These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Structure of ice crystallized from supercooled water  

PubMed Central

The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

2012-01-01

2

Structure Of Ice Crystallized From Supercooled Water: Stacking Disordered Ice  

NASA Astrophysics Data System (ADS)

At atmospheric pressures ice is thought to exist in two well defined crystalline forms: stable hexagonal ice and metastable cubic ice. A metastable form of ice is thought to form in the atmosphere [1] Using X-ray diffraction data and Monte Carlo simulations; we show that ice that crystallizes both homogeneously and heterogeneously from supercooled water adopts neither of these two phases. The resulting ice is disordered in one dimension and consequently does not possess either cubic or hexagonal symmetry. It is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I (ice Isd ) [2]. While similar stacking disorder has been reported before, such observations have been restricted to either samples re-crystallised from high-pressure ice phases [3] or ice formation in mesopores [4]. Review of the literature reveals that almost all ice previously identified as cubic ice in diffraction studies, which have used an array of methodologies to generate the ice, were most likely stacking-disordered ice I with varying degrees of stacking disorder. Our results suggest that the initial phase of ice formed when water freezes is the metastable stacking-disordered ice I which forms independent of the method of nucleation. Stacking-disordered ice may be the kinetic product, i.e. the material which forms fastest. Accordingly, we suggest that stacking-disordered ice is always the phase to crystallise when water freezes. In many situations it will relax to the stable hexagonal phase with time. Stacking-disordered ice may persist in the colder parts of the atmosphere and form irregular or rough crystals similar to many smaller quasi spherical ice crystals observed in the earth's atmosphere. [1] B. J. Murray et al., Nature, 2005, 434, 202-205 [2] T. L. Malkin et al., PNAS, 2012, 109 (4): 1041 - 1045 [3] T. C. Hansen et al., J. Phys. Condens. Matter, 2008, 20, 285105. [4] K. Morishige et al., J. Phys. Chem. C, 2009, 113, 3056-3061.

Malkin, T. L.; Murray, B. J.; Brukhno, A.; Anwar, J.; Salzmann, C.

2012-12-01

3

Identification of a Novel "Fishbone" Structure in the Dendritic Growth of Columnar Ice Crystals  

E-print Network

Identification of a Novel "Fishbone" Structure in the Dendritic Growth of Columnar Ice Crystals will be an interesting challenge in understanding diffusion-limited crystal growth in the presence of highly anisotropic branching along growth directions that are not aligned with respect to the ice crystal lattice. Examples

Libbrecht, Kenneth G.

4

Crystal Structure, Dielectric Relaxation and Rheology of the High Pressure Phases of Ice  

NASA Astrophysics Data System (ADS)

Knowledge of the rheological properties of the high pressure polymorphs of ice is important for discussing the tectonic and cratering histories of the icy satellites, and their internal structure. Several research groups have made measurements of the viscous flow properties of these ices. There are striking rheological contrasts between the different ice phases, with some phases being notably stiffer or softer than others. Here we discuss these rheological contrasts in relation to dislocation motion in the different ice phases. The mobility of dislocations is related to the dielectric properties of the different phases, and these are ultimately related to crystal structure, the bending of hydrogen bonds and the presence of proton disorder in some of the ice phases. Special note will be made of the important contributions Barclay Kamb to these studies - from the details of crystal structure to ice flow.

Echelmeyer, K. A.

2001-12-01

5

Snow Ice Crystals  

NSDL National Science Digital Library

This article from Physics Today by Yoshinori Furukawa and John S. Wettlaufer and John S. Wettlaufer describes how ice crystals form on the earth. The resource includes graphics depicting how different shapes of ice crystals are formed.

Furukawa, Y.; Wettlaufer, John S., 1963-

2010-03-12

6

Development of Measurement System for Three-Dimensional Structure of Ice Crystals in Raw Beef Samples  

NASA Astrophysics Data System (ADS)

Micro-Slicer Image Processing System (MSIPS) has been developed for measuring the three-dimensional(3-D) structure and distribution of ice crystals formed in biological materials. The system has functions to reconstruct the 3-D image based on the image data of exposed cross sections obtained by multi-slicing of a frozen sample with the minimum thickness of 1?m and to display the internal structure as well as an arbitrary cross section of the sample choosing observation angles. The effects of freezing conditions on the morphology and distribl1tion of ice crystals were demonstrated quantitatively from the observations of raw beef stained by fluorescent indicator. The 3-D image of the sample demonstrated that the growth of ice columns was restricted by the intrinsic structure of muscle fibers. The proposed method provided a new tool to investigate the effects of freezing conditions on the size, morphology and distribution of ice crystals.

Do, Gab-Soo; Sagara, Yasuyuki; Tabata, Mizuho; Kudoh, Ken-Ichi; Higuchi, Toshiro

7

Structural transformation in supercooled water controls the crystallization rate of ice  

E-print Network

One of water's unsolved puzzles is the question of what determines the lowest temperature to which it can be cooled before freezing to ice. The supercooled liquid has been probed experimentally to near the homogeneous nucleation temperature TH{\\approx}232 K, yet the mechanism of ice crystallization - including the size and structure of critical nuclei - has not yet been resolved. The heat capacity and compressibility of liquid water anomalously increase upon moving into the supercooled region according to a power law that would diverge at Ts{\\approx}225 K,(1,2) so there may be a link between water's thermodynamic anomalies and the crystallization rate of ice. But probing this link is challenging because fast crystallization prevents experimental studies of the liquid below TH. And while atomistic studies have captured water crystallization(3), the computational costs involved have so far prevented an assessment of the rates and mechanism involved. Here we report coarse-grained molecular simulations with the mW water model(4) in the supercooled regime around TH, which reveal that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water explains its anomalous thermodynamics and also controls the rate and mechanism of ice formation. The simulations reveal that the crystallization rate of water reaches a maximum around 225 K, below which ice nuclei form faster than liquid water can equilibrate. This implies a lower limit of metastability of liquid water just below TH and well above its glass transition temperature Tg{\\approx}136 K. By providing a relationship between the structural transformation in liquid water, its anomalous thermodynamics and its crystallization rate, this work provides a microscopic foundation to the experimental finding that the thermodynamics of water determines the rates of homogeneous nucleation of ice.(5)

Emily B. Moore; Valeria Molinero

2011-07-06

8

Ice Crystal Terminal Velocities  

Microsoft Academic Search

Terminal velocities of different ice crystal forms were calculated using the most recent ice crystal drag coefficients, aspect ratios and densities. The equations derived were primarily for use in calculating precipitation rates by sampling particles with an aircraft in cirrus clouds, and determining particle size in cirrus clouds by Doppler radar. However, the equations are sufficiently general for determining particle

Andrew Heymsfield

1972-01-01

9

Sublimation of Ice Crystals  

Microsoft Academic Search

Recent experiments on the sublimation of single crystals of ice in an atmosphere of air indicate that the sublimation rate is diffusion limited and initially solid prismatic crystals evolve into time-independent shapes similar to confocal ellipses rotated about their major or minor axis (prolate or oblate spheroids). Step formation at crystal edges and vapor diffusion easily explain these observations.

Jon Nelson

1998-01-01

10

Exploration of NVE classical trajectories as a tool for molecular crystal structure prediction, with tests on ice polymorphs  

NASA Astrophysics Data System (ADS)

Following an initial Communication [Buch et al., J. Chem. Phys. 123, 051108 (2005)], a new molecular-dynamics-based approach is explored to search for candidate crystal structures of molecular solids corresponding to minima of the enthalpy. The approach is based on the observation of phase transitions in an artificial periodic system with a small unit cell and relies on the existence of an optimal energy range for observing freezing to low-lying minima in the course of classical trajectories. Tests are carried out for O structures of nine H2O-ice polymorphs. NVE trajectories for a range of preimposed box shapes display freezing to the different crystal polymorphs whenever the box dimensions approximate roughly the appropriate unit cell; the exception is ice II for which freezing requires unit cell dimensions close to the correct ones. In an alternate version of the algorithm, an initial box shape is picked at random and subsequently readjusted at short trajectory intervals by enthalpy minimization. Tests reveal the existence of ice forms which are ``difficult'' and ``easy'' to locate in this way. The former include ice IV, which is also difficult to crystallize experimentally from the liquid, and ice II, which does not interface with the liquid in the phase diagram. On the other hand, the latter crystal search procedure located successfully the remaining seven ice polymorphs, including ice V, which corresponds to the most complicated structure of all ice phases, with a monoclinic cell of 28 molecules.

Buch, V.; Marto?įk, R.; Parrinello, M.

2006-05-01

11

Crystal structure and encapsulation dynamics of ice II-structured neon hydrate.  

PubMed

Neon hydrate was synthesized and studied by in situ neutron diffraction at 480 MPa and temperatures ranging from 260 to 70 K. For the first time to our knowledge, we demonstrate that neon atoms can be enclathrated in water molecules to form ice II-structured hydrates. The guest Ne atoms occupy the centers of D2O channels and have substantial freedom of movement owing to the lack of direct bonding between guest molecules and host lattices. Molecular dynamics simulation confirms that the resolved structure where Ne dissolved in ice II is thermodynamically stable at 480 MPa and 260 K. The density distributions indicate that the vibration of Ne atoms is mainly in planes perpendicular to D2O channels, whereas their distributions along the channels are further constrained by interactions between adjacent Ne atoms. PMID:25002464

Yu, Xiaohui; Zhu, Jinlong; Du, Shiyu; Xu, Hongwu; Vogel, Sven C; Han, Jiantao; Germann, Timothy C; Zhang, Jianzhong; Jin, Changqing; Francisco, Joseph S; Zhao, Yusheng

2014-07-22

12

Ice crystal ingestion by turbofans  

NASA Astrophysics Data System (ADS)

This Thesis will present the problem of inflight icing in general and inflight icing caused by the ingestion of high altitude ice crystals produced by high energy mesoscale convective complexes in particular, and propose a new device to prevent it based on dielectric barrier discharge plasma. Inflight icing is known to be the cause of 583 air accidents and more than 800 deaths in more than a decade. The new ice crystal ingestion problem has caused more than 100 flights to lose engine power since the 1990's, and the NTSB identified it as one of the causes of the Air France flight 447 accident in 1-Jun2008. The mechanics of inflight icing not caused by ice crystals are well established. Aircraft surfaces exposed to supercooled liquid water droplets will accrete ice in direct proportion of the droplet catch and the freezing heat transfer process. The multiphase flow droplet catch is predicted by the simple sum of forces on each spherical droplet and a droplet trajectory calculation based on Lagrangian or Eulerian analysis. The most widely used freezing heat transfer model for inflight icing caused by supercooled droplets was established by Messinger. Several computer programs implement these analytical models to predict inflight icing, with LEWICE being based on Lagrangian analysis and FENSAP being based on Eulerian analysis as the best representatives among them. This Thesis presents the multiphase fluid mechanics particular to ice crystals, and explains how it differs from the established droplet multiphase flow, and the obstacles in implementing the former in computational analysis. A new modification of the Messinger thermal model is proposed to account for ice accretion produced by ice crystal impingement. Because there exist no computational and experimental ways to fully replicate ice crystal inflight icing, and because existing ice protections systems consume vast amounts of energy, a new ice protection device based on dielectric barrier discharge plasma is proposed and built in this Thesis, called DBDAIS, with a complete description of the anti-ice cycle. Contrary to existing ice protection systems, which either heat the aircraft surfaces, or mechanically remove the accreted ice, the DBDAIS employs non-thermal plasma discharges to prevent ice accretion. A new apparatus that mimics inflight icing based on combining the liquid sprays of liquid nitrogen and water was designed and fabricated, named LNITA. The apparatus produces ice similar to glaze ice and rime ice, the two characteristic types of ice from inflight icing, at the cost of 1% of similar tests in icing wind tunnels. Nineteen experiments of the DBDAIS were performed in the LNITA. The results from the experiments point to 32 kV and 4 kHz being adequate to prevent ice accretion, with a power consumption of 1 W/cm2. This compares favorably to existing ice protection systems, which typically run at 10 W/cm2, and to the power consumption of a typical electric stove burner at maximum power, which is 5 W/cm2. To complete this Thesis, a design and development project is proposed to implement the DBDAIS in Unmanned Aircraft Systems (UAS), with the selection of standard FAA inflight icing conditions, the run of 240 LEWICE simulations, and an analysis of the run results. The computational results lead to the design of a wing boot covering the airfoil from 20% of the lower pressure surface to 4% of the upper suction surface as the optimal protection for a UAS.

Rios Pabon, Manuel A.

13

Reversible pressure-induced crystal-amorphous structural transformation in ice Ih  

NASA Astrophysics Data System (ADS)

Molecular dynamics (MD) simulation of depressurised high-density amorphous ice (HDA) at 80 K and at negative pressures has been performed. Over several attempts, HDA recrystallised to a form close to hexagonal ice Ih, albeit with some defects. The results support the hypothesis that compression of ice-Ih to HDA is a reversible first-order phase transition, with a large hysteresis. Therefore, it would appear that LDA is not truly amorphous. The elastic energy estimated from the area of the hysteresis loop is ca. 4.5 kJ/mol, in some way consistent with experimentally-determined accumulated successive heats of transformations from recovered HDA ? ice Ih.

English, Niall J.; Tse, John S.

2014-08-01

14

Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion  

NASA Technical Reports Server (NTRS)

The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in flight. The computational tool was utilized to help guide a portion of the PSL testing, and was used to predict ice accretion could also occur at significantly lower altitudes. The predictions were qualitatively verified by subsequent testing of the engine in the PSL. The PSL test has helped to calibrate the engine icing computational tool to assess the risk of ice accretion. The results from the computer simulation identified prevalent trends in wet bulb temperature, ice particle melt ratio, and engine inlet temperature as a function of altitude for predicting engine icing risk due to ice crystal ingestion.

Jorgenson, Philip C. E.; Veres, Joseph P.

2013-01-01

15

Supernumerary ice-crystal halos?  

PubMed

Geometric-optics singularities in the intensity profiles of refraction halos formed by randomly oriented ice crystals are softened by diffraction and decorated with fine supernumerary fringes. If the crystals have a fixed symmetry axis (as in parhelia), the geometric singularity is a square-root divergence, as in the rainbow. However, the universal curve that describes diffraction is different from the rainbow's Airy function, with weak maxima (supernumerary fringes) on the geometrically dark region inside the halo (and even fainter fringes outside); these are much smaller than their counterparts on the light side of rainbows. If the crystals have no preferred orientation (as in the 22° halo), the geometric singularity is a step. In this case the universal diffraction function has no maxima, and its supernumeraries are shoulders rather than maxima. The low contrast of the fringes is probably the main reason why supernumerary halos are rarely if ever seen. PMID:20935824

Berry, M V

1994-07-20

16

Retardation of ice crystallization by short peptides  

Microsoft Academic Search

The effect of short peptides on the growth of ice crystals is studied using molecular dynamics simulations. The simulations focus on two sequences (Gly-Pro-Ala-Gly and Gly-Gly-Ala-Gly) that are found in collagen hydrolysate, a substance that is known to retard crystal growth. In the absence of peptides, the growth of ice crystal in the solution with the ice\\/water interface is observed

Jun Soo Kim; Arun Yethiraj

2009-01-01

17

An Overview of NASA Engine Ice-Crystal Icing Research  

NASA Technical Reports Server (NTRS)

Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA s Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA s engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA s research.

Addy, Harold E., Jr.; Veres, Joseph P.

2011-01-01

18

Impurities in Spin Ice Crystals  

NASA Astrophysics Data System (ADS)

Spin ice crystals (and pyrochlore oxides in general) have raised a lot of interest of late thanks to their exotic properties, including emergent gauge symmetries, possible spin liquid behavior, and magnetic monopole excitations. Theoretical and experimental efforts in the study of these materials have benefited from the relative ease of growth of large clean single crystals. Even in such clean systems, however, impurities can play a crucial role in determining the properties at very low temperatures (see e.g., C. Henley, http://arxiv.org/abs/1210.8137). Here we investigate this issue both experimentally and theoretically. We study how controlled non-magnetic Y-dilution in Dy2Ti2O7 gradually alters the effective monopole description and the thermodynamic properties of the system at low temperature (extending earlier work by other authors to regimes that have not been investigated so far). We also study how oxygen deficiency affects spin ice samples, and we discuss how the oxygen stoichiometry can be quantified and controlled experimentally.

Sala, Gabriele; Castelnovo, Claudio; Goff, Jon; Gutmann, Matthias; Dharmalingam, Prabhakaran

2013-03-01

19

Ice crystallization in water's "no-man's land".  

PubMed

The crystallization of water at 180 K is studied through large-scale molecular dynamics simulations with the monatomic water model mW. This temperature is in the middle of water's "no-man's land," where rapid ice crystallization prevents the elucidation of the structure of liquid water and its transformation into ice with state of the art experimental methods. We find that critical ice nuclei (that contain less than ten water molecules) form in a time scale shorter than the time required for the relaxation of the liquid, suggesting that supercooled liquid water cannot be properly equilibrated in this region. We distinguish three stages in the crystallization of water at 180 K: concurrent nucleation and growth of ice, followed by consolidation that decreases the number density of ice nuclei, and finally, slow growth of the crystallites without change in their number density. The kinetics of the transformation along the three stages is well described by a single compacted exponential Avrami equation with n approximately 1.7. This work confirms the coexistence of ice and liquid after water is crystallized in "no-man's land": the formation of ice plateaus when there is still 15%-20% of liquid water in the systems, thinly dispersed between ice I crystals with linear dimensions ranging from 3 to 10 nm. We speculate that the nanoscopic size of the crystallites decreases their melting point and slows their evolution toward the thermodynamically most stable fully crystalline state. PMID:20590203

Moore, Emily B; Molinero, Valeria

2010-06-28

20

Retardation of ice crystallization by short peptides  

NASA Astrophysics Data System (ADS)

The effect of short peptides on the growth of ice crystals is studied using molecular dynamics simulations. The simulations focus on two sequences (Gly-Pro-Ala-Gly and Gly-Gly-Ala-Gly) that are found in collagen hydrolysate, a substance that is known to retard crystal growth. In the absence of peptides, the growth of ice crystal in the solution with the ice/water interface is observed in at a rate comparable to the experimental data. When peptides are present in the liquid phase, the crystal growth is retarded to a significant extent compared to the pure water. It is found that Gly-Pro-Ala-Gly is more effective (crystallization is up to 5 times slower than in its absence) than Gly-Gly-Ala-Gly (up to 3 times slower) implying that the role of the proline residue is important. The mechanism can be understood in the nature of binding of the peptides to the growing crystal.

Kim, Jun Soo; Yethiraj, Arun

2009-03-01

21

A Convection Chamber for Measuring Ice Crystal Growth Dynamics  

E-print Network

A Convection Chamber for Measuring Ice Crystal Growth Dynamics Kenneth G. Libbrecht1 and Helen C the growth of ice crystals from water vapor in the presence of a background gas. Crystals grow in free fall the growth and morphology of ice crystals over a broad range of conditions, as a function of temperature

Libbrecht, Kenneth G.

22

Aggregation of ice crystals in cirrus  

NASA Technical Reports Server (NTRS)

Results are given from analysis of the aggregation of thick plate, columnar, and bullet rosette ice crystals in cirrus. Data were obtained from PMS 2D-C images, oil coated slides, and aircraft meteorological measurements. Crystal size ranged from 100 to 900 microns in temperatures from -30 to -45 C. The results indicate that the ratio of the sizes of aggregating crystals and the difference of their terminal velocities are important in aggregation. The collection efficiency was calculated for the thick plate crystals from the same data.

Kajikawa, Masahiro; Heymsfield, Andrew J.

1989-01-01

23

Crystallization of CO2 ice and the absence of amorphous CO2 ice in space  

PubMed Central

Carbon dioxide (CO2) is one of the most relevant and abundant species in astrophysical and atmospheric media. In particular, CO2 ice is present in several solar system bodies, as well as in interstellar and circumstellar ice mantles. The amount of CO2 in ice mantles and the presence of pure CO2 ice are significant indicators of the temperature history of dust in protostars. It is therefore important to know if CO2 is mixed with other molecules in the ice matrix or segregated and whether it is present in an amorphous or crystalline form. We apply a multidisciplinary approach involving IR spectroscopy in the laboratory, theoretical modeling of solid structures, and comparison with astronomical observations. We generate an unprecedented highly amorphous CO2 ice and study its crystallization both by thermal annealing and by slow accumulation of monolayers from the gas phase under an ultrahigh vacuum. Structural changes are followed by IR spectroscopy. We also devise theoretical models to reproduce different CO2 ice structures. We detect a preferential in-plane orientation of some vibrational modes of crystalline CO2. We identify the IR features of amorphous CO2 ice, and, in particular, we provide a theoretical explanation for a band at 2,328 cm?1 that dominates the spectrum of the amorphous phase and disappears when the crystallization is complete. Our results allow us to rule out the presence of pure and amorphous CO2 ice in space based on the observations available so far, supporting our current view of the evolution of CO2 ice. PMID:23858474

Escribano, Rafael M.; Munoz Caro, Guillermo M.; Cruz-Diaz, Gustavo A.; Rodriguez-Lazcano, Yamilet; Mate, Belen

2013-01-01

24

Visual Simulation of Ice Crystal Growth  

Microsoft Academic Search

The beautiful, branching structure of ice is one of the most striking visual phenomena of the winter landscape. Yet there is little study about modeling this effect in computer graphics. In this paper, we present a novel approach for visual simulation of ice growth. We use a numerical simulation technique from computational physics, the \\

Theodore Kim; Ming C. Lin

2003-01-01

25

Strain history of ice shells of the Galilean satellites from radar detection of crystal orientation fabric  

E-print Network

Strain history of ice shells of the Galilean satellites from radar detection of crystal orientation of determining the subsurface thermal and physical structure of the outer ice I shells of the Galilean satellites. At radar frequencies, the dielectric permittivity of single and polycrystalline water ice I is anisotropic

Stillman, David E.

26

Carbon dioxide enhances fragility of ice crystals  

NASA Astrophysics Data System (ADS)

Ice caps and glaciers cover 7% of the Earth, greater than the land area of Europe and North America combined, and play an important role in global climate. The small-scale failure mechanisms of ice fracture, however, remain largely elusive. In particular, little understanding exists about how the presence and concentration of carbon dioxide molecules, a significant component in the atmosphere, affects the propensity of ice to fracture. Here we use atomic simulations with the first-principles based ReaxFF force field capable of describing the details of chemical reactions at the tip of a crack, applied to investigate the effects of the presence of carbon dioxide molecules on ice fracture. Our result shows that increasing concentrations of carbon dioxide molecules significantly decrease the fracture toughness of the ice crystal, making it more fragile. Using enhanced molecular sampling with metadynamics we reconstruct the free energy landscape in varied chemical microenvironments and find that carbon dioxide molecules affect the bonds between water molecules at the crack tip and decrease their strength by altering the dissociation energy of hydrogen bonds. In the context of glacier dynamics our findings may provide a novel viewpoint that could aid in understanding the breakdown and melting of glaciers, suggesting that the chemical composition of the atmosphere can be critical to mediate the large-scale motion of large volumes of ice.

Qin, Zhao; Buehler, Markus J.

2012-11-01

27

Bioprospecting for microbial products that affect ice crystal formation and growth  

Microsoft Academic Search

At low temperatures, some organisms produce proteins that affect ice nucleation, ice crystal structure, and\\/or the process\\u000a of recrystallization. Based on their ice-interacting properties, these proteins provide an advantage to species that commonly\\u000a experience the phase change from water to ice or rarely experience temperatures above the melting point. Substances that bind,\\u000a inhibit or enhance, and control the size, shape,

Brent C. Christner

2010-01-01

28

Atmospheric Ice Crystals over the Antarctic Plateau in Winter  

Microsoft Academic Search

Falling ice crystals were collected daily on a gridded glass slide at South Pole Station, Antarctica, during the Antarctic winter of 1992 and were photographed through a microscope. Nine types of ice crystals are identified, which fall into three main categories: `diamond dust,' blowing snow, and snow grains. The dimensions of about 20 000 crystals were measured on scanned images

Von P. Walden; Stephen G. Warren; Elizabeth Tuttle

2003-01-01

29

Atmospheric Ice Crystals over the Antarctic Plateau in Winter  

Microsoft Academic Search

Falling ice crystals were collected daily on a gridded glass slide at South Pole Station, Antarctica, during the Antarctic winter of 1992 and were photographed through a microscope. Nine types of ice crystals are identified, which fall into three main categories: ''diamond dust,'' blowing snow, and snow grains. The dimensions of about 20 000 crystals were measured on scanned images

Von P. Walden; Stephen G. Warren; Elizabeth Tuttle

2003-01-01

30

The Microscopic Features of Heterogeneous Ice Nucleation May Affect the Macroscopic Morphology of Atmospheric Ice Crystals  

E-print Network

The Microscopic Features of Heterogeneous Ice Nucleation May Affect the Macroscopic Morphology of Atmospheric Ice Crystals Stephen J. Cox,1, 2 Zamaan Raza,1 Shawn M. Kathmann,3 Ben Slater,1 and Angelos ice that forms under "mild" conditions (temperatures > -40 C) requires the presence of a nucleating

Alavi, Ali

31

Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds  

E-print Network

The properties of planar ice crystals settling horizontally have been investigated using a vertically-pointing Doppler lidar. Strong specular reflections were observed from their oriented basal facets, identified by comparison with a second lidar pointing 4 degrees from zenith. Analysis of 17 months of continuous high-resolution observations reveal that these pristine crystals are frequently observed in ice falling from mid-level mixed-phase layer clouds (85% of the time for layers at -15C). Detailed analysis of a case study indicates that the crystals are nucleated and grow rapidly within the supercooled layer, then fall out, forming well-defined layers of specular reflection. Polarimetric radar measurements confirmed that a substantial fraction of the crystal population was well oriented. As the crystals fall into subsaturated air, specular reflection is observed to switch off as the crystal faces become rounded and lose their faceted structure. Specular reflection in ice falling from supercooled layers col...

Westbrook, CD; O'Connor, EJ; Hogan, RJ

2009-01-01

32

Ice-Crystal Fallstreaks from Supercooled Liquid Water Parent Clouds  

NASA Technical Reports Server (NTRS)

On 31 December 2001, ice-crystal fallstreaks (e.g., cirrus uncinus, or colloquially "Mare's Tails") from supercooled liquid water parent clouds were observed by ground-based lidars pointed vertically from the Atmospheric Radiation Measurement Southern Great Plains (SGP) facility near Lamont, Oklahoma. The incidence of liquid phase cloud with apparent ice-phase precipitation is investigated. Scenarios for mixed-phase particle nucleation, and fallstreak formation and sustenance are discussed. The observations are unique in the context of the historical reverence given to the commonly observed c h s uncinus fallstreak (wholly ice) versus this seemingly contradictory coincidence of liquid water begetting ice-crystal streaks.

Campbell, James R.; O'C. Starr, David; Welton, Ellsworth J.; Spinhirne, James D.; Ferrare, Richard A.

2003-01-01

33

The effect of ice crystal surface roughness on the retrieval of ice cloud microphysical and optical properties  

E-print Network

The effect of the surface roughness of ice crystals is not routinely accounted for in current cloud retrieval algorithms that are based on pre-computed lookup libraries. In this study, we investigate the effect of ice crystal surface roughness...

Xie, Yu

2007-09-17

34

Diagnosing the Ice Crystal Enhancement Factor in the Tropics  

NASA Technical Reports Server (NTRS)

Recent modeling studies have revealed that ice crystal number concentration is one of the dominant factors in the effect of clouds on radiation. Since the ice crystal enhancement factor and ice nuclei concentration determine the concentration, they are both important in quantifying the contribution of increased ice nuclei to global warming. In this study, long-term cloud-resolving model (CRM) simulations are compared with field observations to estimate the ice crystal enhancement factor in tropical and midlatitudinal clouds, respectively. It is found that the factor in tropical clouds is 10 3-104 times larger than that of mid-latitudinal ones, which makes physical sense because entrainment and detrainment in the Tropics are much stronger than in middle latitudes. The effect of entrainment/detrainment on the enhancement factor, especially in tropical clouds, suggests that cloud microphysical parameterizations should be coupled with subgrid turbulence parameterizations within CRMs to obtain a more accurate depiction of cloud-radiative forcing.

Zeng, Xiping; Tao, Wei-Kuo; Matsui, Toshihisa; Xie, Shaocheng; Lang, Stephen; Zhang, Minghua; Starr, David O'C; Li, Xiaowen; Simpson, Joanne

2009-01-01

35

A Critical Look at Ice Crystal Growth Data KENNETH G. LIBBRECHT1  

E-print Network

A Critical Look at Ice Crystal Growth Data KENNETH G. LIBBRECHT1 Norman Bridge Laboratory. I review published data relating to the growth of ice crystals from water vapor under various of the crystal growth dynamics of ice. 1 Introduction The growth of ice crystals from the vapor phase

Libbrecht, Kenneth G.

36

Ice crushing tests with variable structural flexibility  

Microsoft Academic Search

To learn more on ice crushing phenomena against a compliant stiffened plate structure, near full-scale ice crushing tests were conducted in Aker Arctic test basin with a 1:3 scaled model. The dimensions of the to be crushed ice sheet and the stiffened plate were chosen to present a full size ship or offshore structure steel plating which are designed to

Mauri Määttänen; Pieti Marjavaara; Sami Saarinen; Matti Laakso

2011-01-01

37

Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size  

Microsoft Academic Search

Spherical or spheroidal air bubbles are often trapped in rapidly growing ice crystals. In this study, the single-scattering properties of inhomogeneous ice crystals containing air bubbles are investigated. Specifically, a combination of the ray-tracing technique and the Monte Carlo method is used to simulate the scattering of light by randomly oriented large hexagonal ice crystals containing spherical or spheroidal air

Yu Xie; Ping Yang; George W. Kattawar; Patrick Minnis; Yong X. Hu

2009-01-01

38

The characteristics of mid-latitude and low-latitude ice cloud crystals  

NASA Astrophysics Data System (ADS)

An accurate understanding of the dimensional characteristics of atmospheric ice crystals is important for weather and climate models. Ice crystal fall speed which partially governs cloud lifetime is dependent on crystal mass and projected area. Ice cloud radiative properties are dependent on crystal shape as well as cloud optical thickness which can vary widely depending on local conditions and cloud formation mechanisms. These are some of the reasons that cirrus clouds are considered to be one of the most uncertain elements in the earth's climate system. This thesis addresses some of these uncertainties. Mid-latitude cirrus clouds are frequently composed of bullet rosette shaped ice crystals. Bullet rosettes can grow with hollow ends which affects their radiative properties. In chapter 2, the frequency of occurrence of bullet rosettes with hollows ends is investigated. The radiative properties of hollow crystals are investigated in Chapter 3. For a thin cloud (optical depth of unity) with hollow crystals would lead to a difference of 5 W/m2 in short wave radiation at the surface compared to solid crystals. The properties of low latitude sub-visible cirrus cloud particles have been poorly investigated due to the difficulty of reaching them with instrumented aircraft. The properties of sub-visible cirrus clouds are investigated through the analysis of a large dataset of aircraft observations in chapter 4. Parameterizations for particle area, mass, size distributions and mass weighted fall speeds are developed. Mass weighted fall speeds were found to be lower than predicted by previous parameterizations due to the lack of large particles compared to previous studies. Most atmospheric ice cloud particles are irregular in shape. The final two research topics addressed in this thesis investigate the dimensional characteristics of irregularly shaped ice particles. In chapter 5, the total surface area of irregular ice crystals is investigated. Knowledge of particle surface area is important for atmospheric chemistry applications. In Chapter 6, ice crystal projected area and mass are investigated using fractal geometry techniques. Ice crystal aggregation was simulated to investigate the structure of ice crystal aggregates. The fractal analysis allows the determination of mass dimensional relationships from particle projected area measurements.

Schmitt, Carl George

39

Crystal Structures as Geobarometers  

NSDL National Science Digital Library

This exercise is based on the recent formulation of a geobarometer based on the crystal structure of clinopyroxene (Nimis, 1995; 1998; 1999). This method relates structural parameters (e.g., the volumes of the unit cell and the M1 polyhedron) to the pressure at which the mineral crystallizes within basic and ultrabasic magmas. students are guided into the American Mineralogist Crystal Structure Database to retrieve and download published crystal structure data for viewing in either the CrystalMaker or Xtaldraw visualization software packages. students are instructed on how to examine the structures to determine pressure-sensitive crystallographic parameters students are then asked a series of questions related to what they learn.

Ratajeski, Kent

40

Cloud structure and crystal growth in nimbostratus clouds. Mengistu Wolde*  

E-print Network

1 Cloud structure and crystal growth in nimbostratus clouds. Mengistu Wolde* , Gabor Vali-mail: mengistu.wolde@nrc.ca. #12;2 Abstract Cloud structure and crystal growth in two nimbostratus were examined made available by large scale lifting was taken up by depositional growth of the ice crystals

Vali, Gabor

41

How big should hexagonal ice crystals be to produce halos?  

PubMed

It has been hypothesized that the frequent lack of halos in observations of cirrus and contrails and laboratory measurements is caused by small ice crystal sizes that put the particles outside the geometrical optics domain of size parameters. We test this hypothesis by exploiting a strong similarity of ray tracing phase functions for finite hexagonal and circular ice cylinders and using T-matrix computations of electromagnetic scattering by circular cylinders with size parameters up to 180 in the visible. We conclude that well-defined halos should be observable for ice crystal size parameters of the order of 100 and larger and discuss remote-sensing implications of this result. PMID:18305781

Mishchenko, M I; Macke, A

1999-03-20

42

Ice Crystal Growth Rates Under Upper Troposphere Conditions  

NASA Technical Reports Server (NTRS)

Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

Peterson, Harold S.; Bailey, Matthew; Hallett, John

2010-01-01

43

Forces Generated by High Velocity Impact of Ice on a Rigid Structure  

NASA Technical Reports Server (NTRS)

Tests were conducted to measure the impact forces generated by cylindrical ice projectiles striking a relatively rigid target. Two types of ice projectiles were used, solid clear ice and lower density fabricated ice. Three forms of solid clear ice were tested: single crystal, poly-crystal, and "rejected" poly-crystal (poly-crystal ice in which defects were detected during inspection.) The solid ice had a density of approximately 56 lb/cu ft (0.9 gm/cu cm). A second set of test specimens, termed "low density ice" was manufactured by molding shaved ice into a cylindrical die to produce ice with a density of approximately 40 lb/cu ft (0.65 gm/cu cm). Both the static mechanical characteristics and the crystalline structure of the ice were found to have little effect on the observed transient response. The impact forces generated by low density ice projectiles, which had very low mechanical strength, were comparable to those of full density solid ice. This supports the hypothesis that at a velocity significantly greater than that required to produce fracture in the ice, the mechanical properties become relatively insignificant, and the impact forces are governed by the shape and mass of the projectile.

