Science.gov

Sample records for ic recombinant-methionyl human

  1. Therapeutic use of recombinant methionyl human leptin.

    PubMed

    Vatier, Camille; Gautier, Jean-François; Vigouroux, Corinne

    2012-10-01

    Recombinant methionyl human leptin (r-metHuLeptin) was first used as a replacement therapy in patients bearing inactivating mutations in the leptin gene. In this indication, it was shown since 1999 to be very efficient in inducing a dramatic weight loss in rare children and adults with severe obesity due to the lack of leptin. These first clinical trials clearly showed that r-metHuLeptin acted centrally to reduce food intake, inducing loss of fat mass, and to correct metabolic alterations, immune and neuroendocrine defects. A few years later, r-metHuLeptin was also shown to reverse the metabolic complications associated with lipodystrophic syndromes, due to primary defects in fat storage, which induce leptin deficiency. The beneficial effects, which could be mediated by central and/or peripheral mechanisms, are thought to mainly involve the lowering effects of leptin on ectopic lipid storage, in particular in liver and muscles, reducing insulin resistance. Interestingly, r-metHuLeptin therapy also reversed the hypothalamic-pituitary-gonadal axis dysfunctions associated with hypothalamic amenorrhea. However, if r-metHuLeptin treatment has been shown to be dramatically efficient in leptin-deficient states, its very limited effect in inducing weight loss in common obese patients revealed that, in patients with adequate leptin secretion, mechanisms of leptin resistance and leptin tolerance prevent r-metHuLeptin from inducing any additional effects. This review will present the current data about the effects of r-metHuLeptin therapy in humans, and discuss the recent perspectives of this therapy in new indications. PMID:22464954

  2. Clearance and Toxicity of Recombinant Methionyl Human Glial Cell Line-Derived Neurotrophic Factor (r-metHu GDNF) Following Acute Convection-Enhanced Delivery into the Striatum

    PubMed Central

    Taylor, Hannah; Barua, Neil; Bienemann, Alison; Wyatt, Marcella; Castrique, Emma; Foster, Rebecca; Luz, Matthias; Fibiger, Christian; Mohr, Erich; Gill, Steven

    2013-01-01

    Background Despite promising early results, clinical trials involving the continuous delivery of recombinant methionyl human glial cell line-derived neurotrophic factor (r-metHuGDNF) into the putamen for the treatment of Parkinson's disease have shown evidence of poor distribution and toxicity due to point-source accumulation. Convection-enhanced delivery (CED) has the potential to facilitate more widespread and clinically effective drug distribution. Aims We investigated acute CED of r-metHuGDNF into the striatum of normal rats in order to assess tissue clearance, toxicity (neuron loss, gliosis, microglial activation, and decreases in synaptophysin), synaptogenesis and neurite-outgrowth. We investigated a range of clinically relevant infused concentrations (0.1, 0.2, 0.6 and 1.0 µg/µL) and time points (2 and 4 weeks) in order to rationalise a dosing regimen suitable for clinical translation. Results Two weeks after single dose CED, r-metHuGDNF was below the limit of detection by ELISA but detectable by immunohistochemistry when infused at low concentrations (0.1 and 0.2 µg/µL). At these concentrations, there was no associated neuronal loss (neuronal nuclei, NeuN, immunohistochemistry) or synaptic toxicity (synaptophysin ELISA). CED at an infused concentration of 0.2 µg/µL was associated with a significant increase in synaptogenesis (p<0.01). In contrast, high concentrations of r-metHuGDNF (above 0.6 µg/µL) were associated with neuronal and synaptic toxicity (p<0.01). Markers for gliosis (glial fibrillary acidic protein, GFAP) and microglia (ionized calcium-binding adapter molecule 1, Iba1) were restricted to the needle track and the presence of microglia had diminished by 4 weeks post-infusion. No change in neurite outgrowth (Growth associated protein 43, GAP43, mRNA) compared to artificial cerebral spinal fluid (aCSF) control was observed with any infused concentration. Conclusion The results of this study suggest that acute CED of low concentrations of

  3. Influence of sometribove, USAN (recombinant methionyl bovine somatotropin) on the body composition of lactating cattle

    SciTech Connect

    Brown, D.L.; Taylor, S.J.; De Peters, E.J.; Baldwin, R.L.

    1989-04-01

    Ten cattle were injected with 40 mg/d sometribove (United States adopted name for recombinant methionyl bovine somatotropin) in bicarbonate buffer, and nine with the bicarbonate buffer only. These treatments continued from the first day of wk 11 of lactation through the end of wk 18 of lactation. Deuterium oxide (D/sub 2/O) dilution was used to estimate D/sub 2/O space at wk 10 and 18. All cattle were fed a dry, complete diet containing 2.9% nitrogen, and an estimated 1.7 Mcal/kg net energy for lactation (NE1). After 18 wk of lactation, carcass composition was determined from carcass density and the composition of the rest of the body was determined by direct chemical analyses. Regression equations were constructed relating chemical composition at 18 wk to D/sub 2/O space and live body mass. These equations were used to estimate body composition at wk 10. The estimated wk 10 composition was used to adjust wk 18 body composition for pretreatment inter-animal variation. Treatment with sometribove resulted in increased milk production (34.3 kg/d vs. 30.2 kg/d), foregut tissue (25.2 kg vs. 23.2 kg), foregut contents (72.0 vs. 62.1 kg), and reduced total body fat (28.3 vs. 45.7 kg), body energy (760 vs. 916 Mcal) and visceral fat mass.

  4. Category-Selectivity in Human Visual Cortex Follows Cortical Topology: A Grouped icEEG Study

    PubMed Central

    Conner, Christopher Richard; Whaley, Meagan Lee; Baboyan, Vatche George; Tandon, Nitin

    2016-01-01

    Neuroimaging studies suggest that category-selective regions in higher-order visual cortex are topologically organized around specific anatomical landmarks: the mid-fusiform sulcus (MFS) in the ventral temporal cortex (VTC) and lateral occipital sulcus (LOS) in the lateral occipital cortex (LOC). To derive precise structure-function maps from direct neural signals, we collected intracranial EEG (icEEG) recordings in a large human cohort (n = 26) undergoing implantation of subdural electrodes. A surface-based approach to grouped icEEG analysis was used to overcome challenges from sparse electrode coverage within subjects and variable cortical anatomy across subjects. The topology of category-selectivity in bilateral VTC and LOC was assessed for five classes of visual stimuli—faces, animate non-face (animals/body-parts), places, tools, and words—using correlational and linear mixed effects analyses. In the LOC, selectivity for living (faces and animate non-face) and non-living (places and tools) classes was arranged in a ventral-to-dorsal axis along the LOS. In the VTC, selectivity for living and non-living stimuli was arranged in a latero-medial axis along the MFS. Written word-selectivity was reliably localized to the intersection of the left MFS and the occipito-temporal sulcus. These findings provide direct electrophysiological evidence for topological information structuring of functional representations within higher-order visual cortex. PMID:27272936

  5. Antiviral responses of human Leydig cells to mumps virus infection or poly I:C stimulation

    PubMed Central

    Le Tortorec, A.; Denis, H.; Satie, A-P.; Patard, J-J.; Ruffault, A.; Jégou, B.; Dejucq-Rainsford, N.

    2008-01-01

    BACKGROUND The immuno-privileged status of the testis is essential to the maintenance of its functions, and innate immunity is likely to play a key role in limiting harmful viral infections, as demonstrated in the rat. In men mumps virus infects Leydig cells and has deleterious effects on testosterone production and spermatogenesis. The aim of this study was to test whether mumps virus infection of isolated human Leydig cells was associated with an inhibition of their innate antiviral defences. METHODS Leydig cell production of mRNA and protein for interferons (IFNs) and of three antiviral proteins—2′5′ oligoadenylate synthetase (2′5′OAS), double-stranded RNA-activated protein kinase (PKR) and MxA—was investigated, in the absence or presence of mumps virus or viral stimuli including poly I:C, a mimetic of RNA viruses replication product. RESULTS Stimulated or not, human Leydig cells appeared unable to produce routinely detectable IFNs α, β and γ. Although the level of PKR remained unchanged after stimulation, the expression of 2′5′OAS and MxA was enhanced following either mumps virus or poly I:C exposure (P < 0.05 versus control). CONCLUSIONS Overall, our results demonstrate that mumps virus replication in human Leydig cells is not associated with a specific inhibition of IFNs or 2′5′OAS, MxA and PKR production and that these cells display relatively weak endogenous antiviral abilities, as opposed to their rat counterparts. PMID:18567898

  6. Interim Human Factors Guidance for Hybrid and Digital I&C System

    SciTech Connect

    J.Naser, G.Morris

    2003-08-15

    OAK- B135 To help nuclear power plant operators and suppliers plan, specify, design and implement the modernization of control rooms and other HSI in a way that takes advantage of digital systems and HSI technologies, reflects practical constraints associated with modernizing existing control rooms and I&C systems, and addresses issues associated with hybrid control room HSI.

  7. The c-Jun N-terminal kinase (JNK) pathway is activated in human interstitial cystitis (IC) and rat protamine sulfate induced cystitis

    PubMed Central

    Zhao, Jiang; Wang, Liang; Dong, Xingyou; Hu, Xiaoyan; Zhou, Long; Liu, Qina; Song, Bo; Wu, Qingjian; Li, Longkun

    2016-01-01

    The pathogenesis of bladder pain syndrome/interstitial cystitis (BPS/IC) is currently unclear. However, inflammation has been suggested to play an important role in BPS/IC. JNK downstream signaling plays an important role in numerous chronic inflammatory diseases. However, studies of the JNK pathway in BPS/IC are limited. In this study, we investigated the role of the JNK pathway in human BPS/IC and rat protamine sulfate (PS)-induced cystitis and examined the effect of the selective JNK inhibitor SP600125 on rat bladder cystitis. In our study, we demonstrated that the JNK signaling pathway was activated (the expression of JNK, c-Jun, p-JNK, p-c-Jun, IL-6 and TNF-α were significantly increasing in BPS/IC compared to the non-BPS/IC patients) and resulted in inflammation in human BPS/IC. Further animal models showed that the JNK pathway played an important role in the pathogenesis of cystitis. JNK inhibitors, SP600125, effectively inhibited the expression of p-JNK, p-c-Jun, IL-6 and TNF-α. The inhibition of these pathways had a protective effect on PS-induced rat cystitis by significantly decreasing histological score and mast cell count and improving bladder micturition function (micturition frequency significantly decreasing and bladder capacity significantly increasing). Therefore, JNK inhibition could be used as a potential treatment for BPS/IC. PMID:26883396

  8. IC Treatment: Surgical Procedures

    MedlinePlus

    ... Children & IC La Cistitis Intersticial IC in Other Languages Associated Conditions Allergies and Sensitivities Celiac Disease Chronic ... Call to Action Stamp Out IC How to Schedule an IC Advocacy District Visit IC Advocates in ...

  9. IC Treatment: Antidepressants

    MedlinePlus

    ... Children & IC La Cistitis Intersticial IC in Other Languages Associated Conditions Allergies and Sensitivities Celiac Disease Chronic ... Children & IC La Cistitis Intersticial IC in Other Languages Associated Conditions Allergies and Sensitivities Celiac Disease Chronic ...

  10. Human Anti-CD40 Antibody and Poly IC:LC Adjuvant Combination Induces Potent T Cell Responses in the Lung of Non-Human Primates1

    PubMed Central

    Thompson, Elizabeth A; Liang, Frank; Lindgren, Gustaf; Sandgren, Kerrie J; Quinn, Kylie M; Darrah, Patricia A; Koup, Richard A; Seder, Robert A; Kedl, Ross M; Loré, Karin

    2015-01-01

    Non-live vaccine platforms that induce potent cellular immune responses in mucosal tissue would have broad application for vaccines against infectious diseases and tumors. Induction of cellular immunity could be optimized by targeted activation of multiple innate and co-stimulatory signaling pathways, such as CD40 or toll-like receptors (TLRs). In this study, we evaluated immune activation and elicitation of T cell responses in non-human primates (NHPs) after immunization with peptide antigens adjuvanted with an agonistic αCD40Ab, with or without the TLR3 ligand poly IC:LC. We found that intravenous administration of the αCD40Ab induced rapid and transient innate activation characterized by IL-12 production and upregulated co-stimulatory and lymph node homing molecules on dendritic cells. Using fluorescently-labeled Abs for in vivo tracking, the αCD40Ab bound to all leucocytes, except T cells, and disseminated to multiple organs. CD4+ and CD8+ T cell responses were significantly enhanced when the αCD40Ab was co-administered with poly IC:LC compared to either adjuvant given alone and were almost exclusively compartmentalized to the lung. Notably, antigen-specific T cells in the bronchoalveolar lavage were sustained at ~5–10%. These data indicate that systemic administration of αCD40Ab may be particularly advantageous for vaccines and/or therapies requiring T cell immunity in the lung. PMID:26123354

  11. Characterization of a cDNA encoding a novel human Golgi alpha 1, 2-mannosidase (IC) involved in N-glycan biosynthesis.

    PubMed

    Tremblay, L O; Herscovics, A

    2000-10-13

    A human cDNA encoding a 70.9-kDa type II membrane protein with sequence similarity to class I alpha1,2-mannosidases was isolated. The enzymatic properties of the novel alpha1,2-mannosidase IC were studied by expressing its catalytic domain in Pichia pastoris as a secreted glycoprotein. alpha1,2-Mannosidase IC sequentially hydrolyzes the alpha1,2-linked mannose residues of [(3)H]mannose-labeled Man(9)GlcNAc to form [(3)H]Man(6)GlcNAc and a small amount of [(3)H]Man(5)GlcNAc. The enzyme requires calcium for activity and is inhibited by both 1-deoxymannojirimycin and kifunensine. The order of mannose removal was determined by separating oligosaccharide isomers formed from pyridylaminated Man(9)GlcNAc(2) by high performance liquid chromatography. The terminal alpha1,2-linked mannose residue from the middle branch is the last mannose removed by the enzyme. This residue is the mannose cleaved from Man(9)GlcNAc(2) by the endoplasmic reticulum alpha1, 2-mannosidase I to form Man(8)GlcNAc(2) isomer B. The order of mannose hydrolysis from either pyridylaminated Man(9)GlcNAc(2) or Man(8)GlcNAc(2) isomer B differs from that previously reported for mammalian Golgi alpha1,2-mannosidases IA and IB. The full-length alpha1,2-mannosidase IC was localized to the Golgi of MDBK and MDCK cells by indirect immunofluorescence. Northern blot analysis showed tissue-specific expression of a major transcript of 3.8 kilobase pairs. The expression pattern is different from that of human Golgi alpha1,2-mannosidases IA and IB. Therefore, the human genome contains at least three differentially regulated Golgi alpha1, 2-mannosidase genes encoding enzymes with similar, but not identical specificities. PMID:10915796

  12. Intimacy and IC

    MedlinePlus

    ... Management of IC Pain Complementary Therapies Complementary vs. Alternative Herbs, Dietary Supplements, & Biologicals Mind-body Medicine Massage, Manipulation, & Body-based Practices Energy Medicine Bringing Treatments to Market IC Healthcare Provider ...

  13. Nuclear Factor I-C promotes proliferation and differentiation of apical papilla-derived human stem cells in vitro

    SciTech Connect

    Zhang, Jing; Wang, Zhihua; Jiang, Yong; Niu, Zhongying; Fu, Lei; Luo, Zhirong; Cooper, Paul R.; Smith, Anthony J.; He, Wenxi

    2015-03-15

    The transcription factor Nuclear Factor I-C (NFIC) has been implicated in the regulation of tooth root development, where it may be anticipated to impact on the behavior of stem cells from the apical papilla (SCAPs) and root odontoblast activity. We hypothesized that NFIC may provide an important target for promoting dentin/root regeneration. In the present study, the effects of NFIC on the proliferation and differentiation of SCAPs were investigated. Over-expression of NFIC increased cell proliferation, mineralization nodule formation and alkaline phosphatase (ALP) activity in SCAPs. Furthermore, NFIC up-regulated the mRNA levels of odontogenic-related markers, ALP, osteocalcin and collagen type I as well as dentin sialoprotein protein levels. In contrast, knockdown of NFIC by si-RNA inhibited the mineralization capacity of SCAPs and down-regulated the expression of odontogenic-related markers. In conclusion, the results indicated that upregulation of NFIC activity in SCAPs may promote osteo/odontoblastic differentiation of SCAPs. - Highlights: • NFIC promotes the proliferation of SCAPs in vitro. • NFIC promotes osteo/odontogenic differentiation of SCAPs in vitro. • Knockdown of NFIC inhibits odontogenic differentiation in SCAPs.

  14. Lymphoblastoid cell supernatants increase expression of C3b receptors on human polymorphonuclear leucocytes: direct binding studies with 125I-C3b.

    PubMed Central

    Berger, M; Cross, A S

    1984-01-01

    Human PMN incubated in culture supernatants of the Raji long-term human lymphoblastoid cell line showed increased rosette formation with sheep erythrocytes coated with C3b (EIgM C4b3b) but no change in rosette formation with IgG-coated erythrocytes. This suggested a specific increase in cell surface C3b receptors, which was further investigated using 125I-C3b for direct binding studies. The results confirmed that specific binding of 125I-C3b to PMN incubated in culture supernatants increased up to three- to four-fold over binding to PMN incubated in control media alone. Scatchard analysis revealed that the apparent Ka for supernatant-treated cells, 3.36 +/- 0.89 X 10(7) L/M did not differ from the Ka for cells incubated in control media, 3.76 +/- 0.75 X 10(7) L/M, suggesting an increase in a single class of C3b receptors. Kinetic studies revealed that the active factor was present within 24 hr of culture of the Raji cells, and that neutrophils incubated in culture supernatants increased their C3b receptors continuously for up to 4 hr, the longest interval tested. The effect of the culture supernatant was lost with dilution beyond eight- to 10-fold. The results suggest that culture supernatants of this long-term lymphoblastoid cell line contain soluble factors that induce increased expression of C3b receptors on PMN and may thus serve as a model for study of important physiologic effects of lymphocyte products on PMN in vivo. PMID:6230308

  15. A comparative analytical assessment of iodides in healthy and pathological human thyroids based on IC-PAD method preceded by microwave digestion.

    PubMed

    Błażewicz, Anna; Orlicz-Szczęsna, Grażyna; Szczęsny, Piotr; Prystupa, Andrzej; Grzywa-Celińska, Anna; Trojnar, Marcin

    2011-03-15

    The aim of the study was to examine correlations between the content of iodides in 66 nodular goiters and 100 healthy human thyroid tissues (50- frozen and 50 formalin-fixed). A fast, accurate and precise ion chromatography method on IonPac AS11 chromatographic column (Dionex, USA) with a pulsed amperometric detection (IC-PAD) followed by alkaline digestion with tetramethylammonium hydroxide (TMAH) in a closed system and with the assistance of microwaves was developed and used for the comparative analysis of two types of human thyroid samples. Statistical analysis revealed over eightfold reduction of iodine concentration in the pathological tissues (the mean value was 77.13±14.02 ppm) in comparison with the control group (622.62±187.11 ppm for frozen samples and 601.49±192.11 ppm for formalin-fixed ones). A good correspondence (for 10 additional determinations) between the certified (3.38±0.02 ppm with variation coefficient (V.C.) of 0.59% for Standard Reference Material (SRM) NIST 1549-non-fat milk powder) and the measured iodine concentrations (3.52±0.29 ppm; V.C.=10%) was achieved. It was pointed out that the way of tissue preservation (either in formalin or by freezing) had no significant effect on the iodine determination result (α=0.1). Significantly lower iodide content was found in nodular goiter thyroid samples. The applied conditions of digestion, reinforced by the action of microwaves, brought about a decidedly shorter (less than 20 min) sample preparation time. Suitability of the developed IC method was supported by validation results. PMID:21330222

  16. Men and IC

    MedlinePlus

    ... benign prostatic hyperplasia, or prostate enlargement. Is it CP/CPPS or IC? CP/CPPS is a relatively new term used to ... or chronic nonbacterial prostatitis. Some researchers believe that CP/CPPS and IC may really be the same ...

  17. Possible Regulatory Roles of Promoter G-Quadruplexes in Cardiac Function-Related Genes – Human TnIc as a Model

    PubMed Central

    Zhou, Wenhua; Suntharalingam, Kogularamanan; Brand, Nigel J.; Barton, Paul J. R.; Vilar, Ramon; Ying, Liming

    2013-01-01

    G-quadruplexes (G4s) are four-stranded DNA secondary structures, which are involved in a diverse range of biological processes. Although the anti-cancer potential of G4s in oncogene promoters has been thoroughly investigated, the functions of promoter G4s in non-cancer-related genes are not well understood. We have explored the possible regulatory roles of promoter G4s in cardiac function-related genes using both computational and a wide range of experimental approaches. According to our bioinformatics results, it was found that potential G4-forming sequences are particularly enriched in the transcription regulatory regions (TRRs) of cardiac function-related genes. Subsequently, the promoter of human cardiac troponin I (TnIc) was chosen as a model, and G4s found in this region were subjected to biophysical characterisations. The chromosome 19 specific minisatellite G4 sequence (MNSG4) and near transcription start site (TSS) G4 sequence (−80 G4) adopt anti-parallel and parallel structures respectively in 100 mM KCl, with stabilities comparable to those of oncogene G4s. It was also found that TnIc G4s act cooperatively as enhancers in gene expression regulation in HEK293 cells, when stabilised by a synthetic G4-binding ligand. This study provides the first evidence of the biological significance of promoter G4s in cardiac function-related genes. The feasibility of using a single ligand to target multiple G4s in a particular gene has also been discussed. PMID:23326389

  18. Momordin Ic couples apoptosis with autophagy in human hepatoblastoma cancer cells by reactive oxygen species (ROS)-mediated PI3K/Akt and MAPK signaling pathways.

    PubMed

    Mi, Yashi; Xiao, Chunxia; Du, Qingwei; Wu, Wanqiang; Qi, Guoyuan; Liu, Xuebo

    2016-01-01

    Momordin Ic is a principal saponin constituent of Fructus Kochiae, which acts as an edible and pharmaceutical product more than 2000 years in China. Our previous research found momordin Ic induced apoptosis by PI3K/Akt and MAPK signaling pathways in HepG2 cells. While the role of autophagy in momordin Ic induced cell death has not been discussed, and the connection between the apoptosis and autophagy is not clear yet. In this work, we reported momordin Ic promoted the formation of autophagic vacuole and expression of Beclin 1 and LC-3 in a dose- and time-dependent manner. Compared with momordin Ic treatment alone, the autophagy inhibitor 3-methyladenine (3-MA) also can inhibit apoptosis, while autophagy activator rapamycin (RAP) has the opposite effect, and the apoptosis inhibitor ZVAD-fmk also inhibited autophagy induced by momordin Ic. Momordin Ic simultaneously induces autophagy and apoptosis by suppressing the ROS-mediated PI3K/Akt and activating the ROS-related JNK and P38 pathways. Additionally, momordin Ic induces apoptosis by suppressing PI3K/Akt-dependent NF-κB pathways and promotes autophagy by ROS-mediated Erk signaling pathway. Those results suggest that momordin Ic has great potential as a nutritional preventive strategy in cancer therapy. PMID:26593748

  19. Pregnancy and IC

    MedlinePlus

    ... risk of deformities and premature labor. Fitness and Physical Therapy to Keep You Comfortable Along with diet, a ... and relaxation, IC and pregnancy-friendly exercise, and physical therapy. During pregnancy, there’s a lot of weight on ...

  20. Interstitial Cystitis (IC) Diet

    MedlinePlus

    ... Pain Complementary Therapies Complementary vs. Alternative Herbs, Dietary Supplements, & Biologicals Mind-body Medicine Massage, Manipulation, & Body-based Practices Energy Medicine Bringing Treatments to Market IC Healthcare Provider ...

  1. IC handling robot

    SciTech Connect

    Law, D.O.

    1986-09-01

    Allied Corporation, Bendix Kansas City Division uses many integrated circuits (ICs) which are 100% tested by receiving inspection prior to installation into the next assemblies. Testing includes functional testing followed by a burn-in cycle then additional functional testing. Before an IC can be functionally tested, it must be inserted into a custom plastic carrier which is placed into a metal magazine that fits the functional tester. The ICs are removed from both tester magazines and carriers prior to being placed into connectors mounted on a printed wiring board for burn-in. Then they are removed from the burn-in board and re-inserted into carriers and magazines for additional functional testing. Each device is handled manually a minimum of 12 times before it is accepted. This project established a robotic workcell which automatically prepares a dual in-line packaged (DIP) integrated circuit for several types of inspection operations performed by Receiving Inspection. Specific activities required to accomplish this goal included definition of the work cell, preparation of the robot and other equipment specifications, installation planning, establishment of programming routines and logic, design of operator safeguards, and development of the work cell concept into an operational unit capable of supporting production.

  2. Information Commons for Rice (IC4R).

    PubMed

    Hao, Lili; Zhang, Huiyong; Zhang, Zhang; Hu, Songnian; Xue, Yu

    2016-01-01

    Rice is the most important staple food for a large part of the world's human population and also a key model organism for plant research. Here, we present Information Commons for Rice (IC4R; http://ic4r.org), a rice knowledgebase featuring adoption of an extensible and sustainable architecture that integrates multiple omics data through community-contributed modules. Each module is developed and maintained by different committed groups, deals with data collection, processing and visualization, and delivers data on-demand via web services. In the current version, IC4R incorporates a variety of rice data through multiple committed modules, including genome-wide expression profiles derived entirely from RNA-Seq data, resequencing-based genomic variations obtained from re-sequencing data of thousands of rice varieties, plant homologous genes covering multiple diverse plant species, post-translational modifications, rice-related literatures and gene annotations contributed by the rice research community. Unlike extant related databases, IC4R is designed for scalability and sustainability and thus also features collaborative integration of rice data and low costs for database update and maintenance. Future directions of IC4R include incorporation of other omics data and association of multiple omics data with agronomically important traits, dedicating to build IC4R into a valuable knowledgebase for both basic and translational researches in rice. PMID:26519466

  3. Information Commons for Rice (IC4R)

    PubMed Central

    2016-01-01

    Rice is the most important staple food for a large part of the world's human population and also a key model organism for plant research. Here, we present Information Commons for Rice (IC4R; http://ic4r.org), a rice knowledgebase featuring adoption of an extensible and sustainable architecture that integrates multiple omics data through community-contributed modules. Each module is developed and maintained by different committed groups, deals with data collection, processing and visualization, and delivers data on-demand via web services. In the current version, IC4R incorporates a variety of rice data through multiple committed modules, including genome-wide expression profiles derived entirely from RNA-Seq data, resequencing-based genomic variations obtained from re-sequencing data of thousands of rice varieties, plant homologous genes covering multiple diverse plant species, post-translational modifications, rice-related literatures and gene annotations contributed by the rice research community. Unlike extant related databases, IC4R is designed for scalability and sustainability and thus also features collaborative integration of rice data and low costs for database update and maintenance. Future directions of IC4R include incorporation of other omics data and association of multiple omics data with agronomically important traits, dedicating to build IC4R into a valuable knowledgebase for both basic and translational researches in rice. PMID:26519466

  4. Human Anti-CD40 Antibody and Poly IC:LC Adjuvant Combination Induces Potent T Cell Responses in the Lung of Nonhuman Primates.

    PubMed

    Thompson, Elizabeth A; Liang, Frank; Lindgren, Gustaf; Sandgren, Kerrie J; Quinn, Kylie M; Darrah, Patricia A; Koup, Richard A; Seder, Robert A; Kedl, Ross M; Loré, Karin

    2015-08-01

    Nonlive vaccine platforms that induce potent cellular immune responses in mucosal tissue would have broad application for vaccines against infectious diseases and tumors. Induction of cellular immunity could be optimized by targeted activation of multiple innate and costimulatory signaling pathways, such as CD40 or TLRs. In this study, we evaluated immune activation and elicitation of T cell responses in nonhuman primates after immunization with peptide Ags adjuvanted with an agonistic anti-CD40Ab, with or without the TLR3 ligand poly IC:LC. We found that i.v. administration of the anti-CD40Ab induced rapid and transient innate activation characterized by IL-12 production and upregulated costimulatory and lymph node homing molecules on dendritic cells. Using fluorescently labeled Abs for in vivo tracking, we found that the anti-CD40Ab bound to all leukocytes, except T cells, and disseminated to multiple organs. CD4(+) and CD8(+) T cell responses were significantly enhanced when the anti-CD40Ab was coadministered with poly IC:LC compared with either adjuvant given alone and were almost exclusively compartmentalized to the lung. Notably, Ag-specific T cells in the bronchoalveolar lavage were sustained at ∼5-10%. These data indicate that systemic administration of anti-CD40Ab may be particularly advantageous for vaccines and/or therapies that require T cell immunity in the lung. PMID:26123354

  5. The induction of prolonged myelopoietic effects in monkeys by GW003, a recombinant human granulocyte colony-stimulating factor genetically fused to recombinant human albumin.

    PubMed

    Xu, Xianxing; Yang, Jingwen; Liu, Yunlong; Shan, Chengqi; Wang, Qiushi; Chen, Zhihang; Cheng, Yuanguo

    2015-02-01

    GW003, a genetic fusion protein of human serum albumin and granulocyte colony-stimulating factor (G-CSF), was developed based on a novel strategy for producing long-acting proteins. The purpose of this study was to evaluate the hematologic, pharmacokinetic, and toxicokinetic effects of GW003 on cynomolgus monkeys. We show that following a single subcutaneous administration of GW003, the absolute neutrophil count increased significantly compared with monkeys that received only the vehicle, and the magnitude of the neutrophilic response to GW003 was dose dependent. After an injection at equal molar dose, the clearance of GW003 in the monkeys was approximately fourfold slower, and the terminal half-life (T1/2 ) was fivefold longer than the corresponding values for recombinant methionyl human G-CSF. Interestingly, both the clearance and T1/2 decreased with increasing doses of GW003, and much faster elimination was observed after multidose exposure. In toxicokinetic studies, the serum concentration of GW003 after the eighth injection was much lower than it was after the first injection, and a neutralizing antibody against G-CSF was found to have a dose-dependent effect upon the treatment groups. Overall, the favorable pharmacokinetic and pharmacodynamic properties supported the selection and development of GW003 as a promising candidate for neutropenia therapy. PMID:25174614

  6. Irregular Dwarf Galaxy IC 1613

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Ultraviolet image (left) and visual image (right) of the irregular dwarf galaxy IC 1613. Low surface brightness galaxies, such as IC 1613, are more easily detected in the ultraviolet because of the low background levels compared to visual wavelengths.

  7. Determining the IC50 Values for Vorozole and Letrozole, on a Series of Human Liver Cytochrome P450s, to Help Determine the Binding Site of Vorozole in the Liver

    PubMed Central

    Raymond, Lendelle; Rayani, Nikita; Polson, Grace; Sikorski, Kylie; Lian, Ailin; VanAlstine-Parris, Melissa A.

    2015-01-01

    Vorozole and letrozole are third-generation aromatase (cytochrome P450 19A1) inhibitors. [11C]-Vorozole can be used as a radiotracer for aromatase in living animals but when administered by IV, it collects in the liver. Pretreatment with letrozole does not affect the binding of vorozole in the liver. In search of finding the protein responsible for the accumulation of vorozole in the liver, fluorometric high-throughput screening assays were used to test the inhibitory capability of vorozole and letrozole on a series of liver cytochrome P450s (CYP1A1, CYP1A2, CYP2A6, and CYP3A4). It was determined that vorozole is a potent inhibitor of CYP1A1 (IC50 = 0.469 μM) and a moderate inhibitor of CYP2A6 and CYP3A4 (IC50 = 24.4 and 98.1 μM, resp.). Letrozole is only a moderate inhibitor of CYP1A1 and CYP2A6 (IC50 = 69.8 and 106 μM) and a very weak inhibitor of CYP3A4 (<10% inhibition at 1 mM). Since CYP3A4 makes up the majority of the CYP content found in the human liver, and vorozole inhibits it moderately well but letrozole does not, CYP3A4 is a good candidate for the protein that [11C]-vorozole is binding to in the liver. PMID:26635974

  8. Studies on human blood lymphocytes with iC3b (type 3) complement receptors: III. Abnormalities in patients with active systemic lupus erythematosus.

    PubMed Central

    Gray, J D; Lash, A; Bakke, A C; Kitridou, R C; Horwitz, D A

    1987-01-01

    Lymphocytes displaying iC3b (Type 3) complement receptors (CR3) were quantified by flow cytometry in patients with systemic lupus erythematosus. The percentages and absolute numbers were compared to age and sex matched controls. Total CR3+ lymphocytes identified by the monoclonal antibodies OKM1 or Leu 15 were significantly decreased in patients with symptomatic arthritis, serositis or vasculitis and those with lupus nephritis, whereas values for CR3+ lymphocytes in patients with inactive disease were similar to normal donors. The phenotype of CR3+ lymphocytes was markedly different in patients with active SLE. In normals granular lymphocytes bearing Fc receptors for IgG (L cells) comprised two-thirds of CR3+ lymphocytes. However, in SLE this subset was reduced to 20% and there was a corresponding increase in CR3+ lymphocytes co-expressing the T3 marker. Percentages of CR3 T4+ but not CR3+ T8+ lymphocytes were significantly increased in SLE. Although patients with active disease were lymphopenic, absolute numbers of CR3+ lymphocytes co-expressing T cell markers were similar to normal controls. Since L cells are non-specific suppressors of Ig production, the reduction of this subset along with the increase in CR3 T4+ cells could contribute to unregulated antibody production characteristic of SLE. PMID:2955974

  9. Local environments of SNe Ic and Ic-BL

    NASA Astrophysics Data System (ADS)

    Selsing, Jonatan; Christensen, Lise; Thöne, Christina; Modjaz, Maryam

    2015-08-01

    In this project we have observed the local explosion environments of a sample Type Ic and Type Ic-BL Supernove (SNe) selected from both targeted and non-targeted surveys using VLT/VIMOS in IFU-mode. It is believed that by probing the local surroundings of the parent stellar populations of these types of SNe, valuable information can be gained about the physical conditions, which affect the type of SNe produced. The different kinds of SNe produced are determined by the initial mass and metallicity of the stellar progenitor, as well as by the metallicity-dependent mass loss in the stellar winds at the end phase of their evolution and the interaction with a sufficiently close companion star. At the redshift of the galaxies we have selected, we spatially resolve regions ~250 pc across, comparable to the size of HII regions in local galaxies and using strong nebular emission lines as a proxy for the metal content of the stellar population, we can investigate if the conditions for the two types of SNe differ. The connection between long-duration gamma-ray bursts (GRBs) and broad-lined SNe Ic and the existence of SNe Ic-bl without observed GRBs raises the question of what distinguishes a GRB progenitor from that of an ordinary SN Ic-bl without a GRB and this project will help with the elucidation of this. Moreover, from the HII region ages and stellar mass estimates, we examine the two suggested progenitor models for stripped SNe: single massive Wolf-Rayet (WR) stars with main-sequence masses of >30M⊙ that have experienced mass loss during the main sequence and WR stages, vs. binaries from lower-mass He stars.

  10. Intratumoral hu14.18-IL-2 (IC) induces local and systemic antitumor effects that involve both activated T and NK cells as well as enhanced IC retention.

    PubMed

    Yang, Richard K; Kalogriopoulos, Nicholas A; Rakhmilevich, Alexander L; Ranheim, Erik A; Seo, Songwon; Kim, Kyungmann; Alderson, Kory L; Gan, Jacek; Reisfeld, Ralph A; Gillies, Stephen D; Hank, Jacquelyn A; Sondel, Paul M

    2012-09-01

    hu14.18-IL-2 (IC) is an immunocytokine consisting of human IL-2 linked to hu14.18 mAb, which recognizes the GD2 disialoganglioside. Phase 2 clinical trials of i.v. hu14.18-IL-2 (i.v.-IC) in neuroblastoma and melanoma are underway and have already demonstrated activity in neuroblastoma. We showed previously that intratumoral hu14.18-IL-2 (IT-IC) results in enhanced antitumor activity in mouse models compared with i.v.-IC. The studies presented in this article were designed to determine the mechanisms involved in this enhanced activity and to support the future clinical testing of intratumoral administration of immunocytokines. Improved survival and inhibition of growth of both local and distant tumors were observed in A/J mice bearing s.c. NXS2 neuroblastomas treated with IT-IC compared with those treated with i.v.-IC or control mice. The local and systemic antitumor effects of IT-IC were inhibited by depletion of NK cells or T cells. IT-IC resulted in increased NKG2D receptors on intratumoral NKG2A/C/E⁺ NKp46⁺ NK cells and NKG2A/C/E⁺ CD8⁺ T cells compared with control mice or mice treated with i.v.-IC. NKG2D levels were augmented more in tumor-infiltrating lymphocytes compared with splenocytes, supporting the localized nature of the intratumoral changes induced by IT-IC treatment. Prolonged retention of IC at the tumor site was seen with IT-IC compared with i.v.-IC. Overall, IT-IC resulted in increased numbers of activated T and NK cells within tumors, better IC retention in the tumor, enhanced inhibition of tumor growth, and improved survival compared with i.v.-IC. PMID:22844125

  11. R&D100: IC ID

    SciTech Connect

    Hamlet, Jason; Pierson, Lyndon; Bauer, Todd

    2015-11-19

    Supply chain security to detect, deter, and prevent the counterfeiting of networked and stand-alone integrated circuits (ICs) is critical to cyber security. Sandia National Laboratory researchers have developed IC ID to leverage Physically Unclonable Functions (PUFs) and strong cryptographic authentication to create a unique fingerprint for each integrated circuit. IC ID assures the authenticity of ICs to prevent tampering or malicious substitution.

  12. Young Stars in IC 2118

    NASA Astrophysics Data System (ADS)

    Spuck, Tim; Rebull, Luisa; Daou, Doris; Maranto, Tony; Roelofsen, Theresa; Sepulveda, Babs; Weehler, Cynthia

    2005-02-01

    IC 2118, the Witch Head Nebula (~210 parsecs), is region forming stars located near the supergiant star Rigel in the constellation Orion. Kun et al. (2004, A&A, 418, 89) have determined that IC 2118 is on the near side of the Orion-Eridanus Super Bubble and that stellar winds from the Orion OB1 association may be triggering new star formation in the nebula. We propose using IRAC and MIPS to reexamine a small dense region of this nebula where Kun et al. have spectroscopically identified three 2MASS sources as T Tauri stars embedded in the cloud. Previous all-sky surveys, including both IRAS and 2MASS, have included this region, but not to the resolution that Spitzer can provide, and there are few studies of this particular region in the literature. Our team proposes to use IRAC and MIPS observations to (1) investigate star formation, (2) look for likely cluster member stars with infrared excesses, and characterize this young star population by obtaining their colors and therefore estimates of masses and ages, (3) study the distribution of stars, their relationship to the ISM, and the possibilities of triggered star formation, (4) compare the young star population, distribution, and age to other similar sites of star formation, e.g., IC 1396 and (5) produce a dramatic image of the interstellar medium in the region surrounding IC 2118. Since this region is in the Orion constellation near the bright star Rigel, it provides additional appeal to students and the general public.

  13. The Young Cluster IC 348

    NASA Astrophysics Data System (ADS)

    Herbig, G. H.

    1998-04-01

    CCD photometry in BVRI was obtained for about 260 stars in and around IC 348, and multiobject spectroscopy for 80 of these. A somewhat larger region was surveyed for stars having Hα in emission; over 110 emission-line stars brighter than about R = 19 were discovered. Because Hα emission could be detected to a limit near W = 3 Å, division into weak-line (WTTSs) and classical T Tauri stars (CTTSs) was possible on purely spectroscopic grounds. There is a steep rise in the number of emission-line stars below W(Hα) = 10 Å the proportion of WTTSs to CTTSs in the area surveyed is 58:51. ROSAT detected only about 58% of the spectroscopic WTTSs and about 65% of the CTTSs, although these numbers are sensitive to the survey thresholds. The bulk of the ages of about 100 stars, read off the theoretical tracks of D'Antona & Mazzitelli, range between about 0.7 and 12 Myr, but the emission-line stars, which are most likely to be members of IC 348, have a mean age of 1.3 Myr. Allowance for unresolved binaries would increase this somewhat, but there is a firm upper limit at 2.95 Myr. There is no indication that the ages of the emission-line stars depend upon W(Hα): the IC 348 WTTSs as a population are not systematically older than the CTTSs, but there is a tendency for the WTTSs to be concentrated toward the center of IC 348, while the CTTSs are more widely distributed. There is a scattering of emission-Hα stars over the entire area surveyed. There are too many to be explained as low-mass members of an earlier generation of star formation in Per OB2 or as foreground dMe stars. The mass frequency function, based on some 125 stars fitted to theoretical tracks, rises from 1.5 M⊙ to about 0.2 M⊙, with a slope very much like that of the Scalo initial mass function. The optical cluster IC 348 radius is about 4.0 arcmin, or 0.37 pc. The total mass of optically detectable stars in this volume is 57 M⊙, while the mean space density is about 520 stars pc-3. The amount of

  14. Young Stars in IC 2118

    NASA Astrophysics Data System (ADS)

    Spuck, Tim; Sepulveda, Babs; Maranto, Tony; Weehler, Cynthia; Roelofsen, Theresa; Rebull, Luisa

    2006-02-01

    IC 2118, the Witch Head Nebula (~210 parsecs), is a region of star formation located near the supergiant star Rigel in the constellation Orion. Last year, we observed the head of the nebula and approximately QUADRUPLED the number of young stars known here. We propose using IRAC and MIPS to continue our investigation by observing the densest part of the rest of the cloud. Our team proposes to use IRAC and MIPS observations to (1) investigate star formation, (2) look for likely cluster member stars with infrared excesses, and characterize this young star population by obtaining their colors and therefore estimates of masses and ages, (3) study the distribution of stars, their relationship to the ISM, and the possibilities of triggered star formation, (4) compare the young star population, distribution, and age to other similar sites of star formation, e.g., IC 1396 and (5) produce a dramatic image of the interstellar medium in the region surrounding IC 2118. Since this region is in the Orion constellation near the bright star Rigel, it provides additional appeal to students and the general public.

  15. SEM probe of IC radiation sensitivity

    NASA Technical Reports Server (NTRS)

    Gauthier, M. K.; Stanley, A. G.

    1979-01-01

    Scanning Electron Microscope (SEM) used to irradiate single integrated circuit (IC) subcomponent to test for radiation sensitivity can localize area of IC less than .03 by .03 mm for determination of exact location of radiation sensitive section.

  16. Institutional computing (IC) information session

    SciTech Connect

    Koch, Kenneth R; Lally, Bryan R

    2011-01-19

    The LANL Institutional Computing Program (IC) will host an information session about the current state of unclassified Institutional Computing at Los Alamos, exciting plans for the future, and the current call for proposals for science and engineering projects requiring computing. Program representatives will give short presentations and field questions about the call for proposals and future planned machines, and discuss technical support available to existing and future projects. Los Alamos has started making a serious institutional investment in open computing available to our science projects, and that investment is expected to increase even more.

  17. Photometric Study of IC 2156

    NASA Astrophysics Data System (ADS)

    Tadross, A. L.; Hendy, Y. H. M.

    2016-04-01

    We present an optical UBVRI photometric analysis of the poorly studied open star cluster IC 2156 using Sloan Digital Sky Survey data in order to estimate its astrophysical properties. We compare these with results from our previous studies that relied on the 2MASS JHK near-infrared photometry. The stellar density distributions and color-magnitude diagrams of the cluster are used to determine its geometrical structure, real radius, core and tidal radii, and its distance from the Sun, the Galactic plane, and the Galactic center. We also estimate, the age, color excesses, reddening-free distance modulus, membership, total mass, luminosity function, mass function, and relaxation time of the cluster.

  18. Rocket Observations of IC 405

    NASA Astrophysics Data System (ADS)

    France, K.; McCandliss, S. R.; Feldman, P. D.; Burgh, E. B.

    2001-12-01

    We present the preliminary results from a NASA/JHU sounding rocket mission (36.198 UG), launched on 09 February 2001 at 21:00 MST, to obtain a long slit (200\\arcsec x 12\\arcsec) spectrum of the reflection nebula IC 405 in the 900 -- 1400 Å wavelength region. Several pointings within the nebula were obtained, including a high quality (S/N ≈ 10-15 at R = 300) spectrum of the central star, HD 34078, which clearly shows absorption from molecular hydrogen (H2). Observations of the nebula reveal a surface brightness to stellar flux ratio that rises by two orders of magnitude between 1400 and 900 Å. This is in contrast with the relatively flat nebular dust scattering observed during a prior sounding rocket observation of the reflection nebula NGC 2023. We will also present additional nebular pointings within IC 405, including a region observed by the Hopkins Ultraviolet Telescope showing evidence of H2 fluorescent emission. These observations were supported by NASA grant NAG5-5122 to the Johns Hopkins University.

  19. SPITZER OBSERVATIONS OF IC 2118

    SciTech Connect

    Guieu, S.; Rebull, L. M.; Stauffer, J. R.; Noriega-Crespo, A.; Cole, D. M.; Flagey, N.; Laher, R.; Stolovy, S.; Spuck, T.; Roelofsen Moody, T.; Sepulveda, B.; Weehler, C.; Maranto, A.; Penprase, B.; Ramirez, S.

    2010-09-01

    IC 2118, also known as the Witch Head Nebula, is a wispy, roughly cometary, {approx}5 degree long reflection nebula, and is thought to be a site of triggered star formation. In order to search for new young stellar objects (YSOs), we have observed this region in seven mid- and far-infrared bands using the Spitzer Space Telescope and in four bands in the optical using the U. S. Naval Observatory 40 inch telescope. We find infrared excesses in four of the six previously known T Tauri stars in our combined infrared maps, and we find six entirely new candidate YSOs, one of which may be an edge-on disk. Most of the YSOs seen in the infrared are Class II objects, and they are all in the 'head' of the nebula, within the most massive molecular cloud of the region.

  20. Spitzer Observations of IC 2118

    NASA Astrophysics Data System (ADS)

    Guieu, S.; Rebull, L. M.; Stauffer, J. R.; Vrba, F. J.; Noriega-Crespo, A.; Spuck, T.; Roelofsen Moody, T.; Sepulveda, B.; Weehler, C.; Maranto, A.; Cole, D. M.; Flagey, N.; Laher, R.; Penprase, B.; Ramirez, S.; Stolovy, S.

    2010-09-01

    IC 2118, also known as the Witch Head Nebula, is a wispy, roughly cometary, ~5 degree long reflection nebula, and is thought to be a site of triggered star formation. In order to search for new young stellar objects (YSOs), we have observed this region in seven mid- and far-infrared bands using the Spitzer Space Telescope and in four bands in the optical using the U. S. Naval Observatory 40 inch telescope. We find infrared excesses in four of the six previously known T Tauri stars in our combined infrared maps, and we find six entirely new candidate YSOs, one of which may be an edge-on disk. Most of the YSOs seen in the infrared are Class II objects, and they are all in the "head" of the nebula, within the most massive molecular cloud of the region.

  1. Differential regulation of metabolic, neuroendocrine, and immune function by leptin in humans

    PubMed Central

    Chan, Jean L.; Matarese, Giuseppe; Shetty, Greeshma K.; Raciti, Patricia; Kelesidis, Iosif; Aufiero, Daniela; De Rosa, Veronica; Perna, Francesco; Fontana, Silvia; Mantzoros, Christos S.

    2006-01-01

    To elucidate whether the role of leptin in regulating neuroendocrine and immune function during short-term starvation in healthy humans is permissive, i.e., occurs only when circulating leptin levels are below a critical threshold level, we studied seven normal-weight women during a normoleptinemic-fed state and two states of relative hypoleptinemia induced by 72-h fasting during which we administered either placebo or recombinant methionyl human leptin (r-metHuLeptin) in replacement doses. Fasting for 72 h decreased leptin levels by ≈80% from a midphysiologic (14.7 ± 2.6 ng/ml) to a low-physiologic (2.8 ± 0.3 ng/ml) level. Administration of r-metHuLeptin during fasting fully restored leptin to physiologic levels (28.8 ± 2.0 ng/ml) and reversed the fasting-associated decrease in overnight luteinizing hormone pulse frequency but had no effect on fasting-induced changes in thyroid-stimulating hormone pulsatility, thyroid and IGF-1 hormone levels, hypothalamic–pituitary–adrenal and renin–aldosterone activity. FSH and sex steroid levels were not altered. Short-term reduction of leptin levels decreased the number of circulating cells of the adaptive immune response, but r-metHuLeptin did not have major effects on their number or in vitro function. Thus, changes of leptin levels within the physiologic range have no major physiologic effects in leptin-replete humans. Studies involving more severe and/or chronic leptin deficiency are needed to precisely define the lower limit of normal leptin levels for each of leptin’s physiologic targets. PMID:16714386

  2. Saturn V S-IC-T Stage

    NASA Technical Reports Server (NTRS)

    1964-01-01

    Pictured is the Saturn V S-IC-T stage (static testing stage) on a transporter showing its forward end in building 4705 at the Marshall Space Flight Center (MSFC). This stage underwent numerous static firings at the newly-built S-IC Static Test Stand at the MSFC west test area. The S-IC (first) stage used five F-1 engines that produced a total thrust of 7,500,000 pounds as each engine produced 1,500,000 pounds of thrust. The S-IC stage lifted the Saturn V vehicle and Apollo spacecraft from the launch pad.

  3. Saturn V S-IC-T Stage

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Pictured is the Saturn V S-IC-T stage (static testing stage) being assembled in the horizontal assembly station at the Marshall Space Flight Center (MSFC), building 4705. This stage underwent numerous static firings at the newly-built S-IC Static Test Stand at the MSFC west test area. The S-IC (first) stage used five F-1 engines that produced a total thrust of 7,500,000 pounds as each engine produced 1,500,000 pounds of thrust. The S-IC stage lifted the Saturn V vehicle and Apollo spacecraft from the launch pad.

  4. Counterrotating core in IC 1459

    SciTech Connect

    Franx, M.; Illingworth, G.D.

    1988-04-01

    The radio elliptical IC 1459 is shown to have a massive rapidly counterrotating stellar core. Along the major axis a strong peak in the rotational velocity is observed at a distance of 2 arcsec (0.3 kpc) from the center. The velocity reaches 170 + or - 20 km/s. The rotational velocity in the outer parts rises to 45 + or - 8 km/s, but in the opposite sense to the rotation of the center. Along the minor axis, no significant rotation is measured, neither in the center nor in the outer parts. Line profiles derived from cross-correlated spectra along the major axis in the core show a clear asymmetry. Ionized gas rotates around the minor axis in the same sense as the outer part of the galaxy. The other properties are typical of normal ellipticals. The galaxy has a regular color gradient and line strength gradient. The mass of the counterrotating component is estimated to be about 10 to the 10th solar masses. It is postulated that such a core could form, following the merger of two galaxies, either by the tidal disruption of the victim or through a starburst-like event. 27 references.

  5. BORON SYNTHESIS IN TYPE Ic SUPERNOVAE

    SciTech Connect

    Nakamura, Ko; Kajino, Toshitaka; Yoshida, Takashi; Shigeyama, Toshikazu

    2010-08-01

    We investigate the {nu}-process in an energetic Type Ic supernova (SN Ic) and the resultant productions of the light elements including boron and its stable isotopes. SN Ic is a very unique boron source because it can produce boron not only through spallation reactions as discussed in Nakamura and Shigeyama but also the {nu}-process. The {nu}-process is considered to occur in core-collapse supernovae and previous studies were limited to SNe II. Although the progenitor star of an SN Ic does not posses an He envelope so that {sup 7}Li production via the {nu}-process is unlikely, {sup 11}B can be produced in the C-rich layers. We demonstrate a hydrodynamic simulation of a SN Ic explosion and estimate the amounts of the light elements produced via the {nu}-process for the first time, and also the subsequent spallation reactions between the outermost layers of the compact SN Ic progenitor and the ambient medium. We find that the {nu}-process in the current SN Ic model produces a significant amount of {sup 11}B, which is diluted by {sup 10}B from spallation reactions to get closer to B isotopic ratios observed in meteorites. We also confirm that high-temperature {mu} and {tau} neutrinos and their anti-neutrinos, reasonably suggested from the compact structure of SN Ic progenitors, enhance the light-element production through the neutral current reactions, which may imply an important role of SNe Ic in the Galactic chemical evolution.

  6. SPROC: A multiple-processor DSP IC

    NASA Technical Reports Server (NTRS)

    Davis, R.

    1991-01-01

    A large, single-chip, multiple-processor, digital signal processing (DSP) integrated circuit (IC) fabricated in HP-Cmos34 is presented. The innovative architecture is best suited for analog and real-time systems characterized by both parallel signal data flows and concurrent logic processing. The IC is supported by a powerful development system that transforms graphical signal flow graphs into production-ready systems in minutes. Automatic compiler partitioning of tasks among four on-chip processors gives the IC the signal processing power of several conventional DSP chips.

  7. High performance MPEG-audio decoder IC

    NASA Technical Reports Server (NTRS)

    Thorn, M.; Benbassat, G.; Cyr, K.; Li, S.; Gill, M.; Kam, D.; Walker, K.; Look, P.; Eldridge, C.; Ng, P.

    1993-01-01

    The emerging digital audio and video compression technology brings both an opportunity and a new challenge to IC design. The pervasive application of compression technology to consumer electronics will require high volume, low cost IC's and fast time to market of the prototypes and production units. At the same time, the algorithms used in the compression technology result in complex VLSI IC's. The conflicting challenges of algorithm complexity, low cost, and fast time to market have an impact on device architecture and design methodology. The work presented in this paper is about the design of a dedicated, high precision, Motion Picture Expert Group (MPEG) audio decoder.

  8. I&C Modeling in SPAR Models

    SciTech Connect

    John A. Schroeder

    2012-06-01

    The Standardized Plant Analysis Risk (SPAR) models for the U.S. commercial nuclear power plants currently have very limited instrumentation and control (I&C) modeling [1]. Most of the I&C components in the operating plant SPAR models are related to the reactor protection system. This was identified as a finding during the industry peer review of SPAR models. While the Emergency Safeguard Features (ESF) actuation and control system was incorporated into the Peach Bottom Unit 2 SPAR model in a recent effort [2], various approaches to expend resources for detailed I&C modeling in other SPAR models are investigated.

  9. Development of brain injury criteria (BrIC).

    PubMed

    Takhounts, Erik G; Craig, Matthew J; Moorhouse, Kevin; McFadden, Joe; Hasija, Vikas

    2013-11-01

    Rotational motion of the head as a mechanism for brain injury was proposed back in the 1940s. Since then a multitude of research studies by various institutions were conducted to confirm/reject this hypothesis. Most of the studies were conducted on animals and concluded that rotational kinematics experienced by the animal's head may cause axonal deformations large enough to induce their functional deficit. Other studies utilized physical and mathematical models of human and animal heads to derive brain injury criteria based on deformation/pressure histories computed from their models. This study differs from the previous research in the following ways: first, it uses two different detailed mathematical models of human head (SIMon and GHBMC), each validated against various human brain response datasets; then establishes physical (strain and stress based) injury criteria for various types of brain injury based on scaled animal injury data; and finally, uses Anthropomorphic Test Devices (ATDs) (Hybrid III 50th Male, Hybrid III 5th Female, THOR 50th Male, ES-2re, SID-IIs, WorldSID 50th Male, and WorldSID 5th Female) test data (NCAP, pendulum, and frontal offset tests) to establish a kinematically based brain injury criterion (BrIC) for all ATDs. Similar procedures were applied to college football data where thousands of head impacts were recorded using a six degrees of freedom (6 DOF) instrumented helmet system. Since animal injury data used in derivation of BrIC were predominantly for diffuse axonal injury (DAI) type, which is currently an AIS 4+ injury, cumulative strain damage measure (CSDM) and maximum principal strain (MPS) were used to derive risk curves for AIS 4+ anatomic brain injuries. The AIS 1+, 2+, 3+, and 5+ risk curves for CSDM and MPS were then computed using the ratios between corresponding risk curves for head injury criterion (HIC) at a 50% risk. The risk curves for BrIC were then obtained from CSDM and MPS risk curves using the linear relationship

  10. Development of grouped icEEG for the study of cognitive processing

    PubMed Central

    Kadipasaoglu, Cihan M.; Forseth, Kiefer; Whaley, Meagan; Conner, Christopher R.; Rollo, Matthew J.; Baboyan, Vatche G.; Tandon, Nitin

    2015-01-01

    Invasive intracranial EEG (icEEG) offers a unique opportunity to study human cognitive networks at an unmatched spatiotemporal resolution. To date, the contributions of icEEG have been limited to the individual-level analyses or cohorts whose data are not integrated in any way. Here we discuss how grouped approaches to icEEG overcome challenges related to sparse-sampling, correct for individual variations in response and provide statistically valid models of brain activity in a population. By the generation of whole-brain activity maps, grouped icEEG enables the study of intra and interregional dynamics between distributed cortical substrates exhibiting task-dependent activity. In this fashion, grouped icEEG analyses can provide significant advances in understanding the mechanisms by which cortical networks give rise to cognitive functions. PMID:26257673

  11. Multilevel clustering fault model for IC manufacture

    NASA Astrophysics Data System (ADS)

    Bogdanov, Yu. I.; Bogdanova, N. A.; Rudnev, A. V.

