Science.gov

Sample records for iaea seibersdorf laboratory

  1. Los Alamos National Laboratory support to IAEA environmental safeguards

    SciTech Connect

    Steiner, Robert E; Dry, Don E; Roensch, Fred R; Kinman, Will S; Roach, Jeff L; La Mont, Stephen P

    2010-12-01

    The nuclear and radiochemistry group provides sample preparation and analysis support to the International Atomic Energy Agency (IAEA) Network of Analytical Laboratories (NWAL). These analyses include both non-destructive (alpha and gamma-ray spectrometry) and destructive (thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry) methods. On a bi-annual basis the NWAL laboratories are invited to meet to discuss program evolution and issues. During this meeting each participating laboratory summarizes their efforts over the previous two years. This presentation will present Los Alamos National Laboratories efforts in support of this program. Data showing results from sample and blank analysis will be presented along with capability enhancement and issues that arose over the previous two years.

  2. The U.S. Support Program to IAEA Safeguards - Destructive Analysis

    SciTech Connect

    Hoffheins,B.

    2008-07-13

    The U.S. Support Program (USSP) to IAEA Safeguards priority of destructive analysis is aimed at strengthening the IAEA's ability to use destructive analysis as a safeguards tool. IAEA inspectors bring back nuclear and environmental samples from inspections, which are first cataloged by the IAEA and then analyzed by a network of laboratories located in many Member States and the IAEA's own Safeguards Analytical Laboratory in Seibersdorf, Austria. Historically, the USSP was instrumental in introducing environmental sampling techniques to the IAEA in order to enhance its understanding of material processing activities conducted at nuclear facilities. The USSP has also worked with the IAEA to improve understanding of measurement uncertainty and measurement quality, incorporate new and improved analytical methods, and purchase analytical and computer equipment. Recent activities include a temporary increase in analysis of environmental samples using secondary ion mass spectrometry and provision of a cost-free expert to restore secondary ion mass spectroscopy laboratory functionality and to modernize the IAEA's Safeguards Analytical Laboratory Information System.

  3. Evaluation of the International Atomic Energy Agency (IAEA) Safeguards Analytical Laboratory quality assurance program

    SciTech Connect

    Pietri, C.E.; Bracey, J.T.

    1985-02-01

    Destructive analysis is used by the International Atomic Energy Agency (IAEA) through its Safeguards Analytical Laboratory (SAL) to verify, in part, the inventory of nuclear materials at nuclear facilities. The reliability and quality of these meassurements must be assured in a systematic manner. The Division of Safeguards Evaluation, IAEA, required assistance in developing and implementing the quality assurance measures for the analytical procedures used in the destructive analysis of these safeguards samples. To meet these needs an ISPO POTAS Task D.53 was instituted in which consultants would review with IAEA staff the procedures used (or proposed) at SAL for the destructive analysis of safeguards samples and the statistical evaluation of the resulting measurement data at Headquarters. The procedures included analytical methods, qualtiy control measures, and the treatment of data from these activities. Based on this review, modifications to the system, if required, would be recommended which would provide routine assurance to management that these procedures are functioning properly to achieve safeguards objectives. In the course of this review, the sample handling procedures, measurement control activities, analytical methods, reference materials, calibration procedures, statistical analysis of data, and data management system were studied and evaluated. The degree to which SAL (as a total system) achieved laboratory quality assurance was assessed by comparison to accepted standards of quality assurance. 22 refs., 1 fig.

  4. IAEA INTERCOMPARISON EXERCISES OF THYROID MEASUREMENT: PERFORMANCE OF LATIN AMERICAN AND CARIBBEAN LABORATORIES.

    PubMed

    Dantas, B M; Dantas, A L A; Cruz-Suarez, R

    2016-09-01

    (131)I is widely used in Latin America and Caribbean Region in the field of nuclear medicine and has been recognised as one of the main sources of potential intake of radionuclides by the staff. The In Vivo Monitoring laboratory of the Institute for Radiation Protection and Dosimetry (IRD-CNEN-Brazil) organised three intercomparison exercises (2005, 2009 and 2013) in the scope of IAEA technical cooperation projects RLA9049 and RLA9066 aimed to disseminate and harmonise the technique for measuring (131)I in the human thyroid. The number of participants in Latin America increased from 9 to 20 institutions from 7 and 13 countries, respectively, over the last 10 y. The participants have improved significantly their ability on the in vivo measurement technique. In the 2013 round all laboratories which reported results presented performances in an acceptable range according to the ISO criteria indicating the benefit of such exercises in the region. PMID:26546253

  5. IAEA support to medical physics in nuclear medicine.

    PubMed

    Meghzifene, Ahmed; Sgouros, George

    2013-05-01

    priority for healthcare providers in many countries. The IAEA's response to meet the increasing needs for training has been 2-folds. Through its regular program, a priority is given to the development of standardized syllabi and education and clinical training guides. Through its technical cooperation programme, support is given for setting up national medical physics education and clinical training programs in countries. In addition, fellowships are granted for professionals working in the field for specialized training, and workshops are organized at the national and regional level in specialized topics of nuclear medicine physics. So as to support on-the-job training, the IAEA has also setup a gamma camera laboratory in Seibersdorf, Austria. The laboratory is also equipped with QC tools and equipments, and radioisotopes are procured when training events are held. About 2-3 specialized courses are held every year for medical physicists at the IAEA gamma camera laboratory. In the area of research and development, the IAEA supports, through its coordinated research projects, new initiatives in quantitative nuclear medicine and internal dosimetry. The future of nuclear medicine is driven by advances in instrumentation, by the ever increasing availability of computing power and data storage, and by the development of new radiopharmaceuticals for molecular imaging and therapy. Future developments in nuclear medicine are partially driven by, and will influence, nuclear medicine physics and medical physics. To summarize, the IAEA has established a number of programs to support nuclear medicine physics and will continue to do so through its coordinated research activities, education and training in clinical medical physics, and through programs and meetings to promote standardization and harmonization of QA or QC procedures for imaging and treatment of patients. PMID:23561455

  6. Proficiency Testing as a tool to monitor consistency of measurements in the IAEA/WHO Network of Secondary Standards Dosimetry Laboratories

    NASA Astrophysics Data System (ADS)

    Meghzifene, Ahmed; Czap, Ladislav; Shortt, Ken

    2008-08-01

    The International Atomic Energy Agency (IAEA) and the World Health Organization (WHO) established a Network of Secondary Standards Dosimetry Laboratories (IAEA/WHO SSDL Network) in 1976. Through SSDLs designated by Member States, the Network provides a direct link of national dosimetry standards to the international measurement system of standards traceable to the Bureau International des Poids et Mesures (BIPM). Within this structure and through the proper calibration of field instruments, the SSDLs disseminate S.I. quantities and units. To ensure that the services provided by SSDL members to end-users follow internationally accepted standards, the IAEA has set up two different comparison programmes. One programme relies on the IAEA/WHO postal TLD service and the other uses comparisons of calibrated ionization chambers to help the SSDLs verify the integrity of their national standards and the procedures used for the transfer of the standards to the end-users. The IAEA comparisons include 60Co air kerma (NK) and absorbed dose to water (ND,W) coefficients. The results of the comparisons are confidential and are communicated only to the participants. This is to encourage participation of the laboratories and their full cooperation in the reconciliation of any discrepancy. This work describes the results of the IAEA programme comparing calibration coefficients for radiotherapy dosimetry, using ionization chambers. In this programme, ionization chambers that belong to the SSDLs are calibrated sequentially at the SSDL, at the IAEA, and again at the SSDL. As part of its own quality assurance programme, the IAEA has participated in several regional comparisons organized by Regional Metrology Organizations. The results of the IAEA comparison programme show that the majority of SSDLs are capable of providing calibrations that fall inside the acceptance level of 1.5% compared to the IAEA.

  7. Comparison of the air kerma standards of the IAEA and the BIPM in mammography x-rays

    NASA Astrophysics Data System (ADS)

    Kessler, C.; Burns, D. T.; Czap, L.; Csete, I.; Gomola, I.

    2013-01-01

    The Dosimetry Laboratory of the International Atomic Energy Agency (IAEA), Seibersdorf, Austria, calibrates reference standards in mammography x-ray beams for IAEA/WHO SSDL Network members (more than 80 laboratories worldwide). As a signatory of the Mutual Recognition Arrangement (CIPM MRA), the IAEA laboratory maintains a Quality Management System (QMS) complying with ISO 17025 and requires updated 'supporting evidence' for its dosimetry calibration and measurement capabilities (CMC), first published in Appendix C of the CIPM MRA key comparison database in 2007. For this purpose, an indirect comparison has been made between the air kerma standards of the IAEA and the Bureau International des Poids et Mesures (BIPM) in the mammography x-ray range from 25 kV to 35 kV, using as transfer instruments two thin-window parallel-plate ionization chambers belonging to the IAEA. The IAEA and BIPM standards for mammography x-rays are shown to be in agreement within the standard uncertainty of the comparison of 5.5 parts in 103. This agreement can be used to support the calibration and measurements capabilities of the IAEA listed in Appendix C of the key comparison database. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. IAEA TECDOC 055 Outline

    SciTech Connect

    Shull, Doug

    2015-07-13

    An outline of suggestions for updating a version of IAEA-TECDOC-1276 is provided. This update will become IAEA-TECDOC-055, titled ''IAEA handbook for designing and implementing physical protection systems for nuclear material and nuclear facilities.''

  9. Simulated and measured Hp(10) response of the personal dosemeter Seibersdorf.

    PubMed

    Hranitzky, C; Stadtmann, H

    2007-01-01

    The Hp(10) energy response of the personal dosemeter Seibersdorf and its two different filtered LiF:Mg,Ti (TLD-100) thermoluminescence (TL) detectors are investigated. A close-to-reality simulation model of the personal dosemeter badge including the wrapped detector card was implemented with the MCNP Monte Carlo N-particle transport code. The comparison of measured and computationally calculated response using a semi-empirical TL efficiency function is carried out to provide information about the quality of the results of both methods, experiment and simulation. Similar to the experimental calibration conditions, the irradiation of dosemeters centred on the front surface of the International Organization for Standardization (ISO) water slab phantom is simulated using ISO-4037 reference photon radiation qualities with mean energies between 24 keV and 1.25 MeV and corresponding ISO conversion coefficients. The comparison of the simulated and measured relative Hp(10) energy responses resulted in good agreement within some percent except for the filtered TL element at lower photon energies. PMID:17846027

  10. k0-NAA quality assessment in an Algerian laboratory by analysis of SMELS and four IAEA reference materials using Es-Salam research reactor

    NASA Astrophysics Data System (ADS)

    Hamidatou, L. A.; Dekar, S.; Boukari, S.

    2012-08-01

    Different types of synthetic multi-element standard material (SMELS) and four IAEA reference materials, 140, Sl-1, Soil-7 and Lichen-336 were analyzed for validation and QC/QA of the k0-standardised Neutron Activation Analysis (k0-NAA). The samples of SMELS and RMs were irradiated at Es-Salam research reactor and measured on an absolutely calibrated HPGe detector with 35% relative efficiency connected to a Canberra Genie 2k inspector. Concentrations of 33 elements such as As, Au, Ba, Br, Ca, Ce, Co, Cr, Cs, Eu, Fe, Hf, In, K, La, Mn, Mo, Na, Nd, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, Tm, U, Yb, Zn, and Zr were determined in SMELS and RMs. The analytical results agreed well with the assigned values of SMELS and certified values of RMs. In the case of RMs, concentrations of a few elements, whose certified values are not available, could be determined. The comparison between experimental values and assigned/certified data for SMELS and RMs was made by means of the results from Relative Bias, Z-score and U-score. The relatives bias of the elements determined in SMELS with respect to the assigned values were all within±4.6%. For RMs with respect to certified values were within±10% except for few elements for which RB varied from -28.6% to +12.8%. The Z-score values at 95% confidence level for most of the elements in both the materials were within ±1. The U-scores for most of the elements were lower than 1.

  11. IAEA safeguards in perspective

    SciTech Connect

    Eklund, S.

    1987-07-01

    A review of the development of the International Atomic Energy Agency from President Eisenhower's 1953 Atoms for Peace proposal through development of the IAEA safeguards approach in the official documents (The Statute, INFCIRC/66 and 153), and related initiators, such as the Nuclear Supplier State Agreement (INFCE/254), The International Nuclear Fuel Cycle Evaluation (1977-79), The Committee on Assurance and Supply, and the proposed International Plutonium Storage Regime. The accomplishments of IAEA safeguards are recognized as well as the continuing need for development and support.

  12. TECHNICAL SUPPORT TO IAEA

    EPA Science Inventory

    IAEA sponsors meetings of technical specialists from many nations on NORM and NORM industries in Member States, with particular emphasis on potential public exposure to, and the residual waste arising from, these activities, and aspects of how NORM differs from artificial, man-ma...

  13. CTBTO Contractor Laboratory Test Sample Production Report

    SciTech Connect

    Bob Hague; Tracy Houghton; Nick Mann; Matt Watrous

    2013-08-01

    In October 2012 scientists from both Idaho National Laboratory (INL) and the CTBTO contact laboratory at Seibersdorf, Austria designed a system and capability test to determine if the INL could produce and deliver a short lived radio xenon standard in time for the standard to be measured at the CTBTO contact laboratory at Seibersdorf, Austria. The test included sample standard transportation duration and potential country entrance delays at customs. On October 23, 2012 scientists at the Idaho National Laboratory (INL) prepared and shipped a Seibersdorf contract laboratory supplied cylinder. The canister contained 1.0 scc of gas that consisted of 70% xenon and 30% nitrogen by volume. The t0 was October 24, 2012, 1200 ZULU. The xenon content was 0.70 +/ 0.01 scc at 0 degrees C. The 133mXe content was 4200 +/ 155 dpm per scc of stable xenon on t0 (1 sigma uncertainty). The 133Xe content was 19000 +/ 800 dpm per scc of stable xenon on t0 (1 sigma uncertainty).

  14. Reference dosimeter system of the iaea

    NASA Astrophysics Data System (ADS)

    Mehta, Kishor; Girzikowsky, Reinhard

    1995-09-01

    Quality assurance programmes must be in operation at radiation processing facilities to satisfy national and international Standards. Since dosimetry has a vital function in these QA programmes, it is imperative that the dosimetry systems in use at these facilities are well calibrated with a traceability to a Primary Standard Dosimetry Laboratory. As a service to the Member States, the International Atomic Energy Agency operates the International Dose Assurance Service (IDAS) to assist in this process. The transfer standard dosimetry system that is used for this service is based on ESR spectrometry. The paper describes the activities undertaken at the IAEA Dosimetry Laboratory to establish the QA programme for its reference dosimetry system. There are four key elements of such a programme: quality assurance manual; calibration that is traceable to a Primary Standard Dosimetry Laboratory; a clear and detailed statement of uncertainty in the dose measurement; and, periodic quality audit.

  15. TECHNOLOGY ROADMAPPING FOR IAEA SEALS.

    SciTech Connect

    HOFFHEINS,B.; ANNESE,C.; GOODMAN,M.; OCONNOR,W.; GUSHUE,S.; PEPPER,S.

    2003-07-13

    In the fall of 2002, the U.S. Support Program (USSP) initiated an effort to define a strategy or ''roadmap'' for future seals technologies and to develop a generalized process for planning safeguards equipment development, which includes seals and other safeguards equipment. The underlying objectives of the USSP include becoming more proactive than reactive in addressing safeguards equipment needs, helping the IAEA to maintain an inventory of cost-effective, reliable, and effective safeguards equipment, establishing a long-term planning horizon, and securing IAEA ownership in the process of effective requirements definition and timely transitioning of new or improved systems for IAEA use. At an initial workshop, seals, their functions, performance issues, and future embodiments were discussed in the following order: adhesive seals, metal seals, passive and active loop seals, ultrasonic seals, tamper indicating enclosures (including sample containers, equipment enclosures, and conduits). Suggested improvements to these technologies focused largely on a few themes: (1) The seals must be applied quickly, easily, and correctly; (2) Seals and their associated equipment should not unduly add bulk or weight to the inspectors load; (3) Rapid, in-situ verifiability of seals is desirable; and (4) Seal systems for high risk or high value applications should have two-way, remote communications. Based upon these observations and other insights, the participants constructed a skeletal approach for seals technology planning. The process begins with a top-level review of the fundamental safeguards requirements and extraction of required system features, which is followed by analysis of suitable technologies and identification of technology gaps, and finally by development of a planning schedule for system improvements and new technology integration. Development of a comprehensive procedure will require the partnership and participation of the IAEA. The presentation will include a

  16. Present status and strategic plan for the stable isotope reference materials at the IAEA.

    NASA Astrophysics Data System (ADS)

    Assonov, Sergey; Groening, Manfred

    2016-04-01

    The presentation will give the overview of the stable isotope reference materials (SI-RMs) under distribution by the IAEA, its stable isotope laboratory and capacities related to material testing & production as well as future plans. Historically, most of the IAEA reference materials were produced and made available via collaborations with expert stable isotope laboratories worldwide. The IAEA plans include several directions as follows: • Maintaining the scale-defining SI-RMs at the highest level and introducing adequate replacements when needed; • Monitoring existing SI-RMs for any potential alteration(s) and of isotopic values assigned; • Identifying and then addressing the needs for new SI-RMs, with the priority to address the most critical applications (environmental and climate related applications, human health, food safety studies) and newly emerging analytical isotope techniques; • Performing all measurements aimed for characterisation of new SI-RMs and the corresponding uncertainty evaluation in accordance to the latest metrological concepts; • Promoting metrological approaches on traceability and uncertainty evaluation in every day practice of stable isotope measurements; • Expanding the IAEA capacities for SI-RMs by (i) planning a renewed laboratory at IAEA; (ii) enlarging collaboration with expert laboratories aimed to help IAEA in production and characterisation of new SI-RMs. These major directions will help to address the increasing demand for Stable Isotope Reference Materials.

  17. The US Support program to IAEA Safeguards - 2008

    SciTech Connect

    Pepper,S.

    2008-06-09

    The U.S. Support Program to IAEA Safeguards (USSP) was established in 1977 to provide technical assistance to the IAEA Department of Safeguards. Since that time the U.S. Department of State has provided funding of over $200 million and over 900 tasks have been completed by USSP contractors on behalf of the KEA. The USSP is directed by a U.S. interagency subcommittee known as the Subgroup on Safeguards Technical Support (SSTS) and is managed by the International Safeguards Project Office (ISPO) at Brookhaven National Laboratory. In recent years, the SSTS and ISPO have identified priorities to guide the process of determining which IAEA requests are aligned with US. policy and will be funded. The USSP priorities are reviewed and updated prior to the USSP Annual Review Meeting which is hosted by the International Atomic Energy Agency (IAEA) each spring in Vienna, Austria. This paper will report on the 2008 USSP priorities and be an introduction for a session which will consist of four papers on USSP priorities and four other papers related to USSP activities.

  18. IAEA reorganizes nuclear information services

    SciTech Connect

    Levine, E.

    2012-08-15

    As part of an overall restructuring of the International Atomic Energy Agency's Department of Nuclear Energy, the agency has established the Nuclear Information Section (NIS). The restructuring, recently announced by IAEA Director General Yukiya Amano, also includes the creation of a separate Nuclear Knowledge Management (NKM) Section, as demand for assistance in this area is growing among member countries. According to the NIS Web site, 'This restructuring and the creation of the NIS provides an opportunity for further enhancing existing information products and services and introducing new ones-all with an eye towards advancing higher organizational efficiency and effectiveness.'

  19. The IAEA: Neutralizing Iraq's nuclear weapons potential

    SciTech Connect

    Zifferero, M.

    1993-04-01

    With support from UNSCOM and staff members from several countries, the IAEA has succeeded in identifying and destroying most of Iraq's nuclear weapons potential. IAEA activities in Iraq have also established a sound basis for long-term monitoring of Iraq. This will involve several procedures and techniques, including the periodic monitoring of Iraq's main bodies of water and unannounced visits of resident inspectors to plants, factories, and research centers.

  20. Development of an IAEA Training Course for Future U.S. Inspectors

    SciTech Connect

    Savannah Avgerinos Fitzwater; Amanda R. Rynes; David S. Bracken; Richard R. M. Metcalf; James D. West

    2011-07-01

    U.S. citizens currently make up only 12% of the positions held in the IAEA’s Department of Safeguards. While the United States has maintained a high level of support for the Agency over the duration of its history, the number of American inspectors currently in the field does not reflect this level of involvement. As a result, the National Nuclear Security Administration’s Office of International Relations, as part of the Next Generation Safeguards Initiative (NGSI) mission, has tasked Idaho National Laboratory (INL) to develop a rigorous two week hands-on training program to encourage and operationally acclimatize U.S. Citizens who are interested in applying for IAEA inspector positions using IAEA authorized equipment at INL. Idaho National Laboratory is one-of-a-kind in its ability to train IAEA inspectors by including training at nuclear facilities on site and includes, for example, direct measurement of an active spent fuel storage cooling pond. This accredited course will introduce and train attendees on the major IAEA systems used in collecting nuclear safeguards data and performing safeguards inspections. Unique in the United States, these classes will give attendees direct hands-on training and will address equipment purpose, function, operating principles, application, and troubleshooting, based upon what would be expected of an IAEA Safeguards Inspector in the field and in the office. Upon completion, U.S. applicants will be better qualified to pursue a position in the IAEA Department of Safeguards Operational Divisions. In support, INL has recently established a new laboratory space to house state of the art nuclear safeguards instrumentation. Currently, equipment installed in the laboratory space includes attended systems: 3DLR (3-D Imaging Laser) for design information verification, a Digital Cerenkov Viewing Device for measurement of spent fuel, HM-5 handheld radiation detectors, quantitative neutron and gamma systems; unattended monitoring

  1. Trip report on IAEA Training Workshop on Implementation of Integrated Management Systems for Research Reactors (T3-TR-45496).

    SciTech Connect

    Pratt, Richard J.

    2013-11-01

    From 17-21 June 2013, Sandia National Laboratories, Technical Area-V (SNL TA-V) represented the United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) at the International Atomic Energy Agency (IAEA) Training Workshop (T3-TR-45486). This report gives a breakdown of the IAEA regulatory structure for those unfamiliar, and the lessons learned and observations that apply to SNL TA-V that were obtained from the workshop. The Safety Report Series, IAEA workshop final report, and SNL TA-V presentation are included as attachments.

  2. Radioxenon standards used in laboratory inter-comparisons.

    PubMed

    Gohla, H; Auer, M; Cassette, Ph; Hague, R K; Lechermann, M; Nadalut, B

    2016-03-01

    Preparation methods for (133)Xe standards of activity concentration and the results of the 2014 (133)Xe laboratory inter-comparison exercise are described. One element of the quality assurance/quality control (QA/QC) program for laboratories of the International Monitoring System (IMS) will be regular inter-comparison exercises. However, until recently, no activity concentration standards for benchmarking were available. Therefore, two (133)Xe activity concentration reference standards were produced independently by Idaho National Laboratory and Seibersdorf Laboratories and used for the 2014 laboratory inter-comparison exercise. The preparation of a complementary (127)Xe activity concentration standard as well as a (127)Xe laboratory inter-comparison exercise suggests (127)Xe as a suitable isotope for QA/QC of remote IMS noble gas stations. PMID:26682890

  3. Quality assurance for IAEA inspection planning

    SciTech Connect

    Markin, J.T.

    1986-01-01

    Under the provisions of the Treaty on Nonproliferation of Nuclear Weapons and other agreements with States, the International Atomic Energy Agency (IAEA) conducts inspections at nuclear facilities to confirm that their operation is consistent with the peaceful use of nuclear material. The Department of Safeguards at the IAEA is considering a quality assurance program for activities related to the planning of these facility inspections. In this report, the authors summarize recent work in writing standards for planning inspections at the types of facilities inspected by the IAEA. The standards specify the sequence of steps in planning inspections, which are (1) administrative functions and communications with the State to confirm facility operating schedules and the State's acceptance of the assigned inspectors; (2) technical functions including a specification of the required inspection activities, determination of personnel and equipment resources, and a schedule for implementing the inspection activities at the facility; and (3) management functions.

  4. IAEA Safeguards: Past, Present, and Future

    SciTech Connect

    Santi, Peter A.; Hypes, Philip A.

    2012-06-14

    This talk will present an overview of the International Atomic Energy Agency with a specific focus on its international safeguards mission and activities. The talk will first present a brief history of the IAEA and discuss its current governing structure. It will then focus on the Safeguards Department and its role in providing assurance that nuclear materials are being used for peaceful purposes. It will then look at how the IAEA is currently evolving the way in which it executes its safeguards mission with a focus on the idea of a state-level approach.

  5. IAEA workshop and field trial at the Oak Ridge K-25 Site

    SciTech Connect

    Hembree, D.M. Jr.; Ross, H.H.; Carter, J.A.

    1995-03-01

    In March 1994, members of the International Safeguards Department in the National Security Program Office (NSPO) hosted an environmental monitoring field trial workshop for International Atomic Energy Agency (IAEA) inspectors. The workshop was held at the Oak Ridge K-25 Site and its primary purpose was to train the inspectors in the techniques needed for effective environmental sample collection and handling. The workshop emphasized both sampling theory and practice. First, detailed techniques for swipe, vegetation, soil, biota, and water-associated sampling were covered in the classroom. Subsequently, the inspectors were divided into three groups for actual sample collection in and around the K-25 locale. The collected samples were processed by the Department of Energy (DOE) Network of Analytical Laboratories using established analytical techniques. This activity is part of the IAEA ``Programme 93+2 in. assessment of measures to enhance IAEA safeguards.

  6. Technology recommendations for pre-screening of IAEA swipe samples

    SciTech Connect

    Steeb, Jennifer L.; Smith, Nicholas A.; Lee, Denise L.; Huckabay, Heath A.; Ticknor, Brian W.

    2015-01-01

    Argonne and Oak Ridge National Laboratories have prepared an analysis of recommended, possible, and not recommended technologies for pre-screening and prioritizing IAEA swipes. The analytical techniques listed under the recommended technology list are the most promising techniques available to date. The recommended list is divided into two sections: Argonne’s recommended techniques and Oak Ridge’s recommended techniques. This list was divided based upon the expertise of staff in each subject area and/or the instrumentation available at each laboratory. The following section, titled Possible Techniques, is a list of analytical techniques that could be used for pre-screening and prioritizing swipes if additional instrumentation and effort were provided. These techniques are not necessarily top priority, but should not be discounted for future or expanded efforts. Lastly, a list of not recommended techniques is provided to outline the analytical methods and instrumentation that were investigated by each lab but deemed not suitable for this task. In addition to the recommendation list, a short procedure is provided outlining the steps followed for destructive analysis by the Network of Analytical Laboratories (NWAL) for determination of uranium concentrations, isotopic content of sample and swipe. Swipes generated for this project will be given to ORNL’s NWAL laboratory for analysis after analysis by other techniques at both laboratories.

  7. 10 CFR 75.8 - IAEA inspections.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., inspections may be ad hoc, routine, special, or a complementary access (or a combination of the foregoing). The objectives of the IAEA inspectors in the performance of inspections are as follows: (1) Ad hoc... Agreement may be present; (2) Ad hoc inspections to identify and, if possible, verify the quantity...

  8. 10 CFR 75.8 - IAEA inspections.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., inspections may be ad hoc, routine, special, or a complementary access (or a combination of the foregoing). The objectives of the IAEA inspectors in the performance of inspections are as follows: (1) Ad hoc... Agreement may be present; (2) Ad hoc inspections to identify and, if possible, verify the quantity...

  9. 10 CFR 75.8 - IAEA inspections.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., inspections may be ad hoc, routine, special, or a complementary access (or a combination of the foregoing). The objectives of the IAEA inspectors in the performance of inspections are as follows: (1) Ad hoc... Agreement may be present; (2) Ad hoc inspections to identify and, if possible, verify the quantity...

  10. 10 CFR 75.8 - IAEA inspections.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., inspections may be ad hoc, routine, special, or a complementary access (or a combination of the foregoing). The objectives of the IAEA inspectors in the performance of inspections are as follows: (1) Ad hoc... Agreement may be present; (2) Ad hoc inspections to identify and, if possible, verify the quantity...