Pereira, J. Michael; Padula, Santo A., II; Revilock, Duane M.; Melis, Matthew E.

2006-01-01

44

Three-Dimensional Visualization of Ice Crystals in Frozen Materials by Near-Infrared Imaging Spectroscopy  

NASA Astrophysics Data System (ADS)

Micro Slicer Spectral Imaging System (MSSIS) has been applied to observe the three-dimensional(3-D) structure and distribution of ice crystals formed in biological materials. MSSIS is composed of a micro-slicer, near-infrared (NIR) illuminator and spectral imaging system. NIR Spectroscopic analysis using MSSIS confirmed that there are a water absorption band around 965 nm and an ice absorption band around 1025 nm. Spectroscopic images of a frozen agar gel and a piece of raw beef at 1,025 nm were obtained by the MSSIS. These images showed the ice crystals could be clearly distinguished from the other components by the different absorbance. The average area of ice crystals was 6,253 ?m2, and the average distances of major and minor axis were 111?m and 62?m respectively. In addition, the 3-D re-constructed image of the ice crystal morphology revealed that they were formed along with the direction of heat transfer. The proposed method provided a novel tool to investigate the effects of freezing conditions on the size, morphology and distribution of ice crystals.

Do, Gab-Soo; Ueno, Shigeaki; Sagara, Yasuyuki; Tsuta, Mizuki; Sugiyama, Junichi

45

Effect of Antifreeze Glycoprotein in contact with ice interface on the growth mechanism of an ice crystal  

NASA Astrophysics Data System (ADS)

We study the effect of Antifreeze Glycoprotein in contact with ice interface on pattern formation of an ice crystal growing from AFGP solution. AFGP effects on ice crystal growth are completely opposite for basal and prismatic faces. Basal face of ice in pure water is governed by slow molecular rearrangements on the basal plane and is expressed as a second power of the supercooling at the interface. In the presence of AFGP molecules on the surface, the kinetic roughening transition from a smooth surface to a rough one occurs, and the growth rate is enhanced. Prismatic faces in pure water are controlled by transport of latent heat and are proportional to the supercooling at the interface. In the presence of AFGP molecules, the kinetic smoothing transition from a rough surface to smooth one occurs, and the growth rate is reduced. The effects relate to the anisotropic adsorption properties of AFGP molecules. In this study, we proposed a new model for the ice growth kinetics, in which a change of structure of water molecules near ice interface, i.e., hydrophobic interaction is taken into account instead of Gibbs-Thomson Effect caused by the pinning of a step by AFGP molecules.

Yokoyama, Etsuro; Furukawa, Yohsinori

2005-03-01

46

Superheating of ice crystals in antifreeze protein solutions  

PubMed Central

It has been argued that for antifreeze proteins (AFPs) to stop ice crystal growth, they must irreversibly bind to the ice surface. Surface-adsorbed AFPs should also prevent ice from melting, but to date this has been demonstrated only in a qualitative manner. Here we present the first quantitative measurements of superheating of ice in AFP solutions. Superheated ice crystals were stable for hours above their equilibrium melting point, and the maximum superheating obtained was 0.44?°C. When melting commenced in this superheated regime, rapid melting of the crystals from a point on the surface was observed. This increase in melting temperature was more appreciable for hyperactive AFPs compared to the AFPs with moderate antifreeze activity. For each of the AFP solutions that exhibited superheating, the enhancement of the melting temperature was far smaller than the depression of the freezing temperature. The present findings clearly show that AFPs adsorb to ice surfaces as part of their mechanism of action, and this absorption leads to protection of ice against melting as well as freezing. PMID:20215465

Celik, Yeliz; Graham, Laurie A.; Mok, Yee-Foong; Bar, Maya; Davies, Peter L.; Braslavsky, Ido

2010-01-01

47

Ice-templated structures for biomedical tissue repair: From physics to final scaffolds  

NASA Astrophysics Data System (ADS)

Ice-templating techniques, including freeze-drying and freeze casting, are extremely versatile and can be used with a variety of materials systems. The process relies on the freezing of a water based solution. During freezing, ice nucleates within the solution and concentrates the solute in the regions between the growing crystals. Once the ice is removed via sublimation, the solute remains in a porous structure, which is a negative of the ice. As the final structure of the ice relies on the freezing of the solution, the variables which influence ice nucleation and growth alter the structure of ice-templated scaffolds. Nucleation, the initial step of freezing, can be altered by the type and concentration of solutes within the solution, as well as the set cooling rate before freezing. After nucleation, crystal growth and annealing processes, such as Ostwald ripening, determine the features of the final scaffold. Both crystal growth and annealing are sensitive to many factors including the set freezing temperature and solutes. The porous structures created using ice-templating allow scaffolds to be used for many diverse applications, from microfluidics to biomedical tissue engineering. Within the field of tissue engineering, scaffold structure can influence cellular behavior, and is thus critical for determining the biological stimulus supplied by the scaffold. The research focusing on controlling the ice-templated structure serves as a model for how other ice-templating systems might be tailored, to expand the applications of ice-templated structures to their full potential.

Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E.

2014-06-01

48

Scattering Properties of Oriented Hexagonal Ice Crystals  

E-print Network

To interpret the data from spaceborn lidar measurements, one must have a basic understanding of the backscattering of oriented ice particles. The conventional raytracing method is not applicable to the scattering of light by oriented particles...

Zhang, Feng

2010-01-14

49

Nanoscale structure intercrystalline interactions in fat crystal networks  

Microsoft Academic Search

The functional attributes of fat-structured food products such as butter, margarine, chocolate, and ice cream are strongly influenced by the structure and physical properties of an underlying fat crystal network present in the material. Fat crystal networks are arranged in a hierarchical manner with characteristic and quantifiable nano and mesoscale structures. Recent studies carried out by our group have demonstrated

Nuria C. Acevedo; Fernanda Peyronel; Alejandro G. Marangoni

2011-01-01

50

A model of self-oscillatory growth of ice crystals in antifreeze glycoprotein solutions  

NASA Astrophysics Data System (ADS)

We discuss that an oscillatory crystal growth is observed not only in the growth of an ice crystal from AFGP solution but also in the motion of steps on the surface of ice crystals in the presence of AFGP molecules. Our model of the oscillatory growth of crystals accounts for two elementary processes relevant to the growth: 1) an interface kinetic processes for transformation into a crystalline phase at the interface, and 2) a diffusion process for the transport of latent heat liberated at the growing interface. In this talk, we propose the hypothesis of a hysteresis behavior of growth rate to explain the formation of periodic structures of a growing crystal without a change of external conditions. The self-oscillatory growth in the presence of AFGP adsorbed molecules can occur because of the coupling of interface kinetics to the transport of latent heat under constant growth conditions.

Yokoyama, Etsuro; Furukawa, Yoshinori

2007-03-01

51

Formation of gas hydrate during crystallization of ethane-saturated amorphous ice  

NASA Astrophysics Data System (ADS)

Layers of ethane-saturated amorphous ice were prepared by depositing molecular beams of water and gas on a substrate cooled with liquid nitrogen. The heating of the layers was accompanied by vitrification (softening) followed by spontaneous crystallization. Crystallization of condensates under the conditions of deep metastability proceeded with gas hydrate formation. The vitrification and crystallization temperatures of the condensates were determined from the changes in their dielectric properties on heating. The thermal effects of transformations were recorded by differential thermal analysis. The crystallization of the amorphous water layers was studied by electron diffraction. Formation of a metastable packing with elements of a cubic diamond-like structure was noted.

Faizullin, M. Z.; Vinogradov, A. V.; Skokov, V. N.; Koverda, V. P.

2014-10-01

52

Ice Growth Measurements from Image Data to Support Ice Crystal and Mixed-Phase Accretion Testing  

NASA Technical Reports Server (NTRS)

This paper describes the imaging techniques as well as the analysis methods used to measure the ice thickness and growth rate in support of ice-crystal icing tests performed at the National Research Council of Canada (NRC) Research Altitude Test Facility (RATFac). A detailed description of the camera setup, which involves both still and video cameras, as well as the analysis methods using the NASA Spotlight software, are presented. Two cases, one from two different test entries, showing significant ice growth are analyzed in detail describing the ice thickness and growth rate which is generally linear. Estimates of the bias uncertainty are presented for all measurements. Finally some of the challenges related to the imaging and analysis methods are discussed as well as methods used to overcome them.

Struk, Peter M.; Lynch, Christopher J.

2012-01-01

53

Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review  

NASA Astrophysics Data System (ADS)

Substantial data sets have been collected on the relaxation characteristics, density, grain size, c axis fabrics, and ultrasonic velocities of the Greenland Ice Sheet Project 2 (GISP2) core to its contact with bedrock at 3053.4 m. Changes in all these properties paralleled closely those found in cores from Byrd Station, Antarctica, and Dye 3, Greenland. Density increased progressively with depth to a maximum of 0.921 Mg/m3 at about 1400 m, at which depth the ice became bubble free. Below about 2000 m, in situ densities began to decrease in response to increasing ice sheet temperatures. Since drilling, much of the ice core has undergone significant volume expansion (relaxation) due to microcracking and the exsolving of enclathratized gases, especially in the brittle ice zone between 650 and 1400 m. Grain size increased linearly to about 1000 m, thereafter remaining fairly constant until the Younger Dryas event at 1678 m where a twofold to threefold decrease in grain size occurred. These grain size changes were accompanied by a progressive clustering of crystal c axes toward the vertical, including a small increase in c axis concentration across the Younger Dryas/Holocene boundary. Increased dust levels in the Wisconsin ice have contributed to the maintenance of a fine-grained texture which, with its strong vertical c axis fabric, persisted to nearly 3000 m. However, beginning at about 2800 m, layers of coarse-grained ice intermixed with the much finer-grained matrix ice are observed. Below 3000 m the ice became very coarse grained. This change, attributed to annealing recrystallization at elevated temperatures in the ice sheet, was accompanied by a dispersed or ring-like redistribution of the c axes about the vertical. Ultrasonic measurements of vertical and horizontal P wave velocities made at 10-m intervals along the entire length of the GISP2 core fully confirmed the results of the crystallo-optical observations. A return to fine-grained ice coincided with the first appearance of brown, silty ice 13 m above bedrock. Bedrock material consisted of 48 cm of till, including boulders and cobbles, overlying gray biotite granite comprising the true bedrock. There is evidence that disturbed structure in the GISP2 cores begins little more than 70% of the way through the ice sheet. This disturbance increases with depth until it becomes large enough to cast suspicion on features lasting centuries or more in the bottom 10% of the ice sheet.

Gow, A. J.; Meese, D. A.; Alley, R. B.; Fitzpatrick, J. J.; Anandakrishnan, S.; Woods, G. A.; Elder, B. C.

1997-11-01

54

Validation and determination of ice water content-radar reflectivity relationships during CRYSTAL-  

E-print Network

scatter and absorb radiation is determined by the microphysical and geometric structure of the cloudValidation and determination of ice water content- radar reflectivity relationships during CRYSTAL with remote sensing data made by the Cloud Radar System instrument in order to derive and validate

55

Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics  

PubMed Central

Ice-binding proteins that aid the survival of freeze-avoiding, cold-adapted organisms by inhibiting the growth of endogenous ice crystals are called antifreeze proteins (AFPs). The binding of AFPs to ice causes a separation between the melting point and the freezing point of the ice crystal (thermal hysteresis, TH). TH produced by hyperactive AFPs is an order of magnitude higher than that produced by a typical fish AFP. The basis for this difference in activity remains unclear. Here, we have compared the time dependence of TH activity for both hyperactive and moderately active AFPs using a custom-made nanolitre osmometer and a novel microfluidics system. We found that the TH activities of hyperactive AFPs were time-dependent, and that the TH activity of a moderate AFP was almost insensitive to time. Fluorescence microscopy measurement revealed that despite their higher TH activity, hyperactive AFPs from two insects (moth and beetle) took far longer to accumulate on the ice surface than did a moderately active fish AFP. An ice-binding protein from a bacterium that functions as an ice adhesin rather than as an antifreeze had intermediate TH properties. Nevertheless, the accumulation of this ice adhesion protein and the two hyperactive AFPs on the basal plane of ice is distinct and extensive, but not detectable for moderately active AFPs. Basal ice plane binding is the distinguishing feature of antifreeze hyperactivity, which is not strictly needed in fish that require only approximately 1°C of TH. Here, we found a correlation between the accumulation kinetics of the hyperactive AFP at the basal plane and the time sensitivity of the measured TH. PMID:25008081

Drori, Ran; Celik, Yeliz; Davies, Peter L.; Braslavsky, Ido

2014-01-01

56

Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.  

PubMed

Ice-binding proteins that aid the survival of freeze-avoiding, cold-adapted organisms by inhibiting the growth of endogenous ice crystals are called antifreeze proteins (AFPs). The binding of AFPs to ice causes a separation between the melting point and the freezing point of the ice crystal (thermal hysteresis, TH). TH produced by hyperactive AFPs is an order of magnitude higher than that produced by a typical fish AFP. The basis for this difference in activity remains unclear. Here, we have compared the time dependence of TH activity for both hyperactive and moderately active AFPs using a custom-made nanolitre osmometer and a novel microfluidics system. We found that the TH activities of hyperactive AFPs were time-dependent, and that the TH activity of a moderate AFP was almost insensitive to time. Fluorescence microscopy measurement revealed that despite their higher TH activity, hyperactive AFPs from two insects (moth and beetle) took far longer to accumulate on the ice surface than did a moderately active fish AFP. An ice-binding protein from a bacterium that functions as an ice adhesin rather than as an antifreeze had intermediate TH properties. Nevertheless, the accumulation of this ice adhesion protein and the two hyperactive AFPs on the basal plane of ice is distinct and extensive, but not detectable for moderately active AFPs. Basal ice plane binding is the distinguishing feature of antifreeze hyperactivity, which is not strictly needed in fish that require only approximately 1°C of TH. Here, we found a correlation between the accumulation kinetics of the hyperactive AFP at the basal plane and the time sensitivity of the measured TH. PMID:25008081

Drori, Ran; Celik, Yeliz; Davies, Peter L; Braslavsky, Ido

2014-09-01

57

Geometric-opticsintegral-equation method for light scattering by nonspherical ice crystals  

E-print Network

Geometric-opticsĀ­integral-equation method for light scattering by nonspherical ice crystals Ping-scattering and polar- ization properties for arbitrarily oriented hexagonal ice crystals. The model uses the ray-tracing tech- nique to solve the near field on the ice crystal surface, which is then transformed to the far

Liou, K. N.

58

Critical Supersaturation for Ice Crystal Growth: Laboratory Measurements and Atmospheric Modeling Implications  

Microsoft Academic Search

An improved understanding of ice crystal growth, particularly at low temperatures, is much in demand for the advancement of numerical modeling of atmospheric processes. Cirrus models must contend with the complexity of ice crystals growing in cold temperatures, low pressures, low supersaturations, and with multiple nucleation mechanisms. Recent observations have allowed increasingly realistic parameterizations of cirrus ice crystal microphysics, but

N. Magee; A. Moyle; D. Lamb

2003-01-01

59

Supernumerary ice-crystal halos? Michael V. Berry  

E-print Network

profiles of refraction halos formed by randomly oriented ice crystals are softened by diffraction), the geometric singularity is a square-root divergence, as in the rainbow. However, the universal curve that describes diffraction is different from the rainbow's Airy function, with weak maxima (supernumerary fringes

Berry, Michael Victor

60

Ice nucleation: elemental identification of particles in snow crystals.  

PubMed

A scanning field-emission electron microscope combined with an x-ray analyzer is used to locate the ice nucleus within a three-dimensional image of a snow crystal and determine the chemical composition of the nucleus. This makes it possible to better understand the effect of nuclei in cloud seeding. PMID:17806581

Parungo, F P; Pueschel, R F

1973-06-01

61

Olivine Crystal Structure  

NSDL National Science Digital Library

This exercise is based on recent crystallographic research on the olivine crystal structure published by Redfern et al. (2000). The authors of this study synthesized Fa50 olivine olivine (MgFeSiO4) in an experimental apparatus at temperatures ranging from 100 to 1250 Ā°C, quenched the experiments, and used in situ neutron powder diffraction techniques to investigate changes in the synthesized olivines as a function of temperature. While this study reports cutting-edge materials research carried out with the latest crystallographic techniques, the results are educationally instructive and illustrate important concepts normally covered in an undergraduate mineralogy course. In this exercise, students are guided into the American Mineralogist Crystal Structure Database to retrieve and download published crystal structure data for viewing in either the CrystalMaker or XtalDraw visualization software packages. The students are instructed on how to manipulate the structures and are asked to plot some of the crystallographic data from this study on graphs using a spreadsheet program such as Excel.

Ratajeski, Kent

62

Ice crystal growth in a dynamic thermal diffusion chamber  

NASA Technical Reports Server (NTRS)

Ice crystals were grown in a supersaturated environment produced by a dynamic thermal diffusion chamber, which employed two horizontal plates separated by a distance of 2.5 cm. Air was circulated between and along the 1.2 m length of the plates past ice crystals which nucleated and grew from a fiber suspended vertically between the two plates. A zoom stereo microscope with a magnification which ranged from 3X to 80X and both 35 mm still photographs and 16 mm time lapse cine films taken through the microscope were used to study the variation of the shape and linear growth rate of ice crystals as a function of the ambient temperature, the ambient supersaturation, and the forced ventilation velocity. The ambient growth conditions were varied over the range of temperature 0 to -40 C, over the range of supersaturation 4% to 50% with respect to ice, and over the range of forced ventilation velocities 0 cm/s to 20 cm/s.

Keller, V. W.

1980-01-01

63

From parallel to single crystallization kinetics in high-density amorphous ice  

NASA Astrophysics Data System (ADS)

The isobaric transformation behavior of unannealed (uHDA) and expanded (eHDA) high-density amorphous ice at pressures up to 0.20 GPa is compared using powder x-ray diffraction and dilatometry. eHDA shows high thermal stability and crystallizes to a single ice phase only, whereas uHDA shows much lower thermal stability and always crystallizes to a mixture of ice phases. Unexpectedly, at low temperatures hexagonal ice grows first from uHDA, whereas this phase never crystallizes from eHDA. This leads us to conclude that hidden structural order in the form of nanocrystalline domains is present in uHDA, which triggers growth of hexagonal ice. By contrast, these ordered domains are absent in eHDA, which appears to be a homogeneous material and, thus, could be considered as a candidate for the low-temperature proxy of the proposed high-density liquid phase of water. The present work provides the basis for further experimental studies aiming at investigating this possibility since it establishes that the well-studied uHDA is not the right material to be studied in this context, whereas the more recently discovered eHDA is.

Seidl, Markus; Amann-Winkel, Katrin; Handle, Philip H.; Zifferer, Gerhard; Loerting, Thomas

2013-11-01

64

Laboratory Investigation of Direct Measurement of Ice Water Content, Ice Surface Area, and Effective Radius of Ice Crystals Using a Laser-Diffraction Instrument  

NASA Technical Reports Server (NTRS)

The aircraft microphysics probe, PVM-100A, was tested in the Colorado State University dynamic cloud chamber to establish its ability to measure ice water content (IWC), PSA, and Re in ice clouds. Its response was compared to other means of measuring those ice-cloud parameters that included using FSSP-100 and 230-X 1-D optical probes for ice-crystal concentrations, a film-loop microscope for ice-crystal habits and dimensions, and an in-situ microscope for determining ice-crystal orientation. Intercomparisons were made in ice clouds containing ice crystals ranging in size from about 10 microns to 150 microns diameter, and ice crystals with plate, columnar, dendritic, and spherical shapes. It was not possible to determine conclusively that the PVM accurately measures IWC, PSA, and Re of ice crystals, because heat from the PVM evaporated in part the crystals in its vicinity in the chamber thus affecting its measurements. Similarities in the operating principle of the FSSP and PVM, and a comparison between Re measured by both instruments, suggest, however, that the PVM can make those measurements. The resolution limit of the PVM for IWC measurements was found to be on the order of 0.001 g/cubic m. Algorithms for correcting IWC measured by FSSP and PVM were developed.

Gerber, H.; DeMott, P. J.; Rogers, D. C.

1995-01-01

65

Optical Properties of Small Ice Crystals with Black Carbon Inclusions  

NASA Astrophysics Data System (ADS)

The optical properties of ice crystals play a fundamental role in modeling atmospheric radiation and hydrological cycle, which are critical in monitoring climate change. While Black Carbon (BC) is recognized as the dominant absorber with positive radiative forcing (warming) (Ramanathan & Carmichael, 2008), in-situ observations (Cappa, et al, 2012) indicate that the characterization of the mixing state of BC with ice crystals and other non-BC particles in global climate models (Ghan & Schwartz, 2007) needs further investigation. The limitation in the available mixing models is due to the drastically different absorbing properties of BC compared to other aerosols. We explore the scattering properties of ice crystals (in shapes commonly found in cirrus clouds and contrails - Yang, et al. 2012) with the inclusion of BC particles. The Discrete Dipole Approximation (DDA) (Yurkin & Hoekstra, 2011) is utilized to directly calculate the optical properties of the crystals with multiple BC inclusions, modeled as a distribution of spheres. The results are then compared with the most popular models of internal and external mixing (Liou, et al. 2011). The DDA calculations are carried out over a broad range of BC particle sizes and volume fractions within the crystal at the 532 nm wavelength and for ice crystals smaller than 50 ?m. The computationally intensive database generated in this study is critical for understanding the effect of different types of BC inclusions on the atmosphere radiative forcing. Examples will be discussed to illustrate the modification of BC optical properties by encapsulation in ice crystals and how the parameterization of the BC mixing state in global climate models can be improved. Acknowledgements Support by Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Cappa, C.D., Onasch, T.B., Massoli, et al. (2012). Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science, 337(6098), 1078-1081. Ghan, S.J., & Schwartz, S.E. (2007). Aerosol properties and processes: A path from field and laboratory measurements to global climate models. Bulletin of the American Meteorological Society, 88(7), 1059-1083. Liou, K.N., Takano, Y., & Yang, P. (2011). Light absorption and scattering by aggregates: Application to black carbon and snow grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(10), 1581-1594. Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221-227. Yang, P., Bi, L., Baum, B.A., et al. (2013). Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 ? m. Journal of the Atmospheric Sciences, 70(1), 330-347. Yurkin, M.A., & Hoekstra, A.G. (2011). The discrete-dipole-approximation code ADDA: capabilities and known limitations. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(13), 2234-2247.

Yang, X.; Geier, M.; Arienti, M.

2013-12-01

66

Geometrical-optics solution to light scattering by droxtal ice crystals  

E-print Network

Geometrical-optics solution to light scattering by droxtal ice crystals Zhibo Zhang, Ping Yang crystals. At the 11- m wavelength, the phase functions for droxtals are essentially featureless because- in . Radiative transfer modeling efforts have been hampered by the nonspherical nature of observed ice crystals

Baum, Bryan A.

67

Observations of an Impurity-driven Hysteresis Behavior in Ice Crystal Growth at Low Pressure  

E-print Network

Observations of an Impurity-driven Hysteresis Behavior in Ice Crystal Growth at Low Pressure Abstract. We describe observations of a novel hysteresis behavior in the growth of ice crystals under near the growth velocity vn normal to the surface of a crystal facet in terms of the Hertz-Knudsen formula vn

Libbrecht, Kenneth G.

68

Precision Measurements of Ice Crystal Growth Rates Kenneth G. Libbrecht1  

E-print Network

Precision Measurements of Ice Crystal Growth Rates Kenneth G. Libbrecht1 Department of Physics precise measurements of the growth rates of the principal facets of ice crystals. Particular attention Introduction The growth of snow crystals from water vapor in air is governed by a number of factors, with vapor

Libbrecht, Kenneth G.

69

Optical detection and characterization of ice crystals in LACIS  

NASA Astrophysics Data System (ADS)

Tropospheric ice and mixed phase clouds are an integral part of the earth system and their microphysical and radiative properties are strongly coupled e.g. through the complexities of the ice nucleation process. Therefore the investigation of influences of different aerosol particles which act as ice nuclei (IN) on the freezing behaviour of cloud droplets is important and still poses unresolved questions. The Leipzig Aerosol and Cloud Interaction Simulator (LACIS) is used to investigate the IN activity of different natural and artificial aerosol particles (mineral dust, soot etc.) in heterogeneous freezing processes (immersion or deposition freezing). A critical part of LACIS is the particle detection system allowing for size-resolved counting of activated seed particles and discrimination between ice crystals and water droplets. Recently, two instruments have been developed to provide these measurements at the LACIS facility. The Thermally-stabilized Optical Particle Spectrometer (TOPS) is measuring the particle size based on the intensity of light scattered by individual particles into a near-forward (15° to 45°) direction. Two symmetrical forward scattering channels allow for optical determination of the sensing volume, thus reducing the coincidence counting error and the edge zone effect. The backscatter channel (162° to 176°) equipped with a rotatable cross polarizer allows for establishing the change in linear polarization state of the scattered light. The backscatter elevation angle is limited so that the linear depolarization of light scattered by spherical particles of arbitrary size is zero. Any detectable signal in the depolarization channel can be therefore attributed to non-spherical particles (ice crystals). With consideration of the signal in the backscatter channel the separate counting of water drops and ice particle is possible. The Leipzig Ice Scattering Apparatus (LISA) is a modified version of the Small Ice Detector (SID3), developed at the Science and Technology Research Institute at the University of Hertfordshire, UK. The SID instruments have been developed primarily as wing-mounted systems for airborne studies of cloud ice particles. SID3 records the forward scattered light pattern with high angular resolution using an intensified CCD (780 by 582 pixels) at a rate of 20 images per second. In addition to the SID3 capabilities, LISA is able to measure the circular depolarization ratio in the range of scattering angles from 166° to 172°. Whereas particle size, shape and orientation are characterized by the angular distribution of forward-scattered light, the measured value of the circular depolarization can be used to validate the existing theoretical models of light scattering by irregular particles (RTDF, GSVM, T-Matrix, DDA). The first measurements done at the LACIS facility have demonstrated a promising sensitivity of LISA's depolarization channel to the shape of ice crystals. Results showed an increase of the mean circular depolarization ratio from 1.5 (characteristic for the liquid water droplets above 3 µm) to 2.5 for the "just frozen" almost-spherical droplets in the same size range. The presentation will describe details of instruments set up and present some exemplary results from experiments carried out at LACIS and AIDA (KIT) facilities.

Kiselev, Alexei; Clauß, Tina; Niedermeier, Dennis; Hartmann, Susan; Wex, Heike; Stratmann, Frank

2010-05-01

70

Numerical Simulation of Three-Dimensional Unsteady Flow past Ice Crystals  

Microsoft Academic Search

The unsteady flow fields around falling columnar ice crystals, hexagonal ice plates, and broad-branch crystals are simulated by numerically solving the time-dependent Navier-Stokes equations appropriate for these geometries in the primitive equation form. A predictor-corrector method and a quadratic interpolation for convective kinematics (QUICK) scheme are applied on nonuniform grids to determine the velocity fields. The ice crystals are held

Pao K. Wang; Wusheng Ji

1997-01-01

71

Inorganic Crystal Structure Database (ICSD)  

National Institute of Standards and Technology Data Gateway

SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

72

Ice-templated structures for biomedical tissue repair: From physics to final scaffolds  

E-print Network

increase the growth 3 CRYSTAL GROWTH 11 Figure 5: The structure of oxygen atoms within Ih ice with hydrogen bonds represented as rods [1]. (a) Perpendicular to the c-axis and (b) parallel to the c-axis. Ice Physics by Hobbs (1974). By permission of Oxford... and dissolve, while larger crystals, below their equilibrium freezing temperature, remain [72]. In order to maintain the equilibrium between liquid and solid within the system, some of the liquid solidifies on the surface of larger ice particles...

Pawelec, K. M.; Husmann, A; Best, Serena Michelle; Cameron, Ruth Elizabeth

2014-04-11

73

Crystal Structure Lab  

NSDL National Science Digital Library

This activity is concerned with crystals, the basic building units that make up rocks and minerals. Students construct a model of the silicon-oxygen tetrahedron and discover that the smallest whole unit that could form a unique crystal is called a unit cell. They learn that a unit cell would have all the properties of a large crystal such as a diamond, but would be only molecular size (submicroscopic). If a crystal starts to form from a slowly cooling magma or from a drying up pool of salty sea water, unit cells add themselves one on top of another in order to develop the large crystals we can see and handle.

Fetcho, Ray

74

Crystallization of CO2 ice at astronomical conditions  

NASA Astrophysics Data System (ADS)

Carbon dioxide is, after water and comparable to carbon monoxide, one of the most abundant frozen molecular species observed in the lines of sight towards many astrophysical media. We present here an experimental and theoretical investigation on carbon dioxide ices, generated in the lab in a range of temperature, density, amorphicity, and growing conditions (1), and simulated via high level theoretical calculations. Amorphous CO2 ice was generated at CAB by deposition onto a CsI substrate at 8 K under ultrahigh vacuum conditions in the 10-11 mbar range. The pressure increase used for the deposition of CO2 was very low, 10-9 mbar, to enable the formation of highly amorphous CO2 ice, at very low deposition rate. The transmittance infrared spectra, collected at several stages of sample growth, from 20 to 360 monolayers, are shown in the Figure. In a different set of experiments performed at IEM, the morphology of the amorphous CO2 ice has been studied using reflexion-absorption infrared (RAIR) spectroscopy. Calculated spectra of amorphous CO2 ice are obtained using the SIESTA code (2). In a first step, crystalline structures are processed by molecular dynamics to generate amorphous samples, which are subsequently relaxed until an equilibrium configuration is reached. The vibrational spectra of the amorphous solids are then calculated. The spectra of amorphous ice can change significantly depending on the density of the sample. An IR band, red-shifted with respect to ?3, has been identified as a witness of pure and amorphous CO2 ice. It vanishes when the sample becomes crystalline, either by temperature increase or by accumulation of increasing number of layers. The absence of this band in the observed spectra of solid CO2 is an indication that there is no pure and amorphous CO2 ice in inter- and circumstellar mantles References 1. Escribano, R., Muńoz Caro, G., Cruz-Dķaz, G.A. Rodrķguez-Lazcano, Y. and Maté, B., PNAS, accepted for publication, July 2013.. 2. Ordejón, P., Artacho, E., Soler, J.M., Phys. Rev. B, 53, R10441 (1996). Transmission spectra of CO2 ice samples deposited at 8 K, for increasing thickness expressed as monolayer coverage. Spectral regions of ?3 (stretching mode) and ?2 (bending mode), are shown on the left- and right-hand panels, respectively.

Escribano, R. M.; Munoz-Caro, G.; Cruz-Diaz, G.; Mate, B.; Rodriguez-Lazcano, Y.

2013-12-01

75

Directed Discovery of Crystal Structures  

NSDL National Science Digital Library

This contribution is modified from a published exercise "Directed Discovery of Crystal Structures Using Ball-and-Stick Models" [Mogk, 1997] . While the published exercise is based on student exploration of traditional ball-and-stick models of crystal structures, this modified version uses a similar "discovery-based" approach and the latest online crystallographic information and visualization software to teach the spatial relationships and crystal-chemical rules that govern the crystal structures of common minerals and crystalline solids. A few changes in the content have been made from the published exercise, mainly to accommodate the new digital media.

Mogk, Dave; Ratajeski, Kent

76

Crystal Structure in Nematic Emulsion  

SciTech Connect

We describe the experimental observation of a crystal structure formed by glycerol droplets suspended in a nematic liquid crystal. The structure exhibits a high density hexagonal ordering. We have experimentally observed a noticeable interaction between droplets with tangential boundary conditions. Within the scope of known models we discuss the nature of appropriate mechanisms of the interaction.

Nazarenko, V. G.; Nych, A. B.; Lev, B. I.

2001-08-13

77

Fluidized bed heat exchangers to prevent fouling in ice slurry systems and industrial crystallizers  

Microsoft Academic Search

Ozon layer depletion and global warming by synthetic refrigerants forces refrigeration industries to switch over to natural but hazardous refrigerants like ammonia and hydrocarbons. A promising technology to safely use the latter refrigerants is the application of indirect refrigeration systems with ice slurry as heat transfer fluid. Ice slurry, a suspension of aqueous solution and small ice crystals, has a

P. Pronk

2006-01-01

78

Ice/hydrohalite crystallization structures in sub-eutectic freezing experiments in the system NaCl-H20 and possible implications for the properties of frozen brines in Europa: A preliminary report  

NASA Astrophysics Data System (ADS)

Sulfates are likely to be the most abundant solutes in the subsurface Europan liquid ocean. NaCl may also be a significant component of such liquids based on the compositions of stony meteorites like those thought to be among the source materials for the silicates in Europa's interior. The system NaCl-H20 exhibits a eutectic at -20.8°C and 23.3 weight percent NaCl between ice Ih and hydrohalite (NaCl.2H20). This low eutectic temperature compared to Mg and Na sulfate hydrate/ice eutectics indicates that hydrohalite should be among the last salts to crystallize in brine upwellings along rifts and other places where resurfacing by melt extrusion occurs on Europa. We conducted a suite of freezing experiments on NaCl brines with 20.3, 23.3, and 26.6 (saturated) weight percent NaCl by holding these liquids at a few degrees below the eutectic temperature. These runs produced ice-rich, eutectic and hydrohalite-rich aggregates of both phases, respectively, as confirmed by cryogenic x-ray diffraction and x-ray fluorescence spectroscopy. Based on direct observations of crystals forming at the tops and bottoms of the sample chambers and on refractive index measurements of subsequently melted sample material, marked fractional crystallization and segregation by density of ice, hydrohalite, and residual liquids occurred in the 20.3 and 26.6% samples and less so in for the eutectic composition. Crystallization of very fine grained eutectic intergrowths was recognized in cryogenic SEM images of all these samples and they were especially prominent in samples frozen from saturated brine. These samples were very difficult to cleave compared to pure polycrystalline ice, and hence are likely to have high fracture toughness. Direct measurements of this property and also the effects of partial melting on ductile flow rates are planned on such samples. Refracturing of such regions of fine eutectoid ice/hydrohalite intergrowths is likely to be inhibited in refrozen rifts compared to more ice-rich regions on Europa.

Rieck, K.; Kirby, S. H.; Stern, L. A.