    2004-05-01

    A hierarchical approach to the construction of compound distributions for process-induced faults in IC manufacture is proposed. Within this framework, the negative binomial distribution is treated as level-1 models. The hierarchical approach to fault distribution offers an integrated picture of how fault density varies from region to region within a wafer, from wafer to wafer within a batch, and so on. A theory of compound-distribution hierarchies is developed by means of generating functions. A study of correlations, which naturally appears in microelectronics due to the batch character of IC manufacture, is proposed. Taking these correlations into account is of significant importance for developing procedures for statistical quality control in IC manufacture. With respect to applications, hierarchies of yield means and yield probability-density functions are considered.

  12. The Magnetics Information Consortium (MagIC)

    NASA Astrophysics Data System (ADS)

    Johnson, C.; Constable, C.; Tauxe, L.; Koppers, A.; Banerjee, S.; Jackson, M.; Solheid, P.

    2003-12-01

    The Magnetics Information Consortium (MagIC) is a multi-user facility to establish and maintain a state-of-the-art relational database and digital archive for rock and paleomagnetic data. The goal of MagIC is to make such data generally available and to provide an information technology infrastructure for these and other research-oriented databases run by the international community. As its name implies, MagIC will not be restricted to paleomagnetic or rock magnetic data only, although MagIC will focus on these kinds of information during its setup phase. MagIC will be hosted under EarthRef.org at http://earthref.org/MAGIC/ where two "integrated" web portals will be developed, one for paleomagnetism (currently functional as a prototype that can be explored via the http://earthref.org/databases/PMAG/ link) and one for rock magnetism. The MagIC database will store all measurements and their derived properties for studies of paleomagnetic directions (inclination, declination) and their intensities, and for rock magnetic experiments (hysteresis, remanence, susceptibility, anisotropy). Ultimately, this database will allow researchers to study "on the internet" and to download important data sets that display paleo-secular variations in the intensity of the Earth's magnetic field over geological time, or that display magnetic data in typical Zijderveld, hysteresis/FORC and various magnetization/remanence diagrams. The MagIC database is completely integrated in the EarthRef.org relational database structure and thus benefits significantly from already-existing common database components, such as the EarthRef Reference Database (ERR) and Address Book (ERAB). The ERR allows researchers to find complete sets of literature resources as used in GERM (Geochemical Earth Reference Model), REM (Reference Earth Model) and MagIC. The ERAB contains addresses for all contributors to the EarthRef.org databases, and also for those who participated in data collection, archiving and

  13. Saturn V S-IC-T Stage

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The S-IC-T stage was hoisted into the S-IC static test stand at the Marshall Space Flight Center. The S-IC-T stage was a static test vehicle not intended for flight. It was ground tested repeatedly over a period of many months to prove the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, housed the fuel and liquid oxygen tanks that held a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks are cornected by a 26-foot-long intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  14. Saturn V S-IC-T Stage

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The S-IC-T stage is hoisted into the S-IC static test stand at the Marshall Space Flight Center. The S-IC-T stage is a static test vehicle not intended for flight. It was ground tested repeatedly over a period of many months proving the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, houses the fuel and liquid oxygen tanks that hold a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks are cornected by a 26-foot-long intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  15. Saturn V S-IC-T Stage

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The S-IC-T stage was hoisted into the S-IC Static Test Stand at the Marshall Space Flight Center. The S-IC-T stage was a static test vehicle, not intended for flight. It was ground tested repeatedly over a period of many months to prove the vehicle's propulsion system. The 280,000-pound stage, 138 feet long and 33 feet in diameter, housed the fuel and liquid oxygen tanks that held a total of 4,400,000 pounds of liquid oxygen and kerosene. The two tanks were cornected by a 26-foot intertank section. Other parts of the booster included the forward skirt and the thrust structure, on which the engines were to be mounted. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  16. Silicon Based Millimeter Wave and THz ICs

    NASA Astrophysics Data System (ADS)

    Chen, Jixin; Hong, Wei; Tang, Hongjun; Yan, Pinpin; Zhang, Li; Yang, Guangqi; Hou, Debin; Wu, Ke

    In this paper, the research advances in silicon based millimeter wave and THz ICs in the State Key Laboratory of Millimeter Waves is reviewed, which consists of millimeter wave amplifiers, mixers, oscillators at Q, V and W and D band based on CMOS technology, and several research approaches of THz passive ICs including cavity and filter structures using SIW-like (Substrate Integrated Waveguide-like) guided wave structures based on CMOS and MEMs process. The design and performance of these components and devices are presented.

  17. Saturn V S-IC (First) Stage

    NASA Technical Reports Server (NTRS)

    1967-01-01

    This illustration shows a cutaway drawing with callouts of the major components for the S-IC (first) stage of the Saturn V launch vehicle. The S-IC stage is 138 feet long and 33 feet in diameter, producing more than 7,500,000 pounds of thrust through five F-1 engines powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimball for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  18. Saturn V S-IC (First) Stage

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This is a cutaway view of the Saturn V first stage, known as the S-IC, detailing the five F-1 engines and fuel cells. The S-IC stage is 138 feet long and 33 feet in diameter, producing more than 7,500,000 pounds of thrust through the five F-1 engines that are powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimbal for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  19. Saturn V S-IC (First) Stage

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This cutaway illustration shows the Saturn V S-IC (first) stage with detailed callouts of the components. The S-IC Stage is 138 feet long and 33 feet in diameter, producing 7,500,000 pounds of thrust through five F-1 engines that are powered by liquid oxygen and kerosene. Four of the engines are mounted on an outer ring and gimbal for control purposes. The fifth engine is rigidly mounted in the center. When ignited, the roar produced by the five engines equals the sound of 8,000,000 hi-fi sets.

  20. S-IC Static Test Stand

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Constructed in 1964, the S-IC Static Test Stand was designed to develop and test the first stage (S-IC) of the Saturn V launch vehicle. In the 1974 the test stand was modified to test the liquid hydrogen tank on the Space Shuttle External Tank. The facility was again modified in 1986 and its name was changed to the Advanced Engine Test Facility. These modifications were made to accommodate the Technology Test Bed engine which is a derivative of the Space Shuttle Main Engine.

  1. Measurement selection for parametric IC fault diagnosis

    NASA Technical Reports Server (NTRS)

    Wu, A.; Meador, J.

    1991-01-01

    Experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis are described. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined.

  2. IC Engine Applications of Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton; Rivers, H. Kevin

    2000-01-01

    Many of the properties of carbon-carbon make it an ideal material for reciprocating materials of intermittent combustion (IC) engines. Recent diesel engine tests, shown herein, indicate that the thermal and mechanical properties of carbon-carbon are adequate for piston applications, However, reducing the manufacturing costs and providing long term oxidation protection are still issues that need to be addressed.

  3. IC Fabrication Methods Improve Laser Diodes

    NASA Technical Reports Server (NTRS)

    Miller, M.; Pickhardt, V.

    1984-01-01

    Family of high-performance, tunable diode lasers developed for use as local oscillators in passive laser heterodyne spectrometer. Diodes fabricated using standard IC processes include photolithography, selective etching and vacuum deposition of metals and insulators. Packaging refinements improved thermal-cycling characteristics of diodes and increased room-temperature shelf life.

  4. THE YOUNG CLUSTER IN IC 1274

    SciTech Connect

    Dahm, S. E.; Herbig, G. H.; Bowler, Brendan P.

    2012-01-15

    IC 1274 is a faintly luminous nebula lying on the near surface of the Lynds 227 (L227) molecular cloud. Its cavity-like morphology is reminiscent of a blistered star-forming region. Four luminous, early-type (B0-B5) stars are located within a spherical volume {approx}5' in diameter that appears to be clear of heavy obscuration. Approximately centered in the cleared region is the B0 V star HD 166033, which is thought to be largely responsible for the cavity's excavation. Over 80 H{alpha} emission sources brighter than V {approx} 21 have been identified in the region. More than half of these are concentrated in IC 1274 and are presumably members of a faint T Tauri star population. Chandra Advanced CCD Imaging Spectrometer imaging of a nearby suspected pulsar and time-variable {gamma}-ray source (GeV J1809-2327) detected 21 X-ray sources in the cluster vicinity, some of which are coincident with the early-type stars and H{alpha} emitters in IC 1274. Deep (V {approx} 22) optical BVRI photometry has been obtained for the cluster region. A distance of 1.82 {+-} 0.3 kpc and a mean extinction of A{sub V} {approx} 1.21 {+-} 0.2 mag follow from photometry of the early-type stars. Using pre-main-sequence evolutionary models, we derive a median age for the H{alpha} emitters and X-ray sources of {approx}1 Myr; however, a significant dispersion is present. Our interpretation of the structure of IC 1274 and the spatial distribution of H{alpha} emitters is that the early-type stars formed recently and are in the process of ionizing and dispersing the molecular gas on the near surface of L227. The displaced material was driven against what remains of the molecular cloud to the east, enabling the formation of the substantial number of T Tauri stars found there. A dispersed population of H{alpha} emitters is also found along the periphery of L227, IC 1275, and IC 4684. These sources, if pre-main-sequence stars, appear to have formed in relative isolation compared to the dense cluster

  5. S-IC Test Stand Design Model

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo is of the S-IC test stand design model created prior to construction.

  6. S-IC Test Stand Design Model

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo is of the S-IC test stand design model.

  7. TLR3 Agonist Poly-IC Induces IL-33 and Promotes Myelin Repair

    PubMed Central

    Natarajan, Chandramohan; Yao, Song-Yi; Sriram, Subramaniam

    2016-01-01

    Background Impaired remyelination of demyelinated axons is a major cause of neurological disability. In inflammatory demyelinating disease of the central nervous system (CNS), although remyelination does happen, it is often incomplete, resulting in poor clinical recovery. Poly-IC a known TLR3 agonist and IL-33, a cytokine which is induced by poly-IC are known to influence recovery and promote repair in experimental models of CNS demyelination. Methodology and Principal Findings We examined the effect of addition of poly-IC and IL-33 on the differentiation and maturation of oligodendrocyte precursor cells (OPC) cultured in vitro. Both Poly-IC and IL-33 induced transcription of myelin genes and the differentiation of OPC to mature myelin forming cells. Poly-IC induced IL-33 in OPC and addition of IL-33 to in vitro cultures, amplified further, IL-33 expression suggesting an autocrine regulation of IL-33. Poly-IC and IL-33 also induced phosphorylation of p38MAPK, a signaling molecule involved in myelination. Following the induction of gliotoxic injury with lysolecithin to the corpus callosum (CC), treatment of animals with poly-IC resulted in greater recruitment of OPC and increased staining for myelin in areas of demyelination. Also, poly-IC treated animals showed greater expression of IL-33 and higher expression of M2 phenotype macrophages in the CC. Conclusion/Significance Our studies suggest that poly-IC and IL-33 play a role in myelin repair by enhancing expression of myelin genes and are therefore attractive therapeutic agents for use as remyelinating agents in human demyelinating disease. PMID:27022724

  8. High Rate for Type IC Supernovae

    SciTech Connect

    Muller, R.A.; Marvin-Newberg, H.J.; Pennypacker, Carl R.; Perlmutter, S.; Sasseen, T.P.; Smith, C.K.

    1991-09-01

    Using an automated telescope we have detected 20 supernovae in carefully documented observations of nearby galaxies. The supernova rates for late spiral (Sbc, Sc, Scd, and Sd) galaxies, normalized to a blue luminosity of 10{sup 10} L{sub Bsun}, are 0.4 h{sup 2}, 1.6 h{sup 2}, and 1.1 h{sup 2} per 100 years for SNe type la, Ic, and II. The rate for type Ic supernovae is significantly higher than found in previous surveys. The rates are not corrected for detection inefficiencies, and do not take into account the indications that the Ic supernovae are fainter on the average than the previous estimates; therefore the true rates are probably higher. The rates are not strongly dependent on the galaxy inclination, in contradiction to previous compilations. If the Milky Way is a late spiral, then the rate of Galactic supernovae is greater than 1 per 30 {+-} 7 years, assuming h = 0.75. This high rate has encouraging consequences for future neutrino and gravitational wave observatories.

  9. Abundances in the Planetary Nebula IC 5217

    NASA Technical Reports Server (NTRS)

    Hyung, Siek; Aller, Lawrence H.; Feibelman, Walter A.; Lee, Woo-Baik; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    High resolution optical wavelength spectroscopic data were secured in the optical wavelengths, 3700A - 10,050A, for the planetary nebula IC 5217 with the Hamilton Echelle Spectrograph at Lick Observatory. These optical spectra have been analyzed along with the near-UV and UV archive data. Diagnostic analyses indicate a nebular physical condition with electron temperature of about 10,700 K (from the [O III] lines) and the density of N(sub epsilon) = 5000/cm. Ionic concentrations have been derived with the representative diagnostics, and with the aid of a photoionization model construction, we derived the elemental abundances. Contrary to the previous studies found in the literature, He and C appear to be depleted compared to the average planetary nebula and to the Sun (and S marginally so), while the remaining elements appear to be close to the average value. IC 5217 may have evolved from an O-rich progenitor and the central star temperature of IC 5217 is likely to be 92,000 K.

  10. Molecular Hydrogen Fluorescence in IC 63

    NASA Technical Reports Server (NTRS)

    Andersson, B-G

    2005-01-01

    This grant has supported the acquisition, reduction and analysis of data targeting the structure and excitation of molecular hydrogen in the reflection nebula IC 63 and in particular the fluorescent emission seen in the UV. In addition to manpower for analyzing the FUSE data, the grant supported the (attempted) acquisition of supporting ground-based data. We proposed for and received observing time for two sets of ground based, data; narrow band imaging ([S II], [O III) at KPNO (July 2002; Observer: Burgh) and imaging spectro-photometry of several of the near-infrared rotation-vibration lines of H2 at the IRTF (October 2003; Observer: Andersson). Unfortunately, both of these runs were failures, primarily because of bad weather, and did not result in any useful data. We combined the FUSE observations with rocket borne observations of the star responsible for exciting the H2 fluorescence in IC 63: gamma Cas, and with archival HUT observations of IC 63, covering the long-wavelength part of the molecular hydrogen fluorescence.

  11. Wire-bond inspection in IC assembly

    NASA Astrophysics Data System (ADS)

    Rajeswari, Mandava; Rodd, Mike G.

    1996-02-01

    Wire-bonding in IC assembly process involves making a physical connection between the IC 'die' and the 'lead' by bonding wires between the two. Inspection of wire-bond quality is a' highly labor-intensive process and currently efforts are being made to automate it. This paper presents the results of a research conducted into developing a comprehensive automated wire- bond visual inspection system that is capable of performing final accept/reject inspection, providing on-line process feedback, and assisting in process validation. The proposed inspection system consists of the inspection of the bond on a bond pad, the bond on a lead and the inter-connecting wire between a bond pad and its corresponding lead. The algorithms are based on simple and easily extractable features that ensure achieving the desired accuracy and speed. A novel but simple illumination system is proposed to obtain the images of the inter- connecting wires. The proposed system is validated using several state-of-the-art IC samples. This work is sponsored by the Ministry of Science Technology and Environment, Malaysia and Intel Technology Pvt. Ltd., Malaysia.

  12. Simulation of SEU transients in CMOS ICs

    SciTech Connect

    Kaul, N.; Bhuva, B.L.; Kerns, S.E. )

    1991-12-01

    This paper reports that available analytical models of the number of single-event-induced errors (SEU) in combinational logic systems are not easily applicable to real integrated circuits (ICs). An efficient computer simulation algorithm set, SITA, predicts the vulnerability of data stored in and processed by complex combinational logic circuits to SEU. SITA is described in detail to allow researchers to incorporate it into their error analysis packages. Required simulation algorithms are based on approximate closed-form equations modeling individual device behavior in CMOS logic units. Device-level simulation is used to estimate the probability that ion-device interactions produce erroneous signals capable of propagating to a latch (or n output node), and logic-level simulation to predict the spread of such erroneous, latched information through the IC. Simulation results are compared to those from SPICE for several circuit and logic configurations. SITA results are comparable to this established circuit-level code, and SITA can analyze circuits with state-of-the-art device densities (which SPICE cannot). At all IC complexity levels, SITAS offers several factors of 10 savings in simulation time over SPICE.

  13. Evaluation of Acanthamoeba Myosin-IC as a Potential Therapeutic Target

    PubMed Central

    Lorenzo-Morales, Jacob; López-Arencibia, Atteneri; Reyes-Batlle, María; Piñero, José E.; Valladares, Basilio; Maciver, Sutherland K.

    2014-01-01

    Members of the genus Acanthamoeba are facultative pathogens of humans, causing a sight-threatening keratitis and a fatal encephalitis. We have targeted myosin-IC by using small interfering RNA (siRNA) silencing as a therapeutic approach, since it is known that the function of this protein is vital for the amoeba. In this work, specific siRNAs against the Acanthamoeba myosin-IC gene were developed. Treated and control amoebae were cultured in growth and encystment media to evaluate the induced effects after myosin-IC gene knockdown, as we have anticipated that cyst formation may be impaired. The effects of myosin-IC gene silencing were inhibition of cyst formation, inhibition of completion of cytokinesis, inhibition of osmoregulation under osmotic stress conditions, and death of the amoebae. The finding that myosin-IC silencing caused incompletion of cytokinesis is in agreement with earlier suggestions that the protein plays a role in cell locomotion, which is necessary to pull daughter cells apart after mitosis in a process known as “traction-mediated cytokinesis”. We conclude that myosin-IC is a very promising potential drug target for the development of much-needed antiamoebal drugs and that it should be further exploited for Acanthamoeba therapy. PMID:24468784

  14. A Way to End the IC Designer Shortage.

    ERIC Educational Resources Information Center

    Robinson, Arthur L.

    1980-01-01

    Discusses the problem of the shortage of engineers capable of designing advanced integrated circuits (IC) and presents some suggestions for increasing the number of IC designers in universities and semiconductor companies. (HM)

  15. Finding Young Stars in IC417

    NASA Astrophysics Data System (ADS)

    Odden, Caroline; Rebull, Luisa M.; Sanchez, Richard; Hall, Garrison; Dear, AnnaMaria; Hengel, Cassie; LaRocca, Mia; Lin, Samantha; Nix, Sabine; Sweckard, Teaghan; Wilhelm, Katie

    2016-01-01

    IC 417 is a young cluster in the constellation Auriga, towards the Galactic anti-center in the Perseus arm, at a distance of ~2.3 kpc. Previous studies suggested that there are young stars in this region; Camargo et al. (2012) identified several few-Myr-old clusters in this region from 2MASS clustering, and Jose et al. (2008) identified H-alpha excess sources. Since stars form from clouds of interstellar dust and gas, a signature of star formation is excess infrared (IR) emission, which is interpreted as evidence for circumstellar dust around young stars. We identified new candidate young stellar objects (YSOs) in IC 417 by incorporating near- and mid-infrared observations from the Wide-field Infrared Survey Explorer (WISE) and the Two Micron All-Sky Survey (2MASS). Infrared excess sources were identified by using a series of color cuts in various 2MASS/WISE color-magnitude and color-color diagrams following Koenig & Leisawitz (2014). We also assembled a list of OB and H-alpha stars from the literature, including those from Jose et al. (2008), and H-alpha bright stars from the IPHAS survey (Witham et al. 2008). Starting with this compiled list of approximately 200 interesting objects in the region, we then set about checking their reliability in three ways. We inspected the POSS, 2MASS, and WISE images of the sources. We assembled and inspected spectral energy distributions (SEDs) from archival data ranging from wavelengths of 0.7 to 22 um. Finally, we created and inspected color-color and color-magnitude diagrams. We find enough new YSO candidates to more than double the number yet identified in the IC 417 region. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  16. Electron Storage Ring Development for ICS Sources

    SciTech Connect

    Loewen, Roderick

    2015-09-30

    There is an increasing world-wide interest in compact light sources based on Inverse Compton Scattering. Development of these types of light sources includes leveraging the investment in accelerator technology first developed at DOE National Laboratories. Although these types of light sources cannot replace the larger user-supported synchrotron facilities, they offer attractive alternatives for many x-ray science applications. Fundamental research at the SLAC National Laboratory in the 1990’s led to the idea of using laser-electron storage rings as a mechanism to generate x-rays with many properties of the larger synchrotron light facilities. This research led to a commercial spin-off of this technology. The SBIR project goal is to understand and improve the performance of the electron storage ring system of the commercially available Compact Light Source. The knowledge gained from studying a low-energy electron storage ring may also benefit other Inverse Compton Scattering (ICS) source development. Better electron storage ring performance is one of the key technologies necessary to extend the utility and breadth of applications of the CLS or related ICS sources. This grant includes a subcontract with SLAC for technical personnel and resources for modeling, feedback development, and related accelerator physics studies.

  17. PDC IC WELD FAILURE EVALUATION AND RESOLUTION

    SciTech Connect

    Korinko, P.; Howard, S.; Maxwell, D.; Fiscus, J.

    2012-04-16

    During final preparations for start of the PDCF Inner Can (IC) qualification effort, welding was performed on an automated weld system known as the PICN. During the initial weld, using a pedigree canister and plug, a weld defect was observed. The defect resulted in a hole in the sidewall of the canister, and it was observed that the plug sidewall had not been consumed. This was a new type of failure not seen during development and production of legacy Bagless Transfer Cans (FB-Line/Hanford). Therefore, a team was assembled to determine the root cause and to determine if the process could be improved. After several brain storming sessions (MS and T, R and D Engineering, PDC Project), an evaluation matrix was established to direct this effort. The matrix identified numerous activities that could be taken and then prioritized those activities. This effort was limited by both time and resources (the number of canisters and plugs available for testing was limited). A discovery process was initiated to evaluate the Vendor's IC fabrication process relative to legacy processes. There were no significant findings, however, some information regarding forging/anneal processes could not be obtained. Evaluations were conducted to compare mechanical properties of the PDC canisters relative to the legacy canisters. Some differences were identified, but mechanical properties were determined to be consistent with legacy materials. A number of process changes were also evaluated. A heat treatment procedure was established that could reduce the magnetic characteristics to levels similar to the legacy materials. An in-situ arc annealing process was developed that resulted in improved weld characteristics for test articles. Also several tack welds configurations were addressed, it was found that increasing the number of tack welds (and changing the sequence) resulted in decreased can to plug gaps and a more stable weld for test articles. Incorporating all of the process improvements

  18. Trends in nondestructive imaging of IC packages

    NASA Astrophysics Data System (ADS)

    Moore, T. M.; Hartfield, C. D.

    1998-11-01

    Since the industry-wide conversion to surface mount packages in the mid-1980's, nondestructive imaging of moisture induced delaminations and cracks in plastic packaged ICs by scanning acoustic microscopy has been a critically important capability. Subsurface imaging and phase analysis of echoes has allowed scanning acoustic microscopy to become the primary nondestructive technique for component level inspection of packaged ICs and is sensitive to defects that are undetectable by real time x-ray inspection. It has become the preferred method for evaluating moisture sensitivity, and for many package processes, provides more reliable detection of wire bond degradation than physical cross sectioning or conventional electrical testing. However, the introduction of new technologies such as ball grid array (BGA) and flip chip packages demands improvements in acoustic inspection techniques. Echoes from the laminated substrates in BGA packages produce interference problems. Phase inversion detection is an important advantage of pulse-echo imaging of molded surface mount packages. However, phase inversion is not always helpful for delamination detection in these new packages, due to the properties of the materials involved. The requirement to nondestructively inspect flip chip interconnect bumps has arisen. Alternative approaches such as through-transmission screening of BGAs and high frequency (>200 MHz) pulse-echo inspection of flip chip bumps are addressing these new issues. As the acoustic frequency approaches the limits dictated by attenuation, new methods of frequency-domain signal analysis will become important for routine inspection and may give acoustic microscopy a predictive capability.

  19. The Violent Interstellar Medium of IC 2574

    NASA Astrophysics Data System (ADS)

    Walter, F.; Brinks, E.; Duric, N.; Kerp, J.; Klein, U.

    1998-12-01

    We present a multi-wavelength study of the Violent Interstellar Medium of the nearby dwarf galaxy IC 2574, a member of the M81 group of galaxies. In particular, we concentrate on the most prominent supergiant shell in IC 2574 which was detected in neutral hydrogen (H I) observations obtained with the Very Large Array (VLA). This shell is thought to be produced by the combined effects of stellar winds and supernova explosions. Massive star forming regions, as traced by Hα emission, are situated predominantly on the rim of this H I shell. This supports the view that the accumulated H I on the rim has reached densities which are high enough for secondary star formation to commence. Soft X-ray emission from within the H I hole is detected by a pointed ROSAT PSPC observation. The emission is extended and has the same size and orientation as the H I shell. These spatial properties together with a first-order spectral analysis suggest that the emission is generated by an X-ray emitting plasma located within the H I shell. However, a contribution from X-ray binaries cannot be completely ruled out at this point.

  20. Studies on human blood lymphocytes with iC3b (type 3) complement receptors. II. Characterization of subsets which regulate pokeweed mitogen-induced lymphocyte proliferation and immunoglobulin synthesis.

    PubMed Central

    Abo, W; Gray, J D; Bakke, A C; Horwitz, D A

    1987-01-01

    Human blood lymphocytes that express Type 3 complement receptors (CR3) can be divided into a major subset with high density Fc receptors for IgG (FcR) identified with the monoclonal antibody Leu 11 and two minor subsets which display either CD8 (Leu 2) or CD4 (Leu 3) markers. We isolated CR3+ lymphocyte subsets and examined them for regulatory effects on pokeweed mitogen (PWM) stimulated cells. The FCR CR3+ cell suppressed PWM-induced proliferation and Ig production. Pretreatment of these lymphocytes with immune complexes was required to suppress proliferation, but not IgG production. The CR3+ Leu 2+ FCR- subset also had suppressive activity, but this effect was not observed unless the CR3+ Leu 3+ enriched subset was removed. In fact, the CR3+ Leu 3+ enriched subset enhanced IgG synthesis. Brief exposure of CR3+ lymphocytes to recombinant interleukin 2, recombinant alpha-interferon, but not gamma-interferon, markedly enhanced the inhibitory effect. Time course studies and a comparison of inhibition of Ig synthesis with natural killer cell activity suggested that CR3+ lymphocytes act shortly after lymphocytes are exposed to PWM and that Ig production was regulated by suppression rather than cytotoxicity. These CR3+ lymphocyte subsets may have broad antigen non-specific effects on immunoglobulin synthesis. PMID:2955973

  1. Variations in IC(50) values with purity of mushroom tyrosinase.

    PubMed

    Neeley, Elizabeth; Fritch, George; Fuller, Autumn; Wolfe, Jordan; Wright, Jessica; Flurkey, William

    2009-09-01

    The effects of various inhibitors on crude, commercial and partially purified commercial mushroom tyrosinase were examined by comparing IC(50) values. Kojic acid, salicylhydroxamic acid, tropolone, methimazole, and ammonium tetrathiomolybdate had relatively similar IC(50) values for the crude, commercial and partially purified enzyme. 4-Hexylresorcinol seemed to have a somewhat higher IC(50) value using crude extracts, compared to commercial or purified tyrosinase. Some inhibitors (NaCl, esculetin, biphenol, phloridzin) showed variations in IC(50) values between the enzyme samples. In contrast, hydroquinone, lysozyme, Zn(2+), and anisaldehyde showed little or no inhibition in concentration ranges reported to be effective inhibitors. Organic solvents (DMSO and ethanol) had IC(50) values that were similar for some of the tyrosinase samples. Depending of the source of tyrosinase and choice of inhibitor, variations in IC(50) values were observed. PMID:19865520

  2. Variations in IC50 Values with Purity of Mushroom Tyrosinase

    PubMed Central

    Neeley, Elizabeth; Fritch, George; Fuller, Autumn; Wolfe, Jordan; Wright, Jessica; Flurkey, William

    2009-01-01

    The effects of various inhibitors on crude, commercial and partially purified commercial mushroom tyrosinase were examined by comparing IC50 values. Kojic acid, salicylhydroxamic acid, tropolone, methimazole, and ammonium tetrathiomolybdate had relatively similar IC50 values for the crude, commercial and partially purified enzyme. 4-Hexylresorcinol seemed to have a somewhat higher IC50 value using crude extracts, compared to commercial or purified tyrosinase. Some inhibitors (NaCl, esculetin, biphenol, phloridzin) showed variations in IC50 values between the enzyme samples. In contrast, hydroquinone, lysozyme, Zn2+, and anisaldehyde showed little or no inhibition in concentration ranges reported to be effective inhibitors. Organic solvents (DMSO and ethanol) had IC50 values that were similar for some of the tyrosinase samples. Depending of the source of tyrosinase and choice of inhibitor, variations in IC50 values were observed. PMID:19865520

  3. [Role of ICS/LABA on COPD treatment].

    PubMed

    Shibata, Yoko

    2016-05-01

    In the treatment of chronic obstructive pulmonary disease (COPD), bronchodilators such as long acting muscarinic antagonist (LAMA) and long acting β agonist(LABA) play key roles for improving respiratory function and symptoms, and reducing risk of exacerbation. However, inhaled corticosteroid (ICS), a key medicine for bronchial asthma, is limitedly used in COPD treatment. Japanese Respiratory Society recommends to use ICS for severe COPD patients who have been frequently exacerbated, because previous clinical studies indicated that ICS reduces exacerbation in moderate to severe COPD patients. Asthma sometimes overlaps with COPD, and symptoms of those patients are not well controlled by the bronchodilation therapy alone. Therefore, ICS/LABA or ICS/LAMA should be prescribed to those overlapped patients. Concentration of exhaled nitrogen oxide and percentage of peripheral eosinophil may be good biomarkers for discriminating the COPD patients who have good response to ICS treatment. PMID:27254954

  4. Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip

    NASA Technical Reports Server (NTRS)

    Carson, John C. (Inventor); Indin, Ronald J. (Inventor); Shanken, Stuart N. (Inventor)

    1994-01-01

    A computer module is disclosed in which a stack of glued together IC memory chips is structurally integrated with a microprocessor chip. The memory provided by the stack is dedicated to the microprocessor chip. The microprocessor and its memory stack may be connected either by glue and/or by solder bumps. The solder bumps can perform three functions--electrical interconnection, mechanical connection, and heat transfer. The electrical connections in some versions are provided by wire bonding.

  5. Saturn V S-IC-T Stage in the S-IC Static Test Stand

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The S-IC-T stage (static firing stage) is installed and awaits the first static firing of all five F-1 engines at the Marshall Space Flight Center S-IC static test stand. Constructed in 1964, the S-IC static test stand was designed and constructed to develop and test the first stage of the Saturn V launch vehicle that used five F-1 engines. Each F-1 engine developed 1,500,000 pounds of thrust for a total liftoff thrust of 7,500,000 pounds. To handle this research and development effort, the stand contains 12,000,000 pounds of concrete on its base legs that are planted down to bedrock 40 feet below ground level. Of concrete and steel construction, the stand foundation walls are 4 feet thick, and topped by a crane with a 135-foot boom. With the boom in the up position, the stand is given an overall height of 405 feet, placing it among the highest structures in Alabama at the time.

  6. Correct CMOS IC defect models for quality testing

    NASA Technical Reports Server (NTRS)

    Soden, Jerry M.; Hawkins, Charles F.

    1993-01-01

    Leading edge, high reliability, and low escape CMOS IC test practices have now virtually removed the stuck-at fault model and replaced it with more defect-orientated models. Quiescent power supply current testing (I(sub DDQ)) combined with strategic use of high speed test patterns is the recommended approach to zero defect and high reliability testing goals. This paper reviews the reasons for the change in CMOS IC test practices and outlines an improved CMOS IC test methodology.

  7. Saturn V S-IC Stage Fuel Tank

    NASA Technical Reports Server (NTRS)

    1964-01-01

    This image shows the Saturn V S-IC-T stage (S-IC static test article) fuel tank being attached to the thrust structure in the vehicle assembly building at the Marshall Space Flight Center (MSFC). The S-IC stage utilized five F-1 engines that used liquid oxygen and kerosene as propellant and provided a combined thrust of 7,500,000 pounds.

  8. F-1 Engine Installation to S-IC Stage

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Engineers and technicians at the Marshall Space Flight Center were installing an F-I engine on the Saturn V S-IC (first) stage thrust structure in building 4705. The S-IC (first) stage used five F-1 engines that produced a total thrust of 7,500,000 pounds as each engine produced 1,500,000 pounds of thrust. The S-IC stage lifted the Saturn V vehicle and Apollo spacecraft from the launch pad.

  9. Design of high speed LVDS transceiver ICs

    NASA Astrophysics Data System (ADS)

    Jian, Xu; Zhigong, Wang; Xiaokang, Niu

    2010-07-01

    The design of low-power LVDS (low voltage differential signaling) transceiver ICs is presented. The LVDS transmitter integrates a common-mode feedback control on chip, while a specially designed pre-charge circuit is proposed to improve the speed of the circuit, making the highest data rate up to 622 Mb/s. For the LVDS receiver design, the performance degradation issues are solved when handling the large input common mode voltages of the conventional LVDS receivers. In addition, the LVDS receiver also supports the failsafe function. The transceiver chips were verified with the CSMC 0.5-μm CMOS process. The measured results showed that, for the LVDS transmitter with the pre-charge technique proposed, the maximum data rate is higher than 622 Mb/s. The power consumption is 6 mA with a 5-V power supply. The LVDS receiver can work properly with a larger input common mode voltage (0.1-2.4 V) but a differential input voltage as low as 100 mV. The power consumption is only 1.2 mA with a 5-V supply at the highest data rate of 400 Mb/s. The chip set meets the TIA/EIA-644-A standards and shows its potential prospects in LVDS transmission systems.

  10. Fundamentals of IC engine torsional vibration

    SciTech Connect

    Doughty, S.

    1988-01-01

    Fluctuations in IC engine cylinder pressure are an obvious source of torsional vibration excitation, although the details of the coupling from cylinder pressure to torque on the crankshaft are complicated. A second, less obvious source of torsional excitation is the effect of variable inertia associated with the engine slider-crank mechanism. This is a tutorial paper, intended to show the relation between, on the one hand, the actual engine slider-crank mechanism subject to combustion gas pressure and, on the other hand, the models commonly used for torsional vibration analysis that involve constant inertias subject to torques expressed by Fourier series. As such, it uses some new approaches to reach previously known results with a greater degree of physical insight. The presentation is in terms of a single cylinder, two stroke engine with load, and makes clear the roles of piston mass, connecting rod mass and moment of inertia, and crank inertia as they affect both the effective inertia and the effective torque. The determination of natural frequencies and the forced vibration response calculation are briefly described to complete the analysis. The development of a Fourier series representation for the effective torque, including both the cylinder pressure and inertia variation is also discussed. The various components for the response are identified, in an effort to clarify the meaning of terms such as ''zero frequency mode,'' ''rigid body mode,'' and ''twisting mode.''

  11. Electromigration of damascene copper of IC interconnect

    NASA Astrophysics Data System (ADS)

    Meyer, William Kevin

    Copper metallization patterned with multi-level damascene process is prone to electromigration failure, which affects the reliability and performance of IC interconnect. In typical products, interconnect that is not already constrained by I·R drop or Joule self-heating operates at 'near threshold' conditions. Measurement of electromigration damage near threshold is very difficult due to slow degradation requiring greatly extended stress times, or high currents that cause thermal anomalies. Software simulations of the electromigration mechanism combined with characterization of temperature profiles allows extracting material parameters and calculation of design rules to ensure reliable interconnect. Test structures capable of demonstrating Blech threshold effects while allowing thermal characterization were designed and processed. Electromigration stress tests at various conditions were performed to extract both shortline (threshold) and long-line (above threshold) performance values. The resistance increase time constant shows immortality below Je·L (product of current density and segment length) of 3200 amp/cm. Statistical analysis of times-to-failure show that long lines last 105 hours at 3.1 mA/mum2 (120°C). While this is more robust than aluminum interconnect, the semiconductor industry will be challenged to improve that performance as future products require.

  12. Systolic array IC for genetic computation

    NASA Technical Reports Server (NTRS)

    Anderson, D.

    1991-01-01

    Measuring similarities between large sequences of genetic information is a formidable task requiring enormous amounts of computer time. Geneticists claim that nearly two months of CRAY-2 time are required to run a single comparison of the known database against the new bases that will be found this year, and more than a CRAY-2 year for next year's genetic discoveries, and so on. The DNA IC, designed at HP-ICBD in cooperation with the California Institute of Technology and the Jet Propulsion Laboratory, is being implemented in order to move the task of genetic comparison onto workstations and personal computers, while vastly improving performance. The chip is a systolic (pumped) array comprised of 16 processors, control logic, and global RAM, totaling 400,000 FETS. At 12 MHz, each chip performs 2.7 billion 16 bit operations per second. Using 35 of these chips in series on one PC board (performing nearly 100 billion operations per second), a sequence of 560 bases can be compared against the eventual total genome of 3 billion bases, in minutes--on a personal computer. While the designed purpose of the DNA chip is for genetic research, other disciplines requiring similarity measurements between strings of 7 bit encoded data could make use of this chip as well. Cryptography and speech recognition are two examples. A mix of full custom design and standard cells, in CMOS34, were used to achieve these goals. Innovative test methods were developed to enhance controllability and observability in the array. This paper describes these techniques as well as the chip's functionality. This chip was designed in the 1989-90 timeframe.

  13. Prometheus Reactor I&C Software Development Methodology, for Action

    SciTech Connect

    T. Hamilton

    2005-07-30

    The purpose of this letter is to submit the Reactor Instrumentation and Control (I&C) software life cycle, development methodology, and programming language selections and rationale for project Prometheus to NR for approval. This letter also provides the draft Reactor I&C Software Development Process Manual and Reactor Module Software Development Plan to NR for information.

  14. Comparison of IC and MEMS packaging reliability approaches

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    2000-01-01

    This paper reviews the current status of IC and MEMS packaging technology with emphasis on reliability, compares the norm for IC packaging reliability evaluation and identifies challenges for development of reliability methodologies for MEMS, and finally, proposes the use of COTS MEMS in order to start generating statistically meaningful reliability data as a vehicle for future standardization of reliability test methodology for MEMS packaging.

  15. Saturn V S-IC Stage LOX Tank

    NASA Technical Reports Server (NTRS)

    1964-01-01

    This image depicts the Saturn V S-IC (first) stage liquid oxygen (LOX) tank being lowered into the irner tank in a high bay at the Marshall Space Flight Center (MSFC). The S-IC stage utilized five F-1 engines that used liquid oxygen and kerosene as propellant and provided a combined thrust of 7,500,000 pounds.

  16. X-ray observations of the supernova remnant IC 443

    NASA Technical Reports Server (NTRS)

    Winkler, P. F., Jr.; Clark, G. W.

    1974-01-01

    Presented observation data from OSO-7 are shown to confirm the identification of IC 443 as an X-ray source, with a spectrum which is consistent with either thermal bremsstrahlung or a power law. These data lead to an age of 3400 years for IC 443, much younger than previous estimates.

  17. Stability and Reproducibility Underscore Utility of RT-QuIC for Diagnosis of Creutzfeldt-Jakob Disease.

    PubMed

    Cramm, Maria; Schmitz, Matthias; Karch, André; Mitrova, Eva; Kuhn, Franziska; Schroeder, Bjoern; Raeber, Alex; Varges, Daniela; Kim, Yong-Sun; Satoh, Katsuya; Collins, Steven; Zerr, Inga

    2016-04-01

    Real-time quaking-induced conversion (RT-QuIC) allows the amplification of miniscule amounts of scrapie prion protein (PrP(Sc)). Recent studies applied the RT-QuIC methodology to cerebrospinal fluid (CSF) for diagnosing human prion diseases. However, to date, there has not been a formal multi-centre assessment of the reproducibility, validity and stability of RT-QuIC in this context, an indispensable step for establishment as a diagnostic test in clinical practice. In the present study, we analysed CSF from 110 prion disease patients and 400 control patients using the RT-QuIC method under various conditions. In addition, "blinded" ring trials between different participating sites were performed to estimate reproducibility. Using the previously established cut-off of 10,000 relative fluorescence units (rfu), we obtained a sensitivity of 85% and a specificity of 99%. The multi-centre inter-laboratory reproducibility of RT-QuIC revealed a Fleiss' kappa value of 0.83 (95% CI: 0.40-1.00) indicating an almost perfect agreement. Moreover, we investigated the impact of short-term CSF storage at different temperatures, long-term storage, repeated freezing and thawing cycles and the contamination of CSF with blood on the RT-QuIC seeding response. Our data indicated that the PrP(Sc) seed in CSF is stable to any type of storage condition but sensitive to contaminations with blood (>1250 erythrocytes/μL), which results in a false negative RT-QuIC response. Fresh blood-contaminated samples (3 days) can be rescued by removal of erythrocytes. The present study underlines the reproducibility and high stability of RT-QuIC across various CSF storage conditions with a remarkable sensitivity and specificity, suggesting RT-QuIC as an innovative and robust diagnostic method. PMID:25823511

  18. EXPANSION PARALLAX OF THE PLANETARY NEBULA IC 418

    SciTech Connect

    Guzman, Lizette; Loinard, Laurent; Gomez, Yolanda; Morisset, Christophe

    2009-07-15

    In this paper, we present radio continuum observations of the planetary nebula IC 418 obtained at two epochs separated by more than 20 years. These data allow us to show that the angular expansion rate of the ionization front in IC 418 is 5.8 {+-} 1.5 mas yr{sup -1}. If the expansion velocity of the ionization front is equal to the expansion velocity of the gas along the line of sight as measured by optical spectroscopy, then the distance to IC 418 must be 1.1 {+-} 0.3 kpc. Recent theoretical predictions appropriate for the case of IC 418, however, suggest that the ionization front may be expanding about 20% faster than the material. Under this assumption, the distance to IC 418 would increase to 1.3 {+-} 0.4 kpc.

  19. Dark Globule in IC 1396 (IRAC)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Click on image for larger view of inset

    NASA's Spitzer Space Telescope image of a glowing stellar nursery provides a spectacular contrast to the opaque cloud seen in visible light (inset). The Elephant's Trunk Nebula is an elongated dark globule within the emission nebula IC 1396 in the constellation of Cepheus. Located at a distance of 2,450 light-years, the globule is a condensation of dense gas that is barely surviving the strong ionizing radiation from a nearby massive star. The globule is being compressed by the surrounding ionized gas. The dark globule is seen in silhouette at visible-light wavelengths, backlit by the illumination of a bright star located to the left of the field of view.

    The Spitzer Space Telescope pierces through the obscuration to reveal the birth of new protostars, or embryonic stars, and previously unseen young stars. The infrared image was obtained by Spitzer's infrared array camera. The image is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange) and 8.0 microns (red). The filamentary appearance of the globule results from the sculpting effects of competing physical processes. The winds from a massive star, located to the left of the image, produce a dense circular rim comprising the 'head' of the globule and a swept-back tail of gas.

    A pair of young stars (LkHa 349 and LkHa 349c) that formed from the dense gas has cleared a spherical cavity within the globule head. While one of these stars is significantly fainter than the other in the visible-light image, they are of comparable brightness in the infrared Spitzer image. This implies the presence of a thick and dusty disc around LkHa 349c. Such circumstellar discs are the precursors of planetary systems. They are much thicker in the early stages of stellar formation when the placental planet-forming material (gas and dust) is still

  20. The broad-lined Type Ic supernova 2003jd

    NASA Astrophysics Data System (ADS)

    Valenti, S.; Benetti, S.; Cappellaro, E.; Patat, F.; Mazzali, P.; Turatto, M.; Hurley, K.; Maeda, K.; Gal-Yam, A.; Foley, R. J.; Filippenko, A. V.; Pastorello, A.; Challis, P.; Frontera, F.; Harutyunyan, A.; Iye, M.; Kawabata, K.; Kirshner, R. P.; Li, W.; Lipkin, Y. M.; Matheson, T.; Nomoto, K.; Ofek, E. O.; Ohyama, Y.; Pian, E.; Poznanski, D.; Salvo, M.; Sauer, D. N.; Schmidt, B. P.; Soderberg, A.; Zampieri, L.

    2008-02-01

    The results of a worldwide coordinated observational campaign on the broad-lined Type Ic supernova (SN Ic) 2003jd are presented. In total, 74 photometric data points and 26 spectra were collected using 11 different telescopes. SN 2003jd is one of the most luminous SN Ic ever observed. A comparison with other Type Ic supernovae (SNe Ic) confirms that SN 2003jd represents an intermediate case between broad-line events (2002ap, 2006aj) and highly energetic SNe (1997ef, 1998bw, 2003dh, 2003lw), with an ejected mass of Mej = 3.0 +/- 1Msolar and a kinetic energy of Ek(tot) = 7+3-2 × 1051erg. SN 2003jd is similar to SN 1998bw in terms of overall luminosity, but it is closer to SNe 2006aj and 2002ap in terms of light-curve shape and spectral evolution. The comparison with other SNe Ic suggests that the V-band light curves of SNe Ic can be partially homogenized by introducing a time-stretch factor. Finally, because of the similarity of SN 2003jd to the SN 2006aj/XRF 060218 event, we discuss the possible connection of SN 2003jd with a gamma-ray burst (GRB). E-mail: svalenti@eso.org Based on observations at ESO-Paranal, Prog. 074.D-0161A.

  1. Defect classes - an overdue paradigm for CMOS IC testing

    SciTech Connect

    Hawkins, C.F.; Soden, J.M.; Righter, A.W.; Ferguson, F.J.

    1994-09-01

    The IC test industry has struggled for more than 30 years to establish a test approach that would guarantee a low defect level to the customer. We propose a comprehensive strategy for testing CMOS ICs that uses defect classes based on measured defect electrical properties. Defect classes differ from traditional fault models. Our defect class approach requires that the test strategy match the defect electrical properties, while fault models require that IC defects match the fault definition. We use data from Sandia Labs failure analysis and test facilities and from public literature. We describe test pattern requirements for each defect class and propose a test paradigm.

  2. Considerations for IC and Component Selection for Space Systems

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Cohn, Lewis M.

    2008-01-01

    This viewgraph presentation addresses the integrated cycling and component selection technologies for aerospace systems. The topics include: 1) Semiconductors: The Evolution of ICs - Availability and Technology; 2) IC Selection Requirements - three fields of thought, "The Good", "The Bad" and "The Ugly"; 3) Reliability and Radiation; 4) Radiation Perspective-Four methods of selecting ICs for space systems, Guaranteed hardness, historical ground-based radiation data, historical flight usage, and unknown assurance; 5) Understanding Risk, including risk trade space and ASICs and FPGA sample selection criteria.

  3. Human erythrocytes inhibit complement-mediated solubilization of immune complexes by human serum

    SciTech Connect

    Dorval, B.L.

    1987-01-01

    The aim of this study was to develop an autologus human system to evaluate the effects of human erythrocytes on solubilization of immune complex precipitates (IC) by human serum. Incubation of IC with fresh human serum or guinea pig serum resulted in solubilization of IC. When packed erythrocytes were added to human serum or guinea pig serum binding of IC to the erythrocyte occurred and IC solubilization was inhibited significantly (p <.025). Sheep erythrocytes did not bind IC or inhibit IC solubilization. To evaluate the role of human erythrocyte complement receptor (CR1) on these findings, human erythrocytes were treated with trypsin or anti-CR1 antibodies. Both treatments abrogated IC binding to human erythrocytes but did not affect the ability of the human erythrocyte to inhibit IC solubilization. Radioimmunoassay was used to measure C3, C4 and C5 activation in human serum after incubation with IC, human erythrocytes, human erythrocytes plus IC, whole blood or in whole blood plus IC.

  4. IC 1257: A New Globular Cluster in the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Harris, W. E.; Phelps, R. L.; Madore, B. F.; Pevunova, O.; Skiff, B. A.; Crute, C.; Wilson, B.

    1996-01-01

    New CCD photometry of the faint, compact star cluster IC 1257 (L = 17? = +/- 15?obtained with the Palomar 5m telescope, reveals that it is a highly reddened globular cluster well beyond the Galactic center.

  5. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    DOEpatents

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  6. BCH codes for large IC random-access memory systems

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.

    1983-01-01

    In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed.

  7. IC-BASED CONTROLS FOR ENERGY-EFFICIENT LIGHTING

    SciTech Connect

    Richard Zhang

    2005-03-01

    A new approach for driving high frequency energy saving ballasts is developed and documented in this report. The developed approach utilizes an IC-based platform that provides the benefits of reduced system cost, reduced ballast size, and universal application to a wide range of lamp technologies, such as linear fluorescent lamps (LFL), compact fluorescent lamps (CFL) and high intensity discharge lamps (HID). The control IC chip set developed for the platform includes dual low voltage (LV) IC gate drive that provides gate drive for high and low side power switches in typical ballast circuits, and ballast controller IC that provides control functionalities optimal for different lamps and digital interface for future extension to more sophisticated control and communication.

  8. 76 FR 59672 - Notice of Change In IC Docket Numbering Policy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-27

    ... the Commission is modifying the numbering system for the docket prefix IC. These IC docket notices... Commission adopted the current IC docket prefix \\1\\ in order to properly track any comments it receives in... the way the IC docket prefix is set up. Beginning on October 1, 2011, IC dockets will continue to...

  9. Microstereolithography and its application to biochemical IC chip

    NASA Astrophysics Data System (ADS)

    Ikuta, Koji; Maruo, Shoji; Hasegawa, Tadahiro; Adachi, Takao

    2001-06-01

    The world's first micro stereo lithography, named IH process, was proposed and developed by the speaker in 1992. By now, several types of micro stereo lithography systems have been developed. Three-dimensional resolution of solidification has reached to 0.2 micron at present. These 3D micro fabrication processes using UV curable polymer gave a big impact on not only MEMS but also optics. The latest version of IH process enables us to make a movable micro mechanism without assemble process or sacrificial layer technique often used in silicon process. It is well known that the IH process is the mother of two-photon micro stereo lithography and its applications. Recently new micro chemical device named Biochemical IC Chip was proposed and developed by the speaker. This chip is based on the module IC chip-set like today's TTL family. IH process enable to make the biochemical IC including real three-dimensional micro fluid channels. Various kinds of Biochemical IC chips such as micro pump, switching valve, reactor, concentrator and detector have already been fabricated successfully. Basic performance of micro chemical devices constructed by the biochemical IC chips were demonstrated. The biochemical IC chips will open new bioscience and medicine based on innovative technology.

  10. A nonthermal superbubble in the irregular galaxy IC 10

    NASA Technical Reports Server (NTRS)

    Yang, Hui; Skillman, Evan D.

    1993-01-01

    We present synthesis radio continuum observations of the nearby irregular galaxy IC 10. These observations, at 6, 20, and 49 cm, allow us to measure the flux and spectral index of a number of resolved sources in IC 10. While most of these are easily identified as thermal emission from H II regions and a few are nonthermal background sources, one extended, nonthermal source appears to be a superbubble in IC 10. Its large size (about 250 pc) implies that it is most likely the product of several supernovae. Comparisons of these radio observations with Halpha, H I, and optical imaging observations reveal that the large nonthermal superbubble is associated with a region of star formation containing two of the most luminous H II regions and the most massive H I cloud in IC 10. We tentatively identify a stellar cluster with two Wolf-Rayet stars in the center of the superbubble. We propose that this superbubble in IC 10 represents a bridge between the giant H II regions and the H I shells and supershells observed in our Galaxy and external galaxies.

  11. Modification Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1975-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was originally designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage. Modifications to the S-IC Test Stand began in 1975 to accommodate space shuttle external tank testing. This photo depicts the continuation of the modification process as of July 14, 1975. The flame deflector originally used to provide water to the 5 F-1 engines of the S-IC stage during testing has been removed.

  12. Targeting polyIC to EGFR over-expressing cells using a dsRNA binding protein domain tethered to EGF.

    PubMed

    Edinger, Nufar; Lebendiker, Mario; Klein, Shoshana; Zigler, Maya; Langut, Yael; Levitzki, Alexander

    2016-01-01

    Selective delivery of drugs to tumor cells can increase potency and reduce toxicity. In this study, we describe a novel recombinant chimeric protein, dsRBEC, which can bind polyIC and deliver it selectively into EGFR over-expressing tumor cells. dsRBEC, comprises the dsRNA binding domain (dsRBD) of human PKR (hPKR), which serves as the polyIC binding moiety, fused to human EGF (hEGF), the targeting moiety. dsRBEC shows high affinity towards EGFR and triggers ligand-induced endocytosis of the receptor, thus leading to the selective internalization of polyIC into EGFR over-expressing tumor cells. The targeted delivery of polyIC by dsRBEC induced cellular apoptosis and the secretion of IFN-β and other pro-inflammatory cytokines. dsRBEC-delivered polyIC is much more potent than naked polyIC and is expected to reduce the toxicity caused by systemic delivery of polyIC. PMID:27598772

  13. Intravesical liposome drug delivery and IC/BPS

    PubMed Central

    Janicki, Joseph J.; Gruber, Michele A.

    2015-01-01

    Intravesical therapy has previously shown to be effective in delaying or preventing recurrence of superficial bladder cancer. This local route of drug administration is now demonstrating promise in the treatment of interstitial cystitis/bladder pain syndrome (IC/BPS) with the benefit of minimal systemic side effects. Liposomes (LPs) are lipid vesicles composed of phospholipid bilayers surrounding an aqueous core. They can incorporate drug molecules, both hydrophobic and hydrophilic, and vastly improve cellular uptake of these drug molecules via endocytosis. Intravesical LPs have therapeutic effects on IC/BPS patients, mainly due to their ability to form a protective lipid film on the urothelial surface and repair the damaged urothelium. This review considers the current status of intravesical LPs and LP mediated drug delivery for the treatment of IC/BPS. PMID:26816855

  14. A multiwavelength investigation of the supernova remnant IC 443

    NASA Astrophysics Data System (ADS)

    Mufson, S. L.; McCollough, M. L.; Dickel, J. R.; Petre, R.; White, R.; Chevalier, R.

    1986-12-01

    Multiwavelength observations of the supernova remnant IC 443 at radio, infrared, optical, ultraviolet, and X-ray wavelengths are presented. This morphological study of IC 443 presents a detailed picture of an adolescent supernova remnant in a multiphase interstellar medium. Radio observations show that better than 80 percent of the continuum emission at 18 cm is in a large-scale (greater than 18 arcmin) component. Decomposition of the infrared data shows that radiatively heated dust, shocked blackbody dust emission, and infrared line emission are all important components of the observed IRAS fluxes. The morphology of the IC 443 region is consistent with a supernova blast in an interstellar medium with a nonuniform distribution of clouds. The bright northeast rim and the great extent of the remnant to the southwest are most easily explained by a cloud filling factor which is greatest in the northeast and falls off toward the southwest.

  15. A multiwavelength investigation of the supernova remnant IC 443

    NASA Technical Reports Server (NTRS)

    Mufson, S. L.; Mccollough, M. L.; Dickel, J. R.; Petre, R.; White, R.

    1986-01-01

    Multiwavelength observations of the supernova remnant IC 443 at radio, infrared, optical, ultraviolet, and X-ray wavelengths are presented. This morphological study of IC 443 presents a detailed picture of an adolescent supernova remnant in a multiphase interstellar medium. Radio observations show that better than 80 percent of the continuum emission at 18 cm is in a large-scale (greater than 18 arcmin) component. Decomposition of the infrared data shows that radiatively heated dust, shocked blackbody dust emission, and infrared line emission are all important components of the observed IRAS fluxes. The morphology of the IC 443 region is consistent with a supernova blast in an interstellar medium with a nonuniform distribution of clouds. The bright northeast rim and the great extent of the remnant to the southwest are most easily explained by a cloud filling factor which is greatest in the northeast and falls off toward the southwest.

