alexei V.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

  3. Light Curves of Supernovae

    NASA Astrophysics Data System (ADS)

    Spencer, Michelle; Joner, Michael; Laney, David; Stoker, Emily

    2012-10-01

    Photometric Data were secured for the supernovae 2010hh, 2011dh, 2011fe and 2012aw before the dates which each individual maxima occur. The data for all supernovae were secured using the 0.9-meter telescope at the BYU West Mountain Observatory in Utah. 2010hh data were secured during the summer 2010 over the months of August to October. 2011dh and 2011fe data were secured during the summer of 2011. 2012aw data were secured during the summer of 2012. The data exposures from 2010 were secured using standard B,V and R filters. The frames for 2011 were secured using B,V, R and I filters. The 2012 supernova frames were secured in B,V and R filters. Using the data I will compare and contrast these four different supernovae and discuss their possible uses for distance determinations for the host galaxies.

  4. SN~2012cg: Evidence for Interaction Between a Normal Type Ia Supernova and a Non-degenerate Binary Companion

    NASA Astrophysics Data System (ADS)

    Marion, G. H.; Brown, Peter J.; Vinkó, Jozsef; Silverman, Jeffrey M.; Sand, David J.; Challis, Peter; Kirshner, Robert P.; Wheeler, J. Craig; Berlind, Perry; Brown, Warren R.; Calkins, Michael L.; Camacho, Yssavo; Dhungana, Govinda; Foley, Ryan J.; Friedman, Andrew S.; Graham, Melissa L.; Howell, D. Andrew; Hsiao, Eric Y.; Irwin, Jonathan M.; Jha, Saurabh W.; Kehoe, Robert; Macri, Lucas M.; Maeda, Keiichi; Mandel, Kaisey; McCully, Curtis; Pandya, Viraj; Rines, Kenneth J.; Wilhelmy, Steven; Zheng, Weikang

    2016-04-01

    We report evidence for excess blue light from the Type Ia supernova (Sn Ia) SN 2012cg at 15 and 16 days before maximum B-band brightness. The emission is consistent with predictions for the impact of the supernova on a non-degenerate binary companion. This is the first evidence for emission from a companion to a normal SN Ia. Sixteen days before maximum light, the B-V color of SN 2012cg is 0.2 mag bluer than for other normal SN Ia. At later times, this supernova has a typical SN Ia light curve, with extinction-corrected {M}B=-19.62+/- 0.02 mag and {{Δ }}{m}15(B)=0.86+/- 0.02. Our data set is extensive, with photometry in seven filters from five independent sources. Early spectra also show the effects of blue light, and high-velocity features are observed at early times. Near maximum, the spectra are normal with a silicon velocity vSi = -10,500 km s-1. Comparing the early data with models by Kasen favors a main-sequence companion of about six solar masses. It is possible that many other SN Ia have main-sequence companions that have eluded detection because the emission from the impact is fleeting and faint.

  5. THE DISCOVERY OF THE MOST DISTANT KNOWN TYPE Ia SUPERNOVA AT REDSHIFT 1.914

    SciTech Connect

    Jones, David O.; Rodney, Steven A.; Riess, Adam G.; Mobasher, Bahram; Dahlen, Tomas; Casertano, Stefano; Koekemoer, Anton; McCully, Curtis; Keeton, Charles R.; Patel, Brandon; Frederiksen, Teddy F.; Hjorth, Jens; Strolger, Louis-Gregory; Wiklind, Tommy G.; Challis, Peter; Hayden, Brian; Garnavich, Peter; Weiner, Benjamin J.; Filippenko, Alexei V.; and others

    2013-05-10

    We present the discovery of a Type Ia supernova (SN) at redshift z = 1.914 from the CANDELS multi-cycle treasury program on the Hubble Space Telescope (HST). This SN was discovered in the infrared using the Wide-Field Camera 3, and it is the highest-redshift Type Ia SN yet observed. We classify this object as a SN Ia by comparing its light curve and spectrum with those of a large sample of Type Ia and core-collapse SNe. Its apparent magnitude is consistent with that expected from the {Lambda}CDM concordance cosmology. We discuss the use of spectral evidence for classification of z > 1.5 SNe Ia using HST grism simulations, finding that spectral data alone can frequently rule out SNe II, but distinguishing between SNe Ia and SNe Ib/c can require prohibitively long exposures. In such cases, a quantitative analysis of the light curve may be necessary for classification. Our photometric and spectroscopic classification methods can aid the determination of SN rates and cosmological parameters from the full high-redshift CANDELS SN sample.

  6. Understanding the Progenitor Systems, Explosion Mechanisms, and Cosmological Utility of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Foley, Ryan

    2014-10-01

    Despite using Type Ia supernovae (SN Ia) to precisely measure cosmological parameters, we still do not know basic facts about the progenitor systems and explosions. Theory suggests that SN Ia progenitor metallicity is correlated with its peak luminosity, but not its light-curve shape. As a result, this effect should lead to an increased Hubble scatter, reducing the precision with which we measure distances. If the average progenitor metallicity changes with redshift, cosmological measurements could be biased. Models also indicate that changing the progenitor metallicity will have little effect on the appearance of optical SN data, but significantly change UV spectra. These data can only be obtained with HST.We recently published the first detection of 2 SN Ia with different progenitor metallicities. These "twin" SN had nearly identical optical spectra and light-curve shapes, but different UV spectra and peak luminosities, consistent with the models. We now must increase the sample of SN Ia with UV spectral time series to investigate the impact of metallicity on SN properties. To do this, we plan to obtain UV spectral time series of 3 SN Ia, nearly doubling the sample. UV observations are critical to the understanding of SN Ia explosions and progenitors. This is our best opportunity to further our understanding of SN Ia while directly improving the utility of SN Ia for cosmology.Using parallel observations, we will obtain Cepheid distances to a subset of the SN for free, providing precise SN luminosities and a better measurement of the Hubble constant. The UV Initiative is an excellent opportunity for HST to address significant questions in SN physics and cosmology.

  7. Improving Cosmological Distance Measurements Using Twin Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Fakhouri, H. K.; Boone, K.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Barbary, K.; Baugh, D.; Bongard, S.; Buton, C.; Chen, J.; Childress, M.; Chotard, N.; Copin, Y.; Fagrelius, P.; Feindt, U.; Fleury, M.; Fouchez, D.; Gangler, E.; Hayden, B.; Kim, A. G.; Kowalski, M.; Leget, P.-F.; Lombardo, S.; Nordin, J.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Ren, J.; Rigault, M.; Rubin, D.; Runge, K.; Saunders, C.; Scalzo, R.; Smadja, G.; Sofiatti, C.; Strovink, M.; Suzuki, N.; Tao, C.; Thomas, R. C.; Weaver, B. A.; Nearby Supernova Factory, The

    2015-12-01

    We introduce a method for identifying “twin” Type Ia supernovae (SNe Ia) and using them to improve distance measurements. This novel approach to SN Ia standardization is made possible by spectrophotometric time series observations from the Nearby Supernova Factory (SNfactory). We begin with a well-measured set of SNe, find pairs whose spectra match well across the entire optical window, and then test whether this leads to a smaller dispersion in their absolute brightnesses. This analysis is completed in a blinded fashion, ensuring that decisions made in implementing the method do not inadvertently bias the result. We find that pairs of SNe with more closely matched spectra indeed have reduced brightness dispersion. We are able to standardize this initial set of SNfactory SNe to 0.083 ± 0.012 mag, implying a dispersion of 0.072 ± 0.010 mag in the absence of peculiar velocities. We estimate that with larger numbers of comparison SNe, e.g., using the final SNfactory spectrophotometric data set as a reference, this method will be capable of standardizing high-redshift SNe to within 0.06-0.07 mag. These results imply that at least 3/4 of the variance in Hubble residuals in current SN cosmology analyses is due to previously unaccounted-for astrophysical differences among the SNe.

  8. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    SciTech Connect

    Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J.

    2014-12-20

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocity (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10{sup 3} km s{sup –1}){sup –1} for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.

  9. Quantitative comparison between type Ia supernova spectra at low and high redshifts: a case study

    NASA Astrophysics Data System (ADS)

    Garavini, G.; Folatelli, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Bronder, T.; Burns, M. S.; Conley, A.; Deustua, S. E.; Doi, M.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Kowalski, M.; Kuznetsova, N.; Lee, B. C.; Lidman, C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Thomas, R. C.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2007-08-01

    We develop a method to measure the strength of the absorption features in type Ia supernova (SN Ia) spectra and use it to make a quantitative comparisons between the spectra of type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 ≤ z ≤ 0.912) SNe Ia observed by the Supernova Cosmology Project. Through measurements of the strengths of these features and of the blueshift of the absorption minimum in Ca ii H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z < 0.15). One supernova in our high redshift sample, SN 2002fd at z = 0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

  10. Quantitative comparison between Type Ia supernova spectra at low and high redshifts: A case study

    SciTech Connect

    Supernova Cosmology Project; Nugent, Peter E; Garavini, G.; Folatelli, G.; Nobili, S.; Aldering, G.; Amanullah, R.; Antilogus, P.; Astier, P.; Blanc, G.; Bronder, J.; Burns, M.S.; Conley, A.; Deustua, S. E.; Doi, M.; Fabbro, S.; Fadeyev, V.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D. E.; Hook, I.; Howell, D. A.; Kashikawa, N.; Kim, A. G.; Kowalski, M.; Kuznetsova, N.; Lee, B. C.; Lidman, C.; Mendez, J.; Morokuma, T.; Motohara, K.; Nugent, P. E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A. L.; Stanishev, V.; Thomas, R. C.; Walton, N. A.; Wang, L.; Wood-Vasey, W. M.; Yasuda, N.

    2008-03-24

    We develop a method to measure the strength of the absorption features in type Ia supernova (SN Ia) spectra and use it to make a quantitative comparisons between the spectra of type Ia supernovae at low and high redshifts. In this case study, we apply the method to 12 high-redshift (0.212 = z = 0.912) SNe Ia observed by the Supernova Cosmology Project. Through measurements of the strengths of these features and of the blueshift of theabsorption minimum in Ca ii H&K, we show that the spectra of the high-redshift SNe Ia are quantitatively similar to spectra of nearby SNe Ia (z< 0.15). One supernova in our high redshift sample, SN 2002fd at z = 0.279, is found to have spectral characteristics that are associated with peculiar SN 1991T/SN 1999aa-like supernovae.

  11. Observation of cosmological time dilation using type Ia supernovae as clocks

    SciTech Connect

    Goldhaber, G., FNAL

    1998-09-01

    This work is based on the first results from a systematic search for high redshift Type Ia supernovae. Using filters in the R-band we discovered seven such SNe, with redshift z = 0.3-0.5, before or at maximum light. Type Ia SNe are known to be a homogeneous group of SNe, to first order, with very similar light curves, spectra and peak luminosities. In this talk we report that the light curves we observe are all broadened (time dilated) as expected from the expanding universe hypothesis. Small variations from the expected 1 + z broadening of the light curve widths can be attributed to a width-brightness correlation that has been observed for nearby SNe (z < 0.1). We show in this talk the first clear observation of the cosmological time dilation for macroscopic objects.

  12. Measuring nickel masses in Type Ia supernovae using cobalt emission in nebular phase spectra

    NASA Astrophysics Data System (ADS)

    Childress, Michael J.; Hillier, D. John; Seitenzahl, Ivo; Sullivan, Mark; Maguire, Kate; Taubenberger, Stefan; Scalzo, Richard; Ruiter, Ashley; Blagorodnova, Nadejda; Camacho, Yssavo; Castillo, Jayden; Elias-Rosa, Nancy; Fraser, Morgan; Gal-Yam, Avishay; Graham, Melissa; Howell, D. Andrew; Inserra, Cosimo; Jha, Saurabh W.; Kumar, Sahana; Mazzali, Paolo A.; McCully, Curtis; Morales-Garoffolo, Antonia; Pandya, Viraj; Polshaw, Joe; Schmidt, Brian; Smartt, Stephen; Smith, Ken W.; Sollerman, Jesper; Spyromilio, Jason; Tucker, Brad; Valenti, Stefano; Walton, Nicholas; Wolf, Christian; Yaron, Ofer; Young, D. R.; Yuan, Fang; Zhang, Bonnie

    2015-12-01

    The light curves of Type Ia supernovae (SNe Ia) are powered by the radioactive decay of 56Ni to 56Co at early times, and the decay of 56Co to 56Fe from ˜60 d after explosion. We examine the evolution of the [Co III] λ5893 emission complex during the nebular phase for SNe Ia with multiple nebular spectra and show that the line flux follows the square of the mass of 56Co as a function of time. This result indicates both efficient local energy deposition from positrons produced in 56Co decay and long-term stability of the ionization state of the nebula. We compile SN Ia nebular spectra from the literature and present 21 new late-phase spectra of 7 SNe Ia, including SN 2014J. From these we measure the flux in the [Co III] λ5893 line and remove its well-behaved time dependence to infer the initial mass of 56Ni (MNi) produced in the explosion. We then examine 56Ni yields for different SN Ia ejected masses (Mej - calculated using the relation between light-curve width and ejected mass) and find that the 56Ni masses of SNe Ia fall into two regimes: for narrow light curves (low stretch s ˜ 0.7-0.9), MNi is clustered near MNi ≈ 0.4 M⊙ and shows a shallow increase as Mej increases from ˜1 to 1.4 M⊙; at high stretch, Mej clusters at the Chandrasekhar mass (1.4 M⊙) while MNi spans a broad range from 0.6 to 1.2 M⊙. This could constitute evidence for two distinct SN Ia explosion mechanisms.

  13. A Search for New Candidate Super-Chandrasekhar-mass Type Ia Supernovae in the Nearby Supernova Factory Data Set

    NASA Astrophysics Data System (ADS)

    Scalzo, R.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Bongard, S.; Buton, C.; Canto, A.; Cellier-Holzem, F.; Childress, M.; Chotard, N.; Copin, Y.; Fakhouri, H. K.; Gangler, E.; Guy, J.; Hsiao, E. Y.; Kerschhaggl, M.; Kowalski, M.; Nugent, P.; Paech, K.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigault, M.; Runge, K.; Smadja, G.; Tao, C.; Thomas, R. C.; Weaver, B. A.; Wu, C.; Nearby Supernova Factory, The

    2012-09-01

    We present optical photometry and spectroscopy of five Type Ia supernovae discovered by the Nearby Supernova Factory selected to be spectroscopic analogs of the candidate super-Chandrasekhar-mass events SN 2003fg and SN 2007if. Their spectra are characterized by hot, highly ionized photospheres near maximum light, for which SN 1991T supplies the best phase coverage among available close spectral templates. Like SN 2007if, these supernovae are overluminous (-19.5 < MV < -20) and the velocity of the Si II λ6355 absorption minimum is consistent with being constant in time from phases as early as a week before, and up to two weeks after, B-band maximum light. We interpret the velocity plateaus as evidence for a reverse-shock shell in the ejecta formed by interaction at early times with a compact envelope of surrounding material, as might be expected for SNe resulting from the mergers of two white dwarfs. We use the bolometric light curves and line velocity evolution of these SNe to estimate important parameters of the progenitor systems, including 56Ni mass, total progenitor mass, and masses of shells and surrounding carbon/oxygen envelopes. We find that the reconstructed total progenitor mass distribution of the events (including SN 2007if) is bounded from below by the Chandrasekhar mass, with SN 2007if being the most massive. We discuss the relationship of these events to the emerging class of super-Chandrasekhar-mass SNe Ia, estimate the relative rates, compare the mass distribution to that expected for double-degenerate SN Ia progenitors from population synthesis, and consider implications for future cosmological Hubble diagrams.

  14. A SEARCH FOR NEW CANDIDATE SUPER-CHANDRASEKHAR-MASS TYPE Ia SUPERNOVAE IN THE NEARBY SUPERNOVA FACTORY DATA SET

    SciTech Connect

    Scalzo, R.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Hsiao, E. Y.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.; Nugent, P.; Collaboration: Nearby Supernova Factory; and others

    2012-09-20

    We present optical photometry and spectroscopy of five Type Ia supernovae discovered by the Nearby Supernova Factory selected to be spectroscopic analogs of the candidate super-Chandrasekhar-mass events SN 2003fg and SN 2007if. Their spectra are characterized by hot, highly ionized photospheres near maximum light, for which SN 1991T supplies the best phase coverage among available close spectral templates. Like SN 2007if, these supernovae are overluminous (-19.5 < M{sub V} < -20) and the velocity of the Si II {lambda}6355 absorption minimum is consistent with being constant in time from phases as early as a week before, and up to two weeks after, B-band maximum light. We interpret the velocity plateaus as evidence for a reverse-shock shell in the ejecta formed by interaction at early times with a compact envelope of surrounding material, as might be expected for SNe resulting from the mergers of two white dwarfs. We use the bolometric light curves and line velocity evolution of these SNe to estimate important parameters of the progenitor systems, including {sup 56}Ni mass, total progenitor mass, and masses of shells and surrounding carbon/oxygen envelopes. We find that the reconstructed total progenitor mass distribution of the events (including SN 2007if) is bounded from below by the Chandrasekhar mass, with SN 2007if being the most massive. We discuss the relationship of these events to the emerging class of super-Chandrasekhar-mass SNe Ia, estimate the relative rates, compare the mass distribution to that expected for double-degenerate SN Ia progenitors from population synthesis, and consider implications for future cosmological Hubble diagrams.

  15. The Host Galaxies of Type Ia Supernovae Discovered by the Palomar Transient Factory

    NASA Technical Reports Server (NTRS)

    Pan, Y.-C.; Sullivan, M.; McGuire, K.; Hook, I. M.; Nugent, P. E.; Howell, D. A.; Arcavi, I.; Botyanszki, J.; Cenko, Stephen Bradley; DeRose, J.

    2013-01-01

    We present spectroscopic observations of the host galaxies of 82 low-redshift type Ia supernovae (SNe Ia) discovered by the Palomar Transient Factory (PTF). We determine star-formation rates, gas-phase stellar metallicities, and stellar masses and ages of these objects. As expected, strong correlations between the SN Ia light-curve width (stretch) and the host age mass metallicity are found: fainter, faster-declining events tend to be hosted by older massive metal-rich galaxies. There is some evidence that redder SNe Ia explode in higher metallicity galaxies, but we found no relation between the SN colour and host galaxy extinction based on the Balmer decrement, suggesting that the colour variation of these SNe does not primarily arise from this source. SNe Ia in higher-mass metallicity galaxies also appear brighter after stretch colour corrections than their counterparts in lower mass hosts, and the stronger correlation is with gas-phase metallicity suggesting this may be the more important variable. We also compared the host stellar mass distribution to that in galaxy targeted SN surveys and the high-redshift untargeted Supernova Legacy Survey (SNLS). SNLS has many more low mass galaxies, while the targeted searches have fewer. This can be explained by an evolution in the galaxy stellar mass function, coupled with a SN delay-time distribution proportional to t1. Finally, we found no significant difference in the mass--metallicity relation of our SN Ia hosts compared to field galaxies, suggesting any metallicity effect on the SN Ia rate is small.

  16. Verifying the Cosmological Utility of Type Ia Supernovae: Implications of a Dispersion in the Ultraviolet Spectra

    SciTech Connect

    Nugent, Peter E; Ellis, R.S.; Sullivan, M.; Nugent, P.E.; Howell, D.A.; Gal-Yam, A.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R.; Conley, A.; Fouchez, D.; Guy, J.; Hardin, D.; Hook, I.; Pain, R.; Perrett, K.; Pritchet, C.J.; Regnault, N.

    2008-02-28

    We analyze the mean rest-frame ultraviolet (UV) spectrum of Type Ia Supernovae (SNe) and its dispersion using high signal-to-noise ratio Keck-I/LRIS-B spectroscopy for a sample of 36 events at intermediate redshift (z=0.5) discovered by the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). We introduce a new method for removing host galaxy contamination in our spectra, exploiting the comprehensive photometric coverage of the SNLS SNe and their host galaxies, thereby providing the first quantitative view of the UV spectral properties of a large sample of distant SNe Ia. Although the mean SN Ia spectrum has not evolved significantly over the past 40percent of cosmic history, precise evolutionary constraints are limited by the absence of a comparable sample of high-quality local spectra. The mean UV spectrum of our z~;;=0.5 SNe Ia and its dispersion is tabulated for use in future applications. Within the high-redshift sample, we discover significant UV spectral variations and exclude dust extinction as the primary cause by examining trends with the optical SN color. Although progenitor metallicity may drive some of these trends, the variations we see are much larger than predicted in recent models and do not follow expected patterns. An interesting new result is a variation seen in the wavelength of selected UV features with phase. We also demonstrate systematic differences in the SN Ia spectral features with SN light curve width in both the UV and the optical. We show that these intrinsic variations could represent a statistical limitation in the future use of high-redshift SNe Ia for precision cosmology. We conclude that further detailed studies are needed, both locally and at moderate redshift where the rest-frame UV can be studied precisely, in order that future missions can confidently be planned to fully exploit SNe Ia as cosmological probes.

  17. The Diffuse Gamma-Ray Background from Type Ia Supernovae

    NASA Technical Reports Server (NTRS)

    Lien, Amy; Fields, Brian D.

    2012-01-01

    The origin of the diffuse extragalactic gamma-ray background (EGB) has been intensively studied but remains unsettled. Current popular source candidates include unresolved star-forming galaxies, starburst galaxies, and blazars. In this paper we calculate the EGB contribution from the interactions of cosmic rays accelerated by Type Ia supernovae, extending earlier work which only included core-collapse supernovae. We consider Type Ia events in star-forming galaxies, but also in quiescent galaxies that lack star formation. In the case of star-forming galaxies, consistently including Type Ia events makes little change to the star-forming EGB prediction, so long as both supernova types have the same cosmic-ray acceleration efficiencies in star-forming galaxies. Thus our updated EGB estimate continues to show that star-forming galaxies can represent a substantial portion of the signal measured by Fermi. In the case of quiescent galaxies, conversely, we find a wide range of possibilities for the EGB contribution. The dominant uncertainty we investigated comes from the mass in hot gas in these objects, which provides targets for cosmic rays: total gas masses are as yet poorly known, particularly at larger radii. Additionally, the EGB estimation is very sensitive to the cosmic-ray acceleration efficiency and confinement, especially in quiescent galaxies. In the most optimistic allowed scenarios, quiescent galaxies can be an important source of the EGB. In this case, star-forming galaxies and quiescent galaxies together will dominate the EGB and leave little room for other contributions. If other sources, such as blazars, are found to have important contributions to the EGB, then either the gas mass or cosmic-ray content of quiescent galaxies must be significantly lower than in their star-forming counterparts. In any case, improved Fermi EGB measurements will provide important constraints on hot gas and cosmic rays in quiescent galaxies.

  18. Turbulence-Flame Interactions in Type Ia Supernovae

    SciTech Connect

    Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 50A-1148, Berkeley, CA 94720; Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064; Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794; Aspden, Andrew J; Aspden, Andrew J.; Bell, John B.; Day, Marc S.; Woosley, Stan E.; Zingale, Mike

    2008-05-27

    The large range of time and length scales involved in type Ia supernovae (SN Ia) requires the use of flame models. As a prelude to exploring various options for flame models, we consider, in this paper, high-resolution three-dimensional simulations of the small-scale dynamics of nuclear flames in the supernova environment in which the details of the flame structure are fully resolved. The range of densities examined, 1 to 8 x 107 g cm-3, spans the transition from the laminar flamelet regime to the distributed burning regime where small scale turbulence disrupts the flame. The use of a low Mach number algorithm facilitates the accurate resolution of the thermal structure of the flame and the inviscid turbulent kinetic energy cascade, while implicitly incorporating kinetic energy dissipation at the grid-scale cutoff. For an assumed background of isotropic Kolmogorov turbulence with an energy characteristic of SN Ia, we find a transition density between 1 and 3 x 107 g cm-3 where the nature of the burning changes ualitatively. By 1 x 107 g cm-3, energy diffusion by conduction and radiation is exceeded, on the flame scale, by turbulent advection. As a result, the effective Lewis Number approaches unity. That is, the flame resembles a laminar flame, but is turbulently broadened with an effective diffusion coefficient, D_T \\sim u' l, where u' is the turbulent intensity and l is the integral scale. For the larger integral scales characteristic of a real supernova, the flame structure is predicted to become complex and unsteady. Implications for a possible transition to detonation are discussed.

  19. Simulating the Double-Degenerate Channel for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Jumper, Kevin; Fisher, R. T.

    2013-01-01

    Type Ia Supernovae (SNe Ia) are the thermonuclear explosions of white dwarfs, and are of fundamental importance to the study of many phenomena, including the expansion of the universe and dark energy. For many years, it was suspected that that SNe Ia occur in binary systems, but the identity of the white dwarf’s companion could not be determined. A leading hypothesis, the single-degenerate (SD) channel, suggests that the companion is either on the main sequence or a red giant, and that the white dwarf accretes matter off of its companion until it nears the Chandrasekhar limit of 1.4 solar masses, causing the white dwarf to detonate shortly thereafter. Another hypothesis, the double-degenerate (DD) channel, proposes that both stars in the system are white dwarfs and that they merge together, resulting in a central, rapidly spinning white dwarf, surrounded by a thick disk of remnant material. Precisely how this triggers a detonation remains unclear; early spherically-symmetric models by Nomoto et al. indicated that merged white dwarfs would collapse to neutron stars instead of producing supernovae. Recent observations of two supernovae discovered last year by the Palomar Transient Factory (PTF), SN 2011 fe and SN PTF11k, have provided evidence that suggests that both the SD and DD channels coexist in nature. Consequently, it is important to develop simulations that can resolve the mystery of the DD channel’s detonation mechanism. To this end, we use a smoothed-particle hydrodynamics (SPH) code, GADGET-1, to model the rotating flows characteristic of merged DD systems and study how they evolve with time.

  20. Type Ia supernovae from merging white dwarfs. II. Post-merger detonations

    SciTech Connect

    Raskin, Cody; Kasen, Daniel; Moll, Rainer; Woosley, Stan; Schwab, Josiah

    2014-06-10

    Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multidimensional simulations of 'tamped' SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale height of the disk, which depends sensitively on the binary mass ratio, and the total {sup 56}Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant and show that a longer time delay between merger and explosion probably leads to larger {sup 56}Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical 'tamped' SN Ia for explaining the class of 'super-Chandrasekhar' SN Ia.

  1. Recurrent novae as progenitors of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Kato, Mariko; Hachisu, Izumi

    2012-09-01

    Recurrent novae are binaries harboring a very massive white dwarf (WD), as massive as the Chandrasekhar mass, because of their short recurrence periods of nova outbursts of 10--100 years. Thus, recurrent novae are considered as candidates of progenitors of Type Ia supernovae (SNe~Ia). In fact, the SN~Ia PTF~11kx showed evidence that its progenitor is a symbiotic recurrent nova. The binary parameters of recurrent novae have been well determined, especially for the ones with frequent outbursts, U Sco and RS Oph, which provide useful information on the elementary processes in binary evolution toward SNe~Ia. Therefore we use them as testbeds for binary evolution models. For example, the original double degenerate (DD) scenario cannot reproduce RS Oph type recurrent novae, whereas the new single degenerate (SD) scenario proposed by Hachisu et al. (1999) naturally can. We review main differences between the SD and DD scenarios, especially for their basic processes of binary evolution. We also discuss observational support for each physical process. The original DD scenario is based on the physics in 1980s, whereas the SD scenario on more recent physics including the new opacity, mass-growth efficiency of WDs, and optically thick winds developed in nova outbursts.

  2. Nucleosynthesis in type Ia supernovae driven by asymmetric thermonuclear ignition

    SciTech Connect

    Maeda, Keiichi

    2012-11-12

    Type Ia Supernovae (SNe Ia) are believed to be thermonuclear explosions of a white dwarf. They can be used as mature cosmological standardized candles, leading to the discovery of the accelerating expansion of the Universe. However, the explosion mechanism has not yet been fully clarified. In this paper, we first present nucleosynthetic features of a leading explosion scenario, namely a delayed-detonation scenario. Based on this, we propose a new and strong observational constraint on the explosion mechanism through emission lines from neutron-rich Fe-peaks. Especially, we show that an asymmetry in the explosion is likely a generic feature. We further argue that the diversity arising from various viewing angles can be an origin of observational diversities of SNe Ia seen in their spectral features (suspected possible biases in cosmology) and colors (related to the extinction estimate in cosmology). Using these new insights could open up a possibility of using SNe Ia as more precise distance indicators than currently employed.

  3. Lensed Type Ia supernovae as probes of cluster mass models

    NASA Astrophysics Data System (ADS)

    Nordin, J.; Rubin, D.; Richard, J.; Rykoff, E.; Aldering, G.; Amanullah, R.; Atek, H.; Barbary, K.; Deustua, S.; Fakhouri, H. K.; Fruchter, A. S.; Goobar, A.; Hook, I.; Hsiao, E. Y.; Huang, X.; Kneib, J.-P.; Lidman, C.; Meyers, J.; Perlmutter, S.; Saunders, C.; Spadafora, A. L.; Suzuki, N.; Supernova Cosmology Project

    2014-05-01

    Using three magnified Type Ia supernovae (SNe Ia) detected behind CLASH (Cluster Lensing and Supernovae with Hubble) clusters, we perform a first pilot study to see whether standardizable candles can be used to calibrate cluster mass maps created from strong lensing observations. Such calibrations will be crucial when next-generation Hubble Space Telescope cluster surveys (e.g. Frontier) provide magnification maps that will, in turn, form the basis for the exploration of the high-redshift Universe. We classify SNe using combined photometric and spectroscopic observations, finding two of the three to be clearly of Type Ia and the third probable. The SNe exhibit significant amplification, up to a factor of 1.7 at ˜5σ significance (SN-L2). We conducted this as a blind study to avoid fine-tuning of parameters, finding a mean amplification difference between SNe and the cluster lensing models of 0.09 ± 0.09stat ± 0.05sys mag. This impressive agreement suggests no tension between cluster mass models and high-redshift-standardized SNe Ia. However, the measured statistical dispersion of σμ = 0.21 mag appeared large compared to the dispersion expected based on statistical uncertainties (0.14). Further work with the SN and cluster lensing models, post-unblinding, reduced the measured dispersion to σμ = 0.12. An explicit choice should thus be made as to whether SNe are used unblinded to improve the model, or blinded to test the model. As the lensed SN samples grow larger, this technique will allow improved constraints on assumptions regarding e.g. the structure of the dark matter halo.

  4. Restframe I-band Hubble diagram for type Ia supernovae up toredshift z ~; 0.5

    SciTech Connect

    Nobili, S.; Amanullah, R.; Garavini, G.; Goobar, A.; Lidman, C.; Stanishev, V.; Aldering, G.; Antilogus, P.; Astier, P.; Burns, M.S.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fadeyev, V.; Folatelli,G.; Gibbons, R.; Goldhaber, G.; Groom, D.E.; Hook, I.; Howell, D.A.; Kim,A.G.; Knop, R.A.; Nugent, P.E.; Pain, R.; Perlmutter, S.; Quimby, R.; Raux, J.; Regnault, N.; Ruiz-Lapuente, P.; Sainton, G.; Schahmaneche, K.; Smith, E.; Spadafora, A.L.; Thomas, R.C.; Wang, L.

    2005-04-01

    We present a novel technique for fitting rest frame I-bandlight curves on a data set of 42 type Ia supernovae (SNe Ia). Using the result of the fit, we construct a Hubble diagram with 26 SNe from the subset at 0.01 < z < 0.1. Adding two SNe at z {approx} 0.5 yields results consistent with a flat Lambda-dominated ''concordance universe'' (OmegaM,Omega Lambda) = (0.25, 0.75). For one of these, SN 2000fr, new near infrared data are presented. The high redshift supernova NIR data are also used to test for systematic effects in the use of SNe Ia as distance estimators. A flat, Lambda = 0, universe where the faintness of supernovae at z {approx} 0.5 is due to grey dust homogeneously distributed in the intergalactic medium is disfavored based on the high-z Hubble diagram using this small data-set. However, the uncertainties are large and no firm conclusion may be drawn. We explore the possibility of setting limits on intergalactic dust based on B - I and B - V color measurements, and conclude that about 20 well measured SNe are needed to give statistically significant results. We also show that the high redshift restframe I-band data points are better fit by light curve templates that show a prominent second peak, suggesting that they are not intrinsically underluminous.

  5. Early-type Host Galaxies of Type Ia Supernovae. I. Evidence for Downsizing

    NASA Astrophysics Data System (ADS)

    Kang, Yijung; Kim, Young-Lo; Lim, Dongwook; Chung, Chul; Lee, Young-Wook

    2016-03-01

    Type Ia supernova (SN Ia) cosmology provides the most direct evidence for the presence of dark energy. This result is based on the assumption that the lookback time evolution of SN Ia luminosity, after light curve corrections, would be negligible. Recent studies show, however, that the Hubble residual (HR) of SN Ia is correlated with the mass and morphology of host galaxies, implying the possible dependence of SN Ia luminosity on host galaxy properties. In order to investigate this more directly, we have initiated a spectroscopic survey for early-type host galaxies, for which population age and metallicity can be more reliably determined from the absorption lines. In this first paper of the series, we present here the results from high signal-to-noise ratio (≳100 per pixel) spectra for 27 nearby host galaxies in the southern hemisphere. For the first time in host galaxy studies, we find a significant (∼3.9σ) correlation between host galaxy mass (velocity dispersion) and population age, which is consistent with the “downsizing” trend among non-host early-type galaxies. This result is rather insensitive to the choice of population synthesis models. Since we find no correlation with metallicity, our result suggests that stellar population age is mainly responsible for the relation between host mass and HR. If confirmed, this would imply that the luminosity evolution plays a major role in the systematic uncertainties of SN Ia cosmology.

  6. Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies

    NASA Astrophysics Data System (ADS)

    Sullivan, M.; Le Borgne, D.; Pritchet, C. J.; Hodsman, A.; Neill, J. D.; Howell, D. A.; Carlberg, R. G.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K.; Regnault, N.; Rich, J.; Taillet, R.; Baumont, S.; Bronder, J.; Ellis, R. S.; Filiol, M.; Lusset, V.; Perlmutter, S.; Ripoche, P.; Tao, C.

    2006-09-01

    We show that Type Ia supernovae (SNe Ia) are formed within both very young and old stellar populations, with observed rates that depend on the stellar mass and mean star formation rates (SFRs) of their host galaxies. Models in which the SN Ia rate depends solely on host galaxy stellar mass are ruled out with >99% confidence. Our analysis is based on 100 spectroscopically confirmed SNe Ia, plus 24 photometrically classified events, all from the Supernova Legacy Survey (SNLS) and distributed over 0.2Ia host galaxies by fitting their broadband spectral energy distributions with the galaxy spectral synthesis code PÉGASE.2. We show that the SN Ia rate per unit mass is proportional to the specific SFR of the parent galaxies-more vigorously star-forming galaxies host more SNe Ia per unit stellar mass, broadly equivalent to the trend of increasing SN Ia rate in later type galaxies seen in the local universe. Following earlier suggestions for a simple ``two-component'' model approximating the SN Ia rate, we find bivariate linear dependencies of the SN Ia rate on both the stellar masses and the mean SFRs of the host systems. We find that the SN Ia rate can be well represented as the sum of 5.3+/-1.1×10-14 SNe yr-1 Msolar-1 and 3.9+/-0.7×10-4 SNe yr-1 (Msolar yr-1)-1 of star formation. We also demonstrate a dependence of distant SN Ia light-curve shapes on star formation in the host galaxy, similar to trends observed locally. Passive galaxies, with no star formation, preferentially host faster declining/dimmer SNe Ia, while brighter events are found in systems with ongoing star formation.

  7. THE VERY YOUNG TYPE Ia SUPERNOVA 2013dy: DISCOVERY, AND STRONG CARBON ABSORPTION IN EARLY-TIME SPECTRA

    SciTech Connect

    Zheng, WeiKang; Filippenko, Alexei V.; Nugent, Peter E.; Graham, Melissa; Kelly, Patrick L.; Fox, Ori D.; Shivvers, Isaac; Clubb, Kelsey I.; Li, Weidong; Silverman, Jeffrey M.; Howie Marion, G.; Kasen, Daniel; Wang, Xiaofeng; Valenti, Stefano; Howell, D. Andrew; Ciabattari, Fabrizio; Cenko, S. Bradley; Balam, Dave; Hsiao, Eric; Sand, David; and others

    2013-11-20

    The Type Ia supernova (SN Ia) 2013dy in NGC 7250 (d ≈ 13.7 Mpc) was discovered by the Lick Observatory Supernova Search. Combined with a prediscovery detection by the Italian Supernova Search Project, we are able to constrain the first-light time of SN 2013dy to be only 0.10 ± 0.05 days (2.4 ± 1.2 hr) before the first detection. This makes SN 2013dy the earliest known detection of an SN Ia. We infer an upper limit on the radius of the progenitor star of R {sub 0} ≲ 0.25 R {sub ☉}, consistent with that of a white dwarf. The light curve exhibits a broken power law with exponents of 0.88 and then 1.80. A spectrum taken 1.63 days after first light reveals a C II absorption line comparable in strength to Si II. This is the strongest C II feature ever detected in a normal SN Ia, suggesting that the progenitor star had significant unburned material. The C II line in SN 2013dy weakens rapidly and is undetected in a spectrum 7 days later, indicating that C II is detectable for only a very short time in some SNe Ia. SN 2013dy reached a B-band maximum of M{sub B} = –18.72 ± 0.03 mag ∼17.7 days after first light.

  8. Unified One-Dimensional Simulations of Gamma-Ray Line Emission from Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Milne, P. A.; Hungerford, A. L.; Fryer, C. L.; Evans, T. M.; Urbatsch, T. J.; Boggs, S. E.; Isern, J.; Bravo, E.; Hirschmann, A.; Kumagai, S.; Pinto, P. A.; The, L.-S.

    2004-10-01

    The light curves of Type Ia supernovae (SNe Ia) are powered by gamma rays emitted by the decay of radioactive elements such as 56Ni and its decay products. These gamma rays are downscattered, absorbed, and eventually reprocessed into the optical emission that makes up the bulk of all SN observations. Detection of the gamma rays that escape the expanding star provide the only direct means to study this power source for SN Ia light curves. Unfortunately, disagreements between calculations for the gamma-ray lines have made it difficult to interpret any gamma-ray observations. Here we present a detailed comparison of the major gamma-ray line transport codes for a series of one-dimensional SN Ia models. Discrepancies in past results were due to errors in the codes, and the corrected versions of the seven different codes yield very similar results. This convergence of the simulation results allows us to infer more reliable information from the current set of gamma-ray observations of SNe Ia. The observations of SN 1986G, SN 1991T, and SN 1998bu are consistent with explosion models based on their classification: subluminous, superluminous, and normally luminous, respectively.