2005-12-01

79

Using polarimetric remote sensing measurements to estimate ice particle size, optical depth and ice water path during CRYSTAL-FACE  

Microsoft Academic Search

In situ observations made during the CRYSTAL-FACE field experiment have indicated that ice crystals have smaller sizes and are more reflective than is commonly assumed in most current climate models. The size of the particles appears to be principally determined by temperature with the smallest particles being found at the coldest temperatures. Previous analyses of polarimetric measurements in non-absorbing bands

I. Geogdzhayev; B. Cairns; M. I. Mishchenko; L. D. Travis

2006-01-01

80

Parameterization of Tropical Cirrus Ice Crystal Size Distributions and Implications for Radiative Transfer: Results from CEPEX  

Microsoft Academic Search

ABSTRACT Average ice crystal size distributions are parameterized,as functions of temperature,and ice water content (IWC), based on observations in cirrus produced as outflows of deep convection made during the Central Equatorial Pacific Experiment (CEPEX), as the sum of a first-order gamma function, describing ice crystals with melted equivalent diameters (Dm) less than 100 mm, and a lognormal function, describing larger

Greg M. McFarquhar; Andrew J. Heymsfield

1997-01-01

81

75 FR 8116 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Ice Crystal...  

Federal Register 2010, 2011, 2012, 2013

...National Cooperative Research and Production Act of 1993--Ice Crystal Consortium Notice is hereby given that, on December 31, 2009...15 U.S.C. 4301 et seq. (``the Act''), the Ice Crystal Consortium (``ICC'') has filed written...

2010-02-23

82

Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth  

PubMed Central

Antifreeze proteins (AFPs) are a subset of ice-binding proteins that control ice crystal growth. They have potential for the cryopreservation of cells, tissues, and organs, as well as for production and storage of food and protection of crops from frost. However, the detailed mechanism of action of AFPs is still unclear. Specifically, there is controversy regarding reversibility of binding of AFPs to crystal surfaces. The experimentally observed dependence of activity of AFPs on their concentration in solution appears to indicate that the binding is reversible. Here, by a series of experiments in temperature-controlled microfluidic devices, where the medium surrounding ice crystals can be exchanged, we show that the binding of hyperactive Tenebrio molitor AFP to ice crystals is practically irreversible and that surface-bound AFPs are sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings rule out theories of AFP activity relying on the presence of unbound protein molecules. PMID:23300286

Celik, Yeliz; Drori, Ran; Pertaya-Braun, Natalya; Altan, Aysun; Barton, Tyler; Bar-Dolev, Maya; Groisman, Alex; Davies, Peter L.; Braslavsky, Ido

2013-01-01

83

Anchor ice and benthic disturbance in shallow Antarctic waters: interspecific variation in initiation and propagation of ice crystals.  

PubMed

Sea ice typically forms at the ocean's surface, but given a source of supercooled water, an unusual form of ice--anchor ice--can grow on objects in the water column or at the seafloor. For several decades, ecologists have considered anchor ice to be an important agent of disturbance in the shallow-water benthic communities of McMurdo Sound, Antarctica, and potentially elsewhere in polar seas. Divers have documented anchor ice in the McMurdo communities, and its presence coincides with reduced abundance of the sponge Homaxinella balfourensis, which provides habitat for a diverse assemblage of benthic organisms. However, the mechanism of this disturbance has not been explored. Here we show interspecific differences in anchor-ice formation and propagation characteristics for Antarctic benthic organisms. The sponges H. balfourensis and Suberites caminatus show increased incidence of formation and accelerated spread of ice crystals compared to urchins and sea stars. Anchor ice also forms readily on sediments, from which it can grow and adhere to organisms. Our results are consistent with, and provide a potential first step toward, an explanation for disturbance patterns observed in shallow polar benthic communities. Interspecific differences in ice formation raise questions about how surface tissue characteristics such as surface area, rugosity, and mucus coating affect ice formation on invertebrates. PMID:22042434

Denny, Mark; Dorgan, Kelly M; Evangelista, Dennis; Hettinger, Annaliese; Leichter, James; Ruder, Warren C; Tuval, Idan

2011-10-01

84

Collecting, shipping, storing, and imaging snow crystals and ice grains with low-temperature scanning electron microscopy  

USGS Publications Warehouse

Methods to collect, transport, and store samples of snow and ice have been developed that enable detailed observations of these samples with a technique known as low-temperature scanning electron microscopy (LTSEM). This technique increases the resolution and ease with which samples of snow and ice can be observed, studied, and photographed. Samples are easily collected in the field and have been shipped to the electron microscopy laboratory by common air carrier from distances as far as 5,000 miles. Delicate specimens of snow crystals and ice grains survive the shipment procedures and have been stored for as long as 3 years without undergoing any structural changes. The samples are not subjected to the melting or sublimation artifacts. LTSEM allows individual crystals to be observed for several hours with no detectable changes. Furthermore, the instrument permits recording of photographs containing the parallax information necessary for three-dimensional imaging of the true shapes of snowflakes, snow crystals, snow clusters, ice grains, and interspersed air spaces. This study presents detailed descriptions of the procedures that have been used successfully in the field and the laboratory to collect, ship, store, and image snow crystals and ice grains. Published 2003 Wiley-Liss, Inc.

Erbe, E.F.; Rango, A.; Foster, J.; Josberger, E.G.; Pooley, C.; Wergin, W.P.

2003-01-01

85

Ice breaking in GPCR structural biology  

PubMed Central

G-protein-coupled receptors (GPCRs) are one of the most challenging targets in structural biology. To successfully solve a high-resolution GPCR structure, several experimental obstacles must be overcome, including expression, extraction, purification, and crystallization. As a result, there are only a handful of unique structures reported from this protein superfamily, which consists of over 800 members. In the past few years, however, there has been an increase in the amount of solved GPCR structures, and a few high-impact structures have been determined: the peptide receptor CXCR4, the agonist bound receptors, and the GPCR-G protein complex. The dramatic progress in GPCR structural studies is not due to the development of any single technique, but a combination of new techniques, new tools and new concepts. Here, we summarize the progress made for GPCR expression, purification, and crystallization, and we highlight the technical advances that will facilitate the future determination of GPCR structures. PMID:22286917

Zhao, Qiang; Wu, Bei-li

2012-01-01

86

Light scattering by absorbing hexagonal ice crystals in cirrus clouds  

NASA Astrophysics Data System (ADS)

An improved ray-optics theory for single scattering and polarization of hexagonal columns and plates randomly oriented in space has been developed by considering absorption and by using the Chebyshev solution for diffraction integrals. The vector-tracing method and statistics technique of random sampling are employed. The equivalent forms of Snell's law and Fresnel formulas for absorbing ice crystals are derived, and two equivalent optical constants, m` and m", are obtained. Comparison is made of the computed results of our model and the Takano and Liou model for asymmetry factors, single-scattering albedos, and scattering phase matrix elements. Some characteristics of our model are discussed, and these analyses demonstrate that our ray-optics model is practical and much improved.

Zhang, Jianyun; Xu, Lisheng

1995-09-01

87

Enhanced high-temperature ice nucleation ability of crystallized aerosol particles after preactivation at low temperature  

NASA Astrophysics Data System (ADS)

cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have studied a preactivation mechanism that markedly enhances the particles' heterogeneous ice nucleation ability. First cloud expansion experiments were performed at a high temperature (267-244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the preactivated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and from 4 to 20%, respectively. Preactivation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

Wagner, Robert; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

2014-07-01

88

Self-oscillatory ice crystal growth in antifreeze protein (AFP) and glycoprotein (AFGP) solutions  

NASA Astrophysics Data System (ADS)

AFPs and AFGPs allow many organisms including fish, plants and insects to survive sub-freezing environments. They occur in a wide range of compositions and structure, but to some extent they all accomplish the same functions: they suppress the freezing temperature, inhibit recrystallization, and modify ice crystal growth. A complete description of the AFGP/AFP surface mechanism as well as other ice surface phenomenon has eluded scientists primarily due to a lack of direct surface studies. We study ice crystal growth in AFGP and AFP solutions with phase contrast microscopy during free solution growth under various conditions including microgravity. Free-solution growth experiments show an anisotropic self-oscillatory growth mode of the steps and interface near the freezing temperature and enhancement of the growth rates in the c-axis. These results contradict the previous ?tight-binding? mechanism thought to be responsible for antifreeze function. To study the effects of temperature driven convective flows on the interface kinetics, microgravity experiments were performed in a jet airplane during a parabolic flight path. Step propagation on the basal plane slows down considerably when entering the microgravity condition and reaches a critical condition just below 0.2g.

Zepeda, Salvador; Nakaya, Hiroyuki; Uda, Yukihiro; Yokoyama, Etsuro; Furukawa, Yoshinori

2006-03-01

89

Reliable and Highly Accurate Molecular Crystal Structures  

E-print Network

Dispersion-corrected DFT (DFT-D) #12;Reproduction of Crystal Structures 225 "organic only" crystal structures. B66, 544-558 #12;Reproduction of Crystal Structures 225 "organic only" crystal structures from Minimised Experimental #12;What about Wrong Structures? Unit cell free Acta Cryst. E test set No H

Magee, Joseph W.

90

Direct Visualization of Spruce Budworm Antifreeze Protein Interacting with Ice Crystals: Basal Plane Affinity Confers Hyperactivity  

PubMed Central

Antifreeze proteins (AFPs) protect certain organisms from freezing by adhering to ice crystals, thereby preventing their growth. All AFPs depress the nonequilibrium freezing temperature below the melting point; however AFPs from overwintering insects, such as the spruce budworm (sbw) are 10–100 times more effective than most fish AFPs. It has been proposed that the exceptional activity of these AFPs depends on their ability to prevent ice growth at the basal plane. To test the hypothesis that the hyperactivity of sbwAFP results from direct affinity to the basal plane, we fluorescently tagged sbwAFP and visualized it on the surface of ice crystals using fluorescence microscopy. SbwAFP accumulated at the six prism plane corners and the two basal planes of hexagonal ice crystals. In contrast, fluorescently tagged fish type III AFP did not adhere to the basal planes of a single-crystal ice hemisphere. When ice crystals were grown in the presence of a mixture of type III AFP and sbwAFP, a hybrid crystal shape was produced with sbwAFP bound to the basal planes of truncated bipyramidal crystals. These observations are consistent with the blockage of c-axial growth of ice as a result of direct interaction of sbwAFP with the basal planes. PMID:18339740

Pertaya, Natalya; Marshall, Christopher B.; Celik, Yeliz; Davies, Peter L.; Braslavsky, Ido

2008-01-01

91

Ice Growth Measurements from Image Data to Support Ice-Crystal and Mixed-Phase Accretion Testing  

NASA Technical Reports Server (NTRS)

This paper describes the imaging techniques as well as the analysis methods used to measure the ice thickness and growth rate in support of ice-crystal icing tests performed at the National Research Council of Canada (NRC) Research Altitude Test Facility (RATFac). A detailed description of the camera setup, which involves both still and video cameras, as well as the analysis methods using the NASA Spotlight software, are presented. Two cases, one from two different test entries, showing significant ice growth are analyzed in detail describing the ice thickness and growth rate which is generally linear. Estimates of the bias uncertainty are presented for all measurements. Finally some of the challenges related to the imaging and analysis methods are discussed as well as methods used to overcome them.

Struk, Peter, M; Lynch, Christopher, J.

2012-01-01

92

Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics  

NASA Astrophysics Data System (ADS)

The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.

Rysgaard, S.; Sųgaard, D. H.; Cooper, M.; Pu?ko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

2012-12-01

93

Structure of Water Ice in the Solar System  

NASA Technical Reports Server (NTRS)

Nearly all of the properties of solar system ices (chemical reaction rates, volatile retention and release, vaporization behavior, thermal conductivity, infrared spectral characteristics and the like) are a direct consequence of ice structure. However, the characterization of astrophysical ices and their laboratory analogs has typically utilized indirect measurements which yield phenomenological interpretations. When water ice is vapor-deposited at 14 K and warmed until it volatilizes in moderate vacuum, the ice undergoes a series of amorphous to amorphous and amorphous to crystalline structural transitions which we have characterized by diffraction methods. These structural transitions correlate with and underlie many phenomena observed in laboratory infrared and gas release experiments. The elucidation of the dynamic structural changes which occur in vapor-deposited water ice as a function of time, temperature and radiation history allows for the more complete interpretation of remote observations of astrophysical ices and their laboratory analogs.

Blake, David; Jenniskens, Peter; Chang, Sherwood (Technical Monitor)

1996-01-01

94

Using polarimetric remote sensing measurements to estimate ice particle size, optical depth and ice water path during CRYSTAL-FACE  

NASA Astrophysics Data System (ADS)

In situ observations made during the CRYSTAL-FACE field experiment have indicated that ice crystals have smaller sizes and are more reflective than is commonly assumed in most current climate models. The size of the particles appears to be principally determined by temperature with the smallest particles being found at the coldest temperatures. Previous analyses of polarimetric measurements in non-absorbing bands have suggested that either bubble inclusions (inhomogeneous hexagonal mono-crystals) or distortions of the hexagonal crystal shape (distorted chain aggregates) are responsible for the observed general absence of haloes, smooth angular variation of reflectance and brightness of ice clouds. In this paper we use multi-angle measurements made by the Research Scanning Polarimeter (RSP) to examine the polarized and unpolarized reflectance of cirrus clouds in bands where ice is non-absorbing (670 and 865 nm) and absorbing (1590, 1880 and 2250 nm). During CRSYTAL-FACE the RSP scan was biased so that the view angle range was from 0 to 75 degrees to the rear of the Proteus aircraft and from 0 to 45 degrees to the front and was oriented to scan along the groundtrack of the aircraft. This allowed observations of a single target over a wide scattering angle range particularly when consecutive flight legs could be combined which allows for basic discrimination of crystal habit using the non-absorbing bands, similar to previous studies (at least in the gross sense of being able to separate columns from plates from distorted crystals from spheroidal shapes). However, compared with non-absorbing bands, the reflectance in absorbing bands is different depending on whether ice particles are geometrically distorted or contain air bubble inclusions because the path length of light inside an ice crystal is quite short which limits scattering off the bubble inclusions. Consequently the retrieved particle size is also sensitive to whether ice crystals are modeled as being distorted or containing air bubbles. We examine how the RSP size retrievals, with an appropriate vertical weighting determined by Green's function calculations, compare with in situ measurements and examine the angular and spectral polarized and unpolarized residuals from the retrievals. This allows us to identify the most appropriate crystal habit for use in the remote sensing of cirrus clouds formed by convection over land, such as those observed during CRYSTAL-FACE, and provide best estimates for the particle size, optical depth and ice water path determined using solar reflectance measurements.

Geogdzhayev, I.; Cairns, B.; Mishchenko, M. I.; Travis, L. D.

2006-12-01

95

Discrete element analysis of ice loads on ships and structures  

Microsoft Academic Search

In this paper, the versatility of discrete element method (DEM) in modelling ice-related problems is discussed and further demonstrated using the results from the DEM works conducted by the National Research Council's Institute for Ocean Technology (NRC-IOT) using a commercial code DECICE. These works include a wide range of ice-structure and ice-ship interaction problems of current interest, i.e. ice loads

Michael Lau; Karl P. Lawrence; Leo Rothenburg

2011-01-01

96

A renewed argument for crystal size control of ice sheet strain rates  

NASA Astrophysics Data System (ADS)

At present, it is generally believed that crystal size has no direct influence on strain rate in the ice sheets and that the fraction of strain rate enhancement there which is not ascribable to c axis fabric is due to impurity content. Here we challenge this view because it is not consistent with recent results from analyses of deformation at Meserve Glacier and instead ascribe residual enhancement in the ice sheets to variations in crystal size. We resurrect the idea that variations of crystal size can be an important part of the total shear enhancement in the ice sheets, though agree with Paterson that this effect is generally dominated by variations of crystal fabric. We propose that the enhanced shear strain rate of ice age ice in southern Greenland, as inferred from tilt of the Dye 3 borehole, can be explained as a result of combined fabric variations and crystal size variations, with these two ice properties accounting for roughly 70% and 30% of the average enhancement, respectively. Permitting a grain size dependence of ice viscosity also resolves the quandary concerning closure and tilt of the Agassiz Ice Cap borehole.

Cuffey, K. M.; Thorsteinsson, T.; Waddington, E. D.

2000-12-01

97

Changing structures and dynamics of western Antarctic Peninsula Ice Shelves  

NASA Astrophysics Data System (ADS)

Over the last three decades, Antarctic Peninsula Ice Shelves have shown a pattern of sustained retreat, often ending in catastrophic and rapid breakup. This study provides a detailed analysis of the structures and dynamics of three western Antarctic Peninsula ice shelves: Bach, Stange and George VI Ice Shelves. Spatial extent and glaciological surface features were mapped for each ice shelf from 1973 to 2010 using optical and radar satellite images to assess their structural evolution, historical dynamics and stability. InSAR and feature-tracking methods were used to assess the recent dynamic configurations of the ice shelves from 1989 to 2010. Repeat ICESat measurements were used to evaluate their vertical changes from 2003 to 2008. On Bach Ice Shelf, the formation of two large fractures near the ice front is linked to widespread thinning (~2 ma-1) and sustained retreat (~360 km2). It looks likely that iceberg calving along these fractures will alter the frontal geometry sufficiently to promote enhanced, irreversible retreat within the next decade. On George VI Ice Shelf, acceleration is observed at both ice fronts; linked to a release of back-stresses through continued ice loss (1995 km2 in total). The most significant changes are recorded at its southern ice front, with ice flow accelerating up to 360% between ca. 1989 and ca. 2010, coupled with widespread rifting and a mean thinning rate of 2.1 ma-1. On Stange Ice Shelf, shear-induced fracturing was observed between two flow units, also linked to widespread thinning (~4.2 ma-1). A semi-quantitative assessment reveals that the southern margin of George VI Ice Shelf is most susceptible to rapid retreat, whilst its northern ice front, Bach Ice Shelf and the northern front of Stange Ice Shelf are more vulnerable than those situated on the east Antarctic Peninsula.

Glasser, N. F.; Holt, T. O.; Quincey, D. J.; Fricker, H.; Siegfried, M. R.

2013-12-01

98

Isomorph invariance of the structure and dynamics of classical crystals  

NASA Astrophysics Data System (ADS)

This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework, which is generally a good description except significantly below melting. The existence of isomorphs for crystals is validated by simulations of particles interacting via the Lennard-Jones pair potential arranged into a face-centered cubic (fcc) crystalline structure; the slow vacancy-jump dynamics of a defective fcc crystal is also shown to be isomorph invariant. In contrast, a NaCl crystal model does not exhibit isomorph invariances. Other systems simulated, though in less detail, are the Wahnström binary Lennard-Jones crystal with the MgZn2 Laves crystal structure, monatomic fcc crystals of particles interacting via the Buckingham pair potential and via a purely repulsive pair potential diverging at a finite separation, an ortho-terphenyl molecular model crystal, and SPC/E hexagonal ice. Except for NaCl and ice, the crystals simulated all have isomorphs. Based on previous simulations of liquid models, we conjecture that crystalline solids with isomorphs include most or all formed by atoms or molecules interacting via metallic or van der Waals forces, whereas covalently bonded or hydrogen-bonded crystals are not expected to have isomorphs; crystals of ions or dipolar molecules constitute a limiting case for which isomorphs are only expected when the Coulomb interactions are relatively weak. We briefly discuss the consequences of the findings for theories of melting and crystallization.

Albrechtsen, Dan E.; Olsen, Andreas E.; Pedersen, Ulf R.; Schrųder, Thomas B.; Dyre, Jeppe C.

2014-09-01

99

On the scattering phase-function of non-symmetric ice-crystals  

NASA Astrophysics Data System (ADS)

Theoretical phase-functions representing randomly oriented fractal ice-crystals, bullet-rosettes, ice aggregates, and an ensemble of ice crystals are compared to measured phase-functions using a Polar Nephelometer located in the Antarctic. The Polar Nephelometer operated at a wavelength of 0.80 ?m and measured the scattering phase-functions of individual ice-crystals between the scattering angles of 5.86° and 167°. The Polar Nephelometer was operated in tandem with a Cloud Particle Imager (supplied by SPEC Inc.) both were situated at the South Pole Amundsen Scott base station during January 2002. In this paper we report on a sample of Polar Nephelometer data obtained over a time interval of 2000 seconds consisting of 3256 phase-functions measured from individual ice-crystals. The 3256 measured phase-functions were averaged to produce an ensemble-averaged phase-function. The theoretical phase-functions have been compared to the measured ensemble-averaged phase-function. The paper demonstrates that phase functions representing single ice-crystal geometries do not reproduce the measured data well. However, the theoretical phase-function representing scattering from an ensemble of ice crystals is found to be the best description of the measured phase-function over all scattering angles.

Baran, Anthony. J.; Shcherbakov, V. N.; Baker, B. A.; Gayet, J. F.; Lawson, R. P.

2005-10-01

100

Crystal structure of triclopyr  

PubMed Central

In the title compound {systematic name: 2-[(3,5,6-tri­chloro­pyridin-2-yl)­oxy]acetic acid}, the herbicide triclopyr, C7H4Cl3NO3, the asymmetric unit comprises two independent mol­ecules in which the dihedral angles between the mean plane of the carb­oxy­lic acid group and the pyridyl ring plane are 79.3?(6) and 83.8?(5)°. In the crystal, pairs of inter­molecular O—H?O hydrogen bonds form dimers through an R 2 2(8) ring motif and are extended into chains along [100] by weak ?–? inter­actions [ring centroid separations = 3.799?(4) and 3.810?(4)?Å]. In addition, short inter­molecular Cl?Cl contacts [3.458?(2)?Å] connect the chains, yielding a two-dimensional architecture extending parallel to (020). The crystal studied was found to be non-merohedrally twinned with the minor component being 0.175?(4).

Cho, Seonghwa; Kim, Jineun; Jeon, Youngeun; Kim, Tae Ho

2014-01-01

101

The structure of internal stresses in the uncompacted ice cover  

SciTech Connect

Interactions between engineering structures and sea ice cover are associated with an inhomogeneous space/time field of internal stresses. Field measurements (e.g., Coon, 1989; Tucker, 1992) have revealed considerable local stresses depending on the regional stress field and ice structure. These stresses appear in different time and space scales and depend on rheologic properties of the ice. To estimate properly the stressed state a knowledge of a connection between internal stress components in various regions of the ice cover is necessary. To develop reliable algorithms for estimates of ice action on engineering structures new experimental data are required to take into account both microscale (comparable with local ice inhomogeneities) and small-scale (kilometers) inhomogeneities of the ice cover. Studies of compacted ice (concentration N is nearly 1) are mostly important. This paper deals with the small-scale spatial distribution of internal stresses in the interaction zone between the ice covers of various concentrations and icebergs. The experimental conditions model a situation of the interaction between a wide structure and the ice cover. Field data on a drifting ice were collected during the Russian-US experiment in Antarctica WEDDELL-I in 1992.

Sukhorukov, K.K. [Arctic and Antarctic Research Inst., St. Petersburg (Russian Federation)

1995-12-31

102

Stability relationship for water droplet crystallization with the NASA Lewis icing spray  

NASA Technical Reports Server (NTRS)

In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.

Marek, C. John; Bartlett, C. Scott

1987-01-01

103

Ice crystal nucleation and growth in contrails forming at low ambient temperatures  

NASA Astrophysics Data System (ADS)

A model of ice crystal nucleation and growth in a diluting aircraft exhaust plume is used to evaluate the physical processes responsible for the ice number densities and size distributions measured on May 4, 1996. Predicted ice crystal size distributions are compared with observations at about 70 seconds plume age. The simulated crystals grow to about 2 µm radius within 2-3 seconds, then remain approximately constant in size until 30-60 seconds plume age when crystal sublimations begins. The calculated crystal size distribution has approximately the same volume mode radius as the observed size distribution (1-2 µm) however, the model does not predict as many crystals larger than 2 µm radius as indicated by the measurements. Due to the low ambient temperature (-61°C), large ice supersaturations are generated in the plume, and all exhaust soot particles and ambient aerosols entrained into the plume before about 1 second plume age are activated to ice nuclei. The simulations indicate that if the soot particle emission index is on the order of 2×1012 particles (kg fuel)-1 or lower and freshly nucleated sulfate aerosols are too small to freeze in the young plume, then the majority of the contrail ice crystals may be nucleated on ambient aerosols entrained into the exhaust plume.

Jensen, E. J.; Toon, O. B.; Pueschel, R. F.; Goodman, J.; Sachse, G. W.; Anderson, B. E.; Chan, K. R.; Baumgardner, D.; Miake-Lye, R. C.

104

Crystal structure of anilazine  

PubMed Central

The title compound [systematic name: 4,6-di­chloro-N-(2-chloro­phen­yl)-1,3,5-triazin-2-amine], C9H5Cl3N4, is a triazine fungicide. The dihedral angle between the planes of the triazine and benzene rings is 4.04?(8)°. In the crystal, two weak C—H?N hydrogen bonds and short Cl?Cl contacts [3.4222?(4)?Å] link adjacent mol­ecules, forming two-dimensional networks parellel to the (112) plane. The planes are linked by weak inter­molecular ?–? inter­actions [3.6428?(5) and 3.6490?(5)?Å], resulting in a three-dimensional architecture.

Jeon, Youngeun; Kim, Jineun; Kang, Gihang; Kim, Tae Ho

2014-01-01

105

Crystal structure of anilazine.  

PubMed

THE TITLE COMPOUND [SYSTEMATIC NAME: 4,6-di-chloro-N-(2-chloro-phen-yl)-1,3,5-triazin-2-amine], C9H5Cl3N4, is a triazine fungicide. The dihedral angle between the planes of the triazine and benzene rings is 4.04?(8)°. In the crystal, two weak C-H?N hydrogen bonds and short Cl?Cl contacts [3.4222?(4)?Å] link adjacent mol-ecules, forming two-dimensional networks parellel to the (112) plane. The planes are linked by weak inter-molecular ?-? inter-actions [3.6428?(5) and 3.6490?(5)?Å], resulting in a three-dimensional architecture. PMID:25309255

Jeon, Youngeun; Kim, Jineun; Kang, Gihang; Kim, Tae Ho

2014-09-01

106

Oscillatory Growth of Ice Crystals Observed in a Solution of Antifreeze Glycoprotein  

NASA Astrophysics Data System (ADS)

One-directional growth experiments of ice crystals in an aqueous solution of antifreeze glycoprotein (AFGP) were carried out using a growth cell made of thin glass capillaries. When the interface tips of ice crystals were constructed by prismatic planes, the interface position changed periodically with time. These phenomena were not observed for the growth of basal planes in the AFGP solution or for the growth of ice crystals in pure water. We first observed the oscillatory growth of ice crystals in the AFGP solution. Fluorescent labeled AFGP molecules were also used to observe the diffusion, incorporation, and segregation of the solute at the interface, in the solid and in solution. The periodic incorporation of AFGP molecules were clearly observed in conjunction with the growth rate changes.

Furukawa, Yoshinori; Nishimura, Yoshihiro; Zepeda, Salvador; Nakaya, Hiroyuki; Yokoyama, Etsuro

2007-03-01

107

Optical detection and characterization of ice crystals in LACIS  

Microsoft Academic Search

Tropospheric ice and mixed phase clouds are an integral part of the earth system and their microphysical and radiative properties are strongly coupled e.g. through the complexities of the ice nucleation process. Therefore the investigation of influences of different aerosol particles which act as ice nuclei (IN) on the freezing behaviour of cloud droplets is important and still poses unresolved

Alexei Kiselev; Tina Clauß; Dennis Niedermeier; Susan Hartmann; Heike Wex; Frank Stratmann

2010-01-01

108

A Theoretical Study of the Variation of Ice Crystal Habits with Temperature  

Microsoft Academic Search

A theory is presented to explain the temperature dependence of the velocity of step-growth and the interaction distance between two approaching steps on the basal plane of ice. Numerical calculations based on this theory are shown to be in reasonable agreement with experimental results. It is suggested that an ice crystal grows from the vapor phase by steps being nucleated

P. V. Hobbs; W. D. Scott

1965-01-01

109

Radiative influences on ice crystal and droplet growth within mixed-phase stratus clouds  

Microsoft Academic Search

This study uses a box model and a Lagrangian microphysical parcel model to investigate the influences of radiative heating and cooling on the vapor diffusional growth of liquid drops and ice crystals within mixed-phase clouds. Without radiative effects, the combined influences of drop and ice vapor diffusion lead to slight supersaturations with respect to liquid despite the rapid growth of

Z. J. Lebo; N. C. Johnson; J. Y. Harrington

2008-01-01

110

Teaching With Crystal Structures  

NSDL National Science Digital Library

Classifying a particle requires an understanding of the type of bonding that exists within and among the particles, which requires an understanding of atomic structure and electron configurations, which requires an understanding of the elements of periodi

Smithenry, Dennis W.

2009-09-01

111

Structural Basis for Antifreeze Activity of Ice-binding Protein from Arctic Yeast*  

PubMed Central

Arctic yeast Leucosporidium sp. produces a glycosylated ice-binding protein (LeIBP) with a molecular mass of ?25 kDa, which can lower the freezing point below the melting point once it binds to ice. LeIBP is a member of a large class of ice-binding proteins, the structures of which are unknown. Here, we report the crystal structures of non-glycosylated LeIBP and glycosylated LeIBP at 1.57- and 2.43-? resolution, respectively. Structural analysis of the LeIBPs revealed a dimeric right-handed ?-helix fold, which is composed of three parts: a large coiled structural domain, a long helix region (residues 96–115 form a long ?-helix that packs along one face of the ?-helix), and a C-terminal hydrophobic loop region (243PFVPAPEVV251). Unexpectedly, the C-terminal hydrophobic loop region has an extended conformation pointing away from the body of the coiled structural domain and forms intertwined dimer interactions. In addition, structural analysis of glycosylated LeIBP with sugar moieties attached to Asn185 provides a basis for interpreting previous biochemical analyses as well as the increased stability and secretion of glycosylated LeIBP. We also determined that the aligned Thr/Ser/Ala residues are critical for ice binding within the B face of LeIBP using site-directed mutagenesis. Although LeIBP has a common ?-helical fold similar to that of canonical hyperactive antifreeze proteins, the ice-binding site is more complex and does not have a simple ice-binding motif. In conclusion, we could identify the ice-binding site of LeIBP and discuss differences in the ice-binding modes compared with other known antifreeze proteins and ice-binding proteins. PMID:22303017

Lee, Jun Hyuck; Park, Ae Kyung; Do, Hackwon; Park, Kyoung Sun; Moh, Sang Hyun; Chi, Young Min; Kim, Hak Jun

2012-01-01

112

Tropical tropopause ice clouds: A new approach to answer the mystery of low crystal numbers  

NASA Astrophysics Data System (ADS)

Water vapour is the most important natural green house gas. However, in the stratosphere an increase in water vapour would possibly result in a net cooling of the earth-atmosphere system. The major entrance pathway of trace substances into the stratosphere is the tropical tropopause layer (TTL). The TTL water vapor budget, and thus the exchange between troposphere and stratosphere, depends crucially on the occurrence and properties of ice clouds in this cold region (T < 200 K). New observations indicate that very low ice crystal numbers frequently occur in the TTL. This phenomenon is not yet understood and is not compatible with the idea that homogeneous freezing of solution droplets is the major pathway of ice formation. These low ice number concentrations are consistent with observed persistent high ice supersaturations inside cold TTL cirrus clouds, which in turn control the exchange of water vapor with the stratosphere. Here, we reproduce in-situ measurements of frequencies of occurrence of ice crystal concentrations by extensive model simulations, driven by the special dynamical conditions in the TTL, namely the superposition of slow large-scale updrafts with high-frequency short waves. The simulations show that about 80% of the observed incidences of low ice crystal concentrations can be explained by 'classical' homogeneous ice nucleation in the very slow updrafts (< 1cm/s), about 19% stem from heterogeneous freezing, while the remaining of about 1% originates from homogeneous freezing in slightly faster updrafts (> 1cm/s). The mechanism limiting the ice crystal production from homogeneous freezing in an environment full of gravity waves is that freezing events are stalled -due to the shortness of the gravity waves- before a higher number concentration of ice crystals can be formed.

Spichtinger, Peter; Krämer, Martina

2013-04-01

113

Preliminary electron crystallographic analysis of ice-embedded tropomyosin crystals.  

PubMed

Electron images and diffraction patterns of ice-embedded tropomyosin crystalline sheets have been recorded at 100 and 400 kV. Optical diffractograms from the images indicated an elongated, centered unit cell with a = 799.2 +/- 10.6 A, b = 55.1 +/- 3.5 A. Evaluation of the phases in the computed Fourier transforms up to 7 A resolution revealed the presence of symmetry axes consistent with two-dimensional space group cmm. Electron diffraction patterns show diffuse arcs and discrete sampling at a resolution of 5.1 A, arising from the alpha-helical coiled-coil features of the molecule. These results demonstrate that tropomyosin thin sheets are highly ordered and suggest that retrieval of its high-resolution three-dimensional structure may be feasible by electron crystallography. PMID:8494673

Avila-Sakar, A J; Schmid, M F; Li, L S; Whitby, F G; Phillips, G N; Chiu, W

1993-01-01

114

A new experimental setup to investigate nucleation, dynamic growth and surface properties of single ice crystals  

NASA Astrophysics Data System (ADS)

The nucleation and growth of atmospheric ice particles is of importance for both, weather and climate. However, knowledge is still sparse, e.g. when considering the influences of ice particle surface properties on the radiative properties of clouds. Therefore, based on the experiences with our laminar flow tube chamber LACIS (Leipzig Aerosol Cloud Interaction Simulator, Stratmann et al., 2004), we developed a new device to characterize nucleation, dynamic growth and light scattering properties of a fixed single ice crystal in dependence on the prevailing thermodynamic conditions. Main part of the new setup is a thermodynamically controlled laminar flow tube with a diameter of 15 mm and a length of 1.0 m. Connected to the flow tube is a SID3-type (Small Ice Detector, Kaye et al., 2008) instrument called LISA (Leipzig Ice Scattering Apparatus), equipped with an additional optical microscope. For the investigations, a single ice nucleus (IN) with a dry size of 2-5 micrometer is attached to a thin glass fiber and positioned within the optical measuring volume of LISA. The fixed particle is exposed to the thermodynamically controlled air flow, exiting the flow tube. Two mass flow controllers adjusting a dry and a humidified gas flow are applied to control both, the temperature and the saturation ratio over a wide range. The thermodynamic conditions in the experiments were characterized using a) temperature and dew-point measurements, and b) computational fluid dynamics (CFD) calculations. Dependent on temperature and saturation ratio in the measuring volume, ice nucleation and ice crystal growth/shrinkage can occur. The optical microscope allows a time dependent visualization of the particle/ice crystal, and the LISA instrument is used to obtain 2-D light scattering patterns. Both devices together can be applied to investigate the influence of thermodynamic conditions on ice crystal growth, in particular its shape and surface properties. We successfully performed deposition nucleation experiments considering kaolinite and SnowmaxTM (Johnson Controls Snow, Colorado, USA) particles. Different temperatures and saturation ratios were considered resulting in different growth rates and ice crystal shapes. We have proven the feasibility of the setup for investigating ice particle nucleation and growth. Further investigations and data evaluation concerning the quantification of the ice particle's surface properties are ongoing. Kaye, P., Hirst, E., Greenaway, R., Ulanowski, Z., Hesse, E., DeMott, P., Saunders, C., Conolly, P.: Classifying atmospheric ice crystals by spatial light scattering, Optics Letters, 33, 1545-1547, 2008. Stratmann, F., Kiselev, A., Wurzler, S., Wendisch, M., Heintzenberg, J., Charlson, R. J., Diehl, K., Wex, H., Schmidt, S.: Laboratory studies and numerical simulations of cloud droplet formation under realistic supersaturation conditions., J. Atmos. Ocean. Tech., 21, 876-887, 2004

Voigtlaender, Jens; Bieligk, Henner; Niedermeier, Dennis; Clauss, Tina; Chou, Cédric; Ulanowski, Zbigniew; Stratmann, Frank

2013-04-01

115

Critical Supersaturation for Ice Crystal Growth: Laboratory Measurements and Atmospheric Modeling Implications  

NASA Astrophysics Data System (ADS)

An improved understanding of ice crystal growth, particularly at low temperatures, is much in demand for the advancement of numerical modeling of atmospheric processes. Cirrus models must contend with the complexity of ice crystals growing in cold temperatures, low pressures, low supersaturations, and with multiple nucleation mechanisms. Recent observations have allowed increasingly realistic parameterizations of cirrus ice crystal microphysics, but these observations need to be supplemented by a fundamental understanding of growth processes affecting low-temperature crystals. Several experimental studies have demonstrated that certain ice crystals require a minimum "critical" supersaturation before exhibiting detectable growth. These crystals are presumed to be essentially defect-free, preventing vicinal hillock growth at the site of crystal dislocations. In the case of crystal growth by spiral dislocation, advancement of faces begins as soon as supersaturation is present. The finding of conditional critical supersaturations have analogies in other materials (metals, semiconductors, potassium dihydrogen phosphate) and are thermodynamically predicted given a two-dimensional nucleation growth mechanism. Previous measurements have determined the critical supersaturation for ice as a function of temperature and crystallographic face from 0 to --15° C with extrapolation to --30° C. For both basal and prism faces, critical supersaturation is seen to increase with decreasing temperature, suggesting that low-temperature, low-supersaturation processes are most likely to be affected by this critical contingency. We present laboratory results to verify and extend prior critical supersaturation measurements using a novel approach for supersaturation generation, control, and measurement. The crystals are grown on the tip of a fine glass fiber ( ˜10 microns in diameter) under varying conditions of temperature, pressure, and saturation. Supersaturation is generated when a pre-saturated airflow passes over a coil of ice warmed by electrical resistance upstream from the growing crystal. Supersaturation is determined by a system of differential thermocouples calibrated to sulfuric acid drop size measurements. Measurements follow those made in earlier studies, but also extend to temperatures of --45° C, mimicking conditions found in some high altitude clouds.