  11. Nonproliferation, Disarmament and the IAEA in Tomorrow's World

    SciTech Connect

    Jill Cooley

    2008-09-09

    Jill Cooley, Director of the Division of Concepts and Planning in the International Atomic Energy Agency's (IAEA) Department of Safeguards, gives an overview of the IAEA safeguards system and describe current verification challenges and potential new roles for the agency.

  12. 10 CFR 75.7 - Notification of IAEA safeguards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Notification of IAEA safeguards. 75.7 Section 75.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT General Provisions § 75.7 Notification of IAEA safeguards. (a) The licensee must inform the...

  13. 10 CFR 110.11 - Export of IAEA safeguards samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Export of IAEA safeguards samples. 110.11 Section 110.11... Exemptions § 110.11 Export of IAEA safeguards samples. A person is exempt from the requirements for a license... IAEA safeguards samples, if the samples are exported under § 75.8 of this chapter, or a...

  14. 10 CFR 110.11 - Export of IAEA safeguards samples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Export of IAEA safeguards samples. 110.11 Section 110.11... Exemptions § 110.11 Export of IAEA safeguards samples. A person is exempt from the requirements for a license... IAEA safeguards samples, if the samples are exported in accordance with § 75.8 of this chapter, or...

  15. 10 CFR 75.7 - Notification of IAEA safeguards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Notification of IAEA safeguards. 75.7 Section 75.7 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT General Provisions § 75.7 Notification of IAEA safeguards. (a) The licensee must inform the...

  16. Strengthening radiopharmacy practice in IAEA Member States.

    PubMed

    Duatti, Adriano; Bhonsle, Uday

    2013-05-01

    Radiopharmaceuticals are essential components of nuclear medicine procedures. Without radiopharmaceuticals nuclear medicine procedures cannot be performed. Therefore it could be said that 'No radiopharmaceutical-no nuclear medicine.' A good radiopharmacy practice supports nuclear medicine activities by producing radiopharmaceuticals that are safe and are of the required quality in a consistent way. As with any medicinal product, radiopharmaceuticals are required to be produced under carefully controlled conditions and are tested for their quality, prior to the administration to patients, using validated standard operating procedures. These procedures are based on the principles of Good Manufacturing Practice (GMP). The GMP principles are based on scientific knowledge and applicable regulatory requirements and guidance related to radiopharmaceutical productions and use. The International Atomic Energy Agency (IAEA) is committed to promote, in the Member States (MS), a rational and practical approach for the implementation of GMP for compounding or manufacturing of diagnostic or therapeutic radiopharmaceuticals. To pursue this goal the IAEA has developed various mechanisms and collaborations with individual experts in the field and with relevant national and international institutions or organizations. IAEA's activities in promoting radiopharmaceutical science include commissioning expert advice in the form of publications on radiopharmaceutical production, quality control and usage, producing technical guidance on production and regulatory aspects related to new radiopharmaceuticals, creating guidance documentation for self or internal audits of radiopharmaceutical production facilities, producing guidance on implementation of Quality Management System and GMP in radiopharmacy, assisting in creation of specific radiopharmaceutical monographs for the International Pharmacopoeia, and developing radiopharmacy-related human resource capabilities in MS through individual

  17. Quality assurance for IAEA inspection planning

    SciTech Connect

    Markin, J.T.

    1986-01-01

    Under the provisions of the Treaty on Nonproliferation of Nuclear Weapons and other agreements with states, the International Atomic Energy Agency (IAEA) conducts inspections at nuclear facilities to confirm that their operation is consistent with the peaceful use of nuclear material. The Department of Safeguards at the IAEA is considering a quality assurance program for activities related to the planning of these facility inspections. In this report, we summarize recent work in writing standards for planning inspections at the types of facilities inspected by the IAEA. The standards specify the sequence of steps in planning inspections, which are: (1) administrative functions, such as arrangements for visas and travel, and communications with the state to confirm facility operating schedules and the state's acceptance of the assigned inspectors; (2) technical functions including a specification of the required inspection activities, determination of personnel and equipment resources, and a schedule for implementing the inspection activities at the facility; and (3) management functions, such as pre- and post-inspection briefings, where the planned and implemented inspection activities are reviewed.

  18. RECRUITMENT OF U.S. CITIZENS FOR VACANCIES IN IAEA SAFEGUARDS.

    SciTech Connect

    OCCHIOGROSSO, D.; PEPPER, S.

    2006-07-16

    The International Atomic Energy Agency (IAEA) relies on its member states to assist with recruiting qualified individuals for positions within the IAEA's secretariat. It is likewise important to the U.S. government for U.S. citizens to take positions with the IAEA to contribute to its success. It is important for persons within and outside the U.S. nuclear and safeguards industries to become aware of the job opportunities available at the IAEA and to be informed of important vacancies as they arise. The International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) is tasked by the U.S. government with recruiting candidates for positions within the Department of Safeguards at the IAEA and since 1998, has been actively seeking methods for improving outreach. In addition, ISPO has been working more closely with the IAEA Division of Personnel. ISPO staff members attend trade shows to distribute information about IAEA opportunities. The shows target the nuclear industry as well as shows that are unrelated to the nuclear industry. ISPO developed a web site that provides information for prospective candidates. They have worked with the IAEA to understand its recruitment processes, to make suggestions for improvements, and to understand employment benefits so they can be communicated to potential U.S. applicants. ISPO is also collaborating with a State Department working group that is focused on increasing U.S. representation within the United Nations as a whole. Most recently Secretary of State Condoleezza Rice issued a letter to all Federal Agency heads encouraging details and transfers of their employees to international organizations to the maximum extent feasible and with due regard to their manpower requirements. She urged all federal agencies to review their detail and transfer policies and practices to ensure that employment in international organizations is promoted in a positive and active manner. In addition, she wrote that it is

  19. Analysis of historical delta values for IAEA/LANL NDA training courses

    SciTech Connect

    Geist, William; Santi, Peter; Swinhoe, Martyn; Bonner, Elisa

    2009-01-01

    The Los Alamos National Laboratory (LANL) supports the International Atomic Energy Agency (IAEA) by providing training for IAEA inspectors in neutron and gamma-ray Nondestructive Assay (NDA) of nuclear material. Since 1980, all new IAEA inspectors attend this two week course at LANL gaining hands-on experience in the application of NDA techniques, procedures and analysis to measure plutonium and uranium nuclear material standards with well known pedigrees. As part of the course the inspectors conduct an inventory verification exercise. This exercise provides inspectors the opportunity to test their abilities in performing verification measurements using the various NDA techniques. For an inspector, the verification of an item is nominally based on whether the measured assay value agrees with the declared value to within three times the historical delta value. The historical delta value represents the average difference between measured and declared values from previous measurements taken on similar material with the same measurement technology. If the measurement falls outside a limit of three times the historical delta value, the declaration is not verified. This paper uses measurement data from five years of IAEA courses to calculate a historical delta for five non-destructive assay methods: Gamma-ray Enrichment, Gamma-ray Plutonium Isotopics, Passive Neutron Coincidence Counting, Active Neutron Coincidence Counting and the Neutron Coincidence Collar. These historical deltas provide information as to the precision and accuracy of these measurement techniques under realistic conditions.

  20. Technologies for pre-screening IAEA swipe samples

    SciTech Connect

    Smith, Nicholas A.; Steeb, Jennifer L.; Lee, Denise L.; Huckabay, Heath A.; Ticknor, Brian W.

    2015-11-09

    During the course of International Atomic Energy Agency (IAEA) inspections, many samples are taken for the purpose of verifying the declared facility activities and identifying any possible undeclared activities. One of these sampling techniques is the environmental swipe sample. Due to the large number of samples collected, and the amount of time that is required to analyze them, prioritizing these swipes in the field or upon receipt at the Network of Analytical Laboratories (NWAL) will allow sensitive or mission-critical analyses to be performed sooner. As a result of this study, technologies were placed into one of three categories: recommended, promising, or not recommended. Both neutron activation analysis (NAA) and X-ray fluorescence (XRF) are recommended for further study and possible field deployment. These techniques performed the best in initial trials for pre-screening and prioritizing IAEA swipes. We learned that for NAA more characterization of cold elements (such as calcium and magnesium) would need to be emphasized, and for XRF it may be appropriate to move towards a benchtop XRF versus a handheld XRF due to the increased range of elements available on benchtop equipment. Promising techniques that will require additional research and development include confocal Raman microscopy, fluorescence microscopy, and infrared (IR) microscopy. These techniques showed substantive responses to uranium compounds, but expensive instrumentation upgrades (confocal Raman) or university engagement (fluorescence microscopy) may be necessary to investigate the utility of the techniques completely. Point-and-shoot (handheld) Raman and attenuated total reflectance–infrared (ATR-IR) measurements are not recommended, as they have not shown enough promise to continue investigations.

  1. 10 CFR 75.12 - Communication of information to IAEA.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Communication of information to IAEA. 75.12 Section 75.12... AGREEMENT Facility and Location Information § 75.12 Communication of information to IAEA. (a) Except as... retained for 3 years after each change is made. (2) In considering such a request, it is the policy of...

  2. Analytical quality of environmental analysis: Recent results and future trends of the IAEA-ILMR's Analytical Quality Control Program

    SciTech Connect

    Ballestra, S.; Vas, D.; Holm, E.; Lopez, J.J.; Parsi, P. )

    1988-01-01

    The Analytical Quality Control Services Program of the IAEA-ILMR covers a wide variety of intercalibration and reference materials. The purpose of the program is to ensure the comparability of the results obtained by the different participants and to enable laboratories engaged in low-level analyses of marine environmental materials to control their analytical performance. Within the past five years, the International Laboratory of Marine Radioactivity in Monaco has organized eight intercomparison exercises, on a world-wide basis, on natural materials of marine origin comprising sea water, sediment, seaweed and fish flesh. Results on artificial (fission and activation products, transuranium elements) and natural radionuclides were compiled and evaluated. Reference concentration values were established for a number of the intercalibration samples allowing them to become certified as reference materials available for general distribution. The results of the fish flesh sample and those of the deep-sea sediment are reviewed. The present status of three on-going intercomparison exercises on post-Chernobyl samples IAEA-306 (Baltic Sea sediment), IAEA-307 (Mediterranean sea-plant Posidonia oceanica) and IAEA-308 (Mediterranean mixed seaweed) is also described. 1 refs., 4 tabs.

  3. Automated Controlled-Potential Coulometer for the IAEA

    SciTech Connect

    Cordaro, J.V.; Holland, M.K.; Fields, T.

    1998-01-29

    An automated controlled-potential coulometer has been developed at the Savannah River Site (SRS) for the determination of plutonium for use at the International Atomic Energy Agency`s (IAEA) Safeguards Analytical Laboratory in Siebersdorf, Austria. The system is functionally the same as earlier systems built for use at the Savannah River Site`s Analytical Laboratory. All electronic circuits and printed circuits boards have been upgraded with state-of-the-art components. A higher amperage potentiostat with improved control stability has been developed. The system achieves electronic calibration accuracy and linearity of better than 0.01 percent, with a precision and accuracy better than 0.1 percent has been demonstrated. This coulometer features electrical calibration of the integration system, electrolysis current background corrections, and control-potential adjustment capabilities. These capabilities allow application of the system to plutonium measurements without chemical standards, achieving traceability to the international measurement system through electrical standards and Faraday`s constant. the chemist is provided with the capability to perform measurements without depending upon chemical standards, which is a significant advantage for applications such as characterization of primary and secondary standards. Additional benefits include reducing operating cost to procure, prepare and measure calibration standards and the corresponding decrease in radioactive waste generation. The design and documentation of the automated instrument are provided herein. Each individual module`s operation, wiring, layout, and alignment are described. Interconnection of the modules and system calibration are discussed. A complete set of prints and a list of associated parts are included.

  4. The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation

    SciTech Connect

    Pepper S. E.; .; Worrall, L.; Pickett, C.; Bachner, K.; Queirolo, A.

    2014-08-08

    The U.S. National Nuclear Security Administration’s Next Generation Safeguards Initiative, the U.S. Department of State, and the International Atomic Energy Agency (IAEA) organized a a workshop on the subject of ”Software Sustainability for Safeguards Instrumentation.” The workshop was held at the Vienna International Centre in Vienna, Austria, May 6-8, 2014. The workshop participants included software and hardware experts from national laboratories, industry, government, and IAEA member states who were specially selected by the workshop organizers based on their experience with software that is developed for the control and operation of safeguards instrumentation. The workshop included presentations, to orient the participants to the IAEA Department of Safeguards software activities related to instrumentation data collection and processing, and case studies that were designed to inspire discussion of software development, use, maintenance, and upgrades in breakout sessions and to result in recommendations for effective software practices and management. This report summarizes the results of the workshop.

  5. Radionuclide transfer to fruit in the IAEA TRS 364 Revision.

    PubMed

    Carini, Franca

    2009-09-01

    Information on the transfer of radionuclides to fruits was almost absent in the former TRS 364 "Handbook of parameter values for the prediction of radionuclide transfer in temperate environments". The revision of the Handbook, carried out under the IAEA Programme on Environmental Modelling for RAdiation Safety (EMRAS), takes into account the information generated in the years following the Chernobyl accident and the knowledge produced under the IAEA BIOMASS (Biosphere Modelling and Assessment) Programme in the years 1997-2000. This paper describes the most important processes concerning the behaviour of radionuclides in fruits reported in the IAEA TRS 364 Revision and provides recommendations for research and modelling. PMID:19027202

  6. United States Program for Technical assistance to IAEA Standards. Concept Paper: Knowledge Acquisition, Skills training for enhanced IAEA safeguards inspections

    SciTech Connect

    Morris, F.A.; Toquam, J.L.

    1993-11-01

    This concept paper explores the potential contribution of ``Knowledge Acquisition Skills`` in enhancing the effectiveness of international safeguards inspections by the International Atomic energy Agency (IAEA, or Agency) and identifies types of training that could be provided to develop or improve such skills. For purposes of this concept paper, Knowledge Acquisition Skills are defined broadly to include all appropriate techniques that IAEA safeguards inspectors can use to acquire and analyze information relevant to the performance of successful safeguards inspections. These techniques include a range of cognitive, analytic, judgmental, interpersonal, and communications skills that have the potential to help IAEA safeguards inspectors function more effectively.

  7. Certified reference materials for radionuclides in Bikini Atoll sediment (IAEA-410) and Pacific Ocean sediment (IAEA-412).

    PubMed

    Pham, M K; van Beek, P; Carvalho, F P; Chamizo, E; Degering, D; Engeler, C; Gascó, C; Gurriaran, R; Hanley, O; Harms, A V; Herrmann, J; Hult, M; Ikeuchi, Y; Ilchmann, C; Kanisch, G; Kis-Benedek, G; Kloster, M; Laubenstein, M; Llaurado, M; Mas, J L; Nakano, M; Nielsen, S P; Osvath, I; Povinec, P P; Rieth, U; Schikowski, J; Smedley, P A; Suplinska, M; Sýkora, I; Tarjan, S; Varga, B; Vasileva, E; Zalewska, T; Zhou, W

    2016-03-01

    The preparation and characterization of certified reference materials (CRMs) for radionuclide content in sediments collected offshore of Bikini Atoll (IAEA-410) and in the open northwest Pacific Ocean (IAEA-412) are described and the results of the certification process are presented. The certified radionuclides include: (40)K, (210)Pb ((210)Po), (226)Ra, (228)Ra, (228)Th, (232)Th, (234)U, (238)U, (239)Pu, (239+240)Pu and (241)Am for IAEA-410 and (40)K, (137)Cs, (210)Pb ((210)Po), (226)Ra, (228)Ra, (228)Th, (232)Th, (235)U, (238)U, (239)Pu, (240)Pu and (239+240)Pu for IAEA-412. The CRMs can be used for quality assurance and quality control purposes in the analysis of radionuclides in sediments, for development and validation of analytical methods and for staff training. PMID:26631455

  8. Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections

    SciTech Connect

    Toquam, J.L.; Morris, F.A.

    1994-09-01

    This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in {open_quotes}Observational Skills{close_quotes}. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector`s job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector`s job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA`s consideration in further developing its Safeguards training program.

  9. USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS.

    SciTech Connect

    PEPPER,S.; QUEIROLO, A.; ZENDEL, M.; WHICHELLO, J.; ANNESE, C.; GRIEBE, J.; GRIEBE, R.

    2007-11-13

    The IAEA Medium Term Strategy (2006-2011) defines a number of specific goals in respect to the IAEA's ability to provide assurances to the international community regarding the peaceful use of nuclear energy through States adherences to their respective non-proliferation treaty commitments. The IAEA has long used and still needs the best possible sensors to detect and measure nuclear material. The Department of Safeguards, recognizing the importance of safeguards-oriented R&D, especially targeting improved detection capabilities for undeclared facilities, materials and activities, initiated a number of activities in early 2005. The initiatives included letters to Member State Support Programs (MSSPs), personal contacts with known technology holders, topical meetings, consultant reviews of safeguards technology, and special workshops to identify new and novel technologies and methodologies. In support of this objective, the United States Support Program to IAEA Safeguards hosted a workshop on ''Advanced Sensors for Safeguards'' in Santa Fe, New Mexico, from April 23-27, 2007. The Organizational Analysis Corporation, a U.S.-based management consulting firm, organized and facilitated the workshop. The workshop's goal was to help the IAEA identify and plan for new sensors for safeguards implementation. The workshop, which was attended by representatives of seven member states and international organizations, included presentations by technology holders and developers on new technologies thought to have relevance to international safeguards, but not yet in use by the IAEA. The presentations were followed by facilitated breakout sessions where the participants considered two scenarios typical of what IAEA inspectors might face in the field. One scenario focused on an enrichment plant; the other scenario focused on a research reactor. The participants brainstormed using the technologies presented by the participants and other technologies known to them to propose

  10. Potential applications of environmental sampling and analysis for the IAEA

    SciTech Connect

    Raber, E.

    1993-03-01

    This objective of this paper is to address the usefulness of envirorunental sampling and analysis in support of the IAEA. In particular, whether state-of-the-art analytical methods may provide detection of undeclared nuclear activities. It is important to emphasize that envirorunental sampling offers the IAEA a method of improving the assurance that a particular facility has no ongoing undeclared nuclear activities. It is suggested as a supplement to the existing IAEA safeguards inspections and activities. Enviromental sampling with appropriate analytical techniques can detect unknown activity fairly well, but it is not very reliable for determining how much or when activity has actually occured. Additionally, it is important to point out that the cost of such an envirorunental sampling program needs to be balanced with the confidence provided to detect undeclared nuclear activities. Environmental sampling wig probably not allow the IAEA to reduce or eliminate some of its existing baseline activities. The addition of an environmental sampling and analysis program will entail a cost of its own, and adding such a program may not reduce IAEA total costs. The overall cost of such a program will depend on the level of confidence required, (e.g. number and type of samples and analyses), the Quality Assurance plan to be implemented and the number of sites to be inspected. A more detailed cost analysis is not within the scope of this paper.

  11. Results of an IAEA inter-comparison exercise to assess 137Cs and total 210Pb analytical performance in soil.

    PubMed

    Shakhashiro, A; Mabit, L

    2009-01-01

    Fallout radionuclides (FRNs) such as (210)Pb and (137)Cs have been widely used to assess soil erosion and sedimentation processes. It is of major importance to obtain accurate analytical results of FRNs by gamma analysis before any data treatment through conversion model and to allow subsequent comparison of erosion and sedimentation rates from different case studies. Therefore, IAEA organized an inter-comparison exercise to assess the validity and reliability of the analytical results of (137)Cs and total (210)Pb using gamma-spectrometry in the various laboratories participating in the IAEA Co-ordinated Research Project on "Assess the effectiveness of soil conservation measures for sustainable watershed management using fallout radionuclides". Reference materials were distributed to 14 participating laboratories and, using a rating system, their analytical results were compared to the reference values assigned. In the case of (137)Cs, the analytical results were satisfactory with 66% of the laboratories producing acceptable results. Only the sample with low (137)Cs activity (2.6+/-0.2Bqkg(-1)) gave less accurate results with more than 25% not acceptable results. The total (210)Pb analysis indicated a clear need for corrective actions in the analysis process as only 36% of the laboratories involved in the proficiency test was able to access total (210)Pb with occurrence (bias 10%). This inter-laboratory test underlines that further inter-comparison exercises should be organized by IAEA or regional laboratories to ensure the quality of the analytical data produced in Member States. As a result of the above-mentioned proficiency test, some recommendations have been provided to improve accurate gamma measurement of both (137)Cs and total (210)Pb. PMID:18760612

  12. Optimal radiotherapy utilisation rate in developing countries: An IAEA study.

    PubMed

    Rosenblatt, Eduardo; Barton, Michael; Mackillop, William; Fidarova, Elena; Cordero, Lisbeth; Yarney, Joel; Lim, Gerard; Abad, Anthony; Cernea, Valentin; Stojanovic-Rundic, Suzana; Strojan, Primoz; Kobachi, Lotfi; Quarneti, Aldo

    2015-07-01

    Optimal radiotherapy utilisation rate (RTU) is the proportion of all cancer cases that should receive radiotherapy. Optimal RTU was estimated for 9 Middle Income Countries as part of a larger IAEA project to better understand RTU and stage distribution. PMID:26164776

  13. International Workshops to Foster Implementation of the IAEA Additional Protocol

    SciTech Connect

    Killinger, Mark H.; Coates, Cameron W.; Bedke, Michael L.

    2003-07-14

    A country’s adherence to the International Atomic Energy Agency’s (IAEA) Additional Protocol is an important statement to the world of that country’s commitment to nuclear nonproliferation. Without the Additional Protocol (AP) it is possible, as demonstrated in Iraq, for a country party to the Non-Proliferation Treaty (NPT) to clandestinely work toward nuclear weapons and be undetected by the IAEA. This is because classical safeguards under the NPT are directed at diversion of nuclear material from declared activities. But a country may instead build undeclared activities to produce weapons-grade nuclear material. The AP is directed at detecting those undeclared activities. As of May 2003, 73 countries had signed the AP, but only 35 have entered into force. To further adherence to the AP, the IAEA has held regional, high-level seminars in Japan, South Africa, Kazakhstan, Peru, Romania, and Malaysia to explain AP provisions. To supplement these policy-level seminars, the U.S. Department of Energy (DOE) has undertaken to develop a set of modules of technical competencies required to implement the AP. The intent is to work closely with the IAEA by providing these technical competencies to countries as well as to complement the IAEA’s regional seminars and other outreach efforts. This paper briefly describes the technical competency modules.

  14. Implementation of the IAEA Additional Protocol in the Philippines: USDOE/PNRI Cooperation

    SciTech Connect

    Sequis, Julietta E.; Cain, Ronald A.; Burbank, Roberta L.; Hansen, Linda H.; VanSickle, Matthew; Killinger, Mark H.; Elkhamri, Oksana O.

    2011-07-19

    The Philippines entered into force the International Atomic Energy Agency (IAEA) Additional Protocol (AP) in February 2010. The Philippine Nuclear Research Institute (PNRI) is the government agency responsible for implementing the AP. In June 2010 the IAEA invited the U.S. Department of Energy (DOE) to help conduct a joint national training seminar on the AP. DOE presented to PNRI its AP international technical assistance program, administered by the International Nuclear Safeguards and Engagement Program (INSEP), which helps partner countries implement the AP. In coordination with the IAEA, DOE established this program in 2008 to complement IAEA AP seminars with long-term country-specific cooperation from the perspective of a Member State. The US version of the AP is the same version as that of non-nuclear weapon states except for the addition of a national security exclusion. Due to this, DOE cooperation with other countries enables the sharing of valuable lessons learned in implementing the AP. DOE/INSEP described to PNRI the various areas of cooperation it offers to interested countries, whether they are preparing for entry into force or already implementing the AP. Even countries that have entered the AP into force are sometimes not fully prepared to implement it well, and welcome cooperation to improve their implementation process. PNRI and DOE/INSEP subsequently agreed to cooperate in several areas to enhance the efficiency and effectiveness of the Philippines AP implementation. These areas include providing working-level training to PNRI staff and preparing an information document that details that training for future reference, assisting with the development of an outreach program and procedures for AP reporting and complementary access, and identifying Annex II equipment and non-nuclear materials whose export must be reported under the AP. DOE laboratory representatives, funded by INSEP, met again with PNRI in February 2011 to provide training for PNRI AP

  15. Technical implementation in support of the IAEA`s remote monitoring field trial at the Oak Ridge Y-12 Plant

    SciTech Connect

    Corbell, B.H.; Moran, B.W.; Pickett, C.A.; Whitaker, J.M.; Resnik, W.; Landreth, D.

    1996-08-01

    A remote monitoring system (RMS) field trial will be conducted for the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. Remote monitoring technologies are being evaluated to verify their capability to enhance the effectiveness and timeliness of IAEA safeguards in storage facilities while reducing the costs of inspections and burdens on the operator. Phase one of the field trial, which involved proving the satellite transmission of sensor data and safeguards images from a video camera activated by seals and motion sensors installed in the vault, was completed in September 1995. Phase two involves formal testing of the RMS as a tool for use by the IAEA during their tasks of monitoring the storage of nuclear material. The field trial to be completed during early 1997 includes access and item monitoring of nuclear materials in two storage trays. The RMS includes a variety of Sandia, Oak Ridge, and Aquila sensor technologies that provide video monitoring, radiation attribute measurements, and container identification to the on-site data acquisition system (DAS) by way of radio-frequency and Echelon LONWorks networks. The accumulated safeguards information will be transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines.

  16. 10 CFR 150.17a - Compliance with requirements of US/IAEA Safeguards Agreement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Compliance with requirements of US/IAEA Safeguards... Authority in Agreement States § 150.17a Compliance with requirements of US/IAEA Safeguards Agreement. (a... shall take other action as may be necessary to implement the US/IAEA Safeguards Agreement, as...

  17. Free toplogy networks and their application in IAEA safeguards.

    SciTech Connect

    Gholkar, R. V.; Halbig, J. K.

    2004-01-01

    IAEA Safeguards systems must perform in challenging environments with many varied operational constraints. The ability to dynamically interconnect instruments and inspector interfaces without being thwarted by the transfer medium or physical configuration of a network is of paramount importance when implementing integrated safeguards systems. A free network topology provides the robust set of options useful to the IAEA for successful connection of common instruments and collection devices in different facilities with varying physical layout. A general set of requirements for integrated safeguards systems networks is discussed, and an example of a current implementation is given. Areas of focus include authentication/encryption, bandwidth requirements, and possible technologies that can be used to maximize the versatility of free topology networks for safeguards systems.

  18. Assessment of Alternative Funding Mechanisms for the IAEA

    SciTech Connect

    Toomey, Christopher; Wyse, Evan T.; Kurzrok, Andrew J.; Ford, Benjamin E.

    2012-06-15

    While the International Atomic Energy Agency (IAEA) has enjoyed substantial success and prestige in the international community, there is growing concern that global demographic trends, advances in technology and the trend towards austerity in Member State budgets will stretch the Agency’s resources to a point where it may no longer be possible to execute its multifaceted mission in its entirety. As part of an ongoing effort by the Next Generation Safeguards Initiative to evaluate the IAEA’s long-term budgetary concerns , this paper proposes a series of alternate funding mechanisms that have the potential to sustain the IAEA in the long-term, including endowment, charity, and fee-for-service funding models.

  19. Iaea Activities Supporting the Applications of Research Reactors in 2013

    NASA Astrophysics Data System (ADS)

    Peld, Nathan D.; Ridikas, Danas

    2014-02-01

    As the underutilization of research reactors around the world persists as a primary topic of concern among facility owners and operators, the IAEA responded in 2013 with a broad range of activities to address the planning, execution and improvement of many experimental techniques. The revision of two critical documents for planning and diversifying a facility's portfolio of applications, TECDOC 1234 “The Applications of Research Reactors” and TECDOC 1212 “Strategic Planning for Research Reactors”, is in progress in order to keep this information relevant, corresponding to the dynamism of experimental techniques and research capabilities. Related to the latter TECDOC, the IAEA convened a meeting in 2013 for the expert review of a number of strategic plans submitted by research reactor operators in developing countries. A number of activities focusing on specific applications are either continuing or beginning as well. In neutron activation analysis, a joint round of inter-comparison proficiency testing sponsored by the IAEA Technical Cooperation Department will be completed, and facility progress in measurement accuracy is described. Also, a training workshop in neutron imaging and Coordinated Research Projects in reactor benchmarks, automation of neutron activation analysis and neutron beam techniques for material testing intend to advance these activities as more beneficial services to researchers and other users.