  16. IC 3418: STAR FORMATION IN A TURBULENT WAKE

    SciTech Connect

    Hester, Janice A.; Neill, James D.; Wyder, Ted K.; Martin, D. Christopher; Seibert, Mark; Madore, Barry F.; Gil de Paz, Armando; Schiminovich, David; Rich, R. Michael

    2010-06-10

    Galaxy Evolution Explorer observations of IC 3418, a low surface brightness galaxy in the Virgo Cluster, revealed a striking 17 kpc UV tail of bright knots and diffuse emission. H{alpha} imaging confirms that star formation is ongoing in the tail. IC 3418 was likely recently ram pressure stripped on its first pass through Virgo. We suggest that star formation is occurring in molecular clouds that formed in IC 3418's turbulent stripped wake. Tides and ram pressure stripping (RPS) of molecular clouds are both disfavored as tail formation mechanisms. The tail is similar to the few other observed star-forming tails, all of which likely formed during RPS. The tails' morphologies reflect the forces present during their formation and can be used to test for dynamical coupling between molecular and diffuse gas, thereby probing the origin of the star-forming molecular gas.

  17. Using consumer IC packages in harsh high reliability applications

    NASA Astrophysics Data System (ADS)

    Reber, Cathleen A.; Palmer, David W.

    The improvements in purity of molding materials, the IC wafer passivation layers, and manufacturing quality have resulted over the last decade in extremely high reliability in commercial IC packages. In contrast the ceramic/hermetic package world is suffering from limited availability of the newest IC chips, higher cost, larger size, and decreasing quality and fewer manufacturing lines. Traditional manufacturing line qualification tests are a good start for conversion to commercial plastic parts. However, the use of standard sensitive test chips instead of product die is necessary to perform affordable, quantitative evaluations. These test chips have many integrated sensors measuring chemical, mechanical, thermal, and electrical degradation caused by manufacturing and the package environment. Besides visual, electrical test, and burn-in little has been documented on 100% nondestructive screening of plastic molded parts. Based on realistic process control and system engineer cultural expectations, user screening is necessary. Nondestructive tests of moisture and temperature excursion susceptibility are described.

  18. Intravesical liposome drug delivery and IC/BPS.

    PubMed

    Janicki, Joseph J; Gruber, Michele A; Chancellor, Michael B

    2015-10-01

    Intravesical therapy has previously shown to be effective in delaying or preventing recurrence of superficial bladder cancer. This local route of drug administration is now demonstrating promise in the treatment of interstitial cystitis/bladder pain syndrome (IC/BPS) with the benefit of minimal systemic side effects. Liposomes (LPs) are lipid vesicles composed of phospholipid bilayers surrounding an aqueous core. They can incorporate drug molecules, both hydrophobic and hydrophilic, and vastly improve cellular uptake of these drug molecules via endocytosis. Intravesical LPs have therapeutic effects on IC/BPS patients, mainly due to their ability to form a protective lipid film on the urothelial surface and repair the damaged urothelium. This review considers the current status of intravesical LPs and LP mediated drug delivery for the treatment of IC/BPS. PMID:26816855

  19. Using consumer IC packages in harsh high reliability applications

    SciTech Connect

    Reber, C.A.; Palmer, D.W.

    1994-08-01

    The improvements in purity of molding materials, the IC wafer passivation layers, and manufacturing quality have resulted over the last decade in extremely high reliability in commercial IC packages. In contrast the ceramic/hermetic package world is suffering from limited availability of the newest IC chips, higher cost, larger size, and decreasing quality and fewer manufacturing lines. Traditional manufacturing line qualification tests are a good start for conversion to commercial plastic parts. However, the use of standard sensitive test chips instead of product die is necessary to perform affordable, quantitative evaluations. These test chips have many integrated sensors measuring chemical, mechanical, thermal, and electrical degradation caused by manufacturing and the package environment. Besides visual, electrical test, and burn-in little has been documented on 100% nondestructive screening of plastic molded parts. Based on realistic process control and system engineer cultural expectations, user screening is necessary. Nondestructive tests of moisture and temperature excursion susceptibility are described.

  20. Backside localization of open and shorted IC interconnections

    SciTech Connect

    Cole, E.I. Jr.; Tangyunyong, P.; Barton, D.L.

    1998-07-01

    A new failure analysis technique has been developed for backside and frontside localization of open and shorted interconnections on ICs. This scanning optical microscopy technique takes advantage of the interactions between IC defects and localized heating using a focused infrared laser ({lambda} = 1,340 nm). Images are produced by monitoring the voltage changes across a constant current supply used to power the IC as the laser beam is scanned across the sample. The method utilizes the Seebeck Effect to localize open interconnections and Thermally-Induced Voltage Alteration (TIVA) to detects shorts. The interaction physics describing the signal generation process and several examples demonstrating the localization of opens and shorts are described. Operational guidelines and limitations are also discussed.

  1. Flexible packaging and integration of CMOS IC with elastomeric microfluidics

    NASA Astrophysics Data System (ADS)

    Zhang, Bowei; Dong, Quan; Korman, Can E.; Li, Zhenyu; Zaghloul, Mona E.

    2013-05-01

    We have demonstrated flexible packaging and integration of CMOS IC chips with PDMS microfluidics. Microfluidic channels are used to deliver both liquid samples and liquid metals to the CMOS die. The liquid metals are used to realize electrical interconnects to the CMOS chip. As a demonstration we integrated a CMOS magnetic sensor die and matched PDMS microfluidic channels in a flexible package. The packaged system is fully functional under 3cm bending radius. The flexible integration of CMOS ICs with microfluidics enables previously unavailable flexible CMOS electronic systems with fluidic manipulation capabilities, which hold great potential for wearable health monitoring, point-of-care diagnostics and environmental sensing.

  2. Saturn V S-IC (First Stage) Structural Arrangement

    NASA Technical Reports Server (NTRS)

    1968-01-01

    This illustration, with callouts, shows the structural arrangement of the major components for the S-IC (first) stage of the Saturn V launch vehicle. The S-IC stage was 138 feet long and 33 feet in diameter, and produced more than 7,500,000 pounds of thrust through five F-1 engines that were powered by liquid oxygen and kerosene. Four of the engines were mounted on an outer ring and gimbal for control purposes. The fifth engine was rigidly mounted in the center. When ignited, the roar produced by the five engines equaled the sound of 8,000,000 hi-fi sets.

  3. Saturn V Stage I (S-IC) Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    Objectives include: a) Become familiar with the Saturn V Stage I (S-IC) major structural components: Forward Skirt, Oxidizer Tank, Intertank, Fuel Tank, and Thrust Structure. b) Gain a general understanding of the Stage I subsystems: Fuel, Oxidizer, Instrumentation, Flight Control, Environmental Control, Electrical, Control Pressure, and Ordinance.

  4. Lithium Abundances in the Young Open Cluster IC 2602

    NASA Technical Reports Server (NTRS)

    Randich, S.; Aharpour, N.; Pallavicini, R.; Prosser, C. F.; Stauffer, J. R.

    1997-01-01

    We have obtained high-resolution spectra for 28 candidate late-type stars in the 30 Myr old cluster IC 2602. NLTE Li abundances have been derived from measured equivalent widths. The log n(Li) - T(sub eff) and log n(Li) - mass distributions for our sample stars have been compared with those of the Pleiades and alpha Persei. Our data show that F stars in the three clusters have the same lithium content, which corresponds to the initial content for Pop. I stars. G and early-K IC 2602 stars are, on average, somewhat more Li-rich than their counterparts in the two slightly older clusters. Finally, the latest-type IC 2602 stars are heavily Li depleted, with their Li content being as low as the lowest measured among the Pleiades. As in the Pleiades and alpha Per, a star-to-star scatter in lithium is observed among 30 Myr old late-K/early-K dwarfs in IC 2602, indicating that this spread develops in the pre-main sequence phases.

  5. Proton Ordering of Cubic Ice Ic: Spectroscopy and Computer Simulations

    PubMed Central

    2014-01-01

    Several proton-disordered crystalline ice structures are known to proton order at sufficiently low temperatures, provided that the right preparation procedure is used. For cubic ice, ice Ic, however, no proton ordering has been observed so far. Here, we subject ice Ic to an experimental protocol similar to that used to proton order hexagonal ice. In situ FT-IR spectroscopy carried out during this procedure reveals that the librational band of the spectrum narrows and acquires a structure that is observed neither in proton-disordered ice Ic nor in ice XI, the proton-ordered variant of hexagonal ice. On the basis of vibrational spectra computed for ice Ic and four of its proton-ordered variants using classical molecular dynamics and ab initio simulations, we conclude that the features of our experimental spectra are due to partial proton ordering, providing the first evidence of proton ordering in cubic ice. We further find that the proton-ordered structure with the lowest energy is ferroelectric, while the structure with the second lowest energy is weakly ferroelectric. Both structures fit the experimental spectral similarly well such that no unique assignment of proton order is possible based on our results. PMID:24883169

  6. Validating the Implementation Climate Scale (ICS) in child welfare organizations.

    PubMed

    Ehrhart, Mark G; Torres, Elisa M; Wright, Lisa A; Martinez, Sandra Y; Aarons, Gregory A

    2016-03-01

    There is increasing emphasis on the use of evidence-based practices (EBPs) in child welfare settings and growing recognition of the importance of the organizational environment, and the organization's climate in particular, for how employees perceive and support EBP implementation. Recently, Ehrhart, Aarons, and Farahnak (2014) reported on the development and validation of a measure of EBP implementation climate, the Implementation Climate Scale (ICS), in a sample of mental health clinicians. The ICS consists of 18 items and measures six critical dimensions of implementation climate: focus on EBP, educational support for EBP, recognition for EBP, rewards for EBP, selection or EBP, and selection for openness. The goal of the current study is to extend this work by providing evidence for the factor structure, reliability, and validity of the ICS in a sample of child welfare service providers. Survey data were collected from 215 child welfare providers across three states, 12 organizations, and 43 teams. Confirmatory factor analysis demonstrated good fit to the six-factor model and the alpha reliabilities for the overall measure and its subscales was acceptable. In addition, there was general support for the invariance of the factor structure across the child welfare and mental health sectors. In conclusion, this study provides evidence for the factor structure, reliability, and validity of the ICS measure for use in child welfare service organizations. PMID:26563643

  7. An automated oxide and diffusion facility for IC's

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1980-01-01

    Report discusses totally-automated oxidation and diffusion facility for fabricating IC's. Several innovations are demonstrated: process controller specifically designed for semiconductor processing; automatic loading system to accept wafers from air track, insert them in quartz carrier, and place carrier on paddle for insertion into furnace; automatic unloading of wafers back onto air track; and boron diffusion using diborane.

  8. The spectrum of the planetary nebula IC 418

    NASA Technical Reports Server (NTRS)

    Hyung, Siek; Aller, Lawrence H.; Feibelman, Walter A.

    1994-01-01

    A detailed high-spectral-resolution study of the spectrum of IC 418 is made for the region 3650 to 10050 A, using the Hamilton echelle spectrograph of Lick Observatory, and of the UV spectral region with archival International Ultraviolet Explorer (IUE) data. From high-resolution images in both the near- and mid-infrared, Hora et al. (1993) showed that IC 418 probably has a compact shell interior to the detached, well-known, main shell emission. If one assumes a black body or Hubeny (or standard LTE) model atmosphere energy distribution, it does not appear possible to construct a fully satisfactory nebula model that will simultaneously represent the H-beta flux, the (O III) 5007/H-beta ratio, and the scale of this planetary nebula (PN). Fortunately, IUE and IR data supply information on ions in addition to those optically observed so that the chemical composition can be reasonably well established by summing over concentrations of observed ions. In spite of the fact that IC 418 is carbon rich in sense of having a C/O ratio exceeding the solar value, it is a 'metal-poor' object. Possibly it resembles IC 4997 but in a more advanced evolutionary phase. The central star is variable and has a strong wind.

  9. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  10. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  11. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  12. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  13. 30 CFR 57.22102 - Smoking (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Smoking (I-C mines). 57.22102 Section 57.22102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  14. Glass encapsulation provides extra protection for IC semiconductor devices

    NASA Technical Reports Server (NTRS)

    Doelp, W. L., Jr.

    1973-01-01

    Oxide-passivated semiconductor chip is given protective glass coating by means of vapor deposition over metallic substrate of integrated circuit (IC). Method provides more reliable oxide-passivation and hermetic sealing in current use. Chips and scratches incurred during dicing, testing, and assembly are markedly reduced.

  15. ASKAP H I imaging of the galaxy group IC 1459

    NASA Astrophysics Data System (ADS)

    Serra, P.; Koribalski, B.; Kilborn, V.; Allison, J. R.; Amy, S. W.; Ball, L.; Bannister, K.; Bell, M. E.; Bock, D. C.-J.; Bolton, R.; Bowen, M.; Boyle, B.; Broadhurst, S.; Brodrick, D.; Brothers, M.; Bunton, J. D.; Chapman, J.; Cheng, W.; Chippendale, A. P.; Chung, Y.; Cooray, F.; Cornwell, T.; DeBoer, D.; Diamond, P.; Forsyth, R.; Gough, R.; Gupta, N.; Hampson, G. A.; Harvey-Smith, L.; Hay, S.; Hayman, D. B.; Heywood, I.; Hotan, A. W.; Hoyle, S.; Humphreys, B.; Indermuehle, B.; Jacka, C.; Jackson, C. A.; Jackson, S.; Jeganathan, K.; Johnston, S.; Joseph, J.; Kamphuis, P.; Leach, M.; Lenc, E.; Lensson, E.; Mackay, S.; Marquarding, M.; Marvil, J.; McClure-Griffiths, N.; McConnell, D.; Meyer, M.; Mirtschin, P.; Neuhold, S.; Ng, A.; Norris, R. P.; O'Sullivan, J.; Pathikulangara, J.; Pearce, S.; Phillips, C.; Popping, A.; Qiao, R. Y.; Reynolds, J. E.; Roberts, P.; Sault, R. J.; Schinckel, A. E. T.; Shaw, R.; Shimwell, T. W.; Staveley-Smith, L.; Storey, M.; Sweetnam, A. W.; Troup, E.; Tzioumis, A.; Voronkov, M. A.; Westmeier, T.; Whiting, M.; Wilson, C.; Wong, O. I.; Wu, X.

    2015-09-01

    We present H I imaging of the galaxy group IC 1459 carried out with six antennas of the Australian Square Kilometre Array Pathfinder equipped with phased-array feeds. We detect and resolve H I in 11 galaxies down to a column density of ˜1020 cm-2 inside a ˜6 deg2 field and with a resolution of ˜1 arcmin on the sky and ˜8 km s-1 in velocity. We present H I images, velocity fields and integrated spectra of all detections, and highlight the discovery of three H I clouds - two in the proximity of the galaxy IC 5270 and one close to NGC 7418. Each cloud has an H I mass of ˜109 M⊙ and accounts for ˜15 per cent of the H I associated with its host galaxy. Available images at ultraviolet, optical and infrared wavelengths do not reveal any clear stellar counterpart of any of the clouds, suggesting that they are not gas-rich dwarf neighbours of IC 5270 and NGC 7418. Using Parkes data, we find evidence of additional extended, low-column-density H I emission around IC 5270, indicating that the clouds are the tip of the iceberg of a larger system of gas surrounding this galaxy. This result adds to the body of evidence on the presence of intragroup gas within the IC 1459 group. Altogether, the H I found outside galaxies in this group amounts to several times 109 M⊙, at least 10 per cent of the H I contained inside galaxies. This suggests a substantial flow of gas in and out of galaxies during the several billion years of the group's evolution.

  16. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 22, 1963. Spherical liquid hydrogen tanks can be seen to the left. Just to the lower front of those are the cylindrical liquid oxygen (LOX) tanks.

  17. Construction Progress of the S-IC Test Stand Towers

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken April 4, 1963, gives a close up look at the ever-growing four towers of the S-IC Test Stand.

  18. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken March 29, 1963, gives a close up look at two of the ever-growing four towers of the S-IC Test Stand.

  19. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 10, 1963. Spherical liquid hydrogen tanks can be seen to the left.

  20. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of November 20, 1963.

  1. Construction Progress of S-IC Test Stand Towers

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken April 17, 1963, gives a look at the four tower legs of the S-IC test stand at their completed height.

  2. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the progress of the S-IC test stand as of October 10, 1963. Kerosene storage tanks can be seen to the left.

  3. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph taken February 25, 1963, gives a close up look at two of the ever-growing four towers of the S-IC Test Stand.

  4. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken May 7, 1963, gives a close look at the four concrete tower legs of the S-IC test stand at their completed height.

  5. Construction Progress of the S-IC Test Stand Tower

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photograph, taken from ground level on May 7, 1963, gives a close look at one of the four towers legs of the S-IC test stand nearing its completed height.

  6. A Spitzer Census of the IC 348 Nebula

    NASA Astrophysics Data System (ADS)

    Muench, August A.; Lada, Charles J.; Luhman, K. L.; Muzerolle, James; Young, Erick

    2007-07-01

    Spitzer mid-infrared surveys enable an accurate census of young stellar objects by sampling large spatial scales, revealing very embedded protostars, and detecting low-luminosity objects. Taking advantage of these capabilities, we present a Spitzer-based census of the IC 348 nebula and embedded star cluster, covering a 2.5 pc region and comparable in extent to the Orion Nebula. Our Spitzer census supplemented with ground-based spectra has added 42 Class II T Tauri sources to the cluster membership and identified ~20 Class 0/I protostars. The population of IC 348 likely exceeds 400 sources after accounting statistically for unidentified diskless members. Our Spitzer census of IC 348 reveals a population of Class I protostars that is anticorrelated spatially with the Class II/III T Tauri members, which comprise the centrally condensed cluster around a B star. The protostars are instead found mostly at the cluster periphery about ~1 pc from the B star and spread out along a filamentary ridge. We further find that the star formation rate in this protostellar ridge is consistent with that rate which built the older exposed cluster, while the presence of 15 cold, starless, millimeter cores intermingled with this protostellar population indicates that the IC 348 nebula has yet to finish forming stars. Moreover, we show that the IC 348 cluster is of order 3-5 crossing times old, and, as evidenced by its smooth radial profile and confirmed mass segregation, is likely relaxed. While it seems apparent that the current cluster configuration is the result of dynamical evolution and its primordial structure has been erased, our finding of a filamentary ridge of Class I protostars supports a model in which embedded clusters are built up from numerous smaller subclusters. Finally, the results of our Spitzer census indicate that the supposition that star formation must progress rapidly in a dark cloud should not preclude these observations that show it can be relatively long lived.

  7. Hubble Space Telescope Image: Planetary Nebula IC 4406

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This Hubble Space Telescope image reveals a rainbow of colors in this dying star, called IC 446. Like many other so-called planetary nebulae, IC 4406 exhibits a high degree of symmetry. The nebula's left and right halves are nearly mirror images of the other. If we could fly around IC 446 in a spaceship, we would see that the gas and dust form a vast donut of material streaming outward from the dying star. We do not see the donut shape in this photograph because we are viewing IC 4406 from the Earth-orbiting HST. From this vantage point, we are seeing the side of the donut. This side view allows us to see the intricate tendrils of material that have been compared to the eye's retina. In fact, IC 4406 is dubbed the 'Retina Nebula.' The donut of material confines the intense radiation coming from the remnant of the dying star. Gas on the inside of the donut is ionized by light from the central star and glows. Light from oxygen atoms is rendered blue in this image; hydrogen is shown as green, and nitrogen as red. The range of color in the final image shows the differences in concentration of these three gases in the nebula. This image is a composite of data taken by HST's Wide Field Planetary Camera 2 in June 2001 and in January 2002 by Bob O'Dell (Vanderbilt University) and collaborators, and in January by the Hubble Heritage Team (STScI). Filters used to create this color image show oxygen, hydrogen, and nitrogen gas glowing in this object.

  8. Cleavage of Complement C3b to iC3b on the Surface of Staphylococcus aureus Is Mediated by Serum Complement Factor I

    PubMed Central

    Cunnion, K. M.; Hair, P. S.; Buescher, E. S.

    2004-01-01

    Complement-mediated opsonization of Staphylococcus aureus bearing the dominant capsule serotypes, serotypes 5 and 8, remains incompletely understood. We have previously shown that complement plays a vital role in the efficient phagocytosis of a serotype 5 S. aureus strain and that the opsonic fragments of the central complement protein C3, C3b and iC3b, were present on the bacterial surface after incubation in human serum. In the present studies, C3b and iC3b were found on several serotype 5 and 8 S. aureus strains after incubation in human serum. Using purified classical activation pathway complement proteins and the Western blot assay, we showed that when C3b was generated on the S. aureus surface no iC3b fragments were found, suggesting that other serum proteins may be required for cleaving C3b to iC3b. When C3b-coated S. aureus was incubated with serum factor I, a complement regulatory protein, iC3b was generated. Purified factor H, a serum protein cofactor for factor I, did not enhance factor I-mediated cleavage of C3b. These findings suggest that C3b cleavage to iC3b on S. aureus is mediated by serum factor I and does not require factor H. PMID:15102797

  9. Study of IC Compatible On-Chip Thermoelectric Coolers

    NASA Astrophysics Data System (ADS)

    Kong, Seong-Ho; Wijngaards, Davey D. L.; Wolffenbuttel, Reinoud F.

    2005-07-01

    A thin-film-based thermoelectric micro-cooler has been studied and realized using the standard integrated circuit (IC) fabrication technology and bulk micromachining technology in sequence. The whole fabrication process is kept IC compatible by postponing potassium hydroxide (KOH) etching step to the last part of the fabrication sequence. Considering the fabrication compatibility, polycrystalline silicon germanium (polySiGe) is chosen as thermoelectric material even though bismuth telluride (Bi2Te3) is one of the most effective thermoelectric materials. The influence of non-idealities on device performance, such as Joule heating due to contact resistance and parasitic heat loss through supporting membrane, is analyzed. The characterized thermoelectric, thermal and electric properties of the fabricated polySiGe thermoelectric material correspond well to those from literatures. Measured cooling performance demonstrates that an on-chip micro-cooler can be applied for thermal stabilization near ambient temperature.

  10. Saturn V S-IC Stage at Dynamic Test Stand

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Engineers and technicians at the Marshall Space Flight Center placed a Saturn V ground test booster (S-IC-D) into the dynamic test stand. The stand was constructed to test the integrity of the vehicle. Forces were applied to the tail of the vehicle to simulate the engines thrusting, and various other flight factors were fed to the vehicle to test reactions. The Saturn V launch vehicle, with the Apollo spacecraft, was subjected to more than 450 hours of shaking. The photograph shows the 300,000 pound S-IC stage being lifted from its transporter into place inside the 360-foot tall test stand. This dynamic test booster has one dummy F-1 engine and weight simulators are used at the other four engine positions.

  11. Saturn V S-IC Stage Test Firing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The Saturn V first stages were test fired at the Mississippi Test Facility and at the Marshall Space Flight Center (MSFC). Five F-1 engines powered the first stage, each developing 1.5 million pounds of thrust. The first stage, known as the S-IC stage, burned over 15 tons of propellant per second during its 2.5 minutes of operation to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour. The stage was 138 feet long and 33 feet in diameter. This photograph shows the test firing of an F-1 engine at the MSFC's S-IC Static Test Firing Facility.

  12. The violent interstellar medium of the dwarf galaxy IC 2574.

    NASA Astrophysics Data System (ADS)

    Walter, F.; Brinks, E.

    The authors present VLA H I-synthesis observations of the Violent Interstellar Medium of the nearby dwarf galaxy IC 2574 (a member of the M81 group of galaxies) at high spatial and velocity resolution. The H I-observations show a stunning amount of detail in the form of H I shells and holes in the neutral interstellar medium of IC 2574, ranging in size from 100 to 1500 pc. The most likely explanation, as has been proposed by previous studies, is combined effects of stellar winds and supernova-explosions of the most massive stars, blowing holes and shells into the interstellar medium. This picture is confirmed by a striking correlation between Hα emission and H I-shells: the smaller holes tend to be filled with Hα emission whereas for the larger H I holes the Hα seems to be restricted to the edges.

  13. Tests of shock chemistry in IC 443G

    NASA Technical Reports Server (NTRS)

    Turner, B. E.; Chan, Kin-Wing; Green, S.; Lubowich, D. A.

    1992-01-01

    Eight molecular species, in the hot dense clump IC 443G, believed to be impacted by the shock wave from the SNR IC 443, are investigated. The clump consists of two distinct regions, one relatively cool, and one hotter and denser. Region 1 contains CO, HCO(+), HCN, and CN, whose abundances may be explained either by ion-molecule chemistry, or by a D shock of 60-90 km/s, passing through a clump of about 100,000/cu cm. Region 2 gives rise to SiO, CS, SO, and H2CO, and requires an ND shock of 5-15 km/s passing through a region of about 1,000,000/cu cm. Observed fractional abundances fit ND shock models if L is about 6.6 x 10 exp 15 cm. In general, observed line widths vary inversely with derived excitation density, while centroid velocities of all species are essentially identical.

  14. 5 CM OH absorption toward the megamaser galaxy IC 4553

    NASA Astrophysics Data System (ADS)

    Henkel, C.; Guesten, R.; Batrla, W.

    1986-11-01

    Absorption in the 2Π3/2 J = 5/2 main line of OH at 6035 MHz, 120K above the ground state, is reported from the OH megamaser galaxy IC 4553 (Arp 220). An upper limit is given for Mrk 231. For IC 4553, the authors derive an OH rotation temperature Trot ≡ 45K between the 2Π3/2 J = 5/2 and 3/2 ground levels, that is ≡30% below the dust temperature. Potential pumping mechanisms for the inversion of the ground state doublet are discussed and it is argued that the most likely OH excitation scenario involves pumping by FIR photons (79, 119 μm) and centimeter wave photons (5, 6 cm).

  15. Dynamical Competition of IC-Industry Clustering from Taiwan to China

    NASA Astrophysics Data System (ADS)

    Tsai, Bi-Huei; Tsai, Kuo-Hui

    2009-08-01

    Most studies employ qualitative approach to explore the industrial clusters; however, few research has objectively quantified the evolutions of industry clustering. The purpose of this paper is to quantitatively analyze clustering among IC design, IC manufacturing as well as IC packaging and testing industries by using the foreign direct investment (FDI) data. The Lotka-Volterra system equations are first adopted here to capture the competition or cooperation among such three industries, thus explaining their clustering inclinations. The results indicate that the evolution of FDI into China for IC design industry significantly inspire the subsequent FDI of IC manufacturing as well as IC packaging and testing industries. Since IC design industry lie in the upstream stage of IC production, the middle-stream IC manufacturing and downstream IC packing and testing enterprises tend to cluster together with IC design firms, in order to sustain a steady business. Finally, Taiwan IC industry's FDI amount into China is predicted to cumulatively increase, which supports the industrial clustering tendency for Taiwan IC industry. Particularly, the FDI prediction of Lotka-Volterra model performs superior to that of the conventional Bass model after the forecast accuracy of these two models are compared. The prediction ability is dramatically improved as the industrial mutualism among each IC production stage is taken into account.

  16. SN 2004aw: confirming diversity of Type Ic supernovae

    NASA Astrophysics Data System (ADS)

    Taubenberger, S.; Pastorello, A.; Mazzali, P. A.; Valenti, S.; Pignata, G.; Sauer, D. N.; Arbey, A.; Bärnbantner, O.; Benetti, S.; Della Valle, A.; Deng, J.; Elias-Rosa, N.; Filippenko, A. V.; Foley, R. J.; Goobar, A.; Kotak, R.; Li, W.; Meikle, P.; Mendez, J.; Patat, F.; Pian, E.; Ries, C.; Ruiz-Lapuente, P.; Salvo, M.; Stanishev, V.; Turatto, M.; Hillebrandt, W.

    2006-09-01

    Optical and near-infrared (near-IR) observations of the Type Ic supernova (SN Ic) 2004aw are presented, obtained from -3 to +413 d with respect to the B-band maximum. The photometric evolution is characterized by a comparatively slow post-maximum decline of the light curves. The peaks in redder bands are significantly delayed relative to the bluer bands, the I-band maximum occurring 8.4 d later than that in B. With an absolute peak magnitude of -18.02 in the V band the SN can be considered fairly bright, but not exceptional. This also holds for the U through I bolometric light curve, where SN 2004aw has a position intermediate between SNe 2002ap and 1998bw. Spectroscopically SN 2004aw provides a link between a normal SN Ic like SN 1994I and the group of broad-lined SNe Ic. The spectral evolution is rather slow, with a spectrum at day +64 being still predominantly photospheric. The shape of the nebular [OI] λλ6300, 6364 line indicates a highly aspherical explosion. Helium cannot be unambiguously identified in the spectra, even in the near-IR. Using an analytical description of the light-curve peak we find that the total mass of the ejecta in SN 2004aw is 3.5-8.0Msolar, significantly larger than that in SN 1994I, although not as large as in SN 1998bw. The same model suggests that about 0.3Msolar of 56Ni has been synthesized in the explosion. No connection to a GRB can be firmly established. Based on observations at ESO-Paranal, Prog. 074.D-0161(A). E-mail: tauben@mpa-garching.mpg.de

  17. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 5, 1961, shows pumps used for extracting water emerging form a disturbed natural spring that occurred during the excavation of the site. The pumping became a daily ritual and the site is still pumped today.

  18. Photonic IC design software and process design kits

    NASA Astrophysics Data System (ADS)

    Korthorst, Twan; Stoffer, Remco; Bakker, Arjen

    2015-04-01

    This review discusses photonic IC design software tools, examines existing design flows for photonics design and how these fit different design styles and describes the activities in collaboration and standardization within the silicon photonics group from Si2 and by members of the PDAFlow Foundation to improve design flows. Moreover, it will address the lowering of access barriers to the technology by providing qualified process design kits (PDKs) and improved integration of photonic integrated circuit simulations, physical simulations, mask layout, and verification.

  19. Sequential clustering of star formations in IC 1396

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Fang; Li, Jin-Zeng

    2013-05-01

    We present a comprehensive study of the H II region IC 1396 and its star forming activity, in which multi-wavelength data ranging from the optical to the near- and far-infrared were employed. The surface density distribution of all the 2MASS sources with a certain detection toward IC 1396 indicates the existence of a compact cluster spatially consistent with the position of the exciting source of the H II region, HD 206267. The spatial distribution of the sources with excessive infrared emission, selected based on archived 2MASS data, reveals the existence of four sub-clusters in this region. One is associated with the open cluster Trumpler 37. The other three are found to be spatially coincident with the bright rims of the H II region. All the sources with excessive emission in the near infrared are cross-identified with AKARI IRC data. An analysis of the spectral energy distributions (SEDs) of the resultant sample leads to the identification of eight CLASS I, 15 CLASS II and 15 CLASS III sources in IC 1396. Optical identification of the sample sources with R magnitudes brighter than 17 mag corroborates the results from the SED analysis. Based on the spatial distribution of the infrared young stellar objects at different evolutionary stages, the surrounding sub-clusters located in the bright rims are believed to be younger than the central one. This is consistent with a scenario of sequential star formation in this region. Imaging data of a dark patch in IC 1396 by Herschel SPIRE, on the other hand, indicate the presence of two far-infrared cores in LDN 1111, which are likely to be a new generation of protostellar objects in formation. So we infer that the star formation process in this H II region was not continuous but rather episodic.

  20. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, depicts the progress of the stand as of January 14, 1963, with its four towers prominently rising.

  1. Thrust Structure of Saturn V S-IC Stage

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This image illustrates technicians working on a full scale engineering mock-up of a Saturn V S-IC stage thrust structure nearing completion at the Manufacturing Engineering Laboratory at Marshall Space Flight Center. The booster, 33 feet in diameter and 138 feet long, was powered by five F-1 engines that provided 7,500,000 pounds of thrust to start the monstrous vehicle on its journey into space.

  2. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken June 24, 1963, the four tower legs of the test stand can be seen at their maximum height.

  3. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress as of August 5, 1961. Heavy equipment continues to clear the test stand site.

  4. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This construction photo depicts the progress of the stand site as of October 8, 1962.

  5. Potent inhibition of Hendra virus infection via RNA interference and poly I:C immune activation.

    PubMed

    McCaskill, Jana L; Marsh, Glenn A; Monaghan, Paul; Wang, Lin-Fa; Doran, Timothy; McMillan, Nigel A J

    2013-01-01

    Hendra virus (HeV) is a highly pathogenic zoonotic paramyxovirus that causes fatal disease in a wide range of species, including humans. HeV was first described in Australia in 1994, and has continued to re-emerge with increasing frequency. HeV is of significant concern to human health due to its high mortality rate, increasing emergence, absence of vaccines and limited post exposure therapies. Here we investigate the use of RNA interference (RNAi) based therapeutics targeting HeV in conjunction with the TLR3 agonist Poly I:C and show that they are potent inhibitors of HeV infection in vitro. We found that short interfering RNAs (siRNAs) targeting the abundantly expressed N, P and M genes of HeV caused over 95% reduction of HeV virus titre, protein and mRNA. Furthermore, we found that the combination of HeV targeting siRNA and Poly I:C had an additive effect in suppressing HeV infection. Our results demonstrate for the first time that RNAi and type I interferon stimulation are effective inhibitors of HeV replication in vitro and may provide an effective therapy for this highly lethal, zoonotic pathogen. PMID:23691205

  6. Optical Spectrum of the Compact Planetary Nebula IC 5117

    NASA Technical Reports Server (NTRS)

    Hyung, Siek; Aller, Lawrence H.; Feibelman, Walter A.; Lee, Seong-Jae; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    High resolution spectroscopic data of the very compact planetary nebula IC 5117 are obtained in the optical wavelengths, 3700A - 10050A, with the Hamilton Echelle Spectrograph at Lick Observatory, and which have been analyzed along with the International Ultraviolet Explorer (IUE) UV archive data. Although a diagnostic diagram shows significant density and temperature fluctuations, our analysis indicates that the nebular gas may be represented by a homogeneous shell of extremely high density gas, N(sub epsilon) approx. 90 000 /cu cm. The average electron temperatures, e.g. indicated by the [OIII] diagnostics, are around 12 000 K. We construct a photoionization model to represent most of the observed line intensities, and the physical condition of this compact nebulosity. Based on the semi-empirical ionization correction approach, and model indications, we derived the elemental abundances: He, C, N, O, Ne, and Ar appear to be normal or marginally depleted compared to the average planetary nebula, while the remaining elements, S, Cl, and K appear to be enhanced. IC 5117 is perhaps a very young compact planetary nebula, slightly more evolved than the other well-known compact planetary nebula IC 4997. The central stellar temperature is likely to be around 120 000 K, evolved from a C-rich AGB progenitor.

  7. Radial velocity membership for the open cluster IC4756

    NASA Astrophysics Data System (ADS)

    Weingrill, Joerg; Geller, Aaron; Strassmeier, Klaus; Barnes, Sydney; Meibom, Soeren; Granzer, Thomas; Spada, Federico

    2013-08-01

    IC 4756 is an ~800 Myr-old nearby (500 pc) open cluster that conveniently splits the difference in age between the well-studied Hyades (625 Myr) and NGC 6811 (1 Gyr) clusters. As a result, measuring IC 4756 rotation periods offers us the chance to test the universality of the intermediate-age rotational evolution of stars independent of any theoretical models. Therefore we have performed precision time-series photometry of the IC 4756 field with the CoRoT satellite, and derived 111 main sequence rotation periods in the cluster region. We have also acquired new multicolor Stromgren photometry of the cluster. However, heavy differential reddening and imprecise membership information do not yet allow a satisfactory determination of the cluster parameters and membership, far less interpretation of the rotation periods. We propose here to use WIYN+Hydra to securely identify the cluster members, determine the cluster parameters, and to fully interpret the corresponding color-period diagram. This work will provide a new benchmark open cluster for the community, and help to develop the associated study of stellar rotation and gyrochronology.

  8. Ultra-stripped Type Ic Supernovae from Close Binary Evolution

    NASA Astrophysics Data System (ADS)

    Tauris, T. M.; Langer, N.; Moriya, T. J.; Podsiadlowski, Ph.; Yoon, S.-C.; Blinnikov, S. I.

    2013-12-01

    Recent discoveries of weak and fast optical transients raise the question of their origin. We investigate the minimum ejecta mass associated with core-collapse supernovae (SNe) of Type Ic. We show that mass transfer from a helium star to a compact companion can produce an ultra-stripped core which undergoes iron core collapse and leads to an extremely fast and faint SN Ic. In this Letter, a detailed example is presented in which the pre-SN stellar mass is barely above the Chandrasekhar limit, resulting in the ejection of only ~0.05-0.20 M ⊙ of material and the formation of a low-mass neutron star (NS). We compute synthetic light curves of this case and demonstrate that SN 2005ek could be explained by our model. We estimate that the fraction of such ultra-stripped to all SNe could be as high as 10-3-10-2. Finally, we argue that the second explosion in some double NS systems (for example, the double pulsar PSR J0737-3039B) was likely associated with an ultra-stripped SN Ic.

  9. Spectroscopy of two PN candidates in IC10

    NASA Astrophysics Data System (ADS)

    Kniazev, A. Y.; Pustilnik, S. A.; Zucker, D. B.

    2008-03-01

    We present the results of the first spectroscopic observations of two planetary nebula (PN) candidates in the Local Group dwarf irregular galaxy IC10. Using several spectral classification diagrams, we show that the brightest PN candidate (PN7) is not a PN, but rather a compact HII region consisting of two components with low electron number densities. After the rejection of this PN candidate, the IC10 PN luminosity function cut-off becomes very close to the standard value. With the compiled spectroscopic data for a large number of extragalactic PNe, we analyse a series of diagnostic diagrams to generate quantitative criteria for separating PNe from unresolved HII regions. We show that, with the help of the diagnostic diagrams and the derived set of criteria, PNe can be distinguished from HII regions with an efficiency of ~99.6 per cent. With the obtained spectroscopic data, we confirm that another, 1.7 mag fainter PN candidate (PN9) is a genuine PN. We argue that, based on all currently available PNe data, IC10 is located at a distance of 725+63-33 kpc [distance modulus (m - M) = 24.30+0.18-0.10]. Based on observations obtained at the 6-m SAO RAS (Special Astrophysical Observatory of Russian Academy of Science) telescope. E-mail: akniazev@saao.ac.za (AYK); sap@sao.ru (SAP); zucker@ast.cam.ac.uk (DBZ)

  10. Somato-Motor Haptic Processing in Posterior Inner Perisylvian Region (SII/pIC) of the Macaque Monkey

    PubMed Central

    Ishida, Hiroaki; Fornia, Luca; Grandi, Laura Clara; Umiltà, Maria Alessandra; Gallese, Vittorio

    2013-01-01

    The posterior inner perisylvian region including the secondary somatosensory cortex (area SII) and the adjacent region of posterior insular cortex (pIC) has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip) both in light and in dark conditions. Our results showed that 70% (n = 33/48) of task related neurons within SII/pIC were only activated during monkeys’ active hand-manipulation. Of those 33 neurons, 15 (45%) began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48) of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE) and precision grasping (PG) execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object. PMID:23936121

  11. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo of the S-IC test stand, taken October 2, 1963, the flame deflector can be seen in the bottom center portion

  12. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In the early stages of excavation, a natural spring was disturbed that caused a water problem which required constant pumping from the site and is even pumped to this day. Behind this reservoir of pumped water is the S-IC test stand boasting its ever-growing four towers as of March 29, 1963.

  13. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo, taken September 5, 1963, the flame deflector is being installed in the S-IC test stand.

  14. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo of the S-IC test stand, taken September 25, 1963, the flame deflector can be seen rotated to the outside on

  15. Purification, Crystallization And Preliminary X-Ray Analysis of Aminoglycoside-2 ''-Phosphotransferase-Ic [APH(2 '')-Ic] From Enterococcus Gallinarum

    SciTech Connect

    Byrnes, L.J.; Badarau, A.; Vakulenko, S.B.; Smith, C.A.; /SLAC, SSRL

    2009-04-30

    Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2{double_prime}-phosphotransferase-Ic [APH(2{double_prime})-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2{double_prime})-Ic variants were crystallized in the presence of 14-20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris-HCl pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 {angstrom}, {beta} = 108.8{sup o}. X-ray diffraction data were collected to approximately 2.15 {angstrom} resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.

  16. Preparation and identification of monoclonal antibody against Citreoviridin and development of detection by Ic-ELISA.

    PubMed

    Jin, Ni; Ling, Sumei; Yang, Chi; Wang, Shihua

    2014-11-01

    Citreoviridin (CIT), a neurotoxic mycotoxin produced by Penicillium citreonigrum is generally detected in cereal grains and agricultural products worldwide, and has numerous toxicological effects on human and animal health. Therefore, it is necessary to develop a rapid, sensitive, and reliable immunoassay method for CIT. In this study, artificial antigen CIT-KLH and CIT-BSA was successfully prepared via succinic anhydride and carbodiimide two-step method. CIT-KLH conjugates were injected into Balb/c mice, and titer of the antiserum against CIT was determined using CIT-BSA as coating antigen by ELISA method. A hybridoma cell line 8D8 stably secreting monoclonal antibody against CIT was generated by fusing SP2/0 myeloma cells with the splenocytes from the immunized mice. The titer of 8D8 mAb reached 1: 1.28 × 10(5) after purified by caprylic/ammonium sulfate precipitation (CA-AS) method. The 8D8 mAb was identified as IgG1 subtype. The cross-reactivity results indicated that anti-CIT mAb was highly specific to Citreoviridin, and the average affinity 4.57 × 10(8) L/mol. A sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) for CIT was established. Under optimal condition, the linear range to detect CIT was 11.02-2370.48 ng/mL with IC50 of 161.66 ng/mL and the limit of detection of the ic-ELISA was 11.86 ng/mL. With the mean coefficient of variation lowing 5%, the mean recovery in intra-assay and inter-assay were (90.06 ± 1.60)% and (89.65 ± 1.69)%, respectively. Therefore, the anti-CIT mAb secreted by 8D8 hybridoma cell line is useful for analysis of food contaminated with CIT. PMID:25157801

  17. Evaluation of in-plane local stress distribution in stacked IC chip using dynamic random access memory cell array for highly reliable three-dimensional IC

    NASA Astrophysics Data System (ADS)

    Tanikawa, Seiya; Kino, Hisashi; Fukushima, Takafumi; Koyanagi, Mitsumasa; Tanaka, Tetsu

    2016-04-01

    As three-dimensional (3D) ICs have many advantages, IC performances can be enhanced without scaling down of transistor size. However, 3D IC has mechanical stresses inside Si substrates owing to its 3D stacking structure, which induces negative effects on transistor performances such as carrier mobility changes. One of the mechanical stresses is local bending stress due to organic adhesive shrinkage among stacked IC chips. In this paper, we have proposed an evaluation method for in-plane local stress distribution in the stacked IC chips using retention time modulation of a dynamic random access memory (DRAM) cell array. We fabricated a test structure composed of a DRAM chip bonded on a Si interposer with dummy Cu/Sn microbumps. As a result, we clarified that the DRAM cell array can precisely evaluate the in-plane local stress distribution in the stacked IC chips.

  18. The size and structure of the spheroid of IC 1613

    NASA Astrophysics Data System (ADS)

    Battinelli, P.; Demers, S.; Artigau, É.

    2007-05-01

    Context: Nearby galaxies, spirals as well as irregulars, have been found to be much larger than previously believed. The structure of the huge spheroid surrounding dwarf galaxies could give clues to their past gravitational history. Thanks to wide field imagers, nearby galaxies with diameter of dozens of arcmin can be effectively surveyed. Aims: We obtain, from the CFHT archives, a series of i' and g' MegaCam images of IC 1613 in order to determine the stellar surface density of the field and determine the shape of its spheroid. Methods: From the colour magnitude diagram we select some 36 000 stars, in the first three magnitudes of the red giant branch. The spatial distribution of these stars is used to establish the structure of the spheroid. Results: The position angle of the major axis of the stellar spheroid is found to be ≈90°, some 30° from the major axis of the HI cloud surrounding IC 1613. The surface density profile of the spheroid is not exponential over all the length of the major axis. A King profile, with a core radius of 4.5' and a tidal radius of 24' fits the data. The tidal truncation of the spheroid suggests that IC 1613 is indeed a satellite of M 31. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  19. First Stellar Abundances in the Dwarf Irregular Galaxy IC 1613

    NASA Astrophysics Data System (ADS)

    Tautvaišienė, Gražina; Geisler, Doug; Wallerstein, George; Borissova, Jura; Bizyaev, Dmitry; Pagel, Bernard E. J.; Charbonnel, Corinne; Smith, Verne

    2007-12-01

    Chemical abundances in three M supergiants in the Local Group dwarf irregular galaxy IC 1613 have been determined using high-resolution spectra obtained with the UVES spectrograph on the ESO 8.2 m Kueyen telescope. A detailed synthetic-spectrum analysis has been used to determine the atmospheric parameters and abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Fe, Co, Ni, La, and Eu. We find the overall metallicity of the stars to be [Fe/H] = -0.67 ± 0.09 and the age 9-13 Myr, which is in excellent agreement with the present-day values in the age-metallicity relationship model of IC 1613 by Skillman et al. We have found that the three supergiants investigated have a mean [α/Fe] equal to about -0.1, which is lower than seen in Galactic stars at the same metallicity and is in agreement with the results obtained in other dwarf irregular galaxies. The oxygen abundances are in agreement with the upper values of the nebular oxygen determinations in IC 1613. The abundance ratios of s- and r-process elements to iron are enhanced relative to solar by about 0.3 dex. The abundance pattern of the elements studied is similar to that of the Small Magellanic Cloud, except for Co and Ni, which are underabundant in the SMC. The observed elemental abundances are generally in very good agreement with the recent chemical evolution model of Yuk and Lee. Based on observations collected with the Very Large Telescope and the 2.2 m Telescope of the European Southern Observatory within the Observing Programs 70.B-0361(A) and 072.D-0113(D).

  20. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photograph taken on August 5th, 1961, a back hoe is nearly submerged in water in the test stand site. During the initial digging, the disturbance of a natural spring contributed to constant water problems during the construction process. It was necessary to pump the water from the site on a daily basis and is still pumped from the site today.

  1. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo shows the construction progress of the test stand as of August 14, 1961. Water gushing in from the disturbance of a natural spring contributed to constant water problems during the construction process. It was necessary to pump water from the site on a daily basis and is still pumped from the site today. The equipment is partially submerged in the water emerging from the spring.

  2. The remarkable infrared galaxy Arp 220 = IC 4553

    NASA Technical Reports Server (NTRS)

    Soifer, B. T.; Neugebauer, G.; Helou, G.; Lonsdale, C. J.; Hacking, P.; Rice, W.; Houck, J. R.; Low, F. J.; Rowan-Robinson, M.

    1984-01-01

    IRAS observations of the peculiar galaxy Arp 220 = IC 4553 show that it is extremely luminous in the far-infrared, with a total luminosity of 2 x 10 to the 12th solar luminosities. The infrared-to-blue luminosity ratio of this galaxy is about 80, which is the largest value of the ratio for galaxies in the UGC catalog, and places it in the range of the 'unidentified' infrared sources recently reported by Houck et al. in the IRAS all-sky survey. Other observations of Arp 220, combined with the luminosity in the infrared, allow either a Seyfert-like or starburst origin for this luminosity.

  3. Status of the ITER IC H and CD System

    SciTech Connect

    Lamalle, P. U.; Beaumont, B.; Gassmann, T.; Kazarian, F.; Arambhadiya, B.; Bora, D.; Jacquinot, J.; Mitteau, R.; Schueller, F. C.; Tanga, A.; Baruah, U.; Bhardwaj, A.; Kumar, R.; Mukherjee, A.; Singh, N. P.; Singh, R.; Goulding, R.; Rasmussen, D.; Swain, D.; Agarici, G.

    2009-11-26

    The ITER Ion Cyclotron Heating and Current Drive system will deliver 20 MW of radio frequency power to the plasma in quasi continuous operation during the different phases of the experimental programme. The system also has to perform conditioning of the tokamak first wall at low power between main plasma discharges. This broad range of requirements imposes a high flexibility and a high availability. The paper highlights the physics and design requirements on the IC system, the main features of its subsystems, the predicted performance, and the current procurement and installation schedule.

  4. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken September 5, 1961, shows the construction of forms which became the concrete foundation for the massive stand. The lower right hand corner reveals a pump used for extracting water emerging from a disturbed natural spring that occurred during excavation of the site. The pumping became a daily ritual and the site is still pumped today.

  5. X-Ray Activity in the Open Cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Giamapapa, Mark S.; Prosser, Charles F.; Fleming, Thomas A.

    1997-01-01

    We present the results of a joint ROSAT High Resolution Imager (HRI) and optical investigation of the open cluster IC 4665. The ROSAT data contains detections for 28 stellar sources in the field, including 22 cluster members and candidate members spanning the color range -0.18 less than or equal to (B - V(sub o)) less than or equal to +1.63 (approx. B3 - M3). Upper limits are given for the remaining members (or candidate members) in the HRI field. Keck HIRES spectra have been obtained that yield radial and rotational velocity measures, respectively, for faint, low mass candidate members located within the field of the ROSAT HRI observation. In addition, photometry of possible optical counterparts to previously uncatalogued X-ray sources in the HRI field is presented. The trends in X-ray properties with (B - V) color in IC 4665 are found to be quite similar to that for other, more nearby young clusters such as the Pleiades and alpha Persei. In particular, a maximum in normalized X-ray luminosity of log (L(sub x)/L(sub bol)) approx. equal 3 is observed, beginning in the color range of (B - V)(sub o) = 0.7 - 0.8. This is similar to the corresponding color range among Pleiades members, in agreement with the earlier estimate, that the age of IC 4665 is similar to the age of the Pleiades. The correlation of rotation and X-ray emission levels is consistent with that in other young clusters. Among the high mass stars in IC 4665, five B stars are detected as X-ray sources. Of these, one is a spectroscopic binary while the remaining objects are apparently single staxs. The level of intrinsic X-ray emission observed in the rapidly rotating (v sini greater than 200 km/ s), single B stars is consistent with an origin due to shock heating of the ambient medium by radiatively driven, rotationally enhanced winds. On the basis of these observations and the results for other clusters, we argue that observed levels of X-ray emission in high mass stars of log (L(sub x)/L(sub bol

  6. Construction Progress of S-IC Test Stand Pump House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast east was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. This photograph of the Pump House area was taken August 13, 1963. The massive round water storage tanks can be seen to the left of

  7. Construction Progress S-IC Test Stand Block House Interior

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photograph, taken August 12, 1963, offers a view of the Block House interior.

  8. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. After a six month delay in construction due to size reconfiguration of the Saturn booster, the site was revisited for modifications in March 1962. The original foundation walls built in the prior year were torn down and re-poured to accommodate the larger boosters. This photo depicts that modification progress as of June 13,1962.

  9. Construction Progress of the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. After a 6 month delay in construction due to size reconfiguration of the Saturn booster, the site was revisited for modifications. The original foundation walls built in the prior year had to be torn down and re-poured to accommodate the larger booster. The demolition can be seen in this photograph taken on May 21, 1962.

  10. Development of a New Calibration Method for an Ambient Ion Monitor Ion Chromatograph (AIM-IC)

    NASA Astrophysics Data System (ADS)

    Markovic, M.; Vandenboer, T.; Murphy, J. G.

    2009-05-01

    Fine atmospheric aerosols play an important role in the atmosphere as they alter the radiative balance of the Earth through direct and indirect climate effects, reduce visibility, participate in acid rain formation and affect human health. The motivation for chemically and temporally resolved measurements of fine aerosol composition has lead to the development of the Ambient Ion Monitor Ion Chromatograph (AIM-IC) system by Dionex/URG. This instrument is capable of simultaneously monitoring fine aerosols (<2.5μm) and associated precursor gases on a nearly continuous basis with a time resolution of 1 hour. The instrument utilizes a parallel-plate wet denuder with a constantly regenerated surface for collection of gases and a particle condensation chamber for the collection of aerosols. AIM-IC is capable of monitoring HCl(g), HONO(g), HNO3(g), SO2(g), NH3(g), Cl-, NO2-, NO3-, SO42-, NH4+ , and some water soluble organic acids and amines. Standard calibration of the AIM-IC is carried out by injecting a series of mixed standards directly onto the ion chromatographs, bypassing the sampling component of the instrument. This results in calculated detection limits on the order of 10-200 pptv for gases and 10-500 of ng/m3 for individual particle constituents when collecting at 3 L/min for 55 minutes. In this work, we present a new method for the calibration of the AIM-IC for both gas and particle collection that enables us to evaluate the entire system from size-selection to detection. This external calibration method is assessed for the gases HNO3(g), SO2(g), and NH3(g), and for particles containing (NH4)2SO4, NH4NO3, and Na2SO4. Quantitative collection of SO2 is found to require careful optimization of the H2O2 concentration of the denuder liquid, while the replacement of a cyclone with an impactor improves the sampling efficiency of NH3 and HNO3.

  11. A multi-channel analog IC for in vitro neural recording

    NASA Astrophysics Data System (ADS)

    Feng, Yuan; Zhigong, Wang; Xiaoying, Lü

    2016-02-01

    Recent work in the field of neurophysiology has demonstrated that, by observing the firing characteristic of action potentials (AP) and the exchange pattern of signals between neurons, it is possible to reveal the nature of “memory” and “thinking” and help humans to understand how the brain works. To address these needs, we developed a prototype fully integrated circuit (IC) with micro-electrode array (MEA) for neural recording. In this scheme, the microelectrode array is composed by 64 detection electrodes and 2 reference electrodes. The proposed IC consists of 8 recording channels with an area of 5 × 5 mm2. Each channel can operate independently to process the neural signal by amplifying, filtering, etc. The chip is fabricated in 0.5-μm CMOS technology. The simulated and measured results show the system provides an effective device for recording feeble signal such as neural signals. Project supported by the National Natural Science Foundation of China (No. 61076118).

  12. From incoherent to coherent x-rays with ICS sources

    NASA Astrophysics Data System (ADS)

    Nanni, Emilio A.; Graves, William S.; Moncton, David E.

    2015-08-01

    We present the design and performance parameters for a compact x-ray light source (CXLS), which is presently under construction, based on inverse Compton scattering (ICS) of a high brightness electron bunch on a picosecond laser pulse. The flux and brilliance of this source are orders of magnitude beyond existing laboratory scale sources. The accelerator operates at a repetition rate of 1 kHz with 100 bunches of 100 pC charge, each separated by 5 ns, in each shot. The entire CXLS is a few meters in length and produces hard x-rays tunable over a wide range of photon energies. The scattering laser is a Yb:YAG solid-state amplifier producing 100 mJ pulses at 1030 nm. The laser pulse is frequency-doubled and coupled into a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5×1011 photons/second in a 5% bandwidth and the brilliance is 2×1012 photons/(secmm2mrad20.1%) with a RMS pulse length of 490 fs. Novel concepts for improving the performance of the CXLS with the generation of relativistic electron beams having current modulation at nanometer scale and below are also discussed. This tunable longitudinal modulation enables the production of coherent hard x-rays with ICS.

  13. HUNTING FOR YOUNG DISPERSING STAR CLUSTERS IN IC 2574

    SciTech Connect

    Pellerin, Anne; Meyer, Martin M.; Calzetti, Daniella; Harris, Jason E-mail: martin.meyer@uwa.edu.au E-mail: jharris@30doradus.org

    2012-12-01

    Dissolving stellar groups are very difficult to detect using traditional surface photometry techniques. We have developed a method to find and characterize non-compact stellar systems in galaxies where the young stellar population can be spatially resolved. By carrying out photometry on individual stars, we are able to separate the luminous blue stellar population from the star field background. The locations of these stars are used to identify groups by applying the HOP algorithm, which are then characterized using color-magnitude and stellar density radial profiles to estimate age, size, density, and shape. We test the method on Hubble Space Telescope Advanced Camera for Surveys archival images of IC 2574 and find 75 dispersed stellar groups. Of these, 20 highly dispersed groups are good candidates for dissolving systems. We find few compact systems with evidence of dissolution, potentially indicating that star formation in this galaxy occurs mostly in unbound clusters or groups. These systems indicate that the dispersion rate of groups and clusters in IC 2574 is at most 0.45 pc Myr{sup -1}. The location of the groups found with HOP correlate well with H I contour map features. However, they do not coincide with H I holes, suggesting that those holes were not created by star-forming regions.

  14. Low electron beam energy CIVA analysis of passivated ICs

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.; Dodd, B.A.; Henderson, C.L.

    1994-08-01

    Low Energy Charge-Induced Voltage Alteration (LECIVA) is a new scanning electron microscopy technique developed to localize open conductors in passivated ICs. LECIVA takes advantage of recent experimental work showing that the dielectric surface equilibrium voltage has an electron flux density dependence at low electron beam energies ({le}1.0 keV). The equilibrium voltage changes from positive to negative as the electron flux density is increased. Like Charge-Induced Voltage Alteration (CIVA), LECIVA images are produced from the voltage fluctuations of a constant current power supply as an electron beam is scanned over the IC surface. LECIVA image contrast is generated only by the electrically open part of a conductor, yielding, the same high selectivity demonstrated by CIVA. Because LECIVA is performed at low beam energies, radiation damage by the primary electrons and x-rays to MOS structures is far less than that caused by CIVA. LECIVA may also be performed on commercial electron beam test systems that do not have high primary electron beam energy capabilities. The physics of LECIVA signal generation are described. LECIVA imaging examples illustrate its utility on both a standard scanning electron microscope (SEM) and a commercial electron beam test system.