Magee, N.; Moyle, A.; Lamb, D.

2003-12-01

116

A laboratory study of the effects of a kerosene-burner exhaust on ice nucleation and the evaporation rate of ice crystals  

NASA Astrophysics Data System (ADS)

Laboratory experiments are described during which the influence of gases and particles from the exhaust of a kerosene burner on microphysical processes were studied. In one experimental investigation the evaporation rates of ice crystals polluted with the kerosene-burner exhaust were compared with the evaporation rates of pure ice crystals. During another experimental investigation the ice nucleating ability of the exhaust particles was studied in terms of the efficiency of the exhaust particles to act as deposition and condensation freezing nuclei, as immersion freezing nuclei, and as contact nuclei. The results of our experiments showed that the evaporation rate of ice crystals polluted with the kerosene-burner exhaust was significantly reduced compared to the evaporation rate of pure ice crystals, implying an increased lifetime of aircraft contrails in comparison to a cloud of pure ice crystals. We also found that the kerosene-burner exhaust particles act as ice nuclei in all studied modes of ice formation at temperatures as high as -20°C, particulary freezing between 20 and 70% of the drops at temperatures warmer than -28°C in the immersion mode. Since the temperature at the level of the contrails is typically below -30°C our result allows the speculation that drop formation at the cruising altitude of air planes is immediately followed by ice crystal formation via heterogeneous nucleation.

Diehl, K.; Mitra, S. K.

117

Photonic crystal fiber monitors for intracellular ice formation  

NASA Astrophysics Data System (ADS)

An all-silica steering wheel photonic crystal fiber (SW-PCF) device with real-time analysis for cellular temperature sensing is presented. Results are provided for water-filled SW-PCF fibers experiencing cooling down near -40°C. Cellular temperature sensors with fast response times are of interest particularly to the study of cryopreservation, which has been influential in applications such as tissue preservation, food quality control, genetic engineering, as well as drug discovery and in- vitro toxin testing. Results of this investigation are relevant to detection of intracellular ice formation (IIF) and better understanding cell freezing at very low temperatures. IIF detection is determined as a function of absorption occurring within the core of the SW-PCF. The SW-PCF has a 3.3?m core diameter, 125?m outer diameter and steering wheel-like air hole pattern with triangular symmetry, with a 20?m radius. One end of a 0.6m length of the SW-PCF is placed between two thermoelectric coolers, filled with ~0.1?L water. This end is butt coupled to a 0.5m length of single mode fiber (SMF), the distal end of the fiber is then inserted into an optical spectrum analyzer. A near-IR light source is guided through the fiber, such that the absorption of the material in the core can be measured. Spectral characteristics demonstrated by the optical absorption of the water sample were present near the 1300-1700nm window region with strongest peaks at 1350, 1410 and 1460nm, further shifting of the absorption peaks is possible at cryogenic temperatures making this device suitable for IIF monitoring applications.

Battinelli, Emily; Reimlinger, Mark; Wynne, Rosalind

2012-04-01

118

Antifreeze Effect of Carboxylated ?-Poly-l-lysine on the Growth Kinetics of Ice Crystals.  

PubMed

Some biological substances control the nucleation and growth of inorganic crystals. Antifreeze proteins, which prohibit ice crystal growth in living organisms, promise are also important as biological antifreezes for medical applications and in the frozen food industries. In this work, we investigated the crystallization of ice in the presence of a new cryoprotector, carboxylated ?-poly-l-lysine (COOH-PLL). In order to reveal the characteristics and the mechanism of its antifreeze effect, free-growth experiments of ice crystals were carried out in solutions with various COOH-PLL concentrations and degrees of supercooling, and the depression of the freezing point and growth rates of the tips of ice dendrites were obtained using optical microscopy. Hysteresis of growth rates and depression of the freezing point was revealed in the presence of COOH-PLL. The growth-inhibition effect of COOH-PLL molecules could be explained on the basis of the Gibbs-Thomson law and the use of Langmuir's adsorption isotherm. Theoretical kinetic curves for hysteresis calculated on the basis of Punin-Artamonova's model were in good agreement with experimental data. We conclude that adsorption of large biological molecules in the case of ice crystallization has a non-steady-state character and occurs more slowly than the process of embedding of crystal growth units. PMID:25113284

Vorontsov, Dmitry A; Sazaki, Gen; Hyon, Suong-Hyu; Matsumura, Kazuaki; Furukawa, Yoshinori

2014-08-28

119

Crystal Structure of Neotame Anhydrate Polymorph G  

Microsoft Academic Search

Purpose. To determine the crystal structure of the neotame anhydrate polymorph G and to evaluate X-ray powder diffractometry (XRPD) with molecular modeling as an alternative method for determining the crystal structure of this conformationally flexible dipeptide.

Zedong Dong; Victor G. Young; Agam Sheth; Eric J. Munson; Steve A. Schroeder; Indra Prakash; David J. W. Grant

2002-01-01

120

Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics  

SciTech Connect

Ice shelves are thick, floating ice masses most often associated with Antarctica where they are seaward extensions of the grounded Antarctic ice sheet and sources of many icebergs. However, there are also ice shelves in the Arctic, primarily located along the north coast of Ellesmere Island in the Canadian High Arctic. The only ice shelves in North America and the most extensive in the north polar region, the Ellesmere ice shelves originate from glaciers and from sea ice and are the source of ice islands, the tabular icebergs of the Arctic Ocean. The present state of knowledge and understanding of these ice features is summarized in this paper. It includes historical background to the discovery and early study of ice shelves and ice islands, including the use of ice islands as floating laboratories for polar geophysical research. Growth mechanisms and age, the former extent and the twentieth century disintegration of the Ellesmere ice shelves, and the processes and mechanisms of ice island calving are summarized. Surface features, thickness, thermal regime, and the size, shape, and numbers of ice islands are discussed. The structural-stratigraphic variability of ice islands and ice shelves and the complex nature of their growth and development are described. Large-scale and small-scale dynamics of ice islands are described, and the results of modeling their drift and recurrence intervals are presented. The conclusion identifies some unanswered questions and future research opportunities and needs. 97 refs., 18 figs.

Jeffries, M.O. (Univ. of Alaska, Fairbanks (United States))

1992-08-01

121

Ultrasonically triggered freezing of aqueous solutions: Influence of initial oxygen content on ice crystals' size distribution  

NASA Astrophysics Data System (ADS)

Samples of mannitol's aqueous solution at various contents of dissolved oxygen were frozen with the help of ultrasound and the ice crystals size distributions were measured by optical microscopy. Increasing the oxygen content led to a fair decreasing of the average crystals size and an increasing of the homogeneity of the size of crystals within the sample. The average size appeared simply as inversely proportional to the oxygen content in the initial liquid solution.

Jabbari-Hichri, Amira; Peczalski, Roman; Laurent, Pierre

2014-09-01

122

Crystal Structure of Rochelle Salt  

Microsoft Academic Search

WE have succeeded in finding approximate positions for all the atoms of Rochelle salt (sodium potassium tartrate tetrahydrate) in the crystal structure. The unit cell has dimensions 11.93 A. × 14.30 A. × 6.17 A. (Z = 4), and the space group is P21212. The set of general positions expressing this symmetry is and the co-ordinates of the various atoms

C. A. Beevers; W. Hughes

1940-01-01

123

Ice rule correlations in stuffed spin ice  

NASA Astrophysics Data System (ADS)

Stuffed spin ice is a chemical variation of a spin ice material like Ho2Ti2O7 in which extra magnetic ions are inserted into the crystal structure. Previous studies have shown that the degree of stuffing has very little effect on the residual entropy in the system, which takes a value very close to the spin ice entropy. We argue, however, that the observation of this entropy does not imply long range coherence of the ice rules, that determine the local spin configurations. We have characterized deviations from the ice rules by means of a polarized neutron diffraction study of a single crystal of Ho2+?Ti2-?O7-?/2 with ? = 0.3. Our results demonstrate that the ice rules in stuffed spin ice are strictly valid only over a relatively short range, and that at longer range stuffed spin ice exhibits some characteristics of a ‘cluster glass’, with a tendency to more conventional ferromagnetic correlations.

Aldus, R. J.; Fennell, T.; Deen, P. P.; Ressouche, E.; Lau, G. C.; Cava, R. J.; Bramwell, S. T.

2013-01-01

124

American Mineralogist Crystal Structure Database  

NSDL National Science Digital Library

The American Mineralogist Crystal Structure Database website, maintained by the Mineralogical Society of America and the Mineralogical Association of Canada and sponsored by the National Science Foundation, "includes every structure published in the American Mineralogist, The Canadian Mineralogist, and the European Journal of Mineralogy." The authors are also currently adding data from Physics and Chemistry of Minerals. Users can search the data by minerals, authors, chemistry, cell parameter and symmetry, or by a simple general search. This no frills website allows users to easily find and download data.

125

The crystal structure of hopeite  

Microsoft Academic Search

The crystal structure of hopeite, Zns(POa)2.4Hro, has been solved by the Heavy Atom method from l42l graphite-monochromatized MoKa data and refined by full matrix least- squares to R = 0.026 (R. = 0.036). The structure is orthorhombic, pnma, a = 10.597(3), b : l8.3lE(8), c: 5.031(l) A, and Z: 4.Thezn atoms occur in two crystallographically distinct sites, one six-coordinated and

RooEnrcr J. Hrr; J. B. JoNes

126

Investigation of nucleation, dynamic growth and surface properties of single ice crystals  

NASA Astrophysics Data System (ADS)

Nucleation, dynamic growth and optical light scattering properties of a fixed single ice crystal have been experimentally characterized in dependence of both, the type of the ice nucleus (IN) and the prevailing thermodynamic conditions. The set up was developed based on the laminar flow tube LACIS (Leipzig Aerosol Cloud Interaction Simulator, Stratmann et al., 2004; Hartmann et al., 2011). The flow tube is equipped with a SID3-type (Small Ice Detector, Kaye et al., 2008) instrument called LISA (LACIS Ice Scattering Apparatus) and an additional optical microscope. For the investigations, a single (IN with a dry size of 2-10 micrometer is attached to a thin glass fiber and positioned within the optical measuring volume of LISA. The fixed particle is exposed to the thermodynamically controlled air flow, exiting the flow tube. Temperature and saturation ratio in the measuring volume can be varied on a time scale of 1-2 s by adjusting the humidified gas flow. Dependent on the thermodynamic conditions, ice nucleation and ice particle growth/shrinkage occur and can be studied. Thereby, the LISA instrument is applied to obtain 2-D light scattering patterns, and the additional optical microscope allows a time dependent visualization of the ice crystal. Both devices together allow to investigate the influence of the thermodynamic conditions on ice particle growth, the particle shape and its surface properties (i.e., its surface roughness, Ulanowski et al., 2011; Ulanowski et al., 2012; Ulanowski et al., 2013)). The thermodynamic conditions in the optical measuring volume have been extensively characterized using a) computational fluid dynamics (CFD) calculations, b) temperature and dew-point measurements, and c) evaluation of droplet and ice particle growth data. Furthermore, we successfully performed condensation freezing and deposition nucleation experiments with ATD (Arizona Test Dust), kaolinite, illite and SnomaxTM (Johnson Controls Snow, Colorado, USA) particles. In the experiments we could prove that different types of IN, as well as different temperatures and saturation ratios result in different growth rates and ice crystal shapes, but also in different surface properties. Regarding on single ice crystal, the surface roughness can also be modified by varying the prevailing thermodynamic conditions. Thereby, the surface roughness tends to increase for growing and to decrease for shrinking particles. Here, we will present current results of the thermodynamic characterization measurements and the ongoing ice crystal growth experiments.

Voigtlaender, Jens; Herenz, Paul; Chou, Cédric; Bieligk, Henner; Clauss, Tina; Niedermeier, Dennis; Ritter, Georg; Ulanowski, Joseph Z.; Stratmann, Frank

2014-05-01

127

Shear induced structures in crystallizing cocoa butter  

Microsoft Academic Search

Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear

Gianfranco Mazzanti; Sarah E. Guthrie; Eric B. Sirota; Alejandro G. Marangoni; Stefan H. J. Idziak

2004-01-01

128

Oceanographic frontal structure and biological production at an ice edge  

NASA Astrophysics Data System (ADS)

Marginal ice edge zones (MIZ) are unique frontal systems with air-ice-sea interfaces. Phytoplankton blooms, which occur along the edge of the melting ice pack in spring, are strongly related to the air-ice-sea interactive processes. In spring 1982, during a cruise to the Bering Sea ice pack, hydrographic sections, including standard biological oceanographic parameters, were collected across the MIZ showing such enhanced phytoplankton bloom populations in the ice edge. During this period the ice edge retreated at speeds of 6 to 38 cm s -1. Associated with the retreating ice edge were a faster moving upper layer oceanic front that kept pace with the retreating ice edge, and a nearly stationary deeper front. In the presence of light, the phytoplankton blooms are shown to be associated with, and primarily controlled by enhanced density stratification and frontal structure due to ice melt during the spring ice retreat. The ice melt water forms stratification that helps to maintain the phytoplankton within the photic zone. The ice edge blooms can be differentiated from open water blooms by the stratification mechanism; in MIZ blooms stratification is due to low salinity melt water as opposed to temperature derived stratification in most open water blooms. In addition, in the series of cross sections collected, a unique biophysical interaction was observed when the MIZ front moving north with the spring retreat, came in contact with a fixed shelf front forming a 'dish' shaped hydrographic structure within which a major phytoplankton bloom was observed. We suggest that upwelling from the tidally driven shelf front supplied nutrients to the surface waters extending the life of the bloom. Wind-driven ice edge upwelling was also observed but was difficult to distinguish from the shelf front circulation. In this same set of ice edge cross sections, a cold water mass was observed at the surface in the MIZ. This water mass was subsequently overridden by warmer water forming a cold tongue structure above the pycnocline and seaward of the shelf front. We suggest that this cold tongue was transient in nature, and illustrative of one mechanism by which the T-S characteristics of high latitude shelf waters are formed and altered.

Niebauer, H. J.; Alexander, V.

129

Theoretical analysis of the ice crystal size distribution in frozen aqueous specimens.  

PubMed Central

To estimate theoretically how suited different freezing techniques are for freezing of freeze-etch specimens, it is necessary to know the relationship between specimen cooling rate and the resulting average ice crystal size. Using a somewhat simplified theoretical analysis, we have derived the approximate ice crystal size distribution of nonvitrified frozen aqueous specimens frozen at different cooling rates. The derived size distribution was used to calculate the relationship between relative change in average ice crystal size, (delta l/l), and relative change in specimen cooling rate delta (dT/dt)/(dT/dt). We found this relationship to be (delta l/l) = -k X delta (dT/dt)/(dT/dt) where k = 1.0 when specimen solidification takes place at about -6 degrees C, and k congruent to 1.3 when it takes place at about -40 degrees C. Images FIGURE 6 PMID:7171711

Kopstad, G; Elgsaeter, A

1982-01-01

130

The crystal fabric of ice from full-waveform borehole sonic logging  

NASA Astrophysics Data System (ADS)

In an ice sheet, a preferred crystal orientation fabric affects deformation rates because ice crystals are strongly anisotropic: shear along the basal plane is significantly easier than shear perpendicular to the basal plane. The effect of fabric can be as important as temperature in defining deformation rates. Fabric is typically measured using analysis of thin sections under the microscope with co-polarized light. Due to the time-consuming and destructive nature of these measurements, however, it is difficult to capture the spatial variation in fabric necessary for evincing ice sheet flow patterns. Because an ice crystal is similarly elastically anisotropic, the speed of elastic waves through ice can be used as a proxy for quantify anisotropy. We use borehole sonic logging measurements and thin section data from Dome C, East Antarctica to define the relations between apparent fabric and borehole measured elastic speeds (compressionalVP and vertically polarized shear VSV). These relations, valid for single maximum fabrics, allow in-situ, depth-continuous fabric estimates of unimodal fabric strength from borehole sonic logging. We describe the single maximum fabric usinga1: the largest eigenvalue of the second-order orientation tensor. For ice at -16°C anda1in the 0.7-1 range the relations areVP = 248 a13.7 + 3755 m s-1 and VSV = -210a17.3 + 1968 m s-1.

Gusmeroli, Alessio; Pettit, Erin C.; Kennedy, Joseph H.; Ritz, Catherine

2012-09-01

131

DISCOVERY OF CRYSTALLIZED WATER ICE IN A SILHOUETTE DISK IN THE M43 REGION  

SciTech Connect

We present the 1.9-4.2 {mu}m spectra of the five bright (L {<=} 11.2) young stars associated with silhouette disks with a moderate to high inclination angle of 39 Degree-Sign -80 Degree-Sign in the M42 and M43 regions. The water ice absorption is seen toward d121-1925 and d216-0939, while the spectra of d182-316, d183-405, and d218-354 show no water ice feature around 3.1 {mu}m within the detection limits. By comparing the water ice features toward nearby stars, we find that the water ice absorption toward d121-1925 and d216-0939 most likely originates from the foreground material and the surrounding disk, respectively. The angle of the disk inclination is found to be mainly responsible for the difference of the optical depth of the water ice among the five young stars. Our results suggest that there is a critical inclination angle between 65 Degree-Sign and 75 Degree-Sign for the circumstellar disk where the water ice absorption becomes strong. The average density at the disk surface of d216-0939 was found to be 6.38 Multiplication-Sign 10{sup -18} g cm{sup -3}. The water ice absorption band in the d216-0939 disk is remarkable in that the maximum optical depth of the water ice band is at a longer wavelength than detected before. It indicates that the primary carrier of the feature is purely crystallized water ice at the surface of the d216-0939 disk with characteristic size of {approx}0.8 {mu}m, which suggests grain growth. This is the first direct detection of purely crystallized water ice in a silhouette disk.

Terada, Hiroshi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Tokunaga, Alan T., E-mail: terada@subaru.naoj.org [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu 96822 (United States)

2012-07-01

132

Crystal structure of lignin peroxidase  

SciTech Connect

The crystal structure of lignin peroxidase (LiP) from the basidiomycete Phanerochaete chrysosporium has been determined to 2.6 [Angstrom] resolution by using multiple isomorphous replacement methods and simulated annealing refinement. Of the 343 residues, residues 3-335 have been accounted for in the electron density map, including four disulfide bonds. The overall three-dimensional structure is very similar to the only other peroxidase in this group for which a high-resolution crystal structure is available, cytochrome c peroxidase, despite the fact that the sequence identity is only [approx]20%, LiP has four disulfide bonds, while cytochrome c peroxidase has none, and Lip is larger (343 vs. 294 residues). The basic helical fold and connectivity defined by 11 helical segments with the heme sandwiched between the distal and proximal helices found in cytochrome c peroxidase is maintained in LiP. Both enzymes have a histidine as a proximal heme ligand, which is hydrogen bonded to a buried aspartic acid side chain. The distal or peroxide binding pocket also is similar, including the distal arginine and histidine. The most striking difference is that, whereas cytochrome c peroxidase has tryptophans contacting the distal and proximal heme surfaces, LiP has phenylalanines. This in part explains why, in the reaction with peroxides, cytochrome c peroxidase forms an amino acid-centered free radical, whereas LiP forms a porphyrin [pi] cation radical. 42 refs., 4 figs., 2 tabs.

Edwards, S.L. (Center for Advanced Research in Biotechnology, Rockville, MD (United States) National Institutes of Health, Bethesda, MD (United States)); Raag, R. (Center for Advanced Research in Biotechnology, Rockville, MD (United States)); Wariishi, Hiroyuki; Gold, M.H. (Oregon Graduate Institute of Science and Technology, Beaverton (United States)); Poulos, T.L. (Center for Advanced Reseaarch in Biotechnology, Rockville, MD (United States) Univ. of California, Irvine (United States))

1993-01-15

133

Crystal alignments in the fast ice of Arctic Alaska  

SciTech Connect

Field observations at 60 sites located in the fast or near-fast ice along a 1200-km stretch of the north coast of Alaska between the Bering Strait and Barter Island have shown that the great majority of the ice samples (95%) exhibit striking c axis alignments within the horizontal plane. In all cases the degree of preferred orientation increased with depth in the ice. Representative standard deviations around a mean direction in the horizontal plane are commonly less than +- 10/sup 0/ for samples collected near the bottom of the ice. At a given site the mean c axis direction X-bar/sub 0/ may vary as much as 20/sup 0/ with vertical location in the ice sheet. The c axis allignments in the nearshore region generally parallel the coast, with strong alignments occurring in the lagoon systems between the barrier islands and the coast and seaward of the barrier islands. In passes between islands and in entrances such as the opening to Kotzebue Sound the alignment is parallel to the channel. Only limited observations are available farther seaward over the inner (10- to 50-m isobaths) and outer (50-m isobath to shelf break) shelf regions. These indicate Ne-SW and E-W alignments, respectively, in the Beaufort Sea north of Prudhoe Bay.

Weeks, W.F.; Gow, A.J.

1980-02-20

134

American Mineralogist Crystal Structure Database  

NSDL National Science Digital Library

This database includes the crystal structure for every mineral published in the American Mineralogist, The Canadian Mineralogist, European Journal of Mineralogy and Physics, and Chemistry of Minerals. Data is now being imported from Acta Crystallographica as well. The database is maintained under the care of the Mineralogical Society of America and the Mineralogical Association of Canada. The data can be displayed or downloaded and are searchable by mineral, author, mineral chemistry, unit cell parameters and symmetry, diffraction pattern, or a general search. Links are provided to additional information and to crystallographic software.

135

The structural consequences of calcium crystal deposition.  

PubMed

Calcium pyrophosphate dihydrate and basic calcium phosphate (BCP) crystals are the most common calcium-containing crystals associated with rheumatic disease. Clinical manifestations of calcium crystal deposition include acute or chronic inflammatory and degenerative arthritides and certain forms of periarthritis. The intra-articular presence of BCP crystals correlates with the degree of radiographic degeneration. Calcium crystal deposition contributes directly to joint degeneration. Vascular calcification is caused by the deposition of calcium hydroxyapatite crystals in the arterial intima. These deposits may contribute to local inflammation and promote further calcification, thus aggravating the atherosclerotic process. Calcium crystal deposition results in substantial structural consequence in humans. PMID:24703349

Durcan, Laura; Bolster, Ferdia; Kavanagh, Eoin C; McCarthy, Geraldine M

2014-05-01

136

Experimental and theoretical study of model food freezing. Part II. Characterization and modelling of the ice crystal size  

Microsoft Academic Search

Frozen gelatin gels were freeze-dried, then sliced, microphotographed and analyzed with image analysis software. A mean ice crystal size was determined at different locations inside the gel for many operating conditions and different gelatin concentrations with or without ionic solute (sodium chloride). It was observed that the mean ice crystal size grew proportionally with the distance from the cold plate.

B. Woinet; J. Andrieu; M. Laurent; S. G. Min

1998-01-01

137

1. Understanding crystal structures: How are more complex crystal structures built up from simpler ones.  

E-print Network

the phrase, "structure-property relations", without saying the word, "structure". #12;Simple crystal1. Understanding crystal structures: How are more complex crystal structures built up from simpler ones. 2. Structure-composition-property relations in inorganic materials: Some examples of subscript

Akhmedov, Azer

138

Elemental composition and morphology of ice-crystal residual particles in cirrus clouds and contrails  

Microsoft Academic Search

Aircraft sampling of residual particles from evaporated ice crystals was performed using a Counterflow Virtual Impactor. Samples of crystals taken in both contrails and cirrus clouds were compared with interstitial aerosols found in natural cirrus. The samples were analyzed with a scanning electron microscope which was equipped with a windowless energy-dispersive X-ray detector (SEM\\/EDX). In the contrail and cirrus cases

A Petzold; J Ström; S Ohlsson; F. P Schröder

1998-01-01

139

Seismic wave propagation in anisotropic ice - Part 2: Effects of crystal anisotropy in geophysical data  

NASA Astrophysics Data System (ADS)

We investigate the propagation of seismic waves in anisotropic ice. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections; (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded traveltimes. Velocities calculated from the polycrystal elasticity tensor derived for the anisotropic fabric from measured COF eigenvalues of the EDML ice core, Antarctica, show good agreement with the velocity trend determined from a vertical seismic profiling. The agreement of the absolute velocity values, however, depends on the choice of the monocrystal elasticity tensor used for the calculation of the polycrystal properties. With this validation of seismic velocities we make use of abrupt changes in COF as common reflection mechanism for seismic and radar data below the firn-ice transition to investigate their occurrence by comparison with ice-core data. Our results highlight the possibility to complement regional radar surveys with local, surface-based seismic deployment to separate isochrones in radar data from other mechanisms. This is important for the reconnaissance of future ice-core drill sites, where accurate isochrone (i.e. non-COF) layer integrity allows for synchronization with other cores, as well as studies of ice dynamics considering non-homogeneous viscosity from preferred crystal orientations.

Diez, A.; Eisen, O.; Hofstede, C.; Lambrecht, A.; Mayer, C.; Miller, H.; Steinhage, D.; Binder, T.; Weikusat, I.

2014-08-01

140

Ice surfaces: macroscopic effects of microscopic structure  

E-print Network

, Michael Faraday began a 20 year inves- tigation into the properties of snow and ice. Faraday's publications based on this research (see, for example, Faraday 1860) clearly demonstrate the notion that melt solid, the general temperature remaining the same. Although Faraday and Tyndall's (Tyndall 1858

Wettlaufer, John S.

141

A Model to Assess the Risk of Ice Accretion Due to Ice Crystal Ingestion in a Turbofan Engine and its Effects on Performance  

NASA Technical Reports Server (NTRS)

The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that were attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was one or more of the following anomalies: degraded engine performance, engine roll back, compressor surge and stall, and flameout of the combustor. The main focus of this research is the development of a computational tool that can estimate whether there is a risk of ice accretion by tracking key parameters through the compression system blade rows at all engine operating points within the flight trajectory. The tool has an engine system thermodynamic cycle code, coupled with a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor blade rows. Assumptions are made to predict the complex physics involved in engine icing. Specifically, the code does not directly estimate ice accretion and does not have models for particle breakup or erosion. Two key parameters have been suggested as conditions that must be met at the same location for ice accretion to occur: the local wet-bulb temperature to be near freezing or below and the local melt ratio must be above 10%. These parameters were deduced from analyzing laboratory icing test data and are the criteria used to predict the possibility of ice accretion within an engine including the specific blade row where it could occur. Once the possibility of accretion is determined from these parameters, the degree of blockage due to ice accretion on the local stator vane can be estimated from an empirical model of ice growth rate and time spent at that operating point in the flight trajectory. The computational tool can be used to assess specific turbine engines to their susceptibility to ice accretion in an ice crystal environment.

Jorgenson, Philip C. E.; Veres, Joseph P.; Wright, William B.; Struk, Peter M.

2013-01-01

142

NASA Glenn Propulsion Systems Lab: 2012 Inaugural Ice Crystal Cloud Calibration Procedure and Results  

NASA Technical Reports Server (NTRS)

The inaugural calibration of the ice crystal and supercooled liquid water clouds generated in NASA Glenn's engine altitude test facility, the Propulsion Systems Lab (PSL) is reported herein. This calibration was in support of the inaugural engine ice crystal validation test. During the Fall of 2012 calibration effort, cloud uniformity was documented via an icing grid, laser sheet and cloud tomography. Water content was measured via multi-wire and robust probes, and particle sizes were measured with a Cloud Droplet Probe and Cloud Imaging Probe. The environmental conditions ranged from 5,000 to 35,000 ft, Mach 0.15 to 0.55, temperature from +50 to -35 F and relative humidities from less than 1 percent to 75 percent in the plenum.

VanZante, Judith F.; Rosine, Bryan M.

2014-01-01

143

arXiv:1110.5828v1[cond-mat.mtrl-sci]26Oct2011 Measurements of Growth Rates of (0001) Ice Crystal Surfaces  

E-print Network

arXiv:1110.5828v1[cond-mat.mtrl-sci]26Oct2011 Measurements of Growth Rates of (0001) Ice Crystal plays an important role in the growth dy- namics of ice crystals from water vapor [1, 2, 3]. Although holds that temperature-dependent effects of premelting on ice crystal growth are responsible for the ob

Libbrecht, Kenneth G.

144

Simulations of Photonic Crystal and Dielectric Structures  

SciTech Connect

Dielectric materials and photonic crystal structures have electromagnetic properties that could potentially offer great benefits for accelerators. Computer simulation plays a critical role in designing, understanding, and optimizing these structures, especially the non-intuitive photonic crystal structures for which there is no relevant zeroth-order analytic model.

Werner, G. R. [Center for Integrated Plasma Studies, University of Colorado, Boulder, CO 80309 (United States)

2010-11-04

145

Scattering phase matrix for hexagonal ice crystals computed from ray optics  

E-print Network

properties for ice crystals have been devel- oped by several researchers.1- 5 They used the geo- metric ray-6935/85/193254-10$02.00/0. Ā© 1985 Optical Society of America. asymmetry factor for randomly oriented hexagonal plates with vertical angle X= r/2 - a and azimuth angle measured with respect to the coordinate system fixedto the cylinder

Takano, Yoshihide

146

Photon conservation in scattering by large ice crystals with the SASKTRAN radiative transfer model  

E-print Network

Photon conservation in scattering by large ice crystals with the SASKTRAN radiative transfer model direction. We introduce a technique that ensures numerical conservation of photons in any radiative transfer of models [1], which employ planeĀ­parallel geo- metry. In such models, photon conservation is analytically

Martin, Randall

147

Photon Conservation in Scattering by Large Ice Crystals with the SASKTRAN Radiative Transfer Model  

E-print Network

Photon Conservation in Scattering by Large Ice Crystals with the SASKTRAN Radiative Transfer Model conser- vation of photons in any radiative transfer model and that quantifies the integration error . . . . . 4 1.2 Transport Approximation . . . . . . . . . . . . . . . . . . . . 5 1.3 Photon Conservation

Martin, Randall

148

laboratory studies on the uptake of organic compounds by ice crystals  

Microsoft Academic Search

Anthropogenic aerosols produced from biomass burning are known to increase the number of cloud condensation nuclei in the atmosphere at most latitudes. This reduces cloud droplet size, which prevents raindrop formation at shallower levels in the atmosphere. Vertical convection processes force particles and water vapor to rise up to the upper troposphere. At lower temperatures, ice crystals are formed via

E. Fries; W. Jaeschke

2003-01-01

149

Depolarization of lidar returns by small ice crystals: An application to contrails  

Microsoft Academic Search

Measurements of the lidar linear depolarization ratio delta can be a powerful remote sensing technique for characterizing the microphysics of contrail particles. Since young contrails often consist of relatively small ice crystals, the quantitative interpretation of lidar measurements requires accurate theoretical computations of delta for polydisperse, randomly oriented nonspherical particles with size parameters ranging from zero to at least several

Michael I. Mishchenko; Kenneth Sassen

1998-01-01

150

Structure order, local potentials, and physical anomalies of water ice  

E-print Network

Hydrogen-bond forms a pair of asymmetric, coupled, H-bridged oscillators with ultra-short-range interactions and memory. hydrogen bond cooperative relaxation and the associated binding electron entrapment and nonbonding electron polarization discriminate water and ice from other usual materials in the physical anomalies. As a strongly correlated fluctuating system, water prefers the statistically mean of tetrahedrally-coordinated structure with a supersolid skin that is elastic, polarized, ice like, hydrophobic, with 3/4 density.

Chang Q Sun

2014-02-17

151

Structural Transitions in Amorphous Water Ice and Astrophysical Implications  

Microsoft Academic Search

Selected area electron diffraction is used to monitor structural changes of vapor-deposited water ice in vacuum during warm-up from 15 to 188 K. A progression of three amorphous forms of water ice is found with well-defined transitions. The formation of a high-density amorphous form (I_ah) at 15 K is confirmed, and the transition to the more familiar low-density form (I_aI)

Peter Jenniskens; David F. Blake

1994-01-01

152

Flow in Polycrystalline Ice  

NSDL National Science Digital Library

This is a virtual journal article about polycrystalline ice. It focuses on plastic deformation, specific flow characteristics and crystallographic preferred orientations associated with polycrystalline ice within glaciers. Part I covers Polycrystalline aggregates deformed in pure-shear; Dynamic recrystallisation; Grain shape and preferred orientation change; Fabric; Evolution of glacial ice during deformation. Part II covers: Time lapse photography; Glaciers; Dislocations; Bernal-Fowler rule; Generation of defect structures; Crystal structure; Ice; Basal glide; Strain rate for glide on basal systems; Critical resolved shear stress; Non-basal glide; Diffusional flow; Plastic deformation; Primary creep; Secondary creep; Tertiary creep; Deformation maps; Grain growth; Grain size reduction; Anisotropic flow law for ice.