  9. Direct Numerical Simulations of Flame Instabilities in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zingale, M.; Bell, J. B.; Day, M. S.; Rendleman, C. A.; Woosley, S. E.

    2003-12-01

    Instabilities serve an important role in accelerating a thermonuclear flame in a white dwarf to a large fraction of the speed of sound (perhaps to a supersonic detonation), consuming the carbon/oxygen, and producing a Type Ia supernovae. The precise mechanism for this acceleration is not well understood, but large scale simulations show that a deflagration alone can unbind the star. We present fully resolved, multidimensional calculations of Rayleigh-Taylor unstable flames in conditions appropriate to the late stages of Type Ia SNe, using a low Mach number hydrodynamics code. At densities below 1.e7 g/cc, a fundamental change in the burning is observed, as the flame transitions from the wrinkled flame to the distributed burning regime. Significant acceleration is observed for all densities we study, limited only by the size of the domain we can address. We compare with corresponding simulations of the Landau-Darrieus instability. We discuss the physics of these instabilities on the small scales and the implications they have for large scale flame modeling and the possibility for deflagration to detonation transitions. Support for this work was provided by the DOE grant No. DE-FC02-01ER41176 to the Supernova Science Center/UCSC and the Applied Mathematics Program of the DOE Office of Mathematics, Information, and Computational Sciences under the U.S. Department of Energy under contract No. DE-AC03-76SF00098.

  10. Type Ia Supernovae: Explosion Models versus Observational Constraints

    NASA Astrophysics Data System (ADS)

    Branch, David

    2005-04-01

    To have confidence in using Type Ia supernovae (SNe Ia) to determine the expansion history of the universe, and thereby probe the nature of the dark energy, we must advance our understanding of SN Ia physics. In the standard model a carbon--oxygen white dwarf accretes matter from a companion star, approaches the Chandrasekhar mass, ignites carbon fusion, encounters a thermonuclear instability, and explodes completely. The final kinetic energy of the ejected matter is the energy released by fusion minus the white--dwarf binding energy. The kinetic energy inferred from observations indicates that practically the whole white dwarf undergoes fusion. The peak luminosity depends on the mass of freshly synthesized ^56Ni, which provides a delayed release of energy while decaying through ^56Co to stable ^56Fe. The observed SN Ia luminosity requires that nearly half of the mass is synthesized to ^56Ni. Spectroscopic observations indicate that the composition structure of the ejected matter is radially stratified, with a core of iron--group elements surrounded by lighter elements such as calcium, silicon, and oxygen. Spherically symmetric (1D) nuclear-hydrodynamical explosion models that meet these requirements have been calculated, by parameterizing the velocity of the burning front. In recent years more self--consistent 3D models have been calculated. Deflagration models, in which the burning front remains subsonic, undergo insufficient fusion and lack the stratified composition structure. Delayed--detonation models, which invoke a transition to supersonic front propagation, fare better, although it is not known whether the transition really can occur. I will discuss the status of explosion models versus observational constraints (mostly spectroscopic), and the challenging task of relating the various observational manifestations of SN Ia diversity to their physical causes.

  11. The Type Ia Supernova Rate and Delay-Time Distribution

    NASA Astrophysics Data System (ADS)

    Graur, Or

    2013-11-01

    The nature of the progenitor stellar systems of thermonuclear, or Type Ia, supernovae (SNe Ia) remains unknown. Unlike core-collapse (CC) SNe, which have been successfully linked, at least partially, to various types of massive stars, the progenitors of SNe Ia are to date undetected in pre-explosion images and the nature of these progenitors can only be probed using indirect methods. In this thesis, I present three SN surveys aimed at measuring the rates at which SNe Ia explode at different times throughout the Universe's history and in different types of galaxies. I use these rates to re-construct the SN Ia delay-time distribution (DTD), a function that connects between the star-formation history (SFH) of a specific stellar environment and its SN Ia rate, and I use it to constrain different progenitor models. In Chapter 1, I provide a brief introduction of the field. This is followed, in Chapter 2, by a description of the Subaru Deep Field (SDF) SN Survey. Over a period of three years between 2005-2008, the SDF was observed on four independent epochs with Suprime-Cam on the Subaru 8.2-m telescope, with two nights of exposure per epoch, in the R, i', and z' bands. In this survey, I discover 150 SNe out to redshift z ~ 2, including 27 SNe Ia in the range 1.0 < z < 1.5 and 10 in the range 1.5 < z < 2.0. The SN Ia rate measurements from this sample are consistent with those derived from the Hubble Space Telescope (HST) GOODS sample, but the overall uncertainty of the 1.5 < z < 2.0 measurement is a factor of 2 smaller, of 35-50%. Based on this sample, we find that the SN Ia rate evolution levels off at 1.0 < z < 2.0, but shows no sign of declining. Combining our SN Ia rate measurements and those from the literature, and comparing to a wide range of possible SFHs, the best-fitting DTD is a power law of the form Psi(t) ~ t^beta, with index beta = -1.1 ± 0.1 (statistical) ± 0.17 (systematic). By combining the contribution from CC SNe, based on the wide range of SFHs

  12. Gamma-ray diagnostics of Type Ia supernovae. Predictions of observables from three-dimensional modeling

    NASA Astrophysics Data System (ADS)

    Summa, A.; Ulyanov, A.; Kromer, M.; Boyer, S.; Röpke, F. K.; Sim, S. A.; Seitenzahl, I. R.; Fink, M.; Mannheim, K.; Pakmor, R.; Ciaraldi-Schoolmann, F.; Diehl, R.; Maeda, K.; Hillebrandt, W.

    2013-06-01

    Context. Although the question of progenitor systems and detailed explosion mechanisms still remains a matter of discussion, it is commonly believed that Type Ia supernovae (SNe Ia) are production sites of large amounts of radioactive nuclei. Even though the gamma-ray emission due to radioactive decays is responsible for powering the light curves of SNe Ia, gamma rays themselves are of particular interest as a diagnostic tool because they directly lead to deeper insight into the nucleosynthesis and the kinematics of these explosion events. Aims: We study the evolution of gamma-ray line and continuum emission of SNe Ia with the objective of analyzing the relevance of observations in this energy range. We seek to investigate the chances for the success of future MeV missions regarding their capabilities for constraining the intrinsic properties and the physical processes of SNe Ia. Methods: Focusing on two of the most broadly discussed SN Ia progenitor scenarios - a delayed detonation in a Chandrasekhar-mass white dwarf (WD) and a violent merger of two WDs - we used three-dimensional explosion models and performed radiative transfer simulations to obtain synthetic gamma-ray spectra. Both chosen models produce the same mass of 56Ni and have similar optical properties that are in reasonable agreement with the recently observed supernova SN 2011fe. We examine the gamma-ray spectra with respect to their distinct features and draw connections to certain characteristics of the explosion models. Applying diagnostics, such as line and hardness ratios, the detection prospects for future gamma-ray missions with higher sensitivities in the MeV energy range are discussed. Results: In contrast to the optical regime, the gamma-ray emission of our two chosen models proves to be quite different. The almost direct connection of the emission of gamma rays to fundamental physical processes occurring in SNe Ia permits additional constraints concerning several explosion model properties

  13. A TYPE Ia SUPERNOVA AT REDSHIFT 1.55 IN HUBBLE SPACE TELESCOPE INFRARED OBSERVATIONS FROM CANDELS

    SciTech Connect

    Rodney, Steven A.; Riess, Adam G.; Jones, David O.; Dahlen, Tomas; Ferguson, Henry C.; Casertano, Stefano; Grogin, Norman A.; Strolger, Louis-Gregory; Hjorth, Jens; Frederiksen, Teddy F.; Weiner, Benjamin J.; Mobasher, Bahram; Challis, Peter; Kirshner, Robert P.; Filippenko, Alexei V.; Garnavich, Peter; Hayden, Brian; Graur, Or; Jha, Saurabh W.; and others

    2012-02-10

    We report the discovery of a Type Ia supernova (SN Ia) at redshift z = 1.55 with the infrared detector of the Wide Field Camera 3 (WFC3-IR) on the Hubble Space Telescope (HST). This object was discovered in CANDELS imaging data of the Hubble Ultra Deep Field and followed as part of the CANDELS+CLASH Supernova project, comprising the SN search components from those two HST multi-cycle treasury programs. This is the highest redshift SN Ia with direct spectroscopic evidence for classification. It is also the first SN Ia at z > 1 found and followed in the infrared, providing a full light curve in rest-frame optical bands. The classification and redshift are securely defined from a combination of multi-band and multi-epoch photometry of the SN, ground-based spectroscopy of the host galaxy, and WFC3-IR grism spectroscopy of both the SN and host. This object is the first of a projected sample at z > 1.5 that will be discovered by the CANDELS and CLASH programs. The full CANDELS+CLASH SN Ia sample will enable unique tests for evolutionary effects that could arise due to differences in SN Ia progenitor systems as a function of redshift. This high-z sample will also allow measurement of the SN Ia rate out to z Almost-Equal-To 2, providing a complementary constraint on SN Ia progenitor models.

  14. On Silicon Group Elements Ejected by Supernovae Type Ia

    NASA Astrophysics Data System (ADS)

    De, Soma; Timmes, F. X.; Brown, Edward F.; Calder, Alan C.; Townsley, Dean M.; Athanassiadou, Themis; Chamulak, David A.; Hawley, Wendy; Jack, Dennis

    2014-06-01

    There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y e at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y e at explosion from the abundances recovered from an observed spectra. We show that measurement of 28Si, 32S, 40Ca, and 54Fe abundances can be used to construct Y e in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y e to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the 28Si abundance is insensitive to Y e, the 32S abundance has a nearly linear trend with Y e, and the 40Ca abundance has a nearly quadratic trend with Y e. We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.

  15. On silicon group elements ejected by supernovae type IA

    SciTech Connect

    De, Soma; Timmes, F. X.; Brown, Edward F.; Calder, Alan C.; Townsley, Dean M.; Athanassiadou, Themis; Chamulak, David A.; Hawley, Wendy; Jack, Dennis

    2014-06-01

    There is evidence that the peak brightness of a Type Ia supernova is affected by the electron fraction Y {sub e} at the time of the explosion. The electron fraction is set by the aboriginal composition of the white dwarf and the reactions that occur during the pre-explosive convective burning. To date, determining the makeup of the white dwarf progenitor has relied on indirect proxies, such as the average metallicity of the host stellar population. In this paper, we present analytical calculations supporting the idea that the electron fraction of the progenitor systematically influences the nucleosynthesis of silicon group ejecta in Type Ia supernovae. In particular, we suggest the abundances generated in quasi-nuclear statistical equilibrium are preserved during the subsequent freeze-out. This allows potential recovery of Y {sub e} at explosion from the abundances recovered from an observed spectra. We show that measurement of {sup 28}Si, {sup 32}S, {sup 40}Ca, and {sup 54}Fe abundances can be used to construct Y {sub e} in the silicon-rich regions of the supernovae. If these four abundances are determined exactly, they are sufficient to recover Y {sub e} to 6%. This is because these isotopes dominate the composition of silicon-rich material and iron-rich material in quasi-nuclear statistical equilibrium. Analytical analysis shows the {sup 28}Si abundance is insensitive to Y {sub e}, the {sup 32}S abundance has a nearly linear trend with Y {sub e}, and the {sup 40}Ca abundance has a nearly quadratic trend with Y {sub e}. We verify these trends with post-processing of one-dimensional models and show that these trends are reflected in the model's synthetic spectra.

  16. Circumstellar Dust in the Remnant of Kepler's Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Williams, Brian J.; Blair, W. P.; Borkowski, K. J.; Ghavamian, P.; Long, K. S.; Reynolds, S. P.; Sankrit, R.

    2012-01-01

    Kepler's Supernova Remnant, the remains of the supernova of 1604, is widely believed to be the result of a Type Ia supernova, and shows IR, optical, and X-ray evidence for an interaction of the blast wave with a dense circumstellar medium (CSM). We present low-resolution 7.5-38 μm IR spectra of selected regions within the remnant, obtained with the Spitzer Space Telescope. Spectra of those regions where the blast wave is encountering circumstellar material show strong features at 10 and 18 μm. These spectral features are most consistent with various silicate particles, likely formed in the stellar outflow from the progenitor system during the AGB stage of evolution. While it is possible that some features may arise from freshly formed ejecta dust, morphological evidence suggests that it is more likely that they originate from dust in the CSM. We isolate the dust grain absorption efficiencies for several regions in Kepler and compare them to laboratory data for dust particles of various compositions. The hottest dust in the remnant originates in the regions of dense, radiatively shocked clumps of gas, identified in optical images. Models of collisionally heated dust show that such shocks are capable of heating grains to temperatures of > 150 K. We confirm the finding that Kepler's SNR is still interacting with CSM in at least part of the remnant after 400 years. The significant quantities of silicate dust are consistent with a relatively massive progenitor.

  17. Signatures of a companion star in type Ia supernovae

    SciTech Connect

    Maeda, Keiichi; Kutsuna, Masamichi; Shigeyama, Toshikazu

    2014-10-10

    Although type Ia supernovae (SNe Ia) have been used as precise cosmological distance indicators, their progenitor systems remain unresolved. One of the key questions is whether there is a nondegenerate companion star at the time of a thermonuclear explosion of a white dwarf. In this paper, we investigate whether an interaction between the SN ejecta and the companion star may result in observable footprints around the maximum brightness and thereafter, by performing multidimensional radiation transfer simulations based on hydrodynamic simulations of the interaction. We find that such systems result in variations in various observational characteristics due to different viewing directions, and the predicted behaviors (redder and fainter for the companion direction) are the opposite of what were suggested by the previous study. The variations are generally modest and within observed scatters. However, the model predicts trends between some observables different from those observationally derived, so a large sample of SNe Ia with small calibration errors may be used to constrain the existence of such a companion star. The variations in different colors in optical band passes can be mimicked by external extinctions, so such an effect could be a source of scatter in the peak luminosity and derived distance. After the peak, hydrogen-rich materials expelled from the companion will manifest themselves in hydrogen lines, but Hα is extremely difficult to identify. Alternatively, we find that P{sub β} in postmaximum near-infrared spectra can potentially provide a powerful diagnostic.

  18. The Link Between RS Ophiuchi and Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Mohamed, S.; Booth, R.; Podsiadlowski, Ph.

    2013-01-01

    RS Ophiuchi (RS Oph) is a symbiotic nova system consisting of a red giant and an accreting white dwarf (WD) which undergoes thermonuclear outbursts every 10-20 years. The WD is thought to be close to the Chandrasekhar mass making the system a likely Type Ia supernova (SN Ia) candidate. In recent years, the RS Oph-SN Ia connection has been further strengthened by time-varying circumstellar (CSM) absorption lines observed in high-resolution spectra of both systems. In this paper, we present 3D hydrodynamic simulations of the RS Oph system and preliminary post-processing results for the CSM absorption and hydrogen recombination lines. We find good agreement between the highly-structured, bipolar geometry in our models and the observed morphology. The geometry also naturally explains both the low velocity, narrow absorption and broad emission lines seen in SN 2006X and PTF 11kx. However, we find longer recombination timescales, larger velocity widths and weaker lines suggesting that the shells may be thinner and denser than those in our simulations.

  19. Diagnosing Multiplicative Error with Lensing Magnification of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zhang, Pengjie

    2015-06-01

    Weak lensing causes spatially coherent fluctuations in the flux of Type Ia supernovae (SNe Ia). This lensing magnification allows for weak lensing measurement independent of cosmic shear. It is free of the shape measurement errors associated with cosmic shear and can therefore be used to diagnose and calibrate multiplicative error. Although this lensing magnification is difficult to accurately measure in auto correlation, its cross correlation with cosmic shear and galaxy distribution in an overlapping area can be measured to a significantly higher accuracy. Therefore, these cross correlations can put useful constraints on multiplicative error, and the obtained constraint is free of cosmic variance in the weak lensing field. We present two methods implementing this idea and estimate their performances. We find that, with ˜1 million SNe Ia that can be achieved with the proposed D2k survey with the LSST telescope, a multiplicative error of ˜0.5% for source galaxies at {{z}s}˜ 1 can be detected and a larger multiplicative error can be corrected to the level of 0.5%. It is therefore a promising approach to control the multiplicative error to the sub-percent level required for stage IV projects. The combination of the two methods even has the potential to diagnose and calibrate galaxy intrinsic alignment, which is another major systematic error in cosmic shear cosmology.

  20. CARBON DEFLAGRATION IN TYPE Ia SUPERNOVA. I. CENTRALLY IGNITED MODELS

    SciTech Connect

    Ma, H.; Woosley, S. E.; Malone, C. M.; Almgren, A.; Bell, J.

    2013-07-01

    A leading model for Type Ia supernovae (SNe Ia) begins with a white dwarf near the Chandrasekhar mass that ignites a degenerate thermonuclear runaway close to its center and explodes. In a series of papers, we shall explore the consequences of ignition at several locations within such dwarfs. Here we assume central ignition, which has been explored before, but is worth revisiting, if only to validate those previous studies and to further elucidate the relevant physics for future work. A perturbed sphere of hot iron ash with a radius of {approx}100 km is initialized at the middle of the star. The subsequent explosion is followed in several simulations using a thickened flame model in which the flame speed is either fixed-within the range expected from turbulent combustion-or based on the local turbulent intensity. Global results, including the explosion energy and bulk nucleosynthesis (e.g., {sup 56}Ni of 0.48-0.56 M{sub Sun }) turn out to be insensitive to this speed. In all completed runs, the energy released by the nuclear burning is adequate to unbind the star, but not enough to give the energy and brightness of typical SNe Ia. As found previously, the chemical stratification observed in typical events is not reproduced. These models produce a large amount of unburned carbon and oxygen in central low velocity regions, which is inconsistent with spectroscopic observations, and the intermediate mass elements and iron group elements are strongly mixed during the explosion.

  1. Asymmetric Circumstellar Matter in Type Ia Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Borkowski, Kazimierz J.; Reynolds, S. P.; Blondin, J. M.

    2013-01-01

    The progenitors of Type Ia supernovae (SNe) are not well understood, but are likely to be of diverse origin, including single- and double-degenerate binary systems. Among single-degenerate progenitors, substantial amounts of circumstellar material (CSM) are expelled prior to the SN explosions by asymptotic giant branch (AGB) companions to the accreting white dwarfs. A subsequent collision of SN ejecta with the dense AGB wind has been detected among several distant SNe such as SN 2002ic, SN 2008J, and more recently PTF11kx. Dense CSM ejected by an AGB companion is present in the remnant of Kepler's SN of 1604, a Type Ia event. Observations of distant SNe hint at strongly asymmetric CSM distributions. A recent study of the CSM in Kepler's SNR by Burkey et al. indicates a large (factor of 10) density contrast between the dense, disk-like equatorial outflow and the more tenuous AGB wind above the orbital plane. A significant fraction of mature Type Ia SNRs in the Large Magellanic Cloud (LMC) shows the presence of dense Fe-rich ejecta in their interiors that cannot be explained by standard models of Type Ia explosions in a uniform ambient interstellar medium. We explore the hypothesis that these remnants originated in Type Ia explosions with strongly asymmetric CSM distributions such as found in Kepler's SNR. We present results of 2-D hydrodynamical simulations of the interaction of SN ejecta with asymmetric, disk-like AGB winds throughout the whole adiabatic stage of SNR evolution. Dense, asymmetric, and highly-ionized Fe-rich ejecta are indeed present in the simulated remnants, while the blast wave assumes a spherical shape shortly after passage through the ambient CSM. We also present simulated X-ray images and spectra and compare them with X-ray observations of selected remnants in the LMC. These remnants include DEM L238 and L249, recently observed by Suzaku, whose X-ray emission is strongly dominated by dense Fe-rich ejecta in their interiors. We contrast these

  2. RATES AND DELAY TIMES OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Ruiter, Ashley J.; Belczynski, Krzysztof; Fryer, Chris E-mail: kbelczyn@nmsu.edu

    2009-07-10

    We analyze the evolution of binary stars to calculate synthetic rates and delay times of the most promising Type Ia Supernovae (SNe Ia) progenitors. We present and discuss evolutionary scenarios in which a white dwarf (WD) reaches the Chandrasekhar mass and potentially explodes in a SNe Ia. We consider Double Degenerate (DDS; merger of two WDs), Single Degenerate (SDS; WD accreting from H-rich companion), and AM Canum Venaticorum (AM CVn; WD accreting from He-rich companion) scenarios. The results are presented for two different star formation histories: burst (elliptical-like galaxies) and continuous (spiral-like galaxies). It is found that delay times for the DDS in our standard model (with common envelope efficiency {alpha}{sub CE} = 1) follow a power-law distribution. For the SDS we note a wide range of delay times, while AM CVn progenitors produce a short burst of SNe Ia at early times. The DDS median delay time falls between {approx}0.5 and 1 Gyr; the SDS between {approx}2 and 3 Gyr; and the AM CVn between {approx}0.8 and 0.6 Gyr depending on the assumed {alpha}{sub CE}. For a Milky-Way-like (MW-like) galaxy, we estimate the rates of SNe Ia arising from different progenitors as: {approx}10{sup -4} yr{sup -1} for the SDS and AM CVn, and {approx}10{sup -3} yr{sup -1} for the DDS. We point out that only the rates for two merging carbon-oxygen WDs, the only systems found in the DDS, are consistent with the observed rates for typical MW-like spirals. We also note that DDS progenitors are the dominant population in elliptical galaxies. The fact that the delay time distribution for the DDS follows a power law implies more SNe Ia (per unit mass) in young rather than in aged populations. Our results do not exclude other scenarios, but strongly indicate that the DDS is the dominant channel generating SNe Ia in spiral galaxies, at least in the framework of our adopted evolutionary models. Since it is believed that WD mergers cannot produce a thermonuclear explosion

  3. Distances with <4% precision from type Ia supernovae in young star-forming environments.

    PubMed

    Kelly, Patrick L; Filippenko, Alexei V; Burke, David L; Hicken, Malcolm; Ganeshalingam, Mohan; Zheng, WeiKang

    2015-03-27

    The luminosities of type Ia supernovae (SNe), the thermonuclear explosions of white-dwarf stars, vary systematically with their intrinsic color and the rate at which they fade. From images taken with the Galaxy Evolution Explorer (GALEX), we identified SNe Ia that erupted in environments that have high ultraviolet surface brightness and star-formation surface density. When we apply a steep model extinction law, we calibrate these SNe using their broadband optical light curves to within ~0.065 to 0.075 magnitude, corresponding to <4% in distance. The tight scatter, probably arising from a small dispersion among progenitor ages, suggests that variation in only one progenitor property primarily accounts for the relationship between their light-curve widths, colors, and luminosities. PMID:25814580

  4. ON THE LIRA LAW AND THE NATURE OF EXTINCTION TOWARD TYPE Ia SUPERNOVAE

    SciTech Connect

    Foerster, Francisco; Gonzalez-Gaitan, Santiago; Folatelli, Gaston; Morrell, Nidia

    2013-07-20

    We have studied the relation between the color evolution of Type Ia supernovae (SNe Ia) from maximum light to the Lira law regime and the presence of narrow absorption features. Based on a nearby sample of 89 SNe Ia, we have found that the rate of change of B - V colors at late phases (between 35 and 80 days after maximum) varies significantly among different SNe Ia. At maximum light, faster Lira law B - V decliners have significantly higher equivalent widths of blended Na I D1 and D2 narrow absorption lines, redder colors, and lower R{sub V} reddening laws. We do not find faster Lira law B - V decliners to have a strong preference for younger galaxy environments, where higher interstellar material (ISM) column densities would be expected. We interpret these results as evidence for the presence of circumstellar material. The differences in colors and reddening laws found at maximum light are also present 55 days afterward, but unlike the colors at maximum they show a significant variation among different host galaxy morphological types. This suggests that the effect of ISM on the colors is more apparent at late times. Finally, we discuss how the transversal expansion of the ejecta in an inhomogeneous ISM could mimic some of these findings.

  5. Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae -- Final Technical Report

    SciTech Connect

    Filippenko, Alexei Vladimir

    2014-05-09

    Type Ia supernovae (SNe Ia; exploding white-dwarf stars) were the key to the Nobel-worthy 1998 discovery and subsequent verification that the expansion of the Universe is accelerating, driven by the effects of dark energy. Understanding the nature of this mysterious, yet dominant, component of the Universe is at the forefront of research in cosmology and fundamental physics. SNe Ia will continue to play a leading role in this enterprise, providing precise cosmological distances that improve constraints on the nature of dark energy. However, for this effort to succeed, we need to more thoroughly understand relatively nearby SNe Ia, because our conclusions come only from comparisons between them and distant (high-redshift) SNe Ia. Thus, detailed studies of relatively nearby SNe Ia are the focus of this research program. Many interesting results were obtained during the course of this project; these were published in 32 refereed research papers that acknowledged the grant. A major accomplishment was the publication of supernova (SN) rates derived from about a decade of operation of the Lick Observatory Supernova Search (LOSS) with the 0.76-meter Katzman Automatic Imaging Telescope (KAIT). We have determined the most accurate rates for SNe of different types in large, nearby galaxies in the present-day Universe, and these can be compared with SN rates far away (and hence long ago in the past) to set constraints on the types of stars that explode. Another major accomplishment was the publication of the light curves (brightness vs. time) of 165 SNe Ia, along with optical spectroscopy of many of these SNe as well as other SNe Ia, providing an extensive, homogeneous database for detailed studies. We have conducted intensive investigations of a number of individual SNe Ia, including quite unusual examples that allow us to probe the entire range of SN explosions and provide unique insights into these objects and the stars before they explode. My team's studies have also led

  6. Imprints of explosion conditions on late-time spectra of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Diamond, Tiara R.

    Type Ia supernovae (SNe Ia) play a vital role in the discrimination of different cosmological models. These events have been shown to be standardizable based on properties of their light curves during the early-time photospheric phase. However, the distribution of types of progenitor system, the explosion trigger, and the physics of the explosion are still an active topic of discussion. The details of the progenitors and explosion may provide insight into the variation seen in Type Ia supernova light curves and spectra, and therefore, allow for additional methods of standardization among the group. Late-time near-infrared spectral observations for SNe Ia show numerous strong emission features of forbidden line transitions of cobalt and iron, tracing the central distribution of iron-group burning products. As the spectrum ages, the cobalt features fade as expected from the decay of 56Co to 56Fe. This work will show that the strong and isolated [Fe II] emission line at 1.644 mum provides a unique tool to analyze near-infrared spectra of SNe Ia. Several new methods of analysis will be demonstrated to determine some of the initial conditions of the system. The initial central density, rhoc, and the extent of mixing in the central regions of the explosion have signatures in the line profiles of late-time spectra. An embedded magnetic field, B, of the white dwarf can be determined using the evolution of the lines profiles. Currently magnetic field effects are not included in the hydrodynamics and radiation transport of simulations of SNe Ia. Normalization of spectra to the 1.644 mum line allows separation of features produced by stable versus unstable isotopes of iron group elements. Implications for potential progenitor systems, explosion mechanisms, and the origins and morphology of magnetic fields in SNe Ia, in addition to limitations of the method, are discussed. Observations of the late-time near-infrared emission spectrum at multiple epochs allow for the first ever

  7. Search for Type Ia supernova progenitors in open star clusters

    NASA Astrophysics Data System (ADS)

    Chakraborty, Subho

    2013-12-01

    Though Type Ia supernovae (henceforth SNae) are a primary tool in refining our understanding of cosmology and dark energy, controversies still abound regarding what the progenitors of these SNae are. The two main classes of possible Type Ia SN progenitors are: (1) the single-degenerate model, where a white dwarf (the remnant of a Sun-like star that has completed its life cycle) gravitationally accretes material from a close companion star, and (2) the double-degenerate model, involving the merger of two white dwarfs. In either case, the resulting SN explosion looks the same superficially. But some of the details of the SNae, perhaps including details critical to understanding dark energy, may depend sensitively on what the progenitors are. The goal of this thesis was to search for radial velocity variations in two candidate double degenerate systems. Firstly, I determined if either of these systems were bona fide double degenerates. I used the well-tested method of searching for radial velocity variations due to orbital motion as determined by changing Doppler shifts in their optical spectra. These data were obtained from time-series spectra of both candidate systems over several hours at the world's largest ground based optical telescope, the Keck Observatory in Hawaii. Secondly, I tested whether each confirmed binary system is of sufficient mass and sufficiently short orbital period to be progenitors of a future Type Ia SN. Binary white dwarfs that will merge to form Type IaSNae over a Hubble time have orbital periods less than six hours, which are easily detectable with these data. Type Ia SN progenitors must also have a mass near or above the Chandrasekhar limit of ~1.44 solar masses; the total mass of these systems can also be determined from our data. If one or both of these candidate systems had met both these criteria, the white dwarfs would have been the first definitive examples of the double degenerate class of Type Ia progenitors. This result, which we

  8. A reddening-free method to estimate the 56Ni mass of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Dhawan, S.; Leibundgut, B.; Spyromilio, J.; Blondin, S.

    2016-04-01

    The increase in the number of Type Ia supernovae (SNe Ia) has demonstrated that the population shows greater diversity than has been assumed in the past. The reasons (e.g. parent population, explosion mechanism) for this diversity remain largely unknown. We investigated a sample of SNe Ia near-infrared light curves and correlated the phase of the second maximum with the bolometric peak luminosity. The peak bolometric luminosity is related to the time of the second maximum (relative to the B light curve maximum) as follows: Lmax(1043 erg s-1) = (0.039 ± 0.004) × t2(J)(days) + (0.013 ± 0.106). 56Ni masses can be derived from the peak luminosity based on Arnett's rule, which states that the luminosity at maximum is equal to the instantaneous energy generated by the nickel decay. We checked this assumption against recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models and find this assumption is valid to within 10% in recent radiative-transfer calculations of Chandrasekhar-mass delayed detonation models. The Lmax vs. t2 relation is applied to a sample of 40 additional SNe Ia with significant reddening (E(B - V) > 0.1 mag), and a reddening-free bolometric luminosity function of SNe Ia is established. The method is tested with the 56Ni mass measurement from the direct observation of γ-rays in the heavily absorbed SN 2014J and found to be fully consistent. Super-Chandrasekhar-mass explosions, in particular SN 2007if, do not follow the relations between peak luminosity and second IR maximum. This may point to an additional energy source contributing at maximum light. The luminosity function of SNe Ia is constructed and is shown to be asymmetric with a tail of low-luminosity objects and a rather sharp high-luminosity cutoff, although it might be influenced by selection effects.

  9. Ultraviolet observations of Super-Chandrasekhar mass type Ia supernova candidates with swift UVOT

    SciTech Connect

    Brown, Peter J.; Smitka, Michael T.; Krisciunas, Kevin; Wang, Lifan; Kuin, Paul; De Pasquale, Massimiliano; Scalzo, Richard; Holland, Stephen; Milne, Peter

    2014-05-20

    Among Type Ia supernovae (SNe Ia), a class of overluminous objects exist whose ejecta mass is inferred to be larger than the canonical Chandrasekhar mass. We present and discuss the UV/optical photometric light curves, colors, absolute magnitudes, and spectra of three candidate Super-Chandrasekhar mass SNe—2009dc, 2011aa, and 2012dn—observed with the Swift Ultraviolet/Optical Telescope. The light curves are at the broad end for SNe Ia, with the light curves of SN 2011aa being among the broadest ever observed. We find all three to have very blue colors which may provide a means of excluding these overluminous SNe from cosmological analysis, though there is some overlap with the bluest of 'normal' SNe Ia. All three are overluminous in their UV absolute magnitudes compared to normal and broad SNe Ia, but SNe 2011aa and 2012dn are not optically overluminous compared to normal SNe Ia. The integrated luminosity curves of SNe 2011aa and 2012dn in the UVOT range (1600-6000 Å) are only half as bright as SN 2009dc, implying a smaller {sup 56}Ni yield. While it is not enough to strongly affect the bolometric flux, the early time mid-UV flux makes a significant contribution at early times. The strong spectral features in the mid-UV spectra of SNe 2009dc and 2012dn suggest a higher temperature and lower opacity to be the cause of the UV excess rather than a hot, smooth blackbody from shock interaction. Further work is needed to determine the ejecta and {sup 56}Ni masses of SNe 2011aa and 2012dn and to fully explain their high UV luminosities.

  10. Time-varying sodium absorption in the Type Ia supernova 2013gh

    NASA Astrophysics Data System (ADS)

    Ferretti, R.; Amanullah, R.; Goobar, A.; Johansson, J.; Vreeswijk, P. M.; Butler, R. P.; Cao, Y.; Cenko, S. B.; Doran, G.; Filippenko, A. V.; Freeland, E.; Hosseinzadeh, G.; Howell, D. A.; Lundqvist, P.; Mattila, S.; Nordin, J.; Nugent, P. E.; Petrushevska, T.; Valenti, S.; Vogt, S.; Wozniak, P.

    2016-07-01

    Context. Temporal variability of narrow absorption lines in high-resolution spectra of Type Ia supernovae (SNe Ia) is studied to search for circumstellar matter. Time series which resolve the profiles of absorption lines such as Na I D or Ca II H&K are expected to reveal variations due to photoionisation and subsequent recombination of the gases. The presence, composition, and geometry of circumstellar matter may hint at the elusive progenitor system of SNe Ia and could also affect the observed reddening law. Aims: To date, there are few known cases of time-varying Na I D absorption in SNe Ia, all of which occurred during relatively late phases of the supernova (SN) evolution. Photoionisation, however, is predicted to occur during the early phases of SNe Ia, when the supernovae peak in the ultraviolet. We attempt, therefore, to observe early-time absorption-line variations by obtaining high-resolution spectra of SNe before maximum light. Methods: We have obtained photometry and high-resolution spectroscopy of SNe Ia 2013gh and iPTF 13dge, to search for absorption-line variations. Furthermore, we study interstellar absorption features in relation to the observed photometric colours of the SNe. Results: Both SNe display deep Na I D and Ca II H&K absorption features. Furthermore, small but significant variations are detected in a feature of the Na I D profile of SN 2013gh. The variations are consistent with either geometric effects of rapidly moving or patchy gas clouds or photoionisation of Na I gas at R ≈ 1019 cm from the explosion. Conclusions: Our analysis indicates that it is necessary to focus on early phases to detect photoionisation effects of gases in the circumstellar medium of SNe Ia. Different absorbers such as Na I and Ca II can be used to probe for matter at different distances from the SNe. The nondetection of variations during early phases makes it possible to put limits on the abundance of the species at those distances. Full Tables 2 and 3 are only

  11. Supernova 2014J at M82 - II. Direct analysis of a middle-class Type Ia supernova

    NASA Astrophysics Data System (ADS)

    Vallely, Patrick; Moreno-Raya, M. E.; Baron, E.; Ruiz-Lapuente, Pilar; Domínguez, I.; Galbany, Lluís; González Hernández, J. I.; Méndez, J.; Hamuy, M.; López-Sánchez, A. R.; Catalán, S.; Cooke, E.; Fariña, C.; Génova-Santos, R.; Karjalainen, R.; Lietzen, H.; McCormac, J.; Riddick, F.; Rubiño-Martín, J. A.; Skillen, I.; Tudor, V.; Vaduvescu, O.

    2016-08-01

    We analyse a time series of optical spectra of SN 2014J from almost two weeks prior to maximum to nearly four months after maximum. We perform our analysis using the SYNOW code, which is well suited to track the distribution of the ions with velocity in the ejecta. We show that almost all of the spectral features during the entire epoch can be identified with permitted transitions of the common ions found in normal supernovae (SNe) Ia in agreement with previous studies. We show that 2014J is a relatively normal SN Ia. At early times the spectral features are dominated by Si II, S II, Mg II, and Ca II. These ions persist to maximum light with the appearance of Na I and Mg I. At later times iron-group elements also appear, as expected in the stratified abundance model of the formation of normal Type Ia SNe. We do not find significant spectroscopic evidence for oxygen, until 100 d after maximum light. The +100 d identification of oxygen is tentative, and would imply significant mixing of unburned or only slight processed elements down to a velocity of 6000 kms-1. Our results are in relatively good agreement with other analyses in the infrared. We briefly compare SN 2011fe to SN 2014J and conclude that the differences could be due to different central densities at ignition or differences in the C/O ratio of the progenitors.

  12. Constraining f (T ,T ) gravity models using type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Sáez-Gómez, Diego; Carvalho, C. Sofia; Lobo, Francisco S. N.; Tereno, Ismael

    2016-07-01

    We present an analysis of an f (T ,T ) extension of the Teleparallel Equivalent of General Relativity, where T denotes the torsion and T denotes the trace of the energy-momentum tensor. This extension includes nonminimal couplings between torsion and matter. In particular, we construct two specific models that recover the usual continuity equation, namely, f (T ,T )=T +g (T ) and f (T ,T )=T ×g (T ). We then constrain the parameters of each model by fitting the predicted distance modulus to that measured from type Ia supernovae and find that both models can reproduce the late-time cosmic acceleration. We also observe that one of the models satisfies well the observational constraints and yields a goodness-of-fit similar to the Λ CDM model, thus demonstrating that f (T ,T ) gravity theory encompasses viable models that can be an alternative to Λ CDM .

  13. The Role of Electron Captures in Chandrasekhar-Mass Models for Type Ia Supernovae

    SciTech Connect

    Brachwitz, Franziska; Dean, David J.; Hix, W. Raphael; Iwamoto, Koichi; Langanke, Karlheinz; Martinez-Pinedo, Gabriel; Nomoto, Ken'ichi; Strayer, Michael R.; Thielemann, Friedrich-K.; Umeda, Hideyuki

    2000-06-20

    The Chandrasekhar-mass model for Type Ia supernovae (SNe Ia) has received increasing support from recent comparisons of observations with light-curve predictions and modeling of synthetic spectra. It explains SN Ia events via thermonuclear explosions of accreting white dwarfs in binary stellar systems, being caused by central carbon ignition when the white dwarf approaches the Chandrasekhar mass. As the electron gas in white dwarfs is degenerate, characterized by high Fermi energies for the high-density regions in the center, electron capture on intermediate-mass and Fe group nuclei plays an important role in explosive burning. Electron capture affects the central electron fraction Y{sub e}, which determines the composition of the ejecta from such explosions. Up to the present, astrophysical tabulations based on shell model matrix elements were available only for light nuclei in the sd-shell. Recently, new shell model Monte Carlo and large-scale shell model diagonalization calculations have also been performed for pf-shell nuclei. These lead in general to a reduction of electron capture rates in comparison with previous, more phenomenological, approaches. Making use of these new shell model-based rates, we present the first results for the composition of Fe group nuclei produced in the central regions of SNe Ia and possible changes in the constraints on model parameters like ignition densities {rho}ign and burning front speeds v{sub def}. (c) 2000 The American Astronomical Society.