  15. Spatially Resolved Spectroscopy of the SNR IC443

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1998-01-01

    IC 443 is a supernova remnant of intermediate age, i.e. a few thousand years. It is especially interesting because part of its periphery is expanding into a molecular cloud while other sections are expanding into a typical interstellar medium of much lower density. Since the evolution of a supernova remnant through its various phases is affected by the density of the medium it expands into with the reasonable assumption that the supernova explosion was approximately symmetric we have an opportunity to observe a single object in two phases simultaneously. It was observed by ASCA in April, 1993 for a short period during the PV phase and more thoroughly in a 42 ksec exposure in March, 1994. The latter measurement provides most of the results that have been reported. Most of the analysis took place after the grant ended but is included here for completeness. The data was sent simultaneously to US and Japanese Pls. We worked independently. The software set of FTOOLs was used to construct images and spectra. They were judged to be rather unintuitive and not at all user friendly. I found I was using one FTOOL to read the header to obtain information that would only be provided to another FTOOL. The Japanese investigators were more successful. They analyzed the data and published results more rapidly. The scientific results summarized below are based primarily on their publications. Since IC 443 is an interesting example of a middle aged SNR in which a variety of processes are occurring it is one of a class. IC 443 exhibits shell-like emission in hard X-rays and extended soft X-rays with thin thermal spectra. It resembles SN 1006 in these respects. IC 443 contains hard X-rays in a semi-circular shell surrounding the thermal component. The total hard X-ray flux in the ASCA FOV is only a half of the Ginga hard component; which suggests that the hard X-rays are not confined only in the shell but some are extended larger than the ASCA FOV of eq 1 degree diameter. Japanese

  16. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains.

    PubMed

    Orrú, Christina D; Groveman, Bradley R; Raymond, Lynne D; Hughson, Andrew G; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron

    2015-06-01

    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far--a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested. PMID:26086786

  17. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains

    PubMed Central

    Raymond, Lynne D.; Hughson, Andrew G.; Nonno, Romolo; Zou, Wenquan; Ghetti, Bernardino; Gambetti, Pierluigi; Caughey, Byron

    2015-01-01

    Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far – a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested. PMID:26086786

  18. Physical Ion Sputtering At Glancing Angles As A Novel IC De-processing Technique

    SciTech Connect

    Vyatkin, A. F.; Zinenko, V. I.

    2011-01-07

    Failure analysis (de-processing) techniques are becoming more and more important in tackling integrated circuits (IC) process-related problems. Particularly, failure analysis of ICs requires opening and de-layering a chip in a layer by layer mode in order to find hidden defects. Selective chemical etching, reactive ion etching, plasma etching and chemical mechanical polishing or a combination of these techniques are traditionally used for de-processing of IC. In this work a novel technique which is physical ion sputtering at glancing incidence angles allowing precise information about possible reasons of IC failures occurring at different steps of IC processing is proposed.

  19. The chromospheric emission of solar-type stars in the young open clusters IC 2391 and IC 2602

    NASA Astrophysics Data System (ADS)

    Marsden, S. C.; Carter, B. D.; Donati, J.-F.

    2009-10-01

    In this paper we present chromospheric emission levels of the solar-type stars in the young open clusters IC 2391 and IC 2602. High-resolution spectroscopic data were obtained for over 50 F, G and K stars from these clusters over several observing campaigns using the University College London Echelle Spectrograph on the 3.9-m Anglo-Australian Telescope. Unlike older clusters, the majority (28/52) of the solar-type stars in the two clusters are rapid rotators (vsini > 20kms-1) with five of the stars being classified as ultra-rapid rotators (vsini > 100 km s-1). The emission levels in the calcium infrared triplet lines were then used as a measure of the chromospheric activity of the stars. When plotted against the Rossby number (NR), the star's chromospheric emission levels show a plateau in the emission for log(NR) <~ -1.1 indicating chromospheric saturation similar to the coronal saturation seen in previously observed X-ray emission from the same stars. However, unlike the coronal emission, the chromospheric emission of the stars shows little evidence of a reduction in emission (i.e. supersaturation) for the ultra-rapid rotators in the clusters. Thus we believe that coronal supersaturation is not the result of an overall decrease in magnetic dynamo efficiency for ultra-rapid rotators.

  20. Growing Aligned Carbon Nanotubes for Interconnections in ICs

    NASA Technical Reports Server (NTRS)

    Li, Jun; Ye, Qi; Cassell, Alan; Ng, Hou Tee; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2005-01-01

    A process for growing multiwalled carbon nanotubes anchored at specified locations and aligned along specified directions has been invented. Typically, one would grow a number of the nanotubes oriented perpendicularly to a silicon integrated-circuit (IC) substrate, starting from (and anchored on) patterned catalytic spots on the substrate. Such arrays of perpendicular carbon nanotubes could be used as electrical interconnections between levels of multilevel ICs. The process (see Figure 1) begins with the formation of a layer, a few hundred nanometers thick, of a compatible electrically insulating material (e.g., SiO(x) or Si(y)N(z) on the silicon substrate. A patterned film of a suitable electrical conductor (Al, Mo, Cr, Ti, Ta, Pt, Ir, or doped Si), having a thickness between 1 nm and 2 m, is deposited on the insulating layer to form the IC conductor pattern. Next, a catalytic material (usually, Ni, Fe, or Co) is deposited to a thickness between 1 and 30 nm on the spots from which it is desired to grow carbon nanotubes. The carbon nanotubes are grown by plasma-enhanced chemical vapor deposition (PECVD). Unlike the matted and tangled carbon nanotubes grown by thermal CVD, the carbon nanotubes grown by PECVD are perpendicular and freestanding because an electric field perpendicular to the substrate is used in PECVD. Next, the free space between the carbon nanotubes is filled with SiO2 by means of CVD from tetraethylorthosilicate (TEOS), thereby forming an array of carbon nanotubes embedded in SiO2. Chemical mechanical polishing (CMP) is then performed to remove excess SiO2 and form a flat-top surface in which the outer ends of the carbon nanotubes are exposed. Optionally, depending on the application, metal lines to connect selected ends of carbon nanotubes may be deposited on the top surface. The top part of Figure 2 is a scanning electron micrograph (SEM) of carbon nanotubes grown, as described above, on catalytic spots of about 100 nm diameter patterned by

  1. Photometrically determined membership of the young, open cluster IC 2391

    NASA Astrophysics Data System (ADS)

    Rolleston, W. R. J.; Byrne, P. B.

    1997-12-01

    New 4-colour BV(RI)KC CCD photometry to a limiting magnitude of V ~19 is presented for 1428 objects observed towards the direction of the young, open cluster IC 2391. We observed 36 (2' X 3') fields within 17 arcmin of the nominal cluster core. By fitting the theoretical isochrones of \\cite[D'Antona & Mazzitelli (1994]{Dan94}) to a combination of colour-magnitude and colour-colour diagrams, we have identified 17 stars as probable cluster members with a further 85 stars as possible members. The brightness distribution of low-mass members is compared with the luminosity function observed for the Pleiades and we estimate that the contamination due to background giants should be small. Figure 4 is only available in electronic form via http://www.ed-phys.fr

  2. Differential imaging of forbidden Fe X in IC 443

    NASA Technical Reports Server (NTRS)

    Brown, Larry W.; Woodgate, Bruce E.; Petre, Robert

    1988-01-01

    This paper presents images of two areas of the supernova remnant IC 443 showing emission from the forbidden 6374 A red coronal line taken with an emission-line differential imaging camera. The areas are in the vicinity of strong soft X-ray emission as observed with the Einstein Observatory. The forbidden Fe X emission is patchy on the scale of seconds of arc. For the brightest emission regions, an electron density of approximately 60/cu cm and gas pressures of 0.l7 x 10 to the 8th/cu cm K are found. These estimates are speculative because of the large correction for interstellar dust, and the assumption of sheetlike structure. Although this region has the highest average surface brightness, no direct correlation is found between the X-ray and forbidden Fe X knots. The implied physical conditions in the region suggest that the forbidden Fe X knots are being evaporated.

  3. Laser evaporation of metal sandwich layers for improved IC metallization

    NASA Astrophysics Data System (ADS)

    Pielmeier, R.; Bollmann, D.; Haberger, K.

    1990-12-01

    With the further shrink of IC dimensions, metallization becomes the most crucial layer because conductivity and contact resistivity determine the RC constants and thus the speed of the circuits. With our Q-switched Nd:YAG laser we have evaporated different materials (Al, Ti, W, Pt, Au), alloys (Ta-Si) and dielectrics (ZrO 2, Al 2O 3). We also produced sandwich layers (Al-Au, Ti-Al). The layers were investigated with regard to deposition rate, homogeneity, adhesion, step coverage and surface roughness. Deposition rates in the order of 60 nm/min were achieved. At a power of 10 W and a repetition rate of about 5 kHz we could form ohmic contacts to silicon with a good step coverage in the contact.

  4. In-Cylinder Flow Through An Internal Combustion (IC) Engine

    NASA Astrophysics Data System (ADS)

    Khan, Samira; Gibson, Kendrick; Puzinauskas, Paulius; Qi, Yongli

    2008-11-01

    IC engine performance is strongly influenced by large-scale in-cylinder motion developed during the intake process. This work was part of a larger effort to characterize and augment in-cylinder flow structures to improve lean limit and exhaust gas recirculation tolerance. Ultimately the flow structures are to be characterized with unsteady computational fluid dynamics (CFD) calculations. This study provided digital particle image velocimetry (DPIV) flow visualization data under steady conditions to improve the calibration of the CFD work. An engine cylinder head was mounted on a transparent cylinder with a fixed piston. Air was drawn through using a steady flow bench, and DPIV images were obtained from the cylinder. Measurements were made at four suction pressures and four valve lift to diameter ratios for a total of sixteen cases. After initial measurements, intake port modifications were made to enhance tumble. The modifications created more definitive tumble flow.

  5. Iterative categorization (IC): a systematic technique for analysing qualitative data.

    PubMed

    Neale, Joanne

    2016-06-01

    The processes of analysing qualitative data, particularly the stage between coding and publication, are often vague and/or poorly explained within addiction science and research more broadly. A simple but rigorous and transparent technique for analysing qualitative textual data, developed within the field of addiction, is described. The technique, iterative categorization (IC), is suitable for use with inductive and deductive codes and can support a range of common analytical approaches, e.g. thematic analysis, Framework, constant comparison, analytical induction, content analysis, conversational analysis, discourse analysis, interpretative phenomenological analysis and narrative analysis. Once the data have been coded, the only software required is a standard word processing package. Worked examples are provided. PMID:26806155

  6. Giant Spherical Cluster with I-C140 Fullerene Topology**

    PubMed Central

    Heinl, Sebastian; Peresypkina, Eugenia; Sutter, Jörg; Scheer, Manfred

    2015-01-01

    We report on an effective cluster expansion of CuBr-linked aggregates by the increase of the steric bulk of the CpR ligand in the pentatopic molecules [CpRFe(η5-P5)]. Using [CpBIGFe(η5-P5)] (CpBIG=C5(4-nBuC6H4)5), the novel multishell aggregate [{CpBIGFe(η5:2:1:1:1:1:1-P5)}12(CuBr)92] is obtained. It shows topological analogy to the theoretically predicted I-C140 fullerene molecule. The spherical cluster was comprehensively characterized by various methods in solution and in the solid state. PMID:26411255

  7. Air-turbulence-compensated interferometer for IC manufacturing

    NASA Astrophysics Data System (ADS)

    Lis, Steven A.

    1995-05-01

    SPARTA has developed a novel dual wavelength interferometer which is directly aimed at stepper stage control and general IC metrology. It utilizes an existing HeNe based dual frequency interferometric system and couples it directly to a second system which provides the real time air turbulence compensation. The optical design provides for colinear optical beam paths for the two systems over the measurement path. Compensated position measurements are provided at a rate of 30 Hz which is sufficient to permit high throughput stage positioning for all modern steppers. Stage position accuracy is determined to 4 nm 3(sigma) and stage precision (which is a two pass operation) can be 5.6 nm 3(sigma) . Future improvements in performance can be expected since the present design is not near fundamental limits. The interferometric system design has a form factor compatible with existing stepper systems. Testing of this system has been carried out in a laboratory environment under a variety of conditions, including those which would simulate a clean room environment. Test results are used in detail and conclusions will be presented which define the impact this system can have on stepper overlay performance and IC metrology. Because the interferometer is the basic ruler upon which much of the stepper metrology, setup, and operation is based, an improvement in performance of this system provides numerous benefits in the areas of stage precision, alignment, lens metrology, and reticle qualification and fabrication. Furthermore, the elimination of air turbulence as a stepper design concern can permit improvements in stepper performance and throughput with fewer engineering compromises.

  8. MID-INFRARED VARIABILITY OF PROTOSTARS IN IC 1396A

    SciTech Connect

    Morales-Calderon, M.; Barrado y Navascues, D.; Stauffer, J. R.; Rebull, L.; Ardila, D. R.; Whitney, B. A.; Song, I.; Brooke, T. Y.; Hartmann, L.; Calvet, N.

    2009-09-10

    We have used Spitzer/Infrared Array Camera (IRAC) to conduct a photometric monitoring program of the IC1396A dark globule in order to study the mid-IR (3.6-8 {mu}m) variability of the heavily embedded young stellar objects (YSOs) present in that area. We obtained light curves covering a 14 day timespan with a twice daily cadence for 69 YSOs, and continuous light curves with approximately 12 s cadence over 7 hr for 38 YSOs. Typical accuracies for our relative photometry were 1%-2% for the long timespan data and a few millimagnitude, corresponding to less than 0.5%, for the 7 hr continuous 'staring-mode' data. More than half of the YSOs showed detectable variability, with amplitudes from {approx}0.05 mag to {approx}0.2 mag. About 30% of the YSOs showed quasi-sinusoidal light-curve shapes with apparent periods from 5 to 12 days and light-curve amplitudes approximately independent of wavelength over the IRAC bandpasses. We have constructed models which simulate the time-dependent spectral energy distributions of Class I and II YSOs in order to attempt to explain these light curves. Based on these models, the apparently periodic light curves are best explained by YSO models where one or two high-latitude photospheric spots heat the inner wall of the circumstellar disk, and where we view the disk at fairly large inclination angle. Disk inhomogeneities, such as increasing the height where the accretion funnel flows to the stellar hot spot, enhances the light-curve modulations. The other YSOs in our sample show a range of light-curve shapes, some of which are probably due to varying accretion rate or disk shadowing events. One star, IC1396A-47, shows a 3.5 hr periodic light curve; this object may be a PMS Delta Scuti star.

  9. A revolutionary concept to improve the efficiency of IC antennas

    SciTech Connect

    Milanesio, D.; Maggiora, R.

    2014-02-12

    The successful design of an Ion Cyclotron (IC) antenna mainly relies on the capability of coupling high power to the plasma (MW), feature that is currently reached by allowing rather high voltages (tens of kV) on the unavoidable unmatched part of the feeding lines. This requirement is often responsible of arcs along the transmission lines and other unwanted phenomena that considerably limit the usage of IC launchers. In this work, we suggest and describe a revolutionary approach based on high impedance surfaces, which allows to increase the antenna radiation efficiency and, hence, to highly reduce the imposed voltages to couple the same level of power to the plasma. High-impedance surfaces are periodic metallic structures (patches) displaced usually on top of a dielectric substrate and grounded by means of vertical posts usually embedded inside a dielectric, in a mushroom-like shape. In terms of working properties, high impedance surfaces are electrically thin in-phase reflectors, i.e. they present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. While the usual design of a high impedance surface requires the presence of a dielectric layer, some alternative solutions can be realized in vacuum, taking advantage of double layers ofmetallic patches. After an introductory part on the properties of high impedance surfaces, this work documents both their design by means of numerical codes and their implementation on a scaled mock-up.

  10. Fully Integrated Biopotential Acquisition Analog Front-End IC

    PubMed Central

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Ko, Hyoungho

    2015-01-01

    A biopotential acquisition analog front-end (AFE) integrated circuit (IC) is presented. The biopotential AFE includes a capacitively coupled chopper instrumentation amplifier (CCIA) to achieve low input referred noise (IRN) and to block unwanted DC potential signals. A DC servo loop (DSL) is designed to minimize the offset voltage in the chopper amplifier and low frequency respiration artifacts. An AC coupled ripple rejection loop (RRL) is employed to reduce ripple due to chopper stabilization. A capacitive impedance boosting loop (CIBL) is designed to enhance the input impedance and common mode rejection ratio (CMRR) without additional power consumption, even under an external electrode mismatch. The AFE IC consists of two-stage CCIA that include three compensation loops (DSL, RRL, and CIBL) at each CCIA stage. The biopotential AFE is fabricated using a 0.18 µm one polysilicon and six metal layers (1P6M) complementary metal oxide semiconductor (CMOS) process. The core chip size of the AFE without input/output (I/O) pads is 10.5 mm2. A fourth-order band-pass filter (BPF) with a pass-band in the band-width from 1 Hz to 100 Hz was integrated to attenuate unwanted signal and noise. The overall gain and band-width are reconfigurable by using programmable capacitors. The IRN is measured to be 0.94 µVRMS in the pass band. The maximum amplifying gain of the pass-band was measured as 71.9 dB. The CIBL enhances the CMRR from 57.9 dB to 67 dB at 60 Hz under electrode mismatch conditions. PMID:26437404

  11. Carbon dioxide-based supercritical fluids as IC manufacturing solvents

    SciTech Connect

    Rubin, J.B.; Davenhall, L.B.; Taylor, C.M.V.; Sivils, L.D.; Pierce, T.; Tiefert, K.

    1999-05-11

    The production of integrated circuits (IC's) involves a number of discrete steps which utilize hazardous or regulated solvents and generate large waste streams. ES&H considerations associated with these chemicals have prompted a search for alternative, more environmentally benign solvent systems. An emerging technology for conventional solvent replacement is the use of supercritical fluids based on carbon dioxide (CO{sub 2}). Research work, conducted at Los Alamos in conjunction with the Hewlett-Packard Company, has lead to the development of a CO{sub 2}-based supercritical fluid treatment system for the stripping of hard-baked photoresists. This treatment system, known as Supercritical CO{sub 2} Resist Remover, or CORR, uses a two-component solvent composed of a nonhazardous, non-regulated compound, dissolved in supercritical CO{sub 2}. The solvent/treatment system has been successfully tested on metallized Si wafers coated with negative and positive photoresist, the latter both before and after ion-implantation. A description of the experimental data will be presented. Based on the initial laboratory results, the project has progressed to the design and construction of prototype, single-wafer photoresist-stripping equipment. The integrated system involves a closed-loop, recirculating cycle which continuously cleans and regenerates the CO{sub 2}, recycles the dissolved solvent, and separates and concentrates the spent resist. The status of the current design and implementation strategy of a treatment system to existing IC fabrication facilities will be discussed. Additional remarks will be made on the use of a SCORR-type system for the cleaning of wafers prior to processing.

  12. Fully Integrated Biopotential Acquisition Analog Front-End IC.

    PubMed

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Ko, Hyoungho

    2015-01-01

    A biopotential acquisition analog front-end (AFE) integrated circuit (IC) is presented. The biopotential AFE includes a capacitively coupled chopper instrumentation amplifier (CCIA) to achieve low input referred noise (IRN) and to block unwanted DC potential signals. A DC servo loop (DSL) is designed to minimize the offset voltage in the chopper amplifier and low frequency respiration artifacts. An AC coupled ripple rejection loop (RRL) is employed to reduce ripple due to chopper stabilization. A capacitive impedance boosting loop (CIBL) is designed to enhance the input impedance and common mode rejection ratio (CMRR) without additional power consumption, even under an external electrode mismatch. The AFE IC consists of two-stage CCIA that include three compensation loops (DSL, RRL, and CIBL) at each CCIA stage. The biopotential AFE is fabricated using a 0.18 μm one polysilicon and six metal layers (1P6M) complementary metal oxide semiconductor (CMOS) process. The core chip size of the AFE without input/output (I/O) pads is 10.5 mm². A fourth-order band-pass filter (BPF) with a pass-band in the band-width from 1 Hz to 100 Hz was integrated to attenuate unwanted signal and noise. The overall gain and band-width are reconfigurable by using programmable capacitors. The IRN is measured to be 0.94 μVRMS in the pass band. The maximum amplifying gain of the pass-band was measured as 71.9 dB. The CIBL enhances the CMRR from 57.9 dB to 67 dB at 60 Hz under electrode mismatch conditions. PMID:26437404

  13. Spectroscopic study of the peculiar galaxy IC 883

    NASA Astrophysics Data System (ADS)

    Yakovleva, V. A.; Merkulova, O. A.; Karataeva, G. M.; Shalyapina, L. V.; Yablokova, N. V.; Burenkov, A. N.

    2016-04-01

    We analyze new optical spectroscopic observations obtained at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences with the SCORPIO focal reducer (in the modes of a Fabry-Perot interferometer (FPI) and long-slit spectroscopy) and the Multi-Pupil Fiber Spectrograph for the galaxy IC 883. We have confirmed that the main body of the galaxy rotates around its minor axis. The positions of the dynamical axes of the stellar and gaseous components have been found to differ by ~10°. The velocities in the SE tail do not correspond to the circular rotation around the galaxy's minor axis. This structure is probably a fragment of an unwound curved spiral arm. Regions with high velocity dispersions and peculiarities in the velocity fields have been found along the minor axis. Our study of the age and metallicity of the galaxy's stellar population has shown that the mean values of these parameters in the stellar disk, except for the central region ( r ≤ 5"), are ≈1 Gyr and ≈-0.4 dex, respectively. Both young (2-5 × 108 yr) and old (5-10 × 109 yr) stellar populations are present in the circumnuclear region. Our analysis of the spectroscopic data for the bright feature 8" south of the nucleus coincident in position with a compact X-ray source has shown that this is apparently a dwarf galaxy or a remnant of a companion galaxy. Our FPI observations in the Hα emission line and direct images have revealed a region of ionized gas that together with the already known structures along the minor axis forms a clumpy tidal structure of ionized gas pulled from the companion galaxy. The results of our study confirm the previously proposed hypothesis that the observed peculiar structures were formed by the merger of two galaxies. However, it can be said that IC 883 does not belong to the class of polar-ring galaxies.

  14. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation.

    PubMed

    Rahimian, Sima; Fransen, Marieke F; Kleinovink, Jan Willem; Christensen, Jonatan Riis; Amidi, Maryam; Hennink, Wim E; Ossendorp, Ferry

    2015-04-10

    The aim of the current study was to develop a cancer vaccine formulation for treatment of human papillomavirus (HPV)-induced malignancies. Synthetic long peptides (SLPs) derived from HPV16 E6 and E7 oncoproteins have been used for therapeutic vaccination in clinical trials with promising results. In preclinical and clinical studies adjuvants based on mineral oils (such as incomplete Freund's adjuvant (IFA) and Montanide) are used to create a sustained release depot at the injection site. While the depot effect of mineral oils is important for induction of robust immune responses, their administration is accompanied with severe adverse and long lasting side effects. In order to develop an alternative for IFA family of adjuvants, polymeric nanoparticles (NPs) based on hydrophilic polyester (poly(d,l lactic-co-hydroxymethyl glycolic acid) (pLHMGA)) were prepared. These NPs were loaded with a synthetic long peptide (SLP) derived from HPV16 E7 oncoprotein and a toll like receptor 3 (TLR3) ligand (poly IC) by double emulsion solvent evaporation technique. The therapeutic efficacy of the nanoparticulate formulations was compared to that of HPV SLP+poly IC formulated in IFA. Encapsulation of HPV SLP antigen in NPs substantially enhanced the population of HPV-specific CD8+ T cells when combined with poly IC either co-encapsulated with the antigen or in its soluble form. The therapeutic efficacy of NPs containing poly IC in tumor eradication was equivalent to that of the IFA formulation. Importantly, administration of pLHMGA nanoparticles was not associated with adverse effects and therefore these biodegradable nanoparticles are excellent substitutes for IFA in cancer vaccines. PMID:25660830

  15. Ice Chemistry Through Quiescent Dust In IC5146

    NASA Technical Reports Server (NTRS)

    Ennico, Kimberly; Pendleton, Y.; Chiar, J.; Roellig, T.; Mason, R.; Kornei, K.; Keane, J.; Lada, C.; Greene, T.; Tokunaga, A.

    2006-01-01

    IC 5146 is a nearby (200pc) dark cloud complex in Cygnus. The lack of star formation activity makes it an excellent laboratory for the study of the chemical complexity in the earliest stages of dense molecular cloud evolution. We have used the Spitzer Infrared Spectrometer (IRS) to probe dust along 10 sight-lines toward K-Giant background stars, sampling a range of visual extinction from 2-20mag. Here we present 5-20micron spectra and correlation studies of the 6.0micron water-ice band and 9.7micron silicate absorption band with Av for a sample of our Spitzer program sources. Our IC5146 Spitzer data indicate grain growth and ice formation occurs early in the history of dense cloud formation. Each sight-line observed reveals the 9.7micron amorphous silicate absorption band. The highest Av sightlines show clear detections of ices at 6.0micron (water-ice mixture), 6.85micron (processed ice) and 15.2micron (CO2). However, sight-lines in the low-to-mid Av range provide intriguing variations. We may have the first example of two objects, one with ice features and one without, seen through the same cloud sightline with similar Av approx. 6 and similar silicate band optical depths. Also, the nominally expected linear correlation of Av with silicate band depth does not appear to hold for this cloud (turnover at Av approx.10-12). Both trends imply complexities in the grain growth at one of the earliest stages of dust and ice interaction ever observed. The highest extinction source in our sample, Av=20, reveals the 6.0micron (water), 6.85micron (processed ice), 9.7micron silicate and 15.2micron CO2 ice bands. Until recently, the 6.85micron band had only been detected towards embedded protostellar objects. Two additional quiescent dust sightlines from the C2D results now also indicate the 6.85micron band (Taurus and Serpens) by Knez et al. 2005, demonstrating the role of energetic processing within pristine ices prior to the onset of star formation.

  16. Young T-dwarf candidates in IC 348

    NASA Astrophysics Data System (ADS)

    Burgess, A. S. M.; Moraux, E.; Bouvier, J.; Marmo, C.; Albert, L.; Bouy, H.

    2009-12-01

    Context: The determination of the lower-end of the initial mass function (IMF) provides strong constraints on star formation theories. Aims: We report here on a search for isolated planetary-mass objects in the 3 Myr-old star-forming region IC 348. Methods: Deep, narrowband CH4off and CH4on images were obtained with CFHT/WIRCam over 0.11 sq. deg. in the central part of IC 348 to identify young T-dwarfs from their 1.6 μm methane absorption bands. Results: We report three faint T-dwarf candidates with CH4on-CH4off colours >0.4 mag. Extinction was estimated for each candidate and lies in the range AV ~ 5-12 mag. Comparisons with T-dwarf spectral models, and colour/colour and colour/magnitude diagrams, reject two of the three candidates because of their extreme z'-J blueness. The one remaining object is not thought to be a foreground field dwarf because of a number density argument and also its strong extinction AV ~ 12 mag, or thought to be a background field T-dwarf which would be expected to be much fainter. Models and diagrams give this object a preliminary T6 spectral type. Conclusions: With a few Jupiter masses, the young T-dwarf candidate reported here is potentially amongst the youngest, lowest mass objects detected in a star-forming region so far. Its frequency is consistent with the extrapolation of current lognormal IMF estimates down to the planetary mass domain. Based on observations obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the “University of Hawaii. Research supported by the Marie Curie Research Training Network CONSTELLATION” under grant no. MRTN-CT-2006-035890.

  17. A small conserved motif supports polarity augmentation of Shigella flexneri IcsA.

    PubMed

    Doyle, Matthew Thomas; Grabowicz, Marcin; Morona, Renato

    2015-11-01

    The rod-shaped enteric intracellular pathogen Shigella flexneri and other Shigella species are the causative agents of bacillary dysentery. S. flexneri are able to spread within the epithelial lining of the gut, resulting in lesion formation, cramps and bloody stools. The outer membrane protein IcsA is essential for this spreading process. IcsA is the initiator of an actin-based form of motility whereby it allows the formation of a filamentous actin 'tail' at the bacterial pole. Importantly, IcsA is specifically positioned at the bacterial pole such that this process occurs asymmetrically. The mechanism of IcsA polarity is not completely understood, but it appears to be a multifactorial process involving factors intrinsic to IcsA and other regulating factors. In this study, we further investigated IcsA polarization by its intramolecular N-terminal and central polar-targeting (PT) regions (nPT and cPT regions, respectively). The results obtained support a role in polar localization for the cPT region and contend the role of the nPT region. We identified single IcsA residues that have measurable impacts on IcsA polarity augmentation, resulting in decreased S. flexneri sprading efficiency. Intriguingly, regions and residues involved in PT clustered around a highly conserved motif which may provide a functional scaffold for polarity-augmenting residues. How these results fit with the current model of IcsA polarity determination is discussed. PMID:26315462

  18. ICES IN THE QUIESCENT IC 5146 DENSE CLOUD

    SciTech Connect

    Chiar, J. E.; Pendleton, Y. J.; Allamandola, L. J.; Ennico, K.; Greene, T. P.; Roellig, T. L.; Sandford, S. A.; Boogert, A. C. A.; Geballe, T. R.; Mason, R. E.; Keane, J. V.; Lada, C. J.; Tielens, A. G. G. M.; Werner, M. W.; Whittet, D. C. B.; Decin, L.; Eriksson, K.

    2011-04-10

    This paper presents spectra in the 2 to 20 {mu}m range of quiescent cloud material located in the IC 5146 cloud complex. The spectra were obtained with NASA's Infrared Telescope Facility SpeX instrument and the Spitzer Space Telescope's Infrared Spectrometer. We use these spectra to investigate dust and ice absorption features in pristine regions of the cloud that are unaltered by embedded stars. We find that the H{sub 2}O-ice threshold extinction is 4.03 {+-} 0.05 mag. Once foreground extinction is taken into account, however, the threshold drops to 3.2 mag, equivalent to that found for the Taurus dark cloud, generally assumed to be the touchstone quiescent cloud against which all other dense cloud and embedded young stellar object observations are compared. Substructure in the trough of the silicate band for two sources is attributed to CH{sub 3}OH and NH{sub 3} in the ices, present at the {approx}2% and {approx}5% levels, respectively, relative to H{sub 2}O-ice. The correlation of the silicate feature with the E(J - K) color excess is found to follow a much shallower slope relative to lines of sight that probe diffuse clouds, supporting the previous results by Chiar et al.

  19. Attachment method for stacked integrated circuit (IC) chips

    DOEpatents

    Bernhardt, Anthony F.; Malba, Vincent

    1999-01-01

    An attachment method for stacked integrated circuit (IC) chips. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM.

  20. Attachment method for stacked integrated circuit (IC) chips

    DOEpatents

    Bernhardt, A.F.; Malba, V.

    1999-08-03

    An attachment method for stacked integrated circuit (IC) chips is disclosed. The method involves connecting stacked chips, such as DRAM memory chips, to each other and/or to a circuit board. Pads on the individual chips are rerouted to form pads on the side of the chip, after which the chips are stacked on top of each other whereby desired interconnections to other chips or a circuit board can be accomplished via the side-located pads. The pads on the side of a chip are connected to metal lines on a flexible plastic tape (flex) by anisotropically conductive adhesive (ACA). Metal lines on the flex are likewise connected to other pads on chips and/or to pads on a circuit board. In the case of a stack of DRAM chips, pads to corresponding address lines on the various chips may be connected to the same metal line on the flex to form an address bus. This method has the advantage of reducing the number of connections required to be made to the circuit board due to bussing; the flex can accommodate dimensional variation in the alignment of chips in the stack; bonding of the ACA is accomplished at low temperature and is otherwise simpler and less expensive than solder bonding; chips can be bonded to the ACA all at once if the sides of the chips are substantially coplanar, as in the case for stacks of identical chips, such as DRAM. 12 figs.

  1. Broad Halpha Wing Formation in the Planetary Nebula IC 4997.

    PubMed

    Lee; Hyung

    2000-02-10

    The young and compact planetary nebula IC 4997 is known to exhibit very broad wings with a width exceeding 5000 km s-1 around Halpha. We propose that the broad wings are formed through Rayleigh-Raman scattering that involves atomic hydrogen, by which Lybeta photons with a velocity width of a few 102 km s-1 are converted to optical photons and fill the Halpha broad wing region. The conversion efficiency reaches 0.6 near the line center, where the scattering optical depth is much larger than 1, and rapidly decreases in the far wings. Assuming that close to the central star there exists an unresolved inner compact core of high density, nH approximately 109-1010 cm-3, we use the photoionization code "CLOUDY" to show that sufficient Lybeta photons for scattering are produced. Using a top-hat-incident profile for the Lybeta flux and a scattering region with a H i column density NHi=2x1020 cm-2 and a substantial covering factor, we perform a profile-fitting analysis in order to obtain a satisfactory fit to the observed flux. We briefly discuss the astrophysical implications of the Rayleigh-Raman processes in planetary nebulae and other emission objects. PMID:10642203

  2. UX Ori Variables in the Cluster IC 348

    NASA Astrophysics Data System (ADS)

    Barsunova, O. Yu.; Grinin, V. P.; Sergeev, S. G.; Semenov, A. O.; Shugarov, S. Yu.

    2015-06-01

    Results are presented from many years of photometric (VRCIC) observations of three variable T Tauri type stars in the cluster IC 348: V712 Per, V719 Per, and V909 Per. All three stars have photometric activity characteristic of UX Ori stars. The activity of V719 Per has increased significantly over the last 10 years: the amplitude of its Algol-like minima has increased by roughly a factor of 4 and has reached three stellar magnitudes in the I band. Periodograms of the light curves do not confirm the periods found previously by other authors on the basis of shorter series of observations. The slope of the color tracks on "color-magnitude" diagrams is used to determine the reddening law for these stars owing to selective absorption by circumstellar dust. Modelling of these parameters by the Mie theory shows that the maximum size amax of the dust particles in the protoplanetary disks of these stars is 1.5-2 times greater than in the interstellar medium. In V712 Per and V909 Per, the bulk of the mass of the dust particles is concentrated near amax, while in V719 Per the average mass of the dust particles is determined by the minimum size of the particles. It should be emphasized that these conclusions rely on an analysis of the optical variability of these stars.

  3. Multi-band implications of external-IC flares

    NASA Astrophysics Data System (ADS)

    Richter, Stephan; Spanier, Felix

    2015-02-01

    Very fast variability on scales of minutes is regularly observed in Blazars. The assumption that these flares are emerging from the dominant emission zone of the very high energy (VHE) radiation within the jet challenges current acceleration and radiation models. In this work we use a spatially resolved and time dependent synchrotron-self-Compton (SSC) model that includes the full time dependence of Fermi-I acceleration. We use the (apparent) orphan γ -ray flare of Mrk501 during MJD 54952 and test various flare scenarios against the observed data. We find that a rapidly variable external radiation field can reproduce the high energy lightcurve best. However, the effect of the strong inverse Compton (IC) cooling on other bands and the X-ray observations are constraining the parameters to rather extreme ranges. Then again other scenarios would require parameters even more extreme or stronger physical constraints on the rise and decay of the source of the variability which might be in contradiction with constraints derived from the size of the black hole's ergosphere.

  4. Complete system of nanoimprint lithography for IC production

    NASA Astrophysics Data System (ADS)

    White, Donald L.; Wood, Obert R., II; Chen, Cheng-Fu; Lovell, Edward G.; Engelstad, Roxann L.

    2002-07-01

    The imprinting method most suited to semiconductor IC applications in the sub-50 nm realm is the step and flash technique currently under development at the University of Texas. In this technique, the space between a rigid fused- silica mold, that has a low-aspect-ratio pattern etched into its surface, and a silicon wafer is filled with a low viscosity photopolymer precursor. After the polymer is cured by exposure to UV radiation, the most is removed and the pattern in the polymer layer is transferred into the silicon wafer by reactive ion etching. Before this lithographic technique can be employed in VLSI production, a method to ensure accurate overlay between the mold and wafer patterns must be devised, feature CD control must be maintained under adverse conditions and a low cost way of fabricating, inspecting and repairing a mold must be developed. To accomplish these task we proposed using: a) an adaptive mold holder and b) a new type of binary mold.

  5. X-ray Emission from Megamaser Galaxy IC 2560

    SciTech Connect

    Madejski, Greg; Done, Chris; Zycki, Piotr; Greenhill, Lincoln; /KIPAC, Menlo Park /Harvard-Smithsonian Ctr. Astrophys.

    2005-09-12

    Observation of the H{sub 2}O megamaser galaxy IC 2560 with the Chandra Observatory reveals a complex spectrum composed of soft X-ray emission due to multi-temperature thermal plasma, and a hard continuum with strong emission lines. The continuum is most likely a Compton reflection (reprocessing) of primary emission that is completely absorbed at least up to 7 keV. The lines can be identified with fluorescence from Si, S and Fe in the lowest ionization stages. The equivalent widths of the Si and S lines are broadly compatible with those anticipated for reprocessing by optically thick cold plasma of Solar abundances, while the large equivalent width of the Fe line requires some overabundance of iron. A contribution to the line from a transmitted component cannot be ruled out, but the limits on the strength of the Compton shoulder make it less likely. From the bolometric luminosity of the nuclear region, we infer that the source radiates at 1-10% of its Eddington luminosity, for an adopted central mass of 3 x 10{sup 6} M{sub {circle_dot}}. The overall spectrum is consistent with the hypotheses that the central engines powering the detected megamsers in accretion disks are obscured from direct view by the associated accretion disk material itself, and that there is a correlation between the occurrence of megamaser emission and Compton-thick absorption columns. For the 11 known galaxies with both column density measurements and maser emission believed to arise from accretion disks, eight AGN are Compton thick.

  6. Geometrically constrained parasitic-aware synthesis of analog ICs

    NASA Astrophysics Data System (ADS)

    Castro-Lopez, Rafael; Fernandez, Francisco V.; Rodriguez Vazquez, Angel

    2005-06-01

    In order to speed up the design process of analog ICs, iterations between different design stages should be avoided as much as possible. More specifically, spins between electrical and physical synthesis should be reduced for this is a very time-consuming task: if circuit performance including layout-induced degradations proves unacceptable, a re-design cycle must be entered, and electrical, physical, or both synthesis processes, would have to be repeated. It is also worth noting that if geometric optimization (e.g., area minimization) is undertaken after electrical synthesis, it may add up as another source of unexpected degradation of the circuit performance due to the impact of the geometric variables (e.g., transistor folds) on the device and the routing parasitic values. This awkward scenario is caused by the complete separation of said electrical and physical synthesis, a design practice commonly followed so far. Parasitic-aware synthesis, consisting in including parasitic estimates to the circuit netlist directly during electrical synthesis, has been proposed as solution. While most of the reported contributions either tackle parasitic-aware synthesis without paying special attention to geometric optimization or approach both issues only partially, this paper addresses the problem in a unified way. In what has been called layout-aware electrical synthesis, a simulation-based optimization algorithm explores the design space with geometric variables constrained to meet certain user-defined goals, which provides reliable estimates of layout-induced parasitics at each iteration, and, thereby, accurate evaluation of the circuit ultimate performance. This technique, demonstrated here through several design examples, requires knowing layout details beforehand; to facilitate this, procedural layout generation is used as physical synthesis approach due to its rapidness and ability to capture analog layout know-how.

  7. Qualification and Reliability for MEMS and IC Packages

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2004-01-01

    Advanced IC electronic packages are moving toward miniaturization from two key different approaches, front and back-end processes, each with their own challenges. Successful use of more of the back-end process front-end, e.g. microelectromechanical systems (MEMS) Wafer Level Package (WLP), enable reducing size and cost. Use of direct flip chip die is the most efficient approach if and when the issues of know good die and board/assembly are resolved. Wafer level package solve the issue of known good die by enabling package test, but it has its own limitation, e.g., the I/O limitation, additional cost, and reliability. From the back-end approach, system-in-a-package (SIAP/SIP) development is a response to an increasing demand for package and die integration of different functions into one unit to reduce size and cost and improve functionality. MEMS add another challenging dimension to electronic packaging since they include moving mechanical elements. Conventional qualification and reliability need to be modified and expanded in most cases in order to detect new unknown failures. This paper will review four standards that already released or being developed that specifically address the issues on qualification and reliability of assembled packages. Exposures to thermal cycles, monotonic bend test, mechanical shock and drop are covered in these specifications. Finally, mechanical and thermal cycle qualification data generated for MEMS accelerometer will be presented. The MEMS was an element of an inertial measurement unit (IMU) qualified for NASA Mars Exploration Rovers (MERs), Spirit and Opportunity that successfully is currently roaring the Martian surface

  8. Enhancing fullchip ILT mask synthesis capability for IC manufacturability

    NASA Astrophysics Data System (ADS)

    Cecil, Thomas; Ashton, Chris; Irby, David; Luan, Lan; Son, D. H.; Xiao, Guangming; Zhou, Xin; Kim, David; Gleason, Bob; Lee, H. J.; Sim, W. J.; Hong, M. J.; Jung, S. G.; Suh, S. S.; Lee, S. W.

    2011-04-01

    It is well known in the industry that the technology nodes from 30nm and below will require model based SRAF / OPC for critical layers to meet production required process windows. Since the seminal paper by Saleh and Sayegh[1][2] thirty years ago, the idea of using inverse methods to solve mask layout problems has been receiving increasing attention as design sizes have been steadily shrinking. ILT in its present form represents an attempt to construct the inverse solution to a constrained problem where the constraints are all possible phenomena which can be simulated, including: DOF, sidelobes, MRC, MEEF, EL, shot-count, and other effects. Given current manufacturing constraints and process window requirements, inverse solutions must use all possible degrees of freedom to synthesize a mask. Various forms of inverse solutions differ greatly with respect to lithographic performance and mask complexity. Factors responsible for their differences include composition of the cost function that is minimized, constraints applied during optimization to ensure MRC compliance and limit complexity, and the data structure used to represent mask patterns. In this paper we describe the level set method to represent mask patterns, which allows the necessary degrees of freedom for required lithographic performance, and show how to derive Manhattan mask patterns from it, which can be manufactured with controllable complexity and limited shot-counts. We will demonstrate how full chip ILT masks can control e-beam write-time to the level comparable to traditional OPC masks, providing a solution with maximized lithographic performance and manageable cost of ownership that is vital to sub-30nm node IC manufacturing.

  9. Characterization of tumor binding by the IC-21 macrophage cell line.

    PubMed

    Crawford, E K; Latham, P S; Shah, E M; Hasday, J D

    1990-08-01

    The purpose of this study was to determine if the SV40-transformed murine macrophage cell line IC-21 is a suitable model to study the selective high avidity binding of tumor cells by subpopulations of activated macrophages. IC-21 macrophages bound P815, RBL5, and EL-4 murine tumor cells with high avidity, as measured by the inverted centrifugation method. Tumor binding by IC-21 macrophages was competitively inhibited by crude membrane vesicles prepared from tumor cells but not by cell membranes prepared from nontransformed splenic leukocytes, suggesting that this process was mediated by tumor-specific binding sites. IC-21 macrophages and primary cultures of pyran copolymer-elicited peritoneal macrophages demonstrated similar tumor binding avidity, kinetics, saturability, and metabolic requirements for optimal high avidity tumor binding. However, compared with primary cultures of pyran copolymer-elicited peritoneal macrophages, IC-21 macrophages bound 4-fold more tumor cells and were more homogeneous for tumor binding capability. Finally, one third of maximal tumor cell binding by IC-21 macrophages was completed within 5 min of contact with tumor, suggesting that IC-21 macrophages constitutively expressed some high avidity tumor binding sites. Their stable and homogeneous capability for binding tumor cells and their ease of growth make the IC-21 macrophage cell line a potentially valuable model for elucidating the molecular mechanisms responsible for selective high avidity tumor binding by subpopulations of activated macrophages. PMID:2164442

  10. 30 CFR 57.22106 - Dust containing volatile matter (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Dust containing volatile matter (I-C mines). 57... Dust containing volatile matter (I-C mines). Dust containing volatile matter shall not be allowed to..., if suspended in air, would become an explosive mixture. An explosive mixture of dust...

  11. CMOS IC fault models, physical defect coverage, and I sub DDQ testing

    SciTech Connect

    Fritzemeier, R.R.; Soden, J.M. ); Hawkins, C.F. . Dept. of Electrical and Computer Engineering)

    1991-01-01

    The development of the stuck-at fault (SAF) model is reviewed with emphasis on its relationship to CMOS integrated circuit (IC) technologies. The ability of the SAF model to represent common physical defects in CMOS ICs is evaluated. A test strategy for defect detection, which includes I{sub DDQ} testing is presented. 16 refs., 4 figs.

  12. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations...

  13. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations...

  14. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations...

  15. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false In-line filters (I-C mines). 57.22210 Section... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22210 In-line filters (I-C mines). Filters or separators shall be installed on air-lift fan systems to prevent explosive concentrations...

  16. Thermal measurement techniques of IC package boards by means of infrared radiometer

    SciTech Connect

    Okamoto, Yosizo; Inagaki, Terumi; Tsuyuzaki, Noriyoshi; Chen, W.

    1994-12-31

    Electronic equipment consists of a large number of elements, like resister, condenser, IC, LSI and its array. Heat transfer behavior of the element becomes complex by flow distribution of the surrounding air and internal heat generation of each element. The paper concerns thermal analysis of the IC package board. To analyze fundamental mechanism of fluid flow and heat of the IC board array, the infrared radiometer is used to visualize radiation temperature pattern of the IC package surface through a transparent plastic wall. Considering transmission rate of the plastic wall, the measured radiation temperature was transformed into the real temperature as function of the emissivity of the IC surface. Isotherm of the radiation temperature distribution of the front and back side surface of the IC board shows the existence of thermal wake pattern caused by surround air flow. Steady state and transient two-dimensional temperature distribution of the IC package, heat transfer rate of the front and back side of the IC board and cooling enhancement effects were measured and analyzed systematically.

  17. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place...

  18. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place...

  19. Innovative Teaching of IC Design and Manufacture Using the Superchip Platform

    ERIC Educational Resources Information Center

    Wilson, P. R.; Wilcock, R.; McNally, I.; Swabey, M.

    2010-01-01

    This paper describes how an intelligent chip architecture has allowed a large cohort of undergraduate (UG) students to be given effective practical insight into integrated circuit (IC) design by designing and manufacturing their own ICs. To achieve this, an efficient chip architecture, the "Superchip," was developed, which allows multiple student…

  20. IC [Interior Communications] Electrician 3 and 2: Rate Training Manual. Revised.

    ERIC Educational Resources Information Center

    Naval Education and Training Command, Pensacola, FL.

    The rate training manual provides information related to the tasks assigned to the Interior Communications (IC) Electricians Third and Second Class who operate and maintain the interior communications systems and associated equipment. Chapter one discusses career challenges for the IC Electrician in terms of responsibilities, advancement…

  1. 30 CFR 57.22233 - Actions at 0.5 percent methane (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Actions at 0.5 percent methane (I-C mines). 57... MINES Safety Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22233 Actions at 0.5 percent methane (I-C mines). If methane reaches 0.5 percent in the mine atmosphere, ventilation...

  2. 30 CFR 57.22602 - Blasting from the surface (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Blasting from the surface (I-C mines). 57.22602... Standards for Methane in Metal and Nonmetal Mines Explosives § 57.22602 Blasting from the surface (I-C mines). (a) All blasting shall be initiated from the surface after all persons are out of the mine and...

  3. Industry-Oriented Laboratory Development for Mixed-Signal IC Test Education

    ERIC Educational Resources Information Center

    Hu, J.; Haffner, M.; Yoder, S.; Scott, M.; Reehal, G.; Ismail, M.

    2010-01-01

    The semiconductor industry is lacking qualified integrated circuit (IC) test engineers to serve in the field of mixed-signal electronics. The absence of mixed-signal IC test education at the collegiate level is cited as one of the main sources for this problem. In response to this situation, the Department of Electrical and Computer Engineering at…

  4. A Solder Based Self Assembly Project in an Introductory IC Fabrication Course

    ERIC Educational Resources Information Center

    Rao, Madhav; Lusth, John C.; Burkett, Susan L.

    2015-01-01

    Integrated circuit (IC) fabrication principles is an elective course in a senior undergraduate and early graduate student's curriculum. Over the years, the semiconductor industry relies heavily on students with developed expertise in the area of fabrication techniques, learned in an IC fabrication theory and laboratory course. The theory course…

  5. Effect of local stress induced by thermal expansion of underfill in three-dimensional stacked IC

    NASA Astrophysics Data System (ADS)

    Kino, Hisashi; Hashiguchi, Hideto; Tanikawa, Seiya; Sugawara, Youhei; Ikegaya, Shunsuke; Fukushima, Takafumi; Koyanagi, Mitsumasa; Tanaka, Tetsu

    2016-04-01

    A three-dimensional stacked IC (3D IC) is a one of the promising structures for enhancing IC performances. A 3D IC consists of several materials such as a Si substrate, metal for through Si via (TSV) and microbump, organic adhesive called the underfill, and so on. These materials generate a coefficient of thermal expansion (CTE) mismatch. On the other hand, heat is generated in the Si substrate during circuit operation and in the environment outside 3D IC, for example. Both the CTE mismatch and heat generation induce local stress caused by expansion of the underfill injected around metal microbumps. In this paper, we report our investigation results of the effects of adhesive expansion on transistor performances by finite element method (FEM) simulation and measurement of transistor characteristics.

  6. The Shock Structure of Supernova Remnant IC443

    NASA Technical Reports Server (NTRS)

    Haas, Michael R.; Higdon, S. J. U.; Burton, M. G.; Hollenbach, D. J.; Fonda, Mark (Technical Monitor)

    2003-01-01

    We present and discuss ISO observations of IC443, a supernova remnant interacting with a molecular cloud. An SWS spectrum centered on molecular hydrogen clump R10E (RA(2000) = 6 17 7.6, Decl(2000) = 22 25 34.6) is dominated by strong [SiII] (34 microns) emission and the pure rotational transitions of molecular hydrogen ranging from 0-0 S(1) to 0-0 S(13). Fits to these H$-2$ lines imply a large column (approx. 7E19 cm$ {-2)$) of warm (T approx. 700 K) gas and an ortho/para ratio for hydrogen near 3. LWS Fabry-Perot spectra of [OI] (63 microns) and [CII] (158 microns) at positions R10E and C (RA(2000) = 6 17 42.8, Decl(2000) = 22 21 38.1) find broad (approx. 75 km/s), blue-shifted (-40 km/s) line profiles; their similarity strongly suggests a common, shock-generated origin for these two lines. The surprisingly large [CII]/[OI] ratio (approx. 0.1 to 0.2) confirms previous observations with the Kuiper Airborne Observatory. These [CII] and [OI] line intensities, the [SiII] intensity (above), and LWS grating measurements of OH (119 microns) and [OI] (145 microns) are all readily fit by a single, fast J-shock model. Although the [OI] (63) emission can alternatively be produced by a slow C-shock, this ensemble of lines can not be produced by such a shock and provides strong evidence for the existence of a J-shock. A 24-arcmin strip map shows that this far-infrared line emission is spatially correlated with the H$-2$ 1-0 S(1) emission, which most likely arises in an associated C-shock. In addition to this spatially correlated shock emission, the strip map identifies extended [CII] and [OI] emission with a significantly larger line ratio (approx. 0.6); this 'background' component is compared with current J-shock, C-shock, photo-dissociation region (PDR), and X-ray dissociation region (XDR) models in an effort to explain its origin.

  7. Multi-Wavelength Views of Protostars in IC 1396

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Click on individual images below for larger view

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    NASA's Spitzer Space Telescope has captured a glowing stellar nursery within a dark globule that is opaque at visible light. These new images pierce through the obscuration to reveal the birth of new protostars, or embryonic stars, and young stars never before seen.

    The Elephant's Trunk Nebula is an elongated dark globule within the emission nebula IC 1396 in the constellation of Cepheus. Located at a distance of 2,450 light-years, the globule is a condensation of dense gas that is barely surviving the strong ionizing radiation from a nearby massive star. The globule is being compressed by the surrounding ionized gas.

    The large composite image above is a product of combining data from the observatory's multiband imaging photometer and the infrared array camera. The thermal emission at 24 microns measured by the photometer (red) is combined with near-infrared emission from the camera at 3.6/4.5 microns (blue) and from 5.8/8.0 microns (green). The colors of the diffuse emission and filaments vary, and are a combination of molecular hydrogen (which tends to be green) and polycyclic aromatic hydrocarbon (brown) emissions.

    Within the globule, a half dozen newly discovered protostars, or embryonic stars, are easily discernible as the bright red-tinted objects, mostly along the southern rim of the globule. These were previously undetected at visible wavelengths due to obscuration by the thick cloud ('globule body') and by dust surrounding the newly forming stars. The newborn stars form in the dense gas because of compression by the wind and radiation from a nearby massive star (located outside the field of view to the left). The winds from this unseen star are also responsible for producing the

  8. Leptin and Hormones: Energy Homeostasis.

    PubMed

    Triantafyllou, Georgios A; Paschou, Stavroula A; Mantzoros, Christos S

    2016-09-01

    Leptin, a 167 amino acid adipokine, plays a major role in human energy homeostasis. Its actions are mediated through binding to leptin receptor and activating JAK-STAT3 signal transduction pathway. It is expressed mainly in adipocytes, and its circulating levels reflect the body's energy stores in adipose tissue. Recombinant methionyl human leptin has been FDA approved for patients with generalized non-HIV lipodystrophy and for compassionate use in subjects with congenital leptin deficiency. The purpose of this review is to outline the role of leptin in energy homeostasis, as well as its interaction with other hormones. PMID:27519135

  9. Long gamma-ray Bursts and Type Ic Core CollapseSupernovae have Similar Environments

    SciTech Connect

    Kelly, P.L.; Kirshner, R.P.; Pahre, M.

    2007-12-04

    When the afterglow fades at the site of a long-duration {gamma}-ray burst (LGRB), Type Ic supernovae (SN Ic) are the only type of core collapse supernova observed. Recent work found that a sample of LGRB had different environments from a collection of core-collapse supernovae identified in a high-redshift sample from colors and light curves. LGRB were in the brightest regions of their hosts, but the core-collapse sample followed the overall distribution of the galaxy light. Here we examine 263 fully spectroscopically-typed supernovae found in nearby (z < 0.06) galaxies for which we have constructed surface photometry from the Sloan Digital Sky Survey (SDSS). The distributions of the thermonuclear supernovae (SN Ia) and some varieties of core-collapse supernovae (SN II and SN Ib) follow the galaxy light, but the SN Ic (like LGRB) are much more likely to erupt in the brightest regions of their hosts. The high-redshift hosts of LGRB are overwhelmingly irregulars, without bulges, while many low redshift SN Ic hosts are spirals with small bulges. When we remove the bulge light from our low-redshift sample, the SN Ic and LGRB distributions agree extremely well. If both LGRB and SN Ic stem from very massive stars, then it seems plausible that the conditions necessary for forming SN Ic are also required for LGRB. Additional factors, including metallicity, may determine whether the stellar evolution of a massive star leads to a LGRB with an underlying broad-lined SN Ic, or simply a SN Ic without a {gamma}-ray burst.

  10. Identification of signals that facilitate isoform specific nucleolar localization of myosin IC

    SciTech Connect

    Schwab, Ryan S.; Ihnatovych, Ivanna; Yunus, Sharifah Z.S.A.; Domaradzki, Tera; Hofmann, Wilma A.

    2013-05-01

    Myosin IC is a single headed member of the myosin superfamily that localizes to the cytoplasm and the nucleus, where it is involved in transcription by RNA polymerases I and II, intranuclear transport, and nuclear export. In mammalian cells, three isoforms of myosin IC are expressed that differ only in the addition of short isoform-specific N-terminal peptides. Despite the high sequence homology, the isoforms show differences in cellular distribution, in localization to nuclear substructures, and in their interaction with nuclear proteins through yet unknown mechanisms. In this study, we used EGFP-fusion constructs that express truncated or mutated versions of myosin IC isoforms to detect regions that are involved in isoform-specific localization. We identified two nucleolar localization signals (NoLS). One NoLS is located in the myosin IC isoform B specific N-terminal peptide, the second NoLS is located upstream of the neck region within the head domain. We demonstrate that both NoLS are functional and necessary for nucleolar localization of specifically myosin IC isoform B. Our data provide a first mechanistic explanation for the observed functional differences between the myosin IC isoforms and are an important step toward our understanding of the underlying mechanisms that regulate the various and distinct functions of myosin IC isoforms. - Highlights: ► Two NoLS have been identified in the myosin IC isoform B sequence. ► Both NoLS are necessary for myosin IC isoform B specific nucleolar localization. ► First mechanistic explanation of functional differences between the isoforms.