  20. IAEA Fellowship Program, 1997 report on United States participants

    SciTech Connect

    1997-12-31

    The International Atomic Energy Agency (IAEA) Fellowship Program began in April 1958 as a part of the Agency`s Technical Cooperation (TC) Program. Through the TC Program, the IAEA provides technical assistance to meet the needs of recipient countries and to bring about a substantial transfer of technology. This is done by providing experts, equipment, fellowships, and training courses. This report addresses the US component of the fellowship program. These fellowships provide opportunities for research and training of scientists, engineers and physicians from developing countries in the peaceful application of nuclear energy. The fellowships are awarded to persons who are, or soon will be, trusted with responsibilities that are important to the development of their countries. Fellowship awards are classified into two groups, those financed by the IAEA General Fund or the UNDP Fund (Type 1 Fellowships and Scientific Visits), and those offered by Member States (Type 2 Fellowships). In placing individuals, preference is given to applicants from countries that are signatories to the Treaty on Non-Proliferation of Nuclear Weapons or to the Treaty for the Prohibition of Nuclear Weapons in Latin America.

  1. IAEA Fellowship Program, 1996 report on United States participants

    SciTech Connect

    1996-12-31

    The International Atomic Energy Agency (IAEA) Fellowship Program began in April 1958 as a part of the Agency`s Technical Cooperation (TC) Program. Through the TC Program, the IAEA provides technical assistance to meet the needs of recipient countries and to bring about a substantial transfer of technology. This is done by providing experts, equipment, fellowships, and training courses. This report addresses the US component of the fellowship program. These fellowships provide opportunities for research and training of scientists, engineers and physicians from developing countries in the peaceful application of nuclear energy. The fellowships are awarded to persons who are, or soon will be, trusted with responsibilities that are important to the development of their countries. Fellowship awards are classified into two groups, those financed by the IAEA General Fund or the UNDP Fund (Type 1 Fellowships and Scientific Visits), and those offered by Member States (Type 2 Fellowships). In placing individuals, preference is given to applicants from countries that are signatories to the Treaty on Non-Proliferation of Nuclear Weapons or to the Treaty for the Prohibition of Nuclear Weapons in Latin America.

  2. Comparison of air kerma measurements between the PTB and the IAEA for x-radiation qualities used in general diagnostic radiology and mammography

    NASA Astrophysics Data System (ADS)

    Csete, István; Büermann, Ludwig; Gomola, Igor; Girzikowsky, Reinhard

    2013-01-01

    A comparison of the air kerma standards for x-radiation qualities used in general diagnostic radiology and mammography, identified as EURAMET.RI(I)-S10 (EURAMET project #1221), was performed between the PTB and the IAEA. Two spherical and two parallel-plate reference-class ionization chambers of the IAEA and 12 beam qualities standardized in the IEC standard 61267:2005 plus 7 additional standard beam qualities established at both laboratories were selected for the comparison. The calibration coefficients were determined for the transfer chambers at the PTB in September 2012 and before and after this at the IAEA Dosimetry Laboratory. The results show the calibration coefficients of both laboratories to be in good agreement within the standard uncertainty of the comparison of about 0.47%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by EURAMET, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  3. IAEA activities in the area of partitioning and transmutation

    NASA Astrophysics Data System (ADS)

    Stanculescu, Alexander

    2006-06-01

    Four major challenges are facing the long-term development of nuclear energy: improvement of the economic competitiveness, meeting increasingly stringent safety requirements, adhering to the criteria of sustainable development, and public acceptance. Meeting the sustainability criteria is the driving force behind the topic of this paper. In this context, sustainability has two aspects: natural resources and waste management. IAEA's activities in the area of Partitioning and Transmutation (P&T) are mostly in response to the latter. While not involving the large quantities of gaseous products and toxic solid wastes associated with fossil fuels, radioactive waste disposal is today's dominant public acceptance issue. In fact, small waste quantities permit a rigorous confinement strategy, and mined geological disposal is the strategy followed by some countries. Nevertheless, political opposition arguing that this does not yet constitute a safe disposal technology has largely stalled these efforts. One of the primary reasons cited is the long life of many of the radioisotopes generated from fission. This concern has led to increased R&D efforts to develop a technology aimed at reducing the amount and radio-toxicity of long-lived radioactive waste through transmutation in fission reactors or sub-critical systems. In the frame of the Project on Technology Advances in Fast Reactors and Accelerator-Driven Systems (ADS), the IAEA initiated a number of activities on utilization of plutonium and transmutation of long-lived radioactive waste, ADS, and deuterium-tritium plasma-driven sub-critical systems. The paper presents past accomplishments, current status and planned activities of this IAEA project.

  4. Deterring Nuclear Proliferation: The Importance of IAEA Safeguards: A TEXTBOOK

    SciTech Connect

    Rosenthal, M.D.; Fishbone, L.G.; Gallini, L.; Krass, A.; Kratzer, M.; Sanborn, J.; Ward, B.; Wulf, N. A.

    2012-03-13

    Nuclear terrorism and nuclear proliferation are among the most pressing challenges to international peace and security that we face today. Iran and Syria remain in non-compliance with the safeguards requirements of the NPT, and the nuclear ambitions of North Korea remain unchecked. Despite these challenges, the NPT remains a cornerstone of the nuclear non-proliferation regime, and the safeguards implemented by the International Atomic Energy Agency (IAEA) under the NPT play a critical role in deterring nuclear proliferation.How do they work? Where did they come from? And what is their future? This book answers these questions. Anyone studying the field of nuclear non-proliferation will benefit from reading this book, and for anyone entering the field, the book will enable them to get a running start. Part I describes the foundations of the international safeguards system: its origins in the 1930s - when new discoveries in physics made it clear immediately that nuclear energy held both peril and promise - through the entry into force in 1970 of the NPT, which codified the role of IAEA safeguards as a means to verify states NPT commitments not to acquire nuclear weapons. Part II describes the NPT safeguards system, which is based on a model safeguards agreement developed specifically for the NPT, The Structure and Content of Agreements between the Agency and States required in connection with the Treaty on the Non-Proliferation of Nuclear Weapons, which has been published by the IAEA as INFCIRC/153. Part III describes events, especially in South Africa, the DPRK, and Iraq in the early 1990s, that triggered a transformation in the way in which safeguards were conceptualized and implemented.

  5. Radiation detectors as surveillance monitors for IAEA safeguards

    SciTech Connect

    Fehlau, P.E.; Dowdy, E.J.

    1980-10-01

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development.

  6. [Nuclear energy and environment: review of the IAEA environmental projects].

    PubMed

    Fesenko, S; Fogt, G

    2012-01-01

    The review of the environmental projects of the International Atomic Energy Agency is presented. Basic IAEA documents intended to protect humans and the Environment are considered and their main features are discussed. Some challenging issues in the area of protection of the Environment and man, including the impact of nuclear facilities on the environment, radioactive waste management, and remediation of the areas affected by radiological accidents, nuclear testing and sites of nuclear facilities are also discussed. The need to maintain the existing knowledge in radioecology and protection of the environment is emphasised. PMID:23516895

  7. Strengthening IAEA safeguards in an era of nuclear cooperation

    SciTech Connect

    Hooper, R.

    1995-11-01

    Since the end of the Cold War the world has witnessed a remarkable series of events demonstrating that universal adherence to the principles of nuclear non-proliferation and disarmament are no longer utopian dreams. The author reviews the actions of various countries to terminate or reduce nuclear weapons programs and those that are resisting the non-proliferation efforts. The author addresses efforts of the International Atomic Energy Agency (IAEA) to safeguard declared nuclear material more cost-effectively and deal with the possibility of undeclared nuclear activities.

  8. RECRUITMENT OF U.S. CITIZENS FOR VACANCIES IN IAEA SAFEGUARDS

    SciTech Connect

    PEPPER,S.E.; DECARO,D.; WILLIAMS,G.; CARELLI,J.; ASSUR,M.

    1999-07-25

    The International Atomic Energy Agency (IAEA) relies on its member states to assist with recruiting qualified individuals for positions within the IAEA's secretariat. It is important that persons within and outside the US nuclear and safeguards industries become aware of career opportunities available at the IAEA, and informed about important vacancies. The IAEA has established an impressive web page to advertise opportunities for employment. However, additional effort is necessary to ensure that there is sufficient awareness in the US of these opportunities, and assistance for persons interested in taking positions at the IAEA. In 1998, the Subgroup on Safeguards Technical Support (SSTS) approved a special task under the US Support Program to IAEA Safeguards (USSP) for improving US efforts to identify qualified candidates for vacancies in IAEA's Department of Safeguards. The International Safeguards Project Office (ISPO) developed a plan that includes increased advertising, development of a web page to support US recruitment efforts, feedback from the US Mission in Vienna, and interaction with other recruitment services provided by US professional organizations. The main purpose of this effort is to educate US citizens about opportunities at the IAEA so that qualified candidates can be identified for the IAEA's consideration.

  9. Safety-Related Activities of the IAEA for Radioactive Waste, Decommissioning and Remediation - 13473

    SciTech Connect

    Hahn, Pil-Soo; Vesterlind, Magnus

    2013-07-01

    To fulfil its mandate and serve the needs of its Member States, the IAEA is engaged in a wide range of safety-related activities pertaining to radioactive waste management, decommissioning and remediation. One of the statutory obligations of the IAEA is to establish safety standards and to provide for the application of these standards. The present paper describes recent developments in regard to the IAEA's waste safety standards, and some of the ways the IAEA makes provision for their application. The safety standards and supporting safety demonstration projects seek to establish international consensus on methodologies and approaches for dealing with particular subject areas, for example, safety assessment for radioactive waste disposal. (authors)

  10. Monte Carlo simulation of correction factors for IAEA TLD holders.

    PubMed

    Hultqvist, Martha; Fernández-Varea, José M; Izewska, Joanna

    2010-03-21

    The IAEA standard thermoluminescent dosimeter (TLD) holder has been developed for the IAEA/WHO TLD postal dose program for audits of high-energy photon beams, and it is also employed by the ESTRO-QUALity assurance network (EQUAL) and several national TLD audit networks. Factors correcting for the influence of the holder on the TL signal under reference conditions have been calculated in the present work from Monte Carlo simulations with the PENELOPE code for (60)Co gamma-rays and 4, 6, 10, 15, 18 and 25 MV photon beams. The simulation results are around 0.2% smaller than measured factors reported in the literature, but well within the combined standard uncertainties. The present study supports the use of the experimentally obtained holder correction factors in the determination of the absorbed dose to water from the TL readings; the factors calculated by means of Monte Carlo simulations may be adopted for the cases where there are no measured data. PMID:20197601

  11. Radionuclide transfer to fruit in the IAEA TRS No. 472

    NASA Astrophysics Data System (ADS)

    Carini, F.; Pellizzoni, M.; Giosuè, S.

    2012-04-01

    This paper describes the approach taken to present the information on fruits in the IAEA report TRS No. 472, supported by the IAEA-TECDOC-1616, which describes the key transfer processes, concepts and conceptual models regarded as important for dose assessment, as well as relevant parameters for modelling radionuclide transfer in fruits. Information relate to fruit plants grown in agricultural ecosystems of temperate regions. The relative significance of each pathway after release of radionuclides depends upon the radionuclide, the kind of crop, the stage of plant development and the season at time of deposition. Fruit intended as a component of the human diet is borne by plants that are heterogeneous in habits, and morphological and physiological traits. Information on radionuclides in fruit systems has therefore been rationalised by characterising plants in three groups: woody trees, shrubs, and herbaceous plants. Parameter values have been collected from open literature, conference proceedings, institutional reports, books and international databases. Data on root uptake are reported as transfer factor values related to fresh weight, being consumption data for fruits usually given in fresh weight.

  12. Role of IAEA (International Atomic Energy Agency) safeguards in confidence building

    SciTech Connect

    Augustson, R.H.

    1989-01-01

    In this paper, I will examine some attributes of confidence building and connect them with how the International Atomic Energy Agency (IAEA) interacts with its member states in carrying out its safeguards function. These interactions and the structure set up to define them help maintain and strengthen confidence between the IAEA and the member states and among these states. 3 refs.

  13. End user needs for enhanced IAEA Safeguards Information Management Capabilities

    SciTech Connect

    Badalamente, R.; Anzelon, G.; Deland, S.; Whiteson, R.

    1994-07-01

    The International Atomic Energy Agency is undertaking a program for strengthening its safeguards on the recognition that safeguards must give assurance not only of the non-diversion of declared material or that declared facilities are not being misused, but also of the absence of any undeclared nuclear activities in States which have signed comprehensive safeguards agreements with the Agency. The IAEA has determined that the detection of undeclared nuclear activities and the creation of confidence in the continuing peaceful use of declared material and facilities is largely dependent on more information being made available to the Agency and on the capability of the Agency to make more effective use of this additional information, as well as existing information.

  14. Patient exposure tracking: the IAEA smart card project.

    PubMed

    Rehani, Madan M; Frush, Donald P

    2011-09-01

    The existing approach of radiation protection is largely based on the collective dose to the population with provisions for protection at an individual level through justification and optimisation. With the individual patient dose now exceeding the life-long occupational dose to a worker in a typical radiology practice, there is a need to establish approaches based on the protection of an individual patient. Radiation exposure tracking seems a way forward in this respect. Technological advances in recent years have provided opportunities for tracking to becoming a reality. The IAEA project on Smart Card/SmartRadTrack is described in this paper. The tracking is now a reality in a few dozen centres in many countries connected by picture archiving and communication systems, and there is hope that this will extend to cover other countries and continents. PMID:21778155

  15. The future of IAEA safeguards: challenges and responses

    SciTech Connect

    Pilat, Joseph F; Budlong - Sylvester, Kory W

    2011-01-01

    For nearly two decades, the International Atomic Energy Agency (lAEA) has been transforming its safeguards system to address the challenges posed by undeclared nuclear programs, the associated revelation of an extensive non-State nuclear procurement network and other issues, including past limits to its verification mandate and the burden of noncompliance issues. Implementing the new measures, including those in the Additional Protocol, and integrating new and old safeguards measures, remains a work in progress. Implementation is complicated by factors including the limited teclmological tools that are available to address such issues as safeguarding bulk handling facilities, detection of undeclared facilities/activities, especially related to enrichment, etc. As this process continues, new challenges are arising, including the demands of expanding nuclear power production worldwide, so-called safeguards by design for a new generation of facilities, the possible IAEA role in a fissile material cutoff treaty and other elements of the arms control and disarmament agenda, the possible role in 'rollback' cases, etc. There is no doubt safeguards will need to evolve in the future, as they have over the last decades. In order for the evolutionary path to proceed, there will inter alia be a need to identify technological gaps, especially with respect to undeclared facilities, and ensure they are filled by adapting old safeguards technologies, by developing and introducing new and novel safeguards teclmologies and/or by developing new procedures and protocols. Safeguards will also need to respond to anticipated emerging threats and to future, unanticipated threats. This will require strategic planning and cooperation among Member States and with the Agency. This paper will address challenges to IAEA safeguards and the technological possibilities and R&D strategies needed to meet those challenges in the context of the forty-year evolution of safeguards, including the ongoing

  16. Four Years of Practical Arrangements between IAEA and Moscow SIA 'Radon': Preliminary Results - 13061

    SciTech Connect

    Batyukhnova, O.G.; Karlina, O.K.; Neveikin, P.P.

    2013-07-01

    The International Education Training Centre (IETC) at Moscow State Unitary Enterprise Scientific and Industrial Association 'Radon' (SIA 'Radon'), in co-operation with the International Atomic Energy Agency (IAEA), has developed expertise and provided training to waste management personnel for the last 15 years. Since 1997, the educational system of the enterprise with the support of the IAEA has acquired an international character: more than 470 experts from 35 countries- IAEA Member States completed the professional development. Training is conducted at various thematic courses or fellowships for individual programs and seminars on IAEA technical projects. In June 2008 a direct agreement (Practical Arrangements) was signed between SIA 'Radon' and the IAEA on cooperation in the field of development of new technologies, expert's advice to IAEA Member States, and, in particular, the training of personnel in the field of radioactive waste management (RWM), which opens up new perspectives for fruitful cooperation of industry professionals. The paper summarizes the current experience of the SIA 'Radon' in the organization and implementation of the IAEA sponsored training and others events and outlines some of strategic educational elements, which IETC will continue to pursue in the coming years. (authors)

  17. Radiation processing of natural polymers: The IAEA contribution

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, Mohammad; Safrany, Agnes; Sampa, Maria Helena de O.; Ramamoorthy, Natesan

    2010-03-01

    Radiation processing offers a clean and additive-free method for preparation of value-added novel materials based on renewable, non-toxic, and biodegradable natural polymers. Crosslinked natural polymers can be used as hydrogel wound dressings, face cleaning cosmetic masks, adsorbents of toxins, and non-bedsore mats; while low molecular weight products show antibiotic, antioxidant, and plant-growth promoting properties. Recognizing the potential benefits that radiation technology can offer for processing of natural polymers into useful products, the IAEA implemented a coordinated research project (CRP) on "Development of Radiation-processed products of Natural Polymers for application in Agriculture, Healthcare, Industry and Environment". This CRP was launched at the end of 2007 with participation of 16 MS to help connecting radiation technology and end-users to derive enhanced benefits from these new value-added products of radiation-processed natural materials. In this paper the results of activities in participating MS related to this work will be presented.

  18. Framework for fuel-cycle approaches to IAEA safeguards

    SciTech Connect

    Fishbone, L.G.

    1986-10-01

    In order to compare several nuclear-safeguards verification approaches to one another and to the conventional facility-oriented approach, we establish a framework of the classes of information routinely verifiable by IAEA safeguards inspections. For each facility type within a State nuclear fuel cycle, the classes include flow data, inventory data, and shipper and receiver data. By showing which classes of information are verified for each facility type within three fuel cycles of different complexity, we distinguish the inspection approaches from one anoter and exhibit their fuel-cycle dependence, i.e., their need for sets of safeguards inspection activities different from those required under the facility-oriented approach at similar facilities in fuel cycles of differing complexity. Tables V-1, V-2, and V-3 graphically depict these relations and give a qualitative summary of the relative effectiveness and effort requirements of the approaches classified. The zone, information-correlation, diversion-assumption-change, and randomization-over-facilities approaches depend intrinsically on the complexity of the fuel cycle: their very definition implies fuel-cycle dependence. The approaches involving randomization over activities and goal relaxations do not have such dependence.

  19. The IAEA handbook on radionuclide transfer to wildlife.

    PubMed

    Howard, B J; Beresford, N A; Copplestone, D; Telleria, D; Proehl, G; Fesenko, S; Jeffree, R A; Yankovich, T L; Brown, J E; Higley, K; Johansen, M P; Mulye, H; Vandenhove, H; Gashchak, S; Wood, M D; Takata, H; Andersson, P; Dale, P; Ryan, J; Bollhöfer, A; Doering, C; Barnett, C L; Wells, C

    2013-07-01

    An IAEA handbook presenting transfer parameter values for wildlife has recently been produced. Concentration ratios (CRwo-media) between the whole organism (fresh weight) and either soil (dry weight) or water were collated for a range of wildlife groups (classified taxonomically and by feeding strategy) in terrestrial, freshwater, marine and brackish generic ecosystems. The data have been compiled in an on line database, which will continue to be updated in the future providing the basis for subsequent revision of the Wildlife TRS values. An overview of the compilation and analysis, and discussion of the extent and limitations of the data is presented. Example comparisons of the CRwo-media values are given for polonium across all wildlife groups and ecosystems and for molluscs for all radionuclides. The CRwo-media values have also been compared with those currently used in the ERICA Tool which represented the most complete published database for wildlife transfer values prior to this work. The use of CRwo-media values is a pragmatic approach to predicting radionuclide activity concentrations in wildlife and is similar to that used for screening assessments for the human food chain. The CRwo-media values are most suitable for a screening application where there are several conservative assumptions built into the models which will, to varying extents, compensate for the variable data quality and quantity, and associated uncertainty. PMID:22513215

  20. IAEA's ALMERA network: Supporting the quality of environmental radioactivity measurements.

    PubMed

    Osvath, I; Tarjan, S; Pitois, A; Groening, M; Osborn, D

    2016-03-01

    The International Atomic Energy Agency coordinates and provides methodological and analytical quality support to the network of Analytical Laboratories for the Measurement of Environmental Radioactivity (ALMERA), comprising 150 laboratories in 84 countries. Annual proficiency tests (PTs) are organized for the network laboratories using sets of different samples typically encountered in environmental and food monitoring laboratories. The PT system is designed to respond to the needs of the network for rapid response and reliable measurement results, and to metrological principles and international standards and guides. Comparison of performance of ALMERA and non-ALMERA laboratories in PTs indicates that the "PT - method development - training - PT" strategy adopted for capability building is beneficial to the network. PMID:26810873

  1. New Organic Stable Isotope Reference Materials for Distribution through the USGS and the IAEA

    NASA Astrophysics Data System (ADS)

    Schimmelmann, Arndt; Qi, Haiping

    2014-05-01

    The widespread adoption of relative stable isotope-ratio measurements in organic matter by diverse scientific disciplines is at odds with the dearth of international organic stable isotopic reference materials (RMs). Only two of the few carbon (C) and nitrogen (N) organic RMs, namely L-glutamic acids USGS40 and USGS41 [1], both available from the U.S. Geological Survey (USGS) and the International Atomic Energy Agency (IAEA), provide an isotopically contrasting pair of organic RMs to enable essential 2-point calibrations for δ-scale normalization [2, 3]. The supply of hydrogen (H) organic RMs is even more limited. Numerous stable isotope laboratories have resorted to questionable practices, for example by using 'CO2, N2, and H2 reference gas pulses' for isotopic calibrations, which violates the principle of identical treatment of sample and standard (i.e., organic unknowns should be calibrated directly against chemically similar organic RMs) [4], or by using only 1 anchor instead of 2 for scale calibration. The absence of international organic RMs frequently serves as an excuse for indefensible calibrations. In 2011, the U.S. National Science Foundation (NSF) funded an initiative of 10 laboratories from 7 countries to jointly develop much needed new organic RMs for future distribution by the USGS and the IAEA. The selection of targeted RMs attempts to cover various common compound classes of broad technical and scientific interest. We had to accept compromises to approach the ideal of high chemical stability, lack of toxicity, and low price of raw materials. Hazardous gases and flammable liquids were avoided in order to facilitate international shipping of future RMs. With the exception of polyethylene and vacuum pump oil, all organic RMs are individual, chemically-pure substances, which can be used for compound-specific isotopic measurements in conjunction with liquid and gas chromatographic interfaces. The compounds listed below are under isotopic calibration by

  2. Contribution to fusion research from IAEA coordinated research projects and joint experiments

    NASA Astrophysics Data System (ADS)

    Gryaznevich, M.; Van Oost, G.; Stöckel, J.; Kamendje, R.; Kuteev, B. N.; Melnikov, A.; Popov, T.; Svoboda, V.; The IAEA CRP Teams

    2015-10-01

    The paper presents objectives and activities of IAEA Coordinated Research Projects ‘Conceptual development of steady-state compact fusion neutron sources’ and ‘Utilisation of a network of small magnetic confinement fusion devices for mainstream fusion research’. The background and main projects of the CRP on FNS are described in detail, as this is a new activity at IAEA. Recent activities of the second CRP, which continues activities of previous CRPs, are overviewed.

  3. IAEA regulatory initiatives for the air transport of large quantities of radioactive materials

    SciTech Connect

    Luna, Robert E.; Wangler, Michael W.; Selling, Hendrik A.

    1992-01-01

    The International Atomic Energy Agency (IAEA) has been laboring since 1988 over a far reaching change to its model regulations (IAEA, 1990) for the transport of radioactive materials (RAM). This change could impact the manner in which certain classes of radioactive materials are shipped by air and change some of the basic tenets of radioactive material transport regulations around the world. This report discusses issues associated with air transport regulations.

  4. The US Support Program to IAEA Safeguards Priority of Containment and Surveillance

    SciTech Connect

    Diaz,R.A.

    2008-06-13

    The United States Support Program (USSP) priority for containment and surveillance (US) focuses on maintaining or improving the reliability and cost-effectiveness of C/S systems for IAEA safeguards, expanding the number of systems that are unattended and remotely monitored, and developing verification methods that help streamline the on-site inspection process. Existing IAEA C/S systems have evolved to become complex, integrated systems, which may include active seals, nondestructive assay (NDA) instruments, video cameras, and other sensors. These systems operate autonomously. They send analytical data to IAEA headquarters where it can be reviewed. These systems present challenges to the goals of improved system performance, standardization, reliability, maintainability, documentation, and cost effectiveness. One critical lesson from past experiences is the need for cooperation and common objectives among the IAEA, the developer, and the facility operator, to create a successful, cost effective system. Recent USSP C/S activities include Rokkasho Reprocessing Plant safeguard systems, production of a new shift register, numerous vulnerability assessments of C/S systems, a conduit monitoring system which identifies tampering of IAEA conduit deployed in the field, fiber optic seal upgrades, unattended monitoring system software upgrades, next generation surveillance system which will upgrade existing camera systems, and support of the IAEA's development of the universal nondestructive assay data acquisition platform.

  5. Containment and surveillance -- A principal IAEA safeguards measure

    SciTech Connect

    Drayer, D.D.; Dupree, S.A.; Sonnier, C.S.

    1997-12-31

    The growth of the safeguards inspectorate of the Agency, spanning more than 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. Although the Agency was established in 1957, the first practical inspections did not occur until the early 1960s. In the early inspections, thee was little C/S equipment available, and no optical surveillance was used. However, by the third decade of the IAEA, the 1980s, many technology advances were made, and the level of C/S equipment activities increased. By the late 1980s, some 200 Twin Minolta film camera systems were deployed by the Agency for safeguards use. At the present time, the Agency is evaluating and beginning to implement remote monitoring as part of the Strengthened Safeguards System. However, adoption of remote monitoring by international agencies cannot occur rapidly because of the many technical and policy issues associated with this activity. A glimpse into the future indicates that an important element of safeguards instrumentation will be the merging of C/S and NDA equipment into integrated systems. The use of modern interior area monitors in International Safeguards also offers a great potential for advancing C/S measures. The research in microsensors is in its infancy, and the opportunities for their reducing the cost, increasing the life time, and increasing the reliability of sensors for safeguards applications are manifold. A period may be approaching in which the terminology of C/S will no longer have its original meaning, as integrated systems combining NDA instruments and C/S instruments are already in use and are expected to be the norm in the near future.

  6. Lessons from UNSCOM/IAEA applicable to nuclear arms control

    SciTech Connect

    Dorn, D.W.

    1995-12-05

    In early 1991, the Security Council of the United Nations tasked the Director General of the International Atomic Energy Agency, with the assistance and cooperation of the United Nations Special Commission, to oversee the destruction, removal or rendering harmless of nuclear weapons material and capabilities in Iraq. The conduct of the nuclear inspections, and the subsequent activities (identification, destruction, removal rendering harmless), have provided a wealth of experience and insight into the inspection and monitoring process as well as into the political realities of such an operation. The early inspections were conducted in an atmosphere of discovery and inexperience on both the part of the Iraqis and the IAEA and UNSCOM. As time went on, the Iraqis became more adept at hiding and obscuring relevant documents and equipment, and the inspection teams became more knowledgeable about inspection and investigative techniques, and the pre-existing Iraqi programs. A continuous monitoring presence in Iraq has now been established and an import/export monitoring regime is being developed. While steps taken to date have proven effective in inhibiting resumption of nuclear weaponization activities, it remains to be seen how effective these measures will be in the future. The external and internal conditions which led the Iraqi leadership to undertake a nuclear weaponization program have not changed, and the prognosis for the long term is uncertain. The entire process in Iraq has shown how fragile are the tools available to the international community, and how a determined proliferator can evade inspection and monitoring measures. Such measures cannot prevent nuclear proliferation, they can only hope to deter it, or, failing in that, detect it.

  7. PREFACE: 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and 21st IAEA TM on Research Using Small Fusion Devices (RUSFD)

    NASA Astrophysics Data System (ADS)

    Iván Vargas-Blanco, V.; Herrera-Velázquez, J. Julio E.