  14. An absence of ex-companion stars in the type Ia supernova remnant SNR 0509-67.5.

    PubMed

    Schaefer, Bradley E; Pagnotta, Ashley

    2012-01-12

    A type Ia supernova is thought to begin with the explosion of a white dwarf star. The explosion could be triggered by the merger of two white dwarfs (a 'double-degenerate' origin), or by mass transfer from a companion star (the 'single-degenerate' path). The identity of the progenitor is still controversial; for example, a recent argument against the single-degenerate origin has been widely rejected. One way to distinguish between the double- and single-degenerate progenitors is to look at the centre of a known type Ia supernova remnant to see whether any former companion star is present. A likely ex-companion star for the progenitor of the supernova observed by Tycho Brahe has been identified, but that claim is still controversial. Here we report that the central region of the supernova remnant SNR 0509-67.5 (the site of a type Ia supernova 400 ± 50 years ago, based on its light echo) in the Large Magellanic Cloud contains no ex-companion star to a visual magnitude limit of 26.9 (an absolute magnitude of M(V) = +8.4) within a region of radius 1.43 arcseconds. (This corresponds to the 3σ maximum distance to which a companion could have been 'kicked' by the explosion.) This lack of any ex-companion star to deep limits rules out all published single-degenerate models for this supernova. The only remaining possibility is that the progenitor of this particular type Ia supernova was a double-degenerate system. PMID:22237107

  15. An absence of ex-companion stars in the type Ia supernova remnant SNR 0509-67.5

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.; Pagnotta, Ashley

    2012-01-01

    A type Ia supernova is thought to begin with the explosion of a white dwarf star. The explosion could be triggered by the merger of two white dwarfs (a `double-degenerate' origin), or by mass transfer from a companion star (the `single-degenerate' path). The identity of the progenitor is still controversial; for example, a recent argument against the single-degenerate origin has been widely rejected. One way to distinguish between the double- and single-degenerate progenitors is to look at the centre of a known type Ia supernova remnant to see whether any former companion star is present. A likely ex-companion star for the progenitor of the supernova observed by Tycho Brahe has been identified, but that claim is still controversial. Here we report that the central region of the supernova remnant SNR 0509-67.5 (the site of a type Ia supernova 400 +/- 50 years ago, based on its light echo) in the Large Magellanic Cloud contains no ex-companion star to a visual magnitude limit of 26.9 (an absolute magnitude of MV = +8.4) within a region of radius 1.43 arcseconds. (This corresponds to the 3σ maximum distance to which a companion could have been `kicked' by the explosion.) This lack of any ex-companion star to deep limits rules out all published single-degenerate models for this supernova. The only remaining possibility is that the progenitor of this particular type Ia supernova was a double-degenerate system.

  16. The Earliest Near-infrared Time-series Spectroscopy of a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Hsiao, E. Y.; Marion, G. H.; Phillips, M. M.; Burns, C. R.; Winge, C.; Morrell, N.; Contreras, C.; Freedman, W. L.; Kromer, M.; Gall, E. E. E.; Gerardy, C. L.; Höflich, P.; Im, M.; Jeon, Y.; Kirshner, R. P.; Nugent, P. E.; Persson, S. E.; Pignata, G.; Roth, M.; Stanishev, V.; Stritzinger, M.; Suntzeff, N. B.

    2013-04-01

    We present ten medium-resolution, high signal-to-noise ratio near-infrared (NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility (IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained as part of the Carnegie Supernova Project. This data set constitutes the earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the first spectrum obtained at 2.58 days past the explosion and covering -14.6 to +17.3 days relative to B-band maximum. C I λ1.0693 μm is detected in SN 2011fe with increasing strength up to maximum light. The delay in the onset of the NIR C I line demonstrates its potential to be an effective tracer of unprocessed material. For the first time in a SN Ia, the early rapid decline of the Mg II λ1.0927 μm velocity was observed, and the subsequent velocity is remarkably constant. The Mg II velocity during this constant phase locates the inner edge of carbon burning and probes the conditions under which the transition from deflagration to detonation occurs. We show that the Mg II velocity does not correlate with the optical light-curve decline rate Δm 15(B). The prominent break at ~1.5 μm is the main source of concern for NIR k-correction calculations. We demonstrate here that the feature has a uniform time evolution among SNe Ia, with the flux ratio across the break strongly correlated with Δm 15(B). The predictability of the strength and the onset of this feature suggests that the associated k-correction uncertainties can be minimized with improved spectral templates.

  17. Comparing the Host Galaxies of Type Ia, Type II, and Type Ibc Supernovae

    NASA Astrophysics Data System (ADS)

    Shao, X.; Liang, Y. C.; Dennefeld, M.; Chen, X. Y.; Zhong, G. H.; Hammer, F.; Deng, L. C.; Flores, H.; Zhang, B.; Shi, W. B.; Zhou, L.

    2014-08-01

    We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) or absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D n (4000), Hδ A , stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D n (4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D n (4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (~0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.

  18. Comparing the host galaxies of type Ia, type II, and type Ibc supernovae

    SciTech Connect

    Shao, X.; Liang, Y. C.; Chen, X. Y.; Zhong, G. H.; Deng, L. C.; Zhang, B.; Shi, W. B.; Zhou, L.; Dennefeld, M.; Hammer, F.; Flores, H. E-mail: ycliang@bao.ac.cn

    2014-08-10

    We compare the host galaxies of 902 supernovae (SNe), including SNe Ia, SNe II, and SNe Ibc, which are selected by cross-matching the Asiago Supernova Catalog with the Sloan Digital Sky Survey (SDSS) Data Release 7. We selected an additional 213 galaxies by requiring the light fraction of spectral observations to be >15%, which could represent well the global properties of the galaxies. Among these 213 galaxies, 135 appear on the Baldwin-Phillips-Terlevich diagram, which allows us to compare the hosts in terms of whether they are star-forming (SF) galaxies, active galactic nuclei (AGNs; including composites, LINERs, and Seyfert 2s) or absorption-line galaxies (Absorps; i.e., their related emission lines are weak or non-existent). The diagrams related to the parameters D{sub n}(4000), Hδ{sub A}, stellar masses, star formation rates (SFRs), and specific SFRs for the SNe hosts show that almost all SNe II and most of the SNe Ibc occur in SF galaxies, which have a wide range of stellar masses and low D{sub n}(4000). The SNe Ia hosts as SF galaxies following similar trends. A significant fraction of SNe Ia occurs in AGNs and absorption-line galaxies, which are massive and have high D{sub n}(4000). The stellar population analysis from spectral synthesis fitting shows that the hosts of SNe II have a younger stellar population than hosts of SNe Ia. These results are compared with those of the 689 comparison galaxies where the SDSS fiber captures less than 15% of the total light. These comparison galaxies appear biased toward higher 12+log(O/H) (∼0.1 dex) at a given stellar mass. Therefore, we believe the aperture effect should be kept in mind when the properties of the hosts for different types of SNe are discussed.

  19. THE EARLIEST NEAR-INFRARED TIME-SERIES SPECTROSCOPY OF A TYPE Ia SUPERNOVA

    SciTech Connect

    Hsiao, E. Y.; Phillips, M. M.; Morrell, N.; Contreras, C.; Roth, M.; Marion, G. H.; Kirshner, R. P.; Burns, C. R.; Freedman, W. L.; Persson, S. E.; Winge, C.; Gerardy, C. L.; Hoeflich, P.; Im, M.; Jeon, Y.; Pignata, G.; Stanishev, V.; and others

    2013-04-01

    We present ten medium-resolution, high signal-to-noise ratio near-infrared (NIR) spectra of SN 2011fe from SpeX on the NASA Infrared Telescope Facility (IRTF) and Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North, obtained as part of the Carnegie Supernova Project. This data set constitutes the earliest time-series NIR spectroscopy of a Type Ia supernova (SN Ia), with the first spectrum obtained at 2.58 days past the explosion and covering -14.6 to +17.3 days relative to B-band maximum. C I {lambda}1.0693 {mu}m is detected in SN 2011fe with increasing strength up to maximum light. The delay in the onset of the NIR C I line demonstrates its potential to be an effective tracer of unprocessed material. For the first time in a SN Ia, the early rapid decline of the Mg II {lambda}1.0927 {mu}m velocity was observed, and the subsequent velocity is remarkably constant. The Mg II velocity during this constant phase locates the inner edge of carbon burning and probes the conditions under which the transition from deflagration to detonation occurs. We show that the Mg II velocity does not correlate with the optical light-curve decline rate {Delta}m{sub 15}(B). The prominent break at {approx}1.5 {mu}m is the main source of concern for NIR k-correction calculations. We demonstrate here that the feature has a uniform time evolution among SNe Ia, with the flux ratio across the break strongly correlated with {Delta}m{sub 15}(B). The predictability of the strength and the onset of this feature suggests that the associated k-correction uncertainties can be minimized with improved spectral templates.

  20. SPIN-UP/SPIN-DOWN MODELS FOR TYPE Ia SUPERNOVAE

    SciTech Connect

    Stefano, R. Di; Voss, R.

    2011-09-01

    In the single-degenerate scenario for Type Ia supernovae (SNe Ia), a white dwarf (WD) must gain a significant amount of matter from a companion star. Because the accreted mass carries angular momentum, the WD is likely to achieve fast spin periods, which can increase the critical mass, M{sub crit}, needed for explosion. When M{sub crit} is higher than the maximum mass achieved by the WD, the central regions of the WD must spin down before it can explode. This introduces super-Chandrasekhar single-degenerate explosions, and a delay between the completion of mass gain and the time of the explosion. Matter ejected from the binary during mass transfer therefore has a chance to become diffuse, and the explosion occurs in a medium with a density similar to that of typical regions of the interstellar medium. Also, either by the end of the WD's mass increase or else by the time of explosion, the donor may exhaust its stellar envelope and become a WD. This alters, generally diminishing, explosion signatures related to the donor star. Nevertheless, the spin-up/spin-down model is highly predictive. Prior to explosion, progenitors can be super-M{sub Ch} WDs in either wide binaries with WD companions or cataclysmic variables. These systems can be discovered and studied through wide-field surveys. Post-explosion, the spin-up/spin-down model predicts a population of fast-moving WDs, low-mass stars, and even brown dwarfs. In addition, the spin-up/spin-down model provides a paradigm which may be able to explain both the similarities and the diversity observed among SNe Ia.

  1. MASTER OT J122114.34+472950.7 is a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Silverman, J. M.; Tucker, B. E.; Vinko, J.; Quimby, R.; Wheeler, J. C.; Chatzopoulos, E.

    2013-04-01

    We write that a spectrogram, obtained on Mar. 31.18 UT with the 9.2-m Hobby-Eberly Telescope (+ Marcario Low-Resolution Spectrograph) by J. Caldwell, shows that MASTER OT J122114.34+472950.7 is a type-Ia supernova. Correlation with a library of supernova spectra using the "SuperNova IDentification" code (SNID; Blondin and Tonry 2007, Ap.J. 666, 1024) indicates that MASTER OT J122114.34+472950.7 is SN 1999aa-like type-Ia supernova (Strolger, et al., 2002, A.J., 124, 2905; Garavini, et al., 2004, A.J., 128, 387) at maximum brightness.

  2. Type Ia Supernova Colors and Si II Velocities: Hierarchical Bayesian Regression with Non-Gaussian Distributions

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey; Foley, R. J.; Kirshner, R. P.

    2014-01-01

    Determining supernova distances with high precision and small systematic error is essential to modern constraints on the cosmic expansion history and the properties of dark energy. An interesting correlation between the expansion velocity of the SN Ia explosion and its intrinsic color has been suggested by earlier work. Since this effect is not incorporated into current schemes for SN Ia light curve analysis, there is potential for improving inferences of host galaxy dust, and thus, distance estimates. We investigate the correlations between the intrinsic colors of SN Ia and the expansion velocities measured from spectral lines. We build a hierarchical Bayesian regression model to estimate the dependence of the intrinsic colors of a SN Ia on its measured Si II line velocity. We model the deviations of apparent colors from a mean intrinsic colors-velocity relation as a combination of random intrinsic scatter, measurement error, and reddening by dust. This statistical model allows for non-Gaussian distributions of the intrinsic colors and velocities. We construct a new, fast Gibbs sampler to compute the posterior inferences of the model using observed data. The method is applied to the apparent color data from BVRI light curves and Si II velocity data for nearby SN Ia. For intrinsic B-V colors, we find a significant slope of 0.021 ± 0.008 mag / (1000 km/s) under a linear model, and a mean color difference of 0.06 ± 0.02 mag between high velocity and normal velocity groups under a step function model. The impact of accounting for the peak intrinsic color-velocity correlation can result in extinction corrections as large as -0.10 mag for high velocity SN Ia and +0.05 mag for normal velocity events. We compute the deviance information criterion (DIC) to gauge whether the more complex hypotheses are justified by their improved representation of the data. The DIC favors the simple linear and step functions of intrinsic color versus velocity over no trend, while higher

  3. Light-echo spectroscopy of historic Supernovae

    NASA Astrophysics Data System (ADS)

    Krause, Oliver

    Young Galactic supernova remnants are unique laboratories for supernova physics. Due to their proximity they provide us with the most detailed view of the outcome of a supernova. However, the exact spectroscopic types of their original explosions have been undetermined so far -hindering to link the wealth of multi-wavelength knowledge about their remnants with the diverse population of supernovae. Light echoes, reflektions of the brilliant supernova burst of light by interstellar dust, provide a unique opportunity to reobserve today -with powerful scientific instruments of the 21st century -historic supernova exlosions even after hundreds of years and to conclude on their nature. We report on optical light-echo spectroscopy of two famous Galactic supernovae: Tycho Brahe's SN 1572 and the supernova that created the Cassiopeia A remnant around the year 1680. These observations finally recovered the missing spectroscopic classifications and provide new constraints on explosion models for future studies.

  4. Dust in a Type Ia Supernova Progenitor: Spitzer Spectroscopy of Kepler's Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Williams, Brian J.; Borkowski, Kazimierz; Reynolds, Stephen P.; Ghavamian, Parviz; Blair, William P.; Long, Knox S.; Sankrit, Ravi

    2012-01-01

    Characterization of the relatively poorly-understood progenitor systems of Type Ia supernovae is of great importance in astrophysics, particularly given the important cosmological role that these supernovae play. Kepler's Supernova Remnant, the result of a Type Ia supernova, shows evidence for an interaction with a dense circumstellar medium (CSM), suggesting a single-degenerate progenitor system. We present 7.5-38 micron IR spectra of the remnant, obtained with the Spitzer Space Telescope, dominated by emission from warm dust. Broad spectral features at 10 and 18 micron, consistent with various silicate particles, are seen throughout. These silicates were likely formed in the stellar outflow from the progenitor system during the AGB stage of evolution, and imply an oxygen-rich chemistry. In addition to silicate dust, a second component, possibly carbonaceous dust, is necessary to account for the short-wavelength IRS and IRAC data. This could imply a mixed chemistry in the atmosphere of the progenitor system. However, non-spherical metallic iron inclusions within silicate grains provide an alternative solution. Models of collisionally-heated dust emission from fast shocks (> 1000 km/s) propagating into the CSM can reproduce the majority of the emission associated with non-radiative filaments, where dust temperatures are approx 80-100 K, but fail to account for the highest temperatures detected, in excess of 150 K. We find that slower shocks (a few hundred km/s) into moderate density material (n(sub o) approx 50-100 / cubic cm) are the only viable source of heating for this hottest dust. We confirm the finding of an overall density gradient, with densities in the north being an order of magnitude greater than those in the south.

  5. The Rise Time of Type Ia Supernovae from the Supernova Legacy Survey

    NASA Astrophysics Data System (ADS)

    Conley, A.; Howell, D. A.; Howes, A.; Sullivan, M.; Astier, P.; Balam, D.; Basa, S.; Carlberg, R. G.; Fouchez, D.; Guy, J.; Hook, I.; Neill, J. D.; Pain, R.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Aubourg, E.; Bronder, J.; Ellis, R. S.; Fabbro, S.; Filiol, M.; Le Borgne, D.; Palanque-Delabrouille, N.; Perlmutter, S.; Ripoche, P.

    2006-10-01

    We compare the rise times of nearby and distant Type Ia supernovae (SNe Ia) as a test for evolution using 73 high-redshift spectroscopically confirmed SNe Ia from the first 2 years of the 5 year Supernova Legacy Survey (SNLS) and published observations of nearby SNe. Because of the ``rolling'' search nature of the SNLS, our measurement is approximately 6 times more precise than previous studies, allowing for a more sensitive test of evolution between nearby and distant SNe. Adopting a simple t2 early-time model (as in previous studies), we find that the rest-frame B rise times for a fiducial SN Ia at high and low redshift are consistent, with values 19.10+0.18-0.17(stat)+/-0.2(syst) and 19.58+0.22-0.19 days, respectively; the statistical significance of this difference is only 1.4 σ. The errors represent the uncertainty in the mean rather than any variation between individual SNe. We also compare subsets of our high-redshift data set based on decline rate, host galaxy star formation rate, and redshift, finding no substantive evidence for any subsample dependence. Based on observations obtained with MegaPrime/MegaCam, a joint project of the Canada-France-Hawaii Telescope (CFHT) and CEA/DAPNIA, at CFHT, which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the CFHT Legacy Survey, a collaborative project of NRC and CNRS.

  6. Properties of Deflagration Fronts and Models for Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Domínguez, I.; Höflich, P.

    2000-01-01

    Detailed models of the explosion of a white dwarf that include self-consistent calculations of the light curve and spectra provide a link between observational quantities and the underlying explosion model. These calculations assume spherical geometry and are based on parameterized descriptions of the burning front. Recently, the first multidimensional calculations for nuclear burning fronts have been performed. Although a fully consistent treatment of the burning fronts is beyond the current state of the art, these calculations provide a new and better understanding of the physics. Several new descriptions for flame propagation have been proposed by Khokhlov et al. and Niemeyer et al. Using various descriptions for the propagation of a nuclear deflagration front, we have studied the influence on the results of previous analyses of Type Ia supernovae, namely, the nucleosynthesis and structure of the expanding envelope. Our calculations are based on a set of delayed detonation models with parameters that give a good account of the optical and infrared light curves and of the spectral evolution. In this scenario, the burning front first propagates in a deflagration mode and subsequently turns into a detonation. The explosions and light curves are calculated using a one-dimensional Lagrangian radiation-hydro code including a detailed nuclear network. We find that the results of the explosion are rather insensitive to details of the description of the deflagration front, even if its speed and the time from the transition to detonation differ almost by a factor of 2. For a given white dwarf (WD) and a fixed transition density, the total production of elements changes by less than 10%, and the distribution in the velocity space changes by less than 7%. Qualitatively, this insensitivity of the final outcome of the explosion to the details of the flame propagation during the (slow) deflagration phase can be understood as follows: for plausible variations in the speed of

  7. Improving Type Ia Supernova Standard Candle Cosmology Measurements Using Observations of Early-Type Host Galaxies

    NASA Astrophysics Data System (ADS)

    Meyers, Joshua Evan

    Type Ia supernovae (SNe Ia) are the current standard-bearers for dark energy but face several hurdles for their continued success in future large surveys. For example, spectroscopic classification of the myriad SNe soon to be discovered will not be possible, and systematics from uncertainties in dust corrections and the evolution of SN demographics and/or empirical calibrations used to standardize SNe Ia must be studied. Through the identification of low-dust host galaxies and through increased understanding of both the SN - progenitor connections and empirical calibrations, host galaxy information may offer opportunities to improve the cosmological utility of SNe Ia. The first half of this thesis analyzes the sample of SNe Ia discovered by the Hubble Space Telescope (HST) Cluster Supernova Survey augmented with HST-observed SNe Ia in the Great Observatories Origins Deep Survey (GOODS) fields. Correlations between properties of SNe and their host galaxies are examined at high redshift. Using galaxy color and quantitative morphology to determine the red sequence in 25 clusters, a model is developed to distinguish passively evolving early-type galaxies from star-forming galaxies in both clusters and the field. With this approach, 6 early-type cluster member hosts and 11 SN Ia early-type field hosts are identified. For the first time at z > 0.9, the correlation between host galaxy type and the rise and fall time of SN Ia light curves is confirmed. The relatively simple spectral energy distributions of early-type galaxies also enables stellar mass measurements for these hosts. In combination with literature host mass measurements, these measurements are used to show, at z > 0.9, a hint of the correlation between host mass and Hubble residuals reported at lower redshift. By simultaneously fitting cluster galaxy formation histories and dust content to the scatter of the cluster red sequences, it is shown that dust reddening of early-type cluster SN hosts is likely less

  8. EXTRAORDINARY MAGNIFICATION OF THE ORDINARY TYPE Ia SUPERNOVA PS1-10afx

    SciTech Connect

    Quimby, Robert M.; Werner, Marcus C.; Oguri, Masamune; More, Surhud; More, Anupreeta; Tanaka, Masayuki; Nomoto, Ken'ichi; Moriya, Takashi J.; Folatelli, Gaston; Maeda, Keiichi; Bersten, Melina

    2013-05-01

    Recently, Chornock and co-workers announced the Pan-STARRS discovery of a transient source reaching an apparent peak luminosity of {approx}4 Multiplication-Sign 10{sup 44} erg s{sup -1}. We show that the spectra of this transient source are well fit by normal Type Ia supernova (SNIa) templates. The multi-band colors and light-curve shapes are also consistent with normal SNeIa at the spectroscopically determined redshift of z = 1.3883; however, the observed flux is a constant factor of {approx}30 times too bright in each band over time as compared to the templates. At minimum, this shows that the peak luminosities inferred from the light-curve widths of some SNeIa will deviate significantly from the established, empirical relation used by cosmologists. We argue on physical grounds that the observed fluxes do not reflect an intrinsically luminous SNIa, but rather PS1-10afx is a normal SNIa whose flux has been magnified by an external source. The only known astrophysical source capable of such magnification is a gravitational lens. Given the lack of obvious lens candidates, such as galaxy clusters, in the vicinity, we further argue that the lens is a supermassive black hole or a comparatively low-mass dark matter halo. In this case, the lens continues to magnify the underlying host galaxy light. If confirmed, this discovery could impact a broad range of topics including cosmology, gamma-ray bursts, and dark matter halos.

  9. Type Ia supernova rate at a redshift of ~;0.1

    SciTech Connect

    Blanc, G.; Afonso, C.; Alard, C.; Albert, J.N.; Aldering, G.; Amadon, A.; Andersen, J.; Ansari, R.; Aubourg, E.; Balland, C.; Bareyre,P.; Beaulieu, J.P.; Charlot, X.; Conley, A.; Coutures, C.; Dahlen, T.; Derue, F.; Fan, X.; Ferlet, R.; Folatelli, G.; Fouque, P.; Garavini, G.; Glicenstein, J.F.; Goldman, B.; Goobar, A.; Gould, A.; Graff, D.; Gros,M.; Haissinski, J.; Hamadache, C.; Hardin, D.; Hook, I.M.; deKat, J.; Kent, S.; Kim, A.; Lasserre, T.; LeGuillou, L.; Lesquoy, E.; Loup, C.; Magneville, C.; Marquette, J.B.; Maurice, E.; Maury, A.; Milsztajn, A.; Moniez, M.; Mouchet, M.; Newberg, H.; Nobili, S.; Palanque-Delabrouille,N.; Perdereau, O.; Prevot, L.; Rahal, Y.R.; Regnault, N.; Rich, J.; Ruiz-Lapuente, P.; Spiro, M.; Tisserand, P.; Vidal-Madjar, A.; Vigroux,L.; Walton, N.A.; Zylberajch, S.

    2004-05-11

    We present the type Ia rate measurement based on two EROS supernova search campaigns (in 1999 and 2000). Sixteen supernovae identified as type Ia were discovered. The measurement of the detection efficiency, using a Monte Carlo simulation, provides the type Ia supernova explosion rate at a redshift {approx} 0.13. The result is 0.125{sub -0.034-0.028}{sup +0.044+0.028} h{sub 70}{sup 2} SNu where 1 SNu = 1 SN/10{sup 10} L{sub {circle_dot}}{sup B}/century. This value is compatible with the previous EROS measurement (Hardin et al. 2000), done with a much smaller sample, at a similar redshift. Comparison with other values at different redshifts suggests an evolution of the type Ia supernova rate.

  10. Measuring Type Ia Supernova Populations of Stretch and Color and Predicting Distance Biases

    NASA Astrophysics Data System (ADS)

    Scolnic, D.; Kessler, R.

    2016-05-01

    Simulations of Type Ia supernovae (SNe Ia) surveys are a critical tool for correcting biases in the analysis of SNe Ia to infer cosmological parameters. Large-scale Monte Carlo simulations include a thorough treatment of observation history, measurement noise, intrinsic scatter models, and selection effects. In this Letter, we improve simulations with a robust technique to evaluate the underlying populations of SN Ia color and stretch that correlate with luminosity. In typical analyses, the standardized SN Ia brightness is determined from linear “Tripp” relations between the light curve color and luminosity and between stretch and luminosity. However, this solution produces Hubble residual biases because intrinsic scatter and measurement noise result in measured color and stretch values that do not follow the Tripp relation. We find a 10σ bias (up to 0.3 mag) in Hubble residuals versus color and 5σ bias (up to 0.2 mag) in Hubble residuals versus stretch in a joint sample of 920 spectroscopically confirmed SN Ia from PS1, SNLS, SDSS, and several low-z surveys. After we determine the underlying color and stretch distributions, we use simulations to predict and correct the biases in the data. We show that removing these biases has a small impact on the low-z sample, but reduces the intrinsic scatter σ int from 0.101 to 0.083 in the combined PS1, SNLS, and SDSS sample. Past estimates of the underlying populations were too broad, leading to a small bias in the equation of state of dark energy w of Δw = 0.005.

  11. Head-on Collisions of White Dwarfs in Triple Systems Could Explain Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Kushnir, Doron; Katz, Boaz; Dong, Subo; Livne, Eli; Fernández, Rodrigo

    2013-12-01

    Type Ia supernovae (SNe Ia), thermonuclear explosions of carbon-oxygen white dwarfs (CO-WDs), are currently the best cosmological "standard candles," but the triggering mechanism of the explosion is unknown. It was recently shown that the rate of head-on collisions of typical field CO-WDs in triple systems may be comparable to the SNe Ia rate. Here we provide evidence supporting a scenario in which the majority of SNe Ia are the result of such head-on collisions of CO-WDs. In this case, the nuclear detonation is due to a well understood shock ignition, devoid of commonly introduced free parameters such as the deflagration velocity or transition to detonation criteria. By using two-dimensional hydrodynamical simulations with a fully resolved ignition process, we show that zero-impact-parameter collisions of typical CO-WDs with masses 0.5-1 M ⊙ result in explosions that synthesize 56Ni masses in the range of ~0.1-1 M ⊙, spanning the wide distribution of yields observed for the majority of SNe Ia. All collision models yield the same late-time (gsim 60 days since explosion) bolometric light curve when normalized by 56Ni masses (to better than 30%), in agreement with observations. The calculated widths of the 56Ni-mass-weighted line-of-sight velocity distributions are correlated with the calculated 56Ni yield, agreeing with the observed correlation. The strong correlation, shown here for the first time, between 56Ni yield and total mass of the colliding CO-WDs (insensitive to their mass ratio), is suggestive as the source for the continuous distribution of observed SN Ia features, possibly including the Philips relation.

  12. HEAD-ON COLLISIONS OF WHITE DWARFS IN TRIPLE SYSTEMS COULD EXPLAIN TYPE Ia SUPERNOVAE

    SciTech Connect

    Kushnir, Doron; Katz, Boaz; Dong, Subo; Fernández, Rodrigo; Livne, Eli

    2013-12-01

    Type Ia supernovae (SNe Ia), thermonuclear explosions of carbon-oxygen white dwarfs (CO-WDs), are currently the best cosmological ''standard candles'', but the triggering mechanism of the explosion is unknown. It was recently shown that the rate of head-on collisions of typical field CO-WDs in triple systems may be comparable to the SNe Ia rate. Here we provide evidence supporting a scenario in which the majority of SNe Ia are the result of such head-on collisions of CO-WDs. In this case, the nuclear detonation is due to a well understood shock ignition, devoid of commonly introduced free parameters such as the deflagration velocity or transition to detonation criteria. By using two-dimensional hydrodynamical simulations with a fully resolved ignition process, we show that zero-impact-parameter collisions of typical CO-WDs with masses 0.5-1 M {sub ☉} result in explosions that synthesize {sup 56}Ni masses in the range of ∼0.1-1 M {sub ☉}, spanning the wide distribution of yields observed for the majority of SNe Ia. All collision models yield the same late-time (≳ 60 days since explosion) bolometric light curve when normalized by {sup 56}Ni masses (to better than 30%), in agreement with observations. The calculated widths of the {sup 56}Ni-mass-weighted line-of-sight velocity distributions are correlated with the calculated {sup 56}Ni yield, agreeing with the observed correlation. The strong correlation, shown here for the first time, between {sup 56}Ni yield and total mass of the colliding CO-WDs (insensitive to their mass ratio), is suggestive as the source for the continuous distribution of observed SN Ia features, possibly including the Philips relation.

  13. Reconciliation of the Surface Brightness Fluctuation and Type Ia Supernova Distance Scales

    NASA Astrophysics Data System (ADS)

    Ajhar, Edward A.; Tonry, John L.; Blakeslee, John P.; Riess, Adam G.; Schmidt, Brian P.

    2001-10-01

    We present Hubble Space Telescope measurements of surface brightness fluctuation (SBF) distances to early-type galaxies that have hosted Type Ia supernovae (SNe Ia). The agreement in the relative SBF and SN Ia multicolor light-curve shape and delta-m15 distances is excellent. There is no systematic scale error with distance, and previous work has shown that SBFs and SNe Ia give consistent ties to the Hubble flow. However, we confirm a systematic offset of ~0.25 mag in the distance zero points of the two methods, and we trace this offset to their respective Cepheid calibrations. SBFs have in the past been calibrated with Cepheid distances from the H0 Key Project team, while SNe Ia have been calibrated with Cepheid distances from the team composed of Sandage, Saha, and collaborators. When the two methods are calibrated in a consistent way, their distances are in superb agreement. Until the conflict over the ``long'' and ``short'' extragalactic Cepheid distances among many galaxies is resolved, we cannot definitively constrain the Hubble constant to better than ~10%, even leaving aside the additional uncertainty in the distance to the Large Magellanic Cloud, common to both Cepheid scales. However, recent theoretical SBF predictions from stellar population models favor the Key Project Cepheid scale, while the theoretical SN Ia calibration lies between the long and short scales. In addition, while the current SBF distance to M31/M32 is in good agreement with the RR Lyrae and red giant branch distances, calibrating SBFs with the longer Cepheid scale would introduce a 0.3 mag offset with respect to the RR Lyrae scale. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555. These observations are associated with proposals 8212, 5990, and 6587.

  14. EARLY PHASE OBSERVATIONS OF EXTREMELY LUMINOUS TYPE Ia SUPERNOVA 2009dc

    SciTech Connect

    Yamanaka, M.; Arai, A.; Chiyonobu, S.; Fukazawa, Y.; Ikejiri, Y.; Itoh, R.; Komatsu, T.; Miyamoto, H.; Kawabata, K. S.; Kinugasa, K.; Hashimoto, O.; Honda, S.; Tanaka, M.; Imada, A.; Kuroda, D.; Maeda, K.; Nomoto, K.; Kamata, Y.; Kawai, N.; Konishi, K.

    2009-12-20

    We present early phase observations in optical and near-infrared wavelengths for the extremely luminous Type Ia supernova (SN Ia) 2009dc. The decline rate of the light curve is DELTAm{sub 15}(B) = 0.65 +- 0.03, which is one of the slowest among SNe Ia. The peak V-band absolute magnitude is estimated to be M{sub V} = -19.90 +- 0.15 mag if no host extinction is assumed. It reaches M{sub V} = -20.19 +- 0.19 mag if we assume the host extinction of A{sub V} = 0.29 mag. SN 2009dc belongs to the most luminous class of SNe Ia, like SNe 2003fg and 2006gz. Our JHK{sub s} -band photometry shows that this SN is also one of the most luminous SNe Ia in near-infrared wavelengths. We estimate the ejected {sup 56}Ni mass of 1.2 +- 0.3 M{sub sun} for the no host extinction case (and of 1.6 +- 0.4 M{sub sun} for the host extinction of A{sub V} = 0.29 mag). The C II lambda6580 absorption line remains visible until a week after the maximum brightness, in contrast to its early disappearance in SN 2006gz. The line velocity of Si II lambda6355 is about 8000 km s{sup -1} around the maximum, being considerably slower than that of SN 2006gz. The velocity of the C II line is similar to or slightly less than that of the Si II line around the maximum. The presence of the carbon line suggests that the thick unburned C+O layer remains after the explosion. Spectropolarimetric observations by Tanaka et al. indicate that the explosion is nearly spherical. These observational facts suggest that SN 2009dc is a super-Chandrasekhar mass SN Ia.

  15. An asymmetric explosion as the origin of spectral evolution diversity in type Ia supernovae.

    PubMed

    Maeda, K; Benetti, S; Stritzinger, M; Röpke, F K; Folatelli, G; Sollerman, J; Taubenberger, S; Nomoto, K; Leloudas, G; Hamuy, M; Tanaka, M; Mazzali, P A; Elias-Rosa, N

    2010-07-01

    Type Ia supernovae form an observationally uniform class of stellar explosions, in that more luminous objects have smaller decline-rates. This one-parameter behaviour allows type Ia supernovae to be calibrated as cosmological 'standard candles', and led to the discovery of an accelerating Universe. Recent investigations, however, have revealed that the true nature of type Ia supernovae is more complicated. Theoretically, it has been suggested that the initial thermonuclear sparks are ignited at an offset from the centre of the white-dwarf progenitor, possibly as a result of convection before the explosion. Observationally, the diversity seen in the spectral evolution of type Ia supernovae beyond the luminosity-decline-rate relation is an unresolved issue. Here we report that the spectral diversity is a consequence of random directions from which an asymmetric explosion is viewed. Our findings suggest that the spectral evolution diversity is no longer a concern when using type Ia supernovae as cosmological standard candles. Furthermore, this indicates that ignition at an offset from the centre is a generic feature of type Ia supernovae. PMID:20596015

  16. Sweetspot: Near-infrared observations of 13 type Ia supernovae from a new NOAO survey probing the nearby smooth Hubble flow

    SciTech Connect

    Weyant, Anja; Wood-Vasey, W. Michael; Allen, Lori; Joyce, Richard; Matheson, Thomas; Garnavich, Peter M.; Jha, Saurabh W.

    2014-04-01

    We present 13 Type Ia supernovae (SNe Ia) observed in the rest-frame near-infrared (NIR) from 0.02 < z < 0.09 with the WIYN High-resolution Infrared Camera on the WIYN 3.5 m telescope. With only one to three points per light curve and a prior on the time of maximum from the spectrum used to type the object, we measure an H-band dispersion of spectroscopically normal SNe Ia of 0.164 mag. These observations continue to demonstrate the improved standard brightness of SNe Ia in an H band, even with limited data. Our sample includes two SNe Ia at z ∼ 0.09, which represent the most distant rest-frame NIR H-band observations published to date. This modest sample of 13 NIR SNe Ia represent the pilot sample for {sup S}weetSpot{sup —}a 3 yr NOAO Survey program that will observe 144 SNe Ia in the smooth Hubble flow. By the end of the survey we will have measured the relative distance to a redshift of z ∼ 0.05%-1%. Nearby Type Ia supernova (SN Ia) observations such as these will test the standard nature of SNe Ia in the rest-frame NIR, allow insight into the nature of dust, and provide a critical anchor for future cosmological SN Ia surveys at higher redshift.

  17. Late-time Photometry of Type Ia Supernova SN 2012cg Reveals the Radioactive Decay of 57 Co

    NASA Astrophysics Data System (ADS)

    Graur, Or; Zurek, David; Shara, Michael M.; Riess, Adam G.; Seitenzahl, Ivo R.; Rest, Armin

    2016-03-01

    Seitenzahl et al. have predicted that roughly three years after its explosion, the light we receive from a Type Ia supernova (SN Ia) will come mostly from reprocessing of electrons and X-rays emitted by the radioactive decay chain 57Co → 57Fe, instead of positrons from the decay chain 56Co → 56Fe that dominates the SN light at earlier times. Using the Hubble Space Telescope, we followed the light curve of the SN Ia SN 2012cg out to 1055 days after maximum light. Our measurements are consistent with the light curves predicted by the contribution of energy from the reprocessing of electrons and X-rays emitted by the decay of 57Co, offering evidence that 57Co is produced in SN Ia explosions. However, the data are also consistent with a light echo ∼14 mag fainter than SN 2012cg at peak. Assuming no light-echo contamination, the mass ratio of 57Ni and 56Ni produced by the explosion, a strong constraint on any SN Ia explosion models, is {0.043}-0.011+0.012, roughly twice Solar. In the context of current explosion models, this value favors a progenitor white dwarf with a mass near the Chandrasekhar limit.

  18. Constraining the double-degenerate scenario for Type Ia supernovae from merger ejected matter

    NASA Astrophysics Data System (ADS)

    Levanon, Naveh; Soker, Noam; García-Berro, Enrique

    2015-03-01

    We follow the mass expelled during the WD-WD merger process in a particular case of the double-degenerate (DD) scenario for Type Ia supernovae (SNe Ia), and find that the interaction of the SN ejecta with the resulting wind affects the early (first day) light-curve in a way that may be in conflict with some SN Ia observations, if the detonation occurs shortly after the merger, i.e. (103 s ≲ texp ≲ 1 d). The main source of the expelled mass is a disc-wind, or jets that are launched by the accretion disc around the more massive white dwarf (WD) during the viscous phase of the merger. This disc-originated matter will be shocked and heated by the SN ejecta from an explosion, leading to additional radiation in the early light-curve. This enhanced early radiation could then be interpreted as an explosion originating from a progenitor having an inferred radius of one solar radius or more, in conflict with observations of SN 2011fe.

  19. No signature of ejecta interaction with a stellar companion in three type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Olling, Rob P.; Mushotzky, Richard; Shaya, Edward J.; Rest, Armin; Garnavich, Peter M.; Tucker, Brad E.; Kasen, Daniel; Margheim, Steve; Filippenko, Alexei V.