  11. Spitzer Observations of Young Stars in IC2118, the Witch Head Nebula

    NASA Astrophysics Data System (ADS)

    Guieu, Sylvain; Rebull, L. M.; Stauffer, J. R.; Vrba, F.; Noriega-Crespo, A.; Roelofsen Moody, T.; Sepulveda, B.; Spuck, T.; Weehler, C.; Maranto, A.; Penprase, B.

    2010-01-01

    We have used Spitzer infrared photometry, combined with complementary optical photometry, to conduct a census of young stellar objects in IC2118. IC2118 is most likely an example of triggered star formation, where the trigger is the Trapezium and/or the Orion-Eridanus superbubble. The characterization of YSOs in these clouds helps us to understand the process of triggered star formation in comparison to cloud-collapse star formation, specifically how the star formation efficiency, the initial mass function and the statistical circumstellar properties differ for this two formation modes. In this poster we present how we used IRAC (3.6, 4.5, 5.8, and 8 microns), MIPS (24, 70, and 160 microns) and UVRcIc photometry to discover 6 new YSOs showing infrared excess, and we discuss the characteristics of the total of 11 (including our new 6) YSOs in IC2118.

  12. ASASSN-16fv: Discovery of A Nuclear Transient in IC 4705

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Nicholls, B.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Fernandez, J. M.; Masi, G.; Wiethoff, W.

    2016-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a nuclear transient in the galaxy IC 4705.

  13. Dr. Wernher Von Braun leads a tour of the S-IC checkout area.

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Eberhard Rees, Charles Schultze, James Webb, Elmer Staats, Comptroller General of the United States, and Dr. Wernher Von Braun tour the S-IC checkout area in the Marshall Space Flight Center quality lab.

  14. Factors That Improve RT-QuIC Detection of Prion Seeding Activity.

    PubMed

    Orrú, Christina D; Hughson, Andrew G; Groveman, Bradley R; Campbell, Katrina J; Anson, Kelsie J; Manca, Matteo; Kraus, Allison; Caughey, Byron

    2016-01-01

    Rapid and sensitive detection of prions is important in managing prion diseases. The real-time quaking-induced conversion (RT-QuIC) assay for prion seeding activity has been applied to many prion diseases and provides for specific antemortem diagnostic testing. We evaluated RT-QuIC's long-term consistency and varied multiple reaction parameters. Repeated assays of a single scrapie sample using multiple plate readers and recombinant prion protein (rPrP(Sen)) substrates gave comparable results. N-terminal truncated hamster rPrP(Sen) (residues 90-231) hastened both prion-seeded and prion-independent reactions but maintained a clear kinetic distinction between the two. Raising temperatures or shaking speeds accelerated RT-QuIC reactions without compromising specificity. When applied to nasal brushings from Creutzfeldt-Jakob disease patients, higher temperatures accelerated RT-QuIC kinetics, and the use of hamster rPrP(Sen) (90-231) strengthened RT-QuIC responses. Elongation of shaking periods reduced scrapie-seeded reaction times, but continuous shaking promoted false-positive reactions. Furthermore, pH 7.4 provided for more rapid RT-QuIC reactions than more acidic pHs. Additionally, we show that small variations in the amount of sodium dodecyl sulfate (SDS) significantly impacted the assay. Finally, RT-QuIC performed in multiplate thermoshakers followed by fluorescence readings in separate plate readers enhanced assay throughput economically. Collectively, these results demonstrate improved speed, efficacy and practicality of RT-QuIC assays and highlight variables to be optimized for future applications. PMID:27223300

  15. Installation of the F-1 Engine to the Saturn V S-IC Stage for Testing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Engineers at the Marshall Space Flight Center install the F-1 engines on the S-IC stage thrust structure at the S-IC static test stand. Engines are installed on the stage after it has been placed in the test stand. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  16. Fuel Tank Assembly of the Saturn V S-IC Stage

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The fuel tank assembly of the Saturn V S-IC (first) stage is readied to be mated to the liquid oxygen tank at the Marshall Space Flight Center. The fuel tank carried kerosene as its fuel. The S-IC stage utilized five F-1 engines that used kerosene and liquid oxygen as propellant. Each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  17. Installation of the F-1 Engine to the Saturn V S-IC Stage for Testing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Engineers at the Marshall Space Flight Center install the F-1 engines on the S-IC stage thrust structure at the S-IC static test stand. Engines are installed on the stage after it has been placed in the test stand. This image shows a close-up of an F-1 engine. Five F-1 engines, each weighing 10 tons, gave the booster a total thrust of 7,500,000 pounds, roughly equivalent to 160 million horsepower.

  18. Achieving asthma control with ICS/LABA: A review of strategies for asthma management and prevention.

    PubMed

    Aalbers, René; Vogelmeier, Claus; Kuna, Piotr

    2016-02-01

    Maintenance treatment with an inhaled corticosteroid (ICS) and a long-acting β2-agonist (LABA) is recommended for patients whose asthma is not controlled with a low-to-moderate dose of ICS alone; a separate reliever medication is used on an as-needed basis. The Gaining Optimal Asthma ControL (GOAL) study demonstrated that salmeterol/fluticasone maintenance treatment can improve asthma control and reduce future risk compared with fluticasone alone, although the dose escalation design of this study meant that most patients treated with salmeterol/fluticasone were receiving the highest dose of ICS at the end of the study. Similarly, budesonide/formoterol maintenance therapy improved asthma control and reduced future risk compared with budesonide alone in the Formoterol and Corticosteroids Establishing Therapy (FACET) study. An alternative approach to asthma management is to use an ICS/LABA for both maintenance and reliever therapy. A large body of clinical evidence has shown that the use of budesonide/formoterol in this way improves both current control and reduces future risk compared with ICS/LABA plus as-needed short-acting β2-agonist (SABA), even when patients receive lower maintenance doses of ICS as part of the maintenance and reliever therapy regimen. In addition, one study has shown that beclometasone/formoterol maintenance and reliever therapy reduces exacerbations more effectively than beclometasone/formoterol plus as-needed SABA. The use of ICS/LABA as both maintenance and reliever therapy ensures that an increase in reliever use in response to worsening symptoms is automatically matched by an increase in ICS. PMID:26614594

  19. Local and Commissural IC Neurons Make Axosomatic Inputs on Large GABAergic Tectothalamic Neurons

    PubMed Central

    Ito, Tetsufumi; Oliver, Douglas L.

    2014-01-01

    Large GABAergic (LG) neurons are a distinct type of neuron in the inferior colliculus (IC) identified by their dense VGLUT2-containing axosomatic synaptic terminals. Yet, the sources of these terminals are unknown. Since IC glutamatergic neurons express VGLUT2, and IC neurons are known to have local collaterals, we tested the hypothesis that these excitatory, glutamatergic axosomatic inputs on LG neurons come from local axonal collaterals and commissural IC neurons. We injected a recombinant viral tracer into the IC which enabled Golgi-like GFP labeling in both dendrites and axons. In all cases, we found terminals positive for both GFP and VGLUT2 (GFP+/VGLUT2+) that made axosomatic contacts on LG neurons. One to six axosomatic contacts were made on a single LG cell body by a single axonal branch. The GFP-labeled neurons giving rise to the VGLUT2+ terminals on LG neurons were close by. The density of GFP+/VGLUT2+ terminals on the LG neurons was related to the number of nearby GFP-labeled cells. On the contralateral side, a smaller number of LG neurons received axosomatic contacts from GFP+/VGLUT2+ terminals. In cases with a single GFP-labeled glutamatergic neuron, the labeled axonal plexus was flat, oriented in parallel to the fibrodendritic laminae, and contacted 9–30 LG cell bodies within the plexus. Our data demonstrated that within the IC microcircuitry, there is a convergence of inputs from local IC excitatory neurons on LG cell bodies. This suggests that LG neurons are heavily influenced by the activity of the nearby laminar glutamatergic neurons in the IC. PMID:24796971

  20. New materials for high-performance III-V ICs and OEICs: an industrial approach

    NASA Astrophysics Data System (ADS)

    Martin, Gerard M.; Frijlink, Peter M.

    1991-02-01

    High performance IC''s and OEIC''s rely on complex epitaxial heterostructures with tight bandgap engineering. Related developmentandproduction requires notonly very homogeneous materials but manufacturing ofqualified batches of similar wafers. Furthermore in most cases critical feature size of devices is submicronic which puts forward another important requirementconcerning surface contamination ofwafers. Thispaperpresents the breakthrough we have achieved in the above fields using especially the novel MOVPE multiwafer PLANET reactor.

  1. Silicon photonics-wireless interface ICs for micro-/millimeter-wave fiber-wireless networks.

    PubMed

    Ko, Minsu; Lee, Myung-Jae; Rücker, Holger; Choi, Woo-Young

    2013-09-23

    We present two types of Si photonics-wireless interface (PWI) integrated circuits (ICs) realized in standard Si technology. Our PWI ICs convert optical signals into radio-frequency (RF) signals for downlink remote antenna units in fiber-wireless networks. Characterization and modeling of Si avalanche photodetectors (APDs) fabricated in two different Si technologies are carried out and used for PWI IC design. A 5-GHz RF-over-fiber PWI IC composed of APD, preamplifier, and power amplifier (PA) is fabricated in 0.18-μm CMOS technology and its performance is verified by 54-Mb/s wireless local area network data transmission. A 60-GHz baseband-over-fiber PWI IC containing APD, baseband photoreceiver, 60-GHz binary phase-shift keying (BPSK) modulator, and 60-GHz PA is realized in 0.25-μm SiGe BiCMOS technology. Error-free transmission of 1.6-Gb/s BPSK data in 60 GHz with this PWI IC is successfully achieved. PMID:24104180

  2. Analysis of Interlayer Shorts in a 0.5 {micro}m CMOS IC Technology

    SciTech Connect

    Cole, E.I.; Henderson, C.L.; Soden, J.M.

    1999-03-12

    Sandia is manufacturing CMOS ICs with 0.5 {micro}m LOCOS and shallow trench isolation (STI) technologies and is developing a 0.35 {micro}m SOI technology. A program based on burn-in and life tests is being used to qualify the 0.5 {micro}m technologies for delivery of high reliability ICs to customers for military and space applications. Representative ICs from baseline wafer lots are assembled using a high reliability process with multilayer hermetic, ceramic packages. These ICs are electrically tested before, during, and after burn-in and subsequent 1000 hour dynamic and static life tests. Two types of ICS are being used for this qualification, a 256K bit SRAM and a Microcontroller Core (MCC). Over 600 ICs have successfully completed these qualification tests, resulting in a failure rate estimate of less than 4 FITS for satellite applications. Recently, a group of SRAMS from a development wafer lot incorporating nonqualified processes of the 0.5 {micro}m LOCOS technology had an unusually high number of failures during the initial electrical test after packaging. The investigation of these failures is described.

  3. A New Interface for the Magnetics Information Consortium (MagIC) Paleo and Rock Magnetic Database

    NASA Astrophysics Data System (ADS)

    Jarboe, N.; Minnett, R.; Koppers, A. A. P.; Tauxe, L.; Constable, C.; Shaar, R.; Jonestrask, L.

    2014-12-01

    The Magnetic Information Consortium (MagIC) database (http://earthref.org/MagIC/) continues to improve the ease of uploading data, the creation of complex searches, data visualization, and data downloads for the paleomagnetic, geomagnetic, and rock magnetic communities. Data uploading has been simplified and no longer requires the use of the Excel SmartBook interface. Instead, properly formatted MagIC text files can be dragged-and-dropped onto an HTML 5 web interface. Data can be uploaded one table at a time to facilitate ease of uploading and data error checking is done online on the whole dataset at once instead of incrementally in an Excel Console. Searching the database has improved with the addition of more sophisticated search parameters and with the ability to use them in complex combinations. Searches may also be saved as permanent URLs for easy reference or for use as a citation in a publication. Data visualization plots (ARAI, equal area, demagnetization, Zijderveld, etc.) are presented with the data when appropriate to aid the user in understanding the dataset. Data from the MagIC database may be downloaded from individual contributions or from online searches for offline use and analysis in the tab delimited MagIC text file format. With input from the paleomagnetic, geomagnetic, and rock magnetic communities, the MagIC database will continue to improve as a data warehouse and resource.

  4. Qualification of the First ICS-3000 ION Chromatograph for use at the Defense Waste Processing Facility

    SciTech Connect

    Edwards, T; Mahannah, R.

    2011-07-05

    The ICS-3000 Ion Chromatography (IC) system installed in 221-S M-13 has been qualified for use. The qualification was a head to head comparison of the ICS-3000 with the currently used DX-500 IC system. The crosscheck work included standards for instrument calibration and calibration verifications and standards for individual anion analysis, where the standards were traceable back to the National Institute of Standards and Technology (NIST). In addition the crosscheck work included the analysis of simulated Sludge Receipt Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples, along with radioactive Sludge Batch 5 material from the SRAT and SME tanks. Based upon the successful qualification of the ICS-3000 in M-13, it is recommended that this task proceed in developing the data to qualify, by a head to head comparison of the two ICS-3000 instruments, a second ICS-3000 to be installed in M-14. The Defense Waste Processing Facility (DWPF) requires the analysis of specific anions at various stages of its processing of high level waste (HLW). The anions of interest to the DWPF are fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate, and phosphate. The anion analysis is used to evaluate process chemistry including formic acid/nitric acid additions to establish optimum conditions for mercury stripping, reduction-oxidation (REDOX) chemistry for the melter, nitrite destruction, organic acid constituents, etc. The DWPF Laboratory (Lab) has been using Dionex DX-500 ion chromatography (IC) systems since 1998. The vendor informed DWPF in 2006 that the instruments would no longer be supported by service contracts after 2008. DWPF purchased three new ICS-3000 systems in September of 2006. The ICS-3000 instruments are (a) designed to be more stable using an eluent generator to make eluent, (b) require virtually no daily chemical handling by the analysts, (c) require less line breaks in the hood, and (d) generally require less maintenance

  5. Immune evasion of Enterococcus faecalis by an extracellular gelatinase that cleaves C3 and iC3b.

    PubMed

    Park, Shin Yong; Shin, Yong Pyo; Kim, Chong Han; Park, Ho Jin; Seong, Yeon Sun; Kim, Byung Sam; Seo, Sook Jae; Lee, In Hee

    2008-11-01

    Enterococcus faecalis (Ef) accounts for most cases of enterococcal bacteremia, which is one of the principal causes of nosocomial bloodstream infections (BSI). Among several virulence factors associated with the pathogenesis of Ef, an extracellular gelatinase (GelE) has been known to be the most common factor, although its virulence mechanisms, especially in association with human BSI, have yet to be demonstrated. In this study, we describe the complement resistance mechanism of Ef mediated by GelE. Using purified GelE, we determined that it cleaved the C3 occurring in human serum into a C3b-like molecule, which was inactivated rapidly via reaction with water. This C3 convertase-like activity of GelE was shown to result in a consumption of C3 and thus inhibited the activation of the complement system. Also, GelE was confirmed to degrade an iC3b that was deposited on the Ag surfaces without affecting the bound C3b. This proteolytic effect of GelE against the major complement opsonin resulted in a substantial reduction in Ef phagocytosis by human polymorphonuclear leukocytes. In addition, we verified that the action of GelE against C3, which is a central component of the complement cascade, was human specific. Taken together, it was suggested that GelE may represent a promising molecule for targeting human BSI associated with Ef. PMID:18941224

  6. EVIDENCE FOR AN INTERACTION IN THE NEAREST STARBURSTING DWARF IRREGULAR GALAXY IC 10

    SciTech Connect

    Nidever, David L.; Slater, Colin T.; Bell, Eric F.; Ashley, Trisha; Simpson, Caroline E.; Ott, Jürgen; Johnson, Megan; Stanimirović, Snežana; Putman, Mary; Majewski, Steven R.; Jütte, Eva; Oosterloo, Tom A.; Burton, W. Butler

    2013-12-20

    Using deep 21 cm H I data from the Green Bank Telescope we have detected an ≳18.3 kpc long gaseous extension associated with the starbursting dwarf galaxy IC 10. The newly found feature stretches 1.°3 to the northwest and has a large radial velocity gradient reaching to ∼65 km s{sup –1} lower than the IC 10 systemic velocity. A region of higher column density at the end of the extension that possesses a coherent velocity gradient (∼10 km s{sup –1} across ∼26') transverse to the extension suggests rotation and may be a satellite galaxy of IC 10. The H I mass of IC 10 is 9.5 × 10{sup 7} (d/805 kpc){sup 2} M {sub ☉} and the mass of the new extension is 7.1 × 10{sup 5} (d/805 kpc){sup 2} M {sub ☉}. An IC 10-M31 orbit using known radial velocity and proper motion values for IC 10 show that the H I extension is inconsistent with the trailing portion of the orbit so that an M31-tidal or ram pressure origin seems unlikely. We argue that the most plausible explanation for the new feature is that it is the result of a recent interaction (and possible late merger) with another dwarf galaxy. This interaction could not only have triggered the origin of the recent starburst in IC 10, but could also explain the existence of previously found counter-rotating H I gas in the periphery of the IC 10 which was interpreted as originating from primordial gas infall.

  7. Factors That Improve RT-QuIC Detection of Prion Seeding Activity

    PubMed Central

    Orrú, Christina D.; Hughson, Andrew G.; Groveman, Bradley R.; Campbell, Katrina J.; Anson, Kelsie J.; Manca, Matteo; Kraus, Allison; Caughey, Byron

    2016-01-01

    Rapid and sensitive detection of prions is important in managing prion diseases. The real-time quaking-induced conversion (RT-QuIC) assay for prion seeding activity has been applied to many prion diseases and provides for specific antemortem diagnostic testing. We evaluated RT-QuIC’s long-term consistency and varied multiple reaction parameters. Repeated assays of a single scrapie sample using multiple plate readers and recombinant prion protein (rPrPSen) substrates gave comparable results. N-terminal truncated hamster rPrPSen (residues 90–231) hastened both prion-seeded and prion-independent reactions but maintained a clear kinetic distinction between the two. Raising temperatures or shaking speeds accelerated RT-QuIC reactions without compromising specificity. When applied to nasal brushings from Creutzfeldt-Jakob disease patients, higher temperatures accelerated RT-QuIC kinetics, and the use of hamster rPrPSen (90–231) strengthened RT-QuIC responses. Elongation of shaking periods reduced scrapie-seeded reaction times, but continuous shaking promoted false-positive reactions. Furthermore, pH 7.4 provided for more rapid RT-QuIC reactions than more acidic pHs. Additionally, we show that small variations in the amount of sodium dodecyl sulfate (SDS) significantly impacted the assay. Finally, RT-QuIC performed in multiplate thermoshakers followed by fluorescence readings in separate plate readers enhanced assay throughput economically. Collectively, these results demonstrate improved speed, efficacy and practicality of RT-QuIC assays and highlight variables to be optimized for future applications. PMID:27223300

  8. ICS logging solution for network-based attacks using Gumistix technology

    NASA Astrophysics Data System (ADS)

    Otis, Jeremy R.; Berman, Dustin; Butts, Jonathan; Lopez, Juan

    2013-05-01

    Industrial Control Systems (ICS) monitor and control operations associated with the national critical infrastructure (e.g., electric power grid, oil and gas pipelines and water treatment facilities). These systems rely on technologies and architectures that were designed for system reliability and availability. Security associated with ICS was never an inherent concern, primarily due to the protections afforded by network isolation. However, a trend in ICS operations is to migrate to commercial networks via TCP/IP in order to leverage commodity benefits and cost savings. As a result, system vulnerabilities are now exposed to the online community. Indeed, recent research has demonstrated that many exposed ICS devices are being discovered using readily available applications (e.g., ShodanHQ search engine and Google-esque queries). Due to the lack of security and logging capabilities for ICS, most knowledge about attacks are derived from real world incidents after an attack has already been carried out and the damage has been done. This research provides a method for introducing sensors into the ICS environment that collect information about network-based attacks. The sensors are developed using an inexpensive Gumstix platform that can be deployed and incorporated with production systems. Data obtained from the sensors provide insight into attack tactics (e.g., port scans, Nessus scans, Metasploit modules, and zero-day exploits) and characteristics (e.g., attack origin, frequency, and level of persistence). Findings enable security professionals to draw an accurate, real-time awareness of the threats against ICS devices and help shift the security posture from reactionary to preventative.

  9. Knockdown of Inner Arm Protein IC138 in Trypanosoma brucei Causes Defective Motility and Flagellar Detachment

    PubMed Central

    Wilson, Corinne S.; Chang, Alex J.; Greene, Rebecca; Machado, Sulynn; Parsons, Matthew W.; Takats, Taylor A.; Zambetti, Luke J.; Springer, Amy L.

    2015-01-01

    Motility in the protozoan parasite Trypanosoma brucei is conferred by a single flagellum, attached alongside the cell, which moves the cell forward using a beat that is generated from tip-to-base. We are interested in characterizing components that regulate flagellar beating, in this study we extend the characterization of TbIC138, the ortholog of a dynein intermediate chain that regulates axonemal inner arm dynein f/I1. TbIC138 was tagged In situ-and shown to fractionate with the inner arm components of the flagellum. RNAi knockdown of TbIC138 resulted in significantly reduced protein levels, mild growth defect and significant motility defects. These cells tended to cluster, exhibited slow and abnormal motility and some cells had partially or fully detached flagella. Slight but significant increases were observed in the incidence of mis-localized or missing kinetoplasts. To document development of the TbIC138 knockdown phenotype over time, we performed a detailed analysis of flagellar detachment and motility changes over 108 hours following induction of RNAi. Abnormal motility, such as slow twitching or irregular beating, was observed early, and became progressively more severe such that by 72 hours-post-induction, approximately 80% of the cells were immotile. Progressively more cells exhibited flagellar detachment over time, but this phenotype was not as prevalent as immotility, affecting less than 60% of the population. Detached flagella had abnormal beating, but abnormal beating was also observed in cells with no flagellar detachment, suggesting that TbIC138 has a direct, or primary, effect on the flagellar beat, whereas detachment is a secondary phenotype of TbIC138 knockdown. Our results are consistent with the role of TbIC138 as a regulator of motility, and has a phenotype amenable to more extensive structure-function analyses to further elucidate its role in the control of flagellar beat in T. brucei. PMID:26555902

  10. A contact-lens-shaped IC chip technology

    NASA Astrophysics Data System (ADS)

    Liu, Ching-Yu; Yang, Frank; Teng, Chih-Chiao; Fan, Long-Sheng

    2014-04-01

    We report on novel contact-lens-shaped silicon integrated circuit chip technology for applications such as forming a conforming retinal prosthesis. This is achieved by means of patterning thin films of high residual stress on top of a shaped thin silicon substrate. Several strategies are employed to achieve curvatures of various amounts. Firstly, high residual stress on a thin film makes a thin chip deform into a designed three-dimensional shape. Also, a series of patterned stress films and ‘petal-shaped’ chips were fabricated and analyzed. Large curvatures can also be formed and maintained by the packaging process of bonding the chips to constraining elements such as thin-film polymer ring structures. As a demonstration, a complementary metal oxide semiconductor transistor (CMOS) image-sensing retina chip is made into a contact-lens shape conforming to a human eyeball 12.5 mm in radius. This non-planar and flexible chip technology provides a desirable device surface interface to soft tissues or non-planar bio surfaces and opens up many other possibilities for biomedical applications.

  11. Constraining the Cosmic-ray Acceleration Efficiency in the Supernova Remnant IC 443

    NASA Astrophysics Data System (ADS)

    Ritchey, Adam Michael; Federman, Steven R.; Jenkins, Edward B.; Caprioli, Damiano; Wallerstein, George

    2015-08-01

    Supernova remnants are widely believed to be the sources responsible for the acceleration of Galactic cosmic rays. Over the last several years, observations made with the Fermi Gamma-ray Space Telescope have confirmed that cosmic-ray nuclei are indeed accelerated in some supernova remnants, including IC 443, which is a prototype for supernova remnants interacting with molecular clouds. However, the details concerning the particle acceleration processes in middle aged remnants are not fully understood, in part because the basic model parameters are not always well constrained. Here, we present preliminary results of a Hubble Space Telescope investigation into the physical conditions in diffuse molecular gas interacting with IC 443. We examine high-resolution FUV spectra of two stars, one that probes the interior region of the supernova remnant, and the other located just outside the visible edge of IC 443. With this arrangement, we are able to evaluate the densities and temperatures in neutral gas clumps positioned both ahead of and behind the supernova shock front. From these measurements, we obtain estimates for the post-shock temperature and the shock velocity in the interclump medium. We discuss the efficacy of these results for constraining both the age of IC 443, and also the cosmic-ray acceleration efficiency. Finally, we report the first detection of boron in a supernova remnant, and discuss the usefulness of the B/O ratio in constraining the cosmic-ray content of the gas interacting with IC 443.

  12. A CCD color-magnitude diagram for the globular cluster IC 4499

    NASA Technical Reports Server (NTRS)

    Sarajedini, Ata

    1993-01-01

    A color-magnitude diagram (CMD) based on CCD observations in B and V is presented for the Galactic globular cluster IC 4499. The CMD reaches the main-sequence turnoff and reveals a horizontal branch (HB) similar to that of M3 in morphology; however, RR Lyrae variables compose 68 percent of the HB stars in IC 4499. We find V(HB) = 17.68 +/- 0.03 mag and, after adopting a metal abundance of (Fe/H)=- 1.65 +/- 0.10, derive a reddening of E(B-V) = 0.15 +/- 0.03 using the color of the red giant branch. We show that the (B-V) color extent of the IC 4499 HB is significantly smaller than that of M3 and NGC 3201. In particular, the red HBs of these clusters appear morphologically indistinguishable, whereas the blue HBs of M3 and NGC 3201 are more extended than that of IC 4499. If this difference is due to a variation in the mass range along the blue HB, we estimate that, in the mean, stars on the blue HB of IC 4499 are at least roughly 0.02 solar mass more massive than similar stars in M3 and NGC 3201.

  13. Protective efficacy of the chimeric Staphylococcus aureus vaccine candidate IC in sepsis and pneumonia models

    PubMed Central

    Yang, Liuyang; Cai, Changzhi; Feng, Qiang; Shi, Yun; Zuo, Qianfei; Yang, Huijie; Jing, Haiming; Wei, Chao; Zhuang, Yuan; Zou, Quanming; Zeng, Hao

    2016-01-01

    Staphylococcus aureus causes serious sepsis and necrotic pneumonia worldwide. Due to the spread of multidrug-resistant strains, developing an effective vaccine is the most promising method for combating S. aureus infection. In this study, based on the immune-dominant areas of the iron surface determinant B (IsdB) and clumping factor A (ClfA), we designed the novel chimeric vaccine IsdB151-277ClfA33-213 (IC). IC formulated with the AlPO4 adjuvant induced higher protection in an S. aureus sepsis model compared with the single components alone and showed broad immune protection against several clinical S. aureus isolates. Immunisation with IC induced strong antibody responses. The protective effect of antibodies was demonstrated through the opsonophagocytic assay (OPA) and passive immunisation experiment. Moreover, this new chimeric vaccine induced Th1/Th17-skewed cellular immune responses based on cytokine profiles and CD4+ T cell stimulation tests. Neutralisation of IL-17A alone (but not IFN-γ) resulted in a significant decrease in vaccine immune protection. Finally, we found that IC showed protective efficacy in a pneumonia model. Taken together, these data provide evidence that IC is a potentially promising vaccine candidate for combating S. aureus sepsis and pneumonia. PMID:26865417

  14. Interdisciplinary Collaboration amongst Colleagues and between Initiatives with the Magnetics Information Consortium (MagIC) Database

    NASA Astrophysics Data System (ADS)

    Minnett, R.; Koppers, A. A. P.; Jarboe, N.; Tauxe, L.; Constable, C.; Jonestrask, L.; Shaar, R.

    2014-12-01

    Earth science grand challenges often require interdisciplinary and geographically distributed scientific collaboration to make significant progress. However, this organic collaboration between researchers, educators, and students only flourishes with the reduction or elimination of technological barriers. The Magnetics Information Consortium (http://earthref.org/MagIC/) is a grass-roots cyberinfrastructure effort envisioned by the geo-, paleo-, and rock magnetic scientific community to archive their wealth of peer-reviewed raw data and interpretations from studies on natural and synthetic samples. MagIC is dedicated to facilitating scientific progress towards several highly multidisciplinary grand challenges and the MagIC Database team is currently beta testing a new MagIC Search Interface and API designed to be flexible enough for the incorporation of large heterogeneous datasets and for horizontal scalability to tens of millions of records and hundreds of requests per second. In an effort to reduce the barriers to effective collaboration, the search interface includes a simplified data model and upload procedure, support for online editing of datasets amongst team members, commenting by reviewers and colleagues, and automated contribution workflows and data retrieval through the API. This web application has been designed to generalize to other databases in MagIC's umbrella website (EarthRef.org) so the Geochemical Earth Reference Model (http://earthref.org/GERM/) portal, Seamount Biogeosciences Network (http://earthref.org/SBN/), EarthRef Digital Archive (http://earthref.org/ERDA/) and EarthRef Reference Database (http://earthref.org/ERR/) will benefit from its development.

  15. A real-time marking defect inspection method for IC chips

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Zhang, Buyang; Hu, Yang

    2015-12-01

    IC marking provides information about the integrated circuit chips, such as product function and classification. So IC marking inspection is one of the essential processes in semiconductor fabrication. A real-time IC chip marking defect inspection method is presented in this paper. The method comprises the following steps: chip position detection, characters segmentation, feature extraction and classification. The extracted features are used in a back propagation neural network for classifying the types of marking errors such as illegible characters, missing characters and misprinted characters. Character segmentation is an essential part of the inspection method. It is a considerable challenge to segment touching and broken characters correctly, due to uneven illumination, motion blur, as well as problems in the printing process. In order to segment the characters rapidly and accurately, a novel approach for character segmentation based on vertical projection and the character features is proposed. Experiments using a TSSOP20 packaging chip demonstrate that our method can inspect an IC marking with 17 different characters in just 130ms. The system achieves a maximum recognition rate of 98.5%. As a result, it is an ideal solution for a real-time IC marking recognition and defects inspection system.

  16. Development of Quantum Chemical Method to Calculate Half Maximal Inhibitory Concentration (IC50 ).

    PubMed

    Bag, Arijit; Ghorai, Pradip Kr

    2016-05-01

    Till date theoretical calculation of the half maximal inhibitory concentration (IC50 ) of a compound is based on different Quantitative Structure Activity Relationship (QSAR) models which are empirical methods. By using the Cheng-Prusoff equation it may be possible to compute IC50 , but this will be computationally very expensive as it requires explicit calculation of binding free energy of an inhibitor with respective protein or enzyme. In this article, for the first time we report an ab initio method to compute IC50 of a compound based only on the inhibitor itself where the effect of the protein is reflected through a proportionality constant. By using basic enzyme inhibition kinetics and thermodynamic relations, we derive an expression of IC50 in terms of hydrophobicity, electric dipole moment (μ) and reactivity descriptor (ω) of an inhibitor. We implement this theory to compute IC50 of 15 HIV-1 capsid inhibitors and compared them with experimental results and available other QASR based empirical results. Calculated values using our method are in very good agreement with the experimental values compared to the values calculated using other methods. PMID:27492086

  17. Determination of halogens and sulfur in high-purity polyimide by IC after digestion by MIC.

    PubMed

    Krzyzaniak, Sindy R; Santos, Rafael F; Dalla Nora, Flavia M; Cruz, Sandra M; Flores, Erico M M; Mello, Paola A

    2016-09-01

    In this work, a method for sample preparation of high-purity polyimide was proposed for halogens and sulfur determination by ion chromatography (IC) with conductivity detection and, alternatively, by inductively coupled plasma mass spectrometry (ICP-MS). A relatively high polyimide mass (600mg) was completely digested by microwave-induced combustion (MIC) using 20bar of O2 and 50mmolL(-1) NH4OH as absorbing solution. These conditions allowed final solutions with low carbon content (<10mgL(-1)) and suitable pH for analysis by both IC and ICP-MS. The accuracy was evaluated using a certified reference material of polymer for Cl, Br and S and spike recovery experiments for all analytes. No statistical difference (t-test, 95% of confidence level) was observed between the results obtained for Cl, Br and S by IC after MIC and the certified values. In addition, spike recoveries obtained for F, Cl, Br, I and S ranged from 94% to 101%. The proposed method was suitable for polyimide decomposition for further determination of halogens and sulfur by IC and by ICP-MS (Br and I only). Taking into account the lack of methods and the difficulty of bringing this material into solution, MIC can be considered as a suitable alternative for the decomposition of polyimide for routine quality control of halogens and sulfur using IC or ICP-MS. PMID:27343595

  18. Nuclear radiation test of a D flip-flop IC using a single-board microcomputer

    SciTech Connect

    Lim, T.S.; Martin, R.L.; Hughes, H.L.

    1987-01-01

    The design of a microcomputer-controlled electronic circuit and its use in evaluating the effects of nuclear radiation on a 4013 CMOS D flip-flop (FF) integrated circuit (IC) are described. The IC undergoing testing is attached to a DUT (device under test) board, which is enclosed in a metal container. The container is then lowered to the cobalt 60 radiation source located at the bottom of a 15-ft-deep pool filled to the top with water. The gamma-ray radiation test setup is schematically shown. The in-source test board containing the D FF IC is attached to an 8085-based single-board microcomputer, SDK-85, by a 30-ft multiconductor cable. Doses of gamma-ray radiation from the cobalt 60 are applied in steps at increasing quantities until the D FF IC, which is tested between doses, begins to malfunction. The leakage current and the propagation delay time are measured between doses. An 8085 assembly language program is used for functional test of the IC. The software design and the radiation testing procedure are discussed in detail.

  19. Improvements to the Magnetics Information Consortium (MagIC) Paleo and Rock Magnetic Database

    NASA Astrophysics Data System (ADS)

    Jarboe, N.; Minnett, R.; Tauxe, L.; Koppers, A. A. P.; Constable, C.; Jonestrask, L.

    2015-12-01

    The Magnetic Information Consortium (MagIC) database (http://earthref.org/MagIC/) continues to improve the ease of data uploading and editing, the creation of complex searches, data visualization, and data downloads for the paleomagnetic, geomagnetic, and rock magnetic communities. Online data editing is now available and the need for proprietary spreadsheet software is therefore entirely negated. The data owner can change values in the database or delete entries through an HTML 5 web interface that resembles typical spreadsheets in behavior and uses. Additive uploading now allows for additions to data sets to be uploaded with a simple drag and drop interface. Searching the database has improved with the addition of more sophisticated search parameters and with the facility to use them in complex combinations. A comprehensive summary view of a search result has been added for increased quick data comprehension while a raw data view is available if one desires to see all data columns as stored in the database. Data visualization plots (ARAI, equal area, demagnetization, Zijderveld, etc.) are presented with the data when appropriate to aid the user in understanding the dataset. MagIC data associated with individual contributions or from online searches may be downloaded in the tab delimited MagIC text file format for susbsequent offline use and analysis. With input from the paleomagnetic, geomagnetic, and rock magnetic communities, the MagIC database will continue to improve as a data warehouse and resource.

  20. Electrical performance analysis of IC package for the high-end memory device

    NASA Astrophysics Data System (ADS)

    Lee, Dong H.; Han, Chan M.

    1997-08-01

    The developments of processing technology and design make it possible to increase the clock speed and the number of input outputs (I/Os) in memory devices. The interconnections of IC package are considered as an important factor to decide the performance of the memory devices. In order to overcome the limitations of the conventional package, new types of package such as Ball Grid Array (BGA), chip scale package or flip chip bonding are adopted by many IC manufacturers. The present work has compared the electrical performances of 3 different packages to provide deign guide for IC packages of the high performance memory devices in the future. Those packages are designed for the same memory devices to confront to the diversity of memory market demand. The conventional package using lead frame, wire bonded BGA using printed circuit board substrate and flip chip bonded BGA are analyzed. Their electrical performances are compared in the area of signal delay and coupling effect between signal interconnections. The electrical package modeling is built by extracting parasitic of interconnections in IC package through electro-magnetic simulations. The electrical package modeling is built by extracting parasitic of interconnections in IC package through electro-magnetic simulations. The analysis of electrical behavior is performed using SPICE model which is made to represent the real situation. The methodology presented is also capable of determining the most suitable memory package for a particular device based on the electrical performance.

  1. Optical observations of the broad-lined type Ic supernova SN 2012ap

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Zhao, Xu-Lin; Huang, Fang; Wang, Xiao-Feng; Zhang, Tian-Meng; Chen, Jun-Cheng; Zhang, Tong-Jie

    2015-02-01

    The optical observations of the type Ic supernova (SN Ic) SN 2012ap in NGC 1729 are presented. A comparison with other SNe Ic indicates that SN 2012ap is highly reddened (with E(B — V)host~0.8 mag) and may represent one of the most luminous SNe Ic ever observed, with an absolute V-band peak magnitude of ~ -19.3±0.5 mag after extinction correction. The near-maximum-light spectrum shows wide spectral features that are typical of broad-lined SNe Ic. One interesting feature in the spectrum is the appearance of some narrow absorption features that can be attributed to the diffuse interstellar bands, consistent with the large reddening inferred from the photometric method. Based on the light curves and the spectral data, we estimate that SN 2012ap produced a 56Ni mass of ~ 0.3 ± 0.1Msolar 1 in the explosion, with an ejecta mass of 2.4-0.7+0.7Msolar and a kinetic energy of EK = 1.1-0.4+0.4 × 1052 erg. The properties of its progenitor are also briefly discussed.

  2. Removal of Flame Deflector From the S-IC Test Stand

    NASA Technical Reports Server (NTRS)

    1975-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was originally designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage. Modifications to the S-IC Test Stand began in 1975 to accommodate space shuttle external tank testing. This photo depicts the removal of the flame deflector which was originally used to provide water to the 5 F-1 engines of the S-IC stage during testing.

  3. First Saturn V S-IC Stage Five F-1 Engine Testing

    NASA Technical Reports Server (NTRS)

    1965-01-01

    This photograph depicts a dramatic view of the first test firing of all five F-1 engines for the Saturn V S-IC stage at the Marshall Space Flight Center. The testing lasted a full duration of 6.5 seconds. It also marked the first test performed in the new S-IC static test stand and the first test using the new control blockhouse. The S-IC stage is the first stage, or booster, of a 364-foot long rocket that ultimately took astronauts to the Moon. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust. Required to hold down the brute force of a 7,500,000-pound thrust, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and cement, planted down to bedrock 40 feet below ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the up position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. When the Saturn V S-IC first stage was placed upright in the stand , the five F-1 engine nozzles pointed downward on a 1,900 ton, water-cooled deflector. To prevent melting damage, water was sprayed through small holes in the deflector at the rate 320,000 gallons per minute.

  4. Use of optical technique for inspection of warpage of IC packages

    NASA Astrophysics Data System (ADS)

    Toh, Siew-Lok; Chau, Fook S.; Ong, Sim Heng

    2001-06-01

    The packaging of IC packages has changed over the years, form dual-in-line, wire-bond, and pin-through-hole in printed wiring board technologies in the 1970s to ball grid array, chip scale and surface mount technologies in the 1990s. Reliability has been a big problem for manufacturers for some moisture-sensitive packages. One of the potential problems in plastic IC packages is moisture-induced popcorn effect which can arise during the reflow process. Shearography is a non-destructive inspection technique that may be used to detect the delamination and warpage of IC packages. It is non-contacting and permits a full-field observation of surface displacement derivatives. Another advantage of this technique is that it is able to give the real-time formation of the fringes which indicate flaws in the IC package under real-time simulation condition of Surface Mount Technology (SMT) IR reflow profile. It is extremely fast and convenient to study the true behavior of the packaging deformation during the SMT process. It can be concluded that shearography has the potential for the real- time detection, in situ and non-destructive inspection of IC packages during the surface mount process.

  5. PTF 12gzk—A rapidly declining, high-velocity type Ic radio supernova

    SciTech Connect

    Horesh, Assaf; Kulkarni, Shrinivas R.; Corsi, Alessandra; Frail, Dale A.; Cenko, S. Bradley; Ben-Ami, Sagi; Gal-Yam, Avishay; Yaron, Ofer; Arcavi, Iair; Ofek, Eran O.; Kasliwal, Mansi M.

    2013-11-20

    Only a few cases of Type Ic supernovae (SNe) with high-velocity ejecta (≥0.2 c) have been discovered and studied. Here, we present our analysis of radio and X-ray observations of the Type Ic SN PTF 12gzk. The radio emission declined less than 10 days after explosion, suggesting SN ejecta expanding at high velocity (∼0.3 c). The radio data also indicate that the density of the circumstellar material (CSM) around the supernova is lower by a factor of ∼10 than the CSM around normal Type Ic SNe. PTF 12gzk may therefore be an intermediate event between a 'normal' SN Ic and a gamma-ray-burst-SN-like event. Our observations of this rapidly declining radio SN at a distance of 58 Mpc demonstrates the potential to detect many additional radio SNe, given the new capabilities of the Very Large Array (improved sensitivity and dynamic scheduling), which are currently missed, leading to a biased view of radio SNe Ic. Early optical discovery followed by rapid radio observations would provide a full description of the ejecta velocity distribution and CSM densities around stripped massive star explosions as well as strong clues about the nature of their progenitor stars.

  6. Cross-Cultural Adaptation and Validation of the Serbian Version of the ICS SF Male Questionnaire

    PubMed Central

    Babic, Uros; Santric-Milicevic, Milena; Bjegovic-Mikanovic, Vesna; Argirovic, Aleksandar; Stjepanovic, Mihailo; Lazovic, Dejan; Nale, Djordje; Perovic, Milan; Dugalic, Stefan; Vukotic, Vinka

    2015-01-01

    Introduction. The objective of this study was to cross-culturally adapt and validate ICS male SF questionnaire to Serbian language. Materials and Methods. This study included 91 male patients with lower urinary tract symptoms and 24 men with similar age and with confirmed absence of LUTS. ICS male SF questionnaire was translated from English to Serbian language and then back-translated to English. Results. Internal consistency was high in both dimensions, voiding (Cronbach's alpha = 0.916) and incontinence (Cronbach's alpha = 0.763). Comparison of the average scores between patients and controls revealed significant differences in both dimensions: voiding (med = 8 versus med = 0; P < 0.001) and incontinence (med = 3 versus med = 0; P < 0.001). Interclass correlation revealed high testretest validity in both dimensions, voiding ICC = 0.992 (P < 0.001) and incontinece ICC = 0.989 (P < 0.001). Correlation analysis revealed high agreement between ICS male SF voiding dimension and IPSS questionnaire (ρ = 0.943; P < 0.001). Conclusion. The Serbian version of male ICS SF questionnaire showed acceptable reliability and validity. The ICS male SF questionnaire could be used in routine practice as an easy and comprehensive tool for assessment of LUTS. PMID:25785284

  7. Purification, crystallization and preliminary X-ray analysis of aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum

    SciTech Connect

    Byrnes, Laura J.; Badarau, Adriana; Vakulenko, Sergei B.; Smith, Clyde A.

    2008-02-01

    APH(2′′)-Ic is an enzyme that is responsible for high-level gentamicin resistance in E. gallinarum isolates. Crystals of the wild-type enzyme and three mutants have been prepared and a complete X-ray diffraction data set was collected to 2.15 Å resolution from an F108L crystal. Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2′′)-Ic variants were crystallized in the presence of 14–20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris–HCl pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 Å, β = 108.8°. X-ray diffraction data were collected to approximately 2.15 Å resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.

  8. A spiral-like disk of ionized gas in IC 1459: Signature of a merging collision

    NASA Technical Reports Server (NTRS)

    Goudfrooij, Paul; Norgaard-Nielsen, H. U.; Jorgensen, H. E.; Hansen, L.; Dejong, T.

    1990-01-01

    The authors report the discovery of a large (15 kpc diameter) H alpha + (NII) emission-line disk in the elliptical galaxy IC 1459, showing weak spiral structure. The line flux peaks strongly at the nucleus and is more concentrated than the stellar continuum. The major axis of the disk of ionized gas coincides with that of the stellar body of the galaxy. The mass of the ionized gas is estimated to be approx. 1 times 10 (exp 5) solar mass, less than 1 percent of the total mass of gas present in IC 1459. The total gas mass of 4 times 10(exp 7) solar mass has been estimated from the dust mass derived from a broad-band color index image and the Infrared Astronomy Satellite (IRAS) data. The authors speculate that the presence of dust and gas in IC 1459 is a signature of a merger event.

  9. Properties of Protostars in the Elephant Trunk in the Globule IC 1396A

    NASA Astrophysics Data System (ADS)

    Reach, William T.; Faied, Dohy; Rho, Jeonghee; Boogert, Adwin; Tappe, Achim; Jarrett, Thomas H.; Morris, Patrick; Cambrésy, Laurent; Palla, Francesco; Valdettaro, Riccardo

    2009-01-01

    Extremely red objects, identified in the early Spitzer Space Telescope observations of the bright-rimmed globule IC 1396A and photometrically classified as Class I protostars and Class II T Tauri stars based on their mid-infrared (mid-IR) colors, were spectroscopically observed at 5.5-38 μm (Spitzer Infrared Spectrograph), at the 22 GHz water maser frequency (National Radio Astronomy Observatory Green Bank Telescope), and in the optical (Palomar Hale 5 m) to confirm their nature and further elucidate their properties. The sources photometrically identified as Class I, including IC 1396A:α, γ, δ, epsilon, and ζ, are confirmed as objects dominated by accretion luminosity from dense envelopes, with accretion rates 1-10 × 10-6 M sun yr-1 and present stellar masses 0.1-2 M sun. The Class I sources have extremely red continua, still rising at 38 μm, with a deep silicate absorption at 9-11 μm, weaker silicate absorption around 18 μm, and weak ice features including CO2 at 15.2 μm and H2O at 6 μm. The ice/silicate absorption ratio in the envelope is exceptionally low for the IC 1396A protostars, compared to those in nearby star-forming regions, suggesting that the envelope chemistry is altered by the radiation field or globule pressure. Only one 22 GHz water maser was detected in IC 1396A; it is coincident with a faint mid-IR source, offset from near the luminous Class I protostar IC 1396A:γ. The maser source, IC 1396A:γ b , has luminosity less than 0.1 L sun, the first H2O maser from such a low-luminosity object. Two near-infrared (NIR) H2 knots on opposite sides of IC 1396A:γ reveal a jet, with an axis clearly distinct from the H2O maser of IC 1396A:γ b . The objects photometrically classified as Class II, including IC 1396A:β, θ, Two Micron All Sky Survey (2MASS)J 21364964+5722270, 2MASSJ 21362507+5727502, LkHα 349c, Tr 37 11-2146, and Tr 37 11-2037, are confirmed as stars with warm, luminous disks, with a silicate emission feature at 9-11 μm, and

  10. Dead-time free pixel readout architecture for ATLAS front-end IC

    SciTech Connect

    Einsweiler, K.; Joshi, A.; Kleinfelder, S.; Luo, L.; Marchesini, R.; Milgrome, O.; Pengg, F.

    1999-06-01

    A low-power, sparse-scan, readout architecture has been developed for the ATLAS pixel front-end electronics. The architecture supports a dual discriminator and extracts the time over threshold (TOT) information along with a 2-D spatial address of the hits and associates them with a unique 7-bit beam crossing number. The IC implements level-1 trigger filtering along with event building (grouping together all hits in a beam crossing) in the end of column (EOC) buffer. The events are transmitted over a 40 MHz serial data link with the protocol supporting buffer overflow handling by appending error flags to events. This mixed-mode full custom IC is implemented in 0.8 {micro} HP process to meet the requirements for the pixel readout in the ATLAS inner detector. The circuits have been tested and the IC has been found to provide dead-time-less ambiguity-free readout at 40 MHz data rate.

  11. Cryogen-free lkA-class Ic measurement system featuring an 8 T HTS magnet

    NASA Astrophysics Data System (ADS)

    Strickland, N. M.; Hoffmann, C.; Wimbush, S. C.; Pooke, D. M.; Huang, T.; Lazic, Z.; Chamritski, V.; Talantsev, E. F.; Long, N. J.; Tallon, J. L.

    2014-05-01

    We have developed a cryogen-free critical-current (Ic) measuring system comprising a conduction-cooled 8 T HTS magnet and convection-cooled sample, both cooled by commercial cryocoolers. The sample can be rotated and transport currents of up to 800 A delivered with less than 0.5 K temperature rise during the Ic measurement. The system is automated with respect to variations in temperature (30-90 K), field (0-8 T), and field angle (0-360°). We have used this system to measure HTS wire samples, concentrating on metal-organic deposited YBCO on RABiTS substrates. Particular emphasis is given to the evolution of Ic anisotropy with temperature, and the dangers of extrapolating from 77 K to 30 K.

  12. Men Working on Mock-Up of S-IC Thrust Structure

    NASA Technical Reports Server (NTRS)

    1963-01-01

    This photograph depicts Marshall Space Flight Center employees, James Reagin, machinist (top); Floyd McGinnis, machinist; and Ernest Davis, experimental test mechanic (foreground), working on a mock up of the S-IC thrust structure. The S-IC stage is the first stage, or booster, of the 364-foot long Saturn V rocket that ultimately took astronauts to the Moon. The S-IC stage, burned over 15 tons of propellant per second during its 2.5 minutes of operation to take the vehicle to a height of about 36 miles and to a speed of about 6,000 miles per hour. The stage was 138 feet long and 33 feet in diameter. Operating at maximum power, all five of the engines produced 7,500,000 pounds of thrust.

  13. The morphology and interaction with the interstellar medium of the planetary nebula IC 4593

    NASA Technical Reports Server (NTRS)

    Zucker, Daniel B.; Soker, Noam

    1993-01-01

    We present a morphological study of the planetary nebula IC 4593, based on our observations in H-alpha, forbidden O III, and forbidden S II. From the H-alpha intensity map, we calculate densities and masses for constituent structures and for the nebula as a whole. We argue that the morphology of IC 4593 suggests that it is moving supersonically through the ISM, and that the ISM shock may be thermally unstable, oscillating between adiabatic and radiative (isothermal) shock conditions. Spectroscopic observations are necessary to further explore the nature of the interaction between IC 4593 and the ISM. An improved understanding of such interactions will greatly expand the potential use of planetary nebulae to probe the ISM.

  14. QUALIFICATION OF THE SECOND ICS-3000 ION CHROMATOGRAPH FOR USE AT THE DEFENSE WASTE PROCESSING FACILITY

    SciTech Connect

    Edwards, T.; Mahannah, R.

    2009-12-03

    The ICS-3000 Ion Chromatography (IC) system installed in 221-S M-14 has been qualified for use. The qualification testing was a head to head comparison of the second ICS-3000 with the initial ICS-3000 system that was installed in 221-S M-13. The crosscheck work included standards for instrument calibration and calibration verifications and standards for individual anion analysis, where the standards were traceable back to the National Institute of Standards and Technology (NIST). In addition the crosscheck work included the analysis of simulated Sludge Receipt and Adjustment Tank (SRAT) Receipt, SRAT Product, and Slurry Mix Evaporator (SME) samples, along with radioactive Sludge Batch 5 material from the SRAT and SME tanks. The Defense Waste Processing Facility (DWPF) requires the analysis of specific anions at various stages of its processing of high level waste (HLW). The anions of interest to the DWPF are fluoride, formate, chloride, nitrite, nitrate, sulfate, oxalate, and phosphate. The anion analysis is used to evaluate process chemistry including formic acid/nitric acid additions to establish optimum conditions for mercury stripping, reduction-oxidation (REDOX) chemistry for the melter, nitrite destruction, etc. The DWPF Laboratory (Lab) has recently replaced the Dionex DX-500 ion chromatography (IC) systems that had been used since 1998 by the first of two new ICS-3000 systems. The replacement effort was necessary due to the vendor of the DX-500 systems no longer supporting service contracts after 2008. DWPF purchased three new ICS-3000 systems in September of 2006. The ICS-3000 instruments are (a) designed to be more stable using an eluent generator to make eluent, (b) require virtually no daily chemical handling by the analysts, (c) require less line breaks in the hood, and (d) generally require less maintenance due to the pump configuration only using water versus the current system where the pump uses various hydroxide concentrations. The ICS-3000

  15. Using Healthcare IC Cards to manage the drug doses of chronic disease patients.

    PubMed

    Lai, Jiun-Tze; Hou, Ting-Wei; Yeh, Chiun-Lin; Chao, Chien-Min

    2007-02-01

    In Taiwan's medical system, the Healthcare IC Card is used as form of secure data storage. This research applies the Healthcare IC Card to record the chronic disease patient's recent drug doses, diagnoses and prescriptions. With the Hospital Information System, this research combines the diagnosis records stored in the Healthcare IC Card to establish a platform which could simulate the procedures of a doctor in examining a patient and checking the circumstances of the patient's repetitive drug doses and drugs interactions. The experiment is based on a data log of about 22,000 items of drug prescribed to 43 diabetes patients and about 88,200 items to 192 high blood pressure patients. The results show that the proposed approach would have reduced the waste of medical resources, strengthened Taiwan's medical system and increased the public's health. PMID:16494858

  16. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL

    SciTech Connect

    Inserra, C.; Smartt, S. J.; Jerkstrand, A.; Fraser, M.; Wright, D.; Smith, K.; Chen, T.-W.; Kotak, R.; Nicholl, M.; Valenti, S.; Pastorello, A.; Benetti, S.; Bresolin, F.; Kudritzki, R. P.; Burgett, W. S.; Chambers, K. C.; Flewelling, H.; Botticella, M. T.; Ergon, M.; Fynbo, J. P. U.; and others

    2013-06-20

    We report extensive observational data for five of the lowest redshift Super-Luminous Type Ic Supernovae (SL-SNe Ic) discovered to date, namely, PTF10hgi, SN2011ke, PTF11rks, SN2011kf, and SN2012il. Photometric imaging of the transients at +50 to +230 days after peak combined with host galaxy subtraction reveals a luminous tail phase for four of these SL-SNe. A high-resolution, optical, and near-infrared spectrum from xshooter provides detection of a broad He I {lambda}10830 emission line in the spectrum (+50 days) of SN2012il, revealing that at least some SL-SNe Ic are not completely helium-free. At first sight, the tail luminosity decline rates that we measure are consistent with the radioactive decay of {sup 56}Co, and would require 1-4 M{sub Sun} of {sup 56}Ni to produce the luminosity. These {sup 56}Ni masses cannot be made consistent with the short diffusion times at peak, and indeed are insufficient to power the peak luminosity. We instead favor energy deposition by newborn magnetars as the power source for these objects. A semi-analytical diffusion model with energy input from the spin-down of a magnetar reproduces the extensive light curve data well. The model predictions of ejecta velocities and temperatures which are required are in reasonable agreement with those determined from our observations. We derive magnetar energies of 0.4 {approx}< E(10{sup 51} erg) {approx}< 6.9 and ejecta masses of 2.3 {approx}< M{sub ej}(M{sub Sun }) {approx}< 8.6. The sample of five SL-SNe Ic presented here, combined with SN 2010gx-the best sampled SL-SNe Ic so far-points toward an explosion driven by a magnetar as a viable explanation for all SL-SNe Ic.

  17. Insights Gained for Updating an Analog I&C System to a Digital System

    SciTech Connect

    Adams, A.; Carte, N.; Hardesty, Duane; Hardin, LeRoy A; Wilson, Thomas L

    2012-01-01

    Licensees at both Nuclear Power Plants (NPPs) and Non-Power Reactors (NPRs) are increasing their use of state-of-the-art digital technology in instrumentation and control (I&C) systems because digital systems offer improved reactor control, information processing, and information storage over analog. Digital I&C systems can range from experimental systems for reactor control research (at NPRs), to measurement and display systems, to complete reactor console replacements. Because of the increasing difficulty in finding spare parts for their original analog I&C systems, many licensees have begun or have plans to upgrade, refurbish, or replace their old analog I&C systems with digital systems. The perception is that upgrading to a digital I&C system will solve all of a facility s obsolescence problems. However, licensees need to be aware of several issues associated with upgrading to a digital system including obsolescence of the digital system (hardware and software) because of the short product life cycle and the associated cost to acquire, store, and maintain a long-term supply of spare parts. Configuration management and cyber security are also vitally important for any upgrade. Further, it must be recognized that the introduction of software and microprocessors could create new failure mechanisms, such as software errors and increased susceptibility to electromagnetic interference. In fact, experience has shown that these failure mechanisms may cause the reactor to malfunction in a way not previously considered. Thus, a conversion from analog to digital I&C systems solves some problems while potentially introducing others. Recognition of the additional risks coupled with good design, engineering, review, and testing can identify and minimize these risks.