    2015-03-01

    small laboratory size fusion experiments, as compared to those of the larger laboratories, to report about their latest achievements working with medium size and small scale tokamaks, stellarators, compact tori, dense plasma focus, reversed field pinches, helical devices, linear machines, and other small plasma devices. The Technical Meeting aims at stimulating new synergies which can contribute to better streamline the research outputs to the mainstream fusion research. Previous meetings in the series were held in Budapest, Hungary (1985), Nagoya, Japan (1986), Nice, France (1988), Washington DC, USA (1990), Hefei, China (1991), Wuerzburg, Germany (1992), Campinas, Brazil (1993), Madrid, Spain (1994), Ahmedabad, India (1995), Prague, Czech Republic (1996), Cairo, Egypt (1997), Tokyo, Japan (1998) in Chengdu, China (1999), São Paulo, Brazil (2002), Vienna, Austria (2003) in Mexico City, Mexico (2005), Lisbon, Portugal (2007), in Alushta, Ukraine (2008), Kurchatov, Kazakhstan (2009) and Vienna, Austria (2011). The 1st Costa Rican Summer School on Plasma Physics was held a week before the Joint LAWPP 2014 - 21st IAEA TM RUSFD, and the 2nd Latin American Workshop on Industrial Applications of Plasma Technology (AITP) was organized in parallel with the it. The objective of the AITP Workshop is to enhance the regional academic and industrial cooperation in the field of plasma assisted surface technology. The Joint LAWPP 2014 - 21st IAEA TM RUSFD was held at the Crowne Plaza Corobici Hotel in San José from 27 to 31 January 2014. The LAWPP scientific programme, which was spread along the whole week, had 15 invited speakers, 126 participants from 20 countries around the world. It included 7 plenary talks, 8 invited talks and 12 oral contributed papers were chosen out of 92 submissions. 82 contributions in 25 topics were presented in poster sessions on Monday 27, Tuesday 28 and Thursday 30 January 2014. The 21st IAEA TM RUSFD was held along the LAWPP 2014 from 27 to 29 January

  8. Comparison of air kerma-length product measurements between the PTB and the IAEA for x-radiation qualities used in computed tomography (EURAMET.RI(I)-S12, EURAMET project #1327)

    NASA Astrophysics Data System (ADS)

    Csete, István; Büermann, Ludwig; Alikhani, Babak; Gomola, Igor

    2015-01-01

    A comparison of air kerma-length product determinations for standard radiation qualities defined for use in computed tomography was performed between the PTB and the IAEA as EURAMET project #1327, registered in the KCDB as the EURAMET.RI(I)-S12 comparison. A pencil type reference-class ionization chamber of the IAEA and the three RQT beam qualities established according to the IEC standard 61627:2005 were selected for the comparison. The calibration coefficients for the transfer chamber in terms of Gycm/C at the PTB and the IAEA using the partial irradiation method recommended in the IAEA TRS 457 were determined. The results show the calibration coefficients of both laboratories were in a very good agreement of about 0.2 % well within the estimated relative standard uncertainty of the comparison of about 0.8 %. Residual correction due to the additional aperture required for partial irradiation of pencil chambers and feasibility of the full irradiation method were also studied. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Laboratory Tests

    MedlinePlus

    Laboratory tests check a sample of your blood, urine, or body tissues. A technician or your doctor ... compare your results to results from previous tests. Laboratory tests are often part of a routine checkup ...

  10. IAEA programs in empowering the nuclear medicine profession through online educational resources.

    PubMed

    Pascual, Thomas Nb; Dondi, Maurizio; Paez, Diana; Kashyap, Ravi; Nunez-Miller, Rodolfo

    2013-05-01

    The International Atomic Energy Agency's (IAEA) programme in human health aims to enhance the capabilities in Member States to address needs related to the prevention, diagnosis, and treatment of diseases through the application of nuclear techniques. It has the specific mission of fostering the application of nuclear medicine techniques as part of the clinical management of certain types of diseases. Attuned to the continuous evolution of this specialty as well as to the advancement and diversity of methods in delivering capacity building efforts in this digital age, the section of nuclear medicine of the IAEA has enhanced its program by incorporating online educational resources for nuclear medicine professionals into its repertoire of projects to further its commitment in addressing the needs of its Member States in the field of nuclear medicine. Through online educational resources such as the Human Health Campus website, e-learning modules, and scheduled interactive webinars, a validation of the commitment by the IAEA in addressing the needs of its Member States in the field of nuclear medicine is strengthened while utilizing the advanced internet and communications technology which is progressively becoming available worldwide. The Human Health Campus (www.humanhealth.iaea.org) is the online educational resources initiative of the Division of Human Health of the IAEA geared toward enhancing professional knowledge of health professionals in radiation medicine (nuclear medicine and diagnostic imaging, radiation oncology, and medical radiation physics), and nutrition. E-learning modules provide an interactive learning environment to its users while providing immediate feedback for each task accomplished. Webinars, unlike webcasts, offer the opportunity of enhanced interaction with the learners facilitated through slide shows where the presenter guides and engages the audience using video and live streaming. This paper explores the IAEA's available online

  11. Cooperation between SSACs/RSACs and the IAEA Under the State-Level Concept:

    SciTech Connect

    Raffo-Caiado, Ana Claudia; Johnson, Jaclyn M

    2012-01-01

    The role of State and Regional Systems of Accounting for and Control of Nuclear Materials (SSACs/RSACs) will increase within the framework of the state-level concept that is being implemented by the International Atomic Energy Agency (IAEA). In order to effectively implement the concept and further establish a state-level approach, which is sought to tailor safeguards activities in a specific state accordingly, collaboration between SSACs/RSACs and the IAEA is very important. Nevertheless, the implementation of such concept is not simple. Optimal relationship between operators and national/governmental authorities and between SSACs/RSACs and the IAEA is an evolving process. Benefits of such an approach as well as roles and responsibilities must be made clear to all parties involved. Acknowledging the uniqueness and diversity of SSACs/RSACs is a first step, followed by the implementation of confidence-building measures that result from an efficient communication process, and culminating with a transparent technical cooperation program. This paper analyses various aspects of the complex relationship among all parties involved in the implementation of the state-level concept: operators, national authorities, government agencies, SSACs/RSACs, and the IAEA. The author analyses the intricate network of possibilities to improve cooperation and discusses issues involving the provision of additional and voluntary information by SSACs/RSACs to the IAEA.

  12. Comparison of the PARET/ANL and RELAP5/MOD3 codes for the analysis of IAEA benchmark transients and the SPERT experiments

    SciTech Connect

    Woodruff, W.L.; Hanan, N.A.; Smith, R.S.; Matos, J.E.

    1997-12-01

    The RELAP5/MOD3 code is a coupled kinetics-hydrodynamics code for modelling all components of pressurized water reactor systems. To our knowledge, RELAP5 has not been tested against the SPERT reactivity insertion experiments or more conventional research reactor models such as the 10-MW low-enriched uranium (LEU) benchmark reactor in the International Atomic Energy Agency (IAEA) Guidebook, where loss-of-flow (LOF) and reactivity insertion transients were computed by laboratories in four countries, including Argonne National Laboratory (ANL). The ANL computations used the PARET/ANL code, which has been used extensively for research reactor analysis and compared with the SPERT-I and SPERT-II experiments. RELAP5/MOD3 and PARET/ANL results are compared in this paper. Attempts to compare RELAP/MOD3 with the SPERT experiments are included.

  13. Laboratory Building.

    SciTech Connect

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  14. Laboratory Microcomputing

    PubMed Central

    York, William B.

    1984-01-01

    Microcomputers will play a major role in the laboratory, not only in the calculation and interpretation of clinical test data, but also will have an increasing place of importance in the management of laboratory resources in the face of the transition from revenue generating to the cost center era. We will give you a glimpse of what can be accomplished with the management data already collected by many laboratories today when the data are processed into meaningful reports.

  15. Safeguards Implementation: Establishment of Indonesian Safeguards Laboratory

    SciTech Connect

    Shipwash, Jacqueline L; Geist, William H.; Smith, Steven E; Solodov, Alexander A; Suharyanta, Suharyanta; Sunaryadi, Dedi

    2011-01-01

    Under the International Nuclear Safeguards and Engagement Program (INSEP), U.S. National Laboratories support the Department of Energy (DOE) National Nuclear Security Administration (NNSA) to ''collaborate with international partners to strengthen international safeguards at all stages of nuclear development.'' This engagement in safeguards implementation cooperation is the basis for the security and safeguards arrangement with the Nuclear Energy Regulatory Agency of the Republic of Indonesia (BAPETEN) and includes strengthening of the State System of Accounting for and Control of Nuclear Material (SSAC). There are many components in a robust SSAC. While INSEP carries on its program in a holistic approach, it is more effective and efficient to address individual components, rather than the entire system at one time, with the objective of strengthening the system as a whole. Nuclear material accountancy is one of these components. Nuclear material accountancy necessitates that a State periodically take an inventory of its material and record changes. To better perform these activities, BAPETEN requested assistance with establishing a safeguards laboratory where its staff could perform independent material characterization, maintain nondestructive assay equipment, and facilitate hands-on training of BAPETEN safeguards inspectors. In compliance with International Atomic Energy Agency (IAEA) guidelines and safety series documents, INSEP and BAPETEN opened the BAPETEN Safeguards Laboratory in February 2010 to provide these competencies. BAPETEN showcased these new capabilities in July 2010 at the IAEA-sponsored Regional Workshop on Nuclear Material Accounting and Control at Facilities where hands-on activities were held at BAPETEN's Headquarters in Jakarta using the equipment supplied by INSEP. Discussions have begun on the establishment of a security and safeguards laboratory at the BAPETEN Training Center located in Cisarua. This paper describes the many steps

  16. Testing the validity of the International Atomic Energy Agency (IAEA) safety culture model.

    PubMed

    López de Castro, Borja; Gracia, Francisco J; Peiró, José M; Pietrantoni, Luca; Hernández, Ana

    2013-11-01

    This paper takes the first steps to empirically validate the widely used model of safety culture of the International Atomic Energy Agency (IAEA), composed of five dimensions, further specified by 37 attributes. To do so, three independent and complementary studies are presented. First, 290 students serve to collect evidence about the face validity of the model. Second, 48 experts in organizational behavior judge its content validity. And third, 468 workers in a Spanish nuclear power plant help to reveal how closely the theoretical five-dimensional model can be replicated. Our findings suggest that several attributes of the model may not be related to their corresponding dimensions. According to our results, a one-dimensional structure fits the data better than the five dimensions proposed by the IAEA. Moreover, the IAEA model, as it stands, seems to have rather moderate content validity and low face validity. Practical implications for researchers and practitioners are included. PMID:24076304

  17. IAEA's role in the global management of cancer-focus on upgrading radiotherapy services.

    PubMed

    Salminen, Eeva; Izewska, Joanna; Andreo, Pedro

    2005-01-01

    The International Atomic Energy Agency (IAEA) is an intergovernmental organization composed by 138 Member States within the United Nations. It has a mandate to seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world. Within the IAEA structure, the Division of Human Health contributes to the enhancement of the capabilities in Member States to address needs related to prevention, diagnosis and treatment of health problems through the development and application of nuclear and radiation techniques within a framework of quality assurance. In view of the increasing cancer incidence rates in developing countries the activities in improving management of cancer have become increasingly important. This review will outline the IAEA's role in cancer management focusing on activities related to improving radiotherapy worldwide. PMID:16332588

  18. JOINT UNITED STATES/IAEA PROPOSED APPROACH FOR SAFEGUARDS DURING PLUTONIUM STABILIZATION, PACKAGING, AND SHIPMENT

    SciTech Connect

    L. KWEI; B. SMITH; ET AL

    2001-02-01

    For safety reasons, the U.S. Department of Energy (DOE) is preparing to stabilize and package plutonium oxide currently subject to International Atomic Energy Agency safeguards at the Rocky Flats Environmental Technology Site (RFETS) beginning in the year 2001. The Hanford Site will also stabilize and package plutonium materials under IAEA safeguards. The U.S. and the IAEA began consultations in late 1996 to develop an approach to the application of safeguards during stabilization and packaging. With the plans to ship RFETS plutonium to Savannah River for interim storage prior to final disposition, this work has been extended to include safeguards during shipment. This paper will discuss the elements of a joint U.S./IAEA proposal for this task.

  19. Implementation of IAEA safeguards at the Rocky Flats Environmental Technology Site

    SciTech Connect

    Giacomini, J.J.; Finleon, C.A.; Larsen, R.K.; Lucas, M.; Langner, D.

    1995-07-01

    When President Clinton spoke to the United Nations General Assembly in September 1993, he offered to place US excess defense nuclear material under International Atomic Energy Agency (IAEA) safeguards, before the next Nuclear Nonproliferation Treaty (NPT) Extension Conference. This set in motion a flurry of activities at three DOE facilities, including Rocky Flats Environmental Technology Site (Site). With general guidance from DOE Headquarters, the facility selected a suitable storage area, identified appropriate materials, and acquired the necessary instrumentation to implement full-scale IAEA safeguards on excess plutonium oxide.

  20. The IAEA system and experience as a model for Information Management under the Chemical Weapons Convention

    SciTech Connect

    Bieber, A.M. Jr.; Kempf, C.R.

    1992-01-01

    Similarities in the verification aims of the monitoring regimes of the future Organization for the Prohibition of chemical Weapons (OPCW) and of the International Atomic Energy Agency (IAEA), make their general data requirements similar: data are needed for planning inspections, for evaluating inspections, and for preparation of reports on compliance with the relevant treaty In this paper we discuss the legal, procedural and administrative structure behind the data system associated with IAEA safeguards, and, after comparing this to the CWC regime, suggest possible improvements for consideration during the development of national implementation programs and of the declaration and inspection data management system for the OPCW.

  1. The IAEA system and experience as a model for Information Management under the Chemical Weapons Convention

    SciTech Connect

    Bieber, A.M. Jr.; Kempf, C.R.

    1992-09-01

    Similarities in the verification aims of the monitoring regimes of the future Organization for the Prohibition of chemical Weapons (OPCW) and of the International Atomic Energy Agency (IAEA), make their general data requirements similar: data are needed for planning inspections, for evaluating inspections, and for preparation of reports on compliance with the relevant treaty In this paper we discuss the legal, procedural and administrative structure behind the data system associated with IAEA safeguards, and, after comparing this to the CWC regime, suggest possible improvements for consideration during the development of national implementation programs and of the declaration and inspection data management system for the OPCW.

  2. The U.S. Support Program to IAEA Safeguards - How It Works

    SciTech Connect

    Nock,C.; Hoffheins,B.

    2008-07-13

    The U.S. Support Program to International Atomic Energy Agency (IAEA) Safeguards (USSP) was established in 1977 to transfer US technology and expertise to assist the IAEA Department of Safeguards because its limited budget and scope would not allow for R&D activities and the procurement of specialized or customized equipment. Over the years, the USSP and the Department of Safeguards have worked together continuously to develop and improve processes for requesting, selecting, and managing projects that support the Safeguards verification mission. This paper will discuss the main USSP processes for accepting and processing Safeguards requests, and managing and reporting task progress.

  3. Results for Phase I of the IAEA Coordinated Research Program on HTGR Uncertainties

    SciTech Connect

    Strydom, Gerhard; Bostelmann, Friederike; Yoon, Su Jong

    2015-01-01

    The quantification of uncertainties in design and safety analysis of reactors is today not only broadly accepted, but in many cases became the preferred way to replace traditional conservative analysis for safety and licensing analysis. The use of a more fundamental methodology is also consistent with the reliable high fidelity physics models and robust, efficient, and accurate codes available today. To facilitate uncertainty analysis applications a comprehensive approach and methodology must be developed and applied. High Temperature Gas-cooled Reactors (HTGR) has its own peculiarities, coated particle design, large graphite quantities, different materials and high temperatures that also require other simulation requirements. The IAEA has therefore launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling (UAM) in 2013 to study uncertainty propagation specifically in the HTGR analysis chain. Two benchmark problems are defined, with the prismatic design represented by the General Atomics (GA) MHTGR-350 and a 250 MW modular pebble bed design similar to the HTR-PM (INET, China). This report summarizes the contributions of the HTGR Methods Simulation group at Idaho National Laboratory (INL) up to this point of the CRP. The activities at INL have been focused so far on creating the problem specifications for the prismatic design, as well as providing reference solutions for the exercises defined for Phase I. An overview is provided of the HTGR UAM objectives and scope, and the detailed specifications for Exercises I-1, I-2, I-3 and I-4 are also included here for completeness. The main focus of the report is the compilation and discussion of reference results for Phase I (i.e. for input parameters at their nominal or best-estimate values), which is defined as the first step of the uncertainty quantification process. These reference results can be used by other CRP participants for comparison with other codes or their own reference

  4. NNSA / IAEA VVER reactor safety workshops. May 2002 - April 2003. Executive summary.

    SciTech Connect

    Evans, M.; Petri, M. C.

    2003-07-29

    Over the past year, the U.S. National Nuclear Security Administration (NNSA) has sponsored four workshops to compare the probabilistic risk assessments (PRAs) of Soviet-designed VVER power plants. The ''International Workshop on Safety of First-Generation VVER-440 Nuclear Power Plants'' was held on May 20-25, 2002, in Piestany, Slovakia. A short follow-on workshop was held in Bratislava, Slovakia, on November 5-6, 2002, to complete the work begun in May. Piestany was the location also for the ''International Workshop on Safety of Second-Generation VVER-440 Nuclear Power Plants'' (September 9-14, 2002) and the ''International Workshop on Safety of VVER-1000 Nuclear Power Plants'' (April 7-12, 2003). The four workshops were held in cooperation with the International Atomic Energy Agency (IAEA), the Nuclear Regulatory Authority of Slovakia (UJD), the Center for Nuclear Safety in Central and Eastern Europe (CENS), and Argonne National Laboratory (ANL). The objectives of the workshops were to identify the impact of the improvements on the core damage frequency; the contribution to the PRA results of different assumptions about events that can occur at the plants; and to understand, identify, and prioritize potential improvements in hardware and plant operation of VVER nuclear power plants. These objectives were achieved based on insights gained from recent PRAs completed by the plants and their technical support organizations. Nine first-generation VVER-440 plants (nominally of the VVER-440/230 design) are currently operating in Armenia, Bulgaria, Russia, and Slovakia. Sixteen VVER-440/213 plants are currently operating in the Czech Republic, Hungary, Russia, Slovakia, and Ukraine. Twenty-three VVER-1000 plants are currently operating in Bulgaria, the Czech Republic, Russia, and Ukraine. Eleven addition plants are in the advanced stages of construction in various parts of the world. The workshops reviewed the current configuration and safety status of each plant

  5. Opening remarks for panel discussion on ''clarifying the role of the IAEA''

    SciTech Connect

    Parsick, R.J.

    1983-07-01

    The IAEA is part of a larger picture conducive to non-proliferation. The IAEA helps to set and maintain an environment in which the vast number of States advocate nonproliferation and allow and cooperate with inspections in loco and in which individual States do not advocate acquiring nuclear weapons. This international norm of behaviour with respect to non-proliferation provides a clear distinction between those States which have accepted safeguards on all present and future nuclear activities, those which have accepted safeguards only on all present nuclear activities and those which have accepted safeguards on only some of their present nuclear activities. Those very few States, if any, which might consider violating their safeguards agreements are deterred from doing so because many of the diversion possibilities and concealment methods, especially those which would be otherwise relatively easy for a potential divertor to use, cannot be attempted without a significant probability of early detection by the IAEA safeguards system. The combination of the genuine interests of individual States to forego nuclear weapons, States' acceptance of treaty obligations and of safeguards agreements, and the IAEA's safeguards activities contributes to the successful regime of non-proliferation of nuclear weapons.

  6. Safety of evolutionary and innovative nuclear reactors: IAEA activities and world efforts

    SciTech Connect

    Saito, T.; Gasparini, M.

    2004-07-01

    'Defence in Depth' approach constitutes the basis of the IAEA safety standards for nuclear power plants. Lessons learned from the current generation of reactors suggest that, for the next generation of reactor designs, the Defence in Depth philosophy should be retained, and that its implementation should be guided by the probabilistic insights. Recent developments in the area of general safety requirements based on Defence in Depth approach are examined and summarized. Global efforts to harmonize safety requirements for evolutionary nuclear power plants have involved many countries and organizations such as IAEA, US EPRI and European Utility EUR Organization. In recent years, developments of innovative nuclear power plants are also being discussed. The IAEA is currently developing a safety approach specifically for innovative nuclear reactors. This approach will eventually lead to a proposal of safety requirements for innovative reactors. Such activities related to safety requirements of evolutionary and innovative reactors are introduced. Various evolutionary and innovative reactor designs are reported in the world. The safety design features of evolutionary large LWRs, innovative LWRs, Modular High Temperature Gas Reactors and Small Liquid Metal Cooled LMRs are also introduced. Enhanced safety features proposed in such reactors are discussed and summarized according to the levels of Defence in Depth. For future nuclear plants, international cooperation and harmonization, especially in the area of safety, appear to be inevitable. Based on the past experience with many member states, the IAEA believes itself to be the uniquely positioned international organization to play this key role. (authors)

  7. Implementation of IAEA /1/INT/054 Project in Nuclear Analytical Techniques Group of Argentina: Current State

    SciTech Connect

    Sara, Resnizky; Rita, Pla; Alba, Zaretzky

    2008-08-14

    This paper presents the implementation of the training received through the IAEA Project 'Preparation of Reference Materials and Organization of Proficiency Tests Rounds' in the Nuclear Analytical (NAT) Group of CNEA. Special emphasis is done on those activities related to the first Proficiency Test being carried out by the NAT Group.

  8. The US Support Program to IAEA Safeguards Priority of Training and Human Resources

    SciTech Connect

    Queirolo,A.

    2008-06-13

    The U.S. Support Program to IAEA Safeguards (USSP) priority of training and human resources is aimed at providing the Department of Safeguards with an appropriate mixture of regular staff and extrabudgetary experts who are qualified to meet the IAEA's technical needs and to provide personnel with appropriate instruction to improve the technical basis and specific skills needed to perform their job functions. The equipment and methods used in inspection activities are unique, complex, and evolving. New and experienced safeguards inspectors need timely and effective training to perform required tasks and to learn new skills prescribed by new safeguards policies or agreements. The role of the inspector has changed from that of strictly an accountant to include that of a detective. New safeguards procedures are being instituted, and therefore, experienced inspectors must be educated on these new procedures. The USSP also recognizes the need for training safeguards support staff, particularly those who maintain and service safeguards equipment (SGTS), and those who perform information collection and analysis (SGIM). The USSP is committed to supporting the IAEA with training to ensure the effectiveness of all staff members and will continue to offer its assistance in the development and delivery of basic, refresher, and advanced training courses. This paper will discuss the USSP ongoing support in the area of training and IAEA staffing.

  9. Secretary of Energy Steven Chu speaks to the 2009 IAEA General Conference delegation

    SciTech Connect

    Secretary Chu

    2009-09-15

    On Sept. 14, 2009, U.S. Secretary of Energy Steven Chu addressed the 2009 IAEA General Conference delegation. Chu is the first Cabinet official to discuss President Obama's nuclear security and nonproliferation agenda outside the United States since the President delivered his landmark speech in Prague in April 2009.

  10. Secretary of Energy Steven Chu speaks to the 2009 IAEA General Conference delegation

    ScienceCinema

    Secretary Chu

    2010-09-01

    On Sept. 14, 2009, U.S. Secretary of Energy Steven Chu addressed the 2009 IAEA General Conference delegation. Chu is the first Cabinet official to discuss President Obama's nuclear security and nonproliferation agenda outside the United States since the President delivered his landmark speech in Prague in April 2009.

  11. 23rd IAEA Fusion Energy Conference: Summary Of Sessions EX/C and ICC

    SciTech Connect

    Richard J. Hawryluk

    2011-01-05

    An overview is given of recent experimental results in the areas of innovative confinement concepts, operational scenarios and confinement experiments as presented at the 2010 IAEA Fusion Energy Conference. Important new findings are presented from fusion devices worldwide, with a strong focus towards the scientific and technical issues associated with ITER and W7-X devices, presently under construction.

  12. Laboratory Tests

    MedlinePlus

    ... Home Medical Devices Products and Medical Procedures In Vitro Diagnostics Lab Tests Laboratory Tests Share Tweet Linkedin ... Approved Home and Lab Tests Find All In Vitro Diagnostic Products and Decision Summaries Since November 2003 ...

  13. Opportunities to more fully utilize safeguards information reported to the IAEA at Gas Centrifuge Enrichment Plants

    SciTech Connect

    Garner, James R; Whitaker, J Michael

    2015-01-01

    In an effort to increase transparency and to strengthen IAEA safeguards, more countries are adopting practices that provide the IAEA with more timely, safeguards-relevant information to confirm nuclear operations are as declared. At Gas Centrifuge Enrichment Plants (GCEPs) potential examples include installing unattended IAEA instruments that transmit selected information back to Vienna, instruments that collect and store measurement information on-site, and daily facility operator submissions of material receipts, shipments, or utilization of key operational systems (e.g., UF6 feed stations) to on-site mail boxes. Recently the IAEA has implemented the use of on-site mailbox systems supplemented with short notice or unannounced inspections to maintain effectiveness without significantly increasing the number of inspection days. While these measures significantly improves the IAEA’s effectiveness, we have identified several opportunities for how the use of this information could be improved and how some additional information would further improve safeguards. This paper presents concepts for how the safeguards information currently collected at GCEPs could be more effectively utilized through enhancing the way that raw data is displayed visually so that it is more intuitive to the inspector and provides for more effective inspection planning and execution, comparing information with previous IAEA inspection activities (lists of previous verified inventory), through comparing data with operator supplied data when inspectors arrive (notional inventory change reports), and through evaluating the data over time to provide even greater confidence in the data and operations as declared in between inspections. This paper will also discuss several potential improvements to the submissions themselves, such as including occupancy information about product and tails stations and including weight information for each station.

  14. PREFACE: 15th Latin American Workshop on Plasma Physics (LAWPP 2014) and 21st IAEA TM on Research Using Small Fusion Devices (RUSFD)

    NASA Astrophysics Data System (ADS)

    Iván Vargas-Blanco, V.; Herrera-Velázquez, J. Julio E.

    2015-03-01

    small laboratory size fusion experiments, as compared to those of the larger laboratories, to report about their latest achievements working with medium size and small scale tokamaks, stellarators, compact tori, dense plasma focus, reversed field pinches, helical devices, linear machines, and other small plasma devices. The Technical Meeting aims at stimulating new synergies which can contribute to better streamline the research outputs to the mainstream fusion research. Previous meetings in the series were held in Budapest, Hungary (1985), Nagoya, Japan (1986), Nice, France (1988), Washington DC, USA (1990), Hefei, China (1991), Wuerzburg, Germany (1992), Campinas, Brazil (1993), Madrid, Spain (1994), Ahmedabad, India (1995), Prague, Czech Republic (1996), Cairo, Egypt (1997), Tokyo, Japan (1998) in Chengdu, China (1999), São Paulo, Brazil (2002), Vienna, Austria (2003) in Mexico City, Mexico (2005), Lisbon, Portugal (2007), in Alushta, Ukraine (2008), Kurchatov, Kazakhstan (2009) and Vienna, Austria (2011). The 1st Costa Rican Summer School on Plasma Physics was held a week before the Joint LAWPP 2014 - 21st IAEA TM RUSFD, and the 2nd Latin American Workshop on Industrial Applications of Plasma Technology (AITP) was organized in parallel with the it. The objective of the AITP Workshop is to enhance the regional academic and industrial cooperation in the field of plasma assisted surface technology. The Joint LAWPP 2014 - 21st IAEA TM RUSFD was held at the Crowne Plaza Corobici Hotel in San José from 27 to 31 January 2014. The LAWPP scientific programme, which was spread along the whole week, had 15 invited speakers, 126 participants from 20 countries around the world. It included 7 plenary talks, 8 invited talks and 12 oral contributed papers were chosen out of 92 submissions. 82 contributions in 25 topics were presented in poster sessions on Monday 27, Tuesday 28 and Thursday 30 January 2014. The 21st IAEA TM RUSFD was held along the LAWPP 2014 from 27 to 29 January

  15. The IAEA coordinated research programme on the performance of high-level, waste forms and packages under repository conditions

    SciTech Connect

    Tsyplenkov, V.S.