    2015-05-01

    Type Ia supernovae are thought to be the result of a thermonuclear runaway in carbon/oxygen white dwarfs, but it is uncertain whether the explosion is triggered by accretion from a non-degenerate companion star or by a merger with another white dwarf. Observations of a supernova immediately following the explosion provide unique information on the distribution of ejected material and the progenitor system. Models predict that the interaction of supernova ejecta with a companion star or circumstellar debris lead to a sudden brightening lasting from hours to days. Here we present data for three supernovae that are likely to be type Ia observed during the Kepler mission with a time resolution of 30 minutes. We find no signatures of the supernova ejecta interacting with nearby companions. The lack of observable interaction signatures is consistent with the idea that these three supernovae resulted from the merger of binary white dwarfs or other compact stars such as helium stars.

  20. No signature of ejecta interaction with a stellar companion in three type Ia supernovae.

    PubMed

    Olling, Rob P; Mushotzky, Richard; Shaya, Edward J; Rest, Armin; Garnavich, Peter M; Tucker, Brad E; Kasen, Daniel; Margheim, Steve; Filippenko, Alexei V

    2015-05-21

    Type Ia supernovae are thought to be the result of a thermonuclear runaway in carbon/oxygen white dwarfs, but it is uncertain whether the explosion is triggered by accretion from a non-degenerate companion star or by a merger with another white dwarf. Observations of a supernova immediately following the explosion provide unique information on the distribution of ejected material and the progenitor system. Models predict that the interaction of supernova ejecta with a companion star or circumstellar debris lead to a sudden brightening lasting from hours to days. Here we present data for three supernovae that are likely to be type Ia observed during the Kepler mission with a time resolution of 30 minutes. We find no signatures of the supernova ejecta interacting with nearby companions. The lack of observable interaction signatures is consistent with the idea that these three supernovae resulted from the merger of binary white dwarfs or other compact stars such as helium stars. PMID:25993963

  1. ASASSN-16av: Discovery of A Type Ia Supernova in NGC 3926 NED02

    NASA Astrophysics Data System (ADS)

    Holoien, T. W.-S.; Bersier, D.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Dong, Subo; Chen, Ping; Brimacombe, J.

    2016-01-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new type Ia supernova in the galaxy NGC 3926 NED02.

  2. KISS: Discovery and Spectroscopic Classification of a Type Ia Supernova KISS15q

    NASA Astrophysics Data System (ADS)

    Morokuma, Tomoki; Tominaga, Nozomu; Tanaka, Masaomi; Jiang, Ji-an; Shibata, Takumi; Kokubo, Mitsuru; Hashiba, Yasuhito; Mitsuda, Kazuma; Doi, Mamoru; Sako, Shigeyuki; Kikuchi, Yuki; Takahashi, Hidenori; Tateuchi, Ken; Kuncarayakti, Hanindyo; Watanabe, Makoto; Nakao, Hikaru; Itoh, Yoichi; Morihana, Kumiko; Honda, Satoshi; Takagi, Yuhei; Takahashi, Jun; Takeishi, Masanori

    2015-05-01

    We report the discovery and spectroscopic identification of a Type Ia supernova, KISS15q. In Kiso Supernova Survey (KISS; Morokuma et al. 2014, PASJ, 66, 118), we found a transient object KISS15q of g=20.6 on May 19.60, 2015 UT in the g-band image.

  3. Sampling the probability distribution of Type Ia Supernova lightcurve parameters in cosmological analysis

    NASA Astrophysics Data System (ADS)

    Dai, Mi; Wang, Yun

    2016-06-01

    In order to obtain robust cosmological constraints from Type Ia supernova (SN Ia) data, we have applied Markov Chain Monte Carlo (MCMC) to SN Ia lightcurve fitting. We develop a method for sampling the resultant probability density distributions (pdf) of the SN Ia lightcuve parameters in the MCMC likelihood analysis to constrain cosmological parameters, and validate it using simulated data sets. Applying this method to the `joint lightcurve analysis (JLA)' data set of SNe Ia, we find that sampling the SN Ia lightcurve parameter pdf's leads to cosmological parameters closer to that of a flat Universe with a cosmological constant, compared to the usual practice of using only the best-fitting values of the SN Ia lightcurve parameters. Our method will be useful in the use of SN Ia data for precision cosmology.

  4. BAHAMAS: New Analysis of Type Ia Supernovae Reveals Inconsistencies with Standard Cosmology

    NASA Astrophysics Data System (ADS)

    Shariff, Hikmatali; Jiao, Xiyun; Trotta, Roberto; van Dyk, David A.

    2016-08-01

    We present results obtained by applying our BAyesian HierArchical Modeling for the Analysis of Supernova cosmology (BAHAMAS) software package to the 740 spectroscopically confirmed supernovae of type Ia (SNe Ia) from the “Joint Light-curve Analysis” (JLA) data set. We simultaneously determine cosmological parameters and standardization parameters, including corrections for host galaxy mass, residual scatter, and object-by-object intrinsic magnitudes. Combining JLA and Planck data on the cosmic microwave background, we find significant discrepancies in cosmological parameter constraints with respect to the standard analysis: we find {{{Ω }}}{{m}}=0.399+/- 0.027, 2.8σ higher than previously reported, and w=-0.910+/- 0.045, 1.6σ higher than the standard analysis. We determine the residual scatter to be {σ }{{res}}=0.104+/- 0.005. We confirm (at the 95% probability level) the existence of two subpopulations segregated by host galaxy mass, separated at {{log}}10(M/{M}ȯ )=10, differing in mean intrinsic magnitude by 0.055 ± 0.022 mag, lower than previously reported. Cosmological parameter constraints, however, are unaffected by the inclusion of corrections for host galaxy mass. We find ∼ 4σ evidence for a sharp drop in the value of the color correction parameter, β (z), at a redshift {z}t=0.662+/- 0.055. We rule out some possible explanations for this behavior, which remains unexplained.

  5. BAHAMAS: New Analysis of Type Ia Supernovae Reveals Inconsistencies with Standard Cosmology

    NASA Astrophysics Data System (ADS)

    Shariff, Hikmatali; Jiao, Xiyun; Trotta, Roberto; van Dyk, David A.

    2016-08-01

    We present results obtained by applying our BAyesian HierArchical Modeling for the Analysis of Supernova cosmology (BAHAMAS) software package to the 740 spectroscopically confirmed supernovae of type Ia (SNe Ia) from the “Joint Light-curve Analysis” (JLA) data set. We simultaneously determine cosmological parameters and standardization parameters, including corrections for host galaxy mass, residual scatter, and object-by-object intrinsic magnitudes. Combining JLA and Planck data on the cosmic microwave background, we find significant discrepancies in cosmological parameter constraints with respect to the standard analysis: we find {{{Ω }}}{{m}}=0.399+/- 0.027, 2.8σ higher than previously reported, and w=-0.910+/- 0.045, 1.6σ higher than the standard analysis. We determine the residual scatter to be {σ }{{res}}=0.104+/- 0.005. We confirm (at the 95% probability level) the existence of two subpopulations segregated by host galaxy mass, separated at {{log}}10(M/{M}ȯ )=10, differing in mean intrinsic magnitude by 0.055 ± 0.022 mag, lower than previously reported. Cosmological parameter constraints, however, are unaffected by the inclusion of corrections for host galaxy mass. We find ˜ 4σ evidence for a sharp drop in the value of the color correction parameter, β (z), at a redshift {z}t=0.662+/- 0.055. We rule out some possible explanations for this behavior, which remains unexplained.

  6. Supernovae: lights in the darkness

    NASA Astrophysics Data System (ADS)

    Every year, at the end of the summer, the Section of Physics and Technique of the "Institut Menorquí d'Estudis" and the "Societat Catalana de Física" organize the "Trobades Científiques de la Mediterrània" with the support of several academic institutions. The 2007 edition has been devoted to stellar explosions, the true evolutionary engines of galaxies. Whenever a star explodes, it injects into the interstellar medium a kinetic energy of 1051 erg and between one and several solar masses of newly synthesized elements as a result of the thermonuclear reactions that have taken place within the stellar interior. Two mechanisms are able to provide these enormous amounts of energy: one of them thermonuclear and the other, gravitational. Thermonuclear supernovae are the result of the incineration of a carbon-oxygen white dwarf that is the compact star of a binary stellar system. If the two stars are sufficiently close to each other, the white dwarf accretes matter from its companion, approaches the mass of Chandrasekhar, and ends up exploding. The processes previous to the explosion, the explosion itself, as well as the exact nature of the double stellar system that explodes, are still a matter of discussion. This point is particularly important because these explosions, known as Type Ia Supernovae, are very homogenous and can be used to measure cosmological distances. The most spectacular result obtained, is the discovery of the accelerated expansion of the Universe, but it still feels uncomfortable that such a fundamental result is based on a "measuring system" whose origin and behaviour in time is unknown. At the end of their lives, massive stars generate an iron nucleus that gets unstable when approaching the Chandrasekhar mass. Its collapse gives rise to the formation of a neutron star or a black hole, and the external manifestation of the energy that is released, about a 1053 erg, consists of a Type II or Ib/c supernova, of a Gamma Ray Burst (GRB) or even of

  7. Low Mach Number Modeling of Type Ia Supernovae

    SciTech Connect

    Almgren, Ann S.; Bell, John B.; Rendleman, Charles A.; Zingale,Michael

    2005-08-05

    We introduce a low Mach number equation set for the large-scale numerical simulation of carbon-oxygen white dwarfs experiencing a thermonuclear deflagration. Since most of the interesting physics in a Type Ia supernova transpires at Mach numbers from 0.01 to 0.1, such an approach enables both a considerable increase in accuracy and savings in computer time compared with frequently used compressible codes. Our equation set is derived from the fully compressible equations using low Mach number asymptotics, but without any restriction on the size of perturbations in density or temperature. Comparisons with simulations that use the fully compressible equations validate the low Mach number model in regimes where both are applicable. Comparisons to simulations based on the more traditional an elastic approximation also demonstrate the agreement of these models in the regime for which the anelastic approximation is valid. For low Mach number flows with potentially finite amplitude variations in density and temperature, the low Mach number model overcomes the limitations of each of the more traditional models and can serve as the basis for an accurate and efficient simulation tool.

  8. A PHYSICAL MODEL FOR SN 2001ay, A NORMAL, BRIGHT, EXTREMELY SLOW DECLINING TYPE Ia SUPERNOVA

    SciTech Connect

    Baron, E.; Hoeflich, P.; Krisciunas, K.; Suntzeff, N.; Wang, L.; Dominguez, I.; Phillips, M. M. E-mail: pah@astro.physics.fsu.edu E-mail: suntzeff@physics.tamu.edu E-mail: inma@ugr.es E-mail: mmp@lcoeps1.lco.cl

    2012-07-10

    We present a study of the peculiar Type Ia supernova 2001ay (SN 2001ay). The defining features of its peculiarity are high velocity, broad lines, and a fast rising light curve, combined with the slowest known rate of decline. It is one magnitude dimmer than would be predicted from its observed {Delta}m{sub 15}, and shows broad spectral features. We base our analysis on detailed calculations for the explosion, light curves, and spectra. We demonstrate that consistency is key for both validating the models and probing the underlying physics. We show that this SN can be understood within the physics underlying the {Delta}m{sub 15} relation, and in the framework of pulsating delayed detonation models originating from a Chandrasekhar mass, M{sub Ch}, white dwarf, but with a progenitor core composed of 80% carbon. We suggest a possible scenario for stellar evolution which leads to such a progenitor. We show that the unusual light curve decline can be understood with the same physics as has been used to understand the {Delta}m{sub 15} relation for normal SNe Ia. The decline relation can be explained by a combination of the temperature dependence of the opacity and excess or deficit of the peak luminosity, {alpha}, measured relative to the instantaneous rate of radiative decay energy generation. What differentiates SN 2001ay from normal SNe Ia is a higher explosion energy which leads to a shift of the {sup 56}Ni distribution toward higher velocity and {alpha} < 1. This result is responsible for the fast rise and slow decline. We define a class of SN 2001ay-like SNe Ia, which will show an anti-Phillips relation.

  9. Constraining the progenitor of the Type Ia Supernova SN 2012cg

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Stancliffe, Richard J.

    2016-06-01

    The nature of the progenitors of Type Ia supernovae (SNe Ia) is not yet fully understood. In the single-degenerate (SD) scenario, the collision of the SN ejecta with its companion star is expected to produce detectable ultraviolet emission in the first few days after the SN explosion within certain viewing angles. It was recently found that the B - V colour of the nearby SN Ia SN 2012cg at about 16 d before the maximum B-band brightness was about 0.2 mag bluer than those of other normal SNe Ia, which was reported as the first evidence for excess blue light from the interaction of normal SN Ia ejecta with its companion star. In this work, we compare current observations for SN 2012cg from its pre-explosion phase to the late-time nebular phase with theoretical predictions from binary evolution and population synthesis calculations for a variety of popular progenitor scenarios. We find that a main-sequence donor or a carbon-oxygen white dwarf donor binary system is more likely to be the progenitor of SN 2012cg. However, both scenarios also predict properties which are in contradiction to the observed features of this system. Taking both theoretical and observational uncertainties into account, we suggest that it might be too early to conclude that SN 2012cg was produced from an explosion of a Chandrasekhar-mass white dwarf in the SD scenario. Future observations and improved detailed theoretical modelling are still required to place a more stringent constraint on the progenitor of SN 2012cg.

  10. Mid-Infrared Signatures from Type Ia Supernovae Strongly Interacting with a Circumstellar Medium

    NASA Astrophysics Data System (ADS)

    Fox, Ori

    2016-08-01

    Type Ia supernovae (SNe Ia) are well-known for their use as precise cosmological distance indicators due to a standardizable peak luminosity resulting from a thermonuclear explosion. A growing subset of SNe Ia, however, show evidence for interaction with a dense circumstellar medium during the first year post-explosion, and sometimes longer (SNe Ia-CSM). The origin of this dense CSM is unknown and suggests either a) the less typical single-degenerate progenitor scenario must be considered or b) the exploding star was not a thermonuclear explosion of a white dwarf at all (i.e., core-collapse). Mid-infrared (IR) observations, in particular, are critical for tracing the density profile of dust (and hence gas) in the surrounding CSM. Yet no Spitzer light curve exists for this subclass within the first year post-expolosion. Here we propose a 'low-impact' (>8 weeks) ToO to obtain 3 epochs of Spitzer imaging of a SN Ia-CSM within 100 Mpc over 1 year post-explosion. The strength of this program is that it will be in conjunction with pre-approved multi-wavelength programs on HST/STIS/UV (GO 13649), Chandra/ASIS-S (17500672), the Keck/LRIS optical spectrograph (U037LA), and the RATIR visible/infrared robotic imager. Requiring only 2.1 hours of observation total, this program will not only distinguish between the SN explosion mechanisms, but also trace CSM interaction, constrain the progenitor mass loss history, and identify late-time heating mechanisms of warm dust.

  11. Light echoes - Type II supernovae

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1987-01-01

    Type II supernovae (SNs) light curves show a remarkable range of shapes. Data have been collected for the 12 Type II SNs that have light curve information for more than four months past maximum. Contrary to previous reports, it is found that (1) the decay rate after 100 days past maximum varies by almost an order of magnitude and (2) the light curve shapes are not bimodally distributed, but actually form a continuum. In addition, it is found that the extinctions to the SNs are related to the light curve shapes. This implies that the absorbing dust is local to the SNs. The dust is likely to be part of a circumstellar shell emitted by the SN progenitor that Dwek (1983) has used to explain infrared echoes. The optical depth of the shell can get quite large. In such cases, it is found that the photons scattered and delayed by reflection off dust grains will dominate the light curve several months after peak brightness. This 'light echo' offers a straightforward explanation of the diversity of Type II SN light curves.

  12. An asymptotic-giant-branch star in the progenitor system of a type Ia supernova.

    PubMed

    Hamuy, Mario; Phillips, M M; Suntzeff, Nicholas B; Maza, José; González, L E; Roth, Miguel; Krisciunas, Kevin; Morrell, Nidia; Green, E M; Persson, S E; McCarthy, P J

    2003-08-01

    Stars that explode as supernovae come in two main classes. A type Ia supernova is recognized by the absence of hydrogen and the presence of elements such as silicon and sulphur in its spectrum; this class of supernova is thought to produce the majority of iron-peak elements in the Universe. They are also used as precise 'standard candles' to measure the distances to galaxies. While there is general agreement that a type Ia supernova is produced by an exploding white dwarf star, no progenitor system has ever been directly observed. Significant effort has gone into searching for circumstellar material to help discriminate between the possible kinds of progenitor systems, but no such material has hitherto been found associated with a type Ia supernova. Here we report the presence of strong hydrogen emission associated with the type Ia supernova SN2002ic, indicating the presence of large amounts of circumstellar material. We infer from this that the progenitor system contained a massive asymptotic-giant-branch star that lost several solar masses of hydrogen-rich gas before the supernova explosion. PMID:12904786

  13. The Type Ia Supernova Rate at z~0.5 from the Supernova Legacy Survey

    NASA Astrophysics Data System (ADS)

    Neill, J. D.; Sullivan, M.; Balam, D.; Pritchet, C. J.; Howell, D. A.; Perrett, K.; Astier, P.; Aubourg, E.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Pain, R.; Palanque-Delabrouille, N.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Antilogus, P.; Arsenijevic, V.; Balland, C.; Baumont, S.; Bronder, J.; Ellis, R. S.; Filiol, M.; Gonçalves, A. C.; Hardin, D.; Kowalski, M.; Lidman, C.; Lusset, V.; Mouchet, M.; Mourao, A.; Perlmutter, S.; Ripoche, P.; Schlegel, D.; Tao, C.

    2006-09-01

    We present a measurement of the distant Type Ia supernova (SN Ia) rate derived from the first 2 yr of the Canada-France-Hawaii Telescope Supernova Legacy Survey. We observed four 1deg×1deg fields with a typical temporal frequency of <Δt>~4 observer-frame days over time spans of 158-211 days per season for each field, with breaks during the full Moon. We used 8-10 m class telescopes for spectroscopic follow-up to confirm our candidates and determine their redshifts. Our starting sample consists of 73 spectroscopically verified SNe Ia in the redshift range 0.2Ia rate of rV(=0.47)=[0.42+0.13-0.09(syst.)+/-0.06(stat.)×10-4 yr-1 Mpc3, assuming h=0.7, Ωm=0.3, and a flat cosmology. Using recently published galaxy luminosity functions derived in our redshift range, we derive a SN Ia rate per unit luminosity of rL(=0.47)=0.154+0.048-0.033(syst.)+0.039-0.031(stat.) SN units. Using our rate alone, we place an upper limit on the component of SN Ia production that tracks the cosmic star formation history of 1 SN Ia per 103 Msolar of stars formed. Our rate and other rates from surveys using spectroscopic sample confirmation display only a modest evolution out to z=0.55. Based on observations obtained with MegaPrime/MegaCam, a joint project of the Canada-France-Hawaii Telescope (CFHT) and CEA/DAPNIA, at CFHT, which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. This work is also based on observations obtained at the European Southern Observatory using the Very Large Telescope on the Cerro Paranal (ESO Large Program 171.A-0486), and on observations (programs GN-2004A-Q-19, GS-2004A-Q-11

  14. Neutrino and gravitational wave signal of a delayed-detonation model of type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo R.; Herzog, Matthias; Ruiter, Ashley J.; Marquardt, Kai; Ohlmann, Sebastian T.; Röpke, Friedrich K.

    2015-12-01

    The progenitor system(s) and the explosion mechanism(s) of type Ia supernovae (SNe Ia) are still under debate. Nonelectromagnetic observables, in particular, gravitational waves and neutrino emission, of thermoclear supernovae are a complementary window to light curves and spectra for studying these enigmatic objects. A leading model for SNe Ia is the thermonuclear incineration of a near-Chandrasekhar mass carbon-oxygen white dwarf star in a "delayed detonation." We calculate a three-dimensional hydrodynamic explosion for the N100 delayed-detonation model extensively discussed in the literature, taking the dynamical effects of neutrino emission from all important contributing source terms into account. Although neutrinos carry away 2 ×1049 erg of energy, we confirm the common view that neutrino energy losses are dynamically not very important, resulting in only a modest reduction of final kinetic energy by 2%. We then calculate the gravitational wave signal from the time evolution of the quadrupole moment. Our model radiates 7 ×1039 erg in gravitational waves and the spectrum has a pronounced peak around 0.4 Hz. Depending on viewing angle and polarization, we find that the future space-based gravitational wave missions DECIGO and BBO would be able to detect our source to a distance of ˜1.3 Mpc . We predict a clear signature of the deflagration-to-detonation transition in the neutrino and the gravitational wave signals. If observed, such a feature would be a strong indicator of the realization of delayed detonations in near-Chandrasekhar mass white dwarfs.

  15. Twins for life? A comparative analysis of the Type Ia supernovae 2011fe and 2011by

    NASA Astrophysics Data System (ADS)

    Graham, M. L.; Foley, R. J.; Zheng, W.; Kelly, P. L.; Shivvers, I.; Silverman, J. M.; Filippenko, A. V.; Clubb, K. I.; Ganeshalingam, M.

    2015-01-01

    The nearby Type Ia supernovae (SNe Ia) 2011fe and 2011by had nearly identical photospheric phase optical spectra, light-curve widths, and photometric colours, but at peak brightness SN 2011by reached a fainter absolute magnitude in all optical bands and exhibited lower flux in the near-ultraviolet (NUV). Based on those data, Foley & Kirshner argue that the progenitors of SNe 2011by and 2011fe had supersolar and subsolar metallicity, respectively, and that SN 2011fe generated 1.7 times the amount of 56Ni as SN 2011by. With this work, we extend the comparison of these SNe Ia to 10 d before and 300 d after maximum brightness with new spectra and photometry. We show that the nebular phase spectra of SNe 2011fe and 2011by are almost identical, and do not support a factor of 1.7 difference in 56Ni mass. Instead, we find it plausible that the Tully-Fisher distance for SN 2011by is an underestimate, in which case these SNe Ia may have reached similar peak luminosity, formed similar amounts of 56Ni, and had lower metallicity progenitors than previously estimated. Regardless of the true distance to SN 2011by, we find that the relative progenitor metallicity difference remains well supported by their disparity in NUV flux, which we show to be even stronger at pre-maximum epochs - although contributions from differences in total ejecta mass, viewing angle, or progenitor density cannot be ruled out. We also demonstrate that, independent of distance modulus, SN 2011by exhibits a late-time luminosity excess that cannot be explained by a light echo, but is more likely to be the result of greater energy trapping by the nucleosynthetic products of SN 2011by.

  16. Mapping the Kinematic Structure of Radioactive Ejecta in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Gerardy, Christopher L.; Parrent, Jerod; Fesen, Robert A.; Hoflich, Peter

    2009-02-01

    Late-time (t ~ 300 d) observation of near-infrared (NIR) [Fe II] lines has proven to be a very powerful tool for probing the physics of Type Ia supernova (SN Ia) explosions. The few available examples have revealed that at least some SNe Ia exhibit a layered ejecta structure which persists down to the innermost regions of the SN envelope, in contradiction to all of the currently popular models of SNe Ia which predict that the innermost regions (at least) should exhibit large-scale turbulent mixing. Thus a key piece of physics is missing from our understanding of these events. NIR spectroscopy of Type Ia supernovae at these epochs tests the limits of 8 m class telescopes for even the brightest SNe Ia, and so these phenomena remain poorly observed. However, it may be possible to use the strong [Fe II] emission line at 7155 Ato similar effect. Unfortunately this line is usually partly blended with [Ca II] emission which complicates the extraction of the true [Fe II] line profile. We propose to use concurrent NIR and optical spectra of two recent nearby Type Ia supernovae, both to increase the still anemic data set of late- time SN Ia spectra, and to act as a pilot study to test whether the dramatic success obtained at great effort in the NIR can be reproduced much more cheaply through optical spectroscopy.

  17. Spectroscopic Classification of the Type Ia Supernova LSQ14asu

    NASA Astrophysics Data System (ADS)

    Walker, E. S.; Hadjiyska, E.; Rabinowitz, D.; Baltay, C.; Ellman, N.; McKinnon, R.; Feindt, U.; Nugent, P.; Phillips, Mark; Morrell, Nidia; Hsiao, Eric

    2014-04-01

    We report the spectroscopic classification of a La Silla-QUEST (LSQ) supernova (see Baltay et al. 2013, PASP, 125, 683) taken using WFCCD on the 2.5-m du Pont Telescope as part of the Carnegie Supernova Survey. ...

  18. THE SDSS-II SUPERNOVA SURVEY: PARAMETERIZING THE TYPE Ia SUPERNOVA RATE AS A FUNCTION OF HOST GALAXY PROPERTIES

    SciTech Connect

    Smith, Mathew; Nichol, Robert C.; Dilday, Benjamin; Marriner, John; Frieman, Joshua; Kessler, Richard; Bassett, Bruce; Cinabro, David; Garnavich, Peter; Jha, Saurabh W.; Lampeitl, Hubert; Sako, Masao; Schneider, Donald P.; Sollerman, Jesper

    2012-08-10

    Using data from the Sloan Digital Sky Supernova Survey-II (SDSS-II SN Survey), we measure the rate of Type Ia supernovae (SNe Ia) as a function of galaxy properties at intermediate redshift. A sample of 342 SNe Ia with 0.05 < z < 0.25 is constructed. Using broadband photometry and redshifts, we use the PEGASE.2 spectral energy distributions to estimate host galaxy stellar masses and recent star formation rates (SFRs). We find that the rate of SNe Ia per unit stellar mass is significantly higher (by a factor of {approx}30) in highly star-forming galaxies compared to passive galaxies. When parameterizing the SN Ia rate (SNR{sub Ia}) based on host galaxy properties, we find that the rate of SNe Ia in passive galaxies is not linearly proportional to the stellar mass; instead an SNR{sub Ia}{proportional_to}M{sup 0.68} is favored. However, such a parameterization does not describe the observed SNR{sub Ia} in star-forming galaxies. The SNR{sub Ia} in star-forming galaxies is well fitted by SNR{sub Ia} = (0.41 {+-} 0.15) Multiplication-Sign 10{sup -10} M{sup 0.72{+-}0.15} + (0.65 {+-} 0.25) Multiplication-Sign 10{sup -3}SFR{sup 1.01{+-}0.22} (statistical errors only), where M is the host galaxy stellar mass (in M{sub Sun }) and SFR is the SFR (in M{sub Sun} yr{sup -1}). We show that our results, for SNe Ia in passive galaxies, are consistent with those at higher redshifts (favoring SNR{sub Ia}{proportional_to}M) when accounting for the difference in the ages of our galaxies. This suggests that the rate of SNe Ia is correlated with the age of the stellar population. The MLCS extinction parameter, A{sub V} , is similar in passive and moderately star-forming galaxies, but we find indications that it is smaller, on average, in highly star-forming galaxies. This result appears to be driven by a deficit of the reddest (A{sub V} > 0.15) SNe Ia in highly star-forming galaxies. We consider that the high levels of dust in these systems may be obscuring the reddest and faintest SNe

  19. Palomar Transient Factory Discovers Another Possible super- Chandrasekhar Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Nugent, P. E.; Howell, D. A.; Sullivan, M.; Suzuki, N.; Cucchiara, A.; Botyanszki, J.; Hsiao, E. Y.

    2010-10-01

    The Type Ia supernova science working group of the Palomar Transient Factory (ATEL#1964) reports the discovery of a possible super-Chandrasekhar mass supernova, PTF10xgx. The supernova is at RA = 00:12:23.15, Dec = +02:30:44.1 (J2000) in the galaxy identified as APMUKS(BJ) B000949.39+021401.7 (Maddox et al. 1990, MNRAS, 243, 692). The supernova was discovered and classified by Oarical, an autonomous software framework of the PTF collaboration, based on observations made with the Palomar 48-inch Oschin Schmidt telescope.

  20. On the hydrogen emission from the type Ia supernova 2002ic

    SciTech Connect

    Wang, Lifan; Baade, Dietrich; Hoflich, Peter; Wheeler, J. Craig; Kawabata, Koji; Nomoto, Ken'ichi

    2003-12-10

    The discovery of SN 2002ic by the Supernova Factory and the subsequent spectroscopic studies have led to the surprising finding that SN 2002ic is a type Ia supernova with strong ejecta-circumstellar interaction. Here we show that nearly 1 year after the explosion the supernova has become fainter overall, but the H-alpha emission has brightened and broadened dramatically compared to earlier observations. We have obtained spectropolarimetry data which show that the hydrogen-rich matter is highly aspherically distributed. These observations suggest that the supernova exploded inside a dense, clumpy, disk-like circumstellar environment.

  1. Supernovae

    NASA Astrophysics Data System (ADS)

    March, Marisa

    2014-03-01

    We live in a Universe that is getting bigger faster. This astonishing discovery of Universal acceleration was made in the late 1990s by two teams who made observations of a special type of exploded star known as a `Supernova Type Ia'. (SNeIa) Since the discovery of the accelerating Universe, one of the biggest questions in modern cosmology has been to determine the cause of that acceleration - the answer to this question will have far reaching implications for our theories of cosmology and fundamental physics more broadly. The two main competing explanations for this apparent late time acceleration of the Universe are modified gravity and dark energy. The Dark Energy Survey (DES) has been designed and commissioned to find to find answers to these questions about the nature of dark energy and modified gravity. The new 570 megapixel Dark Energy Camera is currently operating with the Cerro-Tololo Inter American Observatory's 4m Blanco teleccope, carrying out a systematic search for SNeIa, and mapping out the large scale structure of the Universe by making observations of galaxies. The DES science program program which saw first light in September 2013 will run for five years in total. DES SNeIa data in combination with the other DES observations of large scale structure will enable us to put increasingly accurate constraints on the expansion history of the Universe and will help us distinguish between competing theories of dark energy and modified gravity. As we draw to the close of the first observing season of DES in March 2014, we will report on the current status of the DES supernova survey, presenting first year supernovae data, preliminary results, survey strategy, discovery pipeline, spectroscopic target selection and data quality. This talk will give the first glimpse of the DES SN first year data and initial results as we begin our five year survey in search of dark energy. On behalf of the Dark Energy Survey collaboration.

  2. The Detection of a Light Echo from Type Ia SN 2007af in NGC 5584

    NASA Astrophysics Data System (ADS)

    Drozdov, Dina; Leising, M. D.; Milne, P.; Riess, A. G.

    2013-06-01

    We report the discovery of a light echo (LE) at t ~1000 days past maximum from the normal Type Ia supernova (SNe Ia) SN 2007af in the spiral galaxy NGC 5584. The presence of a LE is supported by photometric data and analysis of the images acquired during the Cepheid campaign using the Hubble Space Telescope (HST) Wide Field Camera 3 (Riess et al. 2011). The F350 and F555 images show a distinct ring-like structure with an additional central source. The images, taken months apart, show an evolution of the ring structure, which is consistent with a growing light echo in time. We find an angular radius of the outer echo to be ~0.29'' - 0.36''. Using the Cepheid distance to NGC 5584 of 24 Mpc, we find the dust illuminated by the light echo to be at a distance ~800 pc from the supernova. This rare discovery adds to the select few light echoes found in Type Ia SNe: SN 1572, SN 1991T, SN 1995E, SN 1998bu, and SN 2006X. Light echoes are powerful tools that probe the environment around supernovae, determine dust properties and characteristics, and could provide constraints on the progenitors, which are not fully understood for SN Ia.

  3. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    DOE PAGESBeta

    Hsiao, E. Y.; Burns, C. R.; Contreras, C.; Höflich, P.; Sand, D.; Marion, G. H.; Phillips, M. M.; Stritzinger, M.; González-Gaitán, S.; Mason, R. E.; et al

    2015-05-22

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C Iλ1.0693 μm line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though themore » optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Δm15(B) = 1.79 ± 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a “transitional” event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. Furthermore, there is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II λ0.6355 μm line, implying a long dark phase of ~4 days.« less

  4. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    SciTech Connect

    Hsiao, E. Y.; Burns, C. R.; Contreras, C.; Höflich, P.; Sand, D.; Marion, G. H.; Phillips, M. M.; Stritzinger, M.; González-Gaitán, S.; Mason, R. E.; Folatelli, G.; Parent, E.; Gall, C.; Amanullah, R.; Anupama, G. C.; Arcavi, I.; Banerjee, D. P. K.; Beletsky, Y.; Blanc, G. A.; Bloom, J. S.; Brown, P. J.; Campillay, A.; Cao, Y.; De Cia, A.; Diamond, T.; Freedman, W. L.; Gonzalez, C.; Goobar, A.; Holmbo, S.; Howell, D. A.; Johansson, J.; Kasliwal, M. M.; Kirshner, R. P.; Krisciunas, K.; Kulkarni, S. R.; Maguire, K.; Milne, P. A.; Morrell, N.; Nugent, P. E.; Ofek, E. O.; Osip, D.; Palunas, P.; Perley, D. A.; Persson, S. E.; Piro, A. L.; Rabus, M.; Roth, M.; Schiefelbein, J. M.; Srivastav, S.; Sullivan, M.; Suntzeff, N. B.; Surace, J.; Woźniak, P. R.; Yaron, O.

    2015-05-22

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C Iλ1.0693 μm line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with Δm15(B) = 1.79 ± 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categorized as a “transitional” event, on the fast-declining end of normal SNe Ia as opposed to subluminous/91bg-like objects. iPTF13ebh shows NIR spectroscopic properties that are distinct from both the normal and subluminous/91bg-like classes, bridging the observed characteristics of the two classes. These NIR observations suggest that composition and density of the inner core are similar to that of 91bg-like events, and that it has a deep-reaching carbon burning layer that is not observed in more slowly declining SNe Ia. Furthermore, there is also a substantial difference between the explosion times inferred from the early-time light curve and the velocity evolution of the Si II λ0.6355 μm line, implying a long dark phase of ~4 days.

  5. Exploration of the interaction of type Ia supernovae with the circumstellar environment

    NASA Astrophysics Data System (ADS)

    Dragulin, Paul

    . The free parameters are: the a) mass loss dot{m}, b) wind velocity v_w, c) density distributions ∝ r. {-s} of theISM, and d)} the duration of the wind prior to the supernova explosion. I discuss the observational signatures with respect to light curves and high resolution spectra as tools to probe the environment of SNe˜Ia. The specific properties and evolution of the progenitor systems are found to leave unique imprints. During the progenitor evolution and with typical parameters in the SD scenario, the winds create a low density bubble surrounding the progenitor system and a high-density shell. It is also found that accretion disk winds dominate the environment formation. Within a distance of several light-years (ly), the densities are smaller by factors of 10. {2...4} compared to theenvironment. This explains the general lack of observed interaction in late time Supernova (SN) light curves for, at least, several years. The overdensities of the shells are between a factor of 4 to several hundred in case of constant density ISM and environments produced by stellar winds, respectively. The expansion velocity and width of the shell are typically 1-10 % of both v_w and the contact discontinuity R_C and may produce narrow spectral lines as observed in some SNe˜Ia. Typically, narrow circumstellar lines of equivalent width ≈ 100 m{Å are found for uniform ISM typical in Spiral galaxies and ≈ 1 m{Å} for wind environments. The outer layers of a SNe˜Ia expands with velocities of 10 to 30 % of the speed of light and we may expect some interaction with the shells several years after the explosion. I apply the analysis to SN2014J and discuss several scenarios. For SN˜2014J, the environment is likely formed by the AD wind running into a region produced by the Red Giant (RG) wind from the progenitor star prior to its WD stage. The delay times between the formation of the WD and the explosion is suggested to be short, ˜ 10. 5˜yr. Finally the same analysis is

  6. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    SciTech Connect

    Graur, O.; Rodney, S. A.; Riess, A. G.; Medezinski, E.; Maoz, D.; Jha, S. W.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Postman, M.; Dahlen, T.; Strolger, L.-G.; Coe, D.; Bradley, L.; Koekemoer, A.; Benítez, N.; Molino, A.; Jouvel, S.; Nonino, M.; Balestra, I.; and others

    2014-03-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00{sub −0.06(0.10)}{sup +0.06(0.09)} (statistical){sub −0.08}{sup +0.12} (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.

  7. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    NASA Technical Reports Server (NTRS)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Strolger, L.-G.; Benitez, N.; Coe, D.; Jouvel, S.; Medezinski, E.; Molino, A.; Nonino, M.; Bradley, L.; Koehemoer, A.; Balestra, I.; Cenko, S. B.; Clubb, K. I.; Dickinson, M. E.; Filippenko, A. V.; Frederiksen, T. F.; Garnavich, P.; Hjorth, J.; Jones, D. O.; Leibundgut, B.; Matheson, T.; Mobasher, B.; Rosati, P.; Silverman, J. M.; U., V.; Jedruszczuk, K.

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  8. 3D Simulations of Supernova Remnants from Type Ia Supernova Models

    NASA Astrophysics Data System (ADS)

    Johnson, Heather; Reynolds, S. P.; Frohlich, C.; Blondin, J. M.

    2014-01-01

    Type Ia supernovae (SNe) originate from thermonuclear explosions of white dwarfs. A great deal is still unknown about the explosion mechanisms, particularly the degree of asymmetry. However, Type Ia supernova remnants (SNRs) can bear the imprint of asymmetry long after the explosion. A SNR of interest is G1.9+0.3, the youngest Galactic SNR, which demonstrates an unusual spatial distribution of elements in the ejecta. While its X-ray spectrum is dominated by synchrotron emission, spectral lines of highly ionized Si, S, and Fe are seen in a few locations, with Fe near the edge of the remnant and with strongly varying Fe/Si ratios. An asymmetric explosion within the white dwarf progenitor may be necessary to explain these unusual features of G1.9+0.3, in particular the shocked Fe at large radii. We use the VH-1 hydrodynamics code to evolve initial Type Ia explosion models in 1, 2, and 3 dimensions at an age of 100 seconds provided by other researchers to study asymmetry, the ignition properties, and the nucleosynthesis resulting from these explosions. We follow the evolution of these models interacting with a uniform external medium to a few hundred years in age. We find the abundance and location of ejecta elements from our models to be inconsistent with the observations of G1.9+0.3; while our models show asymmetric element distributions, we find no tendency for iron-group elements to be found beyond intermediate-mass elements, or for significant iron to be reverse-shocked at all at the age of G1.9+0.3. We compare the amounts of shocked iron-group and intermediate-mass elements as a function of time in the different models. Some new kind of explosion asymmetry may be required to explain G1.9+0.3. This work was performed as part of NC State University's Undergraduate Research in Computational Astrophysics (URCA) program, an REU program supported by the National Science Foundation through award AST-1032736.