  18. DIONEX ICS3000 ION CHROMATOGRAPHY SYSTEM INSTALLATION AND INSTRUMENT ASSESSMENT FOR SRNL APPLICATIONS

    SciTech Connect

    Wiedenman, B.; White, T.

    2009-11-16

    Ion Chromatography (IC) is routinely used at the Savannah River National Laboratory (SRNL) for sample analysis and characterization. Results from IC analysis are valued in corrosion control maintenance and measurement programs, remediation waste process control, soil and ground water measurement, nuclear materials processing, and various other research and development programs. Presented in this report are analytical methods developed on a DIONEX ICS3000 Reagent Free Ion Chromatography (RFIC) system located in AD at SRNL. This IC system contains two independent analysis channels comprising of a mobile phase generator, a pump, stationary phase columns, a suppressor and a conductivity detector. One channel is dedicated to anion analysis using Potassium Hydroxide (KOH) as the mobile phase while a second channel is configured for cation analysis using Methanesulfonic Acid (MSA) as the mobile phase. Both channels share an autosampler and the peak analysis software, Chromeleon{reg_sign} v.6.8. Instrument configuration is modified from the manufacturer for radiological service. Listed within this report are Dionex ICS3000 parameters and results for the analysis of routine anions and cations. Additional method parameters and discussion are presented on the analysis of Acetate (CH{sub 3}COO{sup -}) and Iodate (IO{sub 3}{sup -}). Previous IC analysis instruments at AD have been based upon carbonate/bicarbonate buffer mobile phase chemistry. This report represents a transition to hydroxide as a mobile phase eluent. The hydroxide eluent offers a lower baseline conductivity, which allows for greater sample dilution and/or lower detection limits. Also the hydroxide mobile phase and column set has a significant separation of the phosphate peak from the nitrate and sulfate peaks vs. the carbonate/bicarbonate mobile phase and column set, an advantage for the industrial waste analyzed at SRNL.

  19. Rotational Velocities and Chromospheric/Coronal Activity of Low-Mass Stars in the Young Open Clusters IC 2391 and IC 2602

    NASA Astrophysics Data System (ADS)

    Stauffer, John R.; Hartmann, Lee W.; Prosser, Charles F.; Randich, Sofia; Balachandran, Suchitra; Patten, Brian M.; Simon, Theodore; Giampapa, Mark

    1997-04-01

    We have obtained high-resolution, moderate signal-to-noise ratio spectra for approximately 80 candidate low-mass members of the nearby, very young open clusters IC 2391 and IC 2602. Most of the stars observed are confirmed as cluster members based on a combination of photometric and spectroscopic criteria. We provide radial velocities, rotational velocities, and Hα equivalent widths for these stars. From comparison to theoretical pre-main-sequence (PMS) evolutionary isochrones from D'Antona and Mazzitelli, we derive an estimated age of the two clusters of ~25 Myr. By contrast, the usually quoted upper main-sequence turnoff age for the clusters is ~35 Myr. We do not believe that this provides evidence for noncoeval star formation within these clusters, but rather that the best age estimate for them given the uncertainties is ~30 +/- 5 Myr. In principle, the scatter of stars about the PMS isochrone provides a measure of the age spread among the low-mass stars in these clusters; however, with the data presently available, we are able to derive only a relatively uninteresting upper limit for an age spread of order 20 Myr. We compare the rotational velocity distribution for IC 2391/2602 to that observed for the Pleiades. For the G dwarfs in the IC clusters, we resolve rotation in all but one of the probable cluster members, and thus except for inclination effects, our data provide the complete distribution of rotational velocities for solar mass stars on their arrival on the ZAMS. The projected rotational velocities (v sin i) of the G dwarfs in the two IC clusters span the range from ~8 to ~200 km s-1. Comparison of the distribution of rotational velocities for the G dwarfs of the Pleiades and the IC clusters indicates that both the slow and the rapid rotators lose of order half their angular momentum during the first ~35 Myr on the main sequence if they rotate as solid bodies. The low-mass stars in these two clusters exhibit a similar correlation between rotation and

  20. On the hydrogen emission from the type Ia supernova 2002ic

    SciTech Connect

    Wang, Lifan; Baade, Dietrich; Hoflich, Peter; Wheeler, J. Craig; Kawabata, Koji; Nomoto, Ken'ichi

    2003-12-10

    The discovery of SN 2002ic by the Supernova Factory and the subsequent spectroscopic studies have led to the surprising finding that SN 2002ic is a type Ia supernova with strong ejecta-circumstellar interaction. Here we show that nearly 1 year after the explosion the supernova has become fainter overall, but the H-alpha emission has brightened and broadened dramatically compared to earlier observations. We have obtained spectropolarimetry data which show that the hydrogen-rich matter is highly aspherically distributed. These observations suggest that the supernova exploded inside a dense, clumpy, disk-like circumstellar environment.

  1. Construction Progress of the S-IC Test Stand Complex Bunker House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC stand, additional related facilities were built during this time frame. Built to the east of the S-IC stand, the block house served as the control room. To the south of the blockhouse was a newly constructed pump house used for delivering water to the S-IC stand during testing. North of the massive test stand, the F-1 Engine test stand was built for testing a single F-1 engine. Just southeast of the S-IC stand a concrete bunker house was constructed. The bunker housed

  2. MAGIC detection of renewed activity from the radio galaxy IC 310

    NASA Astrophysics Data System (ADS)

    Cortina, Juan

    2012-11-01

    The MAGIC telescopes have observed a high VHE (E>~100 GeV) gamma-ray flux from the galaxy IC 310. The object (RA: 03h 16m 43.0s, Dec: +41d 19m 29s, J2000) is a TeV radio-loud galaxy located in the Perseus Cluster of galaxies at redshift 0.0189 (Falco et al. 1999). Although formerly considered to be an archetypical head-tail galaxy, recent radio-interferometric observations have shown that IC 310 hosts a blazar-type central engine (Kadler et al....

  3. Fuel Tank Assembly for the Saturn V S-IC Stage

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The fuel tank assembly of the Saturn V S-IC (first) stage supported with the aid of a C frame on the transporter was readied to be transported to the Marshall Space Flight Center, building 4705. The fuel tank carried kerosene (RP-1) as its fuel. The S-IC stage utilized five F-1 engines that used kerosene and liquid oxygen as propellant and each engine provided 1,500,000 pounds of thrust. This stage lifted the entire vehicle and Apollo spacecraft from the launch pad.

  4. Reliability and validity of a new scale on internal coherence (ICS) of cancer patients

    PubMed Central

    Kröz, Matthias; Büssing, Arndt; von Laue, Hans Broder; Reif, Marcus; Feder, Gene; Schad, Friedemann; Girke, Matthias; Matthes, Harald

    2009-01-01

    Background Current inventories on quality of life used in oncology mainly focus on functional aspects of patients in the context of disease adaption and treatments (side) effects (EORTC QLQ C30) or generically the status of common functions (Medical Outcome Study SF 36). Beyond circumscribed dimensions of quality of life (i.e., physical, emotional, social, cognitive etc.), there is a lack of inventories which also address other relevant dimensions such as the 'sense of coherence' (SOC) in cancer patients. SOC is important because of its potential prognostic relevance in cancer patients, but the current SOC scale has mainly been validated for psychiatric and psychosomatic patients. Our two-step validation study addresses the internal coherence (ICS) scale, which is based on expert rating, using specific items for oncological patients, with respect to its reliability, validity and sensitivity to chemotherapy. Methods The items were tested on 114 participants (57 cancer patients and a matched control group), alongside questions on autonomic regulation (aR), the Hospital Anxiety and Depression Scale (HADS), self-regulation (SRQ) and Karnofsky the Performance-Index (KPI). A retest of 65 participants was carried out after a median time span of four weeks. In the second part of the study, the ICS was used to assess internal coherence during chemotherapy in 25 patients with colorectal carcinoma (CRC) and 17 breast cancer patients. ICS was recorded before, during and 4 – 8 weeks after treatment. Results The 10-item scale of 'internal coherence' (ICS) shows good to very good reliability: Cronbach-α r = 0.91, retest-reliability r = 0.80. The ICS correlates with r = 0.43 – 0.72 to the convergence criteria (all p < 0.001). We are able to show decreased ICS-values after the third cycle for CRC and breast cancer patients, with a subsequent increase of ICS scores after the end of chemotherapy. Conclusion The ICS has good to very good reliability, validity and sensitivity to

  5. The MagIC Online Database: Improving the Archive Quality via a New Review System

    NASA Astrophysics Data System (ADS)

    Constable, C.; Minnett, R.; Koppers, A. A.; Tauxe, L.; Jarboe, N. A.

    2011-12-01

    The Magnetics Information Consortium (MagIC) is committed to providing the paleomagnetic, rock magnetic, and affiliated scientific communities on-line access to peer-reviewed, published, and raw data, and interpretations, along with online analytics and visualization tools. The MagIC Database (http://earthref.org/MAGIC/) is growing rapidly with new rock and paleomagnetic datasets being uploaded daily. Users can upload contributions for private viewing in the context of published data in the MagIC Database and can elect to share an unpublished dataset with a small group of users (e.g. collaborators, journal reviewers, editors, etc.). Once the data are published, the contribution can be associated with a citable reference and made visible to the general public. Rock and paleomagnetic studies vary considerably in complexity and types of results. To accommodate these variable datasets, the MagIC Data Model has evolved into a large collection of tables with hundreds of fields available. Many of these are recommended for use, but not required, providing great flexibility to accommodate minimal information available from legacy datasets at the same time as detailed modern studies. These published and contributed results are priceless to the scientific community, but are not easily accessible for further use without appropriate metadata describing the methods employed in the study. MagIC has developed an internal review system to rapidly assess the accuracy and completeness of the metadata used and to ensure appropriate placement and descriptions of data in the contributions. Experts in the field have volunteered as MagIC editors and reviewers: they comment on the technicalities of archiving the data, (not their scientific merit which remains a task for the journal peer-review system), and provide feedback to the contributor. Successfully reviewed contributions are free of data entry errors and misunderstandings about the data model, and fully document the methods in the

  6. Illuminating the Depths of the MagIC (Magnetics Information Consortium) Database

    NASA Astrophysics Data System (ADS)

    Koppers, A. A. P.; Minnett, R.; Jarboe, N.; Jonestrask, L.; Tauxe, L.; Constable, C.

    2015-12-01

    The Magnetics Information Consortium (http://earthref.org/MagIC/) is a grass-roots cyberinfrastructure effort envisioned by the paleo-, geo-, and rock magnetic scientific community. Its mission is to archive their wealth of peer-reviewed raw data and interpretations from magnetics studies on natural and synthetic samples. Many of these valuable data are legacy datasets that were never published in their entirety, some resided in other databases that are no longer maintained, and others were never digitized from the field notebooks and lab work. Due to the volume of data collected, most studies, modern and legacy, only publish the interpreted results and, occasionally, a subset of the raw data. MagIC is making an extraordinary effort to archive these data in a single data model, including the raw instrument measurements if possible. This facilitates the reproducibility of the interpretations, the re-interpretation of the raw data as the community introduces new techniques, and the compilation of heterogeneous datasets that are otherwise distributed across multiple formats and physical locations. MagIC has developed tools to assist the scientific community in many stages of their workflow. Contributors easily share studies (in a private mode if so desired) in the MagIC Database with colleagues and reviewers prior to publication, publish the data online after the study is peer reviewed, and visualize their data in the context of the rest of the contributions to the MagIC Database. From organizing their data in the MagIC Data Model with an online editable spreadsheet, to validating the integrity of the dataset with automated plots and statistics, MagIC is continually lowering the barriers to transforming dark data into transparent and reproducible datasets. Additionally, this web application generalizes to other databases in MagIC's umbrella website (EarthRef.org) so that the Geochemical Earth Reference Model (http://earthref.org/GERM/) portal, Seamount Biogeosciences

  7. Determining the size and concentration dependence of gold nanoparticles in vitro cytotoxicity (IC50) test using WST-1 assay

    NASA Astrophysics Data System (ADS)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul; Shamsuddin, Shaharum

    2015-04-01

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this work the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC50 values in WST-1 assays. The IC50 values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.

  8. Intact cell/intact spore mass spectrometry (IC/ISMS) on polymer-based, nano-coated disposable targets.

    PubMed

    Bugovsky, Stefan; Winkler, Wolfgang; Balika, Werner; Koranda, Manfred; Allmaier, Günter

    2014-01-01

    Identification and differentiation of microorganisms has and still is a long arduous task, involving culturing of the organism in question on different growth media. This procedure, which is still commonly applied, is an established method, but takes a lot of time, up to several days or even longer. It has thus been a great achievement when other analytical tools like matrix-assisted laser desorption/ionization (MALDI) mass spectrometry were introduced for faster analysis based on the surface protein pattern. Differentiation and identification of human pathogens as well as plant/animal pathogens is of increasing importance in medical care (e.g. infection, sepsis, and antibiotics resistance), biotechnology, food sciences and detection of biological warfare agents. A distinction between microorganisms on the species and strain level was made by comparing peptide/protein profiles to patterns already stored in databases. These profiles and patterns were obtained from the surface of vegetative forms of microorganisms or even their spores by MALDI MS. Thus, an unknown sample can be compared against a database of known pathogens or microorganisms of interest. To benefit from newly available, metal-based disposable microscope-slide format MALDI targets that promise a clean and even surface at a fraction of the cost from full metal targets or MTP (microtiter plate) format targets, IC/ISMS analysis was performed on these and the data evaluated. Various types of bacteria as well as fungal spores were identified unambiguously on this disposable new type of metal nano-coated targets. The method even allowed differentiation between strains of the same species. The results were compared with those gained from using full metal standard targets and found to be equal or even better in several aspects, making the use of disposable MALDI targets a viable option for use in IC/ISMS, especially e.g. for large sample throughput and highly pathogenic species. PMID:24225366

  9. The Evolution of Stellar Coronae: Initial Results from a ROSAT PSPC Observation of IC 2391

    NASA Technical Reports Server (NTRS)

    Patten, Brian M.; Simon, Theodore

    1993-01-01

    A 23 ks ROSAT PSPC image of the young star cluster, IC 2391, reveals 76 soft x-ray sources with L(sub x)(0.2-2.0 keV) greater than or equal to 2 x 10(exp 28) ergs/s in the direction of the cluster center. Nineteen of these sources are associated with known cluster members. We find that x-ray emission from the IC 2391 B stars deviates widely from the L(sub x)/L(sub bol) = 10(exp -7) relation based on Einstein observations of O and early B stars. Instead, we observe a wide range in L(sub x) with an order of magnitude spread at any given mass and no apparent dependence on spectral type. A comparison of the spread of L(sub x) as a function of B-V for low-mass stars between IC 2391 and the much older Hyades cluster shows that despite the factor of approx. 10 difference in their ages, these two clusters exhibit very similar dispersions in levels of stellar activity. We conclude that the low-mass stars in IC 2391 have arrived on the ZAMS with a wide range of coronal activity levels, from very strong to very weak, and that existing empirical activity-age scaling laws therefore cannot be valid.

  10. Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE.

    PubMed

    Flynn, Ryan A; Zhang, Qiangfeng Cliff; Spitale, Robert C; Lee, Byron; Mumbach, Maxwell R; Chang, Howard Y

    2016-02-01

    icSHAPE (in vivo click selective 2-hydroxyl acylation and profiling experiment) captures RNA secondary structure at a transcriptome-wide level by measuring nucleotide flexibility at base resolution. Living cells are treated with the icSHAPE chemical NAI-N3 followed by selective chemical enrichment of NAI-N3-modified RNA, which provides an improved signal-to-noise ratio compared with similar methods leveraging deep sequencing. Purified RNA is then reverse-transcribed to produce cDNA, with SHAPE-modified bases leading to truncated cDNA. After deep sequencing of cDNA, computational analysis yields flexibility scores for every base across the starting RNA population. The entire experimental procedure can be completed in ∼5 d, and the sequencing and bioinformatics data analysis take an additional 4-5 d with no extensive computational skills required. Comparing in vivo and in vitro icSHAPE measurements can reveal in vivo RNA-binding protein imprints or facilitate the dissection of RNA post-transcriptional modifications. icSHAPE reactivities can additionally be used to constrain and improve RNA secondary structure prediction models. PMID:26766114

  11. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Advance face boreholes (I-C mines). 57.22241 Section 57.22241 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and...

  12. ASASSN-16jw: Discovery of A Probable Supernova in IC 1780

    NASA Astrophysics Data System (ADS)

    Brimacombe, J.; Brown, J. S.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Shields, J.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Bose, S.; Chen, Ping; Bock, G.; Cruz, I.; Kiyota, S.; Marples, P.; Masi, G.; Nicholls, B.; Post, R. S.; Stone, G.

    2016-09-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy IC 1780.

  13. ASASSN-16fj: Discovery of A Probable Supernova in IC 1289

    NASA Astrophysics Data System (ADS)

    Cruz, I.; Brimacombe, J.; Brown, J. S.; Stanek, K. Z.; Holoien, T. W.-S.; Kochanek, C. S.; Godoy-Rivera, D.; Basu, U.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Chen, Ping; Kiyota, S.; Koff, R. A.; Monard, L. A. G.

    2016-05-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the quadruple 14-cm "Brutus" telescope in Haleakala, Hawaii, we discovered a new transient source, most likely a supernova, in the galaxy IC 1289.

  14. A low-offset analogue front-end IC for multi-channel physiological signal acquisition.

    PubMed

    Zhang, Jinyong; Wang, Lei; Yu, Li; Yang, Yabei; Zhang, Yuanting; Li, Bin

    2009-01-01

    This paper describes a low-offset analogue front-end (AFE) integrated circuit (IC) for multi-channel physiological signal acquisitions. The mixed signal IC consists of low-offset gain programmable instrumentation amplifiers (GPIAs), high sensitive current-to-voltage converters (I-V converters), reference and an 8-bit analogue-to-digital converter (ADC). The IC offered adjustable gains that were elaborated for various physiological signal acquisitions. The conditional signals were quantized by ADC that offered an optimal solution for portable applications. The circuit was fabricated in SMIC 0.18-mum mixed-signal CMOS technology, and core area of the whole IC measured 1.36 mm(2). The post-annotated simulations suggested that the system achieved a common-mode-rejection-ration (CMRR) of 142 dB, the adjustable gain from 31.6 dB to 76.5 dB, and the offset voltage less than 80 microV. The 8-bit ADC exhibited less than 0.8 LSB DNL and 1.1 LSB INL. Power dissipation of each channel and the ADC were approximately 348 microW and 1.65 mW under a 1.8 V single supply voltage, respectively. It is suitable for a wide range of high precision biomedical applications. PMID:19964636

  15. ON THE ANCESTRY OF THE ICS CLONES OF TRINIDAD AND TOBAGO

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Theobroma cacao L. or cacao is a tropical fruit tree species cultivated as the source of cocoa butter and powder for the confectionery and cosmetic industries. The ICS (Imperial College Selections) are cacao clones of Trinidad and Tobago that were selected by F.J. Pound from 1933 to 1935 from farms ...

  16. The next generation in optical transport semiconductors: IC solutions at the system level

    NASA Astrophysics Data System (ADS)

    Gomatam, Badri N.

    2005-02-01

    In this tutorial overview, we survey some of the challenging problems facing Optical Transport and their solutions using new semiconductor-based technologies. Advances in 0.13um CMOS, SiGe/HBT and InP/HBT IC process technologies and mixed-signal design strategies are the fundamental breakthroughs that have made these solutions possible. In combination with innovative packaging and transponder/transceiver architectures IC approaches have clearly demonstrated enhanced optical link budgets with simultaneously lower (perhaps the lowest to date) cost and manufacturability tradeoffs. This paper will describe: *Electronic Dispersion Compensation broadly viewed as the overcoming of dispersion based limits to OC-192 links and extending link budgets, *Error Control/Coding also known as Forward Error Correction (FEC), *Adaptive Receivers for signal quality monitoring for real-time estimation of Q/OSNR, eye-pattern, signal BER and related temporal statistics (such as jitter). We will discuss the theoretical underpinnings of these receiver and transmitter architectures, provide examples of system performance and conclude with general market trends. These Physical layer IC solutions represent a fundamental new toolbox of options for equipment designers in addressing systems level problems. With unmatched cost and yield/performance tradeoffs, it is expected that IC approaches will provide significant flexibility in turn, for carriers and service providers who must ultimately manage the network and assure acceptable quality of service under stringent cost constraints.

  17. ASAS-SN Discovery of A Probable Bright Supernova in IC 4303

    NASA Astrophysics Data System (ADS)

    Kiyota, S.; Brimacombe, J.; Holoien, T. W.-S.; Stanek, K. Z.; Kochanek, C. S.; Brown, J. S.; Danilet, A. B.; Simonian, G.; Basu, U.; Beacom, J. F.; Thompson, T. A.; Shappee, B. J.; Prieto, J. L.; Bersier, D.; Dong, Subo; Falco, E.; Wozniak, P. R.; Szczygiel, D.; Pojmanski, G.; Conseil, E.; Masi, G.; Nicholls, B.; Nicolas, J.; Polsgrove, D. E.; Della-Rose, D. J.; Novotny, S. J.

    2015-06-01

    During the ongoing All Sky Automated Survey for SuperNovae (ASAS-SN or "Assassin"), using data from the double 14-cm "Cassius" telescope in Cerro Tololo, Chile, we discovered a new bright transient source, most likely a supernova, in the galaxy IC 4303.

  18. On the Spin of the Black Hole in IC 10 X-1

    NASA Astrophysics Data System (ADS)

    Steiner, James F.; Walton, Dominic J.; García, Javier A.; McClintock, Jeffrey E.; Laycock, Silas G. T.; Middleton, Matthew J.; Barnard, Robin; Madsen, Kristin K.

    2016-02-01

    The compact X-ray source in the eclipsing X-ray binary IC 10 X-1 has reigned for years as ostensibly the most massive stellar-mass black hole, with a mass estimated to be about twice that of its closest rival. However, striking results presented recently by Laycock et al. reveal that the mass estimate, based on emission-line velocities, is unreliable and that the mass of the X-ray source is essentially unconstrained. Using Chandra and NuSTAR data, we rule against a neutron-star model and conclude that IC 10 X-1 contains a black hole. The eclipse duration of IC 10 X-1 is shorter and its depth shallower at higher energies, an effect consistent with the X-ray emission being obscured during eclipse by a Compton-thick core of a dense wind. The spectrum is strongly disk-dominated, which allows us to constrain the spin of the black hole via X-ray continuum fitting. Three other wind-fed black hole systems are known; the masses and spins of their black holes are high: M˜ 10{--}15{M}⊙ and {a}*\\gt 0.8. If the mass of IC 10 X-1's black hole is comparable, then its spin is likewise high.

  19. Transcriptome-wide interrogation of RNA secondary structure in living cells with icSHAPE

    PubMed Central

    Flynn, Ryan A; Zhang, Qiangfeng Cliff; Spitale, Robert C; Lee, Byron; Mumbach, Maxwell R; Chang, Howard Y

    2016-01-01

    icSHAPE (in vivo click selective 2-hydroxyl acylation and profiling experiment) captures RNA secondary structure at a transcriptome-wide level by measuring nucleotide flexibility at base resolution. Living cells are treated with the icSHAPE chemical NAI-N3 followed by selective chemical enrichment of NAI-N3–modified RNA, which provides an improved signal-to-noise ratio compared with similar methods leveraging deep sequencing. Purified RNA is then reverse-transcribed to produce cDNA, with SHAPE-modified bases leading to truncated cDNA. After deep sequencing of cDNA, computational analysis yields flexibility scores for every base across the starting RNA population. The entire experimental procedure can be completed in ~5 d, and the sequencing and bioinformatics data analysis take an additional 4–5 d with no extensive computational skills required. Comparing in vivo and in vitro icSHAPE measurements can reveal in vivo RNA-binding protein imprints or facilitate the dissection of RNA post-transcriptional modifications. icSHAPE reactivities can additionally be used to constrain and improve RNA secondary structure prediction models. PMID:26766114

  20. Neuron-synapse IC chip-set for large-scale chaotic neural networks.

    PubMed

    Horio, Y; Aihara, K; Yamamoto, O

    2003-01-01

    We propose a neuron-synapse integrated circuit (IC) chip-set for large-scale chaotic neural networks. We use switched-capacitor (SC) circuit techniques to implement a three-internal-state transiently-chaotic neural network model. The SC chaotic neuron chip faithfully reproduces complex chaotic dynamics in real numbers through continuous state variables of the analog circuitry. We can digitally control most of the model parameters by means of programmable capacitive arrays embedded in the SC chaotic neuron chip. Since the output of the neuron is transfered into a digital pulse according to the all-or-nothing property of an axon, we design a synapse chip with digital circuits. We propose a memory-based synapse circuit architecture to achieve a rapid calculation of a vast number of weighted summations. Both of the SC neuron and the digital synapse circuits have been fabricated as IC forms. We have tested these IC chips extensively, and confirmed the functions and performance of the chip-set. The proposed neuron-synapse IC chip-set makes it possible to construct a scalable and reconfigurable large-scale chaotic neural network with 10000 neurons and 10000/sup 2/ synaptic connections. PMID:18244585

  1. Advanced digital I&C systems in nuclear power plants: Risk- sensitivities to environmental stressors

    SciTech Connect

    Hassan, M.; Vesely, W.E.

    1996-06-01

    Microprocessor-based advanced digital systems are being used for upgrading analog instrumentation and control (I&C) systems in nuclear power plants (NPPs) in the United States. A concern with using such advanced systems for safety-related applications in NPPs is the limited experience with this equipment in these environments. In this study, we investigate the risk effects of environmental stressors by quantifying the plant`s risk-sensitivities to them. The risk- sensitivities are changes in plant risk caused by the stressors, and are quantified by estimating their effects on I&C failure occurrences and the consequent increase in risk in terms of core damage frequency (CDF). We used available data, including military and NPP operating experience, on the effects of environmental stressors on the reliability of digital I&C equipment. The methods developed are applied to determine and compare risk-sensitivities to temperature, humidity, vibration, EMI (electromagnetic interference) from lightning and smoke as stressors in an example plant using a PRA (Probabilistic Risk Assessment). Uncertainties in the estimates of the stressor effects on the equipment`s reliability are expressed in terms of ranges for risk-sensitivities. The results show that environmental stressors potentially can cause a significant increase in I&C contributions to the CDF. Further, considerable variations can be expected in some stressor effects, depending on where the equipment is located.

  2. In-Cylinder IC Engine Velocity Measurements using Stereoscopic Molecular Tagging Velocimetry

    NASA Astrophysics Data System (ADS)

    Sadr, Reza; Mittal, Mayank; Schock, Harold

    2008-11-01

    In-Cylinder velocity field measurement is of great importance for research aimed at improvement in fuel efficiency and reduction of emissions in internal combustion (IC) engines. Application of more conventional fluid velocimetry techniques for IC measurements is, however, limited due to complex flow condition and mechanical set up in IC engines. Stereoscopic Molecular Tagging Velocimetry (SMTV) technique is used to obtain the multiple point measurement of an instantaneous three dimensional velocity field in an IC engine assembly. A novel image processing technique is implemented to obtain the velocity data. The new algorithm is computationally less expensive and eliminates the need for geometric details in earlier techniques to obtain the three-dimensional velocity components. Cycle-to-cycle variations of three dimensional velocity field and out-of-plane vorticity are presented inside the engine cylinder for three different crank angle degrees (CAD) of 90^o, 180^o, and 270^o. Preliminary results show high cycle-to-cycle variations in the out-of-plane velocity component but less variation is observed in the velocity component along the cylinder axis. The flow has fully three-dimensional unsteady behavior during the intake stroke; however the variations are less during the compression stroke.

  3. The red extended structure of IC 10, the nearest blue compact galaxy

    NASA Astrophysics Data System (ADS)

    Gerbrandt, Stephanie A. N.; McConnachie, Alan W.; Irwin, Mike

    2015-11-01

    The Local Group starburst galaxy IC 10 is the closest example of a blue compact galaxy. Here, we use optical gi imaging from Canada-France-Hawaii Telescope/MegaCam and near infrared JHK imaging from United Kingdom Infrared Telescope/Wide Field Camera to conduct a comprehensive survey of the structure of IC 10. We examine the spatial distribution of its resolved young, intermediate and old stellar populations to large radius and low effective surface brightness levels. Akin to other dwarfs with multiple populations of different ages, stellar populations of decreasing average age are increasingly concentrated in this galaxy. We find that the young, starbursting population and the asymptotic giant branch population are both offset from the geometric centre of the older red giant branch (RGB) population by a few hundred parsecs, implying that the younger star formation occurred significantly away from the centre of the galaxy. The RGB population traces an extended structure that is typical of blue compact galaxies, with an effective radius of ˜5.75 arcmin (˜1.25 kpc). These measurements show that IC 10 is much more extended than has previously been realized, and this blue compact galaxy is one of the most extended dwarf galaxies in the Local Group. The outermost isophotes of this galaxy are very regular in shape and essentially circular in morphology. Based on this analysis, we do not find any evidence to suggest that IC 10 has undergone a recent, significant, interaction with an unknown companion.

  4. AN/AIC-22(V) Intercommunications Set (ICS) fiber optic link engineering analysis report

    NASA Astrophysics Data System (ADS)

    Minter, Richard; Blocksom, Roland; Ling, Christopher

    1990-08-01

    Electromagnetic interference (EMI) problems constitute a serious threat to operational Navy aircraft systems. The application of fiber optic technology is a potential solution to these problems. EMI reported problems in the P-3 patrol aircraft AN/AIC-22(V) Intercommunications System (ICS) were selected from an EMI problem database for investigation and possible application of fiber optic technology. A proof-of-concept experiment was performed to demonstrate the level of EMI immunity of fiber optics when used in an ICS. A full duplex single channel fiber optic audio link was designed and assembled from modified government furnished equipment (GFE) previously used in another Navy fiber optic application. The link was taken to the Naval Air Test Center (NATC) Patuxent River, Maryland and temporarily installed in a Naval Research Laboratory (NRL) P-3A aircraft for a side-by-side comparison test with the installed ICS. With regards to noise reduction, the fiber optic link provided a qualitative improvement over the conventional ICS. In an effort to obtain a quantitative measure of comparison, audio frequency range both with and without operation of the aircraft VHF and UHF radio transmitters.

  5. A Study of Effectiveness of Computer Assisted Instruction (CAI) over Classroom Lecture (CRL) at ICS Level

    ERIC Educational Resources Information Center

    Kaousar, Tayyeba; Choudhry, Bushra Naoreen; Gujjar, Aijaz Ahmed

    2008-01-01

    This study was aimed to evaluate the effectiveness of CAI vs. classroom lecture for computer science at ICS level. The objectives were to compare the learning effects of two groups with classroom lecture and computer-assisted instruction studying the same curriculum and the effects of CAI and CRL in terms of cognitive development. Hypotheses of…

  6. Using Tablet PCs and Interactive Software in IC Design Courses to Improve Learning

    ERIC Educational Resources Information Center

    Simoni, M.

    2011-01-01

    This paper describes an initial study of using tablet PCs and interactive course software in integrated circuit (IC) design courses. A rapidly growing community is demonstrating how this technology can improve learning and retention of material by facilitating interaction between faculty and students via cognitive exercises during lectures. While…

  7. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Open flames (I-C mines). 57.22104 Section 57.22104 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  8. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Open flames (I-C mines). 57.22104 Section 57.22104 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  9. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Open flames (I-C mines). 57.22104 Section 57.22104 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  10. 30 CFR 57.22106 - Dust containing volatile matter (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Dust containing volatile matter (I-C mines). 57.22106 Section 57.22106 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND...

  11. 30 CFR 57.22310 - Electrical cables (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electrical cables (I-C mines). 57.22310 Section 57.22310 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  12. 30 CFR 57.22210 - In-line filters (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false In-line filters (I-C mines). 57.22210 Section 57.22210 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  13. 30 CFR 57.22225 - Auxiliary equipment stations (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Auxiliary equipment stations (I-C mines). 57.22225 Section 57.22225 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND...

  14. 30 CFR 57.22209 - Auxiliary fans (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...). Electric auxiliary fans shall be approved by MSHA under the applicable requirements of 30 CFR part 18... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Auxiliary fans (I-C mines). 57.22209 Section 57.22209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND...

  15. 30 CFR 57.22106 - Dust containing volatile matter (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Dust containing volatile matter (I-C mines). 57.22106 Section 57.22106 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND...

  16. 30 CFR 57.22203 - Main fan operation (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Main fan operation (I-C mines). 57.22203 Section 57.22203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  17. 30 CFR 57.22303 - Approved equipment (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... electrical equipment that is approved by MSHA under the applicable requirements of 30 CFR parts 18 through 28 or approved under 30 CFR part 29 contained in the 30 CFR, parts 1-199, edition, revised as of July 1... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Approved equipment (I-C mines)....

  18. 30 CFR 57.22303 - Approved equipment (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... electrical equipment that is approved by MSHA under the applicable requirements of 30 CFR parts 18 through 28 or approved under 30 CFR part 29 contained in the 30 CFR, parts 1-199, edition, revised as of July 1... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Approved equipment (I-C mines)....

  19. 30 CFR 57.22209 - Auxiliary fans (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...). Electric auxiliary fans shall be approved by MSHA under the applicable requirements of 30 CFR part 18... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Auxiliary fans (I-C mines). 57.22209 Section 57.22209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND...

  20. 30 CFR 57.22310 - Electrical cables (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electrical cables (I-C mines). 57.22310 Section 57.22310 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  1. 30 CFR 57.22310 - Electrical cables (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electrical cables (I-C mines). 57.22310 Section 57.22310 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  2. 30 CFR 57.22209 - Auxiliary fans (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...). Electric auxiliary fans shall be approved by MSHA under the applicable requirements of 30 CFR part 18... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Auxiliary fans (I-C mines). 57.22209 Section 57.22209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND...

  3. 30 CFR 57.22310 - Electrical cables (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electrical cables (I-C mines). 57.22310 Section 57.22310 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  4. 30 CFR 57.22310 - Electrical cables (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electrical cables (I-C mines). 57.22310 Section 57.22310 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  5. 30 CFR 57.22303 - Approved equipment (I-C mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... electrical equipment that is approved by MSHA under the applicable requirements of 30 CFR parts 18 through 28 or approved under 30 CFR part 29 contained in the 30 CFR, parts 1-199, edition, revised as of July 1... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved equipment (I-C mines)....

  6. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Open flames (I-C mines). 57.22104 Section 57.22104 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  7. 30 CFR 57.22203 - Main fan operation (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Main fan operation (I-C mines). 57.22203 Section 57.22203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  8. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Advance face boreholes (I-C mines). 57.22241 Section 57.22241 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  9. 30 CFR 57.22209 - Auxiliary fans (I-C mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...). Electric auxiliary fans shall be approved by MSHA under the applicable requirements of 30 CFR part 18... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Auxiliary fans (I-C mines). 57.22209 Section 57.22209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND...

  10. 30 CFR 57.22303 - Approved equipment (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... electrical equipment that is approved by MSHA under the applicable requirements of 30 CFR parts 18 through 28 or approved under 30 CFR part 29 contained in the 30 CFR, parts 1-199, edition, revised as of July 1... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Approved equipment (I-C mines)....

  11. 30 CFR 57.22106 - Dust containing volatile matter (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Dust containing volatile matter (I-C mines). 57.22106 Section 57.22106 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND...

  12. 30 CFR 57.22209 - Auxiliary fans (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...). Electric auxiliary fans shall be approved by MSHA under the applicable requirements of 30 CFR part 18... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Auxiliary fans (I-C mines). 57.22209 Section 57.22209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND...

  13. 30 CFR 57.22104 - Open flames (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Open flames (I-C mines). 57.22104 Section 57.22104 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  14. 30 CFR 57.22203 - Main fan operation (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Main fan operation (I-C mines). 57.22203 Section 57.22203 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES...

  15. 30 CFR 57.22303 - Approved equipment (I-C mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... electrical equipment that is approved by MSHA under the applicable requirements of 30 CFR parts 18 through 28 or approved under 30 CFR part 29 contained in the 30 CFR, parts 1-199, edition, revised as of July 1... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Approved equipment (I-C mines)....

  16. Revealing the binary origin of Type Ic superluminous supernovae through nebular hydrogen emission

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Liu, Zheng-Wei; Mackey, Jonathan; Chen, Ting-Wan; Langer, Norbert

    2015-12-01

    We propose that nebular Hα emission, as detected in the Type Ic superluminous supernova iPTF13ehe, stems from matter that is stripped from a companion star when the supernova ejecta collide with it. The temporal evolution, the line broadening, and the overall blueshift of the emission are consistent with this interpretation. We scale the nebular Hα luminosity predicted for Type Ia supernovae in single-degenerate systems to derive the stripped mass required to explain the Hα luminosity of iPTF13ehe. We find a stripped mass of 0.1-0.9 solar masses, assuming that the supernova luminosity is powered by radioactivity or magnetar spin down. Because a central heating source is required to excite the Hα emission, an interaction-powered model is not favored for iPTF13ehe if the Hα emission is from stripped matter. We derive a companion mass of more than 20 solar masses and a binary separation of less than about 20 companion radii based on the stripping efficiency during the collision, indicating that the supernova progenitor and the companion formed a massive close binary system. If Type Ic superluminous supernovae generally occur in massive close binary systems, the early brightening observed previously in several Type Ic superluminous supernovae may also be due to the collision with a close companion. Observations of nebular hydrogen emission in future Type Ic superluminous supernovae will enable us to test this interpretation.

  17. Construction Progress of the S-IC and F-1 Test Stands

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the S-IC test stand, related facilities were built during this time. Built to the north of the massive S-IC test stand, was the F-1 Engine test stand. The F-1 test stand, a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, was designed to assist in the development of the F-1 Engine. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of

  18. Mid-IR and radio images of IC 418: dust in a young planetary nebula.

    NASA Astrophysics Data System (ADS)

    Meixner, M.; Skinner, C. J.; Keto, E.; Zijlstra, A.; Hoare, M. G.; Arens, J. F.; Jernigan, J. G.

    1996-09-01

    We present three new images of the young, carbon rich planetary nebula, IC 418: 11.3μm dust emission, a [Ne II]12.8μm line emission and 6cm free-free continuum. All three images show different morphologies. In order to investigate these spatial differences and the mechanisms of dust emission in IC 418, we compare our data to two radiative transfer models with different radial density distributions. Model 1 has a thin shell that drops off as r^-3^, resulting in a high density ionized region surrounded by an ionized halo. While, model 2 has a thicker shell that drops off as r^-2^ resulting in the ionization front stopping in the thick shell and a high density ionized region immediately surrounded by a neutral shell. Both models use a mixture of silicon carbide (SiC) and amorphous carbon (AC) dust grains with dust to gas ratios of ~2x10^-5^ and ~6x10^-4^, respectively and the standard power law distribution in sizes (a^-3.5^; 0.005μmIC 418 has emission features attributed to polycyclic aromatic hydrocarbons (PAHs), the SiC feature and not the PAH feature probably dominates the 11.3μm emission. Comparison of our images with broad-band J, H and K images of IC 418 by Hora et al. (1993), suggest that dust emission processes may contribute more near-IR emission than previously thought and that this near-IR "dust" emission is contained within the ionized gas region. Both models reproduce the observed spatial distributions of the 11.3 μm, [Ne ii], and 6 cm emissions which differ because they have different radial excitation gradients in the nebula. However, model 1 better explains all of the many previous observations of IC 418 at different wavelengths. We suggest a three layer onion model for IC 418: a ~6" radius high density ionized region surrounded by a ~20" radius low density ionized halo, enclosed by a completely photodissociated neutral halo extended beyond a ~80

  19. Deep Hubble Space Telescope Imaging of IC 1613. II. The Star Formation History

    NASA Astrophysics Data System (ADS)

    Skillman, Evan D.; Tolstoy, Eline; Cole, Andrew A.; Dolphin, Andrew E.; Saha, Abhijit; Gallagher, J. S.; Dohm-Palmer, R. C.; Mateo, Mario

    2003-10-01

    We have taken deep images of an outlying field in the Local Group dwarf irregular galaxy IC 1613 with the WFPC2 aboard the Hubble Space Telescope in the standard broadband F555W (V, 8 orbits) and F814W (I, 16 orbits) filters. The photometry reaches to V=27.7 (MV=+3.4) and I=27.1 (MI=+2.8) at the 50% completeness level, the deepest to date for an isolated dwarf irregular galaxy. We analyze the resulting color-magnitude diagram (CMD) and compare it with CMDs created from theoretical stellar models using three different methods to derive a star formation history (SFH) as well as constrain the chemical evolution for IC 1613. All three methods find an enhanced star formation rate (SFR), at roughly the same magnitude (factor of 3), over roughly the same period (from 3 to 6 Gyr ago). Additionally, all three methods were driven to similar age-metallicity relationships (AMR) that show an increase from [Fe/H]~-1.3 at earliest times to [Fe/H]~-0.7 at present. Good agreement is found between the AMR which is derived from the CMD analysis and that which can be inferred from the derived SFH at all but the earliest ages. The agreement between the three models and the self-consistency of the derived chemical enrichment history support the reality of the derived SFH of IC 1613 and, more generally, are supportive of the practice of constructing galaxy SFHs from CMDs. A comparison of the newly observed outer field with an earlier studied central field of IC 1613 shows that the SFR in the outer field has been significantly depressed during the last Gyr. This implies that the optical scale length of the galaxy has been decreasing with time and that comparison of galaxies at intermediate redshift with present-day galaxies should take this effect into account. Comparing the CMD of the outer field of IC 1613 with CMDs of Milky Way dSph companions, we find strong similarities between IC 1613 and the more distant dSph companions (Carina, Fornax, Leo I, and Leo II) in that all are dominated

  20. NGC 300 X-1 and IC 10 X-1: a new breed of black hole binary?

    NASA Astrophysics Data System (ADS)

    Barnard, R.; Clark, J. S.; Kolb, U. C.

    2008-09-01

    Context: IC 10 X-1 has recently been confirmed as a black hole (BH) + Wolf-Rayet (WR) X-ray binary, and NGC 300 X-1 is thought to be. The only other known BH+WR candidate is Cygnus X-3. IC 10 X-1 and NGC 300 X-1 have similar X-ray properties, with 0.3-10 keV luminosities ~1038 erg s-1, and their X-ray lightcurves exhibit orbital periods ~30 h. Aims: We investigate similarities between IC 10 X-1 and NGC 300 X-1, as well as differences between these systems and the known Galactic BH binary systems. Methods: We have examined all four XMM-Newton observations of NGC 300 X-1, as well as the single XMM-Newton observation of IC 10 X-1. For each observation, we extracted lightcurves and spectra from the pn, MOS1 and MOS2 cameras; power density spectra were constructed from the lightcurves, and the X-ray emission spectra were modeled. Results: Each source exhibits power density spectra that are well described by a power law with index, γ, ~1. Such variability is characteristic of turbulence in wind accretion or disc-accreting X-ray binaries (XBs) in the high state. In this state, Galactic XBs with known BH primaries have soft, thermal emission; however the emission spectra of NGC 300 X-1 and IC 10 X-1 in the XMM-Newton observations are predominantly non-thermal. Furthermore, the Observation 1 spectrum of NGC 300 X-1 is strikingly similar to that of IC 10 X-1. Conclusions: The remarkable similarity between the behaviour of NGC 300 X-1 in Observation 1 and that of IC 10 X-1 lends strong evidence for NGC 300 X-1 being a BH+WR binary. Our spectral modeling rules out Bondi-Hoyle accretion onto a neutron star (NS) for NGC 300 X-1, but not a disc-accreting NS+WR system, nor a NS low mass X-ray binary (LMXB) that is merely coincident with the WR. We favour disc accretion for both systems, but cannot exclude Bondi-Hoyle accretion onto a BH. The unusual spectra of NGC 300 X-1 and IC 10 X-1 may be due to these systems existing in a persistently high state, whereas all known BH LMXBs

  1. Molecular basis of hERG potassium channel blockade by the class Ic antiarrhythmic flecainide

    PubMed Central

    Melgari, Dario; Zhang, Yihong; El Harchi, Aziza; Dempsey, Christopher E.; Hancox, Jules C.

    2015-01-01

    The class Ic antiarrhythmic drug flecainide inhibits KCNH2-encoded “hERG” potassium channels at clinically relevant concentrations. The aim of this study was to elucidate the underlying molecular basis of this action. Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37 °C. Wild-type (WT) IhERG was inhibited with an IC50 of 1.49 μM and this was not significantly altered by reversing the direction of K+ flux or raising external [K+]. The use of charged and uncharged flecainide analogues showed that the charged form of the drug accesses the channel from the cell interior to produce block. Promotion of WT IhERG inactivation slowed recovery from inhibition, whilst the N588K and S631A attenuated-inactivation mutants exhibited IC50 values 4–5 fold that of WT IhERG. The use of pore-helix/selectivity filter (T623A, S624A V625A) and S6 helix (G648A, Y652A, F656A) mutations showed < 10-fold shifts in IC50 for all but V625A and F656A, which respectively exhibited IC50s 27-fold and 142-fold their WT controls. Docking simulations using a MthK-based homology model suggested an allosteric effect of V625A, since in low energy conformations flecainide lay too low in the pore to interact directly with that residue. On the other hand, the molecule could readily form π–π stacking interactions with aromatic residues and particularly with F656. We conclude that flecainide accesses the hERG channel from the cell interior on channel gating, binding low in the inner cavity, with the S6 F656 residue acting as a principal binding determinant. PMID:26159617

  2. Construction Progress of the S-IC Test Stand Hydrogen Tanks

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. In the center portion of this photograph, taken September 5, 1963, the spherical hydrogen storage tanks are being constructed. One of the massive tower legs of the S-IC test stand is visible to the far right.

  3. Construction Progress of the S-IC Test Stand Spherical Hydrogen Tank

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. This photograph taken September 18, 1963 shows a spherical hydrogen tank being constructed next to the S-IC test stand.

  4. Winds of low-metallicity OB-type stars: HST-COS spectroscopy in IC 1613

    SciTech Connect

    Garcia, Miriam; Najarro, Francisco; Herrero, Artemio; Urbaneja, Miguel Alejandro

    2014-06-10

    We present the first quantitative ultraviolet spectroscopic analysis of resolved OB stars in IC 1613. Because of its alleged very low metallicity (≲1/10 Z {sub ☉}, from H II regions), studies in this Local Group dwarf galaxy could become a significant step forward from the Small Magellanic Cloud (SMC) toward the extremely metal-poor massive stars of the early universe. We present HST-COS data covering the ∼1150-1800 Å wavelength range with resolution R ∼ 2500. We find that the targets do exhibit wind features, and these are similar in strength to SMC stars. Wind terminal velocities were derived from the observed P Cygni profiles with the Sobolev plus Exact Integration method. The v {sub ∞}-Z relationship has been revisited. The terminal velocity of IC 1613 O stars is clearly lower than Milky Way counterparts, but there is no clear difference between IC 1613 and SMC or LMC analog stars. We find no clear segregation with host galaxy in the terminal velocities of B-supergiants, nor in the v {sub ∞}/v {sub esc} ratio of the whole OB star sample in any of the studied galaxies. Finally, we present the first evidence that the Fe-abundance of IC 1613 OB stars is similar to the SMC, which is in agreement with previous results on red supergiants. With the confirmed ∼1/10 solar oxygen abundances of B-supergiants, our results indicate that IC 1613's α/Fe ratio is sub-solar.

  5. Release of PAF by human polymorphonuclear leucocytes stimulated by immune complexes bound to Sepharose particles and human erythrocytes.

    PubMed Central

    Virella, G; Lopes-Virella, M F; Shuler, C; Sherwood, T; Espinoza, G A; Winocour, P; Colwell, J A

    1983-01-01

    Human polymorphonuclear leucocytes (PMN) incubated with surface-bound immune complexes (IC) release a substance that induces platelet aggregation and serotonin-release. This substance was identified as platelet-activating factor (PAF) on the basis of its sensitivity to phospholipase A2 and of its purification by thin-layer chromatography in identical conditions to those used to purify zymosan-induced PAF. We used two types of substrates to absorb our IC:Sepharose particles to which we coupled human serum albumin, and which were later incubated with specific rabbit antiserum to form surface-bound immune complexes, and human erythrocytes, to which soluble IC can be passively adsorbed. Both types of surface-bound IC were found to stimulate the release of PAF by human PMN in the absence of complement. These results suggest that PMN may play a central role in the early stages of IC-induced inflammation: they recognize IC adsorbed to red cells or to any other cell able to adsorb IC, and they induce the activation of platelets and release of vasoactive amines, which leads to the increase of vascular permeability believed to be essential for extravascular IC deposition. PMID:6885111

  6. iPTF15dtg: a double-peaked Type Ic supernova from a massive progenitor

    NASA Astrophysics Data System (ADS)

    Taddia, F.; Fremling, C.; Sollerman, J.; Corsi, A.; Gal-Yam, A.; Karamehmetoglu, E.; Lunnan, R.; Bue, B.; Ergon, M.; Kasliwal, M.; Vreeswijk, P. M.; Wozniak, P. R.

    2016-08-01

    Context. Type Ic supernovae (SNe Ic) arise from the core-collapse of H- (and He-) poor stars, which could either be single Wolf-Rayet (WR) stars or lower-mass stars stripped of their envelope by a companion. Their light curves are radioactively powered and usually show a fast rise to peak (~10-15 d), without any early (in the first few days) emission bumps (with the exception of broad-lined SNe Ic) as sometimes seen for other types of stripped-envelope SNe (e.g., Type IIb SN 1993J and Type Ib SN 2008D). Aims: We have studied iPTF15dtg, a spectroscopically normal SN Ic with an early excess in the optical light curves followed by a long (~30 d) rise to the main peak. It is the first spectroscopically-normal double-peaked SN Ic to be observed. Our aim is to determine the properties of this explosion and of its progenitor star. Methods: Optical photometry and spectroscopy of iPTF15dtg was obtained with multiple telescopes. The resulting light curves and spectral sequence are analyzed and modeled with hydrodynamical and analytical models, with particular focus on the early emission. Results: iPTF15dtg is a slow rising SN Ic, similar to SN 2011bm. Hydrodynamical modeling of the bolometric properties reveals a large ejecta mass (~10 M⊙) and strong 56Ni mixing. The luminous early emission can be reproduced if we account for the presence of an extended (≳500 R⊙), low-mass (≳0.045 M⊙) envelope around the progenitor star. Alternative scenarios for the early peak, such as the interaction with a companion, a shock-breakout (SBO) cooling tail from the progenitor surface, or a magnetar-driven SBO are not favored. Conclusions: The large ejecta mass and the presence of H- and He-free extended material around the star suggest that the progenitor of iPTF15dtg was a massive (≳35 M⊙) WR star that experienced strong mass loss.

  7. A Census of Young Stars and Brown Dwarfs in IC 348 and NGC 1333

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Esplin, T. L.; Loutrel, N. P.

    2016-08-01

    We have obtained optical and near-infrared spectra of candidate members of the star-forming clusters IC 348 and NGC 1333. We classify 100 and 42 candidates as new members of the clusters, respectively, which brings the total numbers of known members to 478 and 203. We also have performed spectroscopy on a large majority of the previously known members of NGC 1333 in order to provide spectral classifications that are measured with the same scheme that has been applied to IC 348 in previous studies. The new census of members is nearly complete for K s < 16.8 at A J < 1.5 in IC 348 and for K s < 16.2 at A J < 3 in NGC 1333, which correspond to masses of ≳0.01 M ⊙ for ages of 3 Myr according to theoretical evolutionary models. The faintest known members extend below these completeness limits and appear to have masses of ˜0.005 M ⊙. In extinction-limited samples of cluster members, NGC 1333 exhibits a higher abundance of objects at lower masses than IC 348. It would be surprising if the initial mass functions of these clusters differ significantly given their similar stellar densities and formation environments. Instead, it is possible that average extinctions are lower for less massive members of star-forming clusters, in which case extinction-limited samples could be biased in favor of low-mass objects in the more heavily embedded clusters like NGC 1333. In the Hertzsprung–Russell diagram, the median sequences of IC 348 and NGC 1333 coincide with each other for the adopted distances of 300 and 235 pc, which would suggest that they have similar ages. However, NGC 1333 is widely believed to be younger than IC 348 based on its higher abundance of disks and protostars and its greater obscuration. Errors in the adopted distances may be responsible for this discrepancy. Based on data from the NASA Infrared Telescope Facility, Gemini Observatory, Canada–France–Hawaii Telescope, Keck Observatory, Subaru Telescope, the Digitized Sky Survey, and the Two Micron All

  8. Construction Progress of the S-IC Test Stand-Crane Control

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken at the S-IC test stand on October 2, 1963, is of a crane control. It was from here that the massive cranes were operated. Seen in the background is the F-1 Test Stand. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand

  9. Construction Progress of the S-IC and F-1 Test Stands

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. North of the massive S-IC test stand, the F-1 Engine test stand was built. Designed to assist in the development of the F-1 Engine, the F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base. Capability was provided for static firing of 1.5 million pounds of thrust using liquid oxygen and kerosene. Like the S-IC stand, the foundation of the F

  10. A Census of Young Stars and Brown Dwarfs in IC 348 and NGC 1333

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Esplin, T. L.; Loutrel, N. P.

    2016-08-01

    We have obtained optical and near-infrared spectra of candidate members of the star-forming clusters IC 348 and NGC 1333. We classify 100 and 42 candidates as new members of the clusters, respectively, which brings the total numbers of known members to 478 and 203. We also have performed spectroscopy on a large majority of the previously known members of NGC 1333 in order to provide spectral classifications that are measured with the same scheme that has been applied to IC 348 in previous studies. The new census of members is nearly complete for K s < 16.8 at A J < 1.5 in IC 348 and for K s < 16.2 at A J < 3 in NGC 1333, which correspond to masses of ≳0.01 M ⊙ for ages of 3 Myr according to theoretical evolutionary models. The faintest known members extend below these completeness limits and appear to have masses of ∼0.005 M ⊙. In extinction-limited samples of cluster members, NGC 1333 exhibits a higher abundance of objects at lower masses than IC 348. It would be surprising if the initial mass functions of these clusters differ significantly given their similar stellar densities and formation environments. Instead, it is possible that average extinctions are lower for less massive members of star-forming clusters, in which case extinction-limited samples could be biased in favor of low-mass objects in the more heavily embedded clusters like NGC 1333. In the Hertzsprung–Russell diagram, the median sequences of IC 348 and NGC 1333 coincide with each other for the adopted distances of 300 and 235 pc, which would suggest that they have similar ages. However, NGC 1333 is widely believed to be younger than IC 348 based on its higher abundance of disks and protostars and its greater obscuration. Errors in the adopted distances may be responsible for this discrepancy. Based on data from the NASA Infrared Telescope Facility, Gemini Observatory, Canada–France–Hawaii Telescope, Keck Observatory, Subaru Telescope, the Digitized Sky Survey, and the Two Micron All

  11. Construction Progress of the S-IC Test Stand-Pump House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through

  12. 75 FR 51499 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... ACRS meetings were published in the Federal Register on October 14, 2009, (74 FR 58268-58269). Detailed... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation and Controls (I&C) Systems will hold a meeting...

  13. Evaluating SAT® II: Mathematics IC Items in the SAT I Population. Research Report No. 2005-3

    ERIC Educational Resources Information Center

    Liu, Jinghua; Schuppan, Fred; Walker, Michael E.

    2005-01-01

    This study explored whether the addition of the items with more advanced math content to the SAT Reasoning Test™ (SAT®) would impact test-taker performance. Two sets of SAT math equating sections were modified to form four subforms each. Different numbers of items with advanced content, taken from the SAT II: Mathematics Level IC Test (Math IC),…

  14. The gene ICS3 from the yeast Saccharomyces cerevisiae is involved in copper homeostasis dependent on extracellular pH.