    1993-12-31

    The IAEA initiated, in 1991, a Coordinated Research Programme (CRP), with the aim of promoting the exchange of information on the results obtained by different countries in the performance of high-level waste forms and waste packages under conditions relevant to final repository. These studies are being undertaken to obtain reliable data as input to safety assessments and environmental impact analyses, for final disposal purposes. The CRP includes studies on waste forms that are presently of interest worldwide: borosilicate glass, Synroc and spent fuel. Ten laboratories leading in investigation of high-level waste form performance have already joined the programme. The results of their studies and plans for future research were presented at the first Research Coordination Meeting, held in Karlsruhe, Germany, in November 1991. The technical contributions concentrated on effecting an understanding of dissolution mechanisms of waste forms under simulated repository conditions. A quantitative interpretation of the chemical processes in the near field is considered a prerequisite for long-term predictions and for the formulation of a {open_quotes}source term{close_quotes} for performance assessment studies.

  16. Comparison of linear accelerator photon outputs from the IAEA TRS-398 and TRS-277 codes of practice.

    PubMed

    Fourie, O L

    2008-03-01

    Megavoltage linac photon outputs are determined using the IAEA TRS-398 and TRS-277 codes of practice and the results compared. It is found that for two types of thimble chambers the contributions to absorbed dose to water due to the two codes of practice are comparable and it is suggested that observed differences are mainly due to the different standards used to determine ND,W and NK calibration coefficients at a standards laboratory. A method is proposed to determine a priori the expected difference between absorbed dose to water from the two codes of practice. The contribution to the difference that depends on the respective codes is expressed by a code dependent factor fC. It is shown that for Wellhöfer FC65-G and NE 2571 ionisation chambers this factor is largely independent of beam quality. To calculate the expected shift in absorbed dose to water when moving from TRS-277 to TRS-398, an fC. value which is representative of the range of beam qualities in the clinic is calculated and multiplied by the ratio ND,W/NK. PMID:18488961

  17. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur

    NASA Astrophysics Data System (ADS)

    Ding, T.; Valkiers, S.; Kipphardt, H.; De Bièvre, P.; Taylor, P. D. P.; Gonfiantini, R.; Krouse, R.

    2001-09-01

    Calibrated values have been obtained for sulfur isotope abundance ratios of sulfur isotope reference materials distributed by the IAEA (Vienna). For the calibration of the measurements, a set of synthetic isotope mixtures were prepared gravimetrically from high purity Ag 2S materials enriched in 32S, 33S, and 34S. All materials were converted into SF 6 gas and subsequently, their sulfur isotope ratios were measured on the SF 5+ species using a special gas source mass spectrometer equipped with a molecular flow inlet system (IRMM's Avogadro II amount comparator). Values for the 32S/ 34S abundance ratios are 22.650 4(20), 22.142 4(20), and 23.393 3(17) for IAEA-S-1, IAEA-S-2, and IAEA-S-3, respectively. The calculated 32S/ 34S abundance ratio for V-CDT is 22.643 6(20), which is very close to the calibrated ratio obtained by Ding et al. (1999). In this way, the zero point of the VCDT scale is anchored firmly to the international system of units SI. The 32S/ 33S abundance ratios are 126.942(47), 125.473(55), 129.072(32), and 126.948(47) for IAEA-S-1, IAEA-S-2, IAEA-S-3, and V-CDT, respectively. In this way, the linearity of the V-CDT scale is improved over this range. The values of the sulfur molar mass for IAEA-S-1 and V-CDT were calculated to be 32.063 877(56) and 32.063 911(56), respectively, the values with the smallest combined uncertainty ever reported for the sulfur molar masses (atomic weights).

  18. Marked disequilibrium between 234Th and 230Th of the 238U natural radioactive decay chain in IAEA reference materials n. 312, 313 and 314.

    PubMed

    Colaianni, A; D'Erasmo, G; Pantaleo, A; Schiavulli, L

    2011-02-01

    A new laboratory for the spectroscopy of natural radioactivity with a good energy resolution is presented. It consists of two distinct parts equipped, respectively, the first one with a HpGe γ-ray detector, whose setup has been already completed, and the second one with large area Silicon α-ray detectors and a radiochemical section for thin α-samples preparation, whose setup is yet in progress and will be the argument of a separate work. The γ-ray spectrometer was calibrated by means of IAEA Reference Materials n. 312, 313, 314 and 375. A large difference from the predictions of secular equilibrium emerged between the activities of (234)Th and (230)Th in Materials n. 312, 313 and 314. PMID:21195514

  19. Laboratory Buildings.

    ERIC Educational Resources Information Center

    Barnett, Jonathan

    The need for flexibility in science research facilities is discussed, with emphasis on the effect of that need on the design of laboratories. The relationship of office space, bench space, and special equipment areas, and the location and distribution of piping and air conditioning, are considered particularly important. This building type study…

  20. Laboratory diagnosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the first major goals of the microbiology laboratory is to isolate or detect clinically significant microorganisms from an affected site and, if more than one type of microorganism is present, to isolate them in approximately the same ratio as occurs in vivo. Whether an isolate is “clinically...

  1. Progresses in tritium accident modelling in the frame of IAEA EMRAS II

    SciTech Connect

    Galeriu, D.; Melintescu, A.

    2015-03-15

    The assessment of the environmental impact of tritium release from nuclear facilities is a topic of interest in many countries. In the IAEA's Environmental Modelling for Radiation Safety (EMRAS I) programme, progresses for routine releases were done and in the EMRAS II programme a dedicated working group (WG 7 - Tritium Accidents) focused on the potential accidental releases (liquid and atmospheric pathways). The progresses achieved in WG 7 were included in a complex report - a technical document of IAEA covering both liquid and atmospheric accidental release consequences. A brief description of the progresses achieved in the frame of EMRAS II WG 7 is presented. Important results have been obtained concerning washout rate, the deposition on the soil of HTO and HT, the HTO uptake by leaves and the subsequent conversion to OBT (organically bound tritium) during daylight. Further needs of the processes understanding and the experimental efforts are emphasised.

  2. NOTE: Monte Carlo simulation of correction factors for IAEA TLD holders

    NASA Astrophysics Data System (ADS)

    Hultqvist, Martha; Fernández-Varea, José M.; Izewska, Joanna

    2010-03-01

    The IAEA standard thermoluminescent dosimeter (TLD) holder has been developed for the IAEA/WHO TLD postal dose program for audits of high-energy photon beams, and it is also employed by the ESTRO-QUALity assurance network (EQUAL) and several national TLD audit networks. Factors correcting for the influence of the holder on the TL signal under reference conditions have been calculated in the present work from Monte Carlo simulations with the PENELOPE code for 60Co γ-rays and 4, 6, 10, 15, 18 and 25 MV photon beams. The simulation results are around 0.2% smaller than measured factors reported in the literature, but well within the combined standard uncertainties. The present study supports the use of the experimentally obtained holder correction factors in the determination of the absorbed dose to water from the TL readings; the factors calculated by means of Monte Carlo simulations may be adopted for the cases where there are no measured data.

  3. A method for comparing impacts with real targets to impacts onto the IAEA unyielding target

    SciTech Connect

    Ammerman, D. J.

    1991-01-01

    The severity of the IAEA accident conditions test requirement (IAEA 1990) of an impact onto an essentially unyielding target from a drop height of 9 meters encompasses a large fraction of all real world impacts. This is true, in part, because of the unyielding nature of the impact target. Impacts onto the unyielding target have severities equivalent to higher velocity impacts onto real targets which are not unyielding. The severity of impacts with yielding targets is decreased by the amount of the impact energy absorbed in damaging the target. In demonstrating the severity of the regulatory impact event it is advantageous to be able to relate this impact onto an essentially unyielding target to impacts with yielding targets.

  4. Use of IAEA's phase-space files for virtual source model implementation: Extension to large fields.

    PubMed

    Rucci, Alexis; Carletti, Claudia; Cravero, Walter; Strbac, Bojan

    2016-08-01

    In a previous work, phase-space data files (phsp) provided by the International Atomic Energy Agency (IAEA) were used to develop a hybrid virtual source model (VSM) for clinical photon beams. Very good agreement with dosimetric measurements performed on linear accelerators was obtained for field sizes up to 15×15cm(2). In the present work we extend the VSM to larger field sizes, for which phsp are not available. We incorporate a virtual flattening filter to our model, which can be determined from dose measurements for larger fields. In this way a fully functional VSM can be built, from publicly available IAEA's phsps and standard dose measurements, for fields of any size and tailored to a particular linac. PMID:27423827

  5. Neutron activation analysis of NBS oyster tissue (SRM 1566) and IAEA animal bone (H-5)

    SciTech Connect

    Lepel, E.A.; Laul, J.C.

    1983-10-01

    Data have been presented for 35 elements determined by INAA for NBS oyster tissue (SRM 1566) and for 38 elements determined by INAA and RNAA for IAEA animal bone (H-5). The experimental data showed excellent agreement with published values wherever the comparison exists. Additional trace-element data in the ppb range have been presented for the elements Sc, Sb, Cs, La, Ce, Nd, Sm, Eu, Tb, Dy, Ho, Yb, Lu, Hf, Ta, W and Th in NBS oyster tissue. Also, additional trace-element data for IAEA animal bone (H-5) in the ppb range for the elements Al, Sc, Co, Rb, Cs, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Tm, Yb, lu, Hf, Ta and Th have been presented.

  6. The US Support Program Assistance to the IAEA Safeguards Information Technology, Collection, and Analysis 2008

    SciTech Connect

    Tackentien,J.

    2008-06-12

    One of the United States Support Program's (USSP) priorities for 2008 is to support the International Atomic Energy Agency's (IAEA) development of an integrated and efficient safeguards information infrastructure, including reliable and maintainable information systems, and effective tools and resources to collect and analyze safeguards-relevant information. The USSP has provided funding in support of this priority for the ISIS Re-engineering Project (IRP), and for human resources support to the design and definition of the enhanced information analysis architecture project (nVision). Assistance for several other information technology efforts is provided. This paper will report on the various ongoing support measures undertaken by the USSP to support the IAEA's information technology enhancements and will provide some insights into activities that the USSP may support in the future.

  7. Towards a tactical nuclear weapons treaty? Is There a Role of IAEA Tools of Safeguards?

    SciTech Connect

    Saunders, Emily C.; Rowberry, Ariana N.; Fearey, Bryan L.

    2012-07-12

    In recent years, there is growing interest in formal negotiations on non-strategic or tactical nuclear weapons. With the negotiations of New START, there has been much speculation that a tactical nuclear weapons treaty should be included in the follow on to New START. This paper examines the current policy environment related to tactical weapons and some of the issues surrounding the definition of tactical nuclear weapons. We then map out the steps that would need to be taken in order to begin discussions on a tactical nuclear weapons treaty. These steps will review the potential role of the IAEA in verification of a tactical nuclear weapons treaty. Specifically, does IAEA involvement in various arms control treaties serve as a useful roadmap on how to overcome some of the issues pertaining to a tactical nuclear weapons treaty?

  8. The nuclear energy-nonproliferation link and what the IAEA can do now.

    SciTech Connect

    Duggan, Ruth Ann; Sellers, Tommy Alvin; Ellis, Doris E.

    2006-01-01

    Projections of the World Bank indicate that world energy demand is increasing and may more than double by 2050. Several political leaders have recognised the importance of nuclear energy to meet growing energy needs. Indeed, availability of a secure, economically viable energy source is a major factor in the developing world's progress. This expansion, with the potential spread of sensitive material and technology that could be used to develop nuclear weapons, reinforces the need for a comprehensive strategy to counter or mitigate the proliferation risks. The International Atomic Energy Agency (IAEA) is qualified to lead in developing and promoting a systems approach to enrich and integrate the wide range of national and international efforts required to manage this risk. This paper addresses specific actions that the IAEA, with other bilateral and multilateral efforts, could undertake to facilitate the expansion of nuclear energy while managing security risks.

  9. Lunar laboratory

    SciTech Connect

    Keaton, P.W.; Duke, M.B.

    1986-01-01

    An international research laboratory can be established on the Moon in the early years of the 21st Century. It can be built using the transportation system now envisioned by NASA, which includes a space station for Earth orbital logistics and orbital transfer vehicles for Earth-Moon transportation. A scientific laboratory on the Moon would permit extended surface and subsurface geological exploration; long-duration experiments defining the lunar environment and its modification by surface activity; new classes of observations in astronomy; space plasma and fundamental physics experiments; and lunar resource development. The discovery of a lunar source for propellants may reduce the cost of constructing large permanent facilities in space and enhance other space programs such as Mars exploration. 29 refs.

  10. Private sector involvement in the US program of technical assistance to IAEA safeguards

    SciTech Connect

    Pepper, S.E.; Epel, L.; Maise, G.; Reisman, A.; Skalyo, J.

    1995-12-01

    The US Program of Technical Assistance to IAEA Safeguards (POTAS) relies on technical expertise found in the U. S private and public sectors. Since 1993, the international Safeguards Project Office (ISPO) has sought to increase the role of the private sector in POTAS. ISPO maintains and continues to develop a database of US companies interested in providing technical expertise to the IAEA. This database is used by ISPO to find appropriate contractors to respond to IAEA requests for technical assistance when the assistance can be provided by the private sector. The private sector is currently providing support in the development of equipment, training, and procedure preparation. POTAS also supports the work of private consultants. This paper discusses ISPO`s efforts to identify suitable vendors and discusses conditions that hinder more substantial involvement by the private sector. In addition, the paper will discuss selected projects that are currently in progress and identify common problems that impede the progress and success of tasks performed by the private sector.

  11. [IAEA Training Course Series TCS-37 Clinical Training of Medical Physicists Specializing in Radiation Oncology].

    PubMed

    Imamura, Kiyonari

    2015-01-01

    Training program IAEA TCS-37 (Training course series No.37) "Clinical Training of Medical Physicists Specializing in Radiation Oncology (2009)" was fixed to practical training syllabus at faculty and graduate course of medical physics of a university. TCS-47 for diagnostic radiology (2010) and TCS-50 for nuclear medicine (2011) were also involved in the syllabus. These training courses had been developed by IAEA RCA RAS6038 project since 2002. In this paper, first, comparison with other training programs in the world was made in terms of (1) Degree of extent of subject or field, (2) Concreteness or specificity, (3) Degree of completion, (4) Method of certification and (5) Practicability. IAEA TCS series got the most points among ten programs such as EMERALD/EMIT, AAPM rpt.No.90 and CAMPEP accredited programs. Second, TCS-37, TCS47 and TCS50 were broken down to 6, 5 and 6 subjects of training course respectively. Third, each subject was further broken down to 15 times of training schedule where every time was composed by 3 hours of training. Totally 45 hours of a subject were assigned to one semester for getting one unit of credit. Seventeen units should be credited up to three years in graduate course to finish the whole program. PMID:26882699

  12. Training of interventional cardiologists in radiation protection--the IAEA's initiatives.

    PubMed

    Rehani, Madan M

    2007-01-01

    The International Atomic Energy Agency (IAEA) has initiated a major international initiative to train interventional cardiologists in radiation protection as a part of its International Action Plan on the radiological protection of patients. A simple programme of two days' training has been developed, covering possible and observed radiation effects among patients and staff, international standards, dose management techniques, examples of good and bad practice and examples indicating prevention of possible injuries as a result of good practice of radiation protection. The training material is freely available on CD from the IAEA. The IAEA has conducted two events in 2004 and 2005 and number of events are planned in 2006. The survey conducted among the cardiologists participating in these programmes indicates that over 80% of them were attending such a structured programme on radiation protection for the first time. As the magnitude of X-ray usage in cardiology grows to match that in interventional radiology, the standards of training on radiation effects, radiation physics and radiation protection in interventional cardiology should also match those in interventional radiology. PMID:16624432

  13. Fostering applications of neutron scattering techniques in developing countries: IAEA's role

    NASA Astrophysics Data System (ADS)

    Paranjpe, Shriniwas K.; Mank, G.; Ramamoorthy, N.

    2006-11-01

    Over the last 60 years research reactors have played an important role in technological and socio-economical development of mankind. Neutron scattering has been the workhorse for research and development in materials science. Developing countries with moderate flux research reactors have also been involved in using this technique. The reactors and the facilities around them have a large potential for applications, while their under-utilization has been a concern for many member states. The International Atomic Energy Agency (IAEA) has been supporting its member states in the enhancement of utilization of their research reactors. Technical meetings focussing on the area of current interests with potential applications are organized under the project on “effective utilization of research reactors,” e.g. on residual stress measurement, neutron reflectometry. Coordinated research projects (CRPs) bring together scientists from developed and developing countries, build collaborations, and exchange expertise and technology. The CRPs on research reactor utilization include topics like development of small-angle neutron scattering applications and development of sources and imaging systems for neutron radiography. New CRPs on the measurement of residual stress and accelerator-driven neutron sources will be initiated soon. The results from these meetings of CRPs are published as technical documents of the IAEA that would act as guidelines for capacity building for research reactor managers. This paper will present some of the salient features of IAEA activities in promoting research reactor utilization.

  14. IAEA activities on atomic, molecular and plasma-material interaction data for fusion

    NASA Astrophysics Data System (ADS)

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2013-09-01

    The IAEA Atomic and Molecular Data Unit (http://www-amdis.iaea.org/) aims to provide internationally evaluated and recommended data for atomic, molecular and plasma-material interaction (A+M+PMI) processes in fusion research. The Unit organizes technical meetings and coordinates an A+M Data Centre Network (DCN) and a Code Centre Network (CCN). In addition the Unit organizes Coordinated Research Projects (CRPs), for which the objectives are mixed between development of new data and evaluation and recommendation of existing data. In the area of A+M data we are placing new emphasis in our meeting schedule on data evaluation and especially on uncertainties in calculated cross section data and the propagation of uncertainties through structure data and fundamental cross sections to effective rate coefficients. Following a recent meeting of the CCN it is intended to use electron scattering on Be, Ne and N2 as exemplars for study of uncertainties and uncertainty propagation in calculated data; this will be discussed further at the presentation. Please see http://www-amdis.iaea.org/CRP/ for more on our active and planned CRPs, which are concerned with atomic processes in core and edge plasma and with plasma interaction with beryllium-based surfaces and with irradiated tungsten.

  15. IAEA Activities in the Area of Safety Analysis and Accident Management

    SciTech Connect

    Lee, S.; El-Shanawany, M.

    2006-07-01

    Safety analysis is a means of demonstrating how critical safety functions, the integrity of barriers against the release of radioactive materials, and various other safety requirements are fulfilled for a broad range of operating conditions and initiating events. Accordingly, performing safety analysis for a nuclear power plant is one of the most important safety principles. Thermal-hydraulic computer codes are extensively used worldwide for safety analysis by utilities, regulatory authorities, power plant designers and vendors, nuclear fuel companies, research organizations, and technical support organizations. Safety analysis methodology and computer codes have seen a significant development over the last two decades. This fact is also reflected in the work of the International Atomic Energy Agency (IAEA) that aims at increasing the quality and international harmonization of the approaches used in safety analysis. The paper provides an overview of activities and of examples of results obtained recently or planned in the near future in the IAEA's Division of Nuclear Installation Safety in the field of safety analysis for both design basis accidents and beyond design basis accidents as well as accident management. In this paper, specific technical guidance on the safety assessments in the IAEA Safety Standards such as safety analysis methodologies, probabilistic safety assessment, and development of accident management programmes are described. Future trends and related activities in safety analysis and accident management are also introduced. (authors)

  16. Preliminary considerations on developing IAEA technical safeguards for LMFBR power systems

    SciTech Connect

    Persiani, P. J.

    1980-09-01

    Nuclear fuel cycles safeguards should be considered in the dynamic context of a world deployment of various reactor types and varying availability of fuel-cycle services. There will be a close interaction between thermal-reactor cycles and the future deployment of fast breeders. The quantitites of plutonium and the reprocessing, conversion, fabrication, and storage methods of the fuel for the fast breeders will have a significant impact on safeguards techniques. The approach to the fast breeder fuel cycle safeguards follows the general safeguards system approach proposed by the IAEA. Objective of IAEA safeguards is the detection of diversion of nuclear material and deterrence of such diversion. To achieve independent verification of material balance accountancy requires the capability to monitor inventory status and verify material flows and quantities of all nuclear materials subject to safeguards. Containment and surveillance measures are applied to monitor key measurement points, maintain integrity of material balance, and complement material accountancy. The safeguards study attempts to develop a generic reference IAEA Safeguards System and explores various system options using containment/surveillance and material accountancy instrumentation and integrated systems designs.

  17. Technical results of Y-12/IAEA field trial of remote monitoring system

    SciTech Connect

    Corbell, B.H.; Whitaker, J.M.; Welch, J.

    1997-08-01

    A Remote Monitoring System (RMS) field trial has been conducted with the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. The RMS included a variety of Sandia, Oak Ridge, and Aquila sensor technologies which provide containment seals, video monitoring, radiation asset measurements, and container identification data to the on-site DAS (Data Acquisition System) by way of radio-frequency and Echelon LonWorks networks. The accumulated safeguards information was transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines. The technologies tested in the remote monitoring environment are the RadCouple, RadSiP, and SmartShelf sensors from the ORSENS (Oak Ridge Sensors for Enhancing Nuclear Safeguards) technologies; the AIMS (Authenticated Item Monitoring System) motion sensor (AMS), AIMS fiber-optic seal (AFOS), ICAM (Image Compression and Authentication Module) video surveillance system, DAS (Data Acquisition System), and DIRS (Data and Image Review Station) from Sandia; and the AssetLAN identification tag, VACOSS-S seal, and Gemini digital surveillance system from Aquila. The field trial was conducted from October 1996 through May 1997. Tests were conducted during the monthly IAEA Interim Inventory Verification (IIV) inspections for evaluation of the equipment. Experience gained through the field trials will allow the technologies to be applied to various monitoring scenarios.

  18. Sections prepared for inclusion in an IAEA technical document handbook on Designing and Implementing a Physical Protection System

    SciTech Connect

    Snell, Mark K.

    2015-11-01

    Two major sections were drafted (each with several subsections) for the IAEA dealing with designing and implementing a Physical Protection System (PPS). Areas addressed were Search Systems and the evaluation of PPS effectiveness.

  19. The Mailbox Computer System for the IAEA verification experiment on HEU downlending at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect

    Aronson, A.L.; Gordon, D.M.

    2000-07-31

    IN APRIL 1996, THE UNITED STATES (US) ADDED THE PORTSMOUTH GASEOUS DIFFUSION PLANT TO THE LIST OF FACILITIES ELIGIBLE FOR THE APPLICATION OF INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA) SAFEGUARDS. AT THAT TIME, THE US PROPOSED THAT THE IAEA CARRY OUT A ''VERIFICATION EXPERIMENT'' AT THE PLANT WITH RESPECT TO DOOWNBLENDING OF ABOUT 13 METRIC TONS OF HIGHLY ENRICHED URANIUM (HEU) IN THE FORM OF URANIUM HEXAFLUROIDE (UF6). DURING THE PERIOD DECEMBER 1997 THROUGH JULY 1998, THE IAEA CARRIED OUT THE REQUESTED VERIFICATION EXPERIMENT. THE VERIFICATION APPROACH USED FOR THIS EXPERIMENT INCLUDED, AMONG OTHER MEASURES, THE ENTRY OF PROCESS-OPERATIONAL DATA BY THE FACILITY OPERATOR ON A NEAR-REAL-TIME BASIS INTO A ''MAILBOX'' COMPUTER LOCATED WITHIN A TAMPER-INDICATING ENCLOSURE SEALED BY THE IAEA.

  20. Seal Wire Integrity Verification Instrument: Evaluation of Laboratory Prototypes

    SciTech Connect

    Good, Morris S.; Skorpik, James R.; Kravtchenko, Victor; Wishard, Bernard; Prince, James M.; Pardini, Allan F.; Heasler, Patrick G.; Santiago-Rojas, Emiliano; Mathews, Royce; Khayyat, Sakher; Tanner, Jennifer E.; Undem, Halvor A.

    2009-10-07

    Tamper indicating devices (TIDs) provide evidence that sensitive items, to which they have been applied, have been tampered with or not. Passive wire-loop seals, a class of TIDs, are generally comprised of a multi-strand seal wire that is threaded through or around key features and a unique seal body that captures and restrains the seal wire. Seal integrity resides with unique identification of the seal and the integrity of the seal body and the seal wire. Upon inspection, the seal wire may be cut and the full length inspected. A new seal may be applied in the field as a replacement, if desired. Seal wire inspection typically requires visual and tactile examinations, which are both subjective. A need therefore exists to develop seal wire inspection technology that is easy to use in the field, is objective, provides an auditable data trail, and has low error rates. Expected benefits, if successfully implemented, are improved on-site inspection reliability and security. The work scope for this effort was restricted to integrity of seal wire used by the International Atomic Energy Agency (IAEA) and resulted in development of a wire integrity verification instrument (WIVI) laboratory prototype. Work included a performance evaluation of a laboratory-bench-top system, and design and delivery of two WIVI laboratory prototypes. The paper describes the basic physics of the eddy current measurement, a description of the WIVI laboratory prototype, and an initial evaluation performed by IAEA personnel. --- Funding was provided by the U.S. Program for Technical Assistance to IAEA Safeguards (POTAS).

  1. A comparison of the PARET/ANL and RELAP5/MOD3 codes for the analysis of IAEA benchmark transients

    SciTech Connect

    Woodruff, W.L.; Hanan, N.A.; Smith, R.S.; Matos, J.E.

    1996-12-31

    The PARET/ANL and RELAP5/MOD3 codes are used to analyze the series of benchmark transients specified for the IAEA Research Reactor Core Conversion Guidebook (IAEA-TECDOC-643, Vol. 3). The computed results for these loss-of-flow and reactivity insertion transients with scram are in excellent agreement and agree well with the earlier results reported in the guidebook. Attempts to also compare RELAP5/MOD3 with the SPERT series of experiments are in progress.

  2. IAEA Inspections for Undeclared and Declared Activities: Is a More Robust Approach Needed?

    SciTech Connect

    Mark Schanfein

    2009-07-01

    The United States has long supported a strong international safeguards system and for many years has served as the foremost supplier of technology, equipment, and training to the International Atomic Energy Agency (IAEA). In doing so, it drew in many instances on DOE sponsored R&D and training that was directed towards domestic safeguards and then adapted for IAEA purposes. This was relatively straightforward because of the strong overlap between the development of nuclear material accountancy measures needed for both domestic and international purposes. Two factors have emerged that have made this strong reliance on domestic measures less and less able to be a source of support for the IAEA. One is the shift by the IAEA safeguards system towards detecting undeclared activities. The second is the shift of domestic attention away from nuclear material accountancy and towards physical protection. As a result, a gap in US sponsored R&D and training relevant to international safeguards has developed. The NNSA Next Generation Safeguards Initiative and the DOE NA-22 Safeguards R&D program are intended to help fill this gap and, thereby, permit the U.S. to remain as the pre-eminent supplier of technology for international safeguards purposes. In this context, IAEA challenges have been examined from the perspective of detecting the diversion of nuclear material from declared stocks; detecting undeclared production of nuclear material and activities at locations declared under INFCIRC/153; and detecting undeclared nuclear material and activities elsewhere in a state. Of these, the detection of undeclared nuclear material and activities is, perhaps, the IAEA’s most significant challenge. It is a challenge that even the international community finds difficult to meet because of the scope and the geographic scale of the problem, the technical constraints, the knowledge required, and the significant resources needed to deploy effective systems world-wide (e.g., satellite

  3. A long-term performance evaluation of the gamma-ray activity measurement laboratory in CPST, Lithuania.

    PubMed

    Gudelis, A; Gorina, I; Butkus, P; Nedveckaitė, T

    2014-05-01

    The quality control procedures used for two HPGe detectors (a well-type and a GAMMA-X coaxial) are described. Since 2001, check sources containing (137)Cs have been measured weekly for 7200s each, and the gamma-ray spectrometry system background was determined once per month for an acquisition time of 100,000 s. The laboratory participated in the international comparisons at environmental radioactivity level organized by the IAEA, Risø National Laboratory and NPL. PMID:24315285

  4. Laboratory Activities

    SciTech Connect

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNL’s Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package – in preparation). Sediment samples and characterization results from PNNL’s Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  5. Laboratory investigations

    NASA Technical Reports Server (NTRS)

    Russell, Ray W.