  9. A Spherical Chandrasekhar-Mass Delayed-Detonation Model for a Normal Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Blondin, Stéphane; Dessart, Luc; Hillier, D. John

    2015-06-01

    The most widely-accepted model for Type Ia supernovae (SNe Ia) is the thermonuclear disruption of a White Dwarf (WD) star in a binary system, although there is ongoing discussion about the combustion mode, the progenitor mass, and the nature of the binary companion. Observational evidence for diversity in the SN Ia population seems to require multiple progenitor channels or explosion mechanisms. In the standard single-degenerate (SD) scenario, the WD grows in mass through accretion of H-rich or He-rich material from a non-degenerate donor (e.g., a main-sequence star, a subgiant, a He star, or a red giant). When the WD is sufficiently close to the Chandrasekhar limit (˜1.4 M⊙), a subsonic deflagration front forms near the WD center which eventually transitions to a supersonic detonation (the so-called “delayed-detonation” model) and unbinds the star. The efficiency of the WD growth in mass remains uncertain, as repeated nova outbursts during the accretion process result in mass ejection from the WD surface. Moreover, the lack of observational signatures of the binary companion has cast some doubts on the SD scenario, and recent hydrodynamical simulations have put forward WD-WD mergers and collisions as viable alternatives. However, as shown here, the standard Chandrasekhar-mass delayed-detonation model remains adequate to explain many normal SNe Ia, in particular those displaying broad Si II 6355 Å lines. We present non-local-thermodynamic-equilibrium time-dependent radiative transfer simulations performed with CMFGEN of a spherically-symmetric delayed-detonation model from a Chandrasekhar-mass WD progenitor with 0.51 M⊙ of 56Ni (Fig. 1 and Table 1), and confront our results to the observed light curves and spectra of the normal Type Ia SN 2002bo over the first 100 days of its evolution. With no fine tuning, the model reproduces well the bolometric (Fig. 2) and multi-band light curves, the secondary near-infrared maxima (Fig. 3), and the spectroscopic

  10. ROTSE3 J133033.0-313427 is a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Quimby, R. M.

    2010-03-01

    A spectrum (340-760 nm) of ROTSE3 J133033.0-313427 (Zheng et al., ATel #2468) obtained on Mar 14.58 UT with the 10-m Keck I (+ Low Resolution Imaging Spectrometer) shows it to be a normal Type Ia supernova. The spectra are similar to SN 1992A a few days after maximum light (Kirshner et al. 1993, ApJ 415,589). Adopting the redshift of the apparent host (z=0.048; Katgert et al. 1998, A&AS 129, 399), the expansion velocity derived from the minimum of the SiII (rest 635.5 nm) line is about 12,000 km/s.

  11. The m-z relation for Type Ia supernovae: safety in numbers or safely without worry?

    NASA Astrophysics Data System (ADS)

    Helbig, Phillip

    2015-11-01

    The m-z relation for Type Ia supernovae is compatible with the cosmological concordance model if one assumes that the Universe is homogeneous, at least with respect to light propagation. This could be due to the density along each line of sight being equal to the overall cosmological density, or to `safety in numbers', with variation in the density along all lines of sight averaging out if the sample is large enough. Statistical correlations (or lack thereof) between redshifts, residuals (differences between the observed distance moduli and those calculated from the best-fitting cosmological model), and observational uncertainties suggest that the former scenario is the better description, so that one can use the traditional formula for the luminosity distance safely without worry.

  12. Testing the isotropy of the Universe by using the JLA compilation of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Lin, Hai-Nan; Wang, Sai; Chang, Zhe; Li, Xin

    2016-02-01

    We probe the possible anisotropy of the Universe by using the joint light-curve analysis (JLA) compilation of Type Ia supernovae. We apply the Markov Chain Monte Carlo method to constrain the amplitude and direction of anisotropy in three cosmological models. For the dipole-modulated Λ cold dark matter (ΛCDM) model, the anisotropic amplitude is consistent with zero at 68 per cent cl, and has an upper bound AD < 1.98 × 10-3 at 95 per cent cl. Regardless of much larger uncertainty, we amazingly find that the dipole direction of JLA is almost opposite to that of Union2. Similar results are found for the dipole-modulated wCDM and Chevallier-Polarski-Linder (CPL) models. Thus, the Universe is still well consistent with the isotropy according to the JLA compilation.

  13. The distance duality relation test from the ACT cluster and type Ia supernova data

    NASA Astrophysics Data System (ADS)

    Hu, Lin-Hai; Wu, Pu-Xun; Yu, Hong-Wei

    2016-05-01

    The validity of the cosmic distance-duality (DD) relation is investigated by using 91 measurements of the gas mass fraction of galaxy clusters recently reported by the Atacama Cosmology Telescope (ACT) and the luminosity distance from the Union2.1 type Ia supernova (SNIa) sample independent of any cosmological models and the value of the Hubble constant. We consider four different approaches to derive the gas mass function and two different parameterizations of the DD relation, and find that they have very slight influences on the DD relation test and the relation is valid at the 1σ confidence level. We also discuss the constraints on α and β, which represent the effects of the shapes and colors of the light curves of SNIa, respectively. Our results on α and β are different from those obtained from the ΛCDM model and the galaxy cluster plus SNIa data.

  14. Variable Sodium Absorption in a Low-extinction Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Simon, Joshua D.; Gal-Yam, Avishay; Gnat, Orly; Quimby, Robert M.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Blondin, Stephane; Li, Weidong; Filippenko, Alexei V.; Wheeler, J. Craig; Kirshner, Robert P.; Patat, Ferdinando; Nugent, Peter; Foley, Ryan J.; Vogt, Steven S.; Butler, R. Paul; Peek, Kathryn M. G.; Rosolowsky, Erik; Herczeg, Gregory J.; Sauer, Daniel N.; Mazzali, Paolo A.

    2009-09-01

    Recent observations have revealed that some Type Ia supernovae exhibit narrow, time-variable Na I D absorption features. The origin of the absorbing material is controversial, but it may suggest the presence of circumstellar gas in the progenitor system prior to the explosion, with significant implications for the nature of the supernova (SN) progenitors. We present the third detection of such variable absorption, based on six epochs of high-resolution spectroscopy of the Type Ia supernova SN 2007le from the Keck I Telescope and the Hobby-Eberly Telescope. The data span a time frame of approximately three months, from 5 days before maximum light to 90 days after maximum. We find that one component of the Na I D absorption lines strengthened significantly with time, indicating a total column density increase of ~2.5 × 1012 cm-2. The data limit the typical timescale for the variability to be more than 2 days but less than 10 days. The changes appear to be most prominent after maximum light rather than at earlier times when the ultraviolet flux from the SN peaks. As with SN 2006X, we detect no change in the Ca II H and K absorption lines over the same time period, rendering line-of-sight effects improbable and suggesting a circumstellar origin for the absorbing material. Unlike the previous two supernovae exhibiting variable absorption, SN 2007le is not highly reddened (E B - V = 0.27 mag), also pointing toward circumstellar rather than interstellar absorption. Photoionization calculations show that the data are consistent with a dense (107 cm-3) cloud or clouds of gas located ~0.1 pc (3 × 1017 cm) from the explosion. These results broadly support the single-degenerate scenario previously proposed to explain the variable absorption, with mass loss from a nondegenerate companion star responsible for providing the circumstellar gas. We also present possible evidence for narrow Hα emission associated with the SN, which will require deep imaging and spectroscopy at

  15. VARIABLE SODIUM ABSORPTION IN A LOW-EXTINCTION TYPE Ia SUPERNOVA

    SciTech Connect

    Simon, Joshua D.; Gal-Yam, Avishay; Gnat, Orly; Quimby, Robert M.; Ganeshalingam, Mohan; Silverman, Jeffrey M.; Li Weidong; Filippenko, Alexei V.; Peek, Kathryn M. G.; Blondin, Stephane; Patat, Ferdinando; Wheeler, J. Craig; Kirshner, Robert P.; Foley, Ryan J.; Nugent, Peter; Vogt, Steven S.; Rosolowsky, Erik; Herczeg, Gregory J.; Sauer, Daniel N. E-mail: avishay.gal-yam@weizmann.ac.il E-mail: quimby@astro.caltech.edu

    2009-09-10

    Recent observations have revealed that some Type Ia supernovae exhibit narrow, time-variable Na I D absorption features. The origin of the absorbing material is controversial, but it may suggest the presence of circumstellar gas in the progenitor system prior to the explosion, with significant implications for the nature of the supernova (SN) progenitors. We present the third detection of such variable absorption, based on six epochs of high-resolution spectroscopy of the Type Ia supernova SN 2007le from the Keck I Telescope and the Hobby-Eberly Telescope. The data span a time frame of approximately three months, from 5 days before maximum light to 90 days after maximum. We find that one component of the Na I D absorption lines strengthened significantly with time, indicating a total column density increase of {approx}2.5 x 10{sup 12} cm{sup -2}. The data limit the typical timescale for the variability to be more than 2 days but less than 10 days. The changes appear to be most prominent after maximum light rather than at earlier times when the ultraviolet flux from the SN peaks. As with SN 2006X, we detect no change in the Ca II H and K absorption lines over the same time period, rendering line-of-sight effects improbable and suggesting a circumstellar origin for the absorbing material. Unlike the previous two supernovae exhibiting variable absorption, SN 2007le is not highly reddened (E {sub B-V} = 0.27 mag), also pointing toward circumstellar rather than interstellar absorption. Photoionization calculations show that the data are consistent with a dense (10{sup 7} cm{sup -3}) cloud or clouds of gas located {approx}0.1 pc (3 x 10{sup 17} cm) from the explosion. These results broadly support the single-degenerate scenario previously proposed to explain the variable absorption, with mass loss from a nondegenerate companion star responsible for providing the circumstellar gas. We also present possible evidence for narrow H{alpha} emission associated with the SN

  16. A SWIFT LOOK AT SN 2011fe: THE EARLIEST ULTRAVIOLET OBSERVATIONS OF A TYPE Ia SUPERNOVA

    SciTech Connect

    Brown, Peter J.; Dawson, Kyle S.; De Pasquale, Massimiliano; Gronwall, Caryl; Siegel, Michael; Holland, Stephen; Immler, Stefan; Kuin, Paul; Oates, Samantha; Mazzali, Paolo; Milne, Peter

    2012-07-01

    We present the earliest ultraviolet (UV) observations of the bright Type Ia supernova SN 2011fe/PTF11kly in the nearby galaxy M101 at a distance of only 6.4 Mpc. It was discovered shortly after explosion by the Palomar Transient Factory and first observed by Swift/UVOT about a day after explosion. The early UV light is well defined, with {approx}20 data points per filter in the five days after explosion. These early and well-sampled UV observations form new template light curves for comparison with observations of other SNe Ia at low and high redshift. We report fits from semiempirical models of the explosion and find the time evolution of the early UV flux to be well fitted by the superposition of two parabolic curves. Finally, we use the early UV flux measurements to examine a possible shock interaction with a non-degenerate companion. From models predicting the measurable shock emission, we find that even a solar mass companion at a distance of a few solar radii is unlikely at more than 95% confidence.

  17. Low mass SN Ia and the late light curve

    SciTech Connect

    Colgate, S.A.; Fryer, C.L.; Hand, K.P.

    1995-12-31

    The late bolometric light curves of type Ia supernovae, when measured accurately over several years, show an exponential decay with a 56d half-life over a drop in luminosity of 8 magnitudes (10 half-lives). The late-time light curve is thought to be governed by the decay of Co{sup 56}, whose 77d half-life must then be modified to account for the observed decay time. Two mechanisms, both relying upon the positron fraction of the Co{sup 56} decay, have been proposed to explain this modification. One explanation requires a large amount of emission at infra-red wavelengths where it would not be detected. The other explanation has proposed a progressive transparency or leakage of the high energy positrons (Colgate, Petschek and Kriese, 1980). For the positrons to leak out of the expanding nebula at the required rate necessary to produce the modified 56d exponential, the mass of the ejecta from a one foe (10{sup 51} erg in kinetic energy) explosion must be small, M{sub ejec} = 0.4M{sub {circle_dot}} with M{sub ejec} {proportional_to} KE{sup 0.5}. Thus, in this leakage explanation, any reasonable estimate of the total energy of the explosion requires that the ejected mass be very much less than the Chandrasekhar mass of 1.4M{sub {circle_dot}}. This is very difficult to explain with the ``canonical`` Chandrasekhar-mass thermonuclear explosion that disintegrates the original white dwarf star. This result leads us to pursue alternate mechanisms of type Ia supernovae. These mechanisms include sub-Chandrasekhar thermonuclear explosions and the accretion induced collapse of Chandrasekhar mass white dwarfs. We will summarize the advantages and disadvantages of both mechanisms with considerable detail spent on our new accretion induced collapse simulations. These mechanisms lead to lower Ni{sup 56} production and hence result in type Ia supernovae with luminosities decreased down to {approximately} 50% that predicted by the ``standard`` model.

  18. PRECISION MEASUREMENT OF THE MOST DISTANT SPECTROSCOPICALLY CONFIRMED SUPERNOVA Ia WITH THE HUBBLE SPACE TELESCOPE

    SciTech Connect

    Rubin, D.; Rykoff, E.; Aldering, G.; Barbary, K.; Fakhouri, H. K.; Goldhaber, G.; Hsiao, E. Y.; Knop, R. A.; Amanullah, R.; Goobar, A.; Burns, M. S.; Conley, A.; Connolly, N.; Deustua, S.; Fruchter, A. S.; Fadeyev, V.; Gibbons, R. A.; Huang, X.; Kowalski, M.; Lidman, C.; Collaboration: Supernova Cosmology Project; and others

    2013-01-20

    We report the discovery of a redshift 1.71 supernova in the GOODS-North field. The Hubble Space Telescope (HST) ACS spectrum has almost negligible contamination from the host or neighboring galaxies. Although the rest-frame-sampled range is too blue to include any Si II line, a principal component analysis allows us to confirm it as a Type Ia supernova with 92% confidence. A recent serendipitous archival HST WFC3 grism spectrum contributed a key element of the confirmation by giving a host-galaxy redshift of 1.713 {+-} 0.007. In addition to being the most distant SN Ia with spectroscopic confirmation, this is the most distant Ia with a precision color measurement. We present the ACS WFC and NICMOS 2 photometry and ACS and WFC3 spectroscopy. Our derived supernova distance is in agreement with the prediction of {Lambda}CDM.

  19. A PRECISION PHOTOMETRIC COMPARISON BETWEEN SDSS-II AND CSP TYPE Ia SUPERNOVA DATA

    SciTech Connect

    Mosher, J.; Sako, M.; Corlies, L.; Folatelli, G.; Frieman, J.; Kessler, R.; Holtzman, J.; Jha, S. W.; Marriner, J.; Phillips, M. M.; Morrell, N.; Stritzinger, M.; Schneider, D. P.

    2012-07-15

    Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter.

  20. A Precision Photometric Comparison between SDSS-II and CSP Type Ia Supernova Data

    SciTech Connect

    Mosher, J.; Sako, M.; Corlies, L.; Folatelli, G.; Frieman, J.; Holtzman, J.; Jha, S.W.; Kessler, R.; Marriner, J.; Phillips, M.M.; Stritzinger, M.; /Aarhus U. /Stockholm U., OKC /Bohr Inst. /Carnegie Inst. Observ.

    2012-06-01

    Consistency between Carnegie Supernova Project (CSP) and SDSS-II Supernova Survey ugri measurements has been evaluated by comparing Sloan Digital Sky Survey (SDSS) and CSP photometry for nine spectroscopically confirmed Type Ia supernova observed contemporaneously by both programs. The CSP data were transformed into the SDSS photometric system. Sources of systematic uncertainty have been identified, quantified, and shown to be at or below the 0.023 mag level in all bands. When all photometry for a given band is combined, we find average magnitude differences of equal to or less than 0.011 mag in ugri, with rms scatter ranging from 0.043 to 0.077 mag. The u-band agreement is promising, with the caveat that only four of the nine supernovae are well observed in u and these four exhibit an 0.038 mag supernova-to-supernova scatter in this filter.

  1. Gravitational wave emission from the single-degenerate channel of Type Ia supernovae.

    PubMed

    Falta, David; Fisher, Robert; Khanna, Gaurav

    2011-05-20

    The thermonuclear explosion of a C/O white dwarf as a Type Ia supernova (SN Ia) generates a kinetic energy comparable to that released by a massive star during a SN II event. Current observations and theoretical models have established that SNe Ia are asymmetric, and therefore--like SNe II--potential sources of gravitational wave (GW) radiation. We perform the first detailed calculations of the GW emission for a SN Ia of any type within the single-degenerate channel. The gravitationally confined detonation (GCD) mechanism predicts a strongly polarized GW burst in the frequency band around 1 Hz. Third-generation spaceborne GW observatories currently in planning may be able to detect this predicted signal from SNe Ia at distances up to 1 Mpc. If observable, GWs may offer a direct probe into the first few seconds of the SNe Ia detonation. PMID:21668216

  2. SNLS: The Supernova Type Ia Rate at z = 0.47

    NASA Astrophysics Data System (ADS)

    Neill, J. D.; Sullivan, M.; Balam, D.; Astier, P.; Aubourg, E.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Howell, D. A.; Lafoux, H.; Pain, R.; Palanque-Delabrouille, N.; Perrett, K.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Baumont, S.; Bronder, J.; Graham, M.; Hsiao, E.; Lusset, V.; Ripoche, P.; Mourao, A.; Perlmutter, S.; Tao, C.

    2005-12-01

    We present a preliminary measurement of the distant Type Ia supernova rate derived from the Canada -- France -- Hawaii Telescope Supernova Legacy Survey (SNLS). By observing four one-square degree fields with a high temporal frequency (< Δ t > ˜ 4 observer-frame days) over large fractions of a year ( ˜ 6 months each field, with breaks during full moon) and using 8 meter-class telescopes for spectroscopic followup, the survey not only provides the dense time sampling needed to achieve a high completeness, but also enjoys the benefit of high quality spectroscopy to verify the Type Ia candidates and hence reduce contamination from non-Type Ia events. The goal of the survey is to measure ˜ 700 Type Ia SNe out to z ˜ 1 over a period of 5 years. We use the first two years of survey data to begin characterizing the Type Ia sample and explore a methodology for calculating rates from the survey. We use individual SNLS survey epoch properties to observe Monte Carlo simulations of 106 Type Ia supernovae in the redshift range 0.2 < z < 0.6, and thus derive our survey efficiency. We combine this efficiency with a carefully selected control sample of spectroscopically confirmed SNLS Type Ia SNe to derive a volumetric rate. When comparing our volumetric rate with other ground-based surveys that also use spectroscopic candidate verification, we find no evidence for significant systematic underestimation of the SN Ia rates near z = 0.5. When comparing published SN Ia rates spanning the redshift range 0.0 < z < 1.6 to models of SN Ia production, we find that neither pure delay-time models nor two component models can accommodate all the observed data.

  3. Nearby Supernova Factory II classification of five SNe Ia

    NASA Astrophysics Data System (ADS)

    Pecontal, E.; Feindt, U.; Greskovic, P.; Kowalski, M.; Lombardo, S.; Benitez, S.; Hillebrandt, W.; Kromer, M.; Sasdelli, M.; Sternberg, A.; Taubenberger, S.; Baugh, D.; Chen, J.; Wu, C.; Tao, C.; Fouchez, D.; Tilquin, A.; Hadjiyska, E.; Rabinowitz, D.; Baltay, C.; Ellman, N.; McKinnon, R.; Walker, E.; Effron, A.; Cellier-Holzem, F.; Canto, A.; Antilogus, P.; Bongard, S.; Fleury, M.; Copin, R. Pain Y.; Chotard, N.; Gangler, E.; Pereira, R.; Rigault, M.; Smadja, G.; Aldering, G.; Birchall, D.; Fakhouri, H.; Kim, A.; Nordin, J.; Nugent, P.; Perlmutter, S.; Rubin, D.; Runge, K.; Saunders, C.; Sofiatti, C.; Suzuki, N.; Thomas, R. C.

    2013-08-01

    The Nearby Supernova Factory II (http://snfactory.lbl.gov) reports the following spectroscopic observations of supernovae based on spectra (range 320-1000 nm) obtained with the SuperNova Integral Field Spectrograph (Aldering et al 2002, SPIE, 4836, 61) on the University of Hawaii 2.2-meter telescope. Classifications were performed using Superfit (Howell et al 2002, BAAS, 34, 1256) or SNID (Blondin & Tonry, 2007, ApJ, 666, 1024).

  4. Asiago spectroscopic classification of ASASSN-13dm as a type-Ia supernova

    NASA Astrophysics Data System (ADS)

    Pastorello, A.; Turatto, M.; Tomasella, L.; Ochner, P.; Benetti, S.; Cappellaro, E.; Elias-Rosa, N.

    2013-12-01

    We report that an optical spectrogram (range 340-820 nm; resolution 1.3 nm) of ASASSN-13dm (Shappee et al. ATel #5654) obtained on Dec. 12.95 UT with the Asiago 1.82-m Copernico Telescope (+ AFOSC), shows it to be a type-Ia supernova. Adopting a redshift z = 0.017 for the host galaxy PGC 2816341 (Miller and Owen 2001, ApJS, 134, 355), a good match is found with the type-Ia supernova 2000E (Valentini et al.

  5. Systematic Effects of Progenitor Composition on Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei Y.; Gamezo, V. N.; Oran, E.

    2013-01-01

    Type Ia supernovae (SNIa) were first suggested over half a century ago to result from the thermonuclear incineration of a degenerate white dwarf star (WD) in a binary stellar system. In the past two decades, SNIa have emerged as a preeminent tool in cosmology, to a great extent, due to the significant improvements in the accuracy of their calibration as standard candles. This accuracy, however, is not perfect and the remaining scatter in the inferred intrinsic brightness of SNIa confounds the detailed studies of dark energy and, more importantly, leaves open the possibility of the presence of unknown systematic effects. Here we investigate one potential source of such systematic effects, namely carbon-to-oxygen ratio (C/O) of the progenitor WD, in the context of the delayed detonation model. In this scenario, the explosion starts as a subsonic deflagration that later transitions to a supersonic detonation (deflagration-to-detonation transition, or DDT). The onset of DDT is controlled by the interaction of the thermonuclear flame with the turbulent flowfield that develops during the explosion. Here we show that microscopic properties of the laminar thermonuclear flame vary strongly with the C/O ratio. In particular, when the 12C mass fraction decreases from 0.5 to 0.2, the flame speed decreases by a factor of 8 at the density 10^8 g/cc and by a factor of ~100 at the density 10^7 g/cc. This drastic change in flame speed is accompanied by the qualitative change in flame structure. Furthermore, we couple these new results on the properties of laminar deflagrations with the model of the spontaneous DDT process recently demonstrated using ab initio 3D simulations (Poludnenko et al., PRL 107, 054501 (2011)). Based on this, we show that decrease in the C/O ratio will systematically lead to significantly higher densities at which DDT occurs and, thus, to systematically larger 56Ni yields. Finally, we discuss the implications of these results that provide a physical

  6. Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Poludnenko, Alexei Y.

    2014-01-01

    Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at

  7. Pre-explosive observational properties of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Tornambé, A.; Piersanti, L.

    2013-05-01

    several million years) to attain the explosion after the above mentioned conditions cease to keep stable the WD. Therefore, it is practically impossible to detect the trace of the exploding WD companion in recent pre-explosion frames of even very near Type Ia supernova events.

  8. Three-Dimensional Simulations of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Khokhlov, Alexei; Gamezo, Vadim; Chtchelkanova, Almadena; Lanzagorta, Marco; Oran, Elaine; Patnaik, Gopal; Rosenberg, Robert

    2002-08-01

    We consider a Type Ia supernova explosion originating as a deflagration in the center of a carbon-oxygen Chandrasekhar-mass white dwarf (WD). A three-dimensional (3D) numerical model is based on reactive Euler equations of fluid dynamics coupled with an equation of state for a degenerate matter and a reduced nuclear reaction network. The energy-release model provides the correct propagation velocity for a laminar flame and takes into account carbon burning, as well as nuclear statistical quasi-equilibrium and equilibrium relaxations. The model for the turbulent burning on scales that are not resolved in the simulations is based on the assumption that burning on small scales is driven by the gravity-induced Rayleigh-Taylor (RT) instability. We performed 3D calculations and analysis for the first 1.9 seconds of explosion using an adaptively refined, fully threaded tree structured mesh covering a computational domain of size 6E+9 cm. For the highest-resolution case, the minimum cell size was 2.6 E+5 cm, and the mesh consisted of 100,000,000 computational cells by the end of the simulation. The flame, started as a sphere with the radius 3E+6 cm, becomes very convoluted due to the RT and Kelvin-Helmholtz instabilities on resolved scales and develops multiple buoyant plumes. As the plumes grow, the unburnt material either sinks towards the center or expands more slowly than the burnt material inside the plumes. The material burns at all distances from the center even when the larger flame plumes reach the outer layers of the star. By 1.9 seconds, some of these plumes approach the surface of the expanding WD that extends to (5-6) E+8 cm from the center. About 50% of the material burns out releasing 1.3E+51 ergs of nuclear energy which results in the explosion energy of about 7E+50 ergs at infinity. The expansion velocity at the surface reaches $1.2E+9 cm/s and continues to grow. An extensive convergence study shows that at high resolutions, the results become practically

  9. Luminous Supersoft X-Ray Sources as Progenitors of Type Ia Supernovae

    NASA Technical Reports Server (NTRS)

    DiStefano, R.

    1996-01-01

    In some luminous supersoft X-ray sources, hydrogen accretes onto the surface of a white dwarf at rates more-or-less compatible with steady nuclear burning. The white dwarfs in these systems therefore have a good chance to grow in mass. Here we review what is known about the rate of Type la supernovae that may be associated with SSSS. Observable consequences of the conjecture that SSSs can be progenitors of Type Ia supernovae are also discussed.

  10. Lightcurves of Type Ia Supernovae from the La Silla-QUEST Survey and the Carnegie Supernova Project

    NASA Astrophysics Data System (ADS)

    Walker, Emma S.; Baltay, C.; Rabinowitz, D. L.; Mckinnon, R.; Contreras, C.; Hsiao, E.; Phillips, M.; Morrell, N.; Campillay, A.; Gonzalez, C.; Seron, J.; Krisciunas, K.; Tucker, B. E.

    2014-01-01

    We present the first analysis of Type Ia supernovae found by the La Silla-QUEST (LSQ) survey and followed-up by the Carnegie Supernova Project (CSP) using the 1m SWOPE telescope. LSQ uses the 1m ESO Schmidt telescope on La Silla with a wide-band filter (4000-7000 Angstrom) to search for transient events with the aim of discovering and obtaining lightcurves for 500 low-redshift (z<0.1) supernovae over the 5-year lifetime of the project. The supernovae we present here are followed in a number of different filters, selected from BVugri, and will contribute towards the goal of a well-studied local sample for cosmology.

  11. Spectral Observations and Analyses of Low-Redshift Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey Michael

    , SNe Ia that show strong evidence for interaction with circumstellar material or an aspherical explosion are found to have the largest near-maximum expansion velocities and pEWs, possibly linking extreme values of spectral observables with specific progenitor or explosion scenarios. The fourth Chapter of this Thesis presents comparisons of spectral feature measurements to photometric properties of 115 low-redshift (z < 0.1) SNe Ia with optical spectra within 5 d of maximum brightness. The spectral data come from the BSNIP sample described in Chapter 2, and the photometric data come mainly from the Lick Observatory Supernova Search (LOSS) and are published by Ganeshalingam et al. (2010). The spectral measurements come from BSNIP II (Chapter 3 of this Thesis) and the light-curve fits and photometric parameters can be found in Ganeshalingam et al. (in preparation). A variety of previously proposed correlations between spectral and photometric parameters are investigated using the large and self-consistent BSNIP dataset. We also use a combination of light-curve parameters (specifically the SALT2 stretch and color parameters x1 and c) and spectral measurements to calculate distance moduli. The residuals from these models is then compared to the standard model which only uses light-curve stretch and color. The pEW of Si II lambda4000 is found to be a good indicator of light-curve width and the pEWs of the Mg II and Fe II complexes are relatively good proxies for color. Chapter 5 presents and analyzes optical photometry and spectra of the extremely luminous and slowly evolving Type Ia SN 2009dc, and offers evidence that it is a super-Chandrasekhar mass (SC) SN Ia and thus had a SC white dwarf (WD) progenitor. I calculate a lower limit to the peak bolometric luminosity of ˜2.4x1043 erg s-1, though the actual value is likely almost 40% larger. The high luminosity and low expansion velocities of SN 2009dc lead to a derived WD progenitor mass of more than 2 MSun and a 56Ni mass

  12. Data compression of measurements of peculiar velocities of supernovae type Ia

    SciTech Connect

    Irsic, Vid; Slosar, Anze

    2011-06-15

    We study the compression of information present in the correlated perturbations to the luminosity distance in the low-redshift (z<0.1) supernovae Ia due to peculiar velocities of these supernovae. We demonstrate that the naieve compression into angular velocity power spectrum does not work efficiently, due to thickness of the spherical shell over which the supernovae are measured. Instead, we show that measurements can be compressed into measurements of f{sup 2}P(k), where f is the logarithmic rate of growth of linear perturbations and P(k) is their power spectrum. We develop an optimal quadratic estimator and show that it recovers all information for {Lambda}CDM models for surveys of N{approx}10,000 or more supernovae. We explicitly demonstrate robustness with respect to the assumed fiducial model and the number of power spectrum bins. Using mock catalogues of supernovae Ia we estimate that future low-redshift surveys will be able to probe {sigma}{sub 8} to 6% accuracy with 10 000 supernovae Ia.

  13. Data compression of measurements of peculiar velocities of supernovae type Ia

    NASA Astrophysics Data System (ADS)

    Iršič, Vid; Slosar, Anže

    2011-06-01

    We study the compression of information present in the correlated perturbations to the luminosity distance in the low-redshift (z<0.1) supernovae Ia due to peculiar velocities of these supernovae. We demonstrate that the naïve compression into angular velocity power spectrum does not work efficiently, due to thickness of the spherical shell over which the supernovae are measured. Instead, we show that measurements can be compressed into measurements of f2P(k), where f is the logarithmic rate of growth of linear perturbations and P(k) is their power spectrum. We develop an optimal quadratic estimator and show that it recovers all information for ΛCDM models for surveys of Ñ10,000 or more supernovae. We explicitly demonstrate robustness with respect to the assumed fiducial model and the number of power spectrum bins. Using mock catalogues of supernovae Ia we estimate that future low-redshift surveys will be able to probe σ8 to 6% accuracy with 10 000 supernovae Ia.

  14. THE PROPERTIES OF TYPE Ia SUPERNOVA HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Han, Du-Hwan; Park, Myeong-Gu; Park, Changbom; Choi, Yun-Young E-mail: mgp@knu.ac.k E-mail: yychoi@khu.ac.k

    2010-11-20

    We investigate the properties and environments of Type Ia Supernova (SN Ia) host galaxies in the Stripe 82 of the Sloan Digital Sky Survey-II Supernova Survey centered on the celestial equator. Host galaxies are defined as the galaxy nearest to the supernova (SN) in terms of angular distance whose velocity difference from the SN is less than 1000 km s{sup -1}. Eighty seven SN Ia host galaxies are selected from the SDSS Main galaxy sample with the apparent r-band magnitude m{sub r} < 17.77, and compared with the SDSS Main galaxies. The SN Ia rates for early- and late-type galaxies are 0.81 {+-} 0.19 SN (100 yr){sup -1} and 0.99 {+-} 0.21 SN (100 yr){sup -1}, respectively. We find that the host galaxies have a color distribution consistent with that of the Main galaxies, regardless of their morphology. However, host galaxies are on average brighter than the Main galaxies by {approx}0.3 mag over the range of -18.3>M{sub r} > - 21.3. But the brighter ends of their luminosity distributions are similar. The distribution of the distance to the nearest neighbor galaxy shows that SNe Ia are more likely to occur in isolated galaxies without close neighbors. We also find that the SN Ia host galaxies are preferentially located in a region close to massive galaxy clusters compared to the Main galaxies.

  15. Near-infrared observations of Type Ia supernovae: the best known standard candle for cosmology

    NASA Astrophysics Data System (ADS)

    Barone-Nugent, R. L.; Lidman, C.; Wyithe, J. S. B.; Mould, J.; Howell, D. A.; Hook, I. M.; Sullivan, M.; Nugent, P. E.; Arcavi, I.; Cenko, S. B.; Cooke, J.; Gal-Yam, A.; Hsiao, E. Y.; Kasliwal, M. M.; Maguire, K.; Ofek, E.; Poznanski, D.; Xu, D.

    2012-09-01

    We present an analysis of the Hubble diagram for 12 normal Type Ia supernovae (SNe Ia) observed in the near-infrared (NIR) J and H bands. We select SNe exclusively from the redshift range 0.03 < z < 0.09 to reduce uncertainties coming from peculiar velocities while remaining in a cosmologically well-understood region. All of the SNe in our sample exhibit no spectral or B-band light-curve peculiarities and lie in the B-band stretch range of 0.8-1.15. Our results suggest that SNe Ia observed in the NIR are the best known standard candles. We fit previously determined NIR light-curve templates to new high-precision data to derive peak magnitudes and to determine the scatter about the Hubble line. Photometry of the 12 SNe is presented in the natural system. Using a standard cosmology of (H0, Ωm, ΩΛ) = (70, 0.27, 0.73), we find a median J-band absolute magnitude of MJ = -18.39 with a scatter of σJ = 0.116 and a median H-band absolute magnitude of MH = -18.36 with a scatter of σH = 0.085. The scatter in the H band is the smallest yet measured. We search for correlations between residuals in the J- and H-band Hubble diagrams and SN properties, such as SN colour, B-band stretch and the projected distance from the centre of the host galaxy. The only significant correlation is between the J-band Hubble residual and the J - H pseudo-colour. We also examine how the scatter changes when fewer points in the NIR are used to constrain the light curve. With a single point in the H band taken anywhere from 10 d before to 15 d after B-band maximum light and a prior on the date of H-band maximum set from the date of B-band maximum, we find that we can measure distances to an accuracy of 6 per cent. The precision of SNe Ia in the NIR provides new opportunities for precision measurements of both the expansion history of the universe and peculiar velocities of nearby galaxies.

  16. A Swift Look at SN 2011fe: The Earliest Ultraviolet Observations of a Type Ia Supernova

    NASA Technical Reports Server (NTRS)

    Oates, Samantha; Holland, Stephen; Immler, Stefan; Brown, Peter J.; Dawson, Kyle S.; DePasquale, Massimiliano; Gronwall, Caryl; Kuin, Paul; Mazzali, Paolo; Miline, Peter; Siegel, Michael

    2012-01-01

    We present the earliest ultraviolet (UV) observations of the bright Type Ia supernova SN 2011fe/PTF11kly in the nearby galaxy M101 at a distance of only 6.4 Mpc. It was discovered shortly after explosion by the Palomar Transient Factory and first observed by Swift/UVOT about a day after explosion. The early UV light is well-defined, with approx. 20 data points per filter in the 5 days after explosion. With these early UV observations, we extend the near-UV template of SNe Ia to earlier times for comparison with observations at low and high redshift and report fits from semiempirical models of the explosion. We find the early UV count rates to be well fit by the superposition of two parabolic curves. Finally, we use the early UV flux measurements to examine a possible shock interaction with a non-degenerate companion. We find that even a solar mass companion at a distance of a few solar radii is unlikely at more than 95% confidence.

  17. Grouping normal type Ia supernovae by UV to optical color differences

    SciTech Connect

    Milne, Peter A.; Brown, Peter J.; Roming, Peter W. A.; Bufano, Filomena; Gehrels, Neil

    2013-12-10

    Observations of many Type Ia supernovae (SNe Ia) for multiple epochs per object with the Swift Ultraviolet Optical Telescope instrument have revealed that there exists order to the differences in the UV-optical colors of optically normal supernovae (SNe). We examine UV-optical color curves for 23 SNe Ia, dividing the SNe into four groups, and find that roughly one-third of 'NUV-blue' SNe Ia have bluer UV-optical colors than the larger 'NUV-red' group. Two minor groups are recognized, 'MUV-blue' and 'irregular' SNe Ia. While we conclude that the latter group is a subset of the NUV-red group, containing the SNe with the broadest optical peaks, we conclude that the 'MUV-blue' group is a distinct group. Separating into the groups and accounting for the time evolution of the UV-optical colors lowers the scatter in two NUV-optical colors (e.g., u – v and uvw1 – v) to the level of the scatter in b – v. This finding is promising for extending the cosmological utilization of SNe Ia into the NUV. We generate spectrophotometry of 33 SNe Ia and determine the correct grouping for each. We argue that there is a fundamental spectral difference in the 2900-3500 Å wavelength range, a region suggested to be dominated by absorption from iron-peak elements. The NUV-blue SNe Ia feature less absorption than the NUV-red SNe Ia. We show that all NUV-blue SNe Ia in this sample also show evidence of unburned carbon in optical spectra, whereas only one NUV-red SN Ia features that absorption line. Every NUV-blue event also exhibits a low gradient of the Si II λ6355 absorption feature. Many NUV-red events also exhibit a low gradient, perhaps suggestive that NUV-blue events are a subset of the larger low-velocity gradient group.

  18. Spectroscopic Determination of the Low Redshift Type Ia Supernova Rate from the Sloan Digital Sky Survey

    SciTech Connect

    Krughoff, K. S.; Connolly, Andrew J.; Frieman, Joshua; SubbaRao, Mark; Kilper, Gary; Schneider, Donald P.

    2011-04-10

    Supernova rates are directly coupled to high mass stellar birth and evolution. As such, they are one of the few direct measures of the history of cosmic stellar evolution. In this paper we describe an probabilistic technique for identifying supernovae within spectroscopic samples of galaxies. We present a study of 52 type Ia supernovae ranging in age from -14 days to +40 days extracted from a parent sample of \\simeq 50,000 spectra from the SDSS DR5. We find a Supernova Rate (SNR) of 0.472^{+0.048}_{-0.039}(Systematic)^{+0.081}_{-0.071}(Statistical)SNu at a redshift of = 0.1. This value is higher than other values at low redshift at the 1{\\sigma}, but is consistent at the 3{\\sigma} level. The 52 supernova candidates used in this study comprise the third largest sample of supernovae used in a type Ia rate determination to date. In this paper we demonstrate the potential for the described approach for detecting supernovae in future spectroscopic surveys.