Wilson, Chris

153

Investigations of the differential affinity of antifreeze glycoprotein for single crystals of ice  

NASA Astrophysics Data System (ADS)

Two distinctively different experiments showing the differential affinity of antifreeze glycoproteins (AFGP) for the facets of ice crystals are presented. In free growth studies of single seed crystals of ice into solutions of AFGP, clear distinction between crystals growing into the AFGP solution and similar crystals growing into pure water is found. Immediately upon going below the temperature of freezing depression, crystals grow along the c-axis as long spicules, not dendrites within the basal plane as is the case of growth into pure water. The rates of growth of the spicules are higher than growth velocity of dendrites in pure water. As the supercooling is increased, both morphology and rate become more like that of growth in pure water. We also conducted dynamic light scattering studies of the ice-solution interface. In these experiments, the local concentration of AFGP in the neighborhood of the interface was monitored by the effect of these molecules on microbubbles present near the growing interface; AFGP molecules showed preference towards the prismatic facets. All of these experimental observations support the idea of a dynamic adsorption/desorption equilibrium that is facet dependent.

Feeney, R. E.; Fink, W. H.; Hallet, J.; Harrison, K.; Osuga, D. T.; Vesenka, J. P.; Yeh, Y.

1991-09-01

154

Seismicity within a propagating ice shelf rift: the relationship between icequake locations and ice shelf structure  

USGS Publications Warehouse

Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important known process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice-shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the Austral summers of 2004-2007. We investigated seismicity associated with fracture propagation using a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show that seismicity is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of one to three hours. However, even during periods of quiescence, we find significant seismic deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (MW?>?-2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50?m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with propagating ice shelf rifts.

Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

2014-01-01

155

Quantum Simulation of Collective Proton Tunneling in Hexagonal Ice Crystals  

NASA Astrophysics Data System (ADS)

The effect of proton tunneling on many-body correlated proton transfer in hexagonal ice is investigated by quantum simulation. Classical single-particle hopping along individual hydrogen bonds leads to charge defects at high temperature, whereas six protons in ringlike topologies can move concertedly as a delocalized quasiparticle via collective tunneling at low temperature, thus preventing the creation of high-energy topological defects. Our findings rationalize many-body quantum tunneling in hydrogen-bonded networks and suggest that this phenomenon might be more widespread than previously thought.

Drechsel-Grau, Christof; Marx, Dominik

2014-04-01

156

Quantum simulation of collective proton tunneling in hexagonal ice crystals.  

PubMed

The effect of proton tunneling on many-body correlated proton transfer in hexagonal ice is investigated by quantum simulation. Classical single-particle hopping along individual hydrogen bonds leads to charge defects at high temperature, whereas six protons in ringlike topologies can move concertedly as a delocalized quasiparticle via collective tunneling at low temperature, thus preventing the creation of high-energy topological defects. Our findings rationalize many-body quantum tunneling in hydrogen-bonded networks and suggest that this phenomenon might be more widespread than previously thought. PMID:24766024

Drechsel-Grau, Christof; Marx, Dominik

2014-04-11

157

Artificial multimers of the type III antifreeze protein. Effects on thermal hysteresis and ice crystal morphology.  

PubMed

A variant of antifreeze protein (AFP) named RD3 from antarctic eel pout (Lycodichthys dearborni) comprises the type III AFP intramolecular dimer, which is known to exhibit a significant enhancement of thermal hysteresis when compared with the type III AFP monomer (Miura, K., Ohgiya, S., Hoshino, T, Nemoto, N., Suetake, T., Miura, A, Spyracopoulos, L., Kondo, H., and Tsuda, S. (2001) J. Biol. Chem. 276, 1304-1310). Here we genetically synthesized intramolecular dimer, trimer, and tetramer of the type III AFP, for which we utilize the genes encoding the primary sequences of the N-domain, the C-domain, and the 9-residue linker of RD3, and we examined the AFP multimerization effects on thermal hysteresis and ice crystal morphology. Significantly, (i) the thermal hysteresis increases in proportion with the size of the multimers, (ii) a larger size of the multimer exerts the maximum activity at lower concentration, (iii) every multimer changes the morphology of a single ice crystal into a unique shape that is similar but not identical to the ordinary hexagonal bipyramid, and (iv) the size of ice crystal becomes dramatically small with increasing the concentration of the multimer. The thermal hysteresis enhancement of the multimer was detected in both molar and domain bases. These results suggest that a molecule comprising the multiple AFP domains connected in tandem acquires an enhanced affinity for the ice binding. PMID:12805364

Nishimiya, Yoshiyuki; Ohgiya, Satoru; Tsuda, Sakae

2003-08-22

158

Crystal structure of prethrombin-1  

SciTech Connect

Prothrombin is the zymogen precursor of the clotting enzyme thrombin, which is generated by two sequential cleavages at R271 and R320 by the prothrombinase complex. The structure of prothrombin is currently unknown. Prethrombin-1 differs from prothrombin for the absence of 155 residues in the N-terminal domain and is composed of a single polypeptide chain containing fragment 2 (residues 156-271), A chain (residues 272-320), and B chain (residues 321-579). The X-ray crystal structure of prethrombin-1 solved at 2.2-{angstrom} resolution shows an overall conformation significantly different (rmsd = 3.6 {angstrom}) from that of its active form meizothrombin desF1 carrying a cleavage at R320. Fragment 2 is rotated around the y axis by 29{sup o} and makes only few contacts with the B chain. In the B chain, the oxyanion hole is disrupted due to absence of the I16-D194 ion pair and the Na{sup +} binding site and adjacent primary specificity pocket are highly perturbed. A remarkable feature of the structure is that the autolysis loop assumes a helical conformation enabling W148 and W215, located 17 {angstrom} apart in meizothrombin desF1, to come within 3.3 {angstrom} of each other and completely occlude access to the active site. These findings suggest that the zymogen form of thrombin possesses conformational plasticity comparable to that of the mature enzyme and have significant implications for the mechanism of prothrombin activation and the zymogen {yields} protease conversion in trypsin-like proteases.

Chen, Zhiwei; Pelc, Leslie A.; Di Cera, Enrico (St. Louis-MED)

2010-11-15

159

MODELING COLLECTIVE DISLOCATION DYNAMICS IN ICE SINGLE CRYSTALS  

E-print Network

. VESPIGNANI \\Lambda , and S. ZAPPERI \\Lambda\\Lambda \\Lambda The Abdus Salam International Centre. Dislocations may be incorporated into a crystal in the growth process, affecting the topology of the whole rise to a rather complex and heterogeneous slip process. Dislocations move in groups to form slip bands

Miguel-Lopez, Carmen

160

The physical-optics approximation and its application to light backscattering by hexagonal ice crystals  

NASA Astrophysics Data System (ADS)

The physical-optics approximation in the problem of light scattering by large particles is so defined that it includes the classical physical optics concerning the problem of light penetration through a large aperture in an opaque screen. In the second part of the paper, the problem of light backscattering by quasi-horizontally oriented atmospheric ice crystals is considered where conformity between the physical-optics and geometric-optics approximations is discussed. The differential scattering cross section as well as the polarization elements of the Mueller matrix for quasi-horizontally oriented hexagonal ice plates has been calculated in the physical-optics approximation for the case of vertically pointing lidars.

Borovoi, A.; Konoshonkin, A.; Kustova, N.

2014-10-01

161

A modified scheme that parameterizes depositional growth of ice crystal: A modeling study of pre-summer torrential rainfall case over Southern China  

NASA Astrophysics Data System (ADS)

Depositional growth of cloud ice is estimated and its parameterization schemes are compared through the two-dimensional cloud-resolving modeling analysis of pre-summer heavy rainfall over southern China. Hsie et al. (1980) and Krueger et al. (1995) developed parameterization schemes to calculate depositional growth of cloud ice by estimating the growth timescale under the assumption that the ice crystal concentration is independent of crystal size. A new scheme is proposed by Zeng et al. (2008) under the assumption that the ice crystal concentration is proportional to the mass of ice crystal. Hsie's and Krueger's schemes produce small amount of cloud ice similar to what Zeng's scheme with low ice crystal concentration does. When ice crystal concentration is increased to a high value in Zeng's scheme, the simulation generates anomalous depositional growth of cloud ice and thus anomalous area expansion of stratiform rainfall. Zeng's scheme is modified by changing radius of base ice crystal from 0 to 40 ?m in the calculation of depositional growth of cloud ice. The modified scheme with high ice crystal concentration greatly reduces growth of cloud ice and thus fractional coverage of stratiform rainfall.

Shen, Xinyong; Huang, Wei; Qing, Tao; Huang, Wenyan; Li, Xiaofan

2014-03-01

162

The application of time-dependent ice crystal trajectory and growth model for the evaluation of cloud seeding experiment using liquid carbon dioxide  

NASA Astrophysics Data System (ADS)

This study evaluated the results of cloud seeding experiment conducted on 17th January, 2008, in western Kyushu, Japan, using simplified time-dependent ice crystal growth and trajectory cloud model, which is characterized by 1) depositional diffusion growth process only of an ice crystal, and 2) the pursuit of the growing ice crystal based on wind field and ice crystal terminal velocity. For the estimation of the ice crystal growth and trajectory, the model specifies ice supersaturation ratio that expresses the degree of competition growth among ice crystals formed by LC seeding for existing water vapor, assuming no effect of natural ice crystals. The model is based on ice crystal growth along a- and c-axes depending on air temperature and ice supersatuation, according to Chen and Lamb (1994). The cloud seeding experiment was conducted by applying homogeneous nucleation (rapid cooling of air mass and subsequent formation of many ice crystals~1013/g LC) of Liquid Carbon (LC) dioxide seeding under typical winter-type snowfall-inducing weather situation characterized by the outbreak of cold air masses from the Siberia. The result of aircraft horizontally-penetrating seeding of LC into lower layer (-2 degree C) of supercooled convective cloud with 1km thickness above the freezing level led to the formation of an artificially-induced 'isolated' radar echo (the left figures of Fig. 1) in dominant 'no-natural radar echo region'. In other words, natural biases were eliminated by the formation of the isolated radar echo. This fact provides the shortcut for evaluating the result of cloud seeding experiment. In the next, the observed cloud seeding results were evaluated by estimating the trajectory of artificially-induced growing ice crystal. The results show that the trajectory of artificial ice crystals depends on the degree of completion growth mode. Free growth brings rapid growth of an ice crystal and, therefore, the ice crystal falls into lower layers for a short time. On the other hand, as the degree of competition is higher, ice crystal growth and falling are slower. The result (the right figure of Fig. 1) showed that the movement of observed isolated radar echo formed after LC cloud seeding is closely related to the trajectories of artificially-induced ice crystals depending on the specification of ice supersaturation. Therefore, it was found that time-dependent ice crystal growth and trajectory model is a useful tool for the evaluation of cloud seeding results regardless of its simplification and many uncertain factors. Fig.1 The left figure shows the movement of isolated radar echo formed by LC seeding. The right figure shows the comparison between observed radar echo location and estimated ice crystal location.

Nishiyama, K.; Wakimizu, K.; Maki, T.; Suzuki, Y.; Morita, O.; Tomine, K.

2012-12-01

163

General equations for the motions of ice crystals and water drops in gravitational and electric fields  

NASA Technical Reports Server (NTRS)

General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

Nisbet, John S.

1989-01-01

164

A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 2: Dependence of absorption and extinction on ice crystal morphology  

NASA Technical Reports Server (NTRS)

This study builds upon the microphysical modeling described in Part 1 by deriving formulations for the extinction and absorption coefficients in terms of the size distribution parameters predicted from the micro-physical model. The optical depth and single scatter albedo of a cirrus cloud can then be determined, which, along with the asymmetry parameter, are the input parameters needed by cloud radiation models. Through the use of anomalous diffraction theory, analytical expressions were developed describing the absorption and extinction coefficients and the single scatter albedo as functions of size distribution parameters, ice crystal shapes (or habits), wavelength, and refractive index. The extinction coefficient was formulated in terms of the projected area of the size distribution, while the absorption coefficient was formulated in terms of both the projected area and mass of the size distribution. These properties were formulated as explicit functions of ice crystal geometry and were not based on an 'effective radius.' Based on simulations of the second cirrus case study described in Part 1, absorption coefficients predicted in the near infrared for hexagonal columns and rosettes were up to 47% and 71% lower, respectively, than absorption coefficients predicted by using equivalent area spheres. This resulted in single scatter albedos in the near-infrared that were considerably greater than those predicted by the equivalent area sphere method. Reflectances in this region should therefore be underestimated using the equivalent area sphere approach. Cloud optical depth was found to depend on ice crystal habit. When the simulated cirrus cloud contained only bullet rosettes, the optical depth was 142% greater than when the cloud contained only hexagonal columns. This increase produced a doubling in cloud albedo. In the near-infrared (IR), the single scatter albedo also exhibited a significant dependence on ice crystal habit. More research is needed on the geometrical properties of ice crystals before the influence of ice crystal shape on cirrus radiative properties can be adequately understood. This study provides a way of coupling the radiative properties of absorption, extinction, and single scatter albedo to the microphysical properties of cirrus clouds. The dependence of extinction and absorption on ice crystal shape was not just due to geometrical differences between crystal types, but was also due to the effect these differences had on the evolution of ice particle size spectra. The ice particle growth model in Part 1 and the radiative properties treated here are based on analytical formulations, and thus represent a computationally efficient means of modeling the microphysical and radiative properties of cirrus clouds.

Mitchell, David L.; Arnott, W. Patrick

1994-01-01

165

Pack-Ice Studies in the Arctic Ocean  

Microsoft Academic Search

The annual stratification of pack ice has been examined. Summer layers are formed either by arrested growth or by thin layers of fresh-water ice. The crystal structure and the salt content of the ice reflect the seasonal cycle. During the growth of ice a pro- nounced orientation of crystalline structure develops; it is determined by vertical as well as by

W. Schwarzacher

1959-01-01

166

II. Properties of Water 1. Ice and Liquid water structure  

E-print Network

II. Properties of Water 1. Ice and Liquid water structure 2. Cohesion / Surface Tension 3. High Heat Capacity 4. Solvent Properties 5. Dissociation: Acids & Bases / pH II. Organic Chemistry A producing molecules that are mirror images of one another that cannot be superimposed #12;Water As A Solvent

Frey, Terry

167

Effects of arctic sulphuric acid aerosols on wintertime low-level atmospheric ice crystals, humidity and temperature at Alert, Nunavut  

Microsoft Academic Search

The effect of pollution-derived sulphuric acid aerosols on wintertime arctic lower atmospheric ice crystals is investigated. These anthropogenic aerosols differ from natural background aerosols by their number concentration, strong solubility and reduced homogeneous freezing temperature when internally mixed with other compounds. Furthermore, observations suggest that the ice-forming nuclei concentration is reduced by one to four orders of magnitude when the

Eric Girard; Jean-Pierre Blanchet; Yves Dubois

2005-01-01

168

Hydrohalite in cold sea ice: Laboratory observations of single crystals, surface accumulations, and migration rates under a temperature  

E-print Network

, and migration rates under a temperature gradient, with application to ``Snowball Earth'' Bonnie Light,1 Richard of single crystals, surface accumulations, and migration rates under a temperature gradient the fractional volumes of ice, gas, brine, and precipitated salt. [3] Temperatures within sea ice exhibit a wide

Warren, Stephen

169

Preparation for Scaling Studies of Ice-Crystal Icing at the NRC Research Altitude Test Facility  

NASA Technical Reports Server (NTRS)

This paper describes experiments conducted at the National Research Council (NRC) of Canadas Research Altitiude Test Facility between March 26 and April 11, 2012. The tests, conducted collaboratively between NASA and NRC, focus on three key aspects in preparation for later scaling work to be conducted with a NACA 0012 airfoil model in the NRC Cascade rig: (1) cloud characterization, (2) scaling model development, and (3) ice-shape profile measurements. Regarding cloud characterization, the experiments focus on particle spectra measurements using two shadowgraphy methods, cloud uniformity via particle scattering from a laser sheet, and characterization of the SEA Multi-Element probe. Overviews of each aspect as well as detailed information on the diagnostic method are presented. Select results from the measurements and interpretation are presented which will help guide future work.

Struk, Peter M.; Bencic, Timothy J.; Tsao, Jen-Ching; Fuleki, Dan; Knezevici, Daniel C.

2013-01-01

170

Introduction to Crystal Structure: Bond Strength  

NSDL National Science Digital Library

This exercise is designed to familiarize students with some basic crystal structures The exercise helps students fully understand the nature and significance of ionic bonds and Pauling's second rule It also builds a bit on Pauling's first rule (radius ratio principle) It is one of several related activities, all of which are intended to help students understand the nature of ionic crystals

Perkins, Dexter

171

The mystery of low ice crystal numbers in the TTL and implications for the UTLS water vapor budget  

NASA Astrophysics Data System (ADS)

Water vapour is the most important natural green house gas. However, in the stratosphere an increase in water vapour would possibly result in a net cooling of the earth-atmosphere system. The major entrance pathway of trace substances into the stratosphere is the tropical tropopause layer (TTL). The TTL water vapor budget, and thus the exchange between troposphere and stratosphere, depends crucially on the occurrence and properties of ice clouds in this cold region (T < 200 K). New observations indicate that very low ice crystal numbers frequently occur in the TTL. This phenomenon is not yet understood and is not compatible with the idea that homogeneous freezing of solution droplets is the major pathway of ice formation. These low ice number concentrations are consistent with observed persistent high ice supersaturations inside cold TTL cirrus clouds, which in turn control the exchange of water vapor with the stratosphere. Here, we reproduce in-situ measurements of frequencies of occurrence of ice crystal concentrations by extensive model simulations, driven by the special dynamical conditions in the TTL, namely the superposition of slow large-scale updrafts with high-frequency short waves. The simulations show that about 80% of the observed incidences of low ice crystal concentrations can be explained by 'classical' homogeneous ice nucleation in the very slow updrafts (< 1cm/s), about 19% stem from heterogeneous freezing, while the remaining of about 1% originates from homogeneous freezing in slightly faster updrafts (> 1cm/s). The mechanism limiting the ice crystal production from homogeneous freezing in an environment full of gravity waves is that freezing events are stalled -due to the shortness of the gravity waves- before a higher number concentration of ice crystals can be formed. Furthermore, the very few ice crystals cannot efficiently reduce the gas phase water vapor inside of the cirrus. As a result, high supersaturations can last for many hours thus hindering the downward transport of water by sedimenting ice crystals. Based on our new insights in both the low ice crystal numbers and subsequent persistent high supersatuartions, we propose to reasses the water transport to the stratosphere in the TTL.

Kraemer, M.; Spichtinger, P.

2012-12-01

172

The Structure of Ice Nanoclusters and Thin-films of Water Ice: Implications for Icy Grains in Cold Molecular Clouds  

NASA Technical Reports Server (NTRS)

The cubic to hexagonal phase transformation in water ice (I(sub c) yields I(sub h)) is used to measure the extent to which surface structure and impurities control bulk properties. In pure crystalline (I(sub c)) water ice nanoclusters and in thin-films of impure water ice, I(sub c) yields I(sub h) occurs at lower temperatures than in thin-films of pure water ice. The disordered surface of the 20 nm diameter nanoclusters promotes transformations or reactions which would otherwise be kinetically hindered. Likewise, impurities such as methanol introduce defects into the ice network, thereby allowing sluggish structural transitions to proceed. Such surface-related phenomena play an important role in promoting chemical reactions on interstellar ice grains within cold molecular clouds, where the first organic compounds are formed.

Delzeit, Lance; Blake, David; Uffindell, Christine; DeVincenzi, Donald L. (Technical Monitor)

2000-01-01

173

crystal: growth, crystal structure perfection, piezoelectric, and acoustic properties  

NASA Astrophysics Data System (ADS)

A five-component crystal of lanthanum-gallium silicate group La3Ga5.3Ta0.5Al0.2O14 (LGTA) was grown by the Czochralski method. The LGTA crystal possesses unique thermal properties and substitution of Al for Ga in the unit cell leads to a substantial increase of electrical resistance at high temperatures. The unit cell parameters of LGTA were determined by powder diffraction. X-ray topography was used to study the crystal structure perfection: the growth banding normal to the growth axis were visualized. The independent piezoelectric constants d 11 and d 14 were measured by X-ray diffraction in the Bragg and Laue geometries. Excitation and propagation of surface acoustic waves were studied by the double-crystal X-ray diffraction at the BESSY II synchrotron radiation source. The analysis of the diffraction spectra of acoustically modulated crystals permitted the determination of the velocity of acoustic wave propagation and the power flow angles in different acoustic cuts of the LGTA crystal.

Roshchupkin, Dmitry; Ortega, Luc; Plotitcyna, Olga; Irzhak, Dmitry; Emelin, Evgenii; Fahrtdinov, Rashid; Alenkov, Vladimir; Buzanov, Oleg

2014-09-01

174

Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI)  

Microsoft Academic Search

The National Research Council Earth Science Decadal Survey, Earth Science Applications from Space, recommends that DESDynl (Deformation, Ecosystem Structure, and Dynamics of Ice), an integrated L-band InSAR and multibeam Lidar mission, launch in the 2010- 2013 timeframe. The mission will measure surface deformation for solid Earth and cryosphere objectives and vegetation structure for understanding the carbon cycle. InSAR has been

A. Donnellan; P. Rosen; J. Graf; A. Loverro; A. Freeman; R. Treuhaft; R. Oberto; M. Simard; E. Rignot; R. Kwok; Xiaoqing Pi; J. B. Blair; W. Abdalati; J. Ranson; H. Zebker; B. Hager; H. Shugart; M. Fahnestock; R. Dubayah

2008-01-01

175

ICSD Web: the Inorganic Crystal Structure Database  

NSDL National Science Digital Library

This site contains a free demonstration version of the Inorganic Crystal Structure Database. This database contains a 3325 structure subset of the 76,480 inorganic structures as of 2004. The demo version can be queried and accessed by a web-interface which allows multiple methods of searching, and the resulting crystal structures can then be viewed online (with the CHIME plug-in) or downloaded for viewing with other visualization software. Also included on the site are updates of bug fixes, conditions of use and prices, tips for displaying the structures, a gallery of images, a flash movie, and instructions for installing a ICSD server.

Alan, Hewat

176

A LiDAR study of the effective size of cirrus ice crystals over Chung-Li, Taiwan  

NASA Astrophysics Data System (ADS)

In this paper, we estimated the effective size of ice crystals in cirrus clouds using fall velocity derived from LiDAR (light detection and ranging) measurements at Chung-Li (24.58°N, 121.1°E), Taiwan. Nine shapes of the ice crystals, viz. hexagonal plates, hexagonal columns, rimed long columns, crystals with sector-like branches, broad-branched crystals, stellar crystal with broad arms, side planes, bullet rosettes and assemblages of planar poly-crystals of specific dimensions have been analyzed. The results show that the lidar derived most probable mean effective size of ice crystals is 340±180 [mu]m with a dominant size range of 200-300 [mu]m. The lidar derived mean effective size of cirrus crystals are parameterized in terms of cloud mid-height temperature as well as optical depth. The discussed method will be useful to study the most probable effective size distribution of ice crystals in cirrus cloud.

Kumar Das, Subrata; Nee, Jan-Bai; Chiang, Chih-Wei

2010-06-01

177

A new method for producing artificial snow crystals using a mixture of salt and ice  

NASA Astrophysics Data System (ADS)

It has been found that artificial snow crystals can be produced by a simple method using a mixture of salt and ice crushed into sherbet as the cooling material. The freezing mixture of about 100 g was contained in a small styrene cup (85 mm varnothing, 50 mm height). A black acrylic plate (25 mm varnothing, 2 mm thickness) was placed on the freezing mixture in the cup. The cup was placed in a closed plastic box (130×130×65 mm). The water vapour in the air trapped in the plastic box crystallized onto the surface of the acrylic plate and made a crystal 1-2 mm in size in 20 minutes. The artificial crystal is quite similar to natural snow crystals with excellent hexagonal symmetry. A model to explain the process of producing the artificial snow crystal has been proposed, insisting that the electric field due to the static electricity from the acrylic plate plays an important role in making the seeds for the crystal growth.

Suwa, Y.; Myint, H. H.; Kurniawan, H.; Ito, F.; Kagawa, K.

2001-07-01

178

Studying Cirrus Mean Effective Ice Crystal Sizes Using Satellite Tiros-n Operational Vertical Sounder (tovs) Observations  

NASA Astrophysics Data System (ADS)

The Improved Initialization Inversion (3I) algorithm converts TIROS-N Operational Vertical Sounder (TOVS) observations from the NOAA Polar Orbiting Environmen- tal Satellites into atmospheric temperature and water vapor profiles, as well as into cloud and surface properties at a spatial resolution of 1. Within the framework of the NOAA/NASA Pathfinder Program, eight years (1987-1995) of TOVS data have already been processed. Due to their relatively high spectral resolution, IR vertical sounders are especially useful for the identification of cirrus clouds (day and night). Cloud-top pressure and effective IR cloud emissivity are computed from the CO2- band radiances by a weighted c2 method. The empirical weights have been developed to take into account the effect of the brightness temperature uncertainty within an air- mass on these radiances at the various cloud levels. Mean effective ice crystal sizes are retrieved for large-scale cirrus clouds with an IR emissivity between 0.4 and 0.8. Therefore, cloud emissivities at 8 mm and 11 mm are computed from the measured brightness temperatures, the cloud-top temperature and the surface temperature. The difference between emissivities at these wavelengths is sensitive to the mean ice crys- tal size of the cirrus cloud. However, the exact correlation depends on the theoretical approach to express the absorption coefficients, single scattering albedo and asymme- try parameter of ice crystals explicitly in dependence of their shape and size distribu- tion. At present, we have compared two different sets of ice crystal single scattering properties and their effect on ice crystal size retrieval: randomly oriented planar poly- crystals and hexagonal columns. Cirrus emissivities are simulated at 8 mm and 11 mm in dependence of mean effective ice crystal size by integrating these single scattering properties into a radiative transfer model. Mean effective ice crystal sizes of large- scale cirrus are studied using NOAA-10 observations from 1987 to 1991. On average, effective ice crystal diameters lie between 35 and 45 mm. In winter midlatitudes, with lower humidity, mean ice crystal sizes are smaller than in summer midlatitudes and in the tropics. Mean cirrus ice crystal sizes slightly increase with cloud-top temperature, and we will study effects of the Mount Pinatubo eruption.

Stubenrauch, C. J.; Radel, G.; Eddounia, F.; Scott, N.; Mitchell, D.

179

Measurements of Ice Crystal Growth Rates in Air at -5C and -10C K. G. Libbrecht and H. M. Arnold  

E-print Network

Measurements of Ice Crystal Growth Rates in Air at -5C and -10C K. G. Libbrecht and H. M. Arnold to: kgl@caltech.edu Abstract. We present experiments investigating the growth of ice crystals from understand the surface molecular dynamics that determine crystal growth rates and morphologies. [The figures

Libbrecht, Kenneth G.

180

The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice.  

PubMed

The interaction of proteins with ice is poorly understood and difficult to study, partly because ice is transitory and can present many binding surfaces, and partly because structures have been determined for only two ice-binding proteins. This paper focuses on one of these, a 66-residue antifreeze protein (AFP) from eel pout. The high resolution X-ray structure of this fish AFP demonstrated that the proposed ice-binding surface is remarkably flat for such a small protein. The residues on the planar surface thought to be involved in ice binding are restrained by hydrogen bonds or by tight packing of their side-chains. To probe the requirement for a flat binding surface, a conserved alanine in the center of the AFP planar surface was substituted with larger residues. Six alanine replacement mutants (Ala16 > Cys, Thr, Met, Arg, His and Tyr), designed to disrupt the planarity of the surface and sterically block binding to ice, were characterized by X-ray crystallography and compared with the wild-type AFP. In each case, the detail provided by these crystal structures has helped explain the effects of the mutation on antifreeze activity. The substitutions, Ala16 > His and Ala16 > Tyr, were large enough to shield Gln44, one of the putative ice-binding residues, contributing to their very low thermal hysteresis activity. In addition to sterically hindering the putative ice-binding site, the bulkier residues also caused shifts in the putative ice-binding residues owing to the tight packing of side-chains on the planar surface. This unexpected consequence of the mutations helps account for the severely reduced antifreeze activity. One explanation for residual antifreeze activity in some of the mutants lies in the possibility that AFPs have a role in shaping the site on the ice to which they bind. Thus, side-chain dislocations might be partially accommodated by ice that can freeze around them. It is evident that the disruption of the planarity, by introducing larger residues at the center of the proposed ice-binding site, is not the only factor responsible for the loss of antifreeze activity. There are multiple causes including positional change and steric blockage of some putative ice-binding residues. PMID:9466928

DeLuca, C I; Davies, P L; Ye, Q; Jia, Z

1998-01-23

181

Liquid crystal light valve structures  

NASA Technical Reports Server (NTRS)

An improved photosensor film and liquid crystal light valves embodying said film is provided. The photosensor film and liquid crystal light valve is characterized by a significant lower image retention time while maintaining acceptable photosensitivity. The photosensor film is produced by sputter depositing CdS onto an ITO substrate in an atmosphere of argon/H2S gas while maintaining the substrate at a temperature in the range of about 130 C to about 200 C and while introducing nitrogen gas into the system to the extent of not more than about 1% of plasma mixture. Following sputter deposition of the CdS, the film is annealed in an inert gas at temperatures ranging from about 300 C to about 425 C.

Koda, N. J. (inventor)

1985-01-01

182

Calorimetric determination of inhibition of ice crystal growth by antifreeze protein in hydroxyethyl starch solutions.  

PubMed Central

Differential scanning calorimetry and cryomicroscopy were used to investigate the effects of type I antifreeze protein (AFP) from winter flounder on 58% solutions of hydroxyethyl starch. The glass, devitrification, and melt transitions noted during rewarming were unaffected by 100 micrograms/ml AFP. Isothermal annealing experiments were undertaken to detect the effects of AFP-induced inhibition of ice crystal growth using calorimetry. A premelt endothermic peak was detected during warming after the annealing procedure. Increasing the duration or the temperature of the annealing for the temperature range from -28 and -18 degrees C resulted in a gradual increase in the enthalpy of the premelt endotherm. This transition was unaffected by 100 micrograms/ml AFP. Annealing between -18 and -10 degrees C resulted in a gradual decrease in the premelt peak enthalpy. This process was inhibited by 100 micrograms/ml AFP. Cryomicroscopic examination of the samples revealed that AFP inhibited ice recrystallization during isothermal annealing at -10 degrees C. Annealing at lower temperatures resulted in minimal ice recrystallization and no visible effect of AFP. Thus, the 100 micrograms/ml AFP to have a detectable influence on thermal events in the calorimeter, conditions must be used that result in significant ice growth without AFP and visible inhibition of this process by AFP. Images FIGURE 8 PMID:7690257

Hansen, T N; Carpenter, J F

1993-01-01

183

Ice island creation, drift, recurrences, mechanical properties, and interactions with arctic offshore oil production structures  

SciTech Connect

Research and engineering studies on first-year sea ice for over two decades has resulted in the design, construction, and operation of jacket platforms, of artificial islands, and of massive gravity structures which routinely withstand moving sea ice of thickness up to 2 meters. However, the less-common interactions between such structures and moving multiyear ice ([ge]3 meters thick), and also moving ice islands (10 to 60 meters thick) remain as the unknown and potentially most serious hazard for Arctic offshore structures. In this study, research was addressed across the complete span of remaining questions regarding such features. Ice island components, thickness distributions, scenarios and models for the interactions of massive ice features with offshore structures, all were considered. Ice island morphology and calving studies were directed at the cluster of 19 ice islands produced in a calving from the Ward Hunt Ice Shelf on Ellesmere Island in 1983, and also at a calving from the Milne Ice Shelf in 1988. The statistics of ice island dynamics, on both a short-term small-scale basis and also on a long-term basis, were studied. Typical wind velocities of 5 to 7.5 meters per second led to ice island speeds of about 0.014 of the wind speed, at an angle of 20[degrees] to the right of the wind direction. Ice island samples were tested for their stress/strain characteristics. Compressive strength values ranged from 1.64 MPa at a strain rate of 2 [times] 10[sup [minus]7] s[sup [minus]1] to 6.75 MPa at a strain rate of 1 [times] 10[sup [minus]3] s[sup [minus]1]. Scenarios for ice island/structure interactions were developed, and protective countermeasures such as spray ice and ice rubble barriers were suggested. Additional computer modeling of structure/ice interactions for massive ice features is recommended.

Sackinger, W.M.; Jeffries, M.O.; Li, Fucheng; Lu, Mingchi.

1991-03-01

184

Natural photonic crystals: formation, structure, function  

NASA Astrophysics Data System (ADS)

The structure and properties of natural photonic crystals are discussed using the colored scales of the beetle Lamprocyphus augustus as an example. While the exact mechanism behind the formation of these biopolymeric photonic structures has yet to be fully explored, similarities of these structures to intracellular cubic membrane architectures are introduced. Some crucial parameters behind the formation of cubic membranes are discussed. Using these insights, intracellular cubic membrane structures are transformed into an extracellular environment.

Bartl, Michael H.; Dahlby, Michael R.; Barrows, Frank P.; Richens, Zachary J.; Terooatea, Tommy; Jorgensen, Matthew R.

2012-03-01

185

Using MODIS data to detect the presence of ice crystals in and above super-cooled liquid water clouds over the Arctic  

NASA Astrophysics Data System (ADS)

Determining cloud properties from satellite data over the Arctic is difficult due to low solar elevation angles and the large extent of snow and ice cover. Although it is well established that ice clouds can be discriminated from those having a liquid phase, the mixed-phase clouds represent a problem since they appear nearly identical to liquid phase clouds in satellite data. This is due to the liquid-dominant top found in many mixed-phase stratus clouds. The Terra MODIS particle size ratio between 1.6 and 3.7 ?m for super-cooled liquid water (SLW) clouds is useful for determining ice crystal presence. Since the 1.6 ?m channel detects radiation from deeper inside the clouds, particle size retrievals using this channel are expected to be larger than 3.7 ?m retrievals if ice crystals are embedded inside the cloud. A technique utilizing the MODIS 6.7, 7.3, 8.5, 11 and 12 ?m channels is also used to determine ice crystal presence in SLW clouds. After determining the phase occurring at the cloud top, the internal cloud phase is parameterized in terms of the thermal and water vapor structure above the cloud. This method is useful since it can be applied to nighttime and twilight scenes in addition to daytime scenes. Although the focus of this study is on single layer cloud systems, a multilayer cloud algorithm, which discriminates thin, high ice crystal clouds from low level SLW clouds, is also run. Microwave radiometer, cloud radar and rawinsonde data collected at the Atmospheric Radiation Measurement DOE site in Barrow, Alaska and surface observations from the National Weather Service collected at the Barrow airport are used to evaluate MODIS cloud phase, and to determine whether MODIS can detect differences in the amount of ice embedded in SLW clouds. Accurately assigning cloud phase over large areas of the remote Arctic will benefit the aviation community for aircraft icing detection. Also, since mixed-phase clouds usually precipitate, the likely occurrence of snowfall can be determined remotely. The assignment of cloud phase is also critical in retrieving a cloud’s optical depth, height, particle size, and water path.