    PubMed

    Alesso, C A; Discola, K F; Monteiro, G

    2015-09-01

    In the yeast Saccharomyces cerevisiae, many genes are involved in the uptake, transport, storage and detoxification of copper. Large scale studies have noted that deletion of the gene ICS3 increases sensitivity to copper, Sortin 2 and acid exposure. Here, we report a study on the Δics3 strain, in which ICS3 is related to copper homeostasis, affecting the intracellular accumulation of this metal. This strain is sensitive to hydrogen peroxide and copper exposure, but not to other tested transition metals. At pH 6.0, the Δics3 strain accumulates a larger amount of intracellular copper than the wild-type strain, explaining the sensitivity to oxidants in this condition. Unexpectedly, sensitivity to copper exposure only occurs in acidic conditions. This can be explained by the fact that the exposure of Δics3 cells to high copper concentrations at pH 4.0 results in over-accumulation of copper and iron. Moreover, the expression of ICS3 increases in acidic pH, and this is correlated with CCC2 gene expression, since both genes are regulated by Rim101 from the pH regulon. CCC2 is also upregulated in Δics3 in acidic pH. Together, these data indicate that ICS3 is involved in copper homeostasis and is dependent on extracellular pH. PMID:26127016

  15. Use of IC tags in short-term carcinogenicity study on CB6F1 TGrasH2 mice.

    PubMed

    Urano, Koji; Suzuki, Syuzo; Machida, Kazuhiko; Sawa, Nobuko; Eguchi, Natsuko; Kikuchi, Koji; Fukasawa, Kazumasa; Taguchi, Fukushi; Usui, Toshimi

    2006-12-01

    We studied the effect of IC tags, subcutaneously implanted animal identification tools, on rasH2 mice. A 26-week short-term carcinogenicity study was performed on a total of 299 mice including 75 male and female rasH2 mice each, and 74 male and 75 female non-Tg mice from the same litter as the rasH2 mice divided into a non-IC tag group, the IC-tag group, acetone group, TPA group and MNU group (all of the animals except for those in the non-IC tag group) had IC tags implanted subcutaneously in their backs. The administration methods of the positive control drugs TPA (2.5 micro g/kg, 3 times/week, percutaneously) and MNU (75 mg/kg, single intraperitoneal injection) were based on the protocol of the ILSI/HESI international collaborative study. The results showed no differences in the tumorigenic incidence and organs developing tumors between the IC tag and non-IC tag groups in both rasH2 and non-Tg mice. In the positive control MNU group, the tumorigenic incidence and organs developing tumors were the same as the background data and no promotion of carcinogenesis was observed. In all IC tag groups including the TPA group and MNU group, a fibrous capsule was formed around the IC tags subcutaneously, but no inflammatory changes or neoplastic changes were observed. From these findings, it was concluded that the IC tag has no effect on a 26-week carcinogenicity test of rasH2 mice under the conditions of the present study. PMID:17202757

  16. Stellar Properties of Asymptotic Giant Branch Stars in the Dwarf Irregular Galaxy IC 1613

    NASA Astrophysics Data System (ADS)

    Chun, S.-H.; Jung, M. Y.; Kang, M.; Jung, D.; Sohn, Y.-J.

    2015-08-01

    Broadband near-infrared images obtained with the WIRCam array of the Canada-France-Hawaii Telescope are used to investigate the properties of resolved asymptotic giant branch (AGB) stars in the dwarf irregular galaxy IC 1613. Combining our JHKs data with optical photometric data, AGB stars were selected in color-magnitude diagrams covering a wide range of wavelength. We examined the distribution of AGB stars in the (J-Ks, H-Ks) color-color diagram, and distinguished 140 carbon-rich and 306 oxygen-rich M giant AGB stars. The number ratio of C stars to M giants (C/M) was estimated, and the metallicity of IC 1613 was derived using the C/M ratio. We also examined the local C/M ratio as a function of radial distance from the center of the galaxy, and found a small negative gradient.

  17. Spectrum and chemical analysis of the double-ring planetary nebula IC 1297

    NASA Technical Reports Server (NTRS)

    Aller, Lawrence H.; Keyes, Charles D.; Feibelman, Walter A.

    1986-01-01

    The double-ring planetary nebula IC 1297 resembles NGC 7662 in appearance, although it is of much lower surface brightness. What is remarkable is the great strength of the dielectronic recombination O V line. Although this line is seen as a P Cygni feature in a number of planetary nebulae, it is in those instances accompanied by a strong continuum and other easily recognized features of stellar origin. No star is visible on CCD images of IC 1297. Optical region measurements are supplemented by IUE observations. The following logarithmic abundance values are found: log N(He) = 11.065; log N(forbidden C) = 8.6; log N(N) = 8.1; log N(O) = 8.74; log N(Ne) = 8.16; log N(S) = 7.0; log N(Cl) = 5.4; log N(Ar) = 6.2. The nebula shows no dramatic pattern of nucleogenesis events.

  18. Calculation of K /SUB Ic/ using the average increase in crack length

    SciTech Connect

    Uskov, E.I.; Babak, A.V.

    1985-07-01

    Tungsten shows a tendency to high-temperature embrittlement and is characterized by the stable nature of fracture at temperatures exceeding the maximum temperature of tough-brittle transition. This permits repeated use of specimens in eccentric tensile tests (ETT) in investigating high-temperature crack resistance of commerically pure tungsten obtained by powder metallurgy methods. Testing of specimens for crack resistance was carried out in a vacuum chamber. As the crack resistance parameter the critical stress intensity factor K /SUB Ic/ was selected as determined from the equation of linear-elastic fracture mechanics. Use of the proposed equation for determing K /SUB Ic/ with repeated use of the same specimen without intermediate measurement of the crack length enables a considerable reduction in the duration tests in the evaluation of the hightemperature crack resistance of tungsten.

  19. A Decade in the Life of the Massive Black-Hole Binary IC10 X-1

    NASA Astrophysics Data System (ADS)

    Laycock, Silas

    2014-11-01

    Chandra thanks to its angular resolution, sensitivity and endurance has been able to monitor individual X-ray binaries in the starburst galaxy IC 10. The WR+BH binary known as IC10 X-1 is regarded as one of the most massive stellar black holes; a class of objects representing the pinnacle of the stellar mass function. BH binaries occupy key roles in seeding SMBHs, producing long GRBs at birth, and gravitational waves at death. We report our use of Chandra to refine the orbital ephemeris of X1 and match-up the radial velocity curve of the optical spectral lines with the X-ray eclipse. The resulting phase offset has fascinating implications for our understanding of the interactions between the WR star, its wind, and the radiation field of the BH.

  20. Chemical classification of iron meteorites. VIII - Groups IC, IIE, IIIF and 97 other irons

    NASA Technical Reports Server (NTRS)

    Scott, E. R. D.; Wasson, J. T.

    1976-01-01

    Results are reported for determinations of Ni, Ga, Ge, and Ir concentrations in 106 iron meteorites. Three new groups are defined (IC, IIE, and IIIF) which contain 10, 12, and 5 irons, respectively. It is noted that group IC is a cohenite-rich group distantly related to IA, group IIE consists of those irons previously designated as Weekeroo Station type together with five others having similar compositions but diverse structures, and group IIIF is a well-defined group of low-Ni and low-Ge irons. Several anomalous irons are discussed, including a cluster of five plessitic octahedrites and ataxites with Ge/Ga atomic ratios ranging from 10 to 16 and a meteorite that has the second highest Ni content of any iron. It is shown that the IIE irons are compositionally similar to the mesosiderites and pallasites, and it is suggested that the three groups probably formed at approximately the same heliocentric distance.

  1. Transient power supply voltage (v{sub DDT}) analysis for detecting IC defects

    SciTech Connect

    Cole, E.I. Jr.; Soden, J.M.; Beegle, R.W.

    1997-04-01

    Transient power supply voltage (V{sub DDT}) analysis is a new testing technique demonstrated as a powerful alternative and complement to I{sub DDQ} testing. V{sub DDT} takes advantage of the limited response time of a voltage supply to the changing power demands of an IC during operation. Changes in the V{sub DD} response time are used to detect increases in power demand with resolutions of 100 nA at 100 kHz, 1 {mu}A at 1 MHz, and 2.5 {mu}A at 1.5 MHz. These current sensitivities have been shown for ICs with quiescent currents < 0.1 {mu}A and > 300 {mu}A. The V{sub DDT} signal acquisition protocols, frequency versus sensitivity tradeoffs, hardware considerations and limitations, data examples, and areas for future research are described.

  2. A nano-power energy harvesting IC for arrays of piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Dini, M.; Filippi, M.; Romani, A.; Bottarel, V.; Ricotti, G.; Tartagni, M.

    2013-05-01

    This paper describes a multi-source energy harvester IC for arrays of independent transducers, designed in a 0.32μm STMicroelectronics BCD technology, that can manage up to 5 AC-DC channels (e.g. piezoelectric transducers). The IC implements a boost converter based on synchronous electrical charge extraction. A single external inductor is time-shared among all transducers and access conflicts are handled by an arbiter circuit implemented as an asynchronous FSM. The designed converter is fully autonomous and suitable for battery-less operation. The circuit area is 4.6 mm2 and has a power consumption of 175 nW/source at 2.5 V while efficiency ranges between 70% and over than 85%.

  3. Realization of MEMS-IC Vertical Integration Utilizing Smart Bumpless Bonding

    NASA Astrophysics Data System (ADS)

    Shiozaki, Masayoshi; Moriguchi, Makoto; Sasaki, Sho; Oba, Masatoshi

    This paper reports fundamental technologies, properties, and new experimental results of SBB (Smart Bumpless Bonding) to realize MEMS-IC vertical integration. Although conventional bonding technologies have had difficulties integrating MEMS and its processing circuit because of their rough bonding surfaces, fragile structures, and thermal restriction, SBB technology realized the vertical integration without thermal treatment, any adhesive materials including bumps, and chemical mechanical polishing. The SBB technology bonds sealing parts for vacuum sealing and electrodes for electrical connection simultaneously as published in previous experimental study. The plasma CVD SiO2 is utilized to realize vacuum sealing as sealing material. And Au projection studs are formed on each electrode and connected electrically between two wafers by compressive plastic deformation and surface activation. In this paper, new experimental results including vacuum sealing properties, electrical improvement, IC bonding results on the described fundamental concept and properties are reported.

  4. Construction Progress of the S-IC Test Stand Complex-Aerial

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and

  5. Construction Progress of the S-IC Test Stand Complex-Aerial View

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and

  6. Observation of Nonthermal Emission from the Supernova Remnant IC443 with RXTE

    NASA Technical Reports Server (NTRS)

    Sturner, S. J.; Keohane, J. W.; Reimer, O.

    2002-01-01

    In this paper we present analysis of X-ray spectra from the supernova remnant IC443 obtained using the PCA on RXTE. The spectra in the 3 - 20 keV band are well fit by a two-component model consisting of thermal and nonthermal components. We compare these results with recent results of other X-ray missions and discuss the need for a cut-off in the nonthermal spectrum. Recent Chandra and XMM-Newton observations suggest that much of the nonthermal emission from IC443 can be attributed to a pulsar wind nebula. We present the results of our search for periodic emission in the RXTE PCA data. We then discuss the origin o f the nonthermal component and its possible association with the unidentified EGRET source.

  7. Intracellular kinetics of the androgen receptor shown by multimodal Image Correlation Spectroscopy (mICS)

    PubMed Central

    Chiu, Chi-Li; Patsch, Katherin; Cutrale, Francesco; Soundararajan, Anjana; Agus, David B.; Fraser, Scott E.; Ruderman, Daniel

    2016-01-01

    The androgen receptor (AR) pathway plays a central role in prostate cancer (PCa) growth and progression and is a validated therapeutic target. In response to ligand binding AR translocates to the nucleus, though the molecular mechanism is not well understood. We therefore developed multimodal Image Correlation Spectroscopy (mICS) to measure anisotropic molecular motion across a live cell. We applied mICS to AR translocation dynamics to reveal its multimodal motion. By integrating fluorescence imaging methods we observed evidence for diffusion, confined movement, and binding of AR within both the cytoplasm and nucleus of PCa cells. Our findings suggest that in presence of cytoplasmic diffusion, the probability of AR crossing the nuclear membrane is an important factor in determining the AR distribution between cytoplasm and the nucleus, independent of functional microtubule transport. These findings may have implications for the future design of novel therapeutics targeting the AR pathway in PCa. PMID:26936218

  8. Optical polarization of the Seyfert galaxies IC 4329A and MRK 376

    NASA Technical Reports Server (NTRS)

    Martin, P. G.; Stockman, H. S.; Angel, J. R. P.; Maza, J.; Beaver, E. A.

    1982-01-01

    Measurements of the optical polarizations of the two highly polarized Seyfert 1 galaxies IC 4329A and Mrk 376 are presented. Continuum and line polarization of the two objects were observed with the Steward Observatory 2.25-m telescope using a two-channel photoelectric Pockels cell polarimeter, a single-channel scanner, and a digicon attached to a flint prism spectrograph. Results indicate that, for both galaxies, the emission line polarization and underlying continuum polarization are identical, rising toward short wavelengths, and therefore must be explained by a common mechanism. Such a mechanism is suggested to involve polarization produced by aligned grains in the galactic disk. A model for polarization in IC 4329A by this mechanism predicts a grain size three times smaller than Galactic polarizing grains, as well as a visual extinction of about 2 magnitudes, a gas to dust mass ratio close to 100 and a polarization to extinction ratio comparable to the Galactic ratio.

  9. The Temperature Dependence of a GaAs pHEMT Wideband IQ Modulator IC

    NASA Astrophysics Data System (ADS)

    Ihara, Kiyoyuki

    The author developed a GaAs wideband IQ modulator IC, which is utilized in RF signal source instruments with direct-conversion architecture. The layout is fully symmetric to obtain a temperature-stable operation. However, thee actual temperature drift of EVM (Error Vector Magnitude) is greater in some frequency and temperature ranges than the first generation IC of the same architecture. For applications requiring the precision of electric instrumentation, temperature drift is highly critical. This paper clarifies that linear phase error is the dominant factor causing the temperature drift. It also identifies that such temperature drift of linear phase error is due to equivalent series impedance, especially parasitic capacitance of the phase shifter. This effect is verified by comparing the SSB measurements to a mathematical simulation using an empirical temperature-dependent small-signal FET model.

  10. Short term and multi-band variability of the active nucleus of IC310

    NASA Astrophysics Data System (ADS)

    Eisenacher, Dorit; Colin, Pierre; Lombardi, Saverio; Sitarek, Julian; Zandanel, Fabio; MAGIC Collaboration; Paneque, David; Fermi-LAT Collaboration; Dauser, Thomas; Krauß, Felicia; Wilbert, Sven; Kadler, Matthias; Schulz, Robert; Wilms, Joern; Bach, Uwe; Ros, Eduardo

    2012-12-01

    The MAGIC Telescopes detected the active galaxy IC 310 at very high energies (VHE, >100 GeV) during observations of the Perseus cluster in 2009 and 2010. This source had originally been classified as a head-tail radio galaxy. By contrast, recent high-resolution radio images obtained with the VLBA reveal the blazar-like structure of IC 310 on parsec scales. This object is also investigated in terms of its variability at X-ray and gamma-ray energies. Studies of the multi-band flux variability at different time periods are presented. The spectral evolution seems to be different in the VHE gamma-ray and X-ray bands.

  11. THE FAST AND FURIOUS DECAY OF THE PECULIAR TYPE Ic SUPERNOVA 2005ek

    SciTech Connect

    Drout, M. R.; Soderberg, A. M.; Margutti, R.; Milisavljevic, D.; Sanders, N. E.; Chornock, R.; Foley, R. J.; Kirshner, R. P.; Chakraborti, S.; Challis, P.; Friedman, A.; Hicken, M.; Jensen, C.; Mazzali, P. A.; Parrent, J. T.; Filippenko, A. V.; Li, W.; Cenko, S. B.; Ganeshalingam, M.; Brown, P. J.; and others

    2013-09-01

    We present extensive multi-wavelength observations of the extremely rapidly declining Type Ic supernova (SN Ic), SN 2005ek. Reaching a peak magnitude of M{sub R} = -17.3 and decaying by {approx}3 mag in the first 15 days post-maximum, SN 2005ek is among the fastest Type I supernovae observed to date. The spectra of SN 2005ek closely resemble those of normal SN Ic, but with an accelerated evolution. There is evidence for the onset of nebular features at only nine days post-maximum. Spectroscopic modeling reveals an ejecta mass of {approx}0.3 M{sub Sun} that is dominated by oxygen ({approx}80%), while the pseudo-bolometric light curve is consistent with an explosion powered by {approx}0.03 M{sub Sun} of radioactive {sup 56}Ni. Although previous rapidly evolving events (e.g., SN 1885A, SN 1939B, SN 2002bj, SN 2010X) were hypothesized to be produced by the detonation of a helium shell on a white dwarf, oxygen-dominated ejecta are difficult to reconcile with this proposed mechanism. We find that the properties of SN 2005ek are consistent with either the edge-lit double detonation of a low-mass white dwarf or the iron-core collapse of a massive star, stripped by binary interaction. However, if we assume that the strong spectroscopic similarity of SN 2005ek to other SNe Ic is an indication of a similar progenitor channel, then a white-dwarf progenitor becomes very improbable. SN 2005ek may be one of the lowest mass stripped-envelope core-collapse explosions ever observed. We find that the rate of such rapidly declining Type I events is at least 1%-3% of the normal SN Ia rate.

  12. Saturn V S-IC (First) Stage for Apollo 8 in the Vehicle Assembly Building

    NASA Technical Reports Server (NTRS)

    1967-01-01

    The S-IC stage being erected for the final assembly of the Saturn V launch vehicle for the Apollo 8 mission (AS-503), is photographed in the Vehicle Assembly Building (VAB) high bay at the Kennedy Space Center. The Apollo 8 mission was the first Saturn V manned mission with astronauts Frank Borman, James A. Lovell, and William Anders. They escaped Earth's gravity and traveled to lunar vicinity. The launch of Apollo 8 occurred on December 21, 1968.

  13. GMRT radio detection of broad lined Type Ic supernova ASASSN-16fp

    NASA Astrophysics Data System (ADS)

    Nayana, A. J.; Chandra, Poonam

    2016-06-01

    We observed broad lined Type Ic supernova ASASSN-16fp (ATel #9086, #9124, #9128, #9134) with the Giant Metrewave Radio Telescope (GMRT) on 2016 June 29.00 UT in 1390 MHz band. We clearly detect radio emission from the supernova position. The flux density of the supernova in this band is 252+/-74 uJy. More observations are planned. We thanks GMRT staff for carrying out the observations.

  14. Efavirenz concentrations in CSF exceed IC50 for wild-type HIV

    PubMed Central

    Best, Brookie M.; Koopmans, Peter P.; Letendre, Scott L.; Capparelli, Edmund V.; Rossi, Steven S.; Clifford, David B.; Collier, Ann C.; Gelman, Benjamin B.; Mbeo, Gilbert; McCutchan, J. Allen; Simpson, David M.; Haubrich, Richard; Ellis, Ronald; Grant, Igor; Grant, Igor; McCutchan, J. Allen; Ellis, Ronald J.; Marcotte, Thomas D.; Franklin, Donald; Ellis, Ronald J.; McCutchan, J. Allen; Alexander, Terry; Letendre, Scott; Capparelli, Edmund; Heaton, Robert K.; Atkinson, J. Hampton; Woods, Steven Paul; Dawson, Matthew; Wong, Joseph K.; Fennema-Notestine, Christine; Taylor, Michael J.; Theilmann, Rebecca; Gamst, Anthony C.; Cushman, Clint; Abramson, Ian; Vaida, Florin; Marcotte, Thomas D.; von Jaeger, Rodney; McArthur, Justin; Smith, Mary; Morgello, Susan; Simpson, David; Mintz, Letty; McCutchan, J. Allen; Toperoff, Will; Collier, Ann; Marra, Christina; Jones, Trudy; Gelman, Benjamin; Head, Eleanor; Clifford, David; Al-Lozi, Muhammad; Teshome, Mengesha

    2011-01-01

    Objectives HIV-associated neurocognitive disorders remain common despite use of potent antiretroviral therapy (ART). Ongoing viral replication due to poor distribution of antivirals into the CNS may increase risk for HIV-associated neurocognitive disorders. This study's objective was to determine penetration of a commonly prescribed antiretroviral drug, efavirenz, into CSF. Methods CHARTER is an ongoing, North American, multicentre, observational study to determine the effects of ART on HIV-associated neurological disease. Single random plasma and CSF samples were drawn within 1 h of each other from subjects taking efavirenz between September 2003 and July 2007. Samples were assayed by HPLC or HPLC/mass spectrometry with detection limits of 39 ng/mL (plasma) and <0.1 ng/mL (CSF). Results Eighty participants (age 44 ± 8 years; 79 ± 15 kg; 20 females) had samples drawn 12.5 ± 5.4 h post-dose. The median efavirenz concentrations after a median of 7 months [interquartile range (IQR) 2–17] of therapy were 2145 ng/mL in plasma (IQR 1384–4423) and 13.9 ng/mL in CSF (IQR 4.1–21.2). The CSF/plasma concentration ratio from paired samples drawn within 1 h of each other was 0.005 (IQR 0.0026–0.0076; n = 69). The CSF/IC50 ratio was 26 (IQR 8–41) using the published IC50 for wild-type HIV (0.51 ng/mL). Two CSF samples had concentrations below the efavirenz IC50 for wild-type HIV. Conclusions Efavirenz concentrations in the CSF are only 0.5% of plasma concentrations but exceed the wild-type IC50 in nearly all individuals. Since CSF drug concentrations reflect those in brain interstitial fluids, efavirenz reaches therapeutic concentrations in brain tissue. PMID:21098541

  15. A SCUBA-2 850-μm survey of protoplanetary discs in the IC 348 cluster

    NASA Astrophysics Data System (ADS)

    Cieza, L.; Williams, J.; Kourkchi, E.; Andrews, S.; Casassus, S.; Graves, S.; Schreiber, M. R.

    2015-12-01

    We present 850-μm observations of the 2-3 Myr cluster IC 348 in the Perseus molecular cloud using the SCUBA-2 camera on the James Clerk Maxwell Telescope. Our SCUBA-2 map has a diameter of 30 arcmin and contains ˜370 cluster members, including ˜200 objects with IR excesses. We detect a total of 13 discs. Assuming standard dust properties and a gas-to-dust-mass ratio of 100, we derive disc masses ranging from 1.5 to 16 MJUP. We also detect six Class 0/I protostars. We find that the most massive discs (MD > 3 MJUP; 850-μm flux > 10 mJy) in IC 348 tend to be transition objects according to the characteristic `dip' in their infrared spectral energy distributions (SEDs). This trend is also seen in other regions. We speculate that this could be an initial conditions effect (e.g. more massive discs tend to form giant planets that result in transition disc SEDs) and/or a disc evolution effect (the formation of one or more massive planets results in both a transition disc SED and a reduction of the accretion rate, increasing the lifetime of the outer disc). A stacking analysis of the discs that remain undetected in our SCUBA-2 observations suggests that their median 850-μm flux should be ≲1 mJy, corresponding to a disc mass ≲0.3 MJUP (gas plus dust) or ≲1 M⊕ of dust. While the available data are not deep enough to allow a meaningful comparison of the disc luminosity functions between IC 348 and other young stellar clusters, our results imply that disc masses exceeding the minimum-mass solar nebula are very rare (≲1per cent) at the age of IC 348, especially around very low-mass stars.

  16. VizieR Online Data Catalog: IC 342 multi-frequency radio polarization study (Beck, 2015)

    NASA Astrophysics Data System (ADS)

    Beck, R.

    2015-04-01

    The total and polarized radio continuum emission of IC 342 was observed with high spatial resolution in four wavelength bands with the Effelsberg and VLA telescopes. At λ6.2cm the data from both telescopes were combined. I separated thermal and nonthermal (synchrotron) emission components with the help of the spectral index distribution and derived maps of the magnetic field strength, degree of magnetic field order, magnetic pitch angle, Faraday rotation measure, and Faraday depolarization. (2 data files).

  17. Type Ic core-collapse supernova explosions evolved from very massive stars

    NASA Astrophysics Data System (ADS)

    Yoshida, Takashi; Okita, Shinpei; Umeda, Hideyuki

    2014-03-01

    We investigate the possibility of a superluminous Type Ic core-collapse supernovae (SNe) producing a large amount of 56Ni. Very massive stars with a main-sequence mass larger than 100 M⊙ and a metallicity 0.001 < Z ≲ 0.004 are expected to explode as superluminous Type Ic SNe. Stars with ˜110-150 M⊙ and Z ≲ 0.001 would explode as Type Ic pulsational pair-instability SNe if the whole H and He layer has been lost by the mass-loss during pulsational pair instability. We evaluate the total ejecta mass and the yields of 56Ni, O and Si in core-collapse SNe evolved from very massive stars. We adopt 43.1 and 61.1 M⊙ WO stars with Z = 0.004 as SN progenitors expected to explode as Type Ic core-collapse SNe. These progenitors have masses of 110 and 250 M⊙ at the zero-age main sequence. Spherical explosions with an explosion energy larger than 2 × 1052 erg produce more than 3.5 M⊙56Ni, enough to reproduce the light curve of SN 2007bi. Asphericity of the explosion affects the total ejecta mass as well as the yields of 56Ni, O and Si. Aspherical explosions of the 110 and 250 M⊙ models reproduce the 56Ni yield of SN 2007bi. These explosions will also show large velocity dispersion. An aspherical core-collapse SN evolved from a very massive star is a possibility of the explosion of SN 2007bi.

  18. Good Trellises for IC Implementation of Viterbi Decoders for Linear Block Codes

    NASA Technical Reports Server (NTRS)

    Moorthy, Hari T.; Lin, Shu; Uehara, Gregory T.

    1997-01-01

    This paper investigates trellis structures of linear block codes for the integrated circuit (IC) implementation of Viterbi decoders capable of achieving high decoding speed while satisfying a constraint on the structural complexity of the trellis in terms of the maximum number of states at any particular depth. Only uniform sectionalizations of the code trellis diagram are considered. An upper-bound on the number of parallel and structurally identical (or isomorphic) subtrellises in a proper trellis for a code without exceeding the maximum state complexity of the minimal trellis of the code is first derived. Parallel structures of trellises with various section lengths for binary BCH and Reed-Muller (RM) codes of lengths 32 and 64 are analyzed. Next, the complexity of IC implementation of a Viterbi decoder based on an L-section trellis diagram for a code is investigated. A structural property of a Viterbi decoder called add-compare-select (ACS)-connectivity which is related to state connectivity is introduced. This parameter affects the complexity of wire-routing (interconnections within the IC). The effect of five parameters namely: (1) effective computational complexity; (2) complexity of the ACS-circuit; (3) traceback complexity; (4) ACS-connectivity; and (5) branch complexity of a trellis diagram on the very large scale integration (VISI) complexity of a Viterbi decoder is investigated. It is shown that an IC implementation of a Viterbi decoder based on a nonminimal trellis requires less area and is capable of operation at higher speed than one based on the minimal trellis when the commonly used ACS-array architecture is considered.

  19. Good trellises for IC implementation of viterbi decoders for linear block codes

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Moorthy, Hari T.; Uehara, Gregory T.

    1996-01-01

    This paper investigates trellis structures of linear block codes for the IC (integrated circuit) implementation of Viterbi decoders capable of achieving high decoding speed while satisfying a constraint on the structural complexity of the trellis in terms of the maximum number of states at any particular depth. Only uniform sectionalizations of the code trellis diagram are considered. An upper bound on the number of parallel and structurally identical (or isomorphic) subtrellises in a proper trellis for a code without exceeding the maximum state complexity of the minimal trellis of the code is first derived. Parallel structures of trellises with various section lengths for binary BCH and Reed-Muller (RM) codes of lengths 32 and 64 are analyzed. Next, the complexity of IC implementation of a Viterbi decoder based on an L-section trellis diagram for a code is investigated. A structural property of a Viterbi decoder called ACS-connectivity which is related to state connectivity is introduced. This parameter affects the complexity of wire-routing (interconnections within the IC). The effect of five parameters namely: (1) effective computational complexity; (2) complexity of the ACS-circuit; (3) traceback complexity; (4) ACS-connectivity; and (5) branch complexity of a trellis diagram on the VLSI complexity of a Viterbi decoder is investigated. It is shown that an IC implementation of a Viterbi decoder based on a non-minimal trellis requires less area and is capable of operation at higher speed than one based on the minimal trellis when the commonly used ACS-array architecture is considered.

  20. Long-term prediction test procedure for most ICs, based on linear response theory

    NASA Technical Reports Server (NTRS)

    Litovchenko, V.; Ivakhnenko, I.

    1991-01-01

    Experimentally, thermal annealing is known to be a factor which enables a number of different integrated circuits (IC's) to recover their operating characteristics after suffering radiation damage in the space radiation environment; thus, decreasing and limiting long term cumulative total-dose effects. This annealing is also known to be accelerated at elevated temperatures both during and after irradiation. Linear response theory (LRT) was applied, and a linear response function (LRF) to predict the radiation/annealing response of sensitive parameters of IC's for long term (several months or years) exposure to the space radiation environment were constructed. Compressing the annealing process from several years in orbit to just a few hours or days in the laboratory is achieved by subjecting the IC to elevated temperatures or by increasing the typical spaceflight dose rate by several orders of magnitude for simultaneous radiation/annealing only. The accomplishments are as follows: (1) the test procedure to make predictions of the radiation response was developed; (2) the calculation of the shift in the threshold potential due to the charge distribution in the oxide was written; (3) electron tunneling processes from the bulk Si to the oxide region in an MOS IC were estimated; (4) in order to connect the experimental annealing data to the theoretical model, constants of the model of the basic annealing process were established; (5) experimental data obtained at elevated temperatures were analyzed; (6) time compression and reliability of predictions for the long term region were shown; (7) a method to compress test time and to make predictions of response for the nonlinear region was proposed; and (8) nonlinearity of the LRF with respect to log(t) was calculated theoretically from a model.

  1. The blazar-like radio structure of the TeV source IC 310

    NASA Astrophysics Data System (ADS)

    Kadler, M.; Eisenacher, D.; Ros, E.; Mannheim, K.; Elsässer, D.; Bach, U.

    2012-02-01

    Context. The radio galaxy IC 310 in the Perseus cluster has recently been detected in the gamma-ray regime at GeV and TeV energies. The TeV emission shows time variability and an extraordinarily hard spectrum, even harder than the spectrum of the similar nearby gamma-ray emitting radio galaxy M 87. Aims: High-resolution studies of the radio morphology help to constrain the geometry of the jet on sub-pc scales and to find out where the high-energy emission might come from. Methods: We analyzed May 2011 VLBA data of IC 310 at a wavelength of 3.6 cm, revealing the parsec-scale radio structure of this source. We compared our findings with more information available from contemporary single-dish flux density measurements with the 100-m Effelsberg radio telescope. Results: We have detected a one-sided core-jet structure with blazar-like, beamed radio emission oriented along the same position angle as the kiloparsec scale radio structure observed in the past by connected interferometers. Doppler-boosting favoritism is consistent with an angle of θ38° between the jet axis and the line-of-sight, i.e., very likely within the boundary dividing low-luminosity radio galaxies and BL Lac objects in unified schemes. Conclusions: The stability of the jet orientation from parsec to kiloparsec scales in IC 310 argues against its classification as a head-tail radio galaxy; i.e., there is no indication of an interaction with the intracluster medium that would determine the direction of the tail. IC 310 seems to represent a low-luminosity FRI radio galaxy at a borderline angle to reveal its BL Lac-type central engine.

  2. DAO spectroscopic classification of AT2016ccm in IC983 as a core-collapse supernova

    NASA Astrophysics Data System (ADS)

    Balam, D. D.; Graham, M. L.

    2016-05-01

    A spectrum was obtained on UT May 09.36 of AT2016ccm in IC 983 using the 1.82-m Plaskett telescope (National Research Council of Canada) covering the range 365-710 nm (resolution 0.35 nm). Cross-correlation with a template library using SNID (Blondin & Tonry 2007, ApJ, 666, 1024) shows AT2016ccm to be a core-collapse supernova approximately 1 week post maximum light.

  3. Federal efforts to improve quality of care: the Quality Interagency Coordination Task Force (QuIC).

    PubMed

    Eisenberg, J M; Foster, N E; Meyer, G; Holland, H

    2001-02-01

    FORMATION OF THE QUIC: The Quality Interagency Coordination Task Force (QuIC) was established in 1998 to enable the participating federal agencies to coordinate their activities to study, measure, and improve the quality of care delivered by federal health programs; provide people with information to help them in making more informed choices about their care; and develop the research base and infrastructure needed to improve the health care system, including knowledgeable and empowered workers, well-designed systems of care, and useful information systems. STUDY, MEASURE, AND IMPROVE CARE: The QuIC's initial efforts to improve the care delivered in federal health care programs have focused on diabetes, depression, and the effect of working conditions on quality of care. More recently, patient safety efforts are under way to establish a coordinating center that will enable those who are testing methods of reducing errors to share information across their projects and with experts in error reduction. DEVELOP A RESEARCH BASE AND INFRASTRUCTURE: The QuIC has coordinated efforts in credentialing, information on measures of quality, a taxonomy of quality improvement methods, and errors data collection. PROVIDE INFORMATION TO AMERICANS ABOUT HEALTH CARE QUALITY: The QuIC agencies are developing products that will enhance their ability to communicate with the American people about their health care choices: improved gateways for consumer information available from federal agencies, a glossary of commonly used terms, and guidance for producing report cards on quality of care. MOVING THE QUALITY IMPROVEMENT AGENDA FORWARD: Federal efforts to improve quality of care are moving forward in a more integrated fashion on a wide number of fronts. PMID:11221014

  4. A transient supergiant X-ray binary in IC 10: An extragalactic SFXT?

    SciTech Connect

    Laycock, Silas; Cappallo, Rigel; Oram, Kathleen; Balchunas, Andrew

    2014-07-01

    We report the discovery of a large amplitude (factor of ∼100) X-ray transient (IC 10 X-2, CXOU J002020.99+591758.6) in the nearby dwarf starburst galaxy IC 10 during our Chandra monitoring project. Based on the X-ray timing and spectral properties, and an optical counterpart observed with Gemini, the system is a high-mass X-ray binary consisting of a luminous blue supergiant and a neutron star. The highest measured luminosity of the source was 1.8 × 10{sup 37} erg s{sup –1}during an outburst in 2003. Observations before, during, and after a second outburst in 2010 constrain the outburst duration to be less than 3 months (with no lower limit). The X-ray spectrum is a hard power law (Γ = 0.3) with fitted column density (N{sub H} = 6.3 × 10{sup 21} atom cm{sup –2}), consistent with the established absorption to sources in IC 10. The optical spectrum shows hydrogen Balmer lines strongly in emission at the correct blueshift (-340 km s{sup –1}) for IC 10. The N III triplet emission feature is seen, accompanied by He II [4686] weakly in emission. Together these features classify the star as a luminous blue supergiant of the OBN subclass, characterized by enhanced nitrogen abundance. Emission lines of He I are seen, at similar strength to Hβ. A complex of Fe II permitted and forbidden emission lines are seen, as in B[e] stars. The system closely resembles galactic supergiant fast X-ray transients, in terms of its hard spectrum, variability amplitude, and blue supergiant primary.

  5. The Near-Infrared Spectrum of the Planetary Nebula IC 5117

    NASA Astrophysics Data System (ADS)

    Rudy, Richard J.; Lynch, David K.; Mazuk, S.; Puetter, R. C.; Dearborn, David S. P.

    2001-01-01

    Infrared spectroscopy from 0.8 to 2.5 μm is presented for the planetary nebula IC 5117. The emission lines of IC 5117 span a wide range of ionization that includes He II, [S III], [S II], [N I], and H2. The reddening measured from the hydrogen lines is E(B-V)=0.79, most of which is probably interstellar in origin. The He/H abundance ratio is 0.113+/-0.015, with approximately 10% of the helium being doubly ionized. Using our measurements of [S II] and [S III] lines and published observations of [S IV], we find a sulfur abundance, relative to hydrogen, of N(S)/N(H)=7.8×10-6, or approximately half the solar value. Fluxes and flux limits for several lines of molecular hydrogen are presented. Measurements of 1-0 transitions, together with the limits on 2-1 transitions, indicate Tvib~Trot=1900 K, suggesting a purely collisional excitation mechanism. The ortho-to-para ratio is ~3, a value that is also indicative of collisional excitation. The presence of [C I] λ9850 is consistent with previous studies of IC 5117 that indicated carbon is more abundant than oxygen. IC 5117 follows the trend of planetary nebulae that display bipolar outflows and H2 emission to be carbon-rich. We confirm the results of Zhang & Kwok, who reported infrared continuum emission substantially in excess of that produced by the ionized gas. This emission is most likely due to hot dust (T~1300 K) and accounts for roughly half of the continuum between 1.5 and 2 μm.

  6. The external origin of the polar gaseous disk of the S0 galaxy IC 5181

    NASA Astrophysics Data System (ADS)

    Pizzella, A.; Morelli, L.; Corsini, E. M.; Dalla Bontà, E.; Cesetti, M.

    2013-12-01

    Context. Galaxies accrete material from the environment through acquisition and merging events. These processes contribute to galaxy assembly and leave their fingerprints on the galactic morphology, internal kinematics of gas and stars, and stellar populations. Aims: We study the nearby S0 galaxy IC 5181 to address the origin of the ionized gas component that orbits the galaxy on polar orbits. Methods: We measure the surface brightness distribution of the stars and ionized gas of IC 5181 from broadband and narrow-band imaging. The structural parameters of the galaxy are obtained with a photometric decomposition assuming a Sérsic and exponential profile for the bulge and disk, respectively. We measure the ionized-gas and stellar kinematics and the line strengths of the Lick indices of the stellar component along both the major and minor axis. The age, metallicity, and [α/Fe] enhancement of the stellar populations are derived using single stellar population models with variable element abundance ratios. The ionized-gas metallicity is obtained from the equivalent width of the emission lines. Results: The galaxy IC 5181 is a morphologically undisturbed S0 galaxy with a classical bulge made by old stars with super solar metallicity and overabundance. Stellar age and metallicity decrease in the disk region. The galaxy hosts a geometrically and kinematically decoupled component of ionized gas. It is elongated along the galaxy minor axis and in orthogonal rotation with respect to the galaxy disk. Conclusions: We interpret the kinematical decoupling as suggesting that there is a component of gas, which is not related to the stars and having an external origin. The gas was accreted by IC 5181 on polar orbits from the surrounding environment. Based on observation collected at the European Southern Observatory for the programme 63.N-0327(A).Tables 1-3 are available in electronic form at http://www.aanda.org

  7. High-resolution elemental abundance analysis of the open cluster IC 4756

    NASA Astrophysics Data System (ADS)

    Ting, Yuan-Sen; De Silva, Gayandhi M.; Freeman, Kenneth C.; Parker, Stacey Jo

    2012-11-01

    We present detailed elemental abundances of 12 subgiants in the open cluster IC 4756 including Na, Al, Mg, Si, Ca, Ti, Cr, Ni, Fe, Zn and Ba. We measure the cluster to have [Fe/H] = -0.01 ± 0.10. Most of the measured star-to-star [X/H] abundance variation is below σ < 0.03, as expected from a coeval stellar population preserving natal abundance patterns, supporting the use of elemental abundances as a probe to reconstruct dispersed clusters. We find discrepancies between Cr I and Cr II abundances as well as between Ti I and Ti II abundances, where the ionized abundances are larger by about 0.2 dex. This follows other such studies which demonstrate the effects of overionization in cool stars. IC 4756 are supersolar in Mg, Si, Na and Al, but are solar in the other elements. The fact that IC 4756 is supersolar in some α-elements (Mg, Si) but solar in the others (Ca, Ti) suggests that the production of α-elements is not simply one dimensional and could be exploited for chemical tagging.

  8. ULTRA-STRIPPED TYPE Ic SUPERNOVAE FROM CLOSE BINARY EVOLUTION

    SciTech Connect

    Tauris, T. M.; Langer, N.; Moriya, T. J.; Podsiadlowski, Ph.; Yoon, S.-C.; Blinnikov, S. I.

    2013-12-01

    Recent discoveries of weak and fast optical transients raise the question of their origin. We investigate the minimum ejecta mass associated with core-collapse supernovae (SNe) of Type Ic. We show that mass transfer from a helium star to a compact companion can produce an ultra-stripped core which undergoes iron core collapse and leads to an extremely fast and faint SN Ic. In this Letter, a detailed example is presented in which the pre-SN stellar mass is barely above the Chandrasekhar limit, resulting in the ejection of only ∼0.05-0.20 M {sub ☉} of material and the formation of a low-mass neutron star (NS). We compute synthetic light curves of this case and demonstrate that SN 2005ek could be explained by our model. We estimate that the fraction of such ultra-stripped to all SNe could be as high as 10{sup –3}-10{sup –2}. Finally, we argue that the second explosion in some double NS systems (for example, the double pulsar PSR J0737–3039B) was likely associated with an ultra-stripped SN Ic.

  9. Chemical Abundances of the Planetary Nebula IC 4634 and Its Central Star

    NASA Technical Reports Server (NTRS)

    Hyung, S.; Aller, L. H.; Feibelman, W. A.

    1999-01-01

    We have measured the spectral line intensities of the metal poor planetary nebula IC 4634. Using a photo-ionization model calculation, we try to fit the the optical and UV region spectra, i.e., Hamilton Echelle and IUE observations. From direct images, one expects complicated density variations, but the model predicts a range in densities that may be smaller than actually exist. We find N(sub epsilon) approximates 5000 /cubic meter. In spite of the geometrical complexity of the S shaped double-lobed structure, the simple photoionization model with a spherical symmetry can fit most emission lines, fairly well. The derived chemical composition has been compared with previous estimates and also with the Sun - The metallicity in IC 4634 appears to be lower than in the Sun or the average planetary nebula. The most likely temperature of the central ionizing source of IC 4634 appears to be about 55,000 K. We find a central star mass of about 0.55 Solar Mass from comparison with theoretical evolutionary tracks.

  10. Monolithic 3D-ICs with single grain Si thin film transistors

    NASA Astrophysics Data System (ADS)

    Ishihara, R.; Derakhshandeh, J.; Tajari Mofrad, M. R.; Chen, T.; Golshani, N.; Beenakker, C. I. M.

    2012-05-01

    Monolithic 3D integration is the ultimate approach in 3D-ICs as it provides high-density and submicron vertical interconnects and hence transistor level integration. Here, high-quality Si layer formation at a low temperature is a key challenge. We review our recent achievements in monolithic 3D-ICs based on single-grain Si TFTs that are fabricated inside a single-grain with a low-temperature process. With the μ-Czochralski process based on a pulsed-laser crystallization, Si grains with a diameter of 6 μm are successfully formed on predetermined positions. Single-grain (SG) Si TFTs are fabricated inside the single-grain with mobility for electron and holes of 600 cm2/V s and 200 cm2/V s, respectively. Two layers of the SG Si TFT were vertically stacked and successfully implemented into CMOS inverter, 3D 6T-SRAM and single-grain lateral PIN photo-diode with in-pixel amplifier. Those results indicate that the SG TFTs are attractive for use in monolithic 3D-ICs on an arbitrary substrate including a glass and even a plastic for applications such as ultra-high-density memories, logic-to-logic integration, CPU integrated display, and high-definition image sensor for artificial retina.

  11. A mildly relativistic radio jet from the otherwise normal type Ic supernova 2007gr

    NASA Astrophysics Data System (ADS)

    Paragi, Z.; Taylor, G. B.; Kouveliotou, C.; Granot, J.; Ramirez-Ruiz, E.; Bietenholz, M.; van der Horst, A. J.; Pidopryhora, Y.; van Langevelde, H. J.; Garrett, M. A.; Szomoru, A.; Argo, M. K.; Bourke, S.; Paczyński, B.

    2010-01-01

    The class of type Ic supernovae have drawn increasing attention since 1998 owing to their sparse association (only four so far) with long duration γ-ray bursts (GRBs). Although both phenomena originate from the core collapse of a massive star, supernovae emit mostly at optical wavelengths, whereas GRBs emit mostly in soft γ-rays or hard X-rays. Though the GRB central engine generates ultra-relativistic jets, which beam the early emission into a narrow cone, no relativistic outflows have hitherto been found in type Ib/c supernovae explosions, despite theoretical expectations and searches. Here we report radio (interferometric) observations that reveal a mildly relativistic expansion in a nearby type Ic supernova, SN 2007gr. Using two observational epochs 60days apart, we detect expansion of the source and establish a conservative lower limit for the average apparent expansion velocity of 0.6c. Independently, a second mildly relativistic supernova has been reported. Contrary to the radio data, optical observations of SN 2007gr indicate a typical type Ic supernova with ejecta velocities ~6,000kms-1, much lower than in GRB-associated supernovae. We conclude that in SN 2007gr a small fraction of the ejecta produced a low-energy mildly relativistic bipolar radio jet, while the bulk of the ejecta were slower and, as shown by optical spectropolarimetry, mildly aspherical.

  12. Stress Voiding in IC Interconnects - Rules of Evidence for Failure Analysts

    SciTech Connect

    FILTER, WILLIAM F.

    1999-09-17

    Mention the words ''stress voiding'', and everyone from technology engineer to manager to customer is likely to cringe. This IC failure mechanism elicits fear because it is insidious, capricious, and difficult to identify and arrest. There are reasons to believe that a damascene-copper future might be void-free. Nevertheless, engineers who continue to produce ICs with Al-alloy interconnects, or who assess the reliability of legacy ICs with long service life, need up-to-date insights and techniques to deal with stress voiding problems. Stress voiding need not be fearful. Not always predictable, neither is it inevitable. On the contrary, stress voids are caused by specific, avoidable processing errors. Analytical work, though often painful, can identify these errors when stress voiding occurs, and vigilance in monitoring the improved process can keep it from recurring. In this article, they show that a methodical, forensics approach to failure analysis can solve suspected cases of stress voiding. This approach uses new techniques, and patiently applies familiar ones, to develop evidence meeting strict standards of proof.

  13. Investigation of the bases for use of the K sub Ic curve

    SciTech Connect

    McCabe, D.E.; Nanstad, R.K. ); Rosenfield, A.R.; Marschall, C.W. ); Irwin, G.R. )

    1991-01-01

    Title 10 of the Code of Federal Regulations, Part 50 (10CFR50), Appendix G, establishes the bases for setting allowable pressure and temperature limits on reactors during heatup and cooldown operation. Both the K{sub Ic} and K{sub Ia} curves are utilized in prescribed ways to maintain reactor vessel structural integrity in the presence of an assumed or actual flaw and operating stresses. Currently, the code uses the K{sub Ia} curve, normalized to the RT{sub NDT}, to represent the fracture toughness trend for unirradiated and irradiated pressure vessel steels. Although this is clearly a conservative policy, it has been suggested that the K{sub Ic} curve is the more appropriate for application to a non-accident operating condition. A number of uncertainties have been identified, however, that might convert normal operating transients into a dynamic loading situation. Those include the introduction of running cracks from local brittle zones, crack pop-ins, reduced toughness from arrested cleavage cracks, description of the K{sub Ic} curve for irradiated materials, and other related unresolved issues relative to elastic-plastic fracture mechanics. Some observations and conclusions can be made regarding various aspects of those uncertainties and they are discussed in this paper. A discussion of further work required and under way to address the remaining uncertainties is also presented.

  14. Structural changes of filled ice Ic structure for hydrogen hydrate under high pressure.

    PubMed

    Machida, Shin-ichi; Hirai, Hisako; Kawamura, Taro; Yamamoto, Yoshitaka; Yagi, Takehiko

    2008-12-14

    High-pressure experiments of hydrogen hydrate, filled ice Ic structure, were performed using a diamond-anvil cell in the pressure range of 0.1-80.3 GPa at room temperature. In situ x-ray diffractometry (XRD) revealed that structural changes took place at approximately 35-40 and 55-60 GPa, and that the high-pressure phase of hydrogen hydrate survived up to at least 80.3 GPa. Raman spectroscopy showed that the changes in vibrational mode for the hydrogen molecules in hydrogen hydrate occurred at around 40 and 60 GPa, and these results were consistent with those of the XRD. At about 40 GPa, the intermolecular distance of host water molecules consisting the framework attained the critical distance of symmetrization of the hydrogen bond for water molecules, which suggested that symmetrization of the hydrogen bond occurred at around 40 GPa. The symmetrization might introduce some structural change in the filled ice Ic structure. In addition, the existence of the high-pressure phase above 55-60 GPa implies that a denser structure than that of filled ice Ic may exist in hydrogen hydrate. PMID:19071926

  15. Interpretation of two compact planetary nebulae, IC 4997 and NGC 6572, with aid of theoretical models.

    PubMed

    Hyung, S; Aller, L H

    1993-01-15

    Observations of two dense compact planetary nebulae secured with the Hamilton Echelle spectrograph at Lick Observatory combined with previously published UV spectra secured with the International Ultraviolet Explorer enable us to probe the electron densities and temperatures (plasma diagnostics) and ionic concentrations in these objects. The diagnostic diagrams show that no homogenous model will work for these nebulae. NGC 6572 may consist of an inner torordal ring of density 25,000 atoms/cm3 and an outer conical shell of density 10,000 atoms/cm3. The simplest model of IC 4997 suggests a thick inner shell with a density of about 107 atoms/cm3 and an outer envelope of density 10,000 atoms/cm3. The abundances of all elements heavier than He appear to be less than the solar values in NGC 6572, whereas He, C, N, and O may be more abundant in IC 4997 than in the sun. IC 4997 presents puzzling problems. PMID:11607347

  16. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora Ic clade species

    PubMed Central

    Lassiter, Erica S.; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda; Olarte, Rodrigo; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L.; Ristaino, Jean B.

    2015-01-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species including P. phaseoli, P. ipomoeae, P. mirabilis, and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans in order to resolve the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests further sampling in the Americasis warranted to understand the distribution of this species hybrid in nature. PMID:25754775

  17. Iron Abundances and Atmospheric Parameters of Red Giants in the Open Cluster IC 4756

    NASA Astrophysics Data System (ADS)

    Djordjevic, Julie O.

    Three red giants were investigated within the open cluster IC 4756 using observations taken from the McDonald Observatory's 2.1m Otto Struve Telescope and the Sandiford Cassegrain Echelle Spectrometer (SES). Iron abundances were calculated for each star based on the equivalent widths of Fe I and Fe II lines measured using the line lists of Bubar and King (2010) and Schuler et al. (2005). Also derived were the basic atmospheric parameters: effective temperature, surface gravity, metallicity, and microturbulence. Her 35, Her 85, and Her 249 were found to have corresponding [Fe I/H] of 0.06 +/- 0.04, -0.16 +/- 0.03, and -0.16 +/- 0.06 as derived from the neutral lines. These values, when compared to the results of other studies, suggest that the cluster has an overall metallicity within the solar to subsolar value. This would indicate IC 4756 as a slightly metal-poor object. The star Her 85 is also examined to determine if derived atmospheric parameters support the classification of more recent studies as a nonmember of the cluster. The studies base their decisions on its deviation in radial velocity from the cluster mean. It is concluded that there is little solid evidence to support the dismissal of Her 85 from metallicity studies of IC 4756 and present-day membership and proper motion studies with modern equipment are required to confirm or reject this theory.

  18. A SPECTROSCOPICALLY NORMAL TYPE Ic SUPERNOVA FROM A VERY MASSIVE PROGENITOR

    SciTech Connect

    Valenti, Stefano; Pastorello, Andrea; Benetti, Stefano; Cappellaro, Enrico; Tomasella, Lina; Turatto, Massimo; Taubenberger, Stefan; Aramyan, Levon; Botticella, Maria Teresa; Fraser, Morgan; Smartt, Stephen J.; Magill, Lindsay; Kotak, Rubina; Wright, Darryl E.; Elias-Rosa, Nancy; Ergon, Mattias; Sollerman, Jesper; Magnier, Eugene; Price, Paul A.

    2012-04-20

    We present observations of the Type Ic supernova (SN Ic) 2011bm spanning a period of about one year. The data establish that SN 2011bm is a spectroscopically normal SN Ic with moderately low ejecta velocities and with a very slow spectroscopic and photometric evolution (more than twice as slow as SN 1998bw). The Pan-STARRS1 retrospective detection shows that the rise time from explosion to peak was {approx}40 days in the R band. Through an analysis of the light curve and the spectral sequence, we estimate a kinetic energy of {approx}7-17 foe and a total ejected mass of {approx}7-17 M{sub Sun }, 5-10 M{sub Sun} of which is oxygen and 0.6-0.7 M{sub Sun} is {sup 56}Ni. The physical parameters obtained for SN 2011bm suggest that its progenitor was a massive star of initial mass 30-50 M{sub Sun }. The profile of the forbidden oxygen lines in the nebular spectra shows no evidence of a bi-polar geometry in the ejected material.

  19. X-ray Properties of the Young Open Clusters HM1 and IC 2944-2948

    NASA Technical Reports Server (NTRS)

    Naze, Y.; Rauw, G.; Sana, H.; Corcoran, Michael F.

    2013-01-01

    Using XMM-Newton data, we study for the first time the X-ray emission of HM1 and IC 2944/2948. Low-mass, pre-main-sequence objects with an age of a few Myr are detected, as well as a few background or foreground objects. Most massive stars in both clusters display the usual high-energy properties of that type of objects, though with log [L(sub X)/L(sub BOL)] apparently lower in HM1 than in IC2944/2948. Compared with studies of other clusters, it seems that a low signal-to-noise ratio at soft energies, due to the high extinction, may be the main cause of this difference. In HM1, the two Wolf-Rayet stars show contrasting behaviors:WR89 is extremely bright, but much softer than WR87. It remains to be seen whether wind-wind collisions or magnetically confined winds can explain these emissions. In IC 2944/2948, the X-ray sources concentrate around HD 101205; a group of massive stars to the north of this object is isolated, suggesting that there exist two subclusters in the field-of-view.

  20. PREFACE: 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSquare2015)

    NASA Astrophysics Data System (ADS)

    Vlachos, Dimitrios; Vagenas, Elias C.

    2015-09-01

    The 4th International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place in Mykonos, Greece, from Friday 5th June to Monday 8th June 2015. The Conference was attended by more than 150 participants and hosted about 200 oral, poster, and virtual presentations. There were more than 600 pre-registered authors. The 4th IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather intense as after the Keynote and Invited Talks in the morning, three parallel oral and one poster session were running every day. However, according to all attendees, the program was excellent with a high quality of talks creating an innovative and productive scientific environment for all attendees. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  1. PREFACE: 3rd International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE 2014)

    NASA Astrophysics Data System (ADS)

    2015-01-01

    The third International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Madrid, Spain, from Thursday 28 to Sunday 31 August 2014. The Conference was attended by more than 200 participants and hosted about 350 oral, poster, and virtual presentations. More than 600 pre-registered authors were also counted. The third IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics etc. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel oral sessions and one poster session were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee.

  2. A mildly relativistic radio jet from the otherwise normal type Ic supernova 2007gr.

    PubMed

    Paragi, Z; Taylor, G B; Kouveliotou, C; Granot, J; Ramirez-Ruiz, E; Bietenholz, M; van der Horst, A J; Pidopryhora, Y; van Langevelde, H J; Garrett, M A; Szomoru, A; Argo, M K; Bourke, S; Paczyński, B

    2010-01-28

    The class of type Ic supernovae have drawn increasing attention since 1998 owing to their sparse association (only four so far) with long duration gamma-ray bursts (GRBs). Although both phenomena originate from the core collapse of a massive star, supernovae emit mostly at optical wavelengths, whereas GRBs emit mostly in soft gamma-rays or hard X-rays. Though the GRB central engine generates ultra-relativistic jets, which beam the early emission into a narrow cone, no relativistic outflows have hitherto been found in type Ib/c supernovae explosions, despite theoretical expectations and searches. Here we report radio (interferometric) observations that reveal a mildly relativistic expansion in a nearby type Ic supernova, SN 2007gr. Using two observational epochs 60 days apart, we detect expansion of the source and establish a conservative lower limit for the average apparent expansion velocity of 0.6c. Independently, a second mildly relativistic supernova has been reported. Contrary to the radio data, optical observations of SN 2007gr indicate a typical type Ic supernova with ejecta velocities approximately 6,000 km s(-1), much lower than in GRB-associated supernovae. We conclude that in SN 2007gr a small fraction of the ejecta produced a low-energy mildly relativistic bipolar radio jet, while the bulk of the ejecta were slower and, as shown by optical spectropolarimetry, mildly aspherical. PMID:20110996

  3. PREFACE: 2nd International Conference on Mathematical Modeling in Physical Sciences 2013 (IC-MSQUARE 2013)

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The second International Conference on Mathematical Modeling in Physical Sciences (IC-MSQUARE) took place at Prague, Czech Republic, from Sunday 1 September to Thursday 5 September 2013. The Conference was attended by more than 280 participants and hosted about 400 oral, poster, and virtual presentations while counted more than 600 pre-registered authors. The second IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields where Mathematical Modeling is used, such as Theoretical/Mathematical Physics, Neutrino Physics, Non-Integrable Systems, Dynamical Systems, Computational Nanoscience, Biological Physics, Computational Biomechanics, Complex Networks, Stochastic Modeling, Fractional Statistics, DNA Dynamics, Macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, three parallel sessions were running every day. However, according to all attendees, the program was excellent with high level of talks and the scientific environment was fruitful, thus all attendees had a creative time. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contribution to IC-MSQUARE. We also would like to thank the Members of the International Advisory and Scientific Committees as well as the Members of the Organizing Committee. Further information on the editors, speakers and committees is available in the attached pdf.