  19. The Silicon and Calcium High-velocity Features in Type Ia Supernovae from Early to Maximum Phases

    NASA Astrophysics Data System (ADS)

    Zhao, Xulin; Wang, Xiaofeng; Maeda, Keiichi; Sai, Hanna; Zhang, Tianmeng; Zhang, Jujia; Huang, Fang; Rui, Liming; Zhou, Qi; Mo, Jun

    2015-09-01

    The high-velocity features (HVFs) in optical spectra of type Ia supernovae (SNe Ia) are examined with a large sample including very early-time spectra (e.g., t < -7 days). Multiple Gaussian fits are applied to examine the HVFs and their evolutions, using constraints on expansion velocities for the same species (i.e., Si ii 5972 and Si ii 6355). We find that strong HVFs tend to appear in SNe Ia with smaller decline rates (e.g., Δm15(B) ≲ 1.4 {mag}), clarifying that the finding by Childress et al. for the Ca-HVFs in near-maximum-light spectra applies both to the Si-HVFs and Ca-HVFs in the earlier phase. The Si-HVFs seem to be more common in rapidly expanding SNe Ia, which is different from the earlier result that Ca-HVFs are associated with SNe Ia that have slower Si ii 6355 velocities at maximum light (i.e., VSimax). Moreover, SNe Ia with both stronger HVFs at early phases and larger VSimax are found to have noticeably redder B-V colors and to occur preferentially in the inner regions of their host galaxies, while those with stronger HVFs but smaller VSimax show opposite tendencies, suggesting that these two subclasses have different explosion environments and their HVFs may have different origins. We further examine the relationships between the absorption features of Si ii 6355 and Ca ii IR lines, and find that their photospheric components are well correlated in velocity and strength but that the corresponding HVFs show larger scatter. These results cannot be explained with ionization and/or thermal processes alone, and different mechanisms are required for the creation of HVF-forming regions in SNe Ia.

  20. {chi}{sup 2} versus median statistics in supernova type Ia data analysis

    SciTech Connect

    Barreira, A.; Avelino, P. P.

    2011-10-15

    In this paper we compare the performances of the {chi}{sup 2} and median likelihood analysis in the determination of cosmological constraints using type Ia supernovae data. We perform a statistical analysis using the 307 supernovae of the Union 2 compilation of the Supernova Cosmology Project and find that the {chi}{sup 2} statistical analysis yields tighter cosmological constraints than the median statistic if only supernovae data is taken into account. We also show that when additional measurements from the cosmic microwave background and baryonic acoustic oscillations are considered, the combined cosmological constraints are not strongly dependent on whether one applies the {chi}{sup 2} statistic or the median statistic to the supernovae data. This indicates that, when complementary information from other cosmological probes is taken into account, the performances of the {chi}{sup 2} and median statistics are very similar, demonstrating the robustness of the statistical analysis.

  1. On type IIn/Ia-CSM supernovae as exemplified by SN 2012ca★

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Fraser, M.; Smartt, S. J.; Benetti, S.; Chen, T.-W.; Childress, M.; Gal-Yam, A.; Howell, D. A.; Kangas, T.; Pignata, G.; Polshaw, J.; Sullivan, M.; Smith, K. W.; Valenti, S.; Young, D. R.; Parker, S.; Seccull, T.; McCrum, M.

    2016-04-01

    We present the complete set of ultra-violet, optical and near-infrared photometry and spectroscopy for SN 2012ca, covering the period from 6 days prior to maximum light, until 531 days after maximum. The spectroscopic time series for SN 2012ca is essentially unchanged over 1.5 years, and appear to be dominated at all epochs by signatures of interaction with a dense circumstellar medium rather than the underlying supernova (SN). SN 2012ca is a member of the set of type of the ambiguous IIn/Ia-CSM SNe, the nature of which have been debated extensively in the literature. The two leading scenarios are either a type Ia SN exploding within a dense CSM from a non-degenerate, evolved companion, or a core-collapse SN from a massive star. While some members of the population have been unequivocally associated with type Ia SNe, in other cases the association is less certain. While it is possible that SN 2012ca does arise from a thermonuclear SN, this would require a relatively high (between 20 and 70 per cent) efficiency in converting kinetic energy to optical luminosity, and a massive (˜2.3 - 2.6 M⊙) circumstellar medium. On the basis of energetics, and the results of simple modelling, we suggest that SN 2012ca is more likely associated with a core-collapse SN. This would imply that the observed set of similar SNe to SN 2012ca is in fact originated by two populations, and while these are drawn from physically distinct channels, they can have observationally similar properties.

  2. Observations of Type Ia Supernova 2014J with FLITECAM/SOFIA

    NASA Astrophysics Data System (ADS)

    Vacca, William D.; Hamilton, Ryan T.; Savage, Maureen; Shenoy, Sachindev; Becklin, E. E.; McLean, Ian S.; Logsdon, Sarah E.; Marion, G. H.; Ashok, N. M.; Banerjee, D. P. K.; Evans, A.; Fox, O. D.; Garnavich, P.; Gehrz, R. D.; Greenhouse, M.; Helton, L. A.; Kirshner, R. P.; Shenoy, D.; Smith, Nathan; Spyromilio, J.; Starrfield, S.; Wooden, D. H.; Woodward, C. E.

    2015-05-01

    We present medium-resolution near-infrared (NIR) spectra, covering 1.1-3.4 μm, of the normal Type Ia supernova (SN Ia) SN 2014J in M82 obtained with the FLITECAM instrument on board Stratospheric Observatory for Infrared Astronomy (SOFIA) between 17 and 26 days after maximum B light. Our 2.8-3.4 μm spectra may be the first ˜3 μm spectra of an SN Ia ever published. The spectra spanning the 1.5-2.7 μm range are characterized by a strong emission feature at ˜1.77 μm with a FWHM of ˜11,000-13,000 km s-1. We compare the observed FLITECAM spectra to the recent non-LTE delayed detonation models of Dessart et al. and find that the models agree with the spectra remarkably well in the 1.5-2.7 μm wavelength range. Based on this comparison we identify the ˜1.77 μm emission peak as a blend of permitted lines of Co ii. Other features seen in the 2.0-2.5 μm spectra are also identified as emission from permitted transitions of Co ii. However, the models are not as successful at reproducing the spectra in the 1.1-1.4 μm range or between 2.8 and 3.4 μm. These observations demonstrate the promise of SOFIA, which allows access to wavelength regions inaccessible from the ground, and serve to draw attention to the usefulness of the regions between the standard ground-based NIR passbands for constraining SN models.

  3. On Type IIn/Ia-CSM supernovae as exemplified by SN 2012ca*

    NASA Astrophysics Data System (ADS)

    Inserra, C.; Fraser, M.; Smartt, S. J.; Benetti, S.; Chen, T.-W.; Childress, M.; Gal-Yam, A.; Howell, D. A.; Kangas, T.; Pignata, G.; Polshaw, J.; Sullivan, M.; Smith, K. W.; Valenti, S.; Young, D. R.; Parker, S.; Seccull, T.; McCrum, M.

    2016-07-01

    We present the complete set of ultra-violet, optical and near-infrared photometry and spectroscopy for SN 2012ca, covering the period from 6 d prior to maximum light, until 531 d after maximum. The spectroscopic time series for SN 2012ca is essentially unchanged over 1.5 yr, and appear to be dominated at all epochs by signatures of interaction with a dense circumstellar medium (CSM) rather than the underlying supernova (SN). SN 2012ca is a member of the set of type of the ambiguous IIn/Ia-CSM SNe, the nature of which have been debated extensively in the literature. The two leading scenarios are either a Type Ia SN exploding within a dense CSM from a non-degenerate, evolved companion, or a core-collapse SN from a massive star. While some members of the population have been unequivocally associated with Type Ia SNe, in other cases the association is less certain. While it is possible that SN 2012ca does arise from a thermonuclear SN, this would require a relatively high (between 20 and 70 per cent) efficiency in converting kinetic energy to optical luminosity, and a massive (˜2.3-2.6 M⊙) circumstellar medium. On the basis of energetics, and the results of simple modelling, we suggest that SN 2012ca is more likely associated with a core-collapse SN. This would imply that the observed set of similar SNe to SN 2012ca is in fact originated by two populations, and while these are drawn from physically distinct channels, they can have observationally similar properties.

  4. CEPHEID CALIBRATIONS OF MODERN TYPE Ia SUPERNOVAE: IMPLICATIONS FOR THE HUBBLE CONSTANT

    SciTech Connect

    Riess, Adam G.; Macri, Lucas; Li Weidong; Filippenko, Alexei V.; Chornock, Ryan; Ganeshalingham, Mohan; Lampeitl, Hubert; Casertano, Stefano; Ferguson, Henry C.; Mutchler, Max; Jha, Saurabh W.; Greenhill, Lincoln; Hicken, Malcolm

    2009-07-15

    This is the first of two papers reporting measurements from a program to determine the Hubble constant to {approx}5% precision from a refurbished distance ladder. We present new observations of 110 Cepheid variables in the host galaxies of two recent Type Ia supernovae (SNe Ia), NGC 1309 and NGC 3021, using the Advanced Camera for Surveys on the Hubble Space Telescope (HST). We also present new observations of the hosts previously observed with HST whose SNe Ia provide the most precise luminosity calibrations: SN 1994ae in NGC 3370, SN 1998aq in NGC 3982, SN 1990N in NGC 4639, and SN 1981B in NGC 4536, as well as the maser host, NGC 4258. Increasing the interval between observations enabled the discovery of new, longer-period Cepheids, including 57 with P>60 days, which extend these period-luminosity (P-L) relations. We present 93 measurements of the metallicity parameter, 12 + log[O/H], measured from H II regions in the vicinity of the Cepheids and show these are consistent with solar metallicity. We find the slope of the seven dereddened P-L relations to be consistent with that of the Large Magellanic Cloud Cepheids and with parallax measurements of Galactic Cepheids, and we address the implications for the Hubble constant. We also present multi-band light curves of SN 2002fk (in NGC 1309) and SN 1995al (in NGC 3021) which may be used to calibrate their luminosities. In the second paper, we present observations of the Cepheids in the H band obtained with the Near-Infrared Camera and Multi-Object Spectrometer on HST, further mitigating systematic errors along the distance ladder resulting from dust and chemical variations. The quality and homogeneity of these SN and Cepheid data provide the basis for a more precise determination of the Hubble constant.

  5. Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Seitenzahl, Ivo R.; Ciaraldi-Schoolmann, Franco; Röpke, Friedrich K.; Fink, Michael; Hillebrandt, Wolfgang; Kromer, Markus; Pakmor, Rüdiger; Ruiter, Ashley J.; Sim, Stuart A.; Taubenberger, Stefan

    2013-02-01

    We present results for a suite of 14 three-dimensional, high-resolution hydrodynamical simulations of delayed-detonation models of Type Ia supernova (SN Ia) explosions. This model suite comprises the first set of three-dimensional SN Ia simulations with detailed isotopic yield information. As such, it may serve as a data base for Chandrasekhar-mass delayed-detonation model nucleosynthetic yields and for deriving synthetic observables such as spectra and light curves. We employ a physically motivated, stochastic model based on turbulent velocity fluctuations and fuel density to calculate in situ the deflagration-to-detonation transition probabilities. To obtain different strengths of the deflagration phase and thereby different degrees of pre-expansion, we have chosen a sequence of initial models with 1, 3, 5, 10, 20, 40, 100, 150, 200, 300 and 1600 (two different realizations) ignition kernels in a hydrostatic white dwarf with a central density of 2.9 × 109 g cm-3, as well as one high central density (5.5 × 109 g cm-3) and one low central density (1.0 × 109 g cm-3) rendition of the 100 ignition kernel configuration. For each simulation, we determined detailed nucleosynthetic yields by post-processing 106 tracer particles with a 384 nuclide reaction network. All delayed-detonation models result in explosions unbinding the white dwarf, producing a range of 56Ni masses from 0.32 to 1.11 M⊙. As a general trend, the models predict that the stable neutron-rich iron-group isotopes are not found at the lowest velocities, but rather at intermediate velocities (˜3000-10 000 km s-1) in a shell surrounding a 56Ni-rich core. The models further predict relatively low-velocity oxygen and carbon, with typical minimum velocities around 4000 and 10 000 km s-1, respectively.

  6. Rotating Type Ia SN progenitors: explosion and light curves

    SciTech Connect

    Dominguez, I.; Piersanti, L.; Gagliardi, S.; Straniero, O.; Tornambe, A.; Bravo, E.

    2005-10-21

    High redshift SNe Ia have been recently used to calibrate the cosmological distance scale and to infer the existence of the dark energy. The reliability of such a method depends on the effective knowledge of the absolute brightness of this class of supernovae. This would require a complete understanding of the physics of SNeIa.Starting from an accreting rotating white dwarf, the only progenitor that we found to be able to grow till the Chandrasekhar mass and undergo a thermonuclear explosion, we simulate the explosion, deriving the nucleosynthesis and the light curve. We explore the final outcome in the framework of a 1D delayed detonation model, where the characteristic density for which the transition from deflagration to detonation takes place is a free parameter.Although preliminary, our results imply that rotating white dwarfs produce a range of explosive conditions, characterized by different ignition densities and total masses. Maximum luminosities of successfully explosive models differ up to 0.11 mag. In a few cases, the formation of a small highly neutronised remnant is found.

  7. Swift X-Ray Upper Limits on Type Ia Supernova Environments

    NASA Technical Reports Server (NTRS)

    Russell, B. R.; Immler, S.

    2012-01-01

    We have considered 53 Type Ia supernovae (SNe Ia) observed by the Swift X-Ray Telescope. None of the SNe Ia are individually detected at any time or in stacked images. Using these data and assuming that the SNe Ia are a homogeneous class of objects, we have calculated upper limits to the X-ray luminosity (0.2-10 keV) and mass-loss rate of L(sub 0.2-10) < 1.7 X 10(exp 38) erg/s and M(dot) < l.l X 10(exp -6) solar M/ yr x (V(sub w))/(10 km/s), respectively. The results exclude massive or evolved stars as the companion objects in SN Ia progenitor systems, but allow the possibility of main sequence or small stars, along with double degenerate systems consisting of two white dwarfs, consistent with results obtained at other wavelengths (e.g., UV, radio) in other studies.

  8. TIDALLY ENHANCED STELLAR WIND: A WAY TO MAKE THE SYMBIOTIC CHANNEL TO TYPE Ia SUPERNOVA VIABLE

    SciTech Connect

    Chen, X.; Han, Z.

    2011-07-10

    In the symbiotic (or WD+RG) channel of the single-degenerate scenario for type Ia supernovae (SNe Ia), the explosions occur a relatively long time after star formation. The birthrate from this channel would be too low to account for all observed SNe Ia were it not for some mechanism to enhance the rate of accretion on to the white dwarf. A tidally enhanced stellar wind, of the type which has been postulated to explain many phenomena related to giant star evolution in binary systems, can do this. Compared to mass stripping, this model extends the space of SNe Ia progenitors to longer orbital periods and hence increases the birthrate to about 0.0069 yr{sup -1} for the symbiotic channel. Two symbiotic stars, T CrB and RS Oph, considered to be the most likely progenitors of SNe Ia through the symbiotic channel, are well inside the period-companion mass space predicted by our models.

  9. HIGH-VELOCITY LINE FORMING REGIONS IN THE TYPE Ia SUPERNOVA 2009ig

    SciTech Connect

    Marion, G. H.; Foley, Ryan J.; Challis, Peter; Kirshner, Robert P.; Vinko, Jozsef; Wheeler, J. Craig; Silverman, Jeffrey M.; Hsiao, Eric Y.; Brown, Peter J.; Filippenko, Alexei V.; Garnavich, Peter; Landsman, Wayne B.; Parrent, Jerod T.; Pritchard, Tyler A.; Roming, Peter W. A.; Wang, Xiaofeng

    2013-11-01

    We report measurements and analysis of high-velocity (HVF) (>20,000 km s{sup –1}) and photospheric absorption features in a series of spectra of the Type Ia supernova (SN) 2009ig obtained between –14 days and +13 days with respect to the time of maximum B-band luminosity (B-max). We identify lines of Si II, Si III, S II, Ca II, and Fe II that produce both HVF and photospheric-velocity (PVF) absorption features. SN 2009ig is unusual for the large number of lines with detectable HVF in the spectra, but the light-curve parameters correspond to a slightly overluminous but unexceptional SN Ia (M{sub B} = –19.46 mag and Δm{sub 15}(B) = 0.90 mag). Similarly, the Si II λ6355 velocity at the time of B-max is greater than 'normal' for an SN Ia, but it is not extreme (v{sub Si} = 13,400 km s{sup –1}). The –14 days and –13 days spectra clearly resolve HVF from Si II λ6355 as separate absorptions from a detached line forming region. At these very early phases, detached HVF are prevalent in all lines. From –12 days to –6 days, HVF and PVF are detected simultaneously, and the two line forming regions maintain a constant separation of about 8000 km s{sup –1}. After –6 days all absorption features are PVF. The observations of SN 2009ig provide a complete picture of the transition from HVF to PVF. Most SNe Ia show evidence for HVF from multiple lines in spectra obtained before –10 days, and we compare the spectra of SN 2009ig to observations of other SNe. We show that each of the unusual line profiles for Si II λ6355 found in early-time spectra of SNe Ia correlate to a specific phase in a common development sequence from HVF to PVF.

  10. Type Ia supernovae 2014J and 2011fe at the nebular phase

    NASA Astrophysics Data System (ADS)

    Bikmaev, I. F.; Chugai, N. N.; Sunyaev, R. A.; Churazov, E. M.; Khamitov, I. M.; Sakhibullin, N. A.; Galeev, A.; Akhmetkhanova, A. E.

    2015-12-01

    We present our observations and the results of our analysis of the nebular spectra for two nearby type Ia supernovae (SN 2014J and SN 2011fe). For the overall picture, we have analyzed the nebular spectra of four other type Ia supernovae. All of the investigated supernovae show evidence of a significant shift in the [Co III], [Fe III], [Fe II], and [Ni II] lines (~103 km s-1) at a late nebular phase ( t ~ 250-300 days). The shifts in the lines of singly and doubly ionized species differ noticeably, suggesting a difference of the departures from symmetry in the inner and outer ejecta. In SN 2014J, the [Fe III] and [Fe II] line shifts are comparable in absolute value and opposite in sign. This means that the shift in the centroid of the 56Ni distribution is probably small compared to the width of the velocity distribution. The [Ni II]/[Fe II] flux ratio for the six supernovae suggests that, on average, the 58Ni/56Fe ratio for SNe Ia is nearly solar, in agreement with the dominant contribution of SNe Ia to the galactic synthesis of iron-peak elements. The nebular spectra of SN 2014J and SN 2011fe are shown to rule out the presence of stripped hydrogen from the normal companion in the amount predicted by the scenario of a binary system with a normal companion.

  11. Final Technical Report: Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae

    SciTech Connect

    Saurabh W. Jha

    2012-10-03

    The final technical report from the project "Discovering the Nature of Dark Energy: Towards Better Distances from Type Ia Supernovae" led at Rutgers the State University of New Jersey by Prof. Saurabh W. Jha is presented, including all publications resulting from this award.

  12. Spectroscopic Classification of PSN J07051005+2102327: a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Shivvers, I.; Yuk, H.; Filippenko, A. V.; U, V.

    2015-11-01

    We report that inspection of a low signal-to-noise ratio CCD spectrum (range 350-1050 nm) of PSN J07051005+2102327 (CBAT TOCP), obtained on Nov. 17.46 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova within a few days of maximum brightness.

  13. Spectroscopic Classification of MASTER OT J110707.62-052244.0 as a Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Zheng, W.; Kim, M.; Shivvers, I.; Yuk, H.; Filippenko, A. V.

    2015-11-01

    We report that inspection of a CCD spectrum (range 350-1050 nm) of MASTER OT J110707.62-052244.0 (ATel #8236), obtained on Nov. 11.57 UT with the Shane 3-m reflector (+ Kast spectrograph) at Lick Observatory, shows that the object is a normal Type Ia supernova roughly 1 week past maximum brightness.

  14. THE HYBRID CONe WD + He STAR SCENARIO FOR THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Wang, B.; Meng, X.; Liu, D.-D.; Han, Z.; Liu, Z.-W.

    2014-10-20

    Hybrid CONe white dwarfs (WDs) have been suggested to be possible progenitors of type Ia supernovae (SNe Ia). In this Letter, we systematically studied the hybrid CONe WD + He star scenario for the progenitors of SNe Ia, in which a hybrid CONe WD increases its mass to the Chandrasekhar mass limit by accreting He-rich material from a non-degenerate He star. We obtained the SN Ia birthrates and delay times for this scenario using to a series of detailed binary population synthesis simulations. The SN Ia birthrates for this scenario are ∼0.033-0.539 × 10{sup –3} yr{sup –1}, which roughly accounts for 1%-18% of all SNe Ia. The estimated delay times are ∼28 Myr-178 Myr, which makes these the youngest SNe Ia predicted by any progenitor model so far. We suggest that SNe Ia from this scenario may provide an alternative explanation for type Iax SNe. We also presented some properties of the donors at the point when the WDs reach the Chandrasekhar mass. These properties may be a good starting point for investigating the surviving companions of SNe Ia and for constraining the progenitor scenario studied in this work.

  15. THE IMPACT OF METALLICITY ON THE RATE OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Kistler, Matthew D.; Stanek, K. Z.; Kochanek, Christopher S.; Thompson, Todd A.; Prieto, Jose L.

    2013-06-20

    The metallicity of a star strongly affects both its evolution and the properties of the stellar remnant that results from its demise. It is generally accepted that stars with initial masses below {approx}8 M{sub Sun} leave behind white dwarfs and that some sub-population of these lead to Type Ia supernovae (SNe Ia). However, it is often tacitly assumed that metallicity has no effect on the rate of SNe Ia. We propose that a consequence of the effects of metallicity is to significantly increase the SN Ia rate in lower-metallicity galaxies, in contrast to previous expectations. This is because lower-metallicity stars leave behind higher-mass white dwarfs, which should be easier to bring to explosion. We first model SN Ia rates in relation to galaxy masses and ages alone, finding that the elevation in the rate of SNe Ia in lower-mass galaxies measured by Lick Observatory SN Search is readily explained. However, we then see that models incorporating this effect of metallicity agree just as well. Using the same parameters to estimate the cosmic SN Ia rate, we again find good agreement with data up to z Almost-Equal-To 2. We suggest that this degeneracy warrants more detailed examination of host galaxy metallicities. We discuss additional implications, including for hosts of high-z SNe Ia, the SN Ia delay time distribution, super-Chandrasekhar SNe, and cosmology.

  16. The Impact of Metallicity on the Rate of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Kistler, Matthew D.; Stanek, K. Z.; Kochanek, Christopher S.; Prieto, José L.; Thompson, Todd A.

    2013-06-01

    The metallicity of a star strongly affects both its evolution and the properties of the stellar remnant that results from its demise. It is generally accepted that stars with initial masses below ~8 M ⊙ leave behind white dwarfs and that some sub-population of these lead to Type Ia supernovae (SNe Ia). However, it is often tacitly assumed that metallicity has no effect on the rate of SNe Ia. We propose that a consequence of the effects of metallicity is to significantly increase the SN Ia rate in lower-metallicity galaxies, in contrast to previous expectations. This is because lower-metallicity stars leave behind higher-mass white dwarfs, which should be easier to bring to explosion. We first model SN Ia rates in relation to galaxy masses and ages alone, finding that the elevation in the rate of SNe Ia in lower-mass galaxies measured by Lick Observatory SN Search is readily explained. However, we then see that models incorporating this effect of metallicity agree just as well. Using the same parameters to estimate the cosmic SN Ia rate, we again find good agreement with data up to z ≈ 2. We suggest that this degeneracy warrants more detailed examination of host galaxy metallicities. We discuss additional implications, including for hosts of high-z SNe Ia, the SN Ia delay time distribution, super-Chandrasekhar SNe, and cosmology.

  17. TIME VARIATION OF AV AND RV FOR TYPE Ia SUPERNOVAE BEHIND INTERSTELLAR DUST

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Biederman, M.; Herger, B.; Aldering, G. S.

    2014-01-01

    TIME VARIATION OF AV AND RV FOR TYPE Ia SUPERNOVAE BEHIND NON-UNIFORM INTERSTELLAR DUST ABSTRACT We investigate the time variation of the visual extinction, AV, and the total-to-selective extinction ratio, RV, resulting from interstellar dust in front of an expanding photospheric disk of a type Ia supernova (SN Ia). We simulate interstellar dust clouds according to a power law power spectrum and produce extinction maps that either follow a pseudo-Gaussian distribution or a lognormal distribution. The RV maps are produced through a correlation between AV and RV. With maps of AV and RV generated in each case (pseudo-Gaussian and lognormal), we then compute the effective AV and RV for a SN as its photospheric disk expands behind the dust screen. We find for a small percentage of SNe the AV and RV values can vary by a large factor from day to day in the first 40 days after explosion.

  18. VizieR Online Data Catalog: Berkeley supernova Ia program. II. (Silverman+, 2012)

    NASA Astrophysics Data System (ADS)

    Silverman, J. M.; Kong, J. J.; Filippenko, A. V.

    2013-08-01

    In this second paper in a series, we present measurements of spectral features of 432 low-redshift (z<0.1) optical spectra of 261 Type Ia supernovae (SNe Ia) within 20d of maximum brightness. The data were obtained from 1989 to the end of 2008 as part of the Berkeley Supernova Ia Program (BSNIP) and are presented in BSNIP I by Silverman et al. (J/MNRAS/425/1789). We describe in detail our method of automated, robust spectral feature definition and measurement which expands upon similar previous studies. Using this procedure, we attempt to measure expansion velocities, pseudo-equivalent widths (pEWs), spectral feature depths and fluxes at the centre and endpoints of each of nine major spectral feature complexes. (10 data files).

  19. Light-Echo Spectrum Reveals the Type of Tycho Brahe's 1572 Supernova

    NASA Astrophysics Data System (ADS)

    Usuda, T.; Krause, O.; Tanaka, M.; Hattori, T.; Goto, M.; Birkmann, S. M.; Nomoto, K.

    2013-01-01

    We successfully obtained the first optical spectra of the faint light echoes around Cassiopeia A and Tycho Brahe's supernova remnants (SNRs) with FOCAS and the Subaru Telescope. We conclude that Cas A and Tycho's SN 1572 belong to the Type IIb and normal Type Ia supernovae, respectively. Light echo spectra are important in order to obtain further insight into the supernova explosion mechanism of Tycho's SN 1572: how the Type Ia explosion actually proceeds, and whether accretion occurs from a companion or by the merging of two white dwarfs. The proximity of the SN 1572 remnant has allowed detailed studies, such as the possible identification of the binary companion, and provides a unique opportunity to test theories of the explosion mechanism and the nature of the progenitor. Future light-echo spectra, obtained in different spatial directions of SN 1572, will enable to construct a three-dimensional spectroscopic view of the explosion.

  20. Constraints on the progenitor system of the type Ia supernova 2014J from pre-explosion Hubble space telescope imaging

    SciTech Connect

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.; Cenko, S. Bradley; Schaefer, Gail

    2014-07-20

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d ≈ 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T ≲ 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of R{sub V} and A{sub V} values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T < 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  1. Constraints on the Progenitor System of the Type Ia Supernova 2014J from Pre-Explosion Hubble Space Telescope Imaging

    NASA Technical Reports Server (NTRS)

    Kelly, Patrick L.; Fox, Ori D.; Filippenko, Alexei V.; Cenko, S. Bradley; Prato, Lisa; Schaefer, Gail; Shen, Ken J.; Zheng, WeiKang; Graham, Melissa L.; Tucker, Brad E.

    2014-01-01

    We constrain the properties of the progenitor system of the highly reddened Type Ia supernova (SN Ia) 2014J in Messier 82 (M82; d (is) approx. 3.5 Mpc). We determine the supernova (SN) location using Keck-II K-band adaptive optics images, and we find no evidence for flux from a progenitor system in pre-explosion near-ultraviolet through near-infrared Hubble Space Telescope (HST) images. Our upper limits exclude systems having a bright red giant companion, including symbiotic novae with luminosities comparable to that of RS Ophiuchi. While the flux constraints are also inconsistent with predictions for comparatively cool He-donor systems (T (is) approximately 35,000 K), we cannot preclude a system similar to V445 Puppis. The progenitor constraints are robust across a wide range of RV and AV values, but significantly greater values than those inferred from the SN light curve and spectrum would yield proportionally brighter luminosity limits. The comparatively faint flux expected from a binary progenitor system consisting of white dwarf stars would not have been detected in the pre-explosion HST imaging. Infrared HST exposures yield more stringent constraints on the luminosities of very cool (T (is) less than 3000 K) companion stars than was possible in the case of SN Ia 2011fe.

  2. Nearby Supernova Factory Observations of SN 2006D: On SporadicCarbon Signatures in Early Type Ia Supernova Spectra

    SciTech Connect

    Thomas, R.C.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey,S.; Baltay, C.; Baron, E.; Bauer, A.; Buton, C.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Loken, S.; Nugent, P.; Pain, R.; Parrent, J.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Runge, K.; Scalzo, R.; Smadja, G.; Wang, L.; Weaver, B.A.

    2006-10-12

    We present four spectra of the Type Ia supernova SN Ia 2006Dextending from -7 to +13 days with respect to B-band maximum. The spectrainclude the strongest signature of unburned material at photosphericvelocities observed in a SN Ia to date. The earliest spectrum exhibits CII absorption features below 14,000 km/s, including a distinctive C IIlambda 6580 absorption feature. The carbon signatures dissipate as the SNapproaches peak brightness. In addition to discussing implications ofphotospheric-velocity carbon for white dwarf explosion models, we outlinesome factors that may influence the frequency of its detection before andaround peak brightness. Two effects are explored in this regard,including depopulation of the C II optical levels by non-LTE effects, andline-of-sight effects resulting from a clumpy distribution of unburnedmaterial with low volume-filling factor.

  3. A New Determination of the High Redshift Type Ia Supernova Rateswith the Hubble Space Telescope Advanced Camera for Surveys

    SciTech Connect

    Kuznetsova, N.; Barbary, K.; Connolly, B.; Kim, A.G.; Pain, R.; Roe, N.A.; Aldering, G.; Amanullah, R.; Dawson, K.; Doi, M.; Fadeyev, V.; Fruchter, A.S.; Gibbons, R.; Goldhaber, G.; Goober, A.; Gude, A.; Knop,R.A.; Kowalski, M.; Lidman, C.; Morokuma, T.; Meyers, J.; Perlmutter, S.; Rubin, D.; Schlegel, D.J.; Spadafora, A.L.; Stanishev, V.; Strovink, M.; Suzuki, N.; Wang, L.; Yasuda, N.

    2007-10-01

    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift {approx} 1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.

  4. A More General Model for the Intrinsic Scatter in Type Ia Supernova Distance Moduli

    SciTech Connect

    Marriner, John; Bernstein, J.P.; Kessler, Richard; Lampeitl, Hubert; Miquel, Ramon; Mosher, Jennifer; Nichol, Robert C.; Sako, Masao; Smith, Mathew; /Cape Town U.

    2011-07-01

    We describe a new formalism to fit the parameters {alpha} and {beta} that are used in the SALT2 model to determine the standard magnitudes of Type Ia supernovae (SNe Ia). The new formalism describes the intrinsic scatter in SNe Ia by a covariance matrix in place of the single parameter normally used. We have applied this formalism to the Sloan Digital Sky Survey Supernova Survey (SDSS-II) data and conclude that the data are best described by {alpha} = 0.135{sup +.033} - .017 and {beta} = 3.19{sup +0.14} - 0.24, where the error is dominated by the uncertainty in the form of the intrinsic scatter matrix. Our result depends on the introduction of a more general form for the intrinsic scatter of the distance moduli of SNe Ia than is conventional, resulting in a larger value of {beta} and a larger uncertainty than the conventional approach. Although this analysis results in a larger value of {beta} and a larger error, the SDSS data differ (at a 98% confidence level) from {beta} = 4.1, the value expected for extinction by the type of dust found in the Milky Way. We have modeled the distribution of SNe Ia in terms of their color and conclude that there is strong evidence that variation in color is a significant contributor to the scatter of SNe Ia around their standard candle magnitude.

  5. Improving dark energy constraints with high-redshift Type Ia supernovae from CANDELS and CLASH

    NASA Astrophysics Data System (ADS)

    Salzano, Vincenzo; Rodney, Steven A.; Sendra, Irene; Lazkoz, Ruth; Riess, Adam G.; Postman, Marc; Broadhurst, Tom; Coe, Dan

    2013-09-01

    Aims: We investigated the degree of improvement in dark energy constraints that can be achieved by extending Type Ia supernova (SN Ia) samples to redshifts z > 1.5 with the Hubble Space Telescope (HST), particularly in the ongoing Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and the Cluster Lensing and Supernova survey with Hubble (CLASH) multi-cycle treasury programs. Methods: Using the popular Chevalier-Polarski-Linder (CPL) parametrization of the dark energy w = w0 + wa(1 - a) we generated mock SN Ia samples that can be projected out to higher redshifts. The synthetic datasets thus generated were fitted to the CPL model, and we evaluated the improvements that a high-z sample can add to improve the statistical and systematic uncertainties on cosmological parameters. Results: In an optimistic but still very achievable scenario, we find that extending the HST sample beyond CANDELS+CLASH to reach a total of 28 SN Ia at z > 1.0 could improve the uncertainty in the wa parameter σwaby up to 21%. The corresponding improvement in the figure of merit (FoM) would be as high as 28%. Finally, we consider the use of high-redshift SN Ia samples to detect non-cosmological evolution in SN Ia luminosities with redshift, finding that these tests could be undertaken by future space-based infrared surveys using the James Webb Space Telescope (JWST).

  6. SUB-CHANDRASEKHAR WHITE DWARF MERGERS AS THE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Van Kerkwijk, Marten H.; Chang, Philip; Justham, Stephen

    2010-10-20

    Type Ia supernovae (SNe Ia) are generally thought to be due to the thermonuclear explosions of carbon-oxygen white dwarfs (CO WDs) with masses near the Chandrasekhar mass. This scenario, however, has two long-standing problems. First, the explosions do not naturally produce the correct mix of elements, but have to be finely tuned to proceed from subsonic deflagration to supersonic detonation. Second, population models and observations give formation rates of near-Chandrasekhar WDs that are far too small. Here, we suggest that SNe Ia instead result from mergers of roughly equal-mass CO WDs, including those that produce sub-Chandrasekhar mass remnants. Numerical studies of such mergers have shown that the remnants consist of rapidly rotating cores that contain most of the mass and are hottest in the center, surrounded by dense, small disks. We argue that the disks accrete quickly, and that the resulting compressional heating likely leads to central carbon ignition. This ignition occurs at densities for which pure detonations lead to events similar to SNe Ia. With this merger scenario, we can understand the type Ia rates and have plausible reasons for the observed range in luminosity and for the bias of more luminous supernovae toward younger populations. We speculate that explosions of WDs slowly brought to the Chandrasekhar limit-which should also occur-are responsible for some of the 'atypical' SNe Ia.

  7. Near-Infrared Hubble Diagrams and The Effectiveness of Using Type Ia Supernovae as Standard Candles In The Near-Infrared.

    NASA Astrophysics Data System (ADS)

    Gooding, Samuel D.; Hsiao, E. Y.; Marion, G. H.; Krisciunas, K.; Suntzeff, N. B.

    2009-12-01

    We use a combination of near-infrared and optical data to study the diversity in intrinsic brightness of Type Ia supernovae and to learn how better to correct for the systematic errors involved in using them as standard candles. Our sample includes light curves of 29 nearby Type Ia SNe from the Carnegie Supernova Project (CSP) at Las Campanas observatory in Chile, which observes in both optical (uBVgri) and near-IR (YJHK) filters, and other well observed nearby Type Ia SNe having light curves with both optical and near-IR data published in the literature. We also use more than forty near-IR spectra from the Marion/IRTF data set plus eleven near-IR spectra of SN 1999ee from Hamuy et al. (2002). The combined set of near-IR spectra consists of many different SNe and covers the epoch range from -13 days to +76 days with respect to V-band maximum. We are working on deriving a set of near-IR, K-corrected, and extinction-corrected YJHK light curve templates and new methods for fitting future YJHK light curve data. From observations of 20 Type Ia supernovae obtained by the CSP collaboration, along with previously published results, I will present near-IR Hubble diagrams and derived absolute magnitudes at maximum brightness for the objects that have well observed near-IR light curves. Type Ia supernovae appear to be standard candles in the near-IR to ±0.15 mag or better and there is much less extinction by dust in the near-IR compared to the optical. A better understanding of the Standard Candle nature of SNe will enable us to improve their usefulness as precise distance indicators and enter deeper into the era of precision cosmology.

  8. Evidence for Type Ia Supernova Diversity from Ultraviolet Observations with the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Wang, Xiaofeng; Wang, Lifan; Filippenko, Alexei; Baron, Eddie; Kromer, Markus; Jack, Dennis; Zhang, Tianmeng; Aldering, Greg; Antilogus, Pierre; Arnett, W. David; Baade, Dietrich; Barris, Brian J.; Benetti, Stefano; Bouchet, Patrice; Burrows, Adam S.; Canal, Ramon; Cappellaro, Enrico; Carlberg, Raymond; di Carlo, Elisa; Challis, Peter; Crotts, Arlin; Danziger, John I.; Della Valle, Massimo; Holland, Stephen T.

    2012-01-01

    We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope, This dataset provides unique spectral time series down to 2000 A. Significant diversity is seen in the near-maximum-light spectra (approx.2000-3500 A) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminosities measured in the uvw lIF250W filter are found to correlate with the B-band light-curve shape parameter .(Delta)m15(B), but with much larger scatter relative to the correlation in the broad-band B band (e.g., approx. 0.4 mag versus approx. 0.2 mag for those with 0.8 <.(Delta)m15(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at> 3(sigma), being brighter than normal SNe Ia such as SN 2005cf by approx. 0,9 mag and approx. 2.0 mag in the uvwl1F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects

  9. Type Ia Supernovae and Their Environment:Theory and Applications to SN 2014J

    NASA Astrophysics Data System (ADS)

    Dragulin, Paul; Hoeflich, Peter

    2016-02-01

    We present theoretical semi-analytic models for the interaction of stellar winds with the interstellar medium (ISM) or prior mass loss implemented in our code SPICE, assuming spherical symmetry and power-law ambient density profiles and using the Π-theorem. This allows us to test a wide variety of configurations, their functional dependencies, and to find classes of solutions for given observations. Here, we study Type Ia Supernova (SN Ia) surroundings of single and double degenerate systems, and their observational signatures. Winds may originate from the progenitor prior to the white dwarf (WD) stage, the WD, a donor star, or an accretion disk (AD). For MCh explosions, the AD wind dominates and produces a low-density void several light years across, surrounded by a dense shell. The bubble explains the lack of observed interaction in late time SN light curves for, at least, several years. The shell produces narrow ISM lines Doppler shifted by 10-100 km s-1, and equivalent widths of ≈100 mÅ and ≈1 mÅ in cases of ambient environments with constant density and produced by prior mass loss, respectively. For SN2014J, both mergers and MCh mass explosions have been suggested based on radio and narrow lines. As a consistent and most likely solution, we find an AD wind running into an environment produced by the red giant wind of the progenitor during the pre-WD stage, and a short delay, 0.013-1.4 Myr, between the WD formation and the explosion. Our framework may be applied more generally to stellar winds and star formation feedback in large scale galactic evolution simulations.