Spangenberg, D.; Minnis, P.; Palikonda, R.; Chang, F.; Shupe, M.

2010-12-01

186

Building Crystal Structure Ball Models Using Pre-Drilled Templates: Sheet Structures, Tridymite, and Cristobalite  

NSDL National Science Digital Library

This activity involves building crystal structure ball models in order to strengthen students' understanding of crystalline order, relative atomic size, atomic coordination, crystal chemistry, and crystal symmetry.

Hollocher, Kurt

187

Synthesis and crystal structure of maleopimaric acid.  

PubMed

The title compound maleopimaric acid was synthesized by a Diels-Alder reaction between maleic anhydride and Pinus elliottii engelm oleoresin at room temperature and it was characterized by single crystal X-ray diffraction. The white crystals crystallized in the orthorhombic system, space group P2(12121) with cell dimensions: a = 7.6960 (15) A, b = 11.851 (2) A, c = 24.577 (5) A, alpha = 90 degrees, beta = 90 degrees, gamma = 90 degrees, V = 2241.6(8) A(3), and R(1) = 0.0716, wR(2) = 0.1975. The two fused and unbridged cyclohexane rings form a trans ring junction with chair conformation with two methyl groups in axis positions, the anhydride ring is planar. Crystal water existed in the molecular and stabilized the structure through intermolecular hydrogen bonds. PMID:18626819

Rao, Xiaoping; Song, Zhanqian; Yao, Xujie; Han, Chunrui; Shang, Shibin

2008-01-01

188

Calorimetric study of crystal growth of ice in hydrated methemoglobin and of redistribution of the water clusters formed on melting the ice.  

PubMed Central

Calorimetric studies of the melting patterns of ice in hydrated methemoglobin powders containing between 0.43 and 0.58 (g water)/(g protein), and of their dependence on annealing at subzero temperatures and on isothermal treatment at ambient temperature are reported. Cooling rates were varied between approximately 1500 and 5 K min-1 and heating rate was 30 K min-1. Recrystallization of ice during annealing is observed at T > 228 K. The melting patterns of annealed samples are characteristically different from those of unannealed samples by the shifting of the melting temperature of the recrystallized ice fraction to higher temperatures toward the value of "bulk" ice. The "large" ice crystals formed during recrystallization melt on heating into "large" clusters of water whose redistribution and apparent equilibration is followed as a function of time and/or temperature by comparison with melting endotherms. We have also studied the effect of cooling rate on the melting pattern of ice with a methemoglobin sample containing 0.50 (g water)/(g protein), and we surmise that for this hydration cooling at rates of > or = approximately 150 K min-1 preserves on the whole the distribution of water molecules present at ambient temperature. PMID:7819504

Sartor, G; Mayer, E

1994-01-01

189

Requirements for structure determination of aperiodic crystals  

SciTech Connect

Using computer simulation, we compared the Patterson functions of one-dimensional (1D) randomly packed and quasiperiodic Fibonacci lattices with or without disorder, and a 2D Penrose lattice and random packing of pentagons (icosahedral glass model). Based on these comparisons, we derived some empirical guidelines for distinguishing ideal quasicrystals from aperiodic crystals with disorder using diffraction data. In contrast to periodic crystals, it is essential to include the background to obtain correct Patterson functions of the average structure since the background contains unresolved peaks. In particular, a Bragg peak scattering measurement {ital cannot}, in general, determine the structure of aperiodic crystals. Instead, a diffuse scattering measurement is required, which determines the absolute value of the diffraction background, in addition to the Bragg peaks. We further estimate that, dependent upon the disorder present, it is necessary to include up to 75% of the total diffracted intensity in any analysis.

Li, X.; Stern, E.A.; Ma, Y. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (US))

1991-01-15

190

Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method  

NASA Astrophysics Data System (ADS)

The invariant imbedding T-matrix method (II-TM) is employed to compute the optical properties of randomly oriented ice crystals of various shapes including hexagonal columns, hollow columns, droxtals, bullet rosettes and aggregates. The II-TM is shown to be numerically stable and capable of obtaining the single-scattering properties of hexagonal ice crystals with size parameters up to 150. The 22° and 46° halo peaks in the phase function of compact hexagonal ice crystals begin to emerge at a size parameter of approximately 80 and tend to become insensitive to particle size as the corresponding size parameter approaches 150. Furthermore, the II-TM solutions are shown to be in agreement with their counterparts based on the discrete dipole approximation (DDA) method and the pseudo-spectral time-domain (PSTD) method. In addition, the accuracy of the improved geometric-optics method (IGOM) is examined for randomly oriented hexagonal ice crystal cases over a wide size-parameter range from the resonant to geometric-optics regimes. The II-TM is also used to study the effects of particle surface roughness and internal inclusions on the single-scattering properties of ice particles.

Bi, Lei; Yang, Ping

2014-05-01

191

Shear induced structures in crystallizing cocoa butter  

NASA Astrophysics Data System (ADS)

Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

2004-03-01

192

THE CRYSTAL STRUCTURE OF VANADYL BISACETYLACETONATE (thesis)  

Microsoft Academic Search

The crystal structure of the chelate vanadyl bisacetylacetonate has been ; determined by x-ray diffraction. The compound is not a polymer in the solid but ; forms separate molecules, and there is no intermolecular bonding other than the ; usual Van der Waals type. The main feature of interest in the result is the ; geometrical arrangement of oxygen atoms

Dodge

1958-01-01

193

Crystal Structure of Human Enterovirus 71  

SciTech Connect

Enterovirus 71 is a picornavirus associated with fatal neurological illness in infants and young children. Here, we report the crystal structure of enterovirus 71 and show that, unlike in other enteroviruses, the 'pocket factor,' a small molecule that stabilizes the virus, is partly exposed on the floor of the 'canyon.' Thus, the structure of antiviral compounds may require a hydrophilic head group designed to interact with residues at the entrance of the pocket.

Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

2013-04-08

194

Genesis of crystal structures of superconducting oxides  

SciTech Connect

Using a phenomenological approach, we show that various structural types of HTSC oxides can be derived from the general latent body-centered structure. The parameters, describing ordering mechanisms and ion displacements that lead to the real crystal structures of HTSC oxides belong to the same {Gamma}-{Delta}-{Zeta} direction in the Brillouin zone of the cubic latent phase. New families of HTSC compounds, differing from the known ones by the presence of low-dimensional structural elements, are proposed. 14 refs., 2 tabs.

Dmitriev, V.P. [Rostov State Univ., Rostov-na-Donu (Russian Federation); Toledano, P. [Universite de Pikardie, Amiens (France)

1995-05-01

195

Photonic Crystal Laser-Driven Accelerator Structures  

SciTech Connect

Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

Cowan, Benjamin M.

2007-08-22

196

162 J. Opt. Soc. Am. A/Vol. 12, No. 1/January 1995 P. Yang and K. N. Liou Light scattering by hexagonal ice crystals  

E-print Network

, scattering properties for more complex ice crystal shapes have also been determined by the geometric ray by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models Ping Yang and K. N. Liou Department of Meteorology/Center for Atmospheric and Remote Sounding Studies, University

Liou, K. N.

197

Aggregate Structure and Free Energy Changes in Chromonic Liquid Crystals  

E-print Network

concerning the reasons why different aggre- gate structures are formed and why the liquid crystal phase crystal phase forms at higher concentrations. Keywords: aggregation; chromonic; liquid crystalsAggregate Structure and Free Energy Changes in Chromonic Liquid Crystals Alexandra J. Dickinson

Collings, Peter

198

Crystal structure of low-symmetry rondorfite  

SciTech Connect

The crystal structure of an aluminum-rich variety of the mineral rondorfite with the composition Ca{sub 16}[Mg{sub 2}(Si{sub 7}Al)(O{sub 31}OH)]Cl{sub 4} from the skarns of the Verkhne-Chegemskoe plateau (the Kabardino-Balkarian Republic, the Northern Caucasus Region, Russia) was solved in the triclinic space group with the unit-cell parameters a = 15.100(2) A, b = 15.110(2) A, c = 15.092(2) A, {alpha} = 90.06(1) deg., {beta} = 90.01(1) deg., {gamma} = 89.93(1) deg., Z = 4, sp. gr. P1. The structural model consisting of 248 independent atoms was determined by the phase-correction method and refined to R = 3.8% with anisotropic displacement parameters based on all 7156 independent reflections with 7156 F > 3{sigma}(F). The crystal structure is based on pentamers consisting of four Si tetrahedra linked by the central Mg tetrahedron. The structure can formally be refined in the cubic space group (a = 15.105 A, sp. gr. Fd-bar 3, seven independent positions) with anisotropic displacement parameters to R = 2.74% based on 579 reflections with F > 3{sigma}(F) without accounting for more than 1000 observed reflections, which are inconsistent with the cubic symmetry of the crystal structure.

Rastsvetaeva, R. K. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)], E-mail: rast@ns.crys.ras.ru; Zadov, A. E. [NPO Neokhim (Russian Federation); Chukanov, N. V. [Russian Academy of Sciences, Institute of Problems of Chemical Physics (Russian Federation)

2008-03-15

199

Crystal structure of low-symmetry rondorfite  

SciTech Connect

The crystal structure of an aluminum-rich variety of the mineral rondorfite with the composition Ca{sub 16}[Mg{sub 2}(Si{sub 7}Al)(O{sub 31}OH)]Cl{sub 4} from the skarns of the Verkhne-Chegemskoe plateau (the Kabardino-Balkarian Republic, the Northern Caucasus Region, Russia) was solved in the triclinic space group with the unit-cell parameters a = 15.100(2) Angstrom-Sign , b = 15.110(2) Angstrom-Sign , c = 15.092(2) Angstrom-Sign , {alpha} = 90.06(1) Degree-Sign , {beta} = 90.01(1) Degree-Sign , {gamma} = 89.93(1) Degree-Sign , Z = 4, sp. gr. P1. The structural model consisting of 248 independent atoms was determined by the phase-correction method and refined to R = 3.8% with anisotropic displacement parameters based on all 7156 independent reflections with 7156 F > 3{sigma}(F). The crystal structure is based on pentamers consisting of four Si tetrahedra linked by the central Mg tetrahedron. The structure can formally be refined in the cubic space group (a = 15.105 Angstrom-Sign , sp. gr. Fd 3 bar , seven independent positions) with anisotropic displacement parameters to R = 2.74% based on 579 reflections with F > 3{sigma}(F) without accounting for more than 1000 observed reflections, which are inconsistent with the cubic symmetry of the crystal structure.

Rastsvetaeva, R. K., E-mail: rast@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Zadov, A. E. [NPO Neokhim (Russian Federation); Chukanov, N. V. [Russian Academy of Sciences, Institute of Problems of Chemical Physics (Russian Federation)

2008-03-15

200

Predicting Polymeric Crystal Structures by Evolutionary Algorithms  

E-print Network

The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures for a given chemical composition. Here we extend this method to predict the crystal structure of polymers by performing constrained evolutionary search, where each monomeric unit is treated as one or several building blocks with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings using these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely polyethylene (PE), polyacetylene (PA), poly(glycolic acid) (PGA), poly(vinyl chloride) (PVC), poly(oxymethylene) (POM), poly(phenylene oxide) (PPO), and poly (p-phenylene sulfide) (PPS). By fixing the orientation of polymeric chains, this method can be further extended to predict all polymorphs of poly(vinylidene fluoride) (PVDF), and the complex linear polymer crystals, such as nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.

Qiang Zhu; Vinit Sharma; Artem R Oganov; Rampi Ramprasad

2014-06-05

201

Response of salt structures to ice-sheet loading: implications for ice-marginal and subglacial processes  

NASA Astrophysics Data System (ADS)

During the past decades the effect of glacioisostatic adjustment has received much attention. However, the response of salt structures to ice-sheet loading and unloading is poorly understood. Our study aims to test conceptual models of the interaction between ice-sheet loading and salt structures by finite-element modelling. The results are discussed with regard to their implications for ice-marginal and subglacial processes. Our models consist of 2D plane-strain cross-sections, which represent simplified geological cross-sections from the Central European Basin System. The model layers represent (i) sedimentary rocks of elastoplastic rheology, (ii) a viscoelastic diapir and layer of salt and (iii) an elastoplastic basement. On top of the model, a temporarily variable pressure simulates the advance and retreat of an ice sheet. The durations of the individual loading phases were defined to resemble the durations of the Pleistocene ice advances in northern central Europe. The geometry and rheology of the model layers and the magnitude, spatial distribution and timing of ice-sheet loading were systematically varied to detect the controlling factors. All simulations indicate that salt structures respond to ice-sheet loading. An ice advance towards the diapir causes salt flow from the source layer below the ice sheet towards the diapir, resulting in an uplift of up to +4 m. The diapir continues to rise as long as the load is applied to the source layer but not to the crest of the diapir. When the diapir is transgressed by the ice sheet the diapir is pushed down (up to -36 m) as long as load is applied to the crest of the diapir. During and after ice unloading large parts of the displacement are compensated by a reversal of the salt flow. Plastic deformation of the overburden is restricted to the area immediately above the salt diapir. The displacements after unloading range between -3.1 and +2.7 m. Larger displacements are observed in models with deep-rooted diapirs, thicker ice sheets, longer duration of the loading phase, thicker salt source layers and lower viscosity of the salt. The rise or fall of diapirs triggered or amplified by ice-sheet loading are likely to affect glacigenic deformation, erosion and deposition above the diapir and within the rim synclines. Ice-load induced uplift in front of an ice sheet will provide favourable conditions for the formation of push moraines, for example by creating a topographic obstacle and inclining potential detachments. Subglacial subsidence of salt structures will enhance erosion by providing a preferential drainage pathway and fracturing of the overburden of the salt structure and thereby contribute to the incision of tunnel valleys. However, the resulting displacements are probably too low to have a marked effect on the advance or retreat pattern of the ice sheets.

Lang, Jörg; Hampel, Andrea; Brandes, Christian; Winsemann, Jutta

2014-10-01

202

Development of self-actuated in-flight de-icing technology utilizing smart structure concepts  

NASA Astrophysics Data System (ADS)

Ice accretions on aircraft components have severe and sometimes fatal effects. Aircraft wings are one of the many components that are prone to severe ice accretions. The de-icing/anti-icing technologies currently being used are bulky, cover the airfoil surface and consume high energies. Addressing these drawbacks, the current study proposes a novel de-icing technique utilizing lightweight piezoelectric actuators to break the weak adhesive shear bond of ice-substrate interface. When structures are excited at their natural frequencies, high shear stresses are generated in certain modes. These high shear stresses can break the weak adhesive shear bond of ice-substrate interface with minimal energy inputs. The proposed de-icing technique is applied on two structures, (1) a laminated composite cantilever rectangular plate, and (2) a prototyped aluminum leading edge. Theoretical investigations are fist performed to determine the frequencies and modes in which high amount of shear stresses and debonding of the ice layers occurred. After determining optimal actuator locations, experimental set-up is designed and structures are built. Experimentation of the proposed technique is carried out inside a freezer by forming two types of ice layers on the surfaces and exciting the structures to the determined frequencies. Testing is carried out at five different temperatures ranging from 5°F to 25°F. De-icing is observed for both types of ice layers in both the structures. While the average de-icing times increased with decreased temperatures, longer de-icing times are noted for the aluminum leading edge. In addition, energy requirements of the piezoelectric actuators to actuate an adaptive composite wing structure are evaluated and a composite material is designed to improve deicing of the leading edge.

Venna, Suresh Venkata

203

THE STRUCTURE OF SURFACE H{sub 2}O LAYERS OF ICE-COVERED PLANETS WITH HIGH-PRESSURE ICE  

SciTech Connect

Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. While the existence of bound and unbound terrestrial planets with liquid water is an important question, of particular importance is the question of these planets' habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structure of the surface H{sub 2}O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, a 1 M{sub ?} planet at 1 AU from its central star and with 0.6-25 times the H{sub 2}O mass of the Earth could have an internal ocean. We find that high-pressure ice layers may appear between the internal ocean and the rock portion on a planet with an H{sub 2}O mass over 25 times that of the Earth. The planetary mass and abundance of surface water strongly restrict the conditions under which an extrasolar terrestrial planet may have an internal ocean with no high-pressure ice under the ocean. Such high-pressure ice layers underlying the internal ocean are likely to affect the habitability of the planet.

Ueta, S.; Sasaki, T., E-mail: ueta@geo.titech.ac.jp, E-mail: takanori@geo.titech.ac.jp [Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

2013-10-01

204

Structure of southeastern Antarctic Peninsula ice shelves and ice tongues from synthetic aperture radar imagery  

NASA Astrophysics Data System (ADS)

Examination of synthetic aperture radar data collected over the southeastern Antarctic Peninsula shows that features sometimes mapped as ice shelves are more likely composed of numerous ice tongues interspersed within a matrix of fast ice and icebergs. The tongues are formed by the seaward extension of numerous small mountain glaciers that drain from the Antarctic Peninsula. Once afloat, the tongues intermingle with a matrix of fast ice and brash. Examination of 1997 RADARSAT-1 image mosaics shows that southeastern Antarctic Peninsula composite-ice shelves covered an area of about 3500 km2. Like ice tongues around the rest of Antarctica, these features are highly fragmented and likely to be susceptible to mechanical failure. One such composite shelf, located between New Bedford and Wright Inlets, was observed to decrease in area by 1200 km2 between 1997 and 2000.

Jezek, K. C.; Liu, H. X.

205

5.841 Crystal Structure Refinement, Fall 2006  

E-print Network

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and ...

Mueller, Peter

206

5.067 Crystal Structure Refinement, Fall 2007  

E-print Network

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and ...

Mueller, Peter

207

Detection of ice crystal particles preferably oriented in the atmosphere by use of the specular component of scattered light.  

PubMed

A new method to retrieve sizes and flutter of ice crystals in the atmosphere when they reveal their preferably horizontal orientation is proposed and realized. The method consists of the measurement of angular width for the specular component of scattered light in the bistatic sounding scheme. The technique is realized with a floodlight beam and a CCD camera as a detector. PMID:18545469

Borovoi, Anatoli; Galileiskii, Victor; Morozov, Alexander; Cohen, Ariel

2008-05-26

208

T-1020 NaI crystal test for DM-Ice  

SciTech Connect

This is a memorandum of understanding between the Fermi National Accelerator Laboratory (Fermilab) and the experiments of the NaI Crystal Test for DM-Ice from the University of Wisconsin who have committed to participate in detector tests to be carried out during the 2011-2012 Fermilab Neutrino program. The memorandum is intended primarily for the purpose of recording expectations for budget estimates and work allocations for Fermilab, the funding agencies and the participating institutions. It reflects an arrangement that currently is satisfactory to the parties; however, it is recognized and anticipated that changing circumstances of the evolving research program will necessitate revisions. The parties agree to modify this memorandum to reflect such required adjustments. Actual contractual obligations will be set forth in separate documents. The DM-Ice collaboration is designing a sodium-iodide (NaI) based detector for a direct dark matter search. The detectors should have low readout noise and background levels to carry out a sensitive search. A 17-kg version of the experiment is running at the South Pole, 2500 m deep in the Antarctic ice, and a large scale experiment is currently being designed. One of the keys to the success of the experiment is to have a good understanding of the background levels intrinsic in the NaI detectors. To measure the background level, the detectors have to be shielded against cosmic rays. The lead shielding used for DAMIC in the Minos Underground Areas is a well-suited location for this test since it offers enough overburden to shield against cosmic rays, lead shielding, and experimental infrastructure. The goal of the test is to assess the background levels in the detector and to assess the characteristics of phosphorescence induced by muons and 100 keV-3 MeV gamma rays.

Maruyama, Reina; Heeger, Karsten; Pierpoint, Zachary; Pettus, Walter; Broerman, Benjamin; Hilgenberg, Chris; Webber, David; /Wisconsin U., Madison

2011-11-03

209

Exploring Crystal Structures with XtalDraw  

NSDL National Science Digital Library

At the end of this exercise students will be able to use computer-based software to draw crystal structures and visualize symmetries present in minerals. By varying the way in which atoms or groups of atoms are displayed, they will begin to see how atoms link through bonds. Students will also begin to investigate the effects of variable composition on bonding on unit cell parameters.

Panero, Wendy

210

~ Animation of Crystal Structure Variations with Pressure, Temperature and Composition  

E-print Network

~ Animation of Crystal Structure Variations with Pressure, Temperature and Composition Robert T. For instance, to make a movie of a crystal structure as a function of temperature we make a set of frames] INTRODUCTION The mineralogical literature is full of images of crystal structures. These images provide

Downs, Robert T.

211

Predicting polymeric crystal structures by evolutionary algorithms.  

PubMed

The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures. Here we extend this method to predict the crystal structure of polymers by constrained evolutionary search, where each monomeric unit is treated as a building block with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings of these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely, polyethylene, polyacetylene, poly(glycolic acid), poly(vinyl chloride), poly(oxymethylene), poly(phenylene oxide), and poly (p-phenylene sulfide). By fixing the orientation of polymeric chains, this method can be further extended to predict the structures of complex linear polymers, such as all polymorphs of poly(vinylidene fluoride), nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials. PMID:25338876

Zhu, Qiang; Sharma, Vinit; Oganov, Artem R; Ramprasad, Ramamurthy

2014-10-21

212

Estimation of Cirrus Cloud Effective Ice Crystal Shapes using Visible Reflectances from Dual-Satellite Measurements  

NASA Technical Reports Server (NTRS)

This study develops and examines a multiangle, multisatellite method for determining effective cloud particle shapes from reflectances observed at visible wavelengths. The technique exploits the significant differences in the various cloud particle shape phase functions near the backscatter direction to infer particle shape from a combination of views from a near-backscatter angle and a side scattering angle. Adding-doubling calculations confirm that the optimal viewing combinations include one near-backscatter angle and another between 60" and 150". Sensitivity to shape increases with solar zenith angle. A total of 28 collocated, visible images from pairs of currently operating meteorological satellites with the desired viewing combinations were analyzed for particle shape. Matching reflectances from images with optimal viewing angles clearly separates water droplet from ice crystal clouds. Reflectance pairs from matched pixels containing ice crystals can be explained by the range of selected microphysical models. The most common retrieved shapes correspond to combinations of hexagonal compacts (aspect ratio of unity), hexagonal columns, and bullet rosettes. Although no single microphysical model can account for the observed variability, taken together, the models used for retrieving cloud particle size by the Clouds and the Earth's Radiant Energy System and the Moderate Resolution Imaging Spectroradiometer Projects can account for most of the reflectance variability observed in this limited data set. Additional studies are needed to assess the uncertainties in retrieved shapes due to temporal and spatial mismatches, anisotropic and bright background reflectances, and calibration errors and to validate the retrieved shapes. While applicable to a limited number of dual-satellite viewing combinations for current research and operational meteorological satellites, this approach could be used most extensively to derive effective particle size, shape, and optical depth from a combination of an imaging satellite in an L1 orbit, like Triana, and any other lower Earth orbiting Satellites.

Chepfer, Helene; Minnis, Patrick; Young, David; Nguyen, Louis; Arduini, Robert F.

2002-01-01

213

Modeling Liquid crystal configurations 1 Modeling liquid crystal structures using MPI on a workstation cluster  

E-print Network

Modeling Liquid crystal configurations 1 Modeling liquid crystal structures using MPI Introduction Liquid crystals are so called because they exhibit some of the properties of both the liquid orientational and positional order, and the isotropic liquid phase, which exhibits neither. Liquid crystals re

Farrell, Paul A.

214

Crystallization and Characterization of Galdieria sulphuraria RUBISCO in Two Crystal Forms: Structural Phase Transition Observed in P21 Crystal Form  

Microsoft Academic Search

We have isolated ribulose-1,5-bisphosphate-carboxylase\\/oxygenase (RUBISCO) from the red algae Galdieria Sulphuraria . The protein crystallized in two different crystal forms, the I422 crystal form being obtained from hi gh salt and the P2 1 crystal form being obtained from lower concentration of salt and PEG. We report here the crystallization, preliminary stages of structure determination and t he detection of

Michael Baranowski; Boguslaw Stec

2007-01-01

215

Crystal structures of the benzene and ethanol solvates of neotame  

Microsoft Academic Search

The benzene and ethanol solvates of neotame crystallized from solutions of neotame anhydrate in benzene and ethanol, respectively. The crystal structures of the two solvates were determined by single-crystal X-ray diffraction using synchrotron radiation. The benzene solvate crystallizes in the monoclinic space group, P21, Z = 2, with one neotame molecule and one benzene molecule per asymmetric unit. The cell

Zedong Dong; Victor G. Young; Eric J. Munson; Steve A. Schroeder; Indra Prakash; David J. W. Grant

2003-01-01

216

The strength anisotropia of sea ice  

SciTech Connect

The hydraulic-engineering structure calculations of sea ice formation force require the sea ice strength data. The strength characteristics values and the types of sea ice formations in view of water depth define the type and the design of future structures in each particular region of supposed construction. The most objective information on the sea ice physical and technical properties can be obtained by field investigations ad the existing methods of their calculations refer to a great number of errors. The accumulated bank of data on studying the sea ice formation strength properties show one that ice as a natural material is of great crystalline structure variety. The level ice fields have a number of particularities. The crystal sizes increase in ice thickness. The crystals consist of fresh-water thin plates 0.5--0.6 mm in thickness oriented by pickle-water interlayers. Difference in thickness of the sea ice cover structure is one of the main causes of the changes strength characteristics layer. Besides that the sea ice strength depends upon the destroying force direction in reference to crystal orientation which characterizes the sea ice anisotropia as a material.

Evdokimov, G.N.; Rogachko, S.I. [Moscow State Univ. of Civil Engineering (Russian Federation)

1994-12-31

217

PROTEIN STRUCTURE REPORT Crystal structure of the Yersinia type III  

E-print Network

Yersinia pestis utilizes a contact-dependent (type III) secretion system (T3SS) to transport virulence of oligomerization is discussed. Keywords: Yersinia pestis; plague; type III secretion; YscE; crystal structure Yersinia pestis, the causative agent of plague, utilizes a type III secretion system (T3SS) to inject

218

Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus. Purification, Crystallization and Structure Determination  

SciTech Connect

We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 {angstrom} resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 {angstrom} resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

Clemons, William M.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki (MRC); (Utah); (MRC)

2009-10-07

219

Crystal structure and interaction dependence of the crystal-melt interfacial free energy  

E-print Network

We examine via molecular simulation the dependence of the crystal-melt interfacial free energy gamma on molecular interaction and crystal structure (fcc vs bcc) for systems interacting with inverse-power repulsive potentials, u...

Davidchack, R. L.; Laird, Brian Bostian

2005-03-01

220

Structural Evolution of Colloidal Crystals with Increasing Ionic Strength  

E-print Network

. In Final Form: June 5, 2004 We have directly observed the structural evolution of colloidal crystalsStructural Evolution of Colloidal Crystals with Increasing Ionic Strength Michael A. Bevan sedimented onto a glass substrate in deionized water to create large, single domain crystals. The solution

Braun, Paul

221

The coexistence of molecules having different structures in organic crystals  

Microsoft Academic Search

A comparison of the structures of symmetrically independent molecules coexisting in organic crystals has been carried out on the basis of the statistical treatment of x-ray diffraction data. The analysis of 330 crystal structures containing such molecules showed that 20% of the crystals contain molecules with different Iconformations (the phenomenon of contact conformerism); in 80% of cases the symmetrically independent

P. M. Zorkii; A. E. Razumaeva

1979-01-01

222

Crystal structure of the Golgi casein kinase  

PubMed Central

The family with sequence similarity 20 (Fam20) kinases phosphorylate extracellular substrates and play important roles in biomineralization. Fam20C is the Golgi casein kinase that phosphorylates secretory pathway proteins within Ser-x-Glu/pSer motifs. Mutations in Fam20C cause Raine syndrome, an osteosclerotic bone dysplasia. Here we report the crystal structure of the Fam20C ortholog from Caenorhabditis elegans. The nucleotide-free and Mn/ADP-bound structures unveil an atypical protein kinase-like fold and highlight residues critical for activity. The position of the regulatory ?C helix and the lack of an activation loop indicate an architecture primed for efficient catalysis. Furthermore, several distinct elements, including the presence of disulfide bonds, suggest that the Fam20 family diverged early in the evolution of the protein kinase superfamily. Our results reinforce the structural diversity of protein kinases and have important implications for patients with disorders of biomineralization. PMID:23754375

Xiao, Junyu; Tagliabracci, Vincent S.; Wen, Jianzhong; Kim, Soo-A; Dixon, Jack E.

2013-01-01

223

Crystal structure of a human GABAA receptor.  

PubMed

Type-A ?-aminobutyric acid receptors (GABAARs) are the principal mediators of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signalling triggers hyperactive neurological disorders such as insomnia, anxiety and epilepsy. Here we present the first three-dimensional structure of a GABAAR, the human ?3 homopentamer, at 3?Å resolution. This structure reveals architectural elements unique to eukaryotic Cys-loop receptors, explains the mechanistic consequences of multiple human disease mutations and shows an unexpected structural role for a conserved N-linked glycan. The receptor was crystallized bound to a previously unknown agonist, benzamidine, opening a new avenue for the rational design of GABAAR modulators. The channel region forms a closed gate at the base of the pore, representative of a desensitized state. These results offer new insights into the signalling mechanisms of pentameric ligand-gated ion channels and enhance current understanding of GABAergic neurotransmission. PMID:24909990

Miller, Paul S; Aricescu, A Radu

2014-08-21

224

Crystal Structure of Marburg Virus VP24  

PubMed Central

The VP24 protein plays an essential, albeit poorly understood role in the filovirus life cycle. VP24 is only 30% identical between Marburg virus and the ebolaviruses. Furthermore, VP24 from the ebolaviruses is immunosuppressive, while that of Marburg virus is not. The crystal structure of Marburg virus VP24, presented here, reveals that although the core is similar between the viral genera, Marburg VP24 is distinguished by a projecting ?-shelf and an alternate conformation of the N-terminal polypeptide. PMID:24574400

Zhang, Adrianna P. P.; Bornholdt, Zachary A.; Abelson, Dafna M.

2014-01-01

225

Crystal structure of yeast Sco1  

SciTech Connect

The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-{angstrom} resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.

Abajian, Carnie; Rosenzweig, Amy C. (NWU)

2010-03-05

226

Effectsof ice-crystal structure on halo formation: cirrus cloud  

E-print Network

the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field colored halo displays, though, their geometries, when applied to models, have been useful in demonstrating of Meteorol- ogy, University of Utah, Salt Lake City, Utah 84112; N. C. Knight and A.J. Heymsfieldare

Takano, Yoshihide

227

Crystal Structure of Human Nicotinamide Riboside Kinase  

SciTech Connect

Nicotinamide riboside kinase (NRK) has an important role in the biosynthesis of NAD{sup +} as well as the activation of tiazofurin and other NR analogs for anticancer therapy. NRK belongs to the deoxynucleoside kinase and nucleoside monophosphate (NMP) kinase superfamily, although the degree of sequence conservation is very low. We report here the crystal structures of human NRK1 in a binary complex with the reaction product nicotinamide mononucleotide (NMN) at 1.5 {angstrom} resolution and in a ternary complex with ADP and tiazofurin at 2.7 {angstrom} resolution. The active site is located in a groove between the central parallel {beta} sheet core and the LID and NMP-binding domains. The hydroxyl groups on the ribose of NR are recognized by Asp56 and Arg129, and Asp36 is the general base of the enzyme. Mutation of residues in the active site can abolish the catalytic activity of the enzyme, confirming the structural observations.

Khan,J.; Xiang, S.; Tong, L.

2007-01-01

228

Crystal structure of glucokinase regulatory protein.  

PubMed

Glucokinase (GK) plays a major role in the regulation of blood glucose homeostasis in both the liver and the pancreas. In the liver, GK is controlled by the GK regulatory protein (GKRP). GKRP in turn is activated by fructose 6-phosphate (F6P) and inactivated by fructose 1-phosphate (F1P). Disrupting the GK-GKRP complex increases the activity of GK in the cytosol and is considered an attractive concept for the regulation of blood glucose. We have determined the crystal structure of GKRP in its inactive F1P-bound form. The binding site for F1P is located deeply buried at a domain interface, and H-D exchange experiments confirmed that F1P and F6P compete for this site. The structure of the inactive GKRP-F1P complex provides a starting point for understanding the mechanism of fructose phosphate-dependent GK regulation at an atomic level. PMID:23621087

Pautsch, Alexander; Stadler, Nadja; Löhle, Adelheid; Rist, Wolfgang; Berg, Adina; Glocker, Lucia; Nar, Herbert; Reinert, Dirk; Lenter, Martin; Heckel, Armin; Schnapp, Gisela; Kauschke, Stefan G

2013-05-21

229

The Crystal Structure of Human Argonaute2  

SciTech Connect

Argonaute proteins form the functional core of the RNA-induced silencing complexes that mediate RNA silencing in eukaryotes. The 2.3 angstrom resolution crystal structure of human Argonaute2 (Ago2) reveals a bilobed molecule with a central cleft for binding guide and target RNAs. Nucleotides 2 to 6 of a heterogeneous mixture of guide RNAs are positioned in an A-form conformation for base pairing with target messenger RNAs. Between nucleotides 6 and 7, there is a kink that may function in microRNA target recognition or release of sliced RNA products. Tandem tryptophan-binding pockets in the PIWI domain define a likely interaction surface for recruitment of glycine-tryptophan-182 (GW182) or other tryptophan-rich cofactors. These results will enable structure-based approaches for harnessing the untapped therapeutic potential of RNA silencing in humans.

Schirle, Nicole T.; MacRae, Ian J. (Scripps)

2012-07-18

230

Changes in the Velocity Structure of the Greenland Ice Sheet  

Microsoft Academic Search

Using satellite radar interferometry observations of Greenland, we detected widespread glacier acceleration below 66° north between 1996 and 2000, which rapidly expanded to 70° north in 2005. Accelerated ice discharge in the west and particularly in the east doubled the ice sheet mass deficit in the last decade from 90 to 220 cubic kilometers per year. As more glaciers accelerate

Eric Rignot; Pannir Kanagaratnam

2006-01-01

231

How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.  