    1988-01-01

    Laboratory studies related to cometary grains and the nuclei of comets can be broken down into three areas which relate to understanding the spectral properties, the formation mechanisms, and the evolution of grains and nuclei: (1) Spectral studies to be used in the interpretation of cometary spectra; (2) Sample preparation experiments which may shed light on the physical nature and history of cometary grains and nuclei by exploring the effects on grain emissivities resulting from the ways in which the samples are created; and (3) Grain processing experiments which should provide insight on the interaction of cometary grains with the environment in the immediate vicinity of the cometary nucleus as the comet travels from the Oort cloud through perihelion, and perhaps even suggestions regarding the relationship between interstellar grains and cometary matter. A summary is presented with a different view of lab experiments than is found in the literature, concentrating on measurement techniques and sample preparations especially relevant to cometary dust.

  6. International contributions to IAEA-NEA heat transfer databases for supercritical fluids

    SciTech Connect

    Leung, L. K. H.; Yamada, K.

    2012-07-01

    An IAEA Coordinated Research Project on 'Heat Transfer Behaviour and Thermohydraulics Code Testing for SCWRs' is being conducted to facilitate collaboration and interaction among participants from 15 organizations. While the project covers several key technology areas relevant to the development of SCWR concepts, it focuses mainly on the heat transfer aspect, which has been identified as the most challenging. Through the collaborating effort, large heat-transfer databases have been compiled for supercritical water and surrogate fluids in tubes, annuli, and bundle subassemblies of various orientations over a wide range of flow conditions. Assessments of several supercritical heat-transfer correlations were performed using the complied databases. The assessment results are presented. (authors)

  7. Department of Energy Efforts to Promote Universal Adherence to the IAEA Additional Protocol

    SciTech Connect

    Killinger, Mark H.; Hansen, Linda H.; Kovacic, Don N.; VanSickle, Matthew; Apt, Kenneth E.

    2009-10-06

    Entry-into-force of the U.S. Additional Protocol (AP) in January 2009 continues to demonstrate the ongoing commitment by the United States to promote universal adherence to the AP. The AP is a critical tool for improving the International Atomic Energy Agency’s (IAEA) capabilities to detect undeclared activities that indicate a clandestine nuclear weapons program. This is because States Parties are required to provide information about, and access to, nuclear fuel cycle activities beyond their traditional safeguards reporting requirements. As part of the U.S. AP Implementation Act and Senate Resolution of Ratification, the Administration is required to report annually to Congress on measures taken to achieve the adoption of the AP in non-nuclear weapon states, as well as assistance to the IAEA to promote the effective implementation of APs in those states. A key U.S. effort in this area is being managed by the International Nuclear Safeguards and Engagement Program (INSEP) of the U.S. Department of Energy (DOE). Through new and existing bilateral cooperation agreements, INSEP has initiated technical assistance projects for AP implementation with selected non-weapon states. States with which INSEP is currently cooperating include Vietnam and Thailand, with Indonesia, Algeria, Morocco, and other countries as possible future collaborators in the area of AP implementation. The INSEP collaborative model begins with a joint assessment with our partners to identify specific needs they may have regarding entering the AP into force and any impediments to successful implementation. An action plan is then developed detailing and prioritizing the necessary joint activities. Such assistance may include: advice on developing legal frameworks and regulatory documents; workshops to promote understanding of AP requirements; training to determine possible declarable activities; assistance in developing a system to collect and submit declarations; performing industry outreach to

  8. Neutron activation analysis of NBS oyster tissue (SRM 1566) and IAEA animal bone (H-5)

    SciTech Connect

    Lepel, E.A.; Laul, J.C.

    1984-03-01

    Instrumental and radiochemical neutron activation analysis (INAA and RNAA) were employed to measure about 37 major, minor, and trace elements in two standard reference materials: oyster tissue (SRM 1566) supplied by the National Bureau of Standards (NBS) and animal bone (H-5) supplied by the International Atomic Energy Agency (IAEA). Wherever the comparison exists, our data show excellent agreement with accepted values for each SRM. These SRM's are useful as reference standards for the analysis of biological materials. Additionally, the chondritic normalized rare earth element pattern of animal bone behaves as a smooth function of the ionic radii, as previously observed for biological materials.

  9. Experiences using IAEA Code of practice for radiation sterilization of tissue allografts: Validation and routine control

    NASA Astrophysics Data System (ADS)

    Hilmy, N.; Febrida, A.; Basril, A.

    2007-11-01

    Problems of tissue allografts in using International Standard (ISO) 11137 for validation of radiation sterilization dose (RSD) are limited and low numbers of uniform samples per production batch, those are products obtained from one donor. Allograft is a graft transplanted between two different individuals of the same species. The minimum number of uniform samples needed for verification dose (VD) experiment at the selected sterility assurance level (SAL) per production batch according to the IAEA Code is 20, i.e., 10 for bio-burden determination and the remaining 10 for sterilization test. Three methods of the IAEA Code have been used for validation of RSD, i.e., method A1 that is a modification of method 1 of ISO 11137:1995, method B (ISO 13409:1996), and method C (AAMI TIR 27:2001). This paper describes VD experiments using uniform products obtained from one cadaver donor, i.e., cancellous bones, demineralized bone powders and amnion grafts from one life donor. Results of the verification dose experiments show that RSD is 15.4 kGy for cancellous and demineralized bone grafts and 19.2 kGy for amnion grafts according to method A1 and 25 kGy according to methods B and C.

  10. International Atomic Energy Agency (IAEA) Coordinated Research Projects on Structural Integrity of Reactor Pressure Vessels

    SciTech Connect

    Server, W. L.; Nanstad, Randy K

    2009-01-01

    The International Atomic Energy Agency (IAEA) has conducted a series of Coordinated Research Projects (CRPs) that have focused on irradiated reactor pressure vessel (RPV) steel fracture toughness properties and approaches for assuring structural integrity of RPVs throughout operating life. A series of nine CRPs have been sponsored by the IAEA, starting in the early 1970s, focused on neutron radiation effects on RPV steels. The purpose of the CRPs was to develop comparisons and correlations to test the uniformity of irradiated results through coordinated international research studies and data sharing. Consideration of dose rate effects, effects of alloying (nickel, manganese, silicon, etc.) and residual elements (eg., copper and phosphorus), and drop in upper shelf toughness are also important for assessing neutron embrittlement effects. The ultimate use of embrittlement understanding is assuring structural integrity of the RPV under current and future operation and accident conditions. Material fracture toughness is the key ingredient needed for this assessment, and many of the CRPs have focused on measurement and application of irradiated fracture toughness. This paper presents an overview of the progress made since the inception of the CRPs in the early 1970s. The chronology and importance of each CRP have been reviewed and put into context for continued and long-term safe operation of RPVs.

  11. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    SciTech Connect

    Yamada, K.; Aksan, S. N.

    2012-07-01

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present, 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)

  12. International Conference on Advances in Radiation Oncology (ICARO): Outcomes of an IAEA Meeting

    PubMed Central

    2011-01-01

    The IAEA held the International Conference on Advances in Radiation Oncology (ICARO) in Vienna on 27-29 April 2009. The Conference dealt with the issues and requirements posed by the transition from conventional radiotherapy to advanced modern technologies, including staffing, training, treatment planning and delivery, quality assurance (QA) and the optimal use of available resources. The current role of advanced technologies (defined as 3-dimensional and/or image guided treatment with photons or particles) in current clinical practice and future scenarios were discussed. ICARO was organized by the IAEA at the request of the Member States and co-sponsored and supported by other international organizations to assess advances in technologies in radiation oncology in the face of economic challenges that most countries confront. Participants submitted research contributions, which were reviewed by a scientific committee and presented via 46 lectures and 103 posters. There were 327 participants from 70 Member States as well as participants from industry and government. The ICARO meeting provided an independent forum for the interaction of participants from developed and developing countries on current and developing issues related to radiation oncology. PMID:21294881

  13. Preparing the 1993--94 Safeguards Implementation Support Programme for IAEA

    SciTech Connect

    Green, L.

    1993-08-01

    The 1993-94 Safeguards Implementation Support (IS) Program describes the Department of Safeguards` program of implementation support for the coming two years. The main body of the document describes the IS program for IAEA. A detailed description of the individual IS needs for 1993-1994 is contained in an annex that specifies the nee, assigns priorities and lists tasks and activities underway to address the need. Other annexes address policy and procedures for program planning and management, current Member State Support Programs (MSSP) tasks, and identification of MSSP resources required for implementation of developed technologies that could be provided. The primary responsibility for supporting the implementation of safeguards technology is with the support divisions of the Department of Safeguards. However, in this time of limited resources it is essential that, where possible, the Department receives assistance from MSSPs that have the needed resources. This document should serve as a guide for IAEA, in planning implementation support activities and for identifying tasks for MSSPs wishing to provide assistance.

  14. Stronger Efforts are Needed to Improve the Control of Radioactive Sources: An IAEA Perspective

    SciTech Connect

    Heard, R.; Friedrich, V.; Czarwinski, R.; Behan, C.

    2008-07-01

    High activity radioactive sources provide great benefit to humanity through their utilization in agriculture, industry, medicine, research and education, and the vast majority is used in well-controlled environments. None-the-less, control has been lost over a small fraction of those sources resulting in accidents of which some had serious - even fatal - consequences. In order to improve the existing situation, concerted national and international efforts are needed and, to some degree, are being implemented to strengthen the safety and security of sources in use, as well as to improve the control of disused sources located at numerous facilities throughout the world. More efforts must also be made to identify, recover, and bring into control vulnerable and orphan sources. The IAEA has been involved in efforts to bring about better control of radioactive sources for many years but since the events of September 2001 the amount of effort put into this area has increased considerably. This paper highlights IAEA work in this regard. This paper also discusses in some detail the overall nature of the problem with regards to disused sources and points out how there is still much to do in both improving the existing situation and ensuring the sustainability of control over radioactive sources for the future. (authors)

  15. Pantak Therapax SXT 150: performance assessment and dose determination using IAEA TRS-398 protocol.

    PubMed

    Jurado, D; Eudaldo, T; Carrasco, P; Jornet, N; Ruiz, A; Ribas, M

    2005-08-01

    The performance assessment and beam characteristics of the Therapax SXT 150 unit, which encompass both low and medium-energy beams, were evaluated. Dose determination was carried out by implementing the International Atomic Energy Agency (IAEA) TRS-398 protocol and measuring all the dosimetric parameters in order to have a solid, consistent and reliable data set for the unit. Mechanical movements, interlocks and applicator characteristics agreed with specifications. The timer exhibited good accuracy and linearity. The output was very stable, with good repeatability, long-term reproducibility and no dependence on tube head orientation. The measured dosimetric parameters included beam first and second half-value layers (HVLs), absorbed dose rate to water under reference conditions, central axis depth dose distributions, output factors and beam profiles. Measured first HVLs agreed with comparable published data, but the homogeneity coefficients were low in comparison with typical values found in the literature. The timer error was significant for all filters and should be taken into consideration for the absorbed dose rate determination under reference conditions as well as for the calculation of treatment times. Percentage depth-dose (PDD) measurements are strongly recommended for each filter-applicator combination. The output factor definition of the IAEA TRS-398 protocol for medium-energy X-ray qualities involves the use of data that is difficult to measure. Beam profiles had small penumbras and good symmetry and flatness except for the lowest energy beam, for which a heel effect was observed. PMID:16046424

  16. ELECTRONICS UPGRADE TO THE SAVANNAH RIVER NATIONAL LABORATORY COULOMETER FOR PLUTONIUM AND NEPTUNIUM ASSAY

    SciTech Connect

    Cordaro, J.; Holland, M.; Reeves, G.; Nichols, S.; Kruzner, A.

    2011-07-08

    The Savannah River Site (SRS) has the analytical measurement capability to perform high-precision plutonium concentration measurements by controlled-potential coulometry. State-of-the-art controlled-potential coulometers were designed and fabricated by the Savannah River National Laboratory and installed in the Analytical Laboratories process control laboratory. The Analytical Laboratories uses coulometry for routine accountability measurements of and for verification of standard preparations used to calibrate other plutonium measurement systems routinely applied to process control, nuclear safety, and other accountability applications. The SRNL Coulometer has a demonstrated measurement reliability of {approx}0.05% for 10 mg samples. The system has also been applied to the characterization of neptunium standard solutions with a comparable reliability. The SRNL coulometer features: a patented current integration system; continuous electrical calibration versus Faraday's Constants and Ohm's Law; the control-potential adjustment technique for enhanced application of the Nernst Equation; a wide operating room temperature range; and a fully automated instrument control and data acquisition capability. Systems have been supplied to the International Atomic Energy Agency (IAEA), Russia, Japanese Atomic Energy Agency (JAEA) and the New Brunswick Laboratory (NBL). The most recent vintage of electronics was based on early 1990's integrated circuits. Many of the components are no longer available. At the request of the IAEA and the Department of State, SRNL has completed an electronics upgrade of their controlled-potential coulometer design. Three systems have built with the new design, one for the IAEA which was installed at SAL in May 2011, one system for Los Alamos National Laboratory, (LANL) and one for the SRS Analytical Laboratory. The LANL and SRS systems are undergoing startup testing with installation scheduled for this summer.

  17. Analysis of IAEA Environmental Samples for Plutonium and Uranium by ICP/MS in Support Of International Safeguards

    SciTech Connect

    Farmer, Orville T.; Olsen, Khris B.; Thomas, May-Lin P.; Garofoli, Stephanie J.

    2008-05-01

    A method for the separation and determination of total and isotopic uranium and plutonium by ICP-MS was developed for IAEA samples on cellulose-based media. Preparation of the IAEA samples involved a series of redox chemistries and separations using TRU® resin (Eichrom). The sample introduction system, an APEX nebulizer (Elemental Scientific, Inc), provided enhanced nebulization for a several-fold increase in sensitivity and reduction in background. Application of mass bias (ALPHA) correction factors greatly improved the precision of the data. By combining the enhancements of chemical separation, instrumentation and data processing, detection levels for uranium and plutonium approached high attogram levels.

  18. IAEA CRP on HTGR Uncertainty Analysis: Benchmark Definition and Test Cases

    SciTech Connect

    Gerhard Strydom; Frederik Reitsma; Hans Gougar; Bismark Tyobeka; Kostadin Ivanov

    2012-11-01

    Uncertainty and sensitivity studies are essential elements of the reactor simulation code verification and validation process. Although several international uncertainty quantification activities have been launched in recent years in the LWR, BWR and VVER domains (e.g. the OECD/NEA BEMUSE program [1], from which the current OECD/NEA LWR Uncertainty Analysis in Modelling (UAM) benchmark [2] effort was derived), the systematic propagation of uncertainties in cross-section, manufacturing and model parameters for High Temperature Reactor (HTGR) designs has not been attempted yet. This paper summarises the scope, objectives and exercise definitions of the IAEA Coordinated Research Project (CRP) on HTGR UAM [3]. Note that no results will be included here, as the HTGR UAM benchmark was only launched formally in April 2012, and the specification is currently still under development.

  19. Nuclear data for radiotherapy: Presentation of a new ICRU report and IAEA initiatives

    SciTech Connect

    Chadwick, M.B.; Jones, D.T.L.; Barschall, H.H.

    1998-09-01

    An ICRU report entitled ''Nuclear Data for neutron and Proton Radiotherapy and for Radiation Protection'' is in preparation. The present paper presents an overview of this report, along with examples of some of the results obtained for evaluated nuclear cross sections and kerma coefficients. These cross sections are evaluated using a combination of measured data and the GNASH nuclear model code for elements of importance for biological, dosimetric, beam modification and shielding purposes. In the case of hydrogen both R-matrix and phase-shift scattering theories are used. In the report neutron cross sections and kerma coefficients will be presented up to 100 MeV and proton cross sections up to 250 MeV. An IAEA Consultants' Meeting was also convened to examine the ''Status of Nuclear Data needed for Radiation Therapy and Existing Data Development Activities in Member States''. Recommendations were made regarding future endeavors.

  20. Activities of the IAEA in the area of radioactive waste management

    NASA Astrophysics Data System (ADS)

    Efremenkov, V. M.

    1999-01-01

    The International Atomic Energy Agency’s (IAEA) organizational structure and activities in the field of predisposal radioactive waste managemen are described. The present activities undertaken by the Agency’s Waste Technology Section and Waste Safety Section are outlined, with the emphasis to the technical assistance to the Member States and the technology development for safe waste management practices. The three main types of documents produced by the Agency for disseminating safety requirements and rules and the technical information to the Member States are listed. The Agency’s involvement in organizing/sponsoring conferences, coordinating research programmes, providing assistance on technical projects and training of staff on waste management subjects is detailed.

  1. A new Certified Reference Material for radionuclides in Irish sea sediment (IAEA-385).

    PubMed

    Pham, M K; Sanchez-Cabeza, J A; Povinec, P P; Andor, K; Arnold, D; Benmansour, M; Bikit, I; Carvalho, F P; Dimitrova, K; Edrev, Z H; Engeler, C; Fouche, F J; Garcia-Orellana, J; Gascó, C; Gastaud, J; Gudelis, A; Hancock, G; Holm, E; Legarda, F; Ikäheimonen, T K; Ilchmann, C; Jenkinson, A V; Kanisch, G; Kis-Benedek, G; Kleinschmidt, R; Koukouliou, V; Kuhar, B; Larosa, J; Lee, S-H; Lepetit, G; Levy-Palomo, I; Liong Wee Kwong, L; Llauradó, M; Maringer, F J; Meyer, M; Michalik, B; Michel, H; Nies, H; Nour, S; Oh, J-S; Oregioni, B; Palomares, J; Pantelic, G; Pfitzner, J; Pilvio, R; Puskeiler, L; Satake, H; Schikowski, J; Vitorovic, G; Woodhead, D; Wyse, E

    2008-11-01

    A new Certified Reference Material (CRM) for radionuclides in sediment (IAEA-385) is described and the results of the certification process are presented. Eleven radionuclides ((40)K, (137)Cs, (226)Ra, (228)Ra, (230)Th, (232)Th, (234)U, (238)U, (238)Pu, (239+240)Pu and (241)Am) have been certified and information mass activities with 95% confidence intervals are given for seven other radionuclides ((90)Sr, (210)Pb((210)Po), (235)U, (239)Pu, (240)Pu and (241)Pu). Results for less frequently reported radionuclides ((60)Co, (99)Tc, (134)Cs, (155)Eu, (224)Ra and (239)Np) and information on some activity and mass ratios are also reported. The CRM can be used for quality assurance/quality control of the analysis of radionuclides in sediment samples, for the development and validation of analytical methods and for training purposes. PMID:18513984

  2. Databases and coordinated research projects at the IAEA on atomic processes in plasmas

    SciTech Connect

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2012-05-25

    The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint work towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.

  3. Certified Reference Material IAEA-446 for radionuclides in Baltic Sea seaweed.

    PubMed

    Pham, M K; Benmansour, M; Carvalho, F P; Chamizo, E; Degering, D; Engeler, C; Gascó, C; Gwynn, J P; Harms, A V; Hrnecek, E; Ibanez, F L; Ilchmann, C; Ikaheimonen, T; Kanisch, G; Kloster, M; Llaurado, M; Mauring, A; Møller, B; Morimoto, T; Nielsen, S P; Nies, H; Norrlid, L D R; Pettersson, H B L; Povinec, P P; Rieth, U; Samuelsson, C; Schikowski, J; Silobritiene, B V; Smedley, P A; Suplinska, M; Vartti, V-P; Vasileva, E; Wong, J; Zalewska, T; Zhou, W

    2014-05-01

    A Certified Reference Material (CRM) for radionuclides in seaweed (Fucus vesiculosus) from the Baltic Sea (IAEA-446) is described and the results of the certification process are presented. The (40)K, (137)Cs, (234)U and (239+240)Pu radionuclides were certified for this material, and information values for 12 other radionuclides ((90)Sr, (99)Tc, (210)Pb ((210)Po), (226)Ra, (228)Ra, (228)Th, (230)Th, (232)Th, (235)U, (238)U, (239)Pu and (240)Pu) are presented. The CRM can be used for Quality Assurance/Quality Control of analysis of radionuclides in seaweed and other biota samples, as well as for development and validation of analytical methods, and for training purposes. PMID:24291528

  4. Databases and coordinated research projects at the IAEA on atomic processes in plasmas

    NASA Astrophysics Data System (ADS)

    Braams, Bastiaan J.; Chung, Hyun-Kyung

    2012-05-01

    The Atomic and Molecular Data Unit at the IAEA works with a network of national data centres to encourage and coordinate production and dissemination of fundamental data for atomic, molecular and plasma-material interaction (A+M/PMI) processes that are relevant to the realization of fusion energy. The Unit maintains numerical and bibliographical databases and has started a Wiki-style knowledge base. The Unit also contributes to A+M database interface standards and provides a search engine that offers a common interface to multiple numerical A+M/PMI databases. Coordinated Research Projects (CRPs) bring together fusion energy researchers and atomic, molecular and surface physicists for joint work towards the development of new data and new methods. The databases and current CRPs on A+M/PMI processes are briefly described here.

  5. Using the IAEA Safety Culture Model as a Basis for Security Culture

    SciTech Connect

    De Castro, Kara; Thurmond, Paul; de Boer, Gloria; Mladineo, Stephen V.

    2008-08-01

    In the last ten years, the practice of nuclear material physical protection control and accounting (MPC&A) in Russia has significantly changed. Under the cooperative US-Russian MPC&A Program, the MPC&A Culture Project team has developed the fundamentals of a pilot program to strengthen MPC&A Culture at nuclear sites. The pilot program is based on the IAEA Safety Culture Principles and Model Characteristics. There has been some debate on how easily these are transferable to Security Culture. While there may be operational differences, culture characteristics remain the same. This paper will compare and contrast the two cultures of Safety and Security, taking into consideration the unique characteristics of each discipline.

  6. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    SciTech Connect

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team

  7. MANAGING UNCERTAINTIES ASSOCIATED WITH RADIOACTIVE WASTE DISPOSAL: TASK GROUP 4 OF THE IAEA PRISM PROJECT

    SciTech Connect

    Seitz, R.

    2011-03-02

    It is widely recognized that the results of safety assessment calculations provide an important contribution to the safety arguments for a disposal facility, but cannot in themselves adequately demonstrate the safety of the disposal system. The safety assessment and a broader range of arguments and activities need to be considered holistically to justify radioactive waste disposal at any particular site. Many programs are therefore moving towards the production of what has become known as a Safety Case, which includes all of the different activities that are conducted to demonstrate the safety of a disposal concept. Recognizing the growing interest in the concept of a Safety Case, the International Atomic Energy Agency (IAEA) is undertaking an intercomparison and harmonization project called PRISM (Practical Illustration and use of the Safety Case Concept in the Management of Near-surface Disposal). The PRISM project is organized into four Task Groups that address key aspects of the Safety Case concept: Task Group 1 - Understanding the Safety Case; Task Group 2 - Disposal facility design; Task Group 3 - Managing waste acceptance; and Task Group 4 - Managing uncertainty. This paper addresses the work of Task Group 4, which is investigating approaches for managing the uncertainties associated with near-surface disposal of radioactive waste and their consideration in the context of the Safety Case. Emphasis is placed on identifying a wide variety of approaches that can and have been used to manage different types of uncertainties, especially non-quantitative approaches that have not received as much attention in previous IAEA projects. This paper includes discussions of the current results of work on the task on managing uncertainty, including: the different circumstances being considered, the sources/types of uncertainties being addressed and some initial proposals for approaches that can be used to manage different types of uncertainties.

  8. On the status of IAEA delta-13C stable isotope reference materials.

    NASA Astrophysics Data System (ADS)

    Assonov, Sergey; Groening, Manfred; Fajgelj, Ales

    2016-04-01

    For practical reasons all isotope measurements are performed on relative scales realized through the use of international, scale-defining primary standards. In fact these standards were materials (artefacts, similar to prototypes of meter and kg) selected based on their properties. The VPDB delta-13C scale is realised via two highest-level reference materials NBS19 and LSVEC, the first defining the scale and the second aimed to normalise lab-to-lab calibrations. These two reference materials (RMs) have been maintained and distributed by IAEA and NIST. The priority task is to maintain these primary RMs at the required uncertainty level, thus ensuring the long-term scale consistency. The second task is to introduce replacements when needed (currently for exhausted NBS19, work in progress). The next is to produce a family of lower level RMs (secondary, tertiary) addressing needs of various applications (with different delta values, in different physical-chemical forms) and their needs for the uncertainty; these RMs should be traceable to the highest level RMs. Presently three is a need for a range of RMs addressing existing and newly emerging analytical techniques (e.g. optical isotopic analysers) in form of calibrated CO2 gases with different delta-13C values. All that implies creating a family of delta-13C stable isotope reference materials. Presently IAEA works on replacement for NBS19 and planning new RMs. Besides, we found that LSVEC (introduced as second anchor for the VPDB scale in 2006) demonstrate a considerable scatter of its delta-13C value which implies a potential bias of the property value and increased value uncertainty which may conflict with uncertainty requirements for atmospheric monitoring. That is not compatible with the status of LSVEC, and therefore it should be replaced as soon as possible. The presentation will give an overview of the current status, the strategic plan of developments and the near future steps.

  9. The role of IAEA in coordinating research and transferring technology in radiation chemistry and processing of polymers

    NASA Astrophysics Data System (ADS)

    Haji-Saeid, M.; Sampa, M. H.; Ramamoorthy, N.; Güven, O.; Chmielewski, A. G.

    2007-12-01

    The IAEA has been playing a significant role in fostering developments in radiation technology in general and radiation processing of polymers in particular, among its Member States (MS) and facilitate know-how/technology transfer to developing MS. The former is usually achieved through coordinated research projects (CRP) and thematic technical meetings, while the latter is mainly accomplished through technical cooperation (TC) projects. Coordinated research projects encourage research on, and development and practical application of, radiation technology to foster exchange of scientific and technical information. The technical cooperation (TC) programme helps Member States to realize their development priorities through the application of appropriate radiation technology. The IAEA has implemented several coordinated research projects (CRP) recently, including one on-going project, in the field of radiation processing of polymeric materials. The CRPs facilitated the acquisition and dissemination of know-how and technology for controlling of degradation effects in radiation processing of polymers, radiation synthesis of stimuli-responsive membranes, hydrogels and absorbents for separation purposes and the use of radiation processing to prepare biomaterials for applications in medicine. The IAEA extends cooperation to well-known international conferences dealing with radiation technology to facilitate participation of talented scientists from developing MS and building collaborations. The IAEA published technical documents, covering the findings of thematic technical meetings (TM) and coordinated research projects have been an important source of valuable practical information.

  10. Numerical modeling of the radionuclide water pathway with HYDRUS and comparison with the IAEA model of SR 44.

    PubMed

    Merk, Rainer

    2012-02-01

    This study depicts a theoretical experiment in which the radionuclide transport through the porous material of a landfill consisting of concrete rubble (e.g., from the decommissioning of nuclear power plants) and the subsequent migration through the vadose zone and aquifer to a model well is calculated by means of the software HYDRUS-1D (Simunek et al., 2008). The radionuclides originally contained within the rubble become dissolved due to leaching caused by infiltrated rainwater. The resulting well-water contamination (in Bq/L) is calculated numerically as a function of time and location and compared with the outcome of a simplified analytic model for the groundwater pathway published by the IAEA (2005). Identical model parameters are considered. The main objective of the present work is to evaluate the predictive capacity of the more simple IAEA model using HYDRUS-1D as a reference. For most of the radionuclides considered (e.g., ¹²⁹I, and ²³⁹Pu), results from applying the IAEA model were found to be comparable to results from the more elaborate HYDRUS modeling, provided the underlying parameter values are comparable. However, the IAEA model appears to underestimate the effects resulting from, for example, high nuclide mobility, short half-life, or short-term variations in the water infiltration. The present results indicate that the IAEA model is suited for screening calculations and general recommendation purposes. However, the analysis of a specific site should be accompanied by detailed HYDRUS computer simulations. In all models considered, the calculation outcome largely depends on the choice of the sorption parameter K(d). PMID:22230022

  11. Chemistry Laboratory Safety Check

    ERIC Educational Resources Information Center

    Patnoe, Richard L.