  10. On the Application of a Hybrid Monte Carlo Technique to Radiation Transfer in the Post-Explosion Phase of Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Wollaeger, Ryan; van Rossum, Daniel; Graziani, Carlo; Couch, Sean; Jordan, George; Lamb, Donald; Moses, Gregory

    2013-10-01

    We apply Implicit Monte Carlo (IMC) and Discrete Diffusion Monte Carlo (DDMC) to Nomoto's W7 model of Type Ia Supernovae (SNe Ia). IMC is a stochastic method for solving the nonlinear radiation transport equations. DDMC is a stochastic radiation diffusion method that is generally used to accelerate IMC for Monte Carlo (MC) particle histories in optically thick regions of space. The hybrid IMC-DDMC method has recently been extended to account for multifrequency and velocity effects. SNe Ia are thermonuclear explosions of white dwarf stars that produce characteristic light curves and spectra sourced by radioactive decay of 56Ni. We exhibit the advantages of the hybrid MC approach relative to pure IMC for the W7 model. These results shed light on the viability of IMC-DDMC in more sophisticated, multi-dimensional simulations of SNe Ia. This work was supported in part by the University of Chicago and the National Science Foundation under grant AST-0909132.

  11. Nearby Supernova Factory Observations of SN 2005gj: Another TypeIa Supernova in a Massive Circumstellar Envelope

    SciTech Connect

    Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Bauer, A.; Blanc, N.; Bongard, S.; Copin, Y.; Gangler, E.; Gilles, S.; Kessler, R.; Kocevski, D.; Lee, B.C.; Loken, S.; Nugent, P.; Pain, R.; Pecontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Rigaudier, G.; Scalzo, R.; Smadja, G.; Thomas, R.C.; Wang, L.; Weaver, B.A.; Rabinowitz, D.; Bauer, A.

    2006-06-01

    We report the independent discovery and follow-up observations of supernova 2005gj by the Nearby Supernova Factory. This is the second confirmed case of a ''hybrid'' Type Ia/IIn supernova, which like the prototype SN 2002ic, we interpret as the explosion of a white dwarf interacting with a circumstellar medium. Our early-phase photometry of SN 2005gj shows that the strength of the interaction between the supernova ejecta and circumstellar material is much stronger than for SN 2002ic. Our .rst spectrum shows a hot continuum with broad and narrow H{alpha} emission. Later spectra, spanning over 4 months from outburst, show clear Type Ia features combined with broad and narrow H{gamma}, H{beta},H{alpha} and He I {lambda}{lambda}5876,7065 in emission. At higher resolution, P Cygni profiles are apparent. Surprisingly, we also observe an inverted P Cygni profile for [O III] {lambda}5007. We find that the lightcurve and measured velocity of the unshocked circumstellar material imply mass loss as recently as 8 years ago. This is in contrast to SN 2002ic, for which an inner cavity in the circumstellar material was inferred. Within the context of the thin-shell approximation, the early lightcurve is well-described by a flat radial density profile for the circumstellar material. However, our decomposition of the spectra into Type Ia and shock emission components allows for little obscuration of the supernova, suggesting an aspherical or clumpy distribution for the circumstellar material. We suggest that the emission line velocity profiles arise from electron scattering rather than the kinematics of the shock. This is supported by the inferred high densities, and the lack of evidence for evolution in the line widths. Ground- and space-based photometry, and Keck spectroscopy, of the host galaxy are used to ascertain that the host galaxy has low metallicity (Z/Z{sub {circle_dot}} < 0.3; 95% confidence) and that this galaxy is undergoing a significant star formation event that

  12. Abundance stratification in Type Ia supernovae - V. SN 1986G bridging the gap between normal and subluminous SNe Ia

    NASA Astrophysics Data System (ADS)

    Ashall, C.; Mazzali, P. A.; Pian, E.; James, P. A.

    2016-08-01

    A detailed spectroscopic analysis of SN 1986G has been performed. SN 1986G `bridges the gap' between normal and sub luminous type Ia supernova (SNe Ia). The abundance tomography technique is used to determine the abundance distribution of the elements in the ejecta. SN 1986G was found to be a low energy Chandrasekhar mass explosion. Its kinetic energy was 70% of the standard W7 model (0.9 × 1051 erg). Oxygen dominates the ejecta from the outermost layers down to ˜ 9000 kms-1 , intermediate mass elements (IME) dominate from ˜ 9000 kms-1 to ˜ 3500 kms-1 with Ni and Fe dominating the inner layers <˜ 3500 kms-1. The final masses of the main elements in the ejecta were found to be, O=0.33 M⊙, IME=0.69 M⊙, stable NSE=0.21 M⊙, 56Ni=0.14 M⊙. An upper limit of the carbon mass is set at C=0.02 M⊙. The spectra of SN 1986G consist of almost exclusively singly ionised species. SN 1986G can be thought of as a low luminosity extension of the main population of SN Ia, with a large deflagration phase that produced more IMEs than a standard SN Ia.

  13. STANDARDIZING TYPE Ia SUPERNOVA ABSOLUTE MAGNITUDES USING GAUSSIAN PROCESS DATA REGRESSION

    SciTech Connect

    Kim, A. G.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Nordin, J.; Thomas, R. C.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Kerschhaggl, M.; Kowalski, M.; Chotard, N.; Copin, Y.; Gangler, E.; and others

    2013-04-01

    We present a novel class of models for Type Ia supernova time-evolving spectral energy distributions (SEDs) and absolute magnitudes: they are each modeled as stochastic functions described by Gaussian processes. The values of the SED and absolute magnitudes are defined through well-defined regression prescriptions, so that data directly inform the models. As a proof of concept, we implement a model for synthetic photometry built from the spectrophotometric time series from the Nearby Supernova Factory. Absolute magnitudes at peak B brightness are calibrated to 0.13 mag in the g band and to as low as 0.09 mag in the z = 0.25 blueshifted i band, where the dispersion includes contributions from measurement uncertainties and peculiar velocities. The methodology can be applied to spectrophotometric time series of supernovae that span a range of redshifts to simultaneously standardize supernovae together with fitting cosmological parameters.

  14. PTF 11kx: a type Ia supernova with a symbiotic nova progenitor.

    PubMed

    Dilday, B; Howell, D A; Cenko, S B; Silverman, J M; Nugent, P E; Sullivan, M; Ben-Ami, S; Bildsten, L; Bolte, M; Endl, M; Filippenko, A V; Gnat, O; Horesh, A; Hsiao, E; Kasliwal, M M; Kirkman, D; Maguire, K; Marcy, G W; Moore, K; Pan, Y; Parrent, J T; Podsiadlowski, P; Quimby, R M; Sternberg, A; Suzuki, N; Tytler, D R; Xu, D; Bloom, J S; Gal-Yam, A; Hook, I M; Kulkarni, S R; Law, N M; Ofek, E O; Polishook, D; Poznanski, D

    2012-08-24

    There is a consensus that type Ia supernovae (SNe Ia) arise from the thermonuclear explosion of white dwarf stars that accrete matter from a binary companion. However, direct observation of SN Ia progenitors is lacking, and the precise nature of the binary companion remains uncertain. A temporal series of high-resolution optical spectra of the SN Ia PTF 11kx reveals a complex circumstellar environment that provides an unprecedentedly detailed view of the progenitor system. Multiple shells of circumstellar material are detected, and the SN ejecta are seen to interact with circumstellar material starting 59 days after the explosion. These features are best described by a symbiotic nova progenitor, similar to RS Ophiuchi. PMID:22923575

  15. Imprint of modified Einstein’s gravity on white dwarfs: Unifying Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Das, Upasana; Mukhopadhyay, Banibrata

    2015-11-01

    We establish the importance of modified Einstein’s gravity (MG) in white dwarfs (WDs) for the first time in the literature. We show that MG leads to significantly sub- and super-Chandrasekhar limiting mass WDs, depending on a single model parameter. However, conventional WDs on approaching Chandrasekhar’s limit are expected to trigger Type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe. Nevertheless, observations of several peculiar, under- and over-luminous SNeIa argue for the limiting mass widely different from Chandrasekhar’s limit. Explosions of MG induced sub- and super-Chandrasekhar limiting mass WDs explain under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes. Our discovery questions both the global validity of Einstein’s gravity and the uniqueness of Chandrasekhar’s limit.

  16. Feasibility of measuring the cosmological constant {Lambda} and mass density {Omega} using Type Ia supernovae

    SciTech Connect

    Goobar, A.; Perlmutter, S.

    1995-09-01

    We explore the feasibility of resurrecting the apparent magnitude-redshift relation for a {open_quote}{open_quote}standard candle{close_quote}{close_quote} to measure the cosmological constant and mass density. We show that Type Ia supernovae, if measured with 0.15 mag uncertainty out to a redshift of {ital z}=1, may provide a good standard candle or calibrated candle for this purpose. The recent discovery of probable Type Ia supernovae in the redshift range {ital z}=0.3{minus}0.5 (Perlmutter {ital et} {ital al}. 1994, 1995) indicates that the flux of optical photons from these events can be measured this accurately. The seven distant supernovae discovered to date do not by themselves distinguish among different cosmological models; however, the further discovery of about 50 Type Ia supernovae at redshifts in the range 0.5{le}{ital z}{le}1.0 could strongly constrain the allowed range of these parameters. We estimate that the follow-up photometry necessary for this measurement would be on the order of 20-70 hr of time on a 10 m class telescope at a site with good seeing. {copyright} {ital 1995 The American Astronomical Society.}

  17. Death by Dynamics: Can a planet trigger a Type Ia supernova?

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne; Fisher, Robert; Guillochon, James; Steiner, James

    2015-01-01

    As a white dwarf (WD) travels through a galaxy it interacts with a variety of masses: comets, asteroids, planets, and stars. Using a set of simple assumptions we have computed the rates of WD interactions. We find that the calculated rates of the disruption of asteroids by WDs are compatible with the rates inferred from observations, implying that not all of the disrupted asteroids need to have formed in the WD's stellar system. In addition, for every 100 tidal disruptions, a collision is expected. We are exploring the amount of energy potentially released by WD collisions with comets, asteroids, and planets and find that these energetic events should be detected by future wide-field surveys. The most energetic event generated by a WD is a Type Ia supernova. Should our mechanism produce Type Ia explosions, it could contribute significantly to the total rate and become a solution to the Type Ia supernova puzzle. Regardless of whether direct collisions with planetoids provoke supernovae, the full set of interactions we consider includes wider interactions (0.1 AU to 100 AU) between a WD (and possible companions) and other stellar systems. Although only a small fraction of these interactions produce significant effects, the overall impact may have consequences for the evolution of binary-star and triple-star Type Ia progenitor models, as well as for a variety of other WD binaries.

  18. CORRELATIONS BETWEEN SDSS TYPE Ia SUPERNOVA RATES AND HOST GALAXY PROPERTIES

    SciTech Connect

    Gao Yan; Pritchet, Chris

    2013-03-15

    Studying the correlation of Type Ia supernova rates (SNRs) with host galaxy properties is an important step in understanding the exact nature of Type Ia supernovae (SNe Ia). We use SNe Ia from the SDSS-II sample, spectroscopically determined masses and star formation rates, and a new maximum likelihood method, to fit the Scannapieco and Bildsten rate model SNR = A Multiplication-Sign M + B Multiplication-Sign SFR, where M is galaxy mass and SFR is star formation rate. We find A = 3.5{sup +0.9}{sub -0.7} Multiplication-Sign 10{sup -14} (SNe/yr)(M{sub Sun }){sup -1} and B = 1.3{sup +0.4}{sub -0.3} Multiplication-Sign 10{sup -3} (SNe/yr)(M{sub Sun} yr{sup -1}){sup -1}, assuming overall efficiency of 0.5. This is in reasonable agreement with other determinations. However we find strong evidence that this model is a poor fit to other projections of the data: it fails to correctly predict the distribution of supernovae with host mass or SFR. An additional model parameter is required; most likely this parameter is related to host galaxy mass. Some implications of this result are discussed.

  19. CONSTRAINING TYPE Ia SUPERNOVA MODELS: SN 2011fe AS A TEST CASE

    SciTech Connect

    Roepke, F. K.; Seitenzahl, I. R.; Kromer, M.; Taubenberger, S.; Ciaraldi-Schoolmann, F.; Hillebrandt, W.; Benitez-Herrera, S.; Pakmor, R.; Sim, S. A.; Aldering, G.; Childress, M.; Fakhouri, H. K.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Baltay, C.; Buton, C.; Chotard, N.; Copin, Y. [Universite de Lyon, F-69622, Lyon; Universite de Lyon 1, Villeurbanne; CNRS and others

    2012-05-01

    The nearby supernova SN 2011fe can be observed in unprecedented detail. Therefore, it is an important test case for Type Ia supernova (SN Ia) models, which may bring us closer to understanding the physical nature of these objects. Here, we explore how available and expected future observations of SN 2011fe can be used to constrain SN Ia explosion scenarios. We base our discussion on three-dimensional simulations of a delayed detonation in a Chandrasekhar-mass white dwarf and of a violent merger of two white dwarfs (WDs)-realizations of explosion models appropriate for two of the most widely discussed progenitor channels that may give rise to SNe Ia. Although both models have their shortcomings in reproducing details of the early and near-maximum spectra of SN 2011fe obtained by the Nearby Supernova Factory (SNfactory), the overall match with the observations is reasonable. The level of agreement is slightly better for the merger, in particular around maximum, but a clear preference for one model over the other is still not justified. Observations at late epochs, however, hold promise for discriminating the explosion scenarios in a straightforward way, as a nucleosynthesis effect leads to differences in the {sup 55}Co production. SN 2011fe is close enough to be followed sufficiently long to study this effect.

  20. The redshift distribution of type Ia supernovae: constraints on progenitors and cosmic star formation history

    NASA Astrophysics Data System (ADS)

    Gal-Yam, Avishay; Maoz, Dan

    2004-01-01

    We use the redshift distribution of type Ia supernovae (SNe) discovered by the Supernova Cosmology Project to constrain the star formation history (SFH) of the Universe and SN Ia progenitor models. Given some of the recent determinations of the SFH, the observed SN Ia redshift distribution indicates a long (>~1 h-1 Gyr) mean delay time between the formation of a stellar population and the explosion of some of its members as SNe Ia. For example, if the SFH of Madau et al. is assumed, the delay time τ is constrained to be τ>= 1.7(τ>= 0.7) h-1 Gyr at the 95 per cent (99 per cent) confidence level (CL). SFHs that rise at high redshift, similar to those advocated by Lanzetta et al., are inconsistent with the data at the 95 per cent CL unless τ > 2.5 h-1 Gyr. Long time-delays disfavour progenitor models such as edge-lit detonation of a white dwarf accreting from a giant donor, and the carbon core ignition of a white dwarf passing the Chandrasekhar mass due to accretion from a subgiant. The SN Ia delay may be shorter, thereby relaxing some of these constraints, if the field star formation rate falls, between z= 1 and the present, less sharply than implied, e.g. by the original Madau plot. We show that the discovery of larger samples of high-z SNe Ia by forthcoming observational projects should yield strong constraints on the progenitor models and the SFH. In a companion paper, we demonstrate that if SNe Ia produce most of the iron in galaxy clusters, and the stars in clusters formed at z~ 2, the SN Ia delay time must be lower than 2 Gyr. If so, then the SFH of Lanzetta et al. will be ruled out by the data presented here.

  1. An upper limit on the contribution of accreting white dwarfs to the type Ia supernova rate.

    PubMed

    Gilfanov, Marat; Bogdán, Akos

    2010-02-18

    There is wide agreement that type Ia supernovae (used as standard candles for cosmology) are associated with the thermonuclear explosions of white dwarf stars. The nuclear runaway that leads to the explosion could start in a white dwarf gradually accumulating matter from a companion star until it reaches the Chandrasekhar limit, or could be triggered by the merger of two white dwarfs in a compact binary system. The X-ray signatures of these two possible paths are very different. Whereas no strong electromagnetic emission is expected in the merger scenario until shortly before the supernova, the white dwarf accreting material from the normal star becomes a source of copious X-rays for about 10(7) years before the explosion. This offers a means of determining which path dominates. Here we report that the observed X-ray flux from six nearby elliptical galaxies and galaxy bulges is a factor of approximately 30-50 less than predicted in the accretion scenario, based upon an estimate of the supernova rate from their K-band luminosities. We conclude that no more than about five per cent of type Ia supernovae in early-type galaxies can be produced by white dwarfs in accreting binary systems, unless their progenitors are much younger than the bulk of the stellar population in these galaxies, or explosions of sub-Chandrasekhar white dwarfs make a significant contribution to the supernova rate. PMID:20164924

  2. Discovery of the progenitor of the type Ia supernova 2007on.

    PubMed

    Voss, Rasmus; Nelemans, Gijs

    2008-02-14

    Type Ia supernovae are exploding stars that are used to measure the accelerated expansion of the Universe and are responsible for most of the iron ever produced. Although there is general agreement that the exploding star is a white dwarf in a binary system, the exact configuration and trigger of the explosion is unclear, which could hamper their use for precision cosmology. Two families of progenitor models have been proposed. In the first, a white dwarf accretes material from a companion until it exceeds the Chandrasekhar mass, collapses and explodes. Alternatively, two white dwarfs merge, again causing catastrophic collapse and an explosion. It has hitherto been impossible to determine if either model is correct. Here we report the discovery of an object in pre-supernova archival X-ray images at the position of the recent type Ia supernova (2007on) in the elliptical galaxy NGC 1404. Deep optical images (also archival) show no sign of this object. From this we conclude that the X-ray source is the progenitor of the supernova, which favours the accretion model for this supernova, although the host galaxy is older (6-9 Gyr) than the age at which the explosions are predicted in the accreting models. PMID:18273013

  3. SN 1984A and Delayed Detonation Models of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Lentz, E. J.; Baron, E.; Branch, D.; Hauschildt, P. H.

    1999-12-01

    Supernova SN 1984A shows unusually large expansion velocities in lines from freshly synthesized material, relative to typical Type Ia supernovae (SNe Ia). SN 1984A represents an extreme example of SNe Ia with large expansion velocities, but otherwise normal spectra. We have modeled several early spectra of SN 1984A with the multi-purpose NLTE model atmosphere and spectrum synthesis code, PHOENIX. We have used as input two delayed detonation models, DD21c (Höflich et al. 1998) and CS15DD3 (Iwamoto et al. 1999). These models show line expansion velocities which are larger than for typical deflagration models like W7 (Nomoto et al. 1984, Thielemann et al. 1986), which we have previously shown to fit normal SNe Ia quite well (Lentz et al. 2000). Higher densities of newly synthesized material from burning at higher velocities are found in delayed detonation models than in deflagration models. We find these delayed detonation models to be reasonable approximations to high expansion velocity SNe Ia like SN 1984A. Even if the explosion mechanism of the delayed detonation models is incorrect, the density of synthesized material at high velocities is of the right magnitude.

  4. THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. II. THE TYPE Ia SUPERNOVA RATE IN HIGH-REDSHIFT GALAXY CLUSTERS

    SciTech Connect

    Barbary, K.; Amanullah, R.; Fakhouri, H. K.; Goldhaber, G.; Huang, X.; Aldering, G.; Dawson, K. S.; Faccioli, L.; Hsiao, E.; Brodwin, M.; Connolly, N.; Doi, M.; Ihara, Y.; Eisenhardt, P.; Fadeyev, V.; Fruchter, A. S.; Gilbank, D. G.; Gladders, M. D.; Goobar, A.; Hattori, T.; Collaboration: Supernova Cosmology Project; and others

    2012-01-20

    We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.46 from the Hubble Space Telescope Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 {+-} 1 cluster SNe Ia, we determine an SN Ia rate of 0.50{sup +0.23}{sub -0.19} (stat){sup +0.10}{sub -0.09} (sys) h{sup 2}{sub 70} SNuB (SNuB {identical_to} 10{sup -12} SNe L{sup -1}{sub Sun ,B} yr{sup -1}). In units of stellar mass, this translates to 0.36{sup +0.16}{sub -0.13} (stat){sup +0.07}{sub -0.06} (sys) h{sup 2}{sub 70} SNuM (SNuM {identical_to} 10{sup -12} SNe M{sup -1}{sub Sun} yr{sup -1}). This represents a factor of Almost-Equal-To 5 {+-} 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution (DTD) with a power law: {Psi}(t){proportional_to}t{sup s} . Under the approximation of a single-burst cluster formation redshift of z{sub f} = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = -1.41{sup +0.47}{sub -0.40}, consistent with measurements of the DTD in the field. This measurement is generally consistent with expectations for the 'double degenerate' scenario and inconsistent with some models for the 'single degenerate' scenario predicting a steeper DTD at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one hostless cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.

  5. Locating Type Ia Supernovae in HST Archival Data via an Artifical Neural Network

    NASA Astrophysics Data System (ADS)

    Shahady, Kristin; Strolger, Louis-Gregory

    2015-01-01

    The rate of type Ia supernovae (SNe Ia) in the early universe puts important constraints on the nature of SN Ia progenitors, and had implications on dark energy. The precise limits on these rates are challenged by etendue and resolution factors which make real time investigations largely impractical, and the limited "per event" information which make archival studies seemingly inconceivable. There is, however, a wealth of information on high-redshift (z > 1) events from the GOODS, CANDELS, and other HST SN surveys, largely based on brightness constraints in relation to their host galaxy characteristics, that put high-z SNe Ia in a somewhat unique (and identifiable) parameter space. We describe our program to map these observed characteristics of SNe Ia and their host galaxies at z > 1 with artificial neural networks, and in turn use these trained networks to probabilistically locate undiscovered SNe Ia in MAST using the developing Hubble Source Catalog. We expect that the orders of magnitude increase in survey area will lead to a more statistically definitive sample, determining the exact trend in the cosmic SN Ia rate history in this crucial epoch.

  6. SN 2011fe: A Laboratory for Testing Models of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Chomiuk, Laura

    2013-08-01

    SN 2011fe is the nearest supernova of Type Ia (SN Ia) discovered in the modern multi-wavelength telescope era, and it also represents the earliest discovery of an SN Ia to date. As a normal SN Ia, SN 2011fe provides an excellent opportunity to decipher long-standing puzzles about the nature of SNe Ia. In this review, we summarise the extensive suite of panchromatic data on SN 2011fe and gather interpretations of these data to answer four key questions: (1) What explodes in an SN Ia? (2) How does it explode? (3) What is the progenitor of SN 2011fe? and (4) How accurate are SNe Ia as standardisable candles? Most aspects of SN 2011fe are consistent with the canonical picture of a massive CO white dwarf undergoing a deflagration-to-detonation transition. However, there is minimal evidence for a non-degenerate companion star, so SN 2011fe may have marked the merger of two white dwarfs.

  7. The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger?

    NASA Astrophysics Data System (ADS)

    Kromer, M.; Fremling, C.; Pakmor, R.; Taubenberger, S.; Amanullah, R.; Cenko, S. B.; Fransson, C.; Goobar, A.; Leloudas, G.; Taddia, F.; Röpke, F. K.; Seitenzahl, I. R.; Sim, S. A.; Sollerman, J.

    2016-07-01

    iPTF14atg, a subluminous peculiar Type Ia supernova (SN Ia) similar to SN 2002es, is the first SN Ia for which a strong UV flash was observed in the early-time light curves. This has been interpreted as evidence for a single-degenerate (SD) progenitor system, where such a signal is expected from interactions between the SN ejecta and the non-degenerate companion star. Here, we compare synthetic observables of multidimensional state-of-the-art explosion models for different progenitor scenarios to the light curves and spectra of iPTF14atg. From our models, we have difficulties explaining the spectral evolution of iPTF14atg within the SD progenitor channel. In contrast, we find that a violent merger of two carbon-oxygen white dwarfs with 0.9 and 0.76 M⊙, respectively, provides an excellent match to the spectral evolution of iPTF14atg from 10 d before to several weeks after maximum light. Our merger model does not naturally explain the initial UV flash of iPTF14atg. We discuss several possibilities like interactions of the SN ejecta with the circumstellar medium and surface radioactivity from an He-ignited merger that may be able to account for the early UV emission in violent merger models.

  8. The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger?

    NASA Astrophysics Data System (ADS)

    Kromer, M.; Fremling, C.; Pakmor, R.; Taubenberger, S.; Amanullah, R.; Cenko, S. B.; Fransson, C.; Goobar, A.; Leloudas, G.; Taddia, F.; Röpke, F. K.; Seitenzahl, I. R.; Sim, S. A.; Sollerman, J.

    2016-04-01

    iPTF14atg, a subluminous peculiar Type Ia supernova (SN Ia) similar to SN 2002es, is the first SN Ia for which a strong UV flash was observed in the early-time light curves. This has been interpreted as evidence for a single-degenerate (SD) progenitor system where such a signal is expected from interactions between the SN ejecta and the non-degenerate companion star. Here, we compare synthetic observables of multi-dimensional state-of-the-art explosion models for different progenitor scenarios to the light curves and spectra of iPTF14atg. From our models, we have difficulties explaining the spectral evolution of iPTF14atg within the SD progenitor channel. In contrast, we find that a violent merger of two carbon-oxygen white dwarfs with 0.9 and 0.76 M⊙, respectively, provides an excellent match to the spectral evolution of iPTF14atg from 10 d before to several weeks after maximum light. Our merger model does not naturally explain the initial UV flash of iPTF14atg. We discuss several possibilities like interactions of the SN ejecta with the circum-stellar medium and surface radioactivity from a He ignited merger that may be able to account for the early UV emission in violent merger models.

  9. AMI 15 GHz upper limits for the nearby Type Ia supernova SN 2016coj

    NASA Astrophysics Data System (ADS)

    Mooley, K. P.; Fender, R. P.; Cantwell, T.; Titterington, D.; Saunders, R.; Carey, S.; Hickish, J.; Perrott, Y. C.; Razavi-Ghods, N.; Scott, P.; Grainge, K.; Scaife, A.

    2016-06-01

    We observed the type Ia supernova SN 2016coj in NGC 4125 (Zheng et al., ATel #9095; d=19Mpc; discovery date 2016 May 28.18) with the AMI Large Array at 15 GHz. We detected a fading source (later found to be a chance coincidence; see below) at the location of the supernova on 2016 Jun 03.86, Jun 05.89 and Jun 09.76 UT, following which we triggered the Jansky VLA. The VLA observations, carried out between 2-18 GHz on Jun 11.07 UT, gave 3sigma upper limits of ~60 uJy at S, C, X and Ku bands.

  10. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Petrushevska, T.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bilgi, P.; Cao, Y.; Duggan, G.; Lunnan, R.; Neill, J. D.; Walters, R.

    2016-04-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  11. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Taddia, F.; Bar, I.; Horesh, A.; Johansson, J.; Knezevic, S.; Leloudas, G.; Manulis, I.; Nir, G.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bellm, E.; Cao, Y.; Duggan, G.; Lunnan, R.

    2016-03-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  12. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Petrushevska, T.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bilgi, P.; Cao, Y.; Duggan, G.; Lunnan, R.

    2016-02-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  13. iPTF Discoveries of Recent Type Ia Supernova

    NASA Astrophysics Data System (ADS)

    Petrushevska, T.; Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bilgi, P.; Cao, Y.; Duggan, G.; Lunnan, R.; Jencson, J.

    2015-11-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  14. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Ferretti, R.; Fremling, C.; Hangard, L.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Taddia, F.; Horesh, A.; Khazov, D.; Knezevic, S.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Cao, Y.; Duggan, G.; Lunnan, R.; Blagorodnova, N.

    2015-11-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  15. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Papadogiannakis, S.; Taddia, F.; Petrushevska, T.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Roy, R.; Hangard, L.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Knezevic, S.; Johansson, J.; Nir, G.; Cao, Y.; Blagorodnova, N.; Kulkarni, S.

    2016-05-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artefacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  16. iPTF Discovery of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Hangard, L.; Taddia, F.; Ferretti, R.; Papadogiannakis, S.; Petrushevska, T.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Roy, R.; Horesh, A.; Khazov, D.; Knezevic, S.; Johansson, J.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Bar, I.; Lunnan, R.; Cenk, S. B.

    2016-02-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  17. iPTF Discoveries of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Papadogiannakis, S.; Taddia, F.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Petrushevska, T.; Nyholm, A.; Roy, R.; Hangard, L.; Vreeswijk, P.; Horesh, A.; Manulis, I.; Rubin, A.; Yaron, O.; Leloudas, G.; Khazov, D.; Soumagnac, M.; Knezevic, S.; Johansson, J.; Lunnan, R.; Blagorodnova, N.; Cao, Y.; Cenk, S. B.

    2016-01-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  18. iPTF Discovery of Recent Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Hangard, L.; Ferretti, R.; Fremling, C.; Karamehmetoglu, E.; Nyholm, A.; Papadogiannakis, S.; Petrushevska, T.; Roy, R.; Bar, I.; Horesh, A.; Johansson, J.; Khazov, D.; Knezevic, S.; Leloudas, G.; Manulis, I.; Rubin, A.; Soumagnac, M.; Vreeswijk, P.; Yaron, O.; Cao, Y.; Kulkarni, S.; Lunnan, R.; Ravi, V.; Vedantham, H. K.; Yan, L.

    2016-04-01

    The intermediate Palomar Transient Factory (ATel #4807) reports the discovery and classification of the following Type Ia SNe. Our automated candidate vetting to distinguish a real astrophysical source (1.0) from bogus artifacts (0.0) is powered by three generations of machine learning algorithms: RB2 (Brink et al. 2013MNRAS.435.1047B), RB4 (Rebbapragada et al. 2015AAS...22543402R) and RB5 (Wozniak et al. 2013AAS...22143105W).

  19. THE PROGENITOR OF THE TYPE Ia SUPERNOVA THAT CREATED SNR 0519-69.0 IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Edwards, Zachary I.; Pagnotta, Ashley; Schaefer, Bradley E.

    2012-03-10

    Models for the progenitor systems of Type Ia supernovae can be divided into double-degenerate systems, which contain two white dwarfs, and single-degenerate systems, which contain one white dwarf plus one companion star (either a red giant, a subgiant, or a >1.16 M{sub Sun} main-sequence star). The white dwarf is destroyed in the supernova explosion, but any non-degenerate companion remains intact. We present the results of a search for an ex-companion star in SNR 0519-69.0, located in the Large Magellanic Cloud, based on images taken with the Hubble Space Telescope with a limiting magnitude of V = 26.05. SNR 0519-69.0 is confidently known to be from a Type Ia supernova based on its light echoes and X-ray spectra. The geometric center of the remnant (based on the H{alpha} and X-ray shell) is at 05:19:34.83, -69:02:06.92 (J2000). Accounting for the measurement uncertainties, the orbital velocity, and the kick velocity, any ex-companion star must be within 4.''7 of this position at the 99.73% confidence level. This circle contains 27 main-sequence stars brighter than V = 22.7, any one of which could be the ex-companion star left over from a supersoft source progenitor system. The circle contains no post-main-sequence stars, and this rules out the possibility of all other published single-degenerate progenitor classes (including symbiotic stars, recurrent novae, helium donors, and the spin-up/spin-down models) for this particular supernova. The only remaining possibility is that SNR 0519-69.0 was formed from either a supersoft source or a double-degenerate progenitor system.

  20. ON THE PROGENITORS OF SUPER-CHANDRASEKHAR MASS TYPE Ia SUPERNOVAE

    SciTech Connect

    Chen Wencong; Li Xiangdong E-mail: lixd@nju.edu.cn

    2009-09-01

    Type Ia supernovae (SNe Ia) can be used as the standard candle to determine the cosmological distances because they are thought to have a uniform fuel amount. Recent observations of several overluminous SNe Ia suggest that the white dwarf masses at supernova explosion may significantly exceed the canonical Chandrasekhar mass limit. These massive white dwarfs may be supported by rapid differential rotation. Based on a single-degenerate model and the assumption that the white dwarf would differentially rotate when the accretion rate M-dot>3 x 10{sup -7} M-odot yr{sup -1}, we have calculated the evolutions of close binaries consisting of a white dwarf and a normal companion. To include the effect of rotation, we introduce an effective mass M{sub eff} for white dwarfs. For the donor stars with two different metallicities Z = 0.02 and 0.001, we present the distribution of the initial donor star masses and the orbital periods of the progenitors of super-Chandrasekhar mass SNe Ia. The calculation results indicate that, for an initial massive white dwarf of 1.2 M{sub sun}, a considerable fraction of SNe Ia may result from super-Chandrasekhar mass white dwarfs, but very massive (> 1.7 M{sub sun}) white dwarfs are difficult to form, and none of them could be found in old populations. However, super-Chandrasekhar mass SNe Ia are very rare when the initial mass of white dwarfs is 1.0 M{sub sun}. Additionally, SNe Ia in low metallicity environment are more likely to be homogeneous.

  1. Analytic photometric redshift estimator for Type Ia supernovae from the Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Gjergo, E.; Kuhlmann, S.

    2015-08-01

    Accurate and precise photometric redshifts (photo-zs) of Type Ia supernovae (SNe Ia) can enable the use of SNe Ia, measured only with photometry, to probe cosmology. This dramatically increases the science return of supernova surveys planned for the Large Synoptic Survey Telescope (LSST). In this paper we describe a significantly improved version of the simple analytic photo-z estimator proposed by Wang and further developed by Wang, Narayan & Wood-Vasey. We apply it to 55 422 simulated SNe Ia generated using the SNANA package with the LSST filters. We find that the estimated errors on the photo-zs, σ _{z_phot}/(1+z_phot), can be used as filters to produce a set of photo-zs that have high precision, accuracy, and purity. Using SN Ia colours as well as SN Ia peak magnitude in the i band, we obtain a set of photo-zs with 2 per cent accuracy (with σ(zphot - zspec)/(1 + zspec) = 0.02), a bias in zphot (the mean of zphot - zspec) of -9 × 10-5, and an outlier fraction (with |(zphot - zspec)/(1 + zspec)| > 0.1) of 0.23 per cent, with the requirement that σ _{z_phot}/(1+z_phot)<0.01. Using the SN Ia colours only, we obtain a set of photo-zs with similar quality by requiring that σ _{z_phot}/(1+z_phot)<0.007; this leads to a set of photo-zs with 2 per cent accuracy, a bias in zphot of 5.9 × 10-4, and an outlier fraction of 0.32 per cent.

  2. Single point off-center helium ignitions as origin of some Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Forcada, Ramon; Garcia-Senz, Domingo; José, Jordi

    The explosion of a helium layer accreted on top of a white dwarf, leading to the subsequent explosion of the star (while the accreting dwarf is still below the Chandrasekhar mass limit) is an alternative model for some subluminous Type Ia supernovae explosions. In this communication we present two preliminary hydrodynamical simulations concerning these so- called Sub-Chandrasekhar mass models for Type Ia supernovae, calculated in two dimensions. In the first calculation we have assumed one single detonation travelling through the helium layer which, after a while, induces the detonation of the carbon layer at the antipodes of the original ignition point. In the second case we assumed the prompt detonation of the carbon just beneath the ignition point. A comparison between these two models is presented.

  3. EVALUATING SYSTEMATIC DEPENDENCIES OF TYPE Ia SUPERNOVAE: THE INFLUENCE OF CENTRAL DENSITY

    SciTech Connect

    Krueger, Brendan K.; Jackson, Aaron P.; Calder, Alan C.; Townsley, Dean M.; Brown, Edward F.; Timmes, Francis X.

    2012-10-01

    We present a study exploring a systematic effect on the brightness of Type Ia supernovae using numerical models that assume the single-degenerate paradigm. Our investigation varied the central density of the progenitor white dwarf at flame ignition, and considered its impact on the explosion yield, particularly the production and distribution of radioactive {sup 56}Ni, which powers the light curve. We performed a suite of two-dimensional simulations with randomized initial conditions, allowing us to characterize the statistical trends that we present. The simulations indicate that the production of Fe-group material is statistically independent of progenitor central density, but the mass of stable Fe-group isotopes is tightly correlated with central density, with a decrease in the production of {sup 56}Ni at higher central densities. These results imply that progenitors with higher central densities produce dimmer events. We provide details of the post-explosion distribution of {sup 56}Ni in the models, including the lack of a consistent centrally located deficit of {sup 56}Ni, which may be compared to observed remnants. By performing a self-consistent extrapolation of our model yields and considering the main-sequence lifetime of the progenitor star and the elapsed time between the formation of the white dwarf and the onset of accretion, we develop a brightness-age relation that improves our prediction of the expected trend for single degenerates and we compare this relation with observations.

  4. Delayed detonation models for normal and subluminous type Ia sueprnovae: Absolute brightness, light curves, and molecule formation

    NASA Technical Reports Server (NTRS)

    Hoflich, P.; Khokhlov, A. M.; Wheeler, J. C.

    1995-01-01

    We compute optical and infrared light curves of the pulsating class of delayed detonation models for Type Ia supernovae (SN Ia's) using an elaborate treatment of the Local Thermodynamic Equilbrium (LTE) radiation transport, equation of state and ionization balance, expansion opacity including the cooling by CO, Co(+), and SiO, and a Monte Carlo gamma-ray deposition scheme. The models have an amount of Ni-56 in the range from approximately or equal to 0.1 solar mass up to 0.7 solar mass depending on the density at which the transition from a deflagration to a detonation occurs. Models with a large nickel production give light curves comparable to those of typical Type Ia supernovae. Subluminous supernovae can be explained by models with a low nickel production. Multiband light curves are presented in comparison with the normally bright event SN 1992bc and the subluminous events Sn 1991bg and SN 1992bo to establish the principle that the delayed detonation paradigm in Chandrasekhar mass models may give a common explosion mechanism accounting for both normal and subluminous SN Ia's. Secondary IR-maxima are formed in the models of normal SN Ia's as a photospheric effect if the photospheric radius continues to increase well after maximum light. Secondary maxima appear later and stronger in models with moderate expansion velocities and with radioactive material closer to the surface. Model light curves for subluminous SN Ia's tend to show only one 'late' IR-maximum. In some delayed detonation models shell-like envelopes form, which consist of unburned carbon and oxygen. The formation of molecules in these envelopes is addressed. If the model retains a C/O-envelope and is subluminous, strong vibration bands of CO may appear, typically several weeks past maximum light. CO should be very weak or absent in normal Sn Ia's.