PubMed

On the basis of presently available data, combined with present-day knowledge of the physics and chemistry of cloud particle development, it is possible to make the following generalizations about the mode of precipitation in natural clouds. 1) The all-water mechanism begins to operate as soon as a parcel of cloud air is formed and continues to operate throughout the life of the cloud. The ice-crystal mechanism, on the other hand, can begin to operate only after the top of the cloud has reached levels where ice nuclei can be effective (about -15 degrees C). Some clouds never reach this height; any precipitation from them must be through the all-water mechanism. In cold climates and at high levels in the atmosphere, the cloud bases may be very close to this critical temperature. In the tropics, approximately 25,000 feet separate the bases of low clouds from the natural ice level. 2) The number of large hygroscopic nuclei in maritime air over tropical oceans is entirely adequate to rain-out any cloud with a base below about 10,000 feet, provided the cloud duration and cloud depth is sufficient for the precipitation process to operate. Extensive trajectories over land will decrease the number of sea-salt particles, both because of sedimentation and removal in rain. Measurements show an order-of-magnitude decrease in the number of large particles as maritime air moves from the Gulf of Mexico to the vicinity of St. Louis, during the summer months. Measurements in Arizona and New Mexico show even smaller chloride concentrations, presumably because of the long overland trajectories required in reaching these areas. The maritime particles lost in overland trajectories apparently are more than replaced by particles of land origin. The latter are usually of mixed composition and are less favorable for the formation of outsized solution droplets. 3) Ice nuclei, required for the formation of ice crystals and for droplet freezing, are rather rare at temperatures higher than about -10 degrees C. This, of course, accounts for the fact that natural clouds undergo extensive undercooling. Because of the scarcity of suitable nuclei, precipitation through the ice phase usually is not found in clouds warmer than about -15 degrees to -20 degrees C. Natural cirrus clouds might provide ice nuclei for precipitation at somewhat higher temperatures, but this possibility has not been extensively studied. 4) Precipitation in tropical clouds invariably first develops through the all-water mechanism; points discussed in paragraphs 1, 2, and 3 above all work toward this end. Tropical clouds which reach to heights above about 25,000 feet also develop precipitation through snow pellets. The data for mid-latitude clouds are conflicting. Some measurements suggest that summer clouds in the central United States and in the semiarid Southwest develop rain largely through the all-water process; existing theories support such a suggestion. However, flight measurements indicate that there is considerably more ice and snow in the clouds than can be accounted for by present theory; as a consequence, one must be careful in ruling out the ice mechanism in these areas. It appears to me, however, that the ice particles in these clouds are best accounted for through the hypothesis of freezing of drops which have grown to fairly large size through diffusion of vapor. Thus, the ice would be only incidental to the precipitation development. Winter clouds in the central United States and almost all of the clouds of northern United States and Canada appear to precipitate largely through the ice-crystal mechanism. The relatively cold cloud bases and the continental sources of air masses in these regions appear to retard the warm-rain mechanism to the point where the ice mechanism dominates. But here again, a great deal of research must be completed before a firm conclusion can be drawn (18). PMID:17745322

Braham, R R

1959-01-16

232

Spatial and temporal variations in the age structure of Arctic sea ice  

USGS Publications Warehouse

Spatial and temporal variations in the age structure of Arctic sea ice are investigated using a new reverse chronology algorithm that tracks ice-covered pixels to their location and date of origin based on ice motion and concentration data. The Beaufort Gyre tends to harbor the oldest (>10 years old) sea ice in the western Arctic while direct ice advection pathways toward the Transpolar Drift Stream maintain relatively young (10 years old (10+ year age class) were observed during 1989-2003. Since the mid-1990s, losses to the 10+ year age class lacked compensation by recruitment due to a prior depletion of all mature (6-10 year) age classes. Survival of the 1994 and 1996-1998 sea ice generations reestablished most mature age classes, and thereby the potential to increase extent of the 10+ year age class during the mid-2000s.

Belchansky, G. I.; Douglas, D. C.; Platonov, N. G.

2005-01-01

233

Winter phytoplankton community structure in three shallow temperate lakes during ice cover  

Microsoft Academic Search

The general model of seasonal phytoplankton succession in temperate lakes suggests that winter phytoplankton growth is minimal under ice-cover. However, some studies have found diverse phytoplankton communities during winter. The primary objectives of this study were to determine the species composition and the changes in the winter phytoplankton community structure under the ice. For 2 consecutive winters, phytoplankton samples were

Karen A. Phillips; Marvin W. Fawley

2002-01-01

234

Snow Crystals  

NSDL National Science Digital Library

This site describes snow crystals and snowflakes. Although a common meteorological phenomenon, snow crystal growth is a fascinating and poorly understood process, in which remarkably complex and beautifully symmetric structures appear, quite literally, out of thin air. The many facets of snow crystals are described here, along with the attempts to understand their formation. Site highlights include research on creating designer snow crystals in the laboratory, the history of early snow crystal observations, snow crystal photography, properties of frozen precipitation, and a snow crystal primer for a short course in snow crystal physics - what snow crystals are, how they form, and why they form the way they do. Information is offered on snow crystal classification, preservation, and unusual crystal forms. An extensive image gallery of lab-created crystal forms is available, with enlargeable thumbnail images. There are even instructions for users on how to create crystals. This could be made into a classroom activity, as the science of the growth is explained. Snowflake Physics discusses diffusion, dendrite growth, ice surface physics, electric growth, and ice properties. A vast list of related links is also provided.

Libbrecht, Kenneth

235

Structural map of flow variability and propagation behavior in the Ross Ice Shelf  

NASA Astrophysics Data System (ADS)

Fracture geometries in the Ross Ice Shelf, observable using visible band satellite imagery from the MODIS Mosaic of Antarctica (MOA) and the Landsat Image Mosaic of Antarctica (LIMA) provide a unique opportunity to study fracture propagation behavior and discharge variability in the ice streams and outlet glaciers feeding the shelf. Propagation is driven by changes in fracture length, near-field stress conditions, and the material properties of the ice. Changes in ice stream discharge and the development of "sticky spots," in both ice streams and within the shelf, lead to redirection of flow, changes in lateral gradients of ice velocity, and the propagation of fractures in response to changes in near-field stresses. The propagation behaviors most commonly observed in the ice shelf are the growth in the transverse direction of a fracture that formed within a shear zone and mechanical interactions between adjacent fracture tips. We use fracture mechanics theory and remote-sensed imagery to categorize fracture patterns and longitudinal zones of fractured ice in the Ross Ice Shelf. Near current sites of formation, simple fracture geometries and principal stresses are used to illustrate physical processes related to the formation and propagation of fractures. To compute flow lines and principal stresses, we derive a velocity map of the Ross Ice Shelf by merging two velocity datasets using a combination of statistical methods. A structural map of fracture geometries, relict shear margins, and structural boundaries is constructed. Using the ice shelf features, present-day flow lines, and principal stresses, we investigate the manner in which principal stresses affect fracture formation and propagation behavior and the variability of ice stream discharge into the shelf.

LeDoux, C. M.; Hulbe, C. L.

2011-12-01

236

Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar.  

PubMed

Layers of quasi-horizontally oriented ice crystals in cirrus clouds are observed by a two-wavelength polarization lidar. These layers of thickness of several hundred meters are identified by three attributes: the backscatter reveals a sharp ridge while the depolarization ratio and color ratio become deep minima. These attributes have been justified by theoretical calculations of these quantities within the framework of the physical-optics approximation. PMID:25322032

Borovoi, Anatoli; Balin, Yurii; Kokhanenko, Grigorii; Penner, Iogannes; Konoshonkin, Alexander; Kustova, Natalia

2014-10-01

237

Structural Analysis of the Redesigned Ice/Frost Ramp Bracket  

NASA Technical Reports Server (NTRS)

This paper describes the interim structural analysis of a redesigned Ice/Frost Ramp bracket for the Space Shuttle External Tank (ET). The proposed redesigned bracket consists of mounts for attachment to the ET wall, supports for the electronic/instrument cables and propellant repressurization lines that run along the ET, an upper plate, a lower plate, and complex bolted connections. The eight nominal bolted connections are considered critical in the summarized structural analysis. Each bolted connection contains a bolt, a nut, four washers, and a non-metallic spacer and block that are designed for thermal insulation. A three-dimensional (3D) finite element model of the bracket is developed using solid 10-node tetrahedral elements. The loading provided by the ET Project is used in the analysis. Because of the complexities associated with accurately modeling the bolted connections in the bracket, the analysis is performed using a global/local analysis procedure. The finite element analysis of the bracket identifies one of the eight bolted connections as having high stress concentrations. A local area of the bracket surrounding this bolted connection is extracted from the global model and used as a local model. Within the local model, the various components of the bolted connection are refined, and contact is introduced along the appropriate interfaces determined by the analysts. The deformations from the global model are applied as boundary conditions to the local model. The results from the global/local analysis show that while the stresses in the bolts are well within yield, the spacers fail due to compression. The primary objective of the interim structural analysis is to show concept viability for static thermal testing. The proposed design concept would undergo continued design optimization to address the identified analytical assumptions and concept shortcomings, assuming successful thermal testing.

Phillips, D. R.; Dawicke, D. S.; Gentz, S. J.; Roberts, P. W.; Raju, I. S.

2007-01-01

238

Ice crystallization and freeze tolerance in embryonic stages of the tardigrade Milnesium tardigradum.  

PubMed

In tardigrades, tolerance to low temperature is well known and allows them to cope with subzero temperatures in their environment. Although the ability to tolerate freezing body water has been demonstrated in some tardigrades, freeze tolerance of embryonic stages has been little studied, although this has ecological significance. In this study, we evaluated the subzero temperature survival of five different developmental stages of the eutardigrade species Milnesium tardigradum after freezing to -30 degrees C. Embryos were exposed to five different cooling rates between room temperature and -30 degrees C at 1 degrees C/h, 3 degrees C/h, 5 degrees C/h, 7 degrees C/h, and 9 degrees C/h followed by a warming period at 10 degrees C/h. The results showed that the developmental stage and the cooling rate have a significant effect on the hatching rate. Less developed embryonic stages were more sensitive to freezing at higher freezing rates than more developed stages. Differential Scanning Calorimetry (DSC) was used to determine the temperature of crystallization (Tc) in single embryos of the different developmental stages and revealed no differences between the stages. Based on the calorimetric data, we also conclude that the ice nucleation is homogeneous in embryonic stages in tardigrades, as also recently shown for fully developed tardigrades, and not triggered by nucleating agents. PMID:20116441

Hengherr, S; Reuner, A; Brümmer, F; Schill, R O

2010-05-01

239

Crystal structure of Junin virus nucleoprotein.  

PubMed

Junin virus (JUNV) has been identified as the aetiological agent of Argentine haemorrhagic fever (AHF), which is a serious public health problem with approximately 5 million people at risk. It is treated as a potential bioterrorism agent because of its rapid transmission by aerosols. JUNV is a negative-sense ssRNA virus that belongs to the genus Arenavirus within the family Arenaviridae, and its genomic RNA contains two segments encoding four proteins. Among these, the nucleoprotein (NP) has essential roles in viral RNA synthesis and immune suppression, but the molecular mechanisms of its actions are only partially understood. Here, we determined a 2.2 Å crystal structure of the C-terminal domain of JUNV NP. This structure showed high similarity to the Lassa fever virus (LASV) NP C-terminal domain. However, both the structure and function of JUNV NP showed differences compared with LASV NP. This study extends our structural insight into the negative-sense ssRNA virus NPs. PMID:23884367

Zhang, Yinjie; Li, Le; Liu, Xiang; Dong, Shishang; Wang, Wenming; Huo, Tong; Guo, Yu; Rao, Zihe; Yang, Cheng

2013-10-01

240

In situ proteolysis for protein crystallization and structure determination.  

PubMed

We tested the general applicability of in situ proteolysis to form protein crystals suitable for structure determination by adding a protease (chymotrypsin or trypsin) digestion step to crystallization trials of 55 bacterial and 14 human proteins that had proven recalcitrant to our best efforts at crystallization or structure determination. This is a work in progress; so far we determined structures of 9 bacterial proteins and the human aminoimidazole ribonucleotide synthetase (AIRS) domain. PMID:17982461

Dong, Aiping; Xu, Xiaohui; Edwards, Aled M; Chang, Changsoo; Chruszcz, Maksymilian; Cuff, Marianne; Cymborowski, Marcin; Di Leo, Rosa; Egorova, Olga; Evdokimova, Elena; Filippova, Ekaterina; Gu, Jun; Guthrie, Jennifer; Ignatchenko, Alexandr; Joachimiak, Andrzej; Klostermann, Natalie; Kim, Youngchang; Korniyenko, Yuri; Minor, Wladek; Que, Qiuni; Savchenko, Alexei; Skarina, Tatiana; Tan, Kemin; Yakunin, Alexander; Yee, Adelinda; Yim, Veronica; Zhang, Rongguang; Zheng, Hong; Akutsu, Masato; Arrowsmith, Cheryl; Avvakumov, George V; Bochkarev, Alexey; Dahlgren, Lars-Göran; Dhe-Paganon, Sirano; Dimov, Slav; Dombrovski, Ludmila; Finerty, Patrick; Flodin, Susanne; Flores, Alex; Gräslund, Susanne; Hammerström, Martin; Herman, Maria Dolores; Hong, Bum-Soo; Hui, Raymond; Johansson, Ida; Liu, Yongson; Nilsson, Martina; Nedyalkova, Lyudmila; Nordlund, Pär; Nyman, Tomas; Min, Jinrong; Ouyang, Hui; Park, Hee-won; Qi, Chao; Rabeh, Wael; Shen, Limin; Shen, Yang; Sukumard, Deepthi; Tempel, Wolfram; Tong, Yufeng; Tresagues, Lionel; Vedadi, Masoud; Walker, John R; Weigelt, Johan; Welin, Martin; Wu, Hong; Xiao, Ting; Zeng, Hong; Zhu, Haizhong

2007-12-01

241

Crystal Structure of Bacillus subtilis Signal Peptide Peptidase A  

E-print Network

Crystal Structure of Bacillus subtilis Signal Peptide Peptidase A Sung-Eun Nam, Apollos C. Kim Bacillus subtilis SppA (SppABS). *Corresponding author. E-mail address: mpaetzel@sfu.ca. Abbreviations used the first crystal structure of a Gram-positive bacterial SppA. The 2.4-Ć?- resolution structure of Bacillus

Paetzel, Mark

242

The effects of small ice crystals on the infrared radiative properties of cirrus clouds. Semiannual status report, 1 October 1989-31 March 1990  

SciTech Connect

To be successful in the development of satellite retrieval methodologies for the determination of cirrus cloud properties, fundamental scattering and absorption data on nonspherical ice crystals that are found in cirrus clouds must be available. Recent aircraft observations (Platt et al.) reveal that there is a large amount of small ice particles, on the order of 10 micron, in cirrus clouds. Thus it is important to explore the potential differences in the scattering and absorption properties of ice crystals with respect to their sizes and shapes. In this study the effects of nonspherical small ice crystals on the infrared radiative properties of cirrus clouds are investigated using light scattering properties of spheroidal particles. In Section 2, using the anomalous diffraction theory for spheres and results from the exact spheroid scattering program, efficient parameterization equations are developed for calculations of the scattering and absorption properties for small ice crystals. Parameterization formulas are also developed for large ice crystals using results computed from the geometric ray-tracing technique and the Fraunhofer diffraction theory for spheroids and hexagonal crystals. This is presented in Section 3. Finally, applications to the satellite remote sensing are described in Section 4.

Takano, Y.; Liou, K.N.; Asano, S.; Heymsfield, A.; Minnis, P.

1990-04-01

243

Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.  

ERIC Educational Resources Information Center

Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

Hong, Y. S.; And Others

1980-01-01

244

Crystal structure of human uroporphyrinogen decarboxylase.  

PubMed Central

Uroporphyrinogen decarboxylase (URO-D) catalyzes the fifth step in the heme biosynthetic pathway, converting uroporphyrinogen to coproporphyrinogen by decarboxylating the four acetate side chains of the substrate. This activity is essential in all organisms, and subnormal activity of URO-D leads to the most common form of porphyria in humans, porphyria cutanea tarda (PCT). We have determined the crystal structure of recombinant human URO-D at 1.60 A resolution. The 40.8 kDa protein is comprised of a single domain containing a (beta/alpha)8-barrel with a deep active site cleft formed by loops at the C-terminal ends of the barrel strands. Many conserved residues cluster at this cleft, including the invariant side chains of Arg37, Arg41 and His339, which probably function in substrate binding, and Asp86, Tyr164 and Ser219, which may function in either binding or catalysis. URO-D is a dimer in solution (Kd = 0.1 microM), and this dimer also appears to be formed in the crystal. Assembly of the dimer juxtaposes the active site clefts of the monomers, suggesting a functionally important interaction between the catalytic centers. PMID:9564029

Whitby, F G; Phillips, J D; Kushner, J P; Hill, C P

1998-01-01

245

Ice island creation, drift, recurrences, mechanical properties, and interactions with arctic offshore oil production structures. Final report  

SciTech Connect

Research and engineering studies on first-year sea ice for over two decades has resulted in the design, construction, and operation of jacket platforms, of artificial islands, and of massive gravity structures which routinely withstand moving sea ice of thickness up to 2 meters. However, the less-common interactions between such structures and moving multiyear ice ({ge}3 meters thick), and also moving ice islands (10 to 60 meters thick) remain as the unknown and potentially most serious hazard for Arctic offshore structures. In this study, research was addressed across the complete span of remaining questions regarding such features. Ice island components, thickness distributions, scenarios and models for the interactions of massive ice features with offshore structures, all were considered. Ice island morphology and calving studies were directed at the cluster of 19 ice islands produced in a calving from the Ward Hunt Ice Shelf on Ellesmere Island in 1983, and also at a calving from the Milne Ice Shelf in 1988. The statistics of ice island dynamics, on both a short-term small-scale basis and also on a long-term basis, were studied. Typical wind velocities of 5 to 7.5 meters per second led to ice island speeds of about 0.014 of the wind speed, at an angle of 20{degrees} to the right of the wind direction. Ice island samples were tested for their stress/strain characteristics. Compressive strength values ranged from 1.64 MPa at a strain rate of 2 {times} 10{sup {minus}7} s{sup {minus}1} to 6.75 MPa at a strain rate of 1 {times} 10{sup {minus}3} s{sup {minus}1}. Scenarios for ice island/structure interactions were developed, and protective countermeasures such as spray ice and ice rubble barriers were suggested. Additional computer modeling of structure/ice interactions for massive ice features is recommended.

Sackinger, W.M.; Jeffries, M.O.; Li, Fucheng; Lu, Mingchi

1991-03-01

246

High-frequency microwave anti-/de-icing system for carbon-reinforced airfoil structures  

NASA Astrophysics Data System (ADS)

An aircraft may be subjected to icing for a variety of meteorological reasons during the flight. Ice formation on the plane and in particular on the aerodynamically carrying structures adversely affects the flight behaviour. Conventional de-icing methods for aluminum wings are characterised by a high energy consumption during the flight and slow ice melting due to thermal diffusion of the heat in the wing material. In addition to advanced turbines, novel materials and composites have to be used in order to reduce the weight and, hence, the fuel consumption. These composite materials have a far worse thermal conductivity than metals and undergo delamination when hot air systems, resistance or ohmic heating mats are used. In the paper, the unique advantages of a novel High Frequency Microwave Anti-/De-icing System for large future aircraft with carbon reinforced leading edge structures are presented.

Feher, Lambert; Thumm, Manfred

2001-08-01

247

Crystal structure of an amphiphilic foldamer reveals a 48-mer assembly comprising a hollow truncated octahedron  

PubMed Central

Foldamers provide an attractive medium to test the mechanisms by which biological macromolecules fold into complex three-dimensional structures, and ultimately to design novel protein-like architectures with properties unprecedented in nature. Here, we describe a large cage-like structure formed from an amphiphilic arylamide foldamer crystallized from aqueous solution. Forty eight copies of the foldamer assemble into a 5 nm cage-like structure, an omnitruncated octahedron filled with well-ordered ice-like water molecules. The assembly is stabilised by a mix of arylamide stacking interaction, hydrogen bonding and hydrophobic forces. The omnitruncated octahedra tessellate to form a cubic crystal. These findings may provide an important step towards the design of nanostructured particles resembling spherical viruses. PMID:24705140

Pavone, Vincenzo; Zhang, Shao-Qing; Merlino, Antonello; Lombardi, Angela; Wu, Yibing; DeGrado, William F.

2014-01-01

248

Polar ice structure and the integrity of ice-core paleoclimate records  

NASA Astrophysics Data System (ADS)

Polar ice is a unique archive of the climatic conditions in the past. However, ice sheets flow, and this flow may affect the integrity of paleoclimate records. A useful method to analyze the effect of ice flow upon climate records is the combination of microstructure mapping with ice-core line-scanning. Microstructure and stratigraphy have been mapped along the entire EPICA-DML ice core with this combined method. On the macroscale the stratigraphy seems perfectly preserved down to ca 1700 m depth (MIS4), below which minor undulations start to develop. Layers inclined up to 15° and millimeter-scale z-folds are observed below 2050 m depth. Notwithstanding, the EPICA-DML climate record appears not seriously disturbed down to ca 2400 m depth, which marks the climatic transition from the last interglacial (MIS5e) to the MIS6 glacial period. Below this depth the synchronization with the EPICA-Dome C record is lost, and stratigraphic disturbances appear up to the meter scale. On the microscopic scale, we observe dynamic recrystallization already in deep firn, leading to substantial microstructural changes prior to bubble close-off. The concentration of visible micro-inclusions in the Holocene part of the core seems to increase with depth, which could possibly indicate post-depositional formation of salts. In glacial period ice the concentration of visible micro-inclusions in certain layers is so high that these strata appear as light-scattering bands, often called "cloudy bands". Another interesting stratigraphic feature is what we call "bubble-free bands", viz. millimeter-thick strata deprived of bubbles and rich in clathrate hydrates, which are found within the bubble-hydrate transition zone (800-1200 m depth) and are probably caused by anomalously fast clathration. While there is hardly any interaction between visible micro-inclusions and grain boundaries down to 2500 m depth, in the deeper ice (warmer than -10 °C) many grain boundaries seem to harvest micro-inclusions. Here we discuss these observations and their relevance for the interpretation of climate records.

Faria, Sérgio H.; Freitag, Johannes; Kipfstuhl, Sepp

2010-01-01

249

Crystal structure of a snake venom cardiotoxin  

SciTech Connect

Cardiotoxin V/sup II/4 from Naja mossambica crystallizes in space group P6/sub 1/ (a = b = 73.9 A; c = 59.0 A) with two molecules of toxin (molecular mass = 6715 Da) in the asymmetric unit. The structure was solved by using a combination of multiple isomorphous replacement and density modification methods. Model building and least-squares refinement led to an agreement factor of 27% for a data set to 3-A resolution prior to any inclusion of solvent molecules. The topology of the molecule is similar to that found in short and long snake neurotoxins, which block the nicotinic acetylcholine receptor. Major differences occur in the conformation of the central loop, resulting in a change in the concavity of the molecule. Hydrophobic residues are clustered in two distinct areas. The existence of stable dimeric entities in the crystalline state, with the formation of a six-stranded antiparallel ..beta.. sheet, may be functionally relevant.

Rees, B.; Samama, J.P.; Thierry, J.C.; Gilibert, M.; Fischer, J.; Schweitz, H.; Lazdunski, M.; Moras, D.

1987-05-01

250

Radiation effects in water ice: a near-edge x-ray absorption fine structure study.  

PubMed

The changes in the structure and composition of vapor-deposited ice films irradiated at 20 K with soft x-ray photons (3-900 eV) and their subsequent evolution with temperatures between 20 and 150 K have been investigated by near-edge x-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K edge. We observe the hydroxyl OH, the atomic oxygen O, and the hydroperoxyl HO(2) radicals, as well as the oxygen O(2) and hydrogen peroxide H(2)O(2) molecules in irradiated porous amorphous solid water (p-ASW) and crystalline (I(cryst)) ice films. The evolution of their concentrations with the temperature indicates that HO(2), O(2), and H(2)O(2) result from a simple step reaction fuelled by OH, where O(2) is a product of HO(2) and HO(2) a product of H(2)O(2). The local order of ice is also modified, whatever the initial structure is. The crystalline ice I(cryst) becomes amorphous. The high-density amorphous phase (I(a)h) of ice is observed after irradiation of the p-ASW film, whose initial structure is the normal low-density form of the amorphous ice (I(a)l). The phase I(a)h is thus peculiar to irradiated ice and does not exist in the as-deposited ice films. A new "very high density" amorphous phase-we call I(a)vh-is obtained after warming at 50 K the irradiated p-ASW ice. This phase is stable up to 90 K and partially transforms into crystalline ice at 150 K. PMID:17144730

Laffon, C; Lacombe, S; Bournel, F; Parent, Ph

2006-11-28

251

Statistical structural analysis of rotor impact ice shedding  

NASA Technical Reports Server (NTRS)

The statistical characteristics of impact ice shear strength are analyzed, with emphasis placed on the most probable shear strength and statistical distribution of an ice deposit. Several distribution types are considered: the Weibull, two-parameter Weibull, and exponential distributions, as well as the Gumbell distribution of the smallest extreme and the Gumbell distribution of the largest extreme. It is concluded that the Weibull distribution yields the best results; however, the expected life, shape parameter, and scale parameter should be determined separately for each case of varying wind speed and droplet size. The theoretical predictions of shear stresses in a specific rotating ice shape are compared, and it is noted that when the effects of lift are added to the theoretical model and the interference is calculated with a new mean and standard deviation, the probability of ice shed is computed as 36.64 pct.

Kellacky, C. J.; Chu, M. L.; Scavuzzo, R. J.

1991-01-01

252

Sensitivity of Cirrus Bidirectional Reflectance at MODIS Bands to Vertical Inhomogeneity of Ice Crystal Habits and Size Distribution  

NASA Technical Reports Server (NTRS)

A common assumption in satellite imager-based cirrus retrieval algorithms is that the radiative properties of a cirrus cloud may be represented by those associated with a specific ice crystal shape (or habit) and a single particle size distribution. However, observations of cirrus clouds have shown that the shapes and sizes of ice crystals may vary substantially with height within the clouds. In this study we investigate the sensitivity of the top-of-atmosphere bidirectional reflectances at two MODIS bands centered at 0.65 micron and 2.11 micron to the cirrus models assumed to be either a single homogeneous layer or three distinct but contiguous, layers. First, we define the single- and three-layer cirrus cloud models with respect to ice crystal habit and size distribution on the basis of in situ replicator data acquired during the First ISCCP Regional Experiment (FIRE-II), held in Kansas during the fall of 1991. Subsequently, fundamental light scattering and radiative transfer theory is employed to determine the single scattering and the bulk radiative properties of the cirrus cloud. Regarding the radiative transfer computations, we present a discrete form of the adding/doubling principle by introducing a direct transmission function, which is computationally straightforward and efficient an improvement over previous methods. For the 0.65 micron band, at which absorption by ice is negligible, there is little difference between the bidirectional reflectances calculated for the one- and three-layer cirrus models, suggesting that the vertical inhomogeneity effect is relatively unimportant. At the 2.11 micron band, the bidirectional reflectances computed for both optically thin (tau = 1) and thick (tau = 10) cirrus clouds show significant differences between the results for the one- and three-layer models. The reflectances computed for the three-layer cirrus model are substantially larger than those computed for the single-layer cirrus. Finally, we find that cloud reflectance is very sensitive to the optical properties of the small crystals that predominate in the top layer of the three-layer cirrus model. It is critical to define the most realistic geometric shape for the small "quasi-spherical" ice crystals in the top layer for obtaining reliable single-scattering parameters and bulk radiative properties of cirrus.

Yang, P.; Gao, B.-C.; Baum, B. A.; Wiscombe, W.; Hu, Y.; Nasiri, S. L.; Soulen, P. F.; Heymsfield, A. J.; McFarquhar, G. M.; Miloshevich, L. M.

2000-01-01

253

The magnetic domain structures of small crystals  

Microsoft Academic Search

The first part of the article describes the calculation of magnetostatic energies (which are necessary to predict the critical sizes of crystals below which domains cease to form) and of the domain spacing or number of domains per crystal. Methods suitable for periodic ‘magnetic charge’ distributions in semi-infinite crystals and for finite distributions are described, and both planar and cylindrical

D. J. Craik

1970-01-01

254

Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape  

NASA Technical Reports Server (NTRS)

Hurricane Nora traveled up the Bala Peninsula coast in the unusually warm El Nino waters of September 1997, until rapidly decaying as it approached Southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western US, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the Southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized. Importantly, at both the FARS and CART sites the cirrus generated spectacular optical displays, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar polarization data indicate widespread regions of uniform ice plate orientations, and in situ particle masticator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea-salt nuclei in thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-saltcontaminated ice crystals during the extended period of cirrus cloud maintenance. The reference that marine microliters are embedded in the replicas of ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the implications for understanding cirrus radiative properties or a global scale, are discussed.

Sassen, Kenneth; Arnott, W. Patrick; OCStarr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.

2002-01-01

255

Crystal structure of a Trypanosoma brucei metacaspase.  

PubMed

Metacaspases are distantly related caspase-family cysteine peptidases implicated in programmed cell death in plants and lower eukaryotes. They differ significantly from caspases because they are calcium-activated, arginine-specific peptidases that do not require processing or dimerization for activity. To elucidate the basis of these differences and to determine the impact they might have on the control of cell death pathways in lower eukaryotes, the previously undescribed crystal structure of a metacaspase, an inactive mutant of metacaspase 2 (MCA2) from Trypanosoma brucei, has been determined to a resolution of 1.4 Å. The structure comprises a core caspase fold, but with an unusual eight-stranded ?-sheet that stabilizes the protein as a monomer. Essential aspartic acid residues, in the predicted S1 binding pocket, delineate the arginine-specific substrate specificity. In addition, MCA2 possesses an unusual N terminus, which encircles the protein and traverses the catalytic dyad, with Y31 acting as a gatekeeper residue. The calcium-binding site is defined by samarium coordinated by four aspartic acid residues, whereas calcium binding itself induces an allosteric conformational change that could stabilize the active site in a fashion analogous to subunit processing in caspases. Collectively, these data give insights into the mechanistic basis of substrate specificity and mode of activation of MCA2 and provide a detailed framework for understanding the role of metacaspases in cell death pathways of lower eukaryotes. PMID:22529389

McLuskey, Karen; Rudolf, Jana; Proto, William R; Isaacs, Neil W; Coombs, Graham H; Moss, Catherine X; Mottram, Jeremy C

2012-05-01

256

Crystal Structure of Human Kynurenine Aminotransferase ll*  

SciTech Connect

Human kynurenine aminotransferase II (hKAT-II) efficiently catalyzes the transamination of knunrenine to kynurenic acid (KYNA). KYNA is the only known endogenous antagonist of N-methyl-d-aspartate (NMDA) receptors and is also an antagonist of 7-nicotinic acetylcholine receptors. Abnormal concentrations of brain KYNA have been implicated in the pathogenesis and development of several neurological and psychiatric diseases in humans. Consequently, enzymes involved in the production of brain KYNA have been considered potential regulatory targets. In this article, we report a 2.16 Angstroms crystal structure of hKAT-II and a 1.95 Angstroms structure of its complex with kynurenine. The protein architecture of hKAT-II reveals that it belongs to the fold-type I pyridoxal 5-phosphate (PLP)-dependent enzymes. In comparison with all subclasses of fold-type I-PLP-dependent enzymes, we propose that hKAT-II represents a novel subclass in the fold-type I enzymes because of the unique folding of its first 65 N-terminal residues. This study provides a molecular basis for future effort in maintaining physiological concentrations of KYNA through molecular and biochemical regulation of hKAT-II.

Han,Q.; Robinson, H.; Li, J.

2008-01-01

257

Structure and OH-stretch spectroscopy of low- and high-density amorphous ices  

NASA Astrophysics Data System (ADS)

We use the E3B water simulation model (which explicitly includes three-body interactions) and molecular dynamics simulations to study the structure of low- and high-density amorphous ices. We find that the "interstitial" molecule in high-density amorphous ice, which is responsible for the higher density, is not hydrogen bonded to the central molecule or its nearest neighbors. This molecule enforces a wider range of local environments as demonstrated by the tetrahedral order parameter, whereas the local structure of low-density amorphous ice is more ordered. We also present theoretical vibrational spectra (infrared, Raman, and two-dimensional infrared) for the amorphous phases, for both HOD/D2O and H2O. The results are in qualitative agreement with experiment and reflect the fact that low-density amorphous ice is more ordered, with stronger hydrogen bonds, compared to high-density amorphous ice. For both the structural analysis and spectral calculations, we compare the results for the amorphous ices with those for crystalline ice Ih and supercooled water.

Tainter, C. J.; Shi, L.; Skinner, J. L.

2014-04-01

258

Abrasion mode of a circular cylindrical concrete structure due to sea ice movement  

SciTech Connect

The estimation method for the abrasions of a cylindrical concrete structure due to sea ice movement proposed by Itoh et al. (1994) is extended to precisely predict the abrasion mode near the waterline of the concrete structure. The extended distinct element method (EDEM) by Meguro and Hakuno (1989) is applied to evaluate the ice contact pressure distribution on the waterline assuming that the failure modes of the ice sheet be radial cracking and crushing. With a proper adjustment of the material parameters, realistic failure patterns and contact pressure histories can be obtained. The authors examine the adequacy of their extended estimation method through the field investigation of abrasion on concrete. It is demonstrated that the abrasion mode of the circular cylindrical concrete structure would be mainly determined by the contact pressure distribution and the excursion of the broken pieces of the ice sheet near the waterline.

Itoh, Yoshishige; Tanaka, Yoshihiro; Delgado, A. [Taisei Corp., Tokyo (Japan); Saeki, Hiroshi [Hokkaido Univ., Sapporo (Japan)

1995-12-31

259

Three-Dimensional Photonic Crystal Laser-Driven Accelerator Structures  

SciTech Connect

We discuss simulated photonic crystal structure designs for laser-driven particle acceleration, focusing on three-dimensional planar structures based on the so-called ''woodpile'' lattice. We describe guiding of a speed-of-light accelerating mode by a defect in the photonic crystal lattice and discuss the properties of this mode, including particle beam dynamics and potential coupling methods for the structure. We also discuss possible materials and power sources for this structure and their effects on performance parameters, as well as possible manufacturing techniques and the required tolerances. In addition we describe the computational technique and possible improvements in numerical modeling that would aid development of photonic crystal structures.