  4. Integrated pressure-sensing microsystem by CMOS IC technology for barometal applications

    NASA Astrophysics Data System (ADS)

    Zhou, Minxin; Huang, Qing-An

    2001-10-01

    Most currently integrated silicon microsystems available for pressure sensing are based on preprocessing before CMOS IC technology. These microsystems are generally very sensitive to parasitism effect and not available for IC-compatible process. This limits the accuracy of the microsystem and batch-fabrication. Calibration cost is also increased. To overcome these problems, a new generation of pressure microsystems without preprocessing CMOS IC technology has been proposed. This pressure-sensing system consists of a miniature silicon capacitive sensor, fabricated with silicon-silicon bonding technique, and a detection integrated circuit. Only the standard layers of CMOS process are used to build the system and only several photolithography steps are necessary to achieve the micromachined structure in postprocessing, so a high long-term stability could be assured. The entire system converts absolute pressure changes, in the pressure range useful for barometal applications, to frequency changes. A reference capacitor is used in the system and a (delta) C model is applied to cancel out temperature dependence and to compensate non-linearity. The pressure range of the sensor is from 0.5 bar to 1.5bar and the temperature varies between -25 degree(s)C and -60 degree(s)C. A sensitivity of 50Hz/Torr could be achieved.

  5. An NFC-Enabled CMOS IC for a Wireless Fully Implantable Glucose Sensor.

    PubMed

    DeHennis, Andrew; Getzlaff, Stefan; Grice, David; Mailand, Marko

    2016-01-01

    This paper presents an integrated circuit (IC) that merges integrated optical and temperature transducers, optical interface circuitry, and a near-field communication (NFC)-enabled digital, wireless readout for a fully passive implantable sensor platform to measure glucose in people with diabetes. A flip-chip mounted LED and monolithically integrated photodiodes serve as the transduction front-end to enable fluorescence readout. A wide-range programmable transimpedance amplifier adapts the sensor signals to the input of an 11-bit analog-to-digital converter digitizing the measurements. Measurement readout is enabled by means of wireless backscatter modulation to a remote NFC reader. The system is able to resolve current levels of less than 10 pA with a single fluorescent measurement energy consumption of less than 1 μJ. The wireless IC is fabricated in a 0.6-μm-CMOS process and utilizes a 13.56-MHz-based ISO15693 for passive wireless readout through a NFC interface. The IC is utilized as the core interface to a fluorescent, glucose transducer to enable a fully implantable sensor-based continuous glucose monitoring system. PMID:26372659

  6. Resolving the hadronic accelerator IC 443 with Fermi-LAT and VERITAS

    NASA Astrophysics Data System (ADS)

    Hewitt, John W.; Hays, Elizabeth A.; Tajima, Hiro; Schmid, Julia; LAT Collaboration, VERITAS Collaboration

    2016-01-01

    Supernova remnants (SNRs) close to molecular clouds are ideal astrophysical laboratories to study cosmic ray acceleration and injection into the Galaxy. The Galactic SNR IC 443 is among the brightest and best-studied of such systems, detected as an extended gamma-ray source at both GeV and TeV energies. Previous observations with the AGILE and Fermi-LAT gamma-ray space telescopes have shown a low-energy cutoff at <200 MeV indicating relativistic protons are responsible for gamma-ray emission. Observations by the MAGIC and VERITAS ground-based gamma-ray telescopes show a steepening spectrum at TeV energies. Now, with updated Fermi-LAT observations using 7 yr of Pass 8 data above 1 GeV, the gamma-ray morphology of IC 443 is revealed as an inhomogeneous shell. Multi-wavelength observations have mapped the detailed physical conditions across the interaction site between the SNR and cloud, allowing us to separately study gamma-ray emission regions on scales less than 10 pc. We find an excellent correlation between GeV gamma-rays and the TeV morphology determined by VERITAS. The combination of new VERITAS and Fermi-LAT observations of IC 443 allows an unprecedented study of the environmental dependence of cosmic-ray diffusion in and around a hadronic accelerator.

  7. A kinematic study of planetary nebulae in the dwarf irregular galaxy IC10

    NASA Astrophysics Data System (ADS)

    Gonçalves, Denise R.; Teodorescu, Ana M.; Alves-Brito, Alan; Méndez, Roberto H.; Magrini, Laura

    2012-10-01

    We present positions, kinematics and the planetary nebula luminosity function (PNLF) for 35 planetary nebulae (PNe) in the nearest starburst galaxy IC10 extending out to 3 kpc from the galaxy's centre. We take advantage of the deep imaging and spectroscopic capabilities provided by the Faint Object Camera and Spectrograph on the 8.2 m Subaru Telescope. The PN velocities were measured through the slitless-spectroscopy technique, which allows us to explore the kinematics of IC10 with high precision. Using these velocities, we conclude that there is a kinematic connection between the H I envelope located around IC10 and the galaxy's PN population. By assuming that the PNe in the central regions and in the outskirts have similar ages, our results put strong observational constraints on the past tidal interactions in the Local Group. This is so because by dating the PN central stars, we, therefore, infer the epoch of a major episode of star formation likely linked to the first encounter of the H I extended envelope with the galaxy. Our deep [O III] images also allow us to use the PNLF to estimate a distance modulus of 24.1 ± 0.25, which is in agreement with recent results in the literature based on other techniques. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  8. GaAs high-speed digital IC technology: An overview

    SciTech Connect

    Larson, L.E.; Jensen, J.F.; Greiling, P.T.

    1986-10-01

    Gallium arsenide integrated circuit technology has advanced to the stage where small-scale integration (SSI) and medium-scale integration (MSI) circuits are available for implementation in high-speed digital systems. The recent availability of GaAs wafer foundries for fabrication of custom designs, along with commercially available GaAs components, allows system designers for the first time to take advantage of the inherent high speed and low power capabilities of the technology. Large-scale integration (LSI) complexity circuits are already being fabricated in the United States and abroad, and higher levels of integration are expected. This will result in improved levels of performance for large digital systems. The advantages of higher levels of integration are clearly evident, although there appears to be an optimum level of integration for each GaAs logic family beyond which system speed actually degrades. In conjunction with the development of GaAs technology, an industry-standard GaAs production process is also evolving. This generic process is available (with minor variations) from most of the GaAs wafer foundries and IC manufacturers. Here the authors review digital GaAs IC device and circuit technology and analyze the performance of GaAs circuits fabricated by this production process. They also analyze the effect of the GaAs IC integration level on computer system speed.

  9. Young Low-Mass Stars and Brown Dwarfs in IC 348

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.

    1999-11-01

    I present new results from a continuing program to identify and characterize the low-mass stellar and substellar populations in the young cluster IC 348 (0.5-10 Myr). Optical spectroscopy has revealed young objects with spectral types as late as M8.25. The intrinsic J-H and H-K colors of these sources are dwarflike, whereas the R-I and I-J colors appear intermediate between the colors of dwarfs and giants. Furthermore, the spectra from 6500 to 9500 Å are reproduced well with averages of standard dwarf and giant spectra, suggesting that such averages should be used in the classification of young late-type sources. An H-R diagram is constructed for the low-mass population in IC 348 (K6-M8). The presumably coeval components of the young quadruple system GG Tau (White et al.) and the locus of stars in IC 348 are used as empirical isochrones to test the theoretical evolutionary models. The calculations of Burrows et al. do not appear to be consistent with the data at these earliest stages of stellar evolution. There is fair agreement between the data and the model isochrones of D'Antona & Mazzitelli, except near the hydrogen-burning limit. The agreement cannot be improved by changing the conversion between spectral types and effective temperatures. On the other hand, for the models of Baraffe et al., an adjustment of the temperature scale to progressively warmer temperatures at later M types, intermediate between dwarfs and giants, brings all components of GG Tau onto the same model isochrone and gives the population of IC 348 a constant age and age spread as a function of mass. When other observational constraints are considered, such as the dynamical masses of GM Aur, DM Tau, and GG Tau A, the models of Baraffe et al. are the most consistent with observations of young systems. With compatible temperature scales, the models of both D'Antona & Mazzitelli and Baraffe et al. suggest that the hydrogen-burning mass limit occurs near M6 at ages of <~10 Myr. Thus, several

  10. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 14, 1961, shows the abandoned site entirely flooded. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  11. Construction Progress of the S-IC Test Stand-Flooding

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September 1961 as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction about to resume, portable, floating pump stations were placed in the site to drain the flood waters caused by a disturbed natural spring months prior during excavation. In this March 31, 1962 photo, the foundation walls can once again be seen.

  12. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 22, 1961, shows danger signs posted around the abandoned site with floods nearing the top. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  13. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 4, 1961, shows the abandoned site with floods at the 11 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  14. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 8, 1961, shows the abandoned site with floods at the 16 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  15. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand would have to be modified. With construction delayed, and pumps turned off, this photo, taken December 4, 1961, shows the abandoned site with floods at the 11 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  16. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken February 2, 1962, shows the abandoned flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  17. Construction Progress of the S-IC Test Stand-Flooding

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken March 15, 1962, shows danger signs posted around the abandoned, flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  18. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 11, 1961, shows the abandoned site with floods above the 18 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  19. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 18, 1961, shows the abandoned site entirely flooded. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  20. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction about to resume, portable floating pump stations were placed in the site, as seen in this March 20, 1962 photo, to drain the flood waters caused by a disturbed natural spring months prior during excavation.

  1. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken December 1, 1961, shows the abandoned site with floods at the 6 ft mark. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  2. Construction Progress of the S-IC Test Stand-Delay

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. Construction of the S-IC test stand came to a halt at the end of September as the determination was made that the Saturn booster size had to be increased. As a result, the stand had to be modified. With construction delayed, and pumps turned off, this photo, taken January 23, 1962, shows the abandoned flooded site. The flooding was caused by the disturbance of a natural spring months prior during the excavation of the site.

  3. Construction Progress of the S-IC Test Stand-Excavation

    NASA Technical Reports Server (NTRS)

    1961-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In this photo, taken July 13, 1961, progress is being made with the excavation of the S-IC test stand site. During the digging, a natural spring was disturbed which caused a constant flooding problem. Pumps were used to remove the water all through the construction process and the site is still pumped today.

  4. PREFACE: IC-MSQUARE 2012: International Conference on Mathematical Modelling in Physical Sciences

    NASA Astrophysics Data System (ADS)

    Kosmas, Theocharis; Vagenas, Elias; Vlachos, Dimitrios

    2013-02-01

    The first International Conference on Mathematical Modelling in Physical Sciences (IC-MSQUARE) took place in Budapest, Hungary, from Monday 3 to Friday 7 September 2012. The conference was attended by more than 130 participants, and hosted about 290 oral, poster and virtual papers by more than 460 pre-registered authors. The first IC-MSQUARE consisted of different and diverging workshops and thus covered various research fields in which mathematical modelling is used, such as theoretical/mathematical physics, neutrino physics, non-integrable systems, dynamical systems, computational nanoscience, biological physics, computational biomechanics, complex networks, stochastic modelling, fractional statistics, DNA dynamics, and macroeconomics. The scientific program was rather heavy since after the Keynote and Invited Talks in the morning, two parallel sessions ran every day. However, according to all attendees, the program was excellent with a high level of talks and the scientific environment was fruitful; thus all attendees had a creative time. The mounting question is whether this occurred accidentally, or whether IC-MSQUARE is a necessity in the field of physical and mathematical modelling. For all of us working in the field, the existing and established conferences in this particular field suffer from two distinguished and recognized drawbacks: the first is the increasing orientation, while the second refers to the extreme specialization of the meetings. Therefore, a conference which aims to promote the knowledge and development of high-quality research in mathematical fields concerned with applications of other scientific fields as well as modern technological trends in physics, chemistry, biology, medicine, economics, sociology, environmental sciences etc., appears to be a necessity. This is the key role that IC-MSQUARE will play. We would like to thank the Keynote Speaker and the Invited Speakers for their significant contributions to IC-MSQUARE. We would also

  5. Recent Progresses in Laboratory Astrophysics with Ames’ COSmIC Facility

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Contreras, Cesar; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2016-06-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) [3] and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [4] and planetary atmospheres [5]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References: [1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Salama F., Galazutdinov G., Krelowski J

  6. IDENTIFICATION OF AMBIENT MOLECULAR CLOUDS ASSOCIATED WITH GALACTIC SUPERNOVA REMNANT IC 443

    SciTech Connect

    Lee, Jae-Joon; Koo, Bon-Chul; Snell, Ronald L.; Yun, Min S.; Heyer, Mark H.; Burton, Michael G.

    2012-04-10

    The Galactic supernova remnant (SNR) IC 443 is one of the most studied core-collapse SNRs for its interaction with molecular clouds. However, the ambient molecular clouds with which IC 443 is interacting have not been thoroughly studied and remain poorly understood. Using the Five College Radio Astronomy Observatory 14 m telescope, we obtained fully sampled maps of the {approx}1 Degree-Sign Multiplication-Sign 1 Degree-Sign region toward IC 443 in the {sup 12}CO J = 1-0 and HCO{sup +} J = 1-0 lines. In addition to the previously known molecular clouds in the velocity range v{sub LSR} = -6 to -1 km s{sup -1} (-3 km s{sup -1} clouds), our observations reveal two new ambient molecular cloud components: small ({approx}1') bright clouds in v{sub LSR} = -8 to -3 km s{sup -1} (SCs) and diffuse clouds in v{sub LSR} = +3 to +10 km s{sup -1} (+5 km s{sup -1} clouds). Our data also reveal the detailed kinematics of the shocked molecular gas in IC 443; however, the focus of this paper is the physical relationship between the shocked clumps and the ambient cloud components. We find strong evidence that the SCs are associated with the shocked clumps. This is supported by the positional coincidence of the SCs with shocked clumps and other tracers of shocks. Furthermore, the kinematic features of some shocked clumps suggest that these are the ablated material from the SCs upon the impact of the SNR shock. The SCs are interpreted as dense cores of parental molecular clouds that survived the destruction by the pre-supernova evolution of the progenitor star or its nearby stars. We propose that the expanding SNR shock is now impacting some of the remaining cores and the gas is being ablated and accelerated, producing the shocked molecular gas. The morphology of the +5 km s{sup -1} clouds suggests an association with IC 443. On the other hand, the -3 km s{sup -1} clouds show no evidence for interaction.

  7. Laboratory Astrophysics Studies with the COSmIC Facility: Interstellar and Planetary Applications.

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Contreras, Cesar S.; Sciamma-O'Brien, Ella; Bejaoui, Salma

    2015-08-01

    We present and discuss the characteristics and the capabilities of the laboratory facility, COSmIC, that was developed at NASA Ames to generate, process and analyze interstellar, circumstellar and planetary analogs in the laboratory [1]. COSmIC stands for “Cosmic Simulation Chamber” and is dedicated to the study of neutral and ionized molecules and nano particles under the low temperature and high vacuum conditions that are required to simulate space environments. COSmIC integrates a variety of state-of-the-art instruments that allow forming, processing and monitoring simulated space conditions for planetary, circumstellar and interstellar materials in the laboratory. COSmIC is composed of a Pulsed Discharge Nozzle (PDN) expansion that generates a plasma in free supersonic jet expansion coupled to two high-sensitivity, complementary in situ diagnostics: a Cavity Ring Down Spectroscopy (CRDS) and laser induced fluorescence (LIF) systems for photonic detection and a Reflectron Time-Of-Flight Mass Spectrometer (ReTOF-MS) for mass detection [2].Recent laboratory astrophysics results that were obtained using COSmIC will be presented, in particular the progress that has been achieved in the domain of the diffuse interstellar bands (DIBs) and in monitoring, in the laboratory, the formation of dust grains and aerosols from their gas-phase molecular precursors in environments as varied as stellar/circumstellar outflows [3] and planetary atmospheres [4]. Plans for future, next generation, laboratory experiments on cosmic molecules and grains in the growing field of laboratory astrophysics will also be addressed as well as the implications of the current studies for astronomy.References:[1] Salama F., In Organic Matter in Space, IAU Symposium 251, Kwok & Sandford Eds.Cambridge University Press, Vol. 4, S251, p. 357 (2008) and references therein.[2] Ricketts C., Contreras C., Walker, R., Salama F., Int. J. Mass Spec, 300, 26 (2011)[3] Cesar Contreras and Farid Salama, The

  8. Construction Progress of the S-IC Test Stand Flame Deflector

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo of the S-IC test stand, taken September 25, 1963, the flame deflector can be seen rotated to the outside on

  9. Construction Progress of the S-IC Test Stand-Pump House Waterline

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through

  10. Construction Progress of the S-IC Test Stand-Completed Block House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photograph, taken February 25, 1963, gives a close up look at the completed Block House. The side shown faces the S-IC Test Stand.

  11. Construction Progress of the S-IC Test Stand Flame Deflector

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the east was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photo, taken August 12, 1963, the S-IC stand has received some of its internal components. Directly in the center is the framework

  12. Construction Progress of the S-IC Test Stand and Block House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This photograph taken February 4, 1963, gives an impressive look at the Block House looking directly through the ever-growing four towers of the S-IC Test Stand.

  13. Construction Progress of the S-IC Test Stand-Pumps

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. This photo, taken April 4, 1961, shows the S-IC test stand dry once again when workers resumed construction after a 6 month delay due to booster size reconfiguration back in September of 1961. The disturbance of a natural spring during the excavation of the site required water to be pumped from the site continuously. The site was completely flooded after the pumps were shut down during the construction delay.

  14. Refined turbulence models for simulation of IC-engine cylinder flows

    NASA Astrophysics Data System (ADS)

    Yavuz, Ibrahim

    2000-11-01

    Turbulence and turbulent mixing are two of the most important factors that influence the efficiency and emissions level in internal combustion (IC) engines, particularly for diesel engines. This study has been performed with the premise to accurately predict in-cylinder turbulence by employing the large eddy simulation (LES) technique. In order to assess the turbulence scales involved correctly, a review of measured and computed scales relevant to IC engines is conducted. An assessment of these is made in comparison with the self-imposed scales of the engine itself. This assessment focuses on the influence of combustion, compression ratio, initial conditions and numerical mesh on predicted turbulence scales. It was found that the turbulence scales predicted by employing the commonly used k-epsilon turbulence model were in good qualitative agreement with experimental observations and could be used as a guide to determine the degree of resolution needed in LES. To establish a base to improve existing Reynolds averaged Navier-Stokes (RANS) models, a comparative study of the commonly used RANS models applied to IC engines was conducted, using an experimental benchmark case, which is an isothermal, incompressible flow within a piston-cylinder arrangement motored without combustion. This study has lead to a new hybrid turbulence model, namely, the Smagorinsky based eddy viscosity (SEV) model, which is self-adjusting between an eddy viscosity model and subgrid-scale model, depending on the grid size, continuously from RANS to LES. It was tested against the above-mentioned experimental benchmark. The predicted velocity profiles and streamlines are in good agreement with experiments. The new model is a viable alternative to the k-epsilon model in predicting the mean flowfield in IC engines. Furthermore, the relative importance of the turbulence generation mechanisms in IC engines has been studied using LES. First, the compression and expansion strokes of a piston

  15. Construction Progress of the S-IC Test Stand- Pump House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small

  16. Construction Progress of S-IC Test Stand Complex-Aerial

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. The F-1 Engine test stand was built north of the massive S-IC test stand. The F-1 test stand is a vertical engine firing test stand, 239 feet in elevation and 4,600 square feet in area at the base, and

  17. A Herschel view of IC 1396 A: Unveiling the different sequences of star formation

    NASA Astrophysics Data System (ADS)

    Sicilia-Aguilar, Aurora; Roccatagliata, Veronica; Getman, Konstantin; Henning, Thomas; Merín, Bruno; Eiroa, Carlos; Rivière-Marichalar, Pablo; Currie, Thayne

    2014-02-01

    Context. The IC 1396 A globule, located to the west of the young cluster Tr 37, is known to host many very young stars and protostars, and is also assumed to be a site of triggered star formation. Aims: Our aim is to test the triggering mechanisms and sequences leading to star formation in Tr 37 and similar regions. Methods: We mapped IC 1396 A with Herschel/PACS at 70 and 160 μm. The maps reveal the structure of the most embedded parts of the star-forming site in great detail. Results: The Herschel/PACS maps trace the very embedded protostellar objects and the structure of the cloud. PACS data reveal a previously unknown Class 0 object, labeled IC 1396 A-PACS-1, located behind the ionization front. IC 1396 A-PACS-1 is not detectable with Spitzer, but shows marginal X-ray emission. The data also allow the study of three of the Class I intermediate-mass objects within the cloud. We derived approximate cloud temperatures to study the effect and potential interactions between the protostars and the cloud. The Class 0 object is associated with the densest and coldest part of IC 1396 A. Heating in the cloud is dominated by the winds and radiation of the O6.5 star HD 206267 and, to a lesser extent, by the effects of the Herbig Ae star V 390 Cep. The surroundings of the Class I and Class II objects embedded in the cloud also appear warmer than the sourceless areas, although most of the low-mass objects cannot be individually extracted owing to distance and beam dilution. Conclusions: The observations suggest that at least two episodes of star formation have occurred in IC 1396 A. One would have been the origin of the known, ˜1 Myr-old Class I and II objects in the cloud, and a new wave of star formation would have produced the Class 0 source at the tip of the bright-rimmed cloud. From its location and properties, IC 1396 A-PACS-1 is consistent with having been triggered via radiative driven implosion (RDI) induced by HD 206267. The mechanisms behind the formation of the

  18. Down-regulation of CD53 expression in Epinephelus coioides under LPS, poly (I:C), and cytokine stimulation.

    PubMed

    Hou, Chia-Yi; Lin, John Han-You; Lin, Shih-Jie; Kuo, Wan-Ching; Lin, Han-Tso

    2016-04-01

    Tetraspanins are a group of cell surface molecules involved in cell adhesion, motility, metastasis, signal transduction, and immune cell activation. Members of the tetraspanin family include CD9, CD37, CD63, CD53, and others. However, few tetraspanins have been investigated in teleosts. In this study, we obtained the open reading frame of CD53 cDNA from orange spotted grouper (Epinephelus coioices), an economically important fish. The predicted amino acid structure contains four membrane-spanning domains and a conserved CCG motif. The amino acid identity between human and grouper CD53 was only 38%; however, both CD53 proteins share the same structure. Quantitative real-time PCR revealed that mRNA is abundant in immune organs, including the head and trunk kidneys, spleen, thymus, gill, and blood. Immunochemistry and immunofluorescence analyses further revealed that CD53 was majorly expressed in the leukocytes of various organs. Finally, mRNA and protein expression for CD53 was down-regulated in fish treated with immune stimulators, including LPS, Poly (I:C), Vibrio, recombinant grouper IL-6, and CCL4. Our results indicate that the expression of CD53 may play important roles in pathogen invasion and inflammation reaction. PMID:26631805

  19. Correlation of the ionisation response at selected points of IC sensitive regions with SEE sensitivity parameters under pulsed laser irradiation

    SciTech Connect

    Gordienko, A V; Mavritskii, O B; Egorov, A N; Pechenkin, A A; Savchenkov, D V

    2014-12-31

    The statistics of the ionisation response amplitude measured at selected points and their surroundings within sensitive regions of integrated circuits (ICs) under focused femtosecond laser irradiation is obtained for samples chosen from large batches of two types of ICs. A correlation between these data and the results of full-chip scanning is found for each type. The criteria for express validation of IC single-event effect (SEE) hardness based on ionisation response measurements at selected points are discussed. (laser applications and other topics in quantum electronics)

  20. Direct exposure to nitrogen dioxide fails to induce the expression of some inflammatory cytokines in an IC-21 murine macrophage cell model.

    PubMed

    Tu, B; Wallin, A; Moldéus, P; Cotgreave, I A

    1995-12-15

    Biologically-active molecules secreted from alveolar macrophages, such as cytokines, have been proposed to be involved in the induction of pulmonary toxicity and inflammation in response to the inhalation of oxidant gas pollutants such as NO2 and O3. Despite this, mechanistic studies are hampered by the difficulty in obtaining control macrophages from human subjects, and the intrinsic variability of such primary cells. It is, thus, of importance to develop alternative models for such studies. Here, we have characterised expression kinetics of the mRNAs for tumour necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), macrophage inflammatory protein-1 alpha (MIP-1 alpha) and macrophage inflammatory protein-1 beta (MIP-1 beta) in confluent cultures of the murine IC-21 macrophage line in response to LPS. The secretion of TNF-alpha protein into the medium, assayed by L-929 cell bioassay, closely followed the expression of its mRNA in response to the LPS stimulus. In contrast to LPS, the exposure of IC-21 cells to either air or various concentrations of NO2 in air between 2 and 20 ppm, in an inverted plate exposure model, failed to induce the expression of any of the cytokine mRNAs probed. We conclude that the IC-21 cell line may represent a suitable model for studying the role of stimulated cytokine gene expression in inflammation and that the early events in the pulmonary inflammatory response to the inhalation of NO2 do not involve stimulated release of TNF-alpha, IL-1 beta or MIP-1 alpha/MIP-1 beta from macrophages. PMID:8560494

  1. 15 CFR Supplement No. 4 to Part 748 - Authorities Administering Import Certificate/Delivery Verification (IC/DV) and End-User Statement...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Controller of Imports and Exports 5, Civic Center Islamabad IC Joint Science Advisor, Ministry of Science and... Foreign Trade Ministry of Economic Affairs 1 Hu-Kou Street, Taipei IC/DV Science-based Industrial...

  2. The Effect of Combined Therapy ICS/LABA and ICS/LABA plus Montelukast in Patients with Uncontrolled Severe Persistent Asthma Based on the Serum IL-13 and FEV1

    PubMed Central

    Janeva, Elena Jovanovska; Goseva, Zlatica; Gjorchev, Angjelko; Debreslioska, Angela; Spiroski, Mirko; Zafirova, Beti; Dimitrova, Magdalena Genadieva

    2015-01-01

    BACKGROUND: IL-13 is one of many cytokines responsible for the chronic inflammation of asthma. AIM: The aim of this study was to determine the effect of combined therapy ICS/LABA and ICS/LABA plus Montelukast in patients with uncontrolled severe persistent asthma by analyzing of serum IL-13 and FEV1 before the treatment and after 6 months of therapy. MATERIAL AND METHODS: In study we included two groups. First group with 27 patients were treated with ICS/LABA. Second group with 29 patients were treated with ICS/LABA plus Montelukast. In each of them were measured serum IL-13 levels by the ELISA method and FEV1 before and after 6 months of treatment. Results were statistically analyzed according to the Wilcoxon Pairs Test and T-test. RESULTS: The obtained results in both groups showed that the serum IL-13 before the start of therapy were much higher and after 6 months of treatment significantly reduces their value, which in the second group were more expressed. The difference in the average value of FEV1 in both groups before and after therapy was statistically significant. CONCLUSION: Treatment with ICS/LABA plus Montelukast proved superior compared to therapy of ICS/LABA in patients with uncontrolled severe persistent asthma and allows achievement of well controlled of asthma with subjective clinical improvement.

  3. A sensitive data extraction algorithm based on the content associated encryption technology for ICS

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Hao, Huang; Xie, Changsheng

    With the development of HD video, the protection of copyright becomes more complicated. More advanced copyright protection technology is needed. Traditional digital copyright protection technology generally uses direct or selective encryption algorithm and the key does not associate with the video content [1]. Once the encryption method is cracked or the key is stolen, the copyright of the video will be violated. To address this issue, this paper proposes a Sensitive Data Extraction Algorithm (SDEA) based on the content associated encryption technology which applies to the Internet Certification Service (ICS). The principle of content associated encryption is to extract some data from the video and use this extracted data as the key to encrypt the rest data. The extracted part from video is called sensitive data, and the rest part is called the main data. After extraction, the main data will not be played or poorly played. The encrypted sensitive data reach the terminal device through the safety certificated network and the main data are through ICS disc. The terminal equipments are responsible for synthesizing and playing these two parts of data. Consequently, even if the main data on disc is illegally obtained, the video cannot be played normally due to the lack of necessary sensitive data. It is proved by experiments that ICS using SDEA can destruct the video effectively with 0.25% extraction rates and the destructed video cannot be played well. It can also guarantee the consistency of the destructive effect on different videos with different contents. The sensitive data can be transported smoothly under the home Internet bandwidth.

  4. The new primary X-ray component confirmed in the Seyfert I galaxy IC 4329A

    NASA Astrophysics Data System (ADS)

    Miyake, Katsuma; Noda, Hirofumi; Yamada, Shin'ya; Makishima, Kazuo; Nakazawa, Kazuhiro

    2016-04-01

    The bright and highly variable Seyfert I active galactic nucleus IC 4329A was observed with Suzaku five times in 2007 August, with intervals of ˜5 days and a net exposure of 24-31 ks each. Another longer observation was carried out in 2012 August with a net exposure of 118 ks. In the six observations, a source was detected in 2-45 keV with an average 2-10 keV fluxes of (0.67-1.2) × 10-10 erg cm-2 s-1. Its intensity changed by a factor of 2 among the five observations in 2007, and 1.5 within the 2012 observation. A difference of spectrum among these observations revealed that the variability of IC 4329A was carried mainly by a power-law component with a photon index Γ ˜ 2.0. However, in addition to this primary component and its associated reflection, the broad-band Suzaku data required another, harder, and less-variable component with Γ ˜ 1.4. The presence of this new continuum was also confirmed by analyzing the same six data sets through the spectral decomposition technique developed by Noda et al. (2013a, ApJ, 771, 100). This Γ ˜ 1.4 continuum is considered to be a new primary component that has not been recognized in the spectra of IC 4329A so far, although it was recently identified in those of several other Seyfert I galaxies (Noda et al. 2013a, ApJ, 771, 100; Noda et al. 2014, ApJ, 794, 2).

  5. XMM-Newton Observations of the Heavily Absorbed Seyfert 1 Galaxy IC 4329A

    SciTech Connect

    Steenbrugge, K.

    2005-01-05

    We detect seven distinct absorbing systems in the high-resolution X-ray spectrum of the Seyfert 1 galaxy IC 4329A, taken with XMM-Newton. Firstly we detect absorption due to cold gas in our own Galaxy and warm gas in the Galactic halo or the Local Group. This local warm gas is only detected through O VII absorption, from which we deduce a temperature between 0.03 and 0.2 keV. In IC 4329A we detect absorption from the host galaxy as well as from a warm absorber, close to the nucleus, which has 4 components. The absorption from the host galaxy is well modeled by neutral material. The warm absorber detected in IC 4329A is photoionized and has an ionization range between log {xi} = -1.37 and log {xi} = 2.7. A broad excess is measured at the O VIII Ly{alpha} and N VII Ly{alpha} emission lines, which can be modeled by either disklines or multiple Gaussians. From the lightcurve we find that the source changed luminosity by about 20 % over the 140 ks observation, while the spectral shape, i.e. the softness ratio did not vary. In the EPIC spectra a narrow Fe K{alpha} and Fe XXVI Ly{alpha} emission line are detected. The narrowness of the Fe K{alpha} line and the fact that there is no evidence for flux variability between different observations leads us to conclude that the Fe K{alpha} line is formed at a large distance from the central black hole.

  6. ON THE RADIAL EXTENT OF THE DWARF IRREGULAR GALAXY IC10

    SciTech Connect

    Sanna, N.; Bono, G.; Buonanno, R.; Stetson, P. B.; Ferraro, I.; Caputo, F.; Iannicola, G.; Monelli, M.; Nonino, M.; Prada Moroni, P. G.; Degl'Innocenti, S.; Bresolin, R.; Cignoni, M.; Matsunaga, N.; Pietrinferni, A.; Romaniello, M.; Storm, J.; Walker, A. R.

    2010-10-20

    We present new deep and accurate space (Advanced Camera for Surveys-Wide Field Planetary Camera 2 on board the Hubble Space Telescope) and ground-based (Suprime-Cam at Subaru Telescope, Mega-Cam at Canada-France-Hawaii Telescope) photometric and astrometric data for the Local Group dwarf irregular IC10. We confirm the significant decrease of the young stellar population when moving from the center toward the outermost regions. We find that the tidal radius of IC10 is significantly larger than previous estimates of r{sub t} {approx_lt} 10'. By using the I, V-I color-magnitude diagram based on the Suprime-Cam data, we detect sizable samples of red giant (RG) stars up to radial distances of 18'-23' from the galactic center. The ratio between observed star counts (Mega-Cam data) across the tip of the RG branch and star counts predicted by Galactic models indicates a star count excess at least at a 3{sigma} level up to 34'-42' from the center. This finding supports the hypothesis that the huge H I cloud covering more than 1{sup 0} across the galaxy is associated with IC10. We also provide new estimates of the total luminosity (L{sub V} {approx} 9 x 10{sup 7} L {sub sun}, M{sub V} {approx} -15.1 mag) that agree with similar estimates available in the literature. If we restrict our study to the regions where rotational velocity measurements are available (r {approx} 13'), we find a mass-to-light ratio ({approx}10 M {sub sun}/L {sub sun}) that is at least one order of magnitude larger than previous estimates. The new estimate should be cautiously treated, since it is based on a minimal fraction of the body of the galaxy.

  7. Spectral Models of the Type IC Supernova SN 1994I in M51

    NASA Astrophysics Data System (ADS)

    Baron, E.; Branch, David; Hauschildt, Peter H.; Filippenko, Alexei V.; Kirshner, R. P.

    1999-12-01

    We present detailed non-LTE (NLTE) synthetic spectra for comparison with a time series of observed optical spectra of the Type Ic supernova SN 1994I which occurred in M51. With the exceptions of Si I and S I, we treat the important species in the formation of the spectrum in full NLTE. We present results for both a hydrodynamic model that has been fitted to the light curve and for an illustrative custom-crafted model that is more massive. Both models give reasonable fits to the overall observed spectra; however, neither is able to reproduce all the observed features. Some conspicuous observed features are absent, and some predicted features are unobserved. No model that we have explored is able to reproduce satisfactorily the observed infrared feature near 1 μm on 1994 April 15 (+7 days), which has been attributed to the triplet He I λ10830 transition. The low-mass hydrodynamic model produces an infrared feature with a blend of He I, C I, O I, and Si I-Si II lines, but it predicts a strong unobserved absorption feature near 6100 Å due to Fe III, and the observed feature just blueward of 6000 Å most likely due to Na D is not reproduced. The more massive model does a better job of reproducing the observed infrared line shape, but also predicts the unobserved feature near 6100 Å. The early-time spectrum of the low-mass model is far too blue; thus, a more massive model may be slightly favored. Since the predicted infrared feature is produced by a blend of so many elements, and there is no overwhelming evidence for other helium features such as λ5876, it may be premature to conclude that SNe Ic unambiguously contain helium. Thus, we conclude that pure C + O cores are still viable progenitors for SNe Ic.

  8. Developing a Decision Support System for Flood Response: NIMS/ICS Fundamentals

    NASA Astrophysics Data System (ADS)

    Gutenson, J. L.; Zhang, X.; Ernest, A. N. S.; Oubeidillah, A.; Zhu, L.

    2015-12-01

    Effective response to regional disasters such as floods requires a multipronged, non-linear approach to reduce loss of life, property and harm to the environment. These coordinated response actions are typically undertaken by multiple jurisdictions, levels of government, functional agencies and other responsible entities. A successful response is highly dependent on the effectiveness and efficiency of each coordinated response action undertaken across a broad spectrum of organizations and activities. In order to provide a unified framework for those responding to incidents or planned events, FEMA provides a common and flexible approach for managing incidents, regardless of cause, size, location or complexity, referred to as the National Incident Management System (NIMS). Integral to NIMS is the Incident Command System (ICS), which establishes a common, pre-defined organizational structure to ensure coordination and management of procedures, resources and communications, for efficient incident management. While being both efficient and rigorous, NIMS, and ICS to a lesser extent, is an inherently complex framework that requires significant amount of training for planners, responders and managers to master, especially considering the wide array of incident types that Local Emergency Planning Committees (LEPCs) must be prepared to respond to. The existing Water-Wizard Decision Support System (DSS), developed to support water distribution system recovery operations for Decontamination (Decon), Operational Optimization (WDS), and Economic Consequence Assessment (Econ), is being evolved to integrate incident response functions. Water-Wizard runs on both mobile and desktop devices, and is being extended to utilize smartphone and mobile device specific data streams (e.g GPS location) to augment its fact-base in real-time for situational-aware DSS recommendations. In addition, the structured NIMS and ICS frameworks for incident management and response are being incorporated

  9. ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE

    SciTech Connect

    Pastorello, A.; Smartt, S. J.; Botticella, M. T.; Maguire, K.; Fraser, M.; Smith, K.; Kotak, R.; Magill, L.; Valenti, S.; Young, D. R.; Mattila, S.; Kankare, E.; Gezari, S.; Bresolin, F.; Kudritzki, R.; Howell, D. A.; Rest, A.; Metcalfe, N.; Huang, K. Y.; Urata, Y.

    2010-11-20

    Recent searches by unbiased, wide-field surveys have uncovered a group of extremely luminous optical transients. The initial discoveries of SN 2005ap by the Texas Supernova Search and SCP-06F6 in a deep Hubble pencil beam survey were followed by the Palomar Transient Factory confirmation of host redshifts for other similar transients. The transients share the common properties of high optical luminosities (peak magnitudes {approx}-21 to -23), blue colors, and a lack of H or He spectral features. The physical mechanism that produces the luminosity is uncertain, with suggestions ranging from jet-driven explosion to pulsational pair instability. Here, we report the most detailed photometric and spectral coverage of an ultra-bright transient (SN 2010gx) detected in the Pan-STARRS 1 sky survey. In common with other transients in this family, early-time spectra show a blue continuum and prominent broad absorption lines of O II. However, about 25 days after discovery, the spectra developed type Ic supernova features, showing the characteristic broad Fe II and Si II absorption lines. Detailed, post-maximum follow-up may show that all SN 2005ap and SCP-06F6 type transients are linked to supernovae Ic. This poses problems in understanding the physics of the explosions: there is no indication from late-time photometry that the luminosity is powered by {sup 56}Ni, the broad light curves suggest very large ejected masses, and the slow spectral evolution is quite different from typical Ic timescales. The nature of the progenitor stars and the origin of the luminosity are intriguing and open questions.

  10. The new primary X-ray component confirmed in the Seyfert I galaxy IC 4329A

    NASA Astrophysics Data System (ADS)

    Miyake, Katsuma; Noda, Hirofumi; Yamada, Shin'ya; Makishima, Kazuo; Nakazawa, Kazuhiro

    2016-06-01

    The bright and highly variable Seyfert I active galactic nucleus IC 4329A was observed with Suzaku five times in 2007 August, with intervals of ˜5 days and a net exposure of 24-31 ks each. Another longer observation was carried out in 2012 August with a net exposure of 118 ks. In the six observations, a source was detected in 2-45 keV with an average 2-10 keV fluxes of (0.67-1.2) × 10-10 erg cm-2 s-1. Its intensity changed by a factor of 2 among the five observations in 2007, and 1.5 within the 2012 observation. A difference of spectrum among these observations revealed that the variability of IC 4329A was carried mainly by a power-law component with a photon index Γ ˜ 2.0. However, in addition to this primary component and its associated reflection, the broad-band Suzaku data required another, harder, and less-variable component with Γ ˜ 1.4. The presence of this new continuum was also confirmed by analyzing the same six data sets through the spectral decomposition technique developed by Noda et al. (2013a, ApJ, 771, 100). This Γ ˜ 1.4 continuum is considered to be a new primary component that has not been recognized in the spectra of IC 4329A so far, although it was recently identified in those of several other Seyfert I galaxies (Noda et al. 2013a, ApJ, 771, 100; Noda et al. 2014, ApJ, 794, 2).

  11. X-ray properties of the young open clusters HM1 and IC 2944/2948

    NASA Astrophysics Data System (ADS)

    Nazé, Y.; Rauw, G.; Sana, H.; Corcoran, M. F.

    2013-07-01

    Using XMM-Newton data, we study for the first time the X-ray emission of HM1 and IC 2944/2948. Low-mass, pre-main-sequence objects with an age of a few Myr are detected, as well as a few background or foreground objects. Most massive stars in both clusters display the usual high-energy properties of that type of objects, though with log [LX/LBOL] apparently lower in HM1 than in IC 2944/2948. Compared with studies of other clusters, it seems that a low signal-to-noise ratio at soft energies, due to the high extinction, may be the main cause of this difference. In HM1, the two Wolf-Rayet stars show contrasting behaviors: WR89 is extremely bright, but much softer than WR87. It remains to be seen whether wind-wind collisions or magnetically confined winds can explain these emissions. In IC 2944/2948, the X-ray sources concentrate around HD 101205; a group of massive stars to the north of this object is isolated, suggesting that there exist two subclusters in the field-of-view. Tables 2, 5, and Figs. 5, 9 are available in electronic form at http://www.aanda.orgBased on observations collected with XMM-Newton, an ESA Science Mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).Tables 1, 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/555/A83

  12. PREFACE: 2nd International Conference on Competitive Materials and Technological Processes (IC-CMTP2)

    NASA Astrophysics Data System (ADS)

    László, Gömze A.

    2013-12-01

    Competitiveness is one of the most important factors in our life and it plays a key role in the efficiency both of organizations and societies. The more scientifically supported and prepared organizations develop more competitive materials with better physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2nd International Conference on Competitive Materials and Technology Processes (ic-cmtp2) are the following: Promote new methods and results of scientific research in the fields of material, biological, environmental and technology sciences; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication between the scientist of different nations, countries and continents. Among the major fields of interest are materials with extreme physical, chemical, biological, medical, thermal, mechanical properties and dynamic strength; including their crystalline and nano-structures, phase transformations as well as methods of their technological processes, tests and measurements. Multidisciplinary applications of materials science and technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industry, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance to the program of the conference ic-cmtp2, more than 250 inquiries and registrations from different organizations were received. Researchers from 36 countries in Asia, Europe, Africa, North and South America arrived at the venue of conference. Including co-authors, the research work of more than 500 scientists are presented in this volume. Professor Dr Gömze A László Chair, ic-cmtp2 The PDF also contains lists of the boards, session chairs and sponsors.

  13. Molecular environment of the supernova remnant IC 443: Discovery of the molecular shells surrounding the remnant

    SciTech Connect

    Su, Yang; Fang, Min; Yang, Ji; Zhou, Ping; Chen, Yang

    2014-06-20

    We have carried out {sup 12}CO, {sup 13}CO, and C{sup 18}O observations toward the mixed morphology supernova remnant (SNR) IC 443. The observations cover a 1.°5 × 1.°5 area and allow us to investigate the overall molecular environment of the remnant. Some northern and northeastern partial shell structure of CO gas is around the remnant. One of the partial shells, about 5' extending beyond the northeastern border of the remnant's bright radio shell, seems to just confine the faint radio halo. On the other hand, some faint CO clumps can be discerned along the eastern boundary of the faint remnant's radio halo. Connecting the eastern CO clumps, the northeastern partial shell structures, and the northern CO partial shell, we can see that a half molecular ring structure appears to surround the remnant. The LSR velocity of the half-ring structure is in the range of –5 km s{sup –1} to –2 km s{sup –1}, which is consistent with that of the –4 km s{sup –1} molecular clouds. We suggest that the half-ring structure of the CO emission at V {sub LSR} ∼ –4 km s{sup –1} is associated with the SNR. The structures are possibly swept up by the stellar winds of SNR IC 443's massive progenitor. Based on the Wide-field Infrared Survey Explorer and the Two Micron All Sky Survey near-IR database, 62 young stellar object (YSO) candidates are selected within the radio halo of the remnant. These YSO candidates concentrated along the boundary of the remnant's bright radio shell are likely to be triggered by the stellar winds from the massive progenitor of SNR IC 443.

  14. Tick saliva regulates migration, phagocytosis, and gene expression in the macrophage-like cell line, IC-21.

    PubMed

    Kramer, Carolyn D; Poole, Nina M; Coons, Lewis B; Cole, Judith A

    2011-03-01

    We studied the effects of tick saliva on cell migration, cell signaling, phagocytosis, and gene expression in the murine macrophage cell line, IC-21. Saliva increased both basal- and platelet-derived growth factor (PDGF)-stimulated migration in IC-21 cells. However, saliva did not affect PDGF-stimulated extracellular signal-regulated kinase (ERK) activity. Zymosan-mediated interleukin-1 receptor associated kinase (IRAK) activity increased when cells were pretreated with saliva. Saliva suppressed phagocytosis of zymosan particles by IC-21 cells. An RT(2) Profiler™ PCR Array revealed that saliva regulates gene expression in a manner consistent with an immune response skewed toward a Th2 reaction, which is characterized by production of anti-inflammatory cytokines IL-4 and IL-10. Our results using IC-21 cells suggest that Dermacentor variabilis has evolved a mechanism for regulating macrophage function, which may contribute to the tick's ability to modulate immune function. PMID:21145320

  15. Rotational Periods and Starspot Activity of Young Solar-Type Dwarfs in the Open Cluster IC 4665

    NASA Technical Reports Server (NTRS)

    Allain, S.; Bouvier, J.; Prosser, C.; Marschall, L. A.; Laaksonen, B. D.

    1995-01-01

    We present the results of a V-band photometric monitoring survey of 15 late-type dwarfs in the young open cluster IC 4665. Low-amplitude periodic light variations are found for 8 stars and ascribed to the modulation by starspots that cover typically a few percent of the stellar disk. Periods range from 0.6 to 3.7 d, translating to equatorial velocities between 13 and 93 km/s. That no period longer than 4 d was detected suggests a relative paucity of extremely slow rotators (V(sub eq) much less than 10 km/s) among late-type dwarfs in IC 4665. The fractional number of slow rotators in IC 4665 is similar to that of Alpha Per cluster, suggesting that IC 4665 is close in age to Alpha Per (approx. 50 Myr).

  16. Solar cell and I.C. aspects of ingot-to-slice mechanical processing

    NASA Technical Reports Server (NTRS)

    Dyer, L. D.

    1985-01-01

    Intensive efforts have been put into the growth of silicon crystals to suit today's solar cell and integrated circuit requirements. Each step of processing the crystal must also receive concentrated attention to preserve the grown-in perfection and to provide a suitable device-ready wafer at reasonable cost. A comparison is made between solar cell and I.C. requirements on the mechanical processing of silicon from ingot to wafer. Specific defects are described that can ruin the slice or can possibly lead to device degradation. These include grinding cracks, saw exit chips, crow's-foot fractures, edge cracks, and handling scratches.

  17. HII regions in IC 1613: The ISM in a nearby dwarf irregular galaxy

    NASA Technical Reports Server (NTRS)

    Price, Jill S.; Mason, Stephen F.; Gullixson, Craig A.

    1990-01-01

    IC 1613, a nearby (725 kpc distant) dwarf irregular galaxy, has always been known to contain large, ring-shaped HII regions in its northeast corner. A new H alpha image has been obtained using the Bell Labs Charge Coupled Device (CCD) camera, an RCA 320 X 512 pixel-thinned, back-illuminated CCD, an H alpha filter of central wavelength 6562 A and width (full width half maximum) of 30 A, and the 42 inch telescope at Lowell Observatory. The low resolution images exhibit many new, faint features.

  18. A controllable IC-compatible thin-film fuse realized using electro-explosion

    NASA Astrophysics Data System (ADS)

    Ding, Xuran; Lou, Wenzhong; Feng, Yue

    2016-01-01

    A controllable IC-compatible thin-film fuse was developed that had Al/SiO2 thin-film stacks on a silicon substrate. The micro fuse has both a traditional mode and a controllable mode when applied as a fuse. It blows at 800 mA and 913.8 mV in the traditional mode. In the controllable mode, it blows within 400 ns at 10 V. It can be used for small electronic elements as well as electropyrotechnic initiators to improve the no-firing current.

  19. The UspIC: Performing Scan Matching Localization Using an Imaging Sonar

    PubMed Central

    Burguera, Antoni; Gonzàlez, Yolanda; Oliver, Gabriel

    2012-01-01

    This paper presents a novel approach to localize an underwater mobile robot based on scan matching using a Mechanically Scanned Imaging Sonar (MSIS). When used to perform scan matching, this sensor presents some problems such as significant uncertainty in the measurements or large scan times, which lead to a motion induced distortion. This paper presents the uspIC, which deals with these problems by adopting a probabilistic scan matching strategy and by defining a method to strongly alleviate the motion induced distortion. Experimental results evaluating our approach and comparing it to previously existing methods are provided. PMID:22969375

  20. Construction Progress of the S-IC Test Stand-Pump House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small

  1. Construction Progress of the S-IC Test Stand-Block House Access Tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Construction of the tunnel is depicted in this photo taken June 13, 1962.

  2. Construction Progress of the S-IC Test Stand-Block House Access Tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 26, 1962, depicts a view of the Block House tunnel opening.

  3. Construction Progress of the S-IC Test Stand-Access Tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow tunnel which housed the cables for the controls. This photograph, taken on May 21, 1962 depicts the access tunnel construction.

  4. Construction Progress of the S-IC Test Stand-Block House Access Tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken August 17, 1962 depicts a view of the Block House from the test stand site. The tunnel opening is visible in the forefront center of the photo.

  5. Field measurements and interpretation of TMI-2 instrumentation: IC-10-dPT

    SciTech Connect

    Jones, J.E.; Smith, J.T.; Mathis, M.V.

    1982-01-01

    This report describes the measurements and results of the Control Rod Drive Bypass Flow IC-10-dPT. This instrument consists of a Bailey Type BY Process Computer Transmitter connected to a readout module by approximately 500 feet of cable through a penetration junction and an instrument mounting junction. The status of this instrument is uncertain, but it was producing a reasonable output reading of zero flow which could indicate it had not failed. As a result, measurements on this instrument were designed to determine if it were properly functioning.

  6. PTF Discovery of PTF10yow (SN2010iq), a Type Ic Supernova

    NASA Astrophysics Data System (ADS)

    Arcavi, I.; Maguire, K.; Kasliwal, M. M.; Ben-Ami, S.; Sternberg, A.; Horesh, A.; Sesar, B.; Yaron, O.; Gal-Yam, A.; Sullivan, M.; Quimby, R. M.; Ofek, E. O.; Kulkarni, S. R.; Nugent, P.; Bloom, J. S.; Silverman, J. M.; Law, N. M.

    2010-11-01

    The PTF (ATEL #1964; http://www.astro.caltech.edu/ptf/) reports the discovery of PTF10yow (also discovered independently by LOSS as SN2010iq; IAUC 2493). The supernova was discovered by Oarical, an autonomous software framework of the PTF collaboration, on October 2 UT at RA(J2000) = 21:54:23.30 and DEC(J2000) = +15:09:20.7 at a magnitude of 18.5 in R-band (calibrated with respect to the USNO catalog) in the galaxy IC 5145 (z=0.0245).

  7. Static and dynamic properties of incommensurate smectic-A(IC) liquid crystals

    NASA Technical Reports Server (NTRS)

    Lubensky, T. C.; Ramaswamy, Sriram; Toner, John

    1988-01-01

    The elasticity, topological defects, and hydrodynamics of the incommensurate smectic A(IC) phase liquid crystals are studied. The phase is characterized by two colinear mass density waves of incommensurate spatial frequency. The elastic free energy is formulated in terms of a displacement field and a phason field. It is found that the topological defects of the system are dislocations with a nonzero phason field and phason field components. A two-dimensional Burgers lattice for these dislocations is introduced. It is shown that the hydrodynamic modes of the phase include first- and second-sound modes whose direction-dependent velocities are identical to those in ordinary smectics.

  8. VizieR Online Data Catalog: Time-series photometry of IC 348 (Fritzewski+, 2016)

    NASA Astrophysics Data System (ADS)

    Fritzewski, D. J.; Kitze, M.; Mugrauer, M.; Neuhauser, R.; Adam, C.; Briceno, C.; Buder, S.; Butterley, T.; Chen, W.-P.; Dincel, B.; Dhillon, V. S.; Errmann, R.; Garai, Z.; Gilbert, H. F. W.; Ginski, C.; Greif, J.; Hardy, L. K.; Hernandez, J.; Huang, P. C.; Kellerer, A.; Kundra, E.; Littlefair, S. P.; Mallonn, M.; Marka, C.; Pannicke, A.; Pribulla, T.; Raetz, St.; Schmidt, J. G.; Schmidt, T. O. B.; Seeliger, M.; Wilson, R. W.; Wolf, V.

    2016-08-01

    Our Bessell R band photometric study of IC 348 used data from eight observatories. The observations were conducted between 2012 August 22 and 2015 January 18 in 125 nights. All telescopes had observed slightly different fields, while all stars were included in the field observed from the University Observatory Jena with the Schmidt telescope (centred at RA=3:45:20, DEC=+32:04:50). This telescope has a 2048x2048 CCD and a FoV of 52.8'x58.2'. In this work we present rotation periods for members and non-members alike. (1 data file).

  9. Surprisingly high-pressure shocks in the supernova remnant IC 443

    NASA Technical Reports Server (NTRS)

    Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Burton, M. G.

    1991-01-01

    The intensities of several lines of molecular hydrogen have been measured from two regions of the supernova-remnant/molecular-cloud shock in IC 443. The lines measured have upper-state energies ranging from 7000 K to 23,000 K. Their relative intensities differ in the two regions, but are consistent with those predicted from the post-shock regions of simple jump-type shocks of different pressure. The pressures so derived are far higher than the pressure in the supernova remnant itself, and a possible reason for this discrepancy is discussed.

  10. Custom IC/Embedded IP design for histogram in video processing application

    NASA Astrophysics Data System (ADS)

    Pandey, Manoj; Chaturvedi, Richa; Rai, S. K.

    2016-03-01

    Histogram is an integral part of video processing applications. Either of the design methods ASIC or Embedded, histogram computation is an important functional block. This paper proposes the custom Integrated Circuit (IC) as an ASIC and an embedded IP to compute the colored histogram function. Histogram computation has two features: color and spatial. Color feature has been calculated using find_bin and spatial feature is calculated using kernel function. The design is verified using NCSIM Cadence tool, while it is synthesized using RTL compiler. Finally, the embedded IP has interfaced with Kernel based mean shift algorithm in tracking a moving object and implemented on Xilinx Spartan 6 LX150T FPGA.

  11. Analog/digital pH meter system I.C.

    NASA Technical Reports Server (NTRS)

    Vincent, Paul; Park, Jea

    1992-01-01

    The project utilizes design automation software tools to design, simulate, and fabricate a pH meter integrated circuit (IC) system including a successive approximation type seven-bit analog to digital converter circuits using a 1.25 micron N-Well CMOS MOSIS process. The input voltage ranges from 0.5 to 1.0 V derived from a special type pH sensor, and the output is a three-digit decimal number display of pH with one decimal point.

  12. Construction Progress of the S-IC Test Stand and Block House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This distant construction photo, taken October 26, 1962, depicts a view of the Block House and test stand site.

  13. Construction Progress of the S-IC Test Stand-Block House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken October 26, 1962, depicts a nearly completed view of the Block House.

  14. Construction Progress of the S-IC Test Stand-Block House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. In this photo taken February 4, 1963, the Block House exterior is complete.

  15. Construction Progress of the S-IC Test Stand- Block House

    NASA Technical Reports Server (NTRS)

    1962-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo, taken November 15, 1962, depicts a view of the Block House.

  16. Construction Progress of the S-IC Test Stand Pump House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. This photograph, taken September 25, 1963, depicts the construction progress of the Pump House and massive round water

  17. Construction Progress of the S-IC Test Stand Water Valve

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. In this photograph, a construction worker demonstrates the size of the massive water valve that was used in the testing cooling

  18. Construction Progress of the S-IC Pump House Water Tanks

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built to the northeast of the stand was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through small holes in the stand's 1900 ton flame deflector at the rate of 320,000 gallons per minute. This close up photograph, taken September 5, 1963, shows the ground level frame work for the Pump House and its massive

  19. Construction Progress of the S-IC Test Stand Pump House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through

  20. Construction Progress of the S-IC Test Stand Pump House

    NASA Technical Reports Server (NTRS)

    1963-01-01

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army's Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. Again to the east, just south of the Block House, was a newly constructed Pump House. Its function was to provide water to the stand to prevent melting damage during testing. The water was sprayed through