  5. UV Spectroscopy of Type Ia Supernovae at Low- andHigh-Redshift

    SciTech Connect

    Nugent, Peter

    2005-04-20

    In the past three years two separate programs were initiated to study the restframe UV properties of Type Ia Supernovae. The low-redshift study was carried out using several ground-based facilities coupled with HST/STIS observations. The high-redshift program is an offshoot of the CFHT Legacy Survey and uses Keck/LRIS to obtain spectra. Here we present the preliminary results from each program and their implications for current cosmology measurements.

  6. Type Ia supernovae from violent mergers of carbon-oxygen white dwarfs: polarization signatures

    NASA Astrophysics Data System (ADS)

    Bulla, M.; Sim, S. A.; Pakmor, R.; Kromer, M.; Taubenberger, S.; Röpke, F. K.; Hillebrandt, W.; Seitenzahl, I. R.

    2016-01-01

    The violent merger of two carbon-oxygen white dwarfs has been proposed as a viable progenitor for some Type Ia supernovae. However, it has been argued that the strong ejecta asymmetries produced by this model might be inconsistent with the low degree of polarization typically observed in Type Ia supernova explosions. Here, we test this claim by carrying out a spectropolarimetric analysis for the model proposed by Pakmor et al. for an explosion triggered during the merger of a 1.1 and 0.9 M⊙ carbon-oxygen white dwarf binary system. Owing to the asymmetries of the ejecta, the polarization signal varies significantly with viewing angle. We find that polarization levels for observers in the equatorial plane are modest (≲1 per cent) and show clear evidence for a dominant axis, as a consequence of the ejecta symmetry about the orbital plane. In contrast, orientations out of the plane are associated with higher degrees of polarization and departures from a dominant axis. While the particular model studied here gives a good match to highly polarized events such as SN 2004dt, it has difficulties in reproducing the low polarization levels commonly observed in normal Type Ia supernovae. Specifically, we find that significant asymmetries in the element distribution result in a wealth of strong polarization features that are not observed in the majority of currently available spectropolarimetric data of Type Ia supernovae. Future studies will map out the parameter space of the merger scenario to investigate if alternative models can provide better agreement with observations.

  7. Optimization of the WFIRST Type Ia Supernova Survey

    NASA Astrophysics Data System (ADS)

    Alianora Hounsell, Rebekah; Foley, Ryan; Scolnic, Daniel

    2016-01-01

    The Wide Field InfraRed Survey Telescope (WFIRST), which is expected to launch in about a decade, will conduct a supernova (SN) program to discover and measure distances to high-redshift SNe. Using open-source tools, including ones we have built and released, we have produced the first fully simulated realization of the survey. We made dramatically different strategic decisions and examined how the survey and its cosmological utility change with those choices. For these different strategies, we estimate how well the WFIRST SN survey can constrain the nature of dark energy. We discuss these results and make suggestions for optimizing the survey.

  8. A Systematic Study of Carbon-Oxygen White Dwarf Mergers: Mass Combinations for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Sato, Yushi; Nakasato, Naohito; Tanikawa, Ataru; Nomoto, Ken'ichi; Maeda, Keiichi; Hachisu, Izumi

    2015-07-01

    Mergers of two carbon-oxygen (CO) white dwarfs (WDs) have been considered to be progenitors of Type Ia supernovae (SNe Ia). Based on smoothed particle hydrodynamics (SPH) simulations, previous studies have claimed that mergers of CO WDs lead to SN Ia explosions either in the dynamical merger phase or the stationary rotating merger remnant phase. However, the mass range of CO WDs that lead to SNe Ia has not yet been clearly identified. In the present work, we perform systematic SPH merger simulations for the WD masses ranging from 0.5 {M}⊙ to 1.1 {M}⊙ with higher resolutions than the previous systematic surveys and examine whether or not carbon burning occurs dynamically or quiescently in each phase. We further study the possibility of SNe Ia explosions and estimate the mass range of CO WDs that lead to SNe Ia. We found that when both WDs are massive, i.e., in the mass range of 0.9 {M}⊙ ≤slant {M}{1,2}≤slant 1.1 {M}⊙ , they can explode as an SN Ia in the merger phase. On the other hand, when the more massive WD is in the range of 0.7 {M}⊙ ≤slant {M}1≤slant 0.9 {M}⊙ and the total mass exceeds 1.38 {M}⊙ , they can finally explode in the stationary rotating merger remnant phase. We estimate the contribution of CO WD mergers to the entire SN Ia rate in our galaxy to be of ≲ 9%. Thus, it might be difficult to explain all galactic SNe Ia with CO WD mergers.

  9. The type Ia supernova rate at {ital z}{approximately}0.4

    SciTech Connect

    Pain, R. |; Hook, I.M. |; Deustua, S.; Gabi, S.; Goldhaber, G. |; Groom, D.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Pennypacker, C.R. |; Perlmutter, S. |; Small, I.A.; Goobar, A.; Ellis, R.S.; McMahon, R.G.; Glazebrook, K.; Boyle, B.J.; Bunclark, P.S.; Carter, D.; Irwin, M.J.

    1996-12-01

    We present the first measurement of the rate of Type Ia supernovae at high redshift. The result is derived by using a large subset of data from the Supernova Cosmology Project. Three supernovae were discovered in a surveyed area of 1.7 deg{sup 2}. The survey spanned a {approximately}3 week baseline and used images with 3 {sigma} limiting magnitudes of {ital R}{approximately}23. We present our methods for estimating the numbers of galaxies and the number of solar luminosities to which the survey is sensitive, as well as the supernova detection efficiency, which is used to determine the control time, the effective time for which the survey is sensitive to a Type Ia event. We derive a rest-frame Type Ia supernova (SN) rate at {ital z}{approximately}0.4 of 0.82{sub {minus}0.37{minus}0.25}{sup +0.54+0.37} {ital h}{sup 2} SNu (1 SNu=1 SN per century per 10{sup 10} {ital L}{sub {ital B}{circle_dot}}), where the first uncertainty is statistical and the second includes systematic effects. For the purposes of observers, we also determine the rate of SNe, per sky area surveyed, to be 34.4{sub {minus}16.2}{sup +23.9} SNe yr{sup {minus}1} deg{sup {minus}2} for SN magnitudes in the range 21.3{lt}{ital R}{lt}22.3. {copyright} {ital 1996 The American Astronomical Society.}

  10. Properties of extragalactic dust inferred from linear polarimetry of Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Patat, F.; Taubenberger, S.; Cox, N. L. J.; Baade, D.; Clocchiatti, A.; Höflich, P.; Maund, J. R.; Reilly, E.; Spyromilio, J.; Wang, L.; Wheeler, J. C.; Zelaya, P.

    2015-05-01

    Aims: The aim of this paper is twofold: 1) to investigate the properties of extragalactic dust and compare them to what is seen in the Galaxy; 2) to address in an independent way the problem of the anomalous extinction curves reported for reddened Type Ia Supernovae (SN) in connection to the environments in which they explode. Methods: The properties of the dust are derived from the wavelength dependence of the continuum polarization observed in four reddened Type Ia SN: 1986G, 2006X, 2008fp, and 2014J. The method is based on the observed fact that Type Ia SN have a negligible intrinsic continuum polarization. This and their large luminosity makes them ideal tools to probe the dust properties in extragalactic environments. Results: All four objects are characterized by exceptionally low total-to-selective absorption ratios (RV) and display an anomalous interstellar polarization law, characterized by very blue polarization peaks. In all cases the polarization position angle is well aligned with the local spiral structure. While SN 1986G is compatible with the most extreme cases of interstellar polarization known in the Galaxy, SN 2006X, 2008fp, and 2014J show unprecedented behaviours. The observed deviations do not appear to be connected to selection effects related to the relatively large amounts of reddening characterizing the objects in the sample. Conclusions: The dust responsible for the polarization of these four SN is most likely of interstellar nature. The polarization properties can be interpreted in terms of a significantly enhanced abundance of small grains. The anomalous behaviour is apparently associated with the properties of the galactic environment in which the SN explode, rather than with the progenitor system from which they originate. For the extreme case of SN 2014J, we cannot exclude the contribution of light scattered by local material; however, the observed polarization properties require an ad hoc geometrical dust distribution. Based on

  11. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star.

    PubMed

    Howell, D Andrew; Sullivan, Mark; Nugent, Peter E; Ellis, Richard S; Conley, Alexander J; Le Borgne, Damien; Carlberg, Raymond G; Guy, Julien; Balam, David; Basa, Stephane; Fouchez, Dominique; Hook, Isobel M; Hsiao, Eric Y; Neill, James D; Pain, Reynald; Perrett, Kathryn M; Pritchet, Christopher J

    2006-09-21

    The accelerating expansion of the Universe, and the need for dark energy, were inferred from observations of type Ia supernovae. There is a consensus that type Ia supernovae are thermonuclear explosions that destroy carbon-oxygen white dwarf stars that have accreted matter from a companion star, although the nature of this companion remains uncertain. These supernovae are thought to be reliable distance indicators because they have a standard amount of fuel and a uniform trigger: they are predicted to explode when the mass of the white dwarf nears the Chandrasekhar mass of 1.4 solar masses (M(o)). Here we show that the high-redshift supernova SNLS-03D3bb has an exceptionally high luminosity and low kinetic energy that both imply a super-Chandrasekhar-mass progenitor. Super-Chandrasekhar-mass supernovae should occur preferentially in a young stellar population, so this may provide an explanation for the observed trend that overluminous type Ia supernovae occur only in 'young' environments. As this supernova does not obey the relations that allow type Ia supernovae to be calibrated as standard candles, and as no counterparts have been found at low redshift, future cosmology studies will have to consider possible contamination from such events. PMID:16988705

  12. Upper limits on the luminosity of the progenitor of Type Ia supernova SN 2014J

    NASA Astrophysics Data System (ADS)

    Nielsen, M. T. B.; Gilfanov, M.; Bogdán, Á.; Woods, T. E.; Nelemans, G.

    2014-08-01

    We analysed archival data of Chandra pre-explosion observations of the position of SN 2014J in M82. No X-ray source at this position was detected in the data, and we calculated upper limits on the luminosities of the progenitor. These upper limits allow us to firmly rule out an unobscured supersoft X-ray source progenitor with a photospheric radius comparable to the radius of white dwarf near the Chandrasekhar mass (˜1.38 M⊙) and mass accretion rate in the interval where stable nuclear burning can occur. However, due to a relatively large hydrogen column density implied by optical observations of the supernova, we cannot exclude a supersoft source with lower temperatures, kT ≲ 70 eV. We find that the supernova is located in the centre of a large structure of soft diffuse emission, about 200 pc across. The mass, ˜3 × 104 M⊙ and short cooling time of the gas, τcool ˜ 8 Myr, suggest that it is a supernova-inflated superbubble, associated with the region of recent star formation. If SN 2014J is indeed located inside the bubble, it likely belongs to the prompt population of Type Ia supernovae, with a delay time as short as ˜50 Myr. Finally, we analysed the one existing post-supernova Chandra observation and placed upper limit of ˜(1-2) × 1037 erg s-1 on the X-ray luminosity of the supernova itself.

  13. THE ABSENCE OF EX-COMPANIONS IN TYPE Ia SUPERNOVA REMNANTS

    SciTech Connect

    Di Stefano, R.; Kilic, Mukremin E-mail: kilic@ou.edu

    2012-11-01

    Type Ia supernovae (SNe Ia) play important roles in our study of the expansion and acceleration of the universe, but because we do not know the exact nature or natures of the progenitors, there is a systematic uncertainty that must be resolved if SNe Ia are to become more precise cosmic probes. No progenitor system has ever been identified either in the pre- or post-explosion images of a Ia event. There have been recent claims for and against the detection of ex-companion stars in several SNe Ia remnants. These studies, however, usually ignore the angular momentum gain of the progenitor white dwarf (WD), which leads to a spin-up phase and a subsequent spin-down phase before explosion. For spin-down timescales greater than 10{sup 5} years, the donor star could be too dim to detect by the time of explosion. Here we revisit the current limits on ex-companion stars to SNR 0509-67.5, a 400-year-old remnant in the Large Magellanic Cloud. If the effects of possible angular momentum gain on the WD are included, a wide range of single-degenerate progenitor models are allowed for this remnant. We demonstrate that the current absence of evidence for ex-companion stars in this remnant, as well as other SNe Ia remnants, does not necessarily provide the evidence of absence for ex-companions. We discuss potential ways to identify such ex-companion stars through deep imaging observations.

  14. Early ultraviolet signatures from the interaction of Type Ia supernova ejecta with a stellar companion

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Wei; Moriya, Takashi J.; Stancliffe, Richard J.

    2015-12-01

    The progenitors of Type Ia supernovae (SNe Ia) are not yet fully understood. The two leading progenitor scenarios are the single-degenerate (SD) scenario and the double-degenerate scenario. In the SD scenario, the collision of the SN Ia ejecta with its companion star is expected to produce detectable ultraviolet (UV) emission in the first few days after the SN explosion within certain viewing angles. A strong UV flash has recently been detected in an SN 2002es-like peculiar SN Ia iPTF14atg by Cao et al., which is interpreted as evidence of an early-time UV signature due to SN ejecta interacting with its companion star, supporting the SD scenario. In this paper, we present the expected luminosity distributions of early-time UV emission arising from SN Ia ejecta-companion interaction by performing binary population synthesis calculations for different progenitor systems in the SD scenario. Our theoretical predictions will be helpful for future early-time observations of SNe Ia to constrain their possible progenitors. Assuming the observed strong UV pulse of iPTF14atg was indeed produced by the SN ejecta-companion interaction, our population synthesis model suggests that the progenitor system of iPTF14atg is most likely a red-giant donor binary system, and it is unlikely to have been a main-sequence or helium-star donor system.

  15. Modeling Type IIn Supernova Light Curves

    NASA Astrophysics Data System (ADS)

    De La Rosa, Janie; Roming, Peter; Fryer, Chris

    2016-01-01

    We present near-by Type IIn supernovae observed with Swift's Ultraviolet/Optical Telescope (UVOT). Based on the diversity of optical light curve properties, this Type II subclass is commonly referred to as heterogeneous. At the time of discovery, our IIn sample is ~ 2 magnitudes brighter at ultraviolet wavelengths than at optical wavelengths, and ultraviolet brightness decays faster than the optical brightness. We use a semi-analytical supernova (SN) model to better understand our IIn observations, and focus on matching specific observed light curves features, i.e peak luminosity and decay rate. The SN models are used to study the effects of initial SN conditions on early light curves, and to show the extent of the "uniqueness" problem in SN light curves. We gratefully acknowledge the contributions from members of the Swift UVOT team, the NASA astrophysics archival data analysis program, and the NASA Swift guest investigator program.

  16. THE PROGENITORS OF TYPE Ia SUPERNOVAE. I. ARE THEY SUPERSOFT SOURCES?

    SciTech Connect

    Di Stefano, R.

    2010-03-20

    In a canonical model, the progenitors of Type Ia supernovae (SNe Ia) are accreting, nuclear-burning white dwarfs (NBWDs), which explode when the white dwarf reaches the Chandrasekhar mass, M{sub C} . Such massive NBWDs are hot (kT {approx} 100 eV), luminous (L {approx} 10{sup 38} erg s{sup -1}), and are potentially observable as luminous supersoft X-ray sources (SSSs). During the past several years, surveys for soft X-ray sources in external galaxies have been conducted. This paper shows that the results falsify the hypothesis that a large fraction of progenitors are NBWDs which are presently observable as SSSs. The data also place limits on sub-M{sub C} models. While SN Ia progenitors may pass through one or more phases of SSS activity, these phases are far shorter than the time needed to accrete most of the matter that brings them close to M{sub C} .

  17. Type Ia and II Supernovae Contributions to Metal Enrichment in the Intracluster Medium Observed with Suzaku

    NASA Astrophysics Data System (ADS)

    Sato, Kosuke; Tokoi, Kazuyo; Matsushita, Kyoko; Ishisaki, Yoshitaka; Yamasaki, Noriko Y.; Ishida, Manabu; Ohashi, Takaya

    2007-09-01

    We studied the properties of the intracluster medium (ICM) in two clusters of galaxies (AWM 7 and Abell 1060) and two groups (HCG 62 and NGC 507) with the X-ray observatory Suzaku. Based on spatially resolved energy spectra, we measured for the first time precise cumulative ICM metal masses within 0.1 and ~0.3r180. Comparing our results with supernova nucleosynthesis models, the number ratio of Type II (SNe II) to Type Ia (SNe Ia) is estimated to be ~3.5, assuming the metal mass in the ICM is represented by the sum of products synthesized in SNe Ia and SNe II. Normalized by the K-band luminosities of present galaxies, and including the metals in stars, the integrated number of past SN II explosions is estimated to be close to or somewhat higher than the star formation rate determined from Hubble Deep Field observations.

  18. Young Remnants of Type Ia Supernovae and Their Progenitors: A Study of SNR G1.9+0.3

    NASA Astrophysics Data System (ADS)

    Chakraborti, Sayan; Childs, Francesca; Soderberg, Alicia

    2016-03-01

    SNe Ia, with their remarkably homogeneous light curves and spectra, have been used as standardizable candles to measure the accelerating expansion of the universe. Yet, their progenitors remain elusive. Common explanations invoke a degenerate star (white dwarf) that explodes upon almost reaching the Chandrasekhar limit, by either steadily accreting mass from a companion star or violently merging with another degenerate star. We show that circumstellar interaction in young Galactic supernova remnants can be used to distinguish between these single and double degenerate (DD) progenitor scenarios. Here we propose a new diagnostic, the surface brightness index, which can be computed from theory and compared with Chandra and Very Large Array (VLA) observations. We use this method to demonstrate that a DD progenitor can explain the decades-long flux rise and size increase of the youngest known galactic supernova remnant (SNR), G1.9+0.3. We disfavor a single degenerate scenario for SNR G1.9+0.3. We attribute the observed properties to the interaction between a steep ejecta profile and a constant density environment. We suggest using the upgraded VLA, ASKAP, and MeerKAT to detect circumstellar interaction in the remnants of historical SNe Ia in the Local Group of galaxies. This may settle the long-standing debate over their progenitors.

  19. Berkeley Supernova Ia Program - II. Initial analysis of spectra obtained near maximum brightness

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey M.; Kong, Jason J.; Filippenko, Alexei V.

    2012-09-01

    In this second paper in a series, we present measurements of spectral features of 432 low-redshift (z < 0.1) optical spectra of 261 Type Ia supernovae (SNe Ia) within 20 d of maximum brightness. The data were obtained from 1989 to the end of 2008 as part of the Berkeley Supernova Ia Program (BSNIP) and are presented in BSNIP I by Silverman et al. We describe in detail our method of automated, robust spectral feature definition and measurement which expands upon similar previous studies. Using this procedure, we attempt to measure expansion velocities, pseudo-equivalent widths (pEWs), spectral feature depths and fluxes at the centre and endpoints of each of nine major spectral feature complexes. We investigate how velocity and pEW evolve with time and how they correlate with each other. Various spectral classification schemes are employed and quantitative spectral differences among the subclasses are investigated. Several ratios of pEW values are calculated and studied. The so-called Si II ratio, often used as a luminosity indicator, is found to be well correlated with the so-called SiFe ratio and anticorrelated with the analogous 'SSi ratio', confirming the results of previous studies. Furthermore, SNe Ia that show strong evidence for interaction with circumstellar material or an aspherical explosion are found to have the largest near-maximum expansion velocities and pEWs, possibly linking extreme values of spectral observables with specific progenitor or explosion scenarios. We find that purely spectroscopic classification schemes are useful in identifying the most peculiar SNe Ia. However, in almost all spectral parameters investigated, the full sample of objects spans a nearly continuous range of values. Comparisons to previously published theoretical models of SNe Ia are made and we conclude with a brief discussion of how the measurements performed herein and the possible correlations presented will be important for future SN surveys.

  20. Constraining a Possible Variation of G with Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Mould, Jeremy; Uddin, Syed A.

    2014-03-01

    Astrophysical cosmology constrains the variation of Newton's Constant in a manner complementary to laboratory experiments, such as the celebrated lunar laser ranging campaign. Supernova cosmology is an example of the former and has attained campaign status, following planning by a Dark Energy Task Force in 2005. In this paper, we employ the full SNIa data set to the end of 2013 to set a limit on G variation. In our approach, we adopt the standard candle delineation of the redshift distance relation. We set an upper limit on its rate of change |dot{G}/G| of 0.1 parts per billion per year over 9 Gyrs. By contrast, lunar laser ranging tests variation of G over the last few decades. Conversely, one may adopt the laboratory result as a prior and constrain the effect of variable G in dark energy equation of state experiments to δw < 0.02. We also examine the parameterisation G 1 + z. Its short expansion age conflicts with the measured values of the expansion rate and the density in a flat Universe. In conclusion, supernova cosmology complements other experiments in limiting G variation. An important caveat is that it rests on the assumption that the same mass of 56Ni is burned to create the standard candle regardless of redshift. These two quantities, f and G, where f is the Chandrasekhar mass fraction burned, are degenerate. Constraining f variation alone requires more understanding of the SNIa mechanism.

  1. Optical Observations of the Type Ia Supernova SN 2011fe in M101 for Nearly 500 Days

    NASA Astrophysics Data System (ADS)

    Zhang, Kaicheng; Wang, Xiaofeng; Zhang, JuJia; Zhang, Tianmeng; Ganeshalingam, Mohan; Li, Weidong; Filippenko, Alexei V.; Zhao, Xulin; Zheng, Weikang; Bai, Jinming; Chen, Jia; Chen, Juncheng; Huang, Fang; Mo, Jun; Rui, Liming; Song, Hao; Sai, Hanna; Li, Wenxiong; Wang, Lifan; Wu, Chao

    2016-03-01

    We present well-sampled optical observations of the bright Type Ia supernova (SN Ia) SN 2011fe in M101. Our data, starting from ˜16 days before maximum light and extending to ˜463 days after maximum, provide an unprecedented time series of spectra and photometry for a normal SN Ia. Fitting the early-time rising light curve, we find that the luminosity evolution of SN 2011fe follows a tn law, with the index n being close to 2.0 in the VRI bands but slightly larger in the U and B bands. Combining the published ultraviolet (UV) and near-infrared (NIR) photometry, we derive the contribution of UV/NIR emission relative to the optical. SN 2011fe is found to have stronger UV emission and reaches its UV peak a few days earlier than other SNe Ia with similar Δm15(B), suggestive of less trapping of high-energy photons in the ejecta. Moreover, the U-band light curve shows a notably faster decline at late phases (t ≈ 100-300 days), which also suggests that the ejecta may be relatively transparent to UV photons. These results favor the notion that SN 2011fe might have a progenitor system with relatively lower metallicity. On the other hand, the early-phase spectra exhibit prominent high-velocity features (HVFs) of O i λ7773 and the Ca ii NIR triplet, but only barely detectable in Si ii 6355. This difference can be caused by either an ionization/temperature effect or an abundance enhancement scenario for the formation of HVFs; it suggests that the photospheric temperature of SN 2011fe is intrinsically low, perhaps owing to incomplete burning during the explosion of the white dwarf.

  2. A light curve and its analysis of Type Ia SN 1604

    NASA Astrophysics Data System (ADS)

    Lee, Eun Hee; Lee, Dae-Young; Mihn, Byeong-Hee

    2015-08-01

    SN 1604, known as Kepler’s supernova, was first detected by European observers, but a full light curve including its peak brightness and initial decline part can only be completed by extra data from Korean royal astronomers of four centuries ago. Nowadays, it is considered one of the Type Ia galactic supernovae, which show the empirical correlation between decline rate and peak luminosity - so called Phillips relation or width-luminosity (W-L) relation. Here, we reconstruct a new light curve based on both the Korean and European records of SN 1604. Using this light curve and W-L relation, we present an observed rise time and decline rates after peak, and derive its absolute peak magnitude and distance. In this study, observed rise time (≈ 19±1 days) shows a good agreement with typical mean time of Type Ia SNe, while the initial decline rates such as Δm15(V) and Δm20(V) represent steeper and faster values than the extra-galactic SNe Ia. Moreover, its absolute peak magnitude and distance derived from the W-L relation show much fainter and nearer values, respectively than the estimated results by different methods

  3. The blue anbd visual absolute magnitude distributions of Type IA supernovae

    NASA Astrophysics Data System (ADS)

    Vaughan, Thomas E.; Branch, David; Miller, Douglas L.; Perlmutter, Saul

    1995-02-01

    Tully-Fisher (TF), surface brightness fluctuation (SBF), and Hubble law distances to the parent galaxies of Type Ia supernovae (SNs Ia) are used in order to study the SN Ia blue and visual peak absolute magnitude (MB and MV) distributions. We propose two objective cuts, each of which produces a subsample with small intrinsic dispersion in M. One cut, which can be applied to either band, distinguishes between a subsample of bright events and a smaller subsample of dim events, some of which were extinquished in the parent galaxy and some of which were intrinsically subluminous. The bright events are found to be distributed with an observed dispersions of 0.3 less than or approximately = Sigmaobs less than or approximately = 0.4 about a mean absolut magnitude (M-barB or M-barV). Each of the dim SNs was spectroscopically peculiar and/or had a red B-V color; this motivates the adoption of an alternative cut that is based on B-V rather than on M. To wit, SNs Ia that are both known to have -0.25 less than B-V less than + 0.25 and not known to be spectroscopically peculiar show observational dispersion of only Sigmaobs(MB) = Sigmaobs(MV) = 0.3. Because characteristics observational errors produce Sigmaerr(M) greater than 0.2,the intrinsic dispersion among such SNs Ia is Sigmaint(M) less than or approximately = 0.2. The small observational dispersion indicates that SNs Ia, the TF relation, and SBFs all good relative distances to those galaxies that produce SNs Ia. The conflict between those who use SNs Ia in order to determine the value of the Hubble constant (H0) and those who use TF and SBF distances to determine H0 results from discrepant calibrations.

  4. SPECTRAL IDENTIFICATION OF AN ANCIENT SUPERNOVA USING LIGHT ECHOES IN THE LMC

    SciTech Connect

    Rest, A; Matheson, T; Blondin, S; Bergmann, M; Welch, D L; Suntzeff, N B; Smith, R C; Olsen, K; Prieto, J L; Garg, A; Challis, P; Stubbs, C; Hicken, M; Modjaz, M; Wood-Vasey, W M; Zenteno, A; Damke, G; Newman, A; Huber, M; Cook, K H; Nikolaev, S; Becker, A C; Miceli, A; Covarrubias, R; Morelli, L; Pignata, G; Clocchiatti, A; Minniti, D; Foley, R J

    2008-02-07

    We report the successful identification of the type of the supernova responsible for the supernova remnant SNR 0509-675 in the Large Magellanic Cloud (LMC) using Gemini spectra of surrounding light echoes. The ability to classify outbursts associated with centuries-old remnants provides a new window into several aspects of supernova research and is likely to be successful in providing new constraints on additional LMC supernovae as well as their historical counterparts in the Milky Way Galaxy (MWG). The combined spectrum of echo light from SNR 0509-675 shows broad emission and absorption lines consistent with a supernova (SN) spectrum. We create a spectral library consisting of 26 SNe Ia and 6 SN Ib/c that are time-integrated, dust-scattered by LMC dust, and reddened by the LMC and MWG. We fit these SN templates to the observed light echo spectrum using {chi}{sup 2} minimization as well as correlation techniques, and we find that overluminous 91T-like SNe Ia with {Delta}m{sub 15} < 0.9 match the observed spectrum best.

  5. Wind-driven evolution of white dwarf binaries to type Ia supernovae

    SciTech Connect

    Ablimit, Iminhaji; Xu, Xiao-jie; Li, X.-D.

    2014-01-01

    In the single-degenerate scenario for the progenitors of Type Ia supernovae (SNe Ia), a white dwarf rapidly accretes hydrogen- or helium-rich material from its companion star and appears as a supersoft X-ray source. This picture has been challenged by the properties of the supersoft X-ray sources with very low mass companions and the observations of several nearby SNe Ia. It has been pointed out that the X-ray radiation or the wind from the accreting white dwarf can excite winds or strip mass from the companion star, thus significantly influencing the mass transfer processes. In this paper, we perform detailed calculations of the wind-driven evolution of white dwarf binaries. We present the parameter space for the possible SN Ia progenitors and for the surviving companions after the SNe. The results show that the ex-companion stars of SNe Ia have characteristics more compatible with the observations, compared with those in the traditional single-degenerate scenario.

  6. The Oxygen Features in Type Ia Supernovae and Implications for the Nature of Thermonuclear Explosions

    NASA Astrophysics Data System (ADS)

    Zhao, Xulin; Maeda, Keiichi; Wang, Xiaofeng; Wang, Lifan; Sai, Hanna; Zhang, Jujia; Zhang, Tianmeng; Huang, Fang; Rui, Liming

    2016-08-01

    The absorption feature O i λ7773 is an important spectral indicator for type Ia supernovae (SNe Ia) that can be used to trace the unburned material in outer layers of the exploding white dwarf (WD). In this work, we use a large sample of SNe Ia to examine this absorption at early phases (i.e., ‑13 day ≲ t ≲ ‑7 day) and make comparisons with the absorption features of Si ii λ6355 and the Ca ii near-infrared triplet. We show that for a subgroup of spectroscopically normal SNe with normal photospheric velocities (i.e., v si ≲ 12,500 km s‑1 at optical maximum), the line strength of the high velocity feature (HVF) of O i is inversely correlated with that of Si ii (or Ca ii), and this feature also shows a negative correlation with the luminosity of SNe Ia. This finding, together with other features we find for the O i HVF, reveal that for this subgroup of SNe Ia, explosive oxygen burning occurs in the outermost layer of the SN. Differences in the oxygen burning could lead to the observed diversity, which is in remarkable agreement with the popular delayed-detonation model of Chandrasekhar mass WDs.

  7. SOME CONSTRAINTS ON THE LOWER MASS LIMIT FOR DOUBLE-DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Chen, X.; Han, Z.

    2012-08-10

    Recent theoretical and observational studies both argue that the merging of double carbon-oxygen white dwarfs (WDs) is responsible for at least some Type Ia supernovae (SNe Ia). Previous (standard) studies of the anticipated SN birthrate from this channel have assumed that the merger process is conservative and that the primary criterion for explosion is that the merged mass exceeds the Chandrasekhar mass. Han and Webbink demonstrated that mass transfer and merger in close double WDs will in many cases be non-conservative. Pakmor et al. further suggested that the merger process should be violent in order to initiate an explosion. We have therefore investigated how the SN Ia birthrate from the double-degenerate (DD) channel is affected by these constraints. Using the binary-star population-synthesis method, we have calculated the DD SN Ia birthrate under conservative and non-conservative approximations, and including lower mass and mass-ratio limits indicated by recent smoothed-particle-hydrodynamic calculations. The predicted DD SN Ia rate is significantly reduced by all of these constraints. With dynamical mass loss alone (violent merger) the birthrate is reduced to 56% of the conservative rate. Requiring the mass ratio q > 2/3 further reduces the birthrate to 18% that of the standard assumption. An upper limit of 0.0061 SNuM, or a Galactic rate of 4.6 Multiplication-Sign 10{sup -4} yr{sup -1}, might be realistic.

  8. STScI-PRC96-21b DISTANCE MEASUREMENTS TO A TYPE-IA SUPERNOVA BEARING GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This Hubble Space Telescope image shows NGC 4639, a spiral galaxy located 78 million light-years away in the Virgo cluster of galaxies. The blue dots in the galaxy's outlying regions indicate the presence of young stars. Among them are young, bright stars called Cepheids, which are used as reliable milepost markers to obtain accurate distances to nearby galaxies. Astronomers measure the brightness of Cepheids to calculate the distance to a galaxy. Allan Sandage's team used Cepheids to measure the distance to NGC 4639, the farthest galaxy to which Cepheid distance has been calculated. After using Cepheids to calculate the distance to NGC 4639, the team compared the results to the peak brightness measurements of SN 1990N, a type Ia supernova located in the galaxy. Then they compared those numbers with the peak brightness of supernovae similarly calibrated in nearby galaxies. The team then determined that type Ia supernovae are reliable secondary distance markers, and can be used to determine distances to galaxies several hundred times farther away than Cepheids. An accurate value for the Hubble Constant depends on Cepheids and secondary distance methods. The color image was made from separate exposures taken in the visible and near-infrared regions of the spectrum with the Wide Field Planetary Camera 2. Credit: A. Sandage (Carnegie Observatories), A. Saha (Space Telescope Science Institute), G.A. Tammann, and L. Labhardt (Astronomical Institute, University Basel), F.D. Macchetto and N. Panagia (Space Telescope Science Institute/ European Space Agency), and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  9. A Luminous Peculiar Type Ia Supernova SN 2011hr: More Like SN 1991T or SN 2007if?

    NASA Astrophysics Data System (ADS)

    Zhang, Ju-Jia; Wang, Xiao-Feng; Sasdelli, Michele; Zhang, Tian-Meng; Liu, Zheng-Wei; Mazzali, Paolo A.; Meng, Xiang-Cun; Maeda, Keiichi; Chen, Jun-Cheng; Huang, Fang; Zhao, Xu-Lin; Zhang, Kai-Cheng; Zhai, Qian; Pian, Elena; Wang, Bo; Chang, Liang; Yi, Wei-Min; Wang, Chuan-Jun; Wang, Xue-Li; Xin, Yu-Xin; Wang, Jian-Guo; Lun, Bao-Li; Zheng, Xiang-Ming; Zhang, Xi-Liang; Fan, Yu-Feng; Bai, Jin-Ming

    2016-02-01

    Photometric and spectroscopic observations of a slowly declining, luminous Type Ia supernova (SN Ia) SN 2011hr in the starburst galaxy NGC 2691 are presented. SN 2011hr is found to peak at {M}B\\=\\-19.84+/- 0.40 {mag}, with a postmaximum decline rate Δm15(B) = 0.92 ± 0.03 mag. From the maximum-light bolometric luminosity, L\\=\\(2.30+/- 0.90)× {10}43 {erg} {{{s}}}-1, we estimate the mass of synthesized 56Ni in SN 2011hr to be M{(}56{Ni})\\=\\1.11+/- 0.43 {M}⊙ . SN 2011hr appears more luminous than SN 1991T at around maximum light, and the absorption features from its intermediate-mass elements (IMEs) are noticeably weaker than those of the latter at similar phases. Spectral modeling suggests that SN 2011hr has IMEs of ˜0.07 {M}⊙ in the outer ejecta, which is much lower than the typical value of normal SNe Ia (i.e., 0.3-0.4 {M}⊙ ) and is also lower than the value of SN 1991T (i.e., ˜0.18 {M}⊙ ). These results indicate that SN 2011hr may arise from a Chandrasekhar-mass white dwarf progenitor that experienced a more efficient burning process in the explosion. Nevertheless, it is still possible that SN 2011hr may serve as a transitional object connecting the SN 1991T-like SNe Ia with a superluminous subclass like SN 2007if given that the latter also shows very weak IMEs at all phases.

  10. Lightcurves of Type Ia Supernovae from Near the Time of Explosion

    SciTech Connect

    Garg, A; Stubbs, C W; Challis, P; Wood-Vasey, M; Blondin, S; Huber, M E; Cook, K; Nikolaev, S; Rest, A; Smith, R C; Olsen, K; Suntzeff, N B; Aguilera, C; Prieto, J L; Becker, A; Miceli, A; Miknaitis, G; Clocchiatti, A; Minniti, D; Morelli, L; Welch, D

    2006-08-30

    We present a set of 11 type Ia supernova (SN Ia) lightcurves with dense, pre-maximum sampling. These supernovae (SNe), in galaxies behind the Large Magellanic Cloud (LMC), were discovered by the SuperMACHO survey. The SNe span a redshift range of z = 0.11-0.35. Our lightcurves contain some of the earliest pre-maximum observations of SNe Ia to date. We also give a functional model that describes the SN Ia lightcurve shape (in our V R-band). Our function uses the ''expanding fireball'' model of Goldhaber et al. (1998) to describe the rising lightcurve immediately after explosion but constrains it to smoothly join the remainder of the lightcurve. We fit this model to a composite observed V R-band lightcurve of three SNe between redshifts of 0.135 to 0.165. These SNe have not been K-corrected or adjusted to account for reddening. In this redshift range, the observed V R-band most closely matches the rest frame V-band. Using the best fit to our functional description of the lightcurve, we find the time between explosion and observed V R-band maximum to be 19.2 {+-} 1.3-1.6 {+-} 0.07(red.) rest-frame days for a SN Ia with a V R-band {Delta}m{sub -10} of 0.52. For the redshifts sampled, the observed V R-band time-of-maximum brightness should be the same as the rest-frame V -band maximum to within 1.1 rest-frame days.

  11. Supernova Light Curves Powered by Fallback Accretion

    NASA Astrophysics Data System (ADS)

    Dexter, Jason; Kasen, Daniel

    2013-07-01

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time (gsimdays) power potentially associated with the accretion of this "fallback" material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as \\dot{M} \\propto t^{-5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous (gsim 1044 erg s-1) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may be relevant for explaining some of the recently discovered classes of peculiar and rare supernovae.

  12. SUPERNOVA LIGHT CURVES POWERED BY FALLBACK ACCRETION

    SciTech Connect

    Dexter, Jason; Kasen, Daniel

    2013-07-20

    Some fraction of the material ejected in a core collapse supernova explosion may remain bound to the compact remnant, and eventually turn around and fall back. We show that the late time ({approx}>days) power potentially associated with the accretion of this 'fallback' material could significantly affect the optical light curve, in some cases producing super-luminous or otherwise peculiar supernovae. We use spherically symmetric hydrodynamical models to estimate the accretion rate at late times for a range of progenitor masses and radii and explosion energies. The accretion rate onto the proto-neutron star or black hole decreases as M-dot {proportional_to}t{sup -5/3} at late times, but its normalization can be significantly enhanced at low explosion energies, in very massive stars, or if a strong reverse shock wave forms at the helium/hydrogen interface in the progenitor. If the resulting super-Eddington accretion drives an outflow which thermalizes in the outgoing ejecta, the supernova debris will be re-energized at a time when photons can diffuse out efficiently. The resulting light curves are different and more diverse than previous fallback supernova models which ignored the input of accretion power and produced short-lived, dim transients. The possible outcomes when fallback accretion power is significant include super-luminous ({approx}> 10{sup 44} erg s{sup -1}) Type II events of both short and long durations, as well as luminous Type I events from compact stars that may have experienced significant mass loss. Accretion power may unbind the remaining infalling material, causing a sudden decrease in the brightness of some long duration Type II events. This scenario may