    1976-01-01

    An accident prevention/safety check list for chemistry laboratories is printed. Included are checks of equipment, facilities, storage and handling of chemicals, laboratory procedures, instruction procedures, and items to be excluded from chemical laboratories. (SL)

  12. [Theme: Using Laboratories.

    ERIC Educational Resources Information Center

    Pritchard, Jack; Braker, Clifton

    1982-01-01

    Pritchard discusses the opportunities for applied learning afforded by laboratories. Braker describes the evaluation of cognitive, affective, and psychomotor skills in the agricultural mechanics laboratory. (SK)

  13. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    SciTech Connect

    Strydom, Gerhard; Bostelmann, F.

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  14. Strengthened IAEA Safeguards-Imagery Analysis: Geospatial Tools for Nonproliferation Analysis

    SciTech Connect

    Pabian, Frank V

    2012-08-14

    This slide presentation focuses on the growing role and importance of imagery analysis for IAEA safeguards applications and how commercial satellite imagery, together with the newly available geospatial tools, can be used to promote 'all-source synergy.' As additional sources of openly available information, satellite imagery in conjunction with the geospatial tools can be used to significantly augment and enhance existing information gathering techniques, procedures, and analyses in the remote detection and assessment of nonproliferation relevant activities, facilities, and programs. Foremost of the geospatial tools are the 'Digital Virtual Globes' (i.e., GoogleEarth, Virtual Earth, etc.) that are far better than previously used simple 2-D plan-view line drawings for visualization of known and suspected facilities of interest which can be critical to: (1) Site familiarization and true geospatial context awareness; (2) Pre-inspection planning; (3) Onsite orientation and navigation; (4) Post-inspection reporting; (5) Site monitoring over time for changes; (6) Verification of states site declarations and for input to State Evaluation reports; and (7) A common basis for discussions among all interested parties (Member States). Additionally, as an 'open-source', such virtual globes can also provide a new, essentially free, means to conduct broad area search for undeclared nuclear sites and activities - either alleged through open source leads; identified on internet BLOGS and WIKI Layers, with input from a 'free' cadre of global browsers and/or by knowledgeable local citizens (a.k.a.: 'crowdsourcing'), that can include ground photos and maps; or by other initiatives based on existing information and in-house country knowledge. They also provide a means to acquire ground photography taken by locals, hobbyists, and tourists of the surrounding locales that can be useful in identifying and discriminating between relevant and non-relevant facilities and their associated

  15. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2015-06-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. PMID:26065785

  16. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2016-03-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. PMID:26851660

  17. Papers arising from IAEA Coordinated Research Project "Utilization of ion accelerators for studying and modelling of radiation induced defects in semiconductors and insulators" (F11016)

    NASA Astrophysics Data System (ADS)

    Vittone, Ettore; Breese, Mark; Simon, Aliz

    2016-04-01

    Within the International Atomic Energy Agency (IAEA) Department of Nuclear Sciences and Applications, activities are carried out to assist and advise IAEA Member States in assessing their needs for capacity building, research and development in nuclear sciences. Support is also provided to Member States' activities geared towards deriving benefits in fields such as (i) advanced materials for nuclear applications, (ii) application of accelerators and associated instrumentation, and (iii) nuclear, atomic and molecular data. One of the means that the IAEA uses to deliver its programme is Coordinated Research Projects (CRPs) which are very effective in stimulating international research and scientific interaction among the Member States.

  18. Laboratory Animal Facilities. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Jonas, Albert M.

    1965-01-01

    Design of laboratory animal facilities must be functional. Accordingly, the designer should be aware of the complex nature of animal research and specifically the type of animal research which will be conducted in a new facility. The building of animal-care facilities in research institutions requires special knowledge in laboratory animal…

  19. Handbook for the implementation of IAEA inspection activities at Department of Energy nuclear facilities

    SciTech Connect

    Zack, N.R.; Thomas, K.E.; Coady, K.J.; Desmond, W.J.

    1997-11-01

    The Nonproliferation Support Program (NSP) in the United States Department of Energy (DOE) Office of Safeguards and Security (OSS) has responsibility for supporting and aiding implementation of international and multilateral programs, agreements, and treaties at domestic facilities. In late 1995, the {open_quotes}Readiness Planning Guide for Nonproliferation Visits{close_quotes} (DOE 470.1-1) was issued to assist DOE sites prepare for the host foreign delegations visiting DOE facilities. Since then, field and head-quarters programs have expressed a need for a document that addresses domestic safeguards and security activities, specifically planning for and hosting International Atomic Energy Agency (IAEA) technical visits and inspections. As a result, OSS/NSP conducted a workshop to prepare a handbook that would contain guidance on domestic safeguards and security preparation and follow-on activities to ensure that this handbook could be utilized by all facilities to improve operational efficiencies and reduce implementation problems. The handbook has been structured to provide detailed background and guidance concerning the obligation, negotiation, inspection, and reporting processes for IAEH safeguards activities in DOE nuclear facilities as well as the lessons-learned by currently inspected facilities and how-we-do-it implementation examples. This paper will present an overview of the preparation and content of this new Handbook.

  20. The 2002 IAEA intercomparison of software for low-level γ-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Arnold, Dirk; Blaauw, Menno; Fazinic, Stjepko; Kolotov, Vladimir P.

    2005-01-01

    The IAEA 2002 set of test spectra for low-level γ-ray spectrometry, reported on in a separate paper, was used in an intercomparison of widely available software packages, i.e. Anges 1.0, GammaVision 5.3, Gamma-W 1.68 for Windows, Ganaas 3.11, Genie2000 2.1, Hyperlab 2002.3.2.18, Interwinner 5.0 and UniSampo 1.97. With each program, efficiency curves were obtained for the two counting geometries (a 500 ml Marinelli beaker on a 33% relative efficiency HPGe detector, and a 100 ml pillbox on a 96.3% HPGe detector) and subsequently used to obtain radionuclide activities for the unknown samples. Both the calibration sources and the unknown samples contained radionuclides giving rise to cascade summing effects. Cascade summing correction factors as obtained with some of these programs, as well as with GESPECOR, were compared directly. After the intercomparison meeting, the activities obtained were compared with the certified activities that had been kept secret until then. In this paper, the results will be presented and suggestions made for further improvement of the software.

  1. Lessons from UNSCOM and IAEA regarding remote monitoring and air sampling

    SciTech Connect

    Dupree, S.A.

    1996-01-01

    In 1991, at the direction of the United Nations Security Council, UNSCOM and IAEA developed plans for On-going Monitoring and Verification (OMV) in Iraq. The plans were accepted by the Security Council and remote monitoring and atmospheric sampling equipment has been installed at selected sites in Iraq. The remote monitoring equipment consists of video cameras and sensors positioned to observe equipment or activities at sites that could be used to support the development or manufacture of weapons of mass destruction, or long-range missiles. The atmospheric sampling equipment provides unattended collection of chemical samples from sites that could be used to support the development or manufacture of chemical weapon agents. To support OMV in Iraq, UNSCOM has established the Baghdad Monitoring and Verification Centre. Imagery from the remote monitoring cameras can be accessed in near-real time from the Centre through RIF communication links with the monitored sites. The OMV program in Iraq has implications for international cooperative monitoring in both global and regional contexts. However, monitoring systems such as those used in Iraq are not sufficient, in and of themselves, to guarantee the absence of prohibited activities. Such systems cannot replace on-site inspections by competent, trained inspectors. However, monitoring similar to that used in Iraq can contribute to openness and confidence building, to the development of mutual trust, and to the improvement of regional stability.

  2. Proceedings of the IAEA specialists` meeting on cracking in LWR RPV head penetrations

    SciTech Connect

    Pugh, C.E.; Raney, S.J.

    1996-07-01

    This report contains 17 papers that were presented in four sessions at the IAEA Specialists` meeting on Cracking in LWR RPV Head Penetrations held at ASTM Headquarters in Philadelphia on May 2-3, 1995. The papers are compiled here in the order that presentations were made in the sessions, and they relate to operational observations, inspection techniques, analytical modeling, and regulatory control. The goal of the meeting was to allow international experts to review experience in the field of ensuring adequate performance of reactor pressure vessel (RPV) heads and penetrations. The emphasis was to allow a better understanding of RPV material behavior, to provide guidance supporting reliability and adequate performance, and to assist in defining directions for further investigations. The international nature of the meeting is illustrated by the fact that papers were presented by researchers from 10 countries. There were technical experts present form other countries who participated in discussions of the results presented. This present document incorporates the final version of the papers as received from the authors. The final chapter includes conclusions and recommendations. Individual papers have been cataloged separately.

  3. IAEA Isotope-enabled coupled catchment-lake water balance model, IWBMIso: description and validation.

    PubMed

    Belachew, Dagnachew Legesse; Leavesley, George; David, Olaf; Patterson, Dave; Aggarwal, Pradeep; Araguas, Luis; Terzer, Stefan; Carlson, Jack

    2016-01-01

    The International Atomic Energy Agency (IAEA) Water Balance Model with Isotopes (IWBMIso) is a spatially distributed monthly water balance model that considers water fluxes and storages and their associated isotopic compositions. It is composed of a lake water balance model that is tightly coupled with a catchment water balance model. Measured isotope compositions of precipitation, rivers, lakes, and groundwater provide data that can be used to make an improved estimate of the magnitude of the fluxes among the model components. The model has been developed using the Object Modelling System (OMS). A variety of open source geographic information systems and web-based tools have been combined to provide user support for (1) basin delineation, characterization, and parameterization; (2) data pre-processing; (3) model calibration and application; and (4) visualization and analysis of model results. In regions where measured data are limited, the model can use freely available global data sets of climate, isotopic composition of precipitation, and soils and vegetation characteristics to create input data files and estimate spatially distributed model parameters. The OMS model engine and support functions, and the spatial and web-based tool set are integrated using the Colorado State University Environmental Risk Assessment and Management System (eRAMS) framework. The IWBMIso can be used to assess the spatial and temporal variability of annual and monthly water balance components for input to water planning and management. PMID:26962894

  4. Certified reference material for radionuclides in fish flesh sample IAEA-414 (mixed fish from the Irish Sea and North Sea).

    PubMed

    Pham, M K; Sanchez-Cabeza, J A; Povinec, P P; Arnold, D; Benmansour, M; Bojanowski, R; Carvalho, F P; Kim, C K; Esposito, M; Gastaud, J; Gascó, C L; Ham, G J; Hegde, A G; Holm, E; Jaskierowicz, D; Kanisch, G; Llaurado, M; La Rosa, J; Lee, S-H; Liong Wee Kwong, L; Le Petit, G; Maruo, Y; Nielsen, S P; Oh, J-S; Oregioni, B; Palomares, J; Pettersson, H B L; Rulik, P; Ryan, T P; Sato, K; Schikowski, J; Skwarzec, B; Smedley, P A; Tarján, S; Vajda, N; Wyse, E

    2006-01-01

    A certified reference material (CRM) for radionuclides in fish sample IAEA-414 (mixed fish from the Irish Sea and North Seas) is described and the results of the certification process are presented. Nine radionuclides (40K, 137Cs, 232Th, 234U, 235U, 238U, 238Pu, 239+240Pu and 241Am) were certified for this material. Information on massic activities with 95% confidence intervals is given for six other radionuclides (90Sr, 210Pb(210Po), 226Ra, 239Pu, 240Pu 241Pu). Less frequently reported radionuclides (99Tc, 129I, 228Th, 230Th and 237Np) and information on some activity and mass ratios are also included. The CRM can be used for quality assurance/quality control of the analysis of radionuclides in fish sample, for the development and validation of analytical methods and for training purposes. The material is available from IAEA, Vienna, in 100 g units. PMID:16549351

  5. Rapid development of tissue bank achieved by International Atomic Energy Agency (IAEA) Tissue Banking Programme in China.

    PubMed

    Zhang, Yu-Min; Wang, Jian-Ru; Zhang, Nai-Li; Liu, Xiao-Ming; Zhou, Mo; Ma, Shao-Ying; Yang, Ting; Li, Bao-Xing

    2014-09-01

    Before 1986, the development of tissue banking in China has been slow and relatively uncoordinated. Under the support of International Atomic Energy Agency (IAEA), Tissue Banking in China experienced rapid development. In this period, China Institute for Radiation Protection tissue bank mastered systematic and modern tissue banking technique by IAEA training course and gradually developed the first regional tissue bank (Shanxi Provincial Tissue Bank, SPTB) to provide tissue allograft. Benefit from training course, SPTB promoted the development of tissue transplantation by ways of training, brochure, advertisement and meeting. Tissue allograft transplantation acquired recognition from clinic and supervision and administration from government. Quality system gradually is developing and perfecting. Tissue allograft transplantation and tissue bank are developing rapidly and healthy. PMID:23959505

  6. Market Research Survey of Commercial Off-The-Shelf (COTS) Portable MS Systems for IAEA Safeguards Applications

    SciTech Connect

    Hart, Garret L.; Hager, George J.; Barinaga, Charles J.; Duckworth, Douglas C.

    2013-02-01

    This report summarizes the results for the market research survey of mass spectrometers that are deemed pertinent to International Atomic Energy Agency (IAEA) needs and strategic objectives. The focus of the report is on MS instruments that represent currently available (or soon to be) commercial off-the shelf (COTS) technology and weigh less than 400 pounds. A compilation of all available MS instruments (36 COTS and 2 R&D) is presented, along with pertinent information regarding each instrument.

  7. US technical assistance to the IAEA and the chemical weapons convection (CWC) - a review and look to the future

    SciTech Connect

    Indusi, J.; Parsick, R.J.; Reisman, A.W.

    1997-08-01

    This paper reviews the Safeguards mandate of the International Atomic Energy Agency (IAEA) and describes U.S. technical support programs. We also review the mandate of the Chemical Weapons Convention (CWC) and speculate on the technical areas where U.S. assistance may prove useful. The IAEA was organized in 1957 in response to President Eisenhower`s {open_quotes}Atoms for Peace{close_quotes} initiative presented to the UN General Assembly on December 8, 1953. The Organization for the Prohibition of Chemical Weapons (OPCW) has been organized by a Preparatory Commission (PREPCOM) to prepare for the entry-into-force of this new convention which prohibits the development, production, stockpiling and use of chemical weapons and on their destruction. The safeguards mandate of the IAEA is to carry out verifications of nuclear material pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and other voluntary but legally binding agreements. U.S. technical support programs have provided and continue to provide assistance in the form of Cost-Free Experts (CFE`s), systems studies on new safeguards approaches, training, computerized information systems, and equipment for nuclear materials measurements and containment and surveillance systems. Because the CWC just recently entered into force (April 29, 1997), verification procedures of the OPCW are not yet fully developed. However, it is expected, and can already be seen for many aspects of the technical task, that there are many similarities between the verification activities of the OPCW and those carried out by the IAEA. This paper will discuss potential technical support areas that can help strengthen the OPCW. 9 refs.

  8. Some lessons of the IAEA's nuclear non-proliferation regime for confidence-building under a greenhouse gas convention

    SciTech Connect

    Feldman, D.L. Tennessee Univ., Knoxville, TN . Energy, Environment and Resources Center)

    1991-01-01

    The IAEA's nuclear non-proliferation regime provides valuable insights into how to enhance the process of negotiations among participants to a greenhouse gas (GHG) convention. IAEA employs an iterative approach to verification that accepts the need for long, arduous negotiations to explore all possible routes to agreement, replicates carefully formulated agreements in more specialized contexts, incorporates scientific and advocacy groups to ensure adaptability to changing economic/political conditions, and uses confidence-building measures that rely on quiet diplomacy and rigorous compliance criteria. Insights from IAEA's nuclear non-proliferation regime for a GHG convention include the need to ensure equality among signatories, provide inclusive participation, place verification activities in small, politically-neutral bodies to resolve anomalies, provide sufficient infrastructure to recruit and train those charged with independent auditing, ensure budgetary independence and non-governmental/intergovernmental organization support, and recognize that successful agreements with detailed rules and regulations generally result from a hierarchical process of negotiations. Signatories to a GHG convention might engage in a symbolic commitment to an international inspection/auditing body with benefits to international education and enhancing awareness of the impact of GHGs. 36 refs.

  9. Hybrid imaging worldwide-challenges and opportunities for the developing world: a report of a Technical Meeting organized by IAEA.

    PubMed

    Kashyap, Ravi; Dondi, Maurizio; Paez, Diana; Mariani, Guliano

    2013-05-01

    The growth in nuclear medicine, in the past decade, is largely due to hybrid imaging, specifically single-photon emission tomography-computed tomography (SPECT-CT) and positron emission tomography-computed tomography (PET-CT). Introduction and use of hybrid imaging has been growing at a fast pace. This has led to many challenges and opportunities to the personnel dealing with it. The International Atomic Energy Agency (IAEA) keeps a close watch on the trends in applications of nuclear techniques in health by many ways, including obtaining inputs from member states and professional societies. In 2012, a Technical Meeting on trends in hybrid imaging was organized by IAEA to understand the current status and trends of hybrid imaging using nuclear techniques, its role in clinical practice, and associated educational needs and challenges. Perspective of scientific societies and professionals from all the regions of the world was obtained. Heterogeneity in value, educational needs, and access was noted and the drivers of this heterogeneity were discussed. This article presents the key points shared during the technical meeting, focusing primarily on SPECT-CT and PET-CT, and shares the action plan for IAEA to deal with heterogeneity as suggested by the participants. PMID:23561459

  10. Implementation of neutron counting techniques at US facilities for IAEA verification of excess materials from nuclear weapons production

    SciTech Connect

    Stewart, J.E.; Krick, M.S.; Langner, D.G.; Reilly, T.D.; Theis, W.; Lemaire, R.J.; Xiao, J.

    1995-08-01

    The U.S. Nonproliferation and Export Control Policy, announced by President Clinton before the United Nations General Assembly on September 27, 1993, commits the U.S. to placing under International Atomic Energy Agency (IAEA) Safeguards excess nuclear materials no longer needed for the U.S. nuclear deterrent. As of July 1, 1995, the IAEA had completed Initial Physical Inventory Verification (IPIV) at two facilities: a storage vault in the Oak Ridge Y-12 plant containing highly enriched uranium (HOW) metal and another storage vault in the Hanford Plutonium Finishing Plant (PFP) containing plutonium oxide and plutonium-bearing residues. Another plutonium- storage vault, located at Rocky Flats, is scheduled for the IPIV in the fall of 1995. Conventional neutron coincidence counting is one of the routinely applied IAEA nondestructive assay (ND) methods for verification of uranium and plutonium. However, at all three facilities mentioned above, neutron ND equipment had to be modified or developed for specific facility needs such as the type and configuration of material placed under safeguards. This document describes those modifications and developments.

  11. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Tethered gravity laboratories study is presented. The following subject areas are covered: variable gravity laboratory; attitude tether stabilizer; configuration analysis (AIT); dynamic analysis (SAO); and work planned for the next reporting period.

  12. An Electronics "Unit Laboratory"

    ERIC Educational Resources Information Center

    Davies, E. R.; Penton, S. J.

    1976-01-01

    Describes a laboratory teaching technique in which a single topic (in this case, bipolar junction transistors) is studied over a period of weeks under the supervision of one staff member, who also designs the laboratory work. (MLH)

  13. Employment at National Laboratories

    SciTech Connect

    E. S. Peterson; C. A. Allen

    2007-04-01

    Scientists enter the National Laboratory System for many different reasons. For some, faculty positions are scarce, so they take staff-scientist position at national laboratories (i.e. Pacific Northwest, Idaho, Los Alamos, and Brookhaven). Many plan to work at the National Laboratory for 5 to 7 years and then seek an academic post. For many (these authors included), before they know it it’s 15 or 20 years later and they never seriously considered leaving the laboratory system.

  14. EPA Environmental Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Environmental Protection Agency's (EPA) Chemistry Laboratory (ECL) is a national program laboratory specializing in residue chemistry analysis under the jurisdiction of the EPA's Office of Pesticide Programs in Washington, D.C. At Stennis Space Center, the laboratory's work supports many federal anti-pollution laws. The laboratory analyzes environmental and human samples to determine the presence and amount of agricultural chemicals and related substances. Pictured, ECL chemists analyze environmental and human samples for the presence of pesticides and other pollutants.

  15. PREFACE: 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers

    NASA Astrophysics Data System (ADS)

    Takizuka, Tomonori

    2008-07-01

    This volume of Journal of Physics: Conference Series contains papers based on invited talks and contributed posters presented at the 11th IAEA Technical Meeting on H-mode Physics and Transport Barriers. This meeting was held at the Tsukuba International Congress Center in Tsukuba, Japan, on 26-28 September 2007, and was organized jointly by the Japan Atomic Energy Agency and the University of Tsukuba. The previous ten meetings in this series were held in San Diego (USA) 1987, Gut Ising (Germany) 1989, Abingdon (UK) 1991, Naka (Japan) 1993, Princeton (USA) 1995, Kloster Seeon (Germany) 1997, Oxford (UK) 1999, Toki (Japan) 2001, San Diego (USA) 2003, and St Petersburg (Russia) 2005. The purpose of the eleventh meeting was to present and discuss new results on H-mode (edge transport barrier, ETB) and internal transport barrier, ITB, experiments, theory and modeling in magnetic fusion research. It was expected that contributions give new and improved insights into the physics mechanisms behind high confinement modes of H-mode and ITBs. Ultimately, this research should lead to improved projections for ITER. As has been the tradition at the recent meetings of this series, the program was subdivided into six topics. The topics selected for the eleventh meeting were: H-mode transition and the pedestal-width Dynamics in ETB: ELM threshold, non-linear evolution and suppression, etc Transport relations of various quantities including turbulence in plasmas with ITB: rotation physics is especially highlighted Transport barriers in non-axisymmetric magnetic fields Theory and simulation on transport barriers Projections of transport barrier physics to ITER For each topic there was an invited talk presenting an overview of the topic, based on contributions to the meeting and on recently published external results. The six invited talks were: A Leonard (GA, USA): Progress in characterization of the H-mode pedestal and L-H transition N Oyama (JAEA, Japan): Progress and issues in

  16. 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems

    SciTech Connect

    Berk, Herbert L.; Breizman, Boris N.

    2014-02-21

    The 12th IAEA Technical Meeting on Energetic Particles in Magnetic Confinement Systems took place in Austin, Texas (7–11 September 2011). This meeting was organized jointly with the 5th IAEA Technical Meeting on Theory of Plasma Instabilities (5–7 September 2011). The two meetings shared one day (7 September 2011) with presentations relevant to both groups. Some of the work reported at these meetings was then published in a special issue of Nuclear Fusion [Nucl. Fusion 52 (2012)]. Summaries of the Energetic Particle Conference presentations were given by Kazuo Toi and Boris Breizman. They respectively discussed the experimental and theoretical progress presented at the meeting. Highlights of this meeting include the tremendous progress that has been achieved in the development of diagnostics that enables the ‘viewing’ of internal fluctuations and allows comparison with theoretical predictions, as demonstrated, for example, in the talks of P. Lauber and M. Osakabe. The need and development of hardened diagnostics in the severe radiation environment, such as those that will exist in ITER, was discussed in the talks of V. Kiptily and V.A. Kazakhov. In theoretical studies, much of the effort is focused on nonlinear phenomena. For example, detailed comparison of theory and experiment on D-III-D on the n = 0 geodesic mode was reported in separate papers by R. Nazikian and G. Fu. A large number of theoretical papers were presented on wave chirping including a paper by B.N. Breizman, which notes that wave chirping from a single frequency may emanate continuously once marginal stability conditions have been established. Another area of wide interest was the detailed study of alpha orbits in a burning plasma, where losses can come from symmetry breaking due to finite coil number or magnetic field imperfections introduced by diagnostic or test modules. An important area of development, covered by M.A. Hole and D.A. Spong, is concerned with the self

  17. Fuel Modelling at Extended Burnup: IAEA Coordinated Research Project FUMEX-II

    SciTech Connect

    Killeen, J.C.; Turnbull, J.A.; Sartori, E.

    2007-07-01

    The International Atomic Energy Agency sponsored a Coordinated Research Project on Fuel Modelling at Extended Burnup (FUMEX-II). Eighteen fuel modelling groups participated with the intention of improving their capabilities to understand and predict the behaviour of water reactor fuel at high burnups. The exercise was carried out in coordination with the OECD/NEA. The participants used a mixture of data derived from actual irradiation histories of high burnup experimental fuel and commercial irradiations where post-irradiation examination measurements are available, combined with idealised power histories intended to represent possible future extended dwell commercial irradiations and test code capabilities at high burnup. All participants have been asked to model nine priority cases out of some 27 cases made available to them for the exercise from the IAEA/OECD International Fuel Performance Experimental Database. Calculations carried out by the participants, particularly for the idealised cases, have shown how varying modelling assumptions affect the high burnup predictions, and have led to an understanding of the requirements of future high burnup experimental data to help discriminate between modelling assumptions. This understanding is important in trying to model transient and fault behaviour at high burnup. It is important to recognise that the code predictions presented here should not be taken to indicate that some codes do not perform well. The codes have been designed for different applications and have differing assumptions and validation ranges; for example codes intended to predict Candu fuel operation with thin wall collapsible cladding do not need the clad creep and gap conductivity modelling found in PWR codes. Therefore, when a case is based on Candu technology or PWR technology, it is to be expected that the codes may not agree. However, it is the very differences in such behaviour that is useful in helping to understand the effects of such

  18. Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project

    SciTech Connect

    Brent Dixon

    2012-09-01

    Thirteen countries participated in the Collaborative Project GAINS “Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle”, which was the primary activity within the IAEA/INPRO Program Area B: “Global Vision on Sustainable Nuclear Energy” for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energy systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.

  19. Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bretz, Stacey Lowery; Fay, Michael; Bruck, Laura B.; Towns, Marcy H.

    2013-01-01

    Forty chemistry faculty from American Chemical Society-approved departments were interviewed to determine their goals for undergraduate chemistry laboratory. Faculty were stratified by type of institution, departmental success with regard to National Science Foundation funding for laboratory reform, and level of laboratory course. Interview…

  20. Laboratory Activities in Israel

    ERIC Educational Resources Information Center

    Mamlok-Naaman, Rachel; Barnea, Nitza

    2012-01-01

    Laboratory activities have long had a distinctive and central role in the science curriculum, and science educators have suggested that many benefits accrue from engaging students in science laboratory activities. Many research studies have been conducted to investigate the educational effectiveness of laboratory work in science education in…

  1. INL Laboratory Scale Atomizer

    SciTech Connect

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  2. Laboratory Equipment Criteria.

    ERIC Educational Resources Information Center

    State Univ. Construction Fund, Albany, NY.

    Requirements for planning, designing, constructing and installing laboratory furniture are given in conjunction with establishing facility criteria for housing laboratory equipment. Furniture and equipment described include--(1) center tables, (2) reagent racks, (3) laboratory benches and their mechanical fixtures, (4) sink and work counters, (5)…

  3. Laboratory Ventilation and Safety.

    ERIC Educational Resources Information Center

    Steere, Norman V.

    1965-01-01

    In order to meet the needs of both safety and economy, laboratory ventilation systems must effectively remove air-borne toxic and flammable materials and at the same time exhaust a minimum volume of air. Laboratory hoods are the most commonly used means of removing gases, dusts, mists, vapors, and fumed from laboratory operations. To be effective,…

  4. Theme: Laboratory Instruction.

    ERIC Educational Resources Information Center

    Bruening, Thomas H.; And Others

    1992-01-01

    A series of theme articles discuss setting up laboratory hydroponics units, the school farm at the Zuni Pueblo in New Mexico, laboratory experiences in natural resources management and urban horticulture, the development of teaching labs at Derry (PA) High School, management of instructional laboratories, and industry involvement in agricultural…

  5. Los Alamos National Laboratory.

    ERIC Educational Resources Information Center

    Hammel, Edward F., Jr.

    1982-01-01

    Current and post World War II scientific research at the Los Alamos National Laboratory (New Mexico) is discussed. The operation of the laboratory, the Los Alamos consultant program, and continuation education, and continuing education activities at the laboratory are also discussed. (JN)

  6. Laboratory Turnaround Time

    PubMed Central

    Hawkins, Robert C

    2007-01-01

    Turnaround time (TAT) is one of the most noticeable signs of laboratory service and is often used as a key performance indicator of laboratory performance. This review summarises the literature regarding laboratory TAT, focusing on the different definitions, measures, expectations, published data, associations with clinical outcomes and approaches to improve TAT. It aims to provide a consolidated source of benchmarking data useful to the laboratory in setting TAT goals and to encourage introduction of TAT monitoring for continuous quality improvement. A 90% completion time (sample registration to result reporting) of <60 minutes for common laboratory tests is suggested as an initial goal for acceptable TAT. PMID:18392122

  7. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    SciTech Connect

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the

  8. Skylab mobile laboratory

    NASA Technical Reports Server (NTRS)

    Primeaux, G. R.; Larue, M. A.

    1975-01-01

    The Skylab mobile laboratory was designed to provide the capability to obtain necessary data on the Skylab crewmen 30 days before lift-off, within 1 hour after recovery, and until preflight physiological baselines were reattained. The mobile laboratory complex consisted of six laboratories that supported cardiovascular, metabolic, nutrition and endocrinology, operational medicine, blood, and microbiology experiments; a utility package; and two shipping containers. The objectives and equipment requirements of the Skylab mobile laboratory and the data acquisition systems are discussed along with processes such as permanently mounting equipment in the individual laboratories and methods of testing and transporting the units. The operational performance, in terms of amounts of data collected, and the concept of mobile laboratories for medical and scientific experiments are evaluated. The Skylab mobile laboratory succeeded in facilitating the data collection and sample preservation associated with the three Skylab manned flights.

  9. Testing the Floor Scale Designated for Pacific Northwest National Laboratory's UF6 Cylinder Portal Monitor

    SciTech Connect

    Curtis, Michael M.; Weier, Dennis R.

    2009-03-12

    Pacific Northwest National Laboratory (PNNL) obtained a Mettler Toledo floor scale for the purpose of testing it to determine whether it can replace the International Atomic Energy Agency’s (IAEA) cumbersome, hanging load cell. The floor scale is intended for use as a subsystem within PNNL’s nascent UF6 Cylinder Portal Monitor. The particular model was selected for its accuracy, size, and capacity. The intent will be to use it only for 30B cylinders; consequently, testing did not proceed beyond 8,000 lb.

  10. Standards Laboratory environments

    SciTech Connect

    Braudaway, D.W.

    1990-09-01

    Standards Laboratory environments need to be carefully selected to meet the specific mission of each laboratory. The mission of the laboratory depends on the specific work supported, the measurement disciplines required and the level of uncertainty required in the measurements. This document reproduces the contents of the Sandia National Laboratories Primary Standards Laboratory Memorandum Number 3B (PSLM-3B) which was issued on May 16, 1988, under the auspices of the Department of Energy, Albuquerque Operations Office, to guide the laboratories of the Nuclear Weapons Complex in selecting suitable environments. Because of both general interest and specific interest in Standards Laboratory environments this document is being issued in a more available form. The purpose of this document is to provide guidance in selection of laboratory environments suitable for standards maintenance and calibration operations. It is not intended to mandate a specific environment for a specific calibration but to direct selection of the environment and to offer suggestions on how to extend precision in an existing and/or achievable (practical) environment. Although this documents pertains specifically to standards laboratories, it can be applied to any laboratory requiring environmental control.

  11. CONFERENCE REPORT: Summary of the 8th IAEA Technical Meeting on Fusion Power Plant Safety

    NASA Astrophysics Data System (ADS)

    Girard, J. Ph.; Gulden, W.; Kolbasov, B.; Louzeiro-Malaquias, A.-J.; Petti, D.; Rodriguez-Rodrigo, L.

    2008-01-01

    for materials selection which will have a large impact on waste disposal and recycling and in the real limits of radiation releases if indexed to the real impact on individuals and the environment given the differences in the types of radiation emitted by tritium when compared with the fission products. Round table sessions resulted in some common recommendations. The discussions also created the awareness of the need for a larger involvement of the IAEA in support of fusion safety standards development.

  12. Progress and status of the IAEA coordinated research project: production of Mo-99 using LEU fission or neutron activation

    SciTech Connect

    Goldman, Ira N.; Adelfang, Pablo E-mail: P.Adelfang@iaea.org; Ramamoorthy, Natesan

    2008-07-15

    Since late 2004, the IAEA has developed and implemented a Coordinated Research Project (CRP) to assist countries interested in initiating indigenous, small-scale production of Mo-99 to meet local nuclear medicine requirements. The objective of the CRP is to provide interested countries with access to non-proprietary technologies and methods to produce Mo-99 using LEU foil or LEU mini-plate targets, or for the utilization of n,gamma neutron activation, e.g. through the use of gel generators. The project has made further progress since the RERTR 2006 meeting, with a Technical Workshop on Operational Aspects of Mo99 Production held 28-30 November 2006 in Vienna and the Second Research Coordination Meeting held in Bucharest, Romania 16-20 April 2007. The paper describes activities carried out as noted above, and as well as the provision of LEU foils to a number of participants, and the progress by a number of groups in preparing for LEU target assembly and disassembly, irradiation, chemical processing, and waste management. The participants' progress in particular on thermal hydraulics computations required for using LEU targets is notable, as also the progress in gel generator plant operations in India and Kazakhstan. Poland has joined as a new research agreement holder and an application by Egypt to be a contract holder is undergoing internal review in the IAEA and is expected to be approved. The IAEA has also participated in several open meetings of the U.S. National Academy of Sciences Study on Producing Medical Radioisotopes without HEU, which will also be discussed in the paper. (author)

  13. 25th IAEA Fusion Energy Conference: summary of sessions EX/S, EX/W and ICC

    NASA Astrophysics Data System (ADS)

    Sen, A.

    2015-10-01

    This paper provides a summary overview, based on papers presented at the 25th IAEA Fusion Energy Conference (FEC), in the area of magnetic confinement experiments related to stability (EX/S), wave-plasma interactions, current drive, heating, energetic particles (EX/W) and innovative confinement concepts (ICCs). A selection of results that represent progress made since the last FEC in a few important thematic areas that are relevant for the successful and safe operation of future fusion devices like ITER, is highlighted.

  14. The impact of the International Atomic Energy Agency (IAEA) program on radiation and tissue banking in India.

    PubMed

    Lobo Gajiwala, Astrid; Morales Pedraza, Jorge

    2009-05-01

    The banking of tissues such bone and skin began in India in the 1980s and 1990s. Although eye banking started in 1945 there was little progress in this field for the next five decades. As part of the IAEA/RCA program to use ionising radiation for the sterilisation of biological tissues in Asia and the Pacific Region, the Tata Memorial Hospital (TMH) in 1986 decided to set up a tissue bank in Mumbai funded by the Government of India. The TMH Tissue Bank became operational in January 1988, and stands as a pioneering effort in the country to provide safe, clinically useful and cost-effective human allografts for transplantation. It uses the IAEA International Standards on Tissue Banking. All the grafts are sterilised terminally by exposure to a dose of 25 kGy of gamma radiation, which has been validated as recommended by the IAEA Code of Practice for the Radiation Sterilisation of Tissues Allografts: Requirements for Validation and Routine Control. The TMH Tissue Bank is registered with the Maharashtra State Health Authorities, and in May 2004, it became India's first Tissue Bank to receive ISO 9001:2000 certification of its Quality Management System. From 1989 to September 2007, the TMH Tissue Bank has supplied 11,369 allografts to 310 surgeons operating in 69 hospitals in Mumbai and 56 hospitals in other parts of India. These numbers have been limited by difficulties with the retrieval of tissues from deceased donors due to inadequate resources and tissue donation policies of hospitals. As the Government of India representative in the IAEA program, the TMH Tissue Bank has promoted and co-coordinated these activities in the country and the development of tissue banks using radiation sterilisation of tissue grafts. Towards this end it has been engaged in training personnel, drawing up project proposals, and supporting the establishment of a Tissue Retrieval Centre in Mumbai. Currently it networks with the Zonal Transplant Co-ordination Centre of the Government of

  15. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  16. Sandia National Laboratories

    NASA Technical Reports Server (NTRS)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  17. New Brunswick Laboratory. Progress report, October 1995--September 1996

    SciTech Connect

    1997-04-01

    Fiscal year (FY) 1996 was a very good year for New Brunswick Laboratory (NBL), whose major sponsor is the Office of Safeguards and Security (NN-51) in the US Department of Energy (DOE), Office of Nonproliferation and National Security, Office of Security Affairs. Several projects pertinent to the NBL mission were completed, and NBL`s interactions with partners and customers were encouraging. Among the partners with which NBL interacted in this report period were the International Atomic Energy Agency (IAEA), NN-51. Environmental Program Group of the DOE Chicago Operations Office, International Safeguards Project Office, Waste Isolation Pilot Plant (WIPP), Ukraine Working Group, Fissile Materials Assurance Working Group, National Institute of Standards and Technology (NIST), Nuclear Regulatory Commission (NRC), Institute for Reference Materials and Measurements (IRMM) in Belgium, Brazilian/Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Lockheed Idaho Technologies Company, and other DOE facilities and laboratories. NBL staff publications, participation in safeguards assistance and other nuclear programs, development of new reference materials, involvement in the updating and refinement of DOE documents, service in enhancing the science education of others, and other related activities enhanced NBL`s status among DOE laboratories and facilities. Noteworthy are the facts that NBL`s small inventory of nuclear materials is accurately accounted for, and, as in past years, its materials and human resources were used in peaceful nuclear activities worldwide.

  18. Hoods for Science Laboratories.

    ERIC Educational Resources Information Center

    Horowitz, Harold; and others

    Detailed discussions are presented dealing with the selection and design of fume hoods for science laboratories. Areas covered include--(1) air flow design, (2) materials properties, (3) location in the laboratory, (4) testing and adjustment, (5) exhaust systems, and (6) hazards of fume discharges. (JT)

  19. The Virtual Robotics Laboratory

    SciTech Connect

    Kress, R.L.; Love, L.J.

    1999-09-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory secondary education programs. In the past, the ORNL Robotics and Process Systems Division has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics. but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his/her students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  20. Dental Laboratory Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of dental laboratory technician, lists technical competencies and competency builders for 13 units pertinent to the health technologies cluster in general and 8 units to the occupation of dental laboratory technician. The following skill areas…

  1. NVLAP calibration laboratory program

    SciTech Connect

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  2. Technology Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Brame, Ray; And Others

    This guide contains 43 modules of laboratory activities for technology education courses. Each module includes an instructor's resource sheet and the student laboratory activity. Instructor's resource sheets include some or all of the following elements: module number, course title, activity topic, estimated time, essential elements, objectives,…

  3. The Virtual Robotics Laboratory

    SciTech Connect

    Kress, R.L.; Love, L.J.

    1997-03-01

    The growth of the Internet has provided a unique opportunity to expand research collaborations between industry, universities, and the national laboratories. The Virtual Robotics Laboratory (VRL) is an innovative program at Oak Ridge National Laboratory (ORNL) that is focusing on the issues related to collaborative research through controlled access of laboratory equipment using the World Wide Web. The VRL will provide different levels of access to selected ORNL laboratory equipment to outside universities, industrial researchers, and elementary and secondary education programs. In the past, the ORNL Robotics and Process Systems Division (RPSD) has developed state-of-the-art robotic systems for the Army, NASA, Department of Energy, Department of Defense, as well as many other clients. After proof of concept, many of these systems sit dormant in the laboratories. This is not out of completion of all possible research topics, but from completion of contracts and generation of new programs. In the past, a number of visiting professors have used this equipment for their own research. However, this requires that the professor, and possibly his students, spend extended periods at the laboratory facility. In addition, only a very exclusive group of faculty can gain access to the laboratory and hardware. The VRL is a tool that enables extended collaborative efforts without regard to geographic limitations.

  4. Quality in Teaching Laboratories.

    ERIC Educational Resources Information Center

    Stubington, John F.

    1995-01-01

    Describes a Japanese process-oriented approach called KAIZEN for improving the quality of existing teaching laboratories. It provides relevant quality measurements and indicates how quality can be improved. Use of process criteria sidesteps the difficulty of defining quality for laboratory experiments and allows separation of student assessment…

  5. The Language Laboratory.

    ERIC Educational Resources Information Center

    Hocking, Elton

    This condensed article on the language laboratory describes educational and financial possibilities and limitations, often citing the foreign language program at Purdue University as an example. The author discusses: (1) costs and amortization, (2) preventive maintenance, (3) laboratory design, (4) the multichannel recorder, and (5) visuals. Other…

  6. Dental Laboratory Technology.

    ERIC Educational Resources Information Center

    Department of the Air Force, Washington, DC.

    The Air Force dental laboratory technology manual is designed as a basic training text as well as a reference source for dental laboratory technicians, a specialty occupation concerned with the design, fabrication, and repair of dental prostheses. Numerous instructive diagrams and photographs are included throughout the manual. The comprehensive…

  7. Practical Laboratory Planning.

    ERIC Educational Resources Information Center

    Ferguson, W. R.

    This book is intended as a guide for people who are planning chemistry and physics research laboratories. It deals with the importance of effective communication between client and architect, the value of preliminary planning, and the role of the project officer. It also discusses the size and layout of individual laboratories, the design of…

  8. Biotechnology Laboratory Methods.

    ERIC Educational Resources Information Center

    Davis, Robert H.; Kompala, Dhinakar S.

    1989-01-01

    Describes a course entitled "Biotechnology Laboratory" which introduces a variety of laboratory methods associated with biotechnology. Describes the history, content, and seven experiments of the course. The seven experiments are selected from microbiology and molecular biology, kinetics and fermentation, and downstream processing-bioseparations.…

  9. Medical Laboratory Technician.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Center on Education and Training for Employment.

    This document, which is designed for use in developing a tech prep competency profile for the occupation of medical laboratory technician, lists technical competencies and competency builders for 18 units pertinent to the health technologies cluster in general and 8 units specific to the occupation of medical laboratory technician. The following…

  10. Laboratory for Oceans

    NASA Technical Reports Server (NTRS)

    1988-01-01

    A review is made of the activities of the Laboratory for Oceans. The staff and the research activities are nearly evenly divided between engineering and scientific endeavors. The Laboratory contributes engineering design skills to aircraft and ground based experiments in terrestrial and atmospheric sciences in cooperation with scientists from labs in Earth sciences.

  11. LANGUAGE ARTS LABORATORY.

    ERIC Educational Resources Information Center

    ROBERTS, HERMESE E.

    THE LANGUAGE ARTS LABORATORY WAS ESTABLISHED TO IMPROVE READING ABILITY AND OTHER LANGUAGE ARTS SKILLS AS AN AID IN THE PREVENTION OF DROPOUTS. THE LABORATORY WAS OPERATED ON A SUMMER SCHEDULE WITH A FLEXIBLE PROGRAM OF FROM 45 MINUTES TO 2 1/2 HOURS DAILY. ALL PUPILS WERE 14 YEARS OF AGE OR OLDER, AND EXPRESSED A DESIRE TO IMPROVE THEIR READING…

  12. Primary Standards Laboratory report

    SciTech Connect

    Not Available

    1990-12-01

    Sandia National Laboratories operates the Primary Standards Laboratory (PSL) for the Department of Energy, Albuquerque Operations Office (DOE/AL). This report summarizes metrology activities that received emphasis in the first half of 1990 and provides information pertinent to the operation of the DOE/AL system-wide Standards and Calibration Program.

  13. Training tissue bank operators: the International Atomic Energy Agency (IAEA)/National University of Singapore (NUS) 10 years of experience.

    PubMed

    Nather, A; Phillips, G O; Morales Pedraza, Jorge; Lee, Chris C W

    2009-05-01

    National University of Singapore (NUS) was appointed by IAEA to become IAEA/NUS Regional Training Centre (RTC) for Asia and the Pacific region in September 1996. The Government of Singapore (represented by the Ministry of Environment) with the National Science and Technology Board as the funding agency awarded a grant of S$225,500 to build a new purpose-built tissue bank to be the Regional Training Centre. National University Hospital provided a space of 2,000 square feet for this purpose. The first Diploma Course was launched on 3 November 1997 with 17 candidates with the first NUS Diploma Examination being held in October 1998. Between November 1997 and April 2007, a total of nine courses were conducted by RTC with a total of 180 tissue bank operators, 133 from Asia and the Pacific region (13 countries including 2 from Iran), 14 from Africa (Algeria, Egypt, Libya, Egypt, South Africa and Zambia), 6 from Latin America (Brazil, Chile, Cuba, Peru and Uruguay), 9 from Europe (Greece, Slovakia, Poland, Ukraine) and 2 from Australia. The last batch (ninth batch) involved twenty students registered in April 2007 and will be due to sit for the terminal examination only in April 2008. PMID:18716898

  14. A Report on IAEA/RCA C7-RAS 6/061-004 Training Course in Chiba, Japan in 2014

    PubMed Central

    Kosuda, Shigeru; Saga, Tsuneo; Paez, Diana

    2015-01-01

    The C7-RAS 6/061-004 training course by the International Atomic Energy Agency/Regional Cooperative Agreement (IAEA/RCA) was held in Chiba in 2014. The syllabus, pre- and post-course evaluations, and survey questionnaire results were assembled in this course. The post-course evaluation, including 32 questions similar to the pre-course evaluation, was performed right after the end of the final educational lecture. The mean score showed an improvement, with the score rising from 57.0 points at the beginning to 66.5 points at the end. Among 22 trainees, the greatest score was in a higher range, with an improvement from 82 points at the beginning to 88 points at the end. The grading distribution, with regard to the training course, was as follows: excellent (68.2%), good (31.8%), average (0%), fair (0%), and poor (0%). This report on the training course, held in Chiba in 2014, will contribute to the future global plans of IAEA/RCA. Continuous training courses in member states are required to decrease the present disparities in the knowledge level, instrumentation, and human resources.

  15. The IAEA Coordinated Research Program on HTGR Uncertainty Analysis: Phase I Status and Initial Results

    SciTech Connect

    Strydom, Gerhard; Bostelmann, Friederike; Ivanov, Kostadin

    2014-10-01

    required confidence level. In order to address uncertainty propagation in analysis and methods in the HTGR community the IAEA initiated a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling (UAM) that officially started in 2013. Although this project focuses specifically on the peculiarities of HTGR designs and its simulation requirements, many lessons can be learned from the LWR community and the significant progress already made towards a consistent methodology uncertainty analysis. In the case of LWRs the NRC has already in 1988 amended 10 CFR 50.46 to allow best-estimate (plus uncertainties) calculations of emergency core cooling system performance. The Nuclear Energy Agency (NEA) of the Organization for Economic Co-operation and Development (OECD) also established an Expert Group on "Uncertainty Analysis in Modelling" which finally led to the definition of the "Benchmark for Uncertainty Analysis in Modelling (UAM) for Design, Operation and Safety Analysis of LWRs". The CRP on HTGR UAM will follow as far as possible the on-going OECD Light Water Reactor UAM benchmark activity.

  16. Measurement of ²²⁶Ra in soil from oil field: advantages of γ-ray spectrometry and application to the IAEA-448 CRM.

    PubMed

    Ceccatelli, A; Katona, R; Kis-Benedek, G; Pitois, A

    2014-05-01

    The analytical performance of gamma-ray spectrometry for the measurement of (226)Ra in TENORM (Technically Enhanced Naturally Occurring Radioactive Material) soil was investigated by the IAEA. Fast results were obtained for characterization and certification of a new TENORM Certified Reference Material (CRM), identified as IAEA-448 (soil from oil field). The combined standard uncertainty of the gamma-ray spectrometry results is of the order of 2-3% for massic activity measurement values ranging from 16500 Bq kg(-1) to 21500 Bq kg(-1). Methodologies used for the production and certification of the IAEA-448 CRM are presented. Analytical results were confirmed by alpha spectrometry. The "t" test showed agreement between alpha and gamma results at 95% confidence level. PMID:24332337

  17. The Development of Low-Level Measurement Capabilities for Total and Isotopic Uranium in Environmental Samples at Brazilian and Argentine Laboratories by ABACC

    SciTech Connect

    Guidicini, Olga M.; Olsen, Khris B.; Hembree, Doyle M.; Carter, Joel A.; Whitaker, Michael; Hayes, Susan M.

    2005-07-01

    In June 1998, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), with assistance from the U.S. Department of Energy (DOE), began a program to assess environmental sampling and analysis capabilities at laboratories in Argentina and Brazil. The program began with staff training conducted in South America and the United States by Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL). Both laboratories are participating members of DOE’s Network of Analytical Laboratories (NWAL) that support IAEA’s environmental sampling program. During the initial planning meeting, representatives from ABACC and all the participating analytical laboratories supporting ABACC were briefed on how the first exercise would be managed and on key aspects necessary to analyze low-level environmental samples for uranium. Subsequent to this training, a laboratory evaluation exercise (Exercise 1) was conducted using standard swipe samples prepared for this exercise by the International Atomic Energy Agency (IAEA). The results of Exercise 1 determined that sample contamination was a major factor in the analysis, and a thorough review of laboratory procedures was required to reduce the level of contamination to acceptable levels. Following modification of sample preparation procedures, the laboratories performed Exercise 2, an analysis of a National Institute of Standards and Technology (NIST) Standard Reference Material (SRM) 1547, Peach Leaves. The results of Exercise 2 demonstrated that several laboratories were capable of accurately determining the total uranium and uranium isotopic distribution in the peach leaves. To build on these successes, Exercise 3 was performed using a series of standard swipe samples prepared by the IAEA and distributed to laboratories supporting ABACC and to PNNL and ORNL. The results of Exercise 3 demonstrate that ABACC now has support laboratories in both Argentina and Brazil, which are capable

  18. Carbon Characterization Laboratory Report

    SciTech Connect

    David Swank; William Windes; D.C. Haggard; David Rohrbaugh; Karen Moore

    2009-03-01

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Lab-C20 of the Idaho National Laboratory Research Center. This laboratory was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite research and development activities. The CCL is designed to characterize and test carbon-based materials such as graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully prepared to measure material properties for nonirradiated carbon-based materials. Plans to establish the laboratory as a radiological facility within the next year are definitive. This laboratory will be modified to accommodate irradiated materials, after which it can be used to perform material property measurements on both irradiated and nonirradiated carbon-based material. Instruments, fixtures, and methods are in place for preirradiation measurements of bulk density, thermal diffusivity, coefficient of thermal expansion, elastic modulus, Young’s modulus, Shear modulus, Poisson ratio, and electrical resistivity. The measurement protocol consists of functional validation, calibration, and automated data acquisition.

  19. The laboratory module

    NASA Astrophysics Data System (ADS)

    Of the five modules comprising the Orbiting Quarantine Facility, the Laboratory Module must provide not only an extensive research capability to permit execution of the protocol, but also the flexibility to accommodate second-order testing if nonterrestrial life is discovered in the sample. The biocontainment barriers that protect the sample and the researchers from cross contamination are described. Specifically, the laboratory layout, laboratory equipment, the environmental control and life support system, and containment assurance procedures are discussed. The metal manipulation arm proposed for use within the biocontainment cabinets is described. Sample receipt and processing procedures are outlined.

  20. Specialized Laboratory Information Systems.

    PubMed

    Dangott, Bryan

    2016-03-01

    Some laboratories or laboratory sections have unique needs that traditional anatomic and clinical pathology systems may not address. A specialized laboratory information system (LIS), which is designed to perform a limited number of functions, may perform well in areas where a traditional LIS falls short. Opportunities for specialized LISs continue to evolve with the introduction of new testing methodologies. These systems may take many forms, including stand-alone architecture, a module integrated with an existing LIS, a separate vendor-supplied module, and customized software. This article addresses the concepts underlying specialized LISs, their characteristics, and in what settings they are found. PMID:26851663

  1. Sonication standard laboratory module

    DOEpatents

    Beugelsdijk, Tony; Hollen, Robert M.; Erkkila, Tracy H.; Bronisz, Lawrence E.; Roybal, Jeffrey E.; Clark, Michael Leon

    1999-01-01

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  2. Laboratory Automation and Middleware.

    PubMed

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory. PMID:26065792

  3. Production and quality assurance in the SIT Africa Mediterranean fruit fly (Diptera: Tephritidae) rearing facility in South Africa

    SciTech Connect

    Barnes, B.; Rosenberg, S.; Arnolds, L.; Johnson, J.

    2007-03-15

    A mass-rearing facility for Mediterranean fruit fly Ceratitis capitata (Wiedemann) was commissioned in Stellenbosch in 1999 to produce sterile male fruit flies for a sterile insect technique (SIT) project in commercial fruit orchards and vineyards in the Western Cape province of South Africa. The mass-rearing procedure was largely based on systems developed by the FAO/IAEA Agriculture and Biotechnology Laboratory, Seibersdorf, Austria. A number of genetic sexing strains were used to produce only males for release. Initial cramped rearing and quality management conditions were alleviated in 2001 with the construction of a new adult rearing room and quality control laboratory. In 2002 a comprehensive Quality Management System was implemented, and in 2003 an improved genetic sexing strain, VIENNA 8, was supplied by the FAO/IAEA Laboratory in Seibersdorf. For most of the first 3 years the facility was unable to supply the required number of sterile male Mediterranean fruit flies for the SIT program without importing sterile male pupae from another facility. From mid-2002, after the quality management system was implemented, both production and quality improved but remained below optimum. After the introduction of the VIENNA 8 genetic sexing strain, and together with an improvement in the climate control equipment, production stability, and quality assurance parameters improved substantially. The critical factors influencing production and quality were an inadequate rearing infrastructure, problems with the quality of the larval diet, and the initial absence of a quality management system. The results highlight the importance of effective quality management, the value of a stable and productive genetic sexing strain, and the necessity for a sound funding base for the mass-rearing facility. (author) [Spanish] La facilidad para criar en masa la mosca mediterranea de la fruta, Ceratitis capitata (Wiedemann) fue comisionada en Stellenbosch en 1999 para producir machos

  4. Safety in Science Laboratories.

    ERIC Educational Resources Information Center

    Education in Science, 1978

    1978-01-01

    Presents 12 amendments to the second edition of Safety in Science Laboratories. Covers topics such as regular inspection of equipment, wearing safety glasses, dating stock chemicals, and safe use of chemicals. (MA)

  5. Ecosystems in the Laboratory

    ERIC Educational Resources Information Center

    Madders, M.

    1975-01-01

    Describes the materials and laboratory techniques for the study of food chains and food webs, pyramids of numbers and biomass, energy pyramids, and oxygen gradients. Presents a procedure for investigating the effects of various pollutants on an entire ecosystem. (GS)

  6. Organic Laboratory Experiments.

    ERIC Educational Resources Information Center

    Smith, Sherrel

    1990-01-01

    Detailed is a method in which short pieces of teflon tubing may be used for collection tubes for collecting preparative fractions from gas chromatographs. Material preparation, laboratory procedures, and results of this method are discussed. (CW)

  7. Understanding Laboratory Tests

    MedlinePlus

    ... and Drug Administration (FDA) regulates the development and marketing of all laboratory tests that use test kits ... at the National Institutes of Health FOLLOW US Facebook Twitter Instagram YouTube Google+ LinkedIn GovDelivery RSS CONTACT ...

  8. Tethered gravity laboratories study

    NASA Technical Reports Server (NTRS)

    Lucchetti, F.

    1989-01-01

    Variable Gravity Laboratory studies are discussed. The following subject areas are covered: (1) conceptual design and engineering analysis; (2) control strategies (fast crawling maneuvers, main perturbations and their effect upon the acceleration level); and (3) technology requirements.

  9. RAS Laboratory Groups

    Cancer.gov

    The RAS Initiative uses multiple technologies to attack RAS-driven cancers. The resources of the Frederick National Lab allocated to the RAS Hub are organized into seven laboratory groups, each contributing to the collaborative effort.

  10. Physics Laboratory in UEC

    NASA Astrophysics Data System (ADS)

    Takada, Tohru; Nakamura, Jin; Suzuki, Masaru

    All the first-year students in the University of Electro-Communications (UEC) take "Basic Physics I", "Basic Physics II" and "Physics Laboratory" as required subjects; Basic Physics I and Basic Physics II are calculus-based physics of mechanics, wave and oscillation, thermal physics and electromagnetics. Physics Laboratory is designed mainly aiming at learning the skill of basic experimental technique and technical writing. Although 95% students have taken physics in the senior high school, they poorly understand it by connecting with experience, and it is difficult to learn Physics Laboratory in the university. For this reason, we introduced two ICT (Information and Communication Technology) systems of Physics Laboratory to support students'learning and staff's teaching. By using quantitative data obtained from the ICT systems, we can easily check understanding of physics contents in students, and can improve physics education.