Cowan, B.; /SLAC

2006-09-07

260

Undergraduates Improve upon Published Crystal Structure in Class Assignment  

ERIC Educational Resources Information Center

Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the…

Horowitz, Scott; Koldewey, Philipp; Bardwell, James C.

2014-01-01

261

Effect of environmental variables on eukaryotic microbial community structure of land-fast Arctic sea ice.  

PubMed

Sea ice microbial community structure affects carbon and nutrient cycling in polar seas, but its susceptibility to changing environmental conditions is not well understood. We studied the eukaryotic microbial community in sea ice cores recovered near Point Barrow, AK in May 2006 by documenting the composition of the community in relation to vertical depth within the cores, as well as light availability (mainly as variable snow cover) and nutrient concentrations. We applied a combination of epifluorescence microscopy, denaturing gradient gel electrophoresis and clone libraries of a section of the 18S rRNA gene in order to compare the community structure of the major eukaryotic microbial phylotypes in the ice. We find that the community composition of the sea ice is more affected by the depth horizon in the ice than by light availability, although there are significant differences in the abundance of some groups between light regimes. Epifluorescence microscopy shows a shift from predominantly heterotrophic life styles in the upper ice to autotrophy prevailing in the bottom ice. This is supported by the statistical analysis of the similarity between the samples based on the denaturing gradient gel electrophoresis banding patterns, which shows a clear difference between upper and lower ice sections with respect to phylotypes and their proportional abundance. Clone libraries constructed using diatom-specific primers confirm the high diversity of diatoms in the sea ice, and support the microscopic counts. Evidence of protistan grazing upon diatoms was also found in lower sections of the core, with implications for carbon and nutrient recycling in the ice. PMID:20050870

Eddie, Brian; Juhl, Andrew; Krembs, Christopher; Baysinger, Charles; Neuer, Susanne

2010-03-01

262

Use of Pom Pons to Illustrate Cubic Crystal Structures.  

ERIC Educational Resources Information Center

Describes a method that uses olefin pom pons to illustrate cubic crystal structure. Facilitates hands-on examination of different packing arrangements such as hexagonal close-packed and cubic close-packed structures. (JRH)

Cady, Susan G.

1997-01-01

263

Spatial and temporal variations in the age structure of Arctic sea ice  

USGS Publications Warehouse

Spatial and temporal variations in the age structure of Arctic sea ice are investigated using a new reversechronology algorithm that tracks ice-covered pixels to their location and date of origin based on ice motion and concentration data. The Beaufort Gyre tends to harbor the oldest (>10 years old) sea ice in the western Arctic while direct ice advection pathways toward the Transpolar Drift Stream maintain relatively young (???5 years) ice in the eastern Arctic. Persistent net losses (-4.2% yr-1) in extent of ice >10 years old (10+ year age class) were observed during 1989-2003. Since the mid-1990s, losses to the 10+ year age class lacked compensation by recruitment due to a prior depletion of all mature (6-10 year) age classes. Survival of the 1994 and 1996-1998 sea ice generations reestablished most mature age classes, and thereby the potential to increase extent of the 10+ year age class during the mid-2000s. Copyright 2005 by the American Geophysical Union.

Belchansky, G. I.; Douglas, D. C.; Platonov, N. G.

2005-01-01

264

Spectroscopy and crystal structure of anabasine salts  

NASA Astrophysics Data System (ADS)

The anabasinium hydrochloride, hydriodide and perchlorate were characterized by IR and NMR spectroscopy as well as by X-ray diffraction. Anabasinium hydrochloride crystallizes with three independent ionic pairs in the asymmetric part of the orthorhombic unit cell, while anabasinium hydriodide and perchlorate crystals, being isostructural, are hexagonal and contain only one symmetry independent ionic pair. Despite these differences in the crystal data, both types of crystals display very similar helical solid-state patterns. The reported results combined with the CSD searches indicate an inherent tendency of anabasinium salts to crystallize with multiple asymmetric units, and to form folded arrangements in crystals. In the solid state the anabasinium cations predominantly adopt either synperiplanar or antiperiplanar conformations with respect to the mutual orientation of C *-H and pyridine C-C(N) bonds, with deformations towards, respectively, (+) synclinal or (+) anticlinal rotamers.

Wojciechowska-Nowak, Marzena; Boczo?, W?adys?aw; Rychlewska, Urszula; War?ajtis, Beata

2007-09-01

265

Growth, Crystal Structure, and Thermopower of Single Crystals of UNi 1.9Sn  

Microsoft Academic Search

We have grown single crystals of UNi1.9(1)Sn from a semi-levitated melt using the Kyropoulos technique. The crystal structure of UNi1.9(1)Sn was determined by single-crystal X-ray diffraction and refined to a residual value of R=0.0336. This compound crystallizes in the cubic MnCu2Al-type structure with the lattice parameter a=6.4633(4) Å. The temperature dependence of the thermoelectric power, different from that observed for

L. Shlyk; J. C. Waerenborgh; M. Almeida

2000-01-01

266

Testing the influence of small crystals on ice size spectra using Doppler lidar observations  

E-print Network

of Doppler velocity varies strongly with temperature, with mean velocities of 0.2msĆ?1 at Ć?40Ā°C, increasing. Introduction [2] There has been much controversy over the number of small sub-60mm particles in ice clouds diagnosed as a function of temperature T or deduced from the model ice water content (IWC), while

Reading, University of

267

Estimating Sliding Velocity of a Pleistocene Ice Sheet From Plowing Structures in the Geologic Record  

NASA Astrophysics Data System (ADS)

As an ice sheet slides over a sediment bed, some clasts partly embedded in the glacier sole plow through the bed surface. The size distribution of such clasts, if it can be characterized from structures in the geologic record, can be used to estimate the sliding velocity of a past ice sheet. By combining a theory of glacier sliding with a geotechnical theory of cone penetration, sliding velocity can be calculated in terms of clast-size parameters, a fluidity parameter for ice, and the thermodynamic properties of ice and clasts. If frictional properties of the bed are measured, the effective normal stress on the bed and bed shear strength during glaciation can also be calculated. We used this approach to estimate the sliding velocity of an Illinoian ice sheet that left plowing structures in cemented outwash near Peoria, Illinois. Fluidity parameters for normal and basal temperate ice yielded sliding velocities of 140-168 m/yr and 60-72 m/yr, respectively. These are overestimates if solutes impeded regelation of ice past clasts or if friction between debris-laden ice and clasts retarded slip. Preconsolidation stresses determined in laboratory tests on silt from the bed agree with effective normal stresses calculated using clast-size parameters. The high shear strength of the bed (>145 kPa) and primary structures preserved within it indicate that additional movement due to pervasive shear of the bed was unlikely. Application of this method elsewhere where basal tills overly outwash would provide basal-velocity data that are otherwise unavailable for testing and tuning of ice-sheet models; we know of no other method for estimating sliding velocity from glacial sediments.

Iverson, N. R.; Hooyer, T. S.

2004-05-01

268

Estimating the sliding velocity of a Pleistocene ice sheet from plowing structures in the geologic record  

NASA Astrophysics Data System (ADS)

As an ice sheet slides over its sediment bed, some clasts partly embedded in the glacier sole plow through the bed surface. The size distribution of such clasts, if it can be characterized from structures in the geologic record, can be used to estimate the sliding velocity of a past ice sheet. By combining a theory of glacier sliding with a geotechnical theory of cone penetration, sliding velocity can be calculated in terms of clast-size parameters, a fluidity parameter for ice, and the thermodynamic properties of ice and clasts. If frictional properties of the bed are measured, the effective normal stress on the bed and bed shear strength during glaciation can also be calculated. We used this approach to estimate the sliding velocity of an Illinoian ice sheet that left plowing structures in cemented outwash near Peoria, Illinois. Fluidity parameters for normal and basal temperate ice yielded sliding velocities of 140-168 m yr-1 and 60-72 m yr-1, respectively. These are overestimates if solutes impeded regelation of ice past clasts or if friction between debris-laden ice and clasts retarded slip. Preconsolidation stresses determined in laboratory tests on silt from the bed agree with effective normal stresses calculated using clast-size parameters. The high shear strength of the bed (>145 kPa) and primary structures preserved within it indicate that additional movement due to pervasive shear of the bed was unlikely. Application of this method elsewhere would provide basal velocity data that are otherwise unavailable for testing and tuning of ice sheet models.

Iverson, Neal R.; Hooyer, Thomas S.

2004-12-01

269

The hierarchical structure of glacial climatic oscillations: Interactions between ice-sheet dynamics and climate  

SciTech Connect

Abrupt climatic oscillations around the North Atlantic have been identified recently in Greenland ice cores as well as in North Atlantic marine sediment cores. The good correlation between the {open_quote}Dansgaard Oeschger events{close_quote} in the ice and the {open_quote}Heinrich events{close_quote} in the ocean suggests climate, in the North Atlantic region, underwent several massive reorganizations in the last glacial period. A characteristic feature seems to be their hierarchical structure. Every 7 to 10-thousand years, when the temperature is close to its minimum, the ice-sheet undergoes a massive iceberg discharge. This Heinrich event is followed by an abrupt warming. then by other oscillations, each lasting between one and two thousand years. These secondary oscillations do not have a clear signature in marine sediments but constitute most of the{open_quote} Dansgaard-Oeschger events{close_quote} found in the ice. A simplified model coupling an ice-sheet and an ocean basin, to illustrate how the interactions between these two components can lead to such a hierarchical structure. The ice-sheet model exhibits internal oscillations composed of growing phases and basal ice melting phases that induce massive iceberg discharges. These fresh water inputs in the ocean stop for a moment the thermohaline circulation, enhancing the temperature contrast between low- and high-latitudes. Just after this event, the thermohaline circulation restarts and an abrupt warming of high-latitude regions is observed. For some parameter values, these warmer temperatures have some influence on the ice-sheet, inducing secondary oscillations similar to those found in paleoclimatic records. Although the mechanism presented here may be too grossly simplified. it nevertheless underlines the potential importance of the coupling between ice-sheet dynamics and oceanic thermohaline circulation on the structure of the climatic records during the last glacial period. 33 refs., 14 figs., 1 tab.

Paillard, D. [Centre d`Etudes de Saclay, Gif sur Yvette (France)] [Centre d`Etudes de Saclay, Gif sur Yvette (France)

1995-04-01

270

Spectroscopic, thermal and structural studies on manganous malate crystals  

SciTech Connect

Prismatic crystals of manganous malate have been prepared by controlled ionic diffusion in hydrosilica gel. The structure was elucidated using single crystal X-ray diffraction. The crystals are orthorhombic with space group Pbca. Vibrations of the functional groups were identified by the FTIR spectrum. Thermogravimetric and differential thermal analyses (TG-DTA) were carried out to explore the thermal decomposition pattern of the material. Structural information derived from FTIR and TG-DTA studies is in conformity with the single crystal XRD data.

Thomas, J., E-mail: smartlabindia@gmail.com; Lincy, A., E-mail: lincymaria@gmail.com; Mahalakshmi, V.; Saban, K. V. [Smart Materials Analytic Research and Technology (SMART), Department of Physics, St. Berchmans College (India)] [Smart Materials Analytic Research and Technology (SMART), Department of Physics, St. Berchmans College (India)

2013-01-15

271

Anisotropic domain structure of KTiOPO{sub 4} crystals  

SciTech Connect

Highly anisotropic ferroelectric domain structure is observed in KTiOPO{sub 4} (KTP) crystals reversed by low electric field. The applied Miller--Weinreich model for sidewise motion of domain walls indicates that this anisotropy results from the peculiarities of KTP crystal lattice. The domain nuclei of dozen nanometer size, imaged by atomic force microscopy method, demonstrate regular hexagonal forms. The orientation of domain walls of the elementary nuclei coincides with the orientation of the facets of macroscopic KTP crystals. The observed strong domain elongation along one principal crystal axis allows us to improve tailoring of ferroelectric domain engineered structures for nonlinear optical converters. {copyright} 2001 American Institute of Physics.

Urenski, P.; Lesnykh, M.; Rosenwaks, Y.; Rosenman, G.; Molotskii, M.

2001-08-15

272

Porous Ice Phases with VI and Distorted VII Structures Constrained in Nanoporous Silica.  

PubMed

High-pressure compression of water contained in nanoporous silica allowed fabrication of novel porous ice phases as a function of pressure. The starting liquid nanoporous H2O transformed to ice VI and VII at 1.7 and 2.5 GPa, respectively, which are 0.6 and 0.4 GPa higher than commonly accepted pressures for bulk H2O. The continuous increase of pressure drives the formation of a tetragonally distorted VII structure with the space group I4mm, rather than a cubic Pn3m phase in bulk ice. The enhanced incompressibility of the tetragonal ice is related to the unique nanoporous configuration, and the distortion ratio c/a gradually increases with increasing pressure. The structural changes and enhanced thermodynamic stability may be interpreted by the two-dimensional distribution of silanol groups on the porous silica surfaces and the associated anisotropic interactions with H2O at the interfaces. PMID:25338300

Zhu, Jinlong; Quan, Zewei; Lin, Yu-Shen; Jiang, Ying-Bing; Wang, Zhongwu; Zhang, Jianzhong; Jin, Changqing; Zhao, Yusheng; Liu, Zhenxian; Brinker, C Jeffrey; Xu, Hongwu

2014-11-12

273

Formation and structure of refrozen cracks in land-fast first-year sea ice  

Microsoft Academic Search

This study characterizes the healing process and structure of undeformed, linear, parallel-sided, flooded cracks in land-fast sea ice. Field investigations and refreezing experiments were performed in McMurdo Sound, Ross Sea, Antarctica, between 1998 and 2002. Data from a two-dimensional thermistor array are used to show that the ice-water interface of freezing cracks is arch-shaped due to bidirectional heat flow to

Chris Petrich; Pat J. Langhorne; Tim G. Haskell

2007-01-01

274

Crystal structure and morphology control of calcium oxalate using biopolymeric additives in crystallization  

NASA Astrophysics Data System (ADS)

Using the acid-rich polymeric additives, poly- L-aspartate (polyD), poly- L-glutamate (polyE), and polyacrylate (polyAA), the structure and morphology of calcium oxalate crystals were controlled during crystallization. In crystallization without the polymeric additives, twinned calcium oxalate monohydrate (COM) crystals were preferentially produced. However, the structural shift of calcium oxalate from a monohydrate (COM) to a dihydrate (COD) form occurred gradually when increasing the polymeric additive concentration, then COD crystals were exclusively crystallized beyond certain critical concentrations of the additives. These critical concentrations actually depended on the molecular configurations of the additives that determined the capability to control the crystallization. When increasing the additive concentration far beyond the critical level, shape modifications without structural changes occurred from a normal octahedral shape (bi-pyramid) to a rod shape (elongated octahedral shape), followed by a dumbbell shape, and finally a sphere shape. Due to its high binding affinity to the crystal surface, polyAA exhibited the most effective elongation in the [0 0 1] direction and clearest development of {1 0 0} faces, while polyE had the least effect on the crystals.

Jung, Taesung; Kim, Woo-Sik; Kyun Choi, Chang

2005-05-01

275

Cryogenic structure and ice content of lacustrine sediments in the Yukon River Basin, Alaska  

NASA Astrophysics Data System (ADS)

Lacustrine sediments often present a significant part of the upper permafrost of plains and lowlands of Alaska. Lacustrine sediments in their contemporary state vary from ice-poor to extremely ice-rich. The ice content depends on initial conditions of freezing and further history of permafrost development, which can include partial degradation and recovery of permafrost. In Alaska, the primary mechanism of freezing and cryogenic structure formation of lacustrine sediments is para-syngenetic (term by E.M. Katasonov, 1978), typical of sediments accumulated in lakes surrounded by permafrost. Though the freezing of such sediments occurs before or immediately after the termination of sedimentation (similar to syngenetic permafrost), the freezing conditions and cryogenic structure of para-syngenetic permafrost are similar to epigenetic permafrost. The ice lenses in para-syngenetic sediments are often inclined, and the ice content is relatively small in the central parts of refrozen taliks. This type of ice distribution is generally governed by the migration of water to multidirectional fronts of freezing. We studied the cryogenic structure of lacustrine sediments across different regions of the Yukon River Basin, Alaska, including Koyukuk Flats (Hozatka Lake area), Innoko Lowlands, and Tanana-Kuskokwim Lowlands (Lake Minchumina area). Study sites are located in the discontinuous permafrost zone, where permafrost was encountered mainly within uplifted peat plateaus. Field work included study of natural exposures and drilling. The upper part of studied sections is formed by frozen organic soils up to 2-3 -m -thick underlain by lacustrine silt, which is mostly ice-rich. Volume of visible ice in silt reaches at places 40% and more. A combination of layered and reticulate cryostructures is the most typical and common cryostructure assemblage. The thickness of ice lenses generally varies from 1 to 5 cm and occasionally reaches 10 cm. Aggradation of ice during the freezing of lacustrine silt caused a sufficient heave of the ground surface. Remnants of peat plateaus are surrounded by unfrozen bogs and fens, a result of thawing and settling of ice-rich lacustrine silt. Thermokarst scars initially form at places where ice-rich silt is not protected by a thick layer of organic soil. Further development of thermokarst bogs is related mostly to lateral enlargement of thaw bulbs and collapsing of the margins of peat plateaus. Lacustrine silt within taliks is covered by woody peat accumulated under forests during the permafrost plateau stage and then by aquatic sphagnum peat accumulated after collapse.

Kanevskiy, M. Z.; Jorgenson, M. T.; Shur, Y.; O'Donnell, J.; Harden, J. W.; Fortier, D.

2009-12-01

276

On the Crystal Structure of Ln  

SciTech Connect

The crystal structures of La{sub 2}O{sub 2}CO{sub 3} II and Nd{sub 2}O{sub 2}CO{sub 3} II have been shown by means of high-resolution powder neutron (PND) and synchrotron X-ray diffraction (SXRD) combined with selected area electron diffraction (SAED) studies to be far more complex than earlier anticipated, owing to ordering of carbonate groups between (Ln{sub 2}O{sub 2}{sup +2}){sub n} layers. In contrast to earlier descriptions, the carbonate groups appear to be rather regular. Relative to an average model, the SAED patterns show additional scattering in the form of closely distributed, but essentially discrete, spots along < 1/3, 1/3, 1 >. Most of the observed scattering, H, can be described as H=G{+-}m q{sub 1}+n q{sub 2}, where G is the Bragg reflections of the underlying average P6{sub 3}/mmc lattice, q1=[1/3, 1/3, {+-}1/2]*, q2=[1/3, 1/3, {+-}2/3]*, and m and n are integers. The additional scattering reflects ordering of the carbonate groups into trigonal layers between the (Ln{sub 2}O{sub 2}{sup +2}){sub n} layers, but it remains open whether q{sub 1} and q{sub 2} represent two separate structures with different stacking sequences of such layers or whether they correspond to an even more complex stacking sequence. In any case, some disorder and rotational domain twinning are present. Two structure models, one for each modulation wave vector, were constructed. Rietveld-type refinements of PND data of La{sub 2}O{sub 2}CO{sub 3} II were performed, approximating the complex, and at least partly disordered, stacking sequence as a two-phase mixture of the two modulated phases. Satisfactory convergence was achieved with R{sub p}=6.4%, R{sub wp}=8.3%, and {chi}{sup 2}=3.32. The isothermal expansivities, {alpha}{sub p}, for La{sub 2}O{sub 2}CO{sub 3} II and Nd{sub 2}O{sub 2}CO{sub 3} II between 298 and 893 K were determined as 2.92x10{sup {minus}5} and 2.70x10{sup {minus}5} K{sup {minus}1}, respectively.

Olafsen, Anja; Larsson, Ann-Kristin; Fjellvaag, Helmer; Hauback, Bjoern C.

2001-04-01

277

The crystal structure of pyridinium hexafluoroantimonate(V  

E-print Network

TNE CRYSTAL STRUCTURE OF PYRIDINIUM HEXAFLUOROANTIMONATE(V) A Thesis By Richard Franklin Copelsnd, Jr, Submitted to the Graduate Scbool of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... of Department) August 1963 Abstract CRYSTAL STRUCTURE OF PYRIDINIUM HEXAFLUOROANTIMONATE(V) (August 1963) Richard Franklin Copeland, Jr. , B S. , A. and M. College of Texas Directed by: Dr. Edward A, Meyers The structure of pyridinium hexafluoroantimonate...

Copeland, Richard Franklin

2012-06-07

278

Synthesis, Crystal Structure and Thermal Analysis of (TAGH) 2(TNR)  

Microsoft Academic Search

A new energetic compound (TAGH)2(TNR) (TAG: triaminoguanidine, TNR: 2,4,6-trinitroresorcinol) was prepared by reacting triaminoguanidine with 2,4,6-trinitroresorcinol (styphnic acid) in aqueous solution under nitrogen atmosphere, and characterized by elemental analysis and Fourier transform infrared (FTIR) spectra. Its crystal structure was determined by single crystal X-ray diffraction analysis. The crystal belonged to a monoclinic, C 2\\/c space group. The unit cell parameters

Zhenhua Liu; Guojun Ao; Tonglai Zhang; Li Yang; Jianguo Zhang; Yan Zang

2008-01-01

279

Crystal structure of CsāTiSiāOāā  

Microsoft Academic Search

Crystals of a new titanosilicate phase, CsāTiSiāOāā, were grown from a cesium vanadate flux. The compound has monoclinic symmetry, space group C2\\/c, with a = 13.386(5), b = 7.423(3), c = 15.134(5) ā«, Ī² = 107.71(3)Ā°, Z = 4. The crystal structure was solved using single crystal X-ray data (MoKĪ± radiation) and refined to R(F) = 0.039 for 1874 unique

I. E. Grey; R. S. Roth; M. L. Balmer

1997-01-01

280

Reconfigurable 3D photonic crystal structures  

NASA Astrophysics Data System (ADS)

The insertion of high dielectric rods in the low dielectric region of photonics crystal enables the optical properties to be reconfigurable. We show that for a square array of holes, the inserted rods define the waveguide region, wavelength of operation and functionality of the photonic crystal device (directional coupler presented). Also are examined the modification of the resonator state's wavelength and field profile when rods are introduced in the central region of two types of quasi-crystals. Based on these results more elaborate reconfigurable devices can be derived.

Gauthier, R. C.

2013-02-01

281

Structural study of Langmuir liquid crystal monolayer  

NASA Astrophysics Data System (ADS)

A systematic study is reported on monolayer characteristics of Ferroelectric Liquid Crystal (FLC) at the air-water interface, using surface pressure and surface potential isotherms at different temperatures. Dipole moment is calculated by using Helmholtz equation. No significant influence from the sub phase temperature was detected because liquid crystal remains in Sm-C* phase in temperature range 5°C-40°C. FLC was deposited on smooth quartz substrate with good transfer ratio. AFM topography reveals uniform deposition of liquid crystals having well defined domains.

Kaur, Ramneek; Raina, K. K.

2014-04-01

282

Novel photonic crystal cavities and related structures.  

SciTech Connect

The key accomplishment of this project is to achieve a much more in-depth understanding of the thermal emission physics of metallic photonic crystal through theoretical modeling and experimental measurements. An improved transfer matrix technique was developed to enable incorporation of complex dielectric function. Together with microscopic theory describing emitter radiative and non-radiative relaxation dynamics, a non-equilibrium thermal emission model is developed. Finally, experimental methodology was developed to measure absolute emissivity of photonic crystal at high temperatures with accuracy of +/-2%. Accurate emissivity measurements allow us to validate the procedure to treat the effect of the photonic crystal substrate.

Luk, Ting Shan

2007-11-01

283

Sea Ice, an Antarctic Habitat  

NSDL National Science Digital Library

A 'click-and-learn' sub site hosted by the Alfred Wegener Institute Foundation for Polar and Marine Research (AWI), this is a succinct, educational tour of sea-ice and its associated ecological communities. Short synopses introduce the dynamics of sea-ice formation, the microstructure of sea-ice (including crystal structure, brine channels, and ice algae), the effects of ice melt on resident organisms, the logistics of sea-ice research, and _land fast-ice_ and platelet ice habitats. Introductions also exist for the following organisms: krill; whales (i.e., Orcas, southern bottlenosesd dolphins, minke whales); sea birds (i.e., skuas and snow petrals), penguins (i.e., emperor, adelie, and chinstraps), and seals (i.e., weddell, crabeater, leopard, and ross.) Enlargeable thumbnail images accompany the habitat and inhabitant descriptions. Further investigations (at an accelerated level) are prompted with the inclusion of bibliographic references and scientific research presentations (in PDF format) on fast-ice and platelet ice, as well as links to the main site for the AWI.

284

Crystal and molecular structure of 4'-hexyloxyphenyl 4-pentylbenzoate  

NASA Astrophysics Data System (ADS)

The molecular and crystal structure of 4'-hexyloxyphenyl 4-pentylbenzoate, C6H13O-C6H4-COO-C6H4-C5H11, which is a liquid-crystal compound, was determined by X-ray diffraction. This compound forms a nematic phase upon melting. The crystal contains three crystallographically independent molecules. In one of them, the alkyl chain is disordered. This is indicative of the looseness of the crystal packing in the aliphatic region. The crystal structure is stabilized by the following two types of weak directional interactions: hydrogen bonds with the participation of the terminal O atom of the ester group and the C-H group of one of the benzene rings and C-H…?-system interactions. Only one of the three independent molecules is involved in the latter type of interactions. Hence, the structurization of the mesophase is most likely determined by hydrogen bonding.

Gunina, M. A.; Lermontova, E. Kh.; Pestov, S. M.; Kuz'mina, L. G.

2012-09-01

285

Crystal structures of drugs: advances in determination, prediction and engineering  

Microsoft Academic Search

Most marketed pharmaceuticals consist of molecular crystals. The arrangement of the molecules in a crystal determines its physical properties and, in certain cases, its chemical properties, and so greatly influences the processing and formulation of solid pharmaceuticals, as well as key drug properties such as dissolution rate and stability. A thorough understanding of the relationships between physical structures and the

Sharmistha Datta; David J. W. Grant

2004-01-01

286

Band structures of bilayer radial phononic crystal plate with crystal gliding  

NASA Astrophysics Data System (ADS)

Lamb wave propagation in bilayer radial phononic crystal plate with crystal gliding is investigated. Axial symmetric model in cylindrical coordinate is applied to the bilayer radial phononic crystal plate for band structure calculation and transmission spectra. Gliding in radial direction and direction vertical to plate thickness is analyzed to modulate band gaps. Physical mechanism of gliding effects on radial phononic crystal plate is also studied with displacement fields of super cells. Numerical results show that crystal gliding both in radial direction and direction vertical to plate thickness can significantly tune omnidirectional band gaps. New lower band gaps occur and attenuation areas in transmission spectra are in good agreement with gaps of band structure calculation. Band structure evolution together with eigenmodes indicate that gliding effect converts lamb wave modes resulting in separations or interactions of adjacent bands to open new gaps or close the original ones. In addition, band gaps' sensitivity to crystal gliding is also investigated. Higher gaps are more sensitive to crystal gliding in thickness direction, and lowest gap extends in the map. Crystal gliding in radial direction can open new lowest order gap and open or close another two higher gaps, while the fourth gap is insensitive to it. The omnidirectional band gaps properties have potential application in acoustic device with isotropic gap characters.

Ma, Ting; Chen, Tianning; Wang, Xiaopeng; Li, Yinggang; Wang, Peng

2014-09-01

287

Structural and mechanical studies of cadmium manganese thiocyanate crystal  

NASA Astrophysics Data System (ADS)

Single crystals of cadmium manganese thiocyanate (CMTC) have been synthesized successfully and grown by slow evaporation method. The structural perfection of the grown crystals has been analyzed by High resolution X-ray diffraction (HRXRD), which shows the crystalline perfection of the grown crystal is quite good. Optical behavior was assessed by UV-Vis analysis and found that no absorption in the UV visible region and it may be useful for second harmonic applications. The mechanical hardness of the grown crystals was studied and Vicker's microhardness, Stiffness constant was calculated.

Manikandan, M. R.; Vijayaprasath, G.; babu, G. Anandha; Bhagavannarayan, G.; Vijayan, N.; Ravi, G.

2012-06-01

288

Analysis of the structure and morphology of fenoxycarb crystals.  

PubMed

In this paper, we have explored the relationship between surface structure and crystal growth and morphology of fenoxycarb (FC). Experimental vs. predicted morphologies/face indices of fenoxycarb crystals are presented. Atomic-scale surface structures of the crystalline particles, derived from experimentally indexed single crystals, are also modelled. Single crystals of fenoxycarb exhibit a platelet-like morphology which closely matches predicted morphologies. The solvent choice does not significantly influence either morphology or crystal habit. The crystal morphology is dominated by the {001} faces, featuring weakly interacting aliphatic or aromatic groups at their surfaces. Two distinct modes of interaction of a FC molecule in the crystal can be observed, which appear to be principal factors governing the microscopic shape of the crystal: the relatively strong collateral and the much weaker perpendicular bonding. Both forcefield-based and quantum-chemical calculations predict that the aromatic and aliphatic terminated {001} faces have comparably high stability as a consequence of weak intermolecular bonding. Thus we predict that the most developed {001} surfaces of fenoxycarb crystals should be terminated randomly, favouring neither aliphatic nor aromatic termination. PMID:25089714

Zeglinski, Jacek; Svärd, Michael; Karpinska, Jolanta; Kuhs, Manuel; Rasmuson, Ake C

2014-09-01

289

Trehalose solution viscosity at low temperatures measured by dynamic light scattering method: Trehalose depresses molecular transportation for ice crystal growth  

NASA Astrophysics Data System (ADS)

The inhibitory effects of trehalose on ice crystal growth were discussed on the basis of the viscosity measurements of aqueous solutions via the dynamic light-scattering method. The temperature and concentration conditions of the solution were ranged between 268 and 343 K and up to 50 wt%, respectively, which were feasible for applying this novel technique and were useful in the indirect measurement of the macroscopic dynamic properties of the trehalose solutions. A comparison of the viscosity data with those reported in the literatures indicated the validity of this method for measuring the viscosity. The nonlinearity of the temperature and concentration dependences of the trehalose solutions suggested that two different hydrogen-bonding networks exist in the solutions within the investigated range. Dilute solutions of less than 10 wt% of trehalose exhibited properties very similar to those of pure water. Higher concentration solutions had large viscosities with large temperature and concentration dependences. This was caused by the decrease in the free water in the solution and the development of hydrogen-bonding networks with hydrated trehalose clusters. Sucrose and maltose solutions had the same properties, so this would be the dominant inhibitory process of disaccharides on ice crystal growth.

Uchida, Tsutomu; Nagayama, Masafumi; Gohara, Kazutoshi

2009-12-01

290

A machine learning approach to crystal structure prediction  

E-print Network

This thesis develops a machine learning framework for predicting crystal structure and applies it to binary metallic alloys. As computational materials science turns a promising eye towards design, routine encounters with ...

Fischer, Christopher Carl

2007-01-01

291

Crystal Structure of a Cyclotetraicosaphenylene by Peter Mllera  

E-print Network

Crystal Structure of a Cyclotetraicosaphenylene by Peter MĆ¼llera ), Isabel UsoĆ?na ), Volker Henselb was performed using SAINT [9], and the data were corrected semiempirically for absorption and other effects

MĆ¼ller, Peter

292

Characterization of liquid crystal structure using freely suspended films  

NASA Astrophysics Data System (ADS)

The exact structure that the molecules within many liquid phases adapt is a significant question that still requires clarification. Several procedures are available to elucidate this problem. Among them, the forming of freely suspended liquid crystal films is a powerful method to reveal the structure of the liquid crystal phases. Ultra-thin freely suspended films of smectic liquid crystals are layers of 2-dimensional fluids. Because the interaction between the layers is relatively weak, each layer can be approximated by a 2D model. The 2D c-directors, (projections of the average molecular long axis onto the film plane), studied under depolarized reflected light microscopy, (DRLM), give valuable information about the azimuthal orientation of the molecules. This azimuthal orientation is ordered from layer to layer defining the symmetry of each liquid crystal phase. By including the consideration that the symmetry of the freely suspended liquid crystal films are broken at the liquid crystal-air interfaces, the bulk phase can be characterized. In attempting to explain some novel liquid crystal phase structures, firstly I studied the textures appearing in their freely suspended films in terms of their optical bire-fringence. In one bent core molecular material, the ground state was determined to be a defect rich phase with a modulated polarization splay structure. In another, a T-shaped bolaamphiphile molecule, there exists a phase with 2-dimensional smectic order. These two materials exhibited complicated structures that rarely appear in liquid crystals. Secondly, I present the study of laser reflectivity measurements in connection with the symmetry properties of the films. The phase of one symmetrical bent-core molecular material was found to possess C1, (symmetric only under identity), and Ci, (symmetric under inversion), symmetries. This triclinic order, (C1 and Ci symmetries), was demonstrated for the first time to exist in fluid smectic layers. Lastly I address the influence of spontaneous polarization on topological defect structures in freely suspended films of chiral and achiral liquid crystal materials.

Chattham, Nattaporn

293

Detergent structure in tetragonal crystals of OmpF porin  

Microsoft Academic Search

Background: The high-resolution structures of five porins have been solved by X-ray crystallography including the trigonal crystal form of the trimeric OmpF porin from Escherichia coli. In an accompanying article, the structure of the tetragonal form of OmpF porin is presented. In contrast to the trigonal crystal form, the protein surfaces normally in contact with lipids in the membrane are

E Pebay-Peyroula; RM Garavito; JP Rosenbusch; M Zulauf; PA Timmins

1995-01-01

294

Allophycocyanin and phycocyanin crystal structures reveal facets of phycobilisome assembly.  

PubMed

X-ray crystal structures of the isolated phycobiliprotein components of the phycobilisome have provided high resolution details to the description of this light harvesting complex at different levels of complexity and detail. The linker-independent assembly of trimers into hexamers in crystal lattices of previously determined structures has been observed in almost all of the phycocyanin (PC) and allophycocyanin (APC) structures available in the Protein Data Bank. In this paper we describe the X-ray crystal structures of PC and APC from Synechococcus elongatus sp. PCC 7942, PC from Synechocystis sp. PCC 6803 and PC from Thermosynechococcus vulcanus crystallized in the presence of urea. All five structures are highly similar to other PC and APC structures on the levels of subunits, monomers and trimers. The Synechococcus APC forms a unique loose hexamer that may show the structural requirements for core assembly and rod attachment. While the Synechococcus PC assembles into the canonical hexamer, it does not further assemble into rods. Unlike most PC structures, the Synechocystis PC fails to form hexamers. Addition of low concentrations of urea to T. vulcanus PC inhibits this proteins propensity to form hexamers, resulting in a crystal lattice composed of trimers. The molecular source of these differences in assembly and their relevance to the phycobilisome structure is discussed. PMID:23201474

Marx, Ailie; Adir, Noam

2013-03-01

295

Influence of local surface albedo variability and ice crystal shape on passive remote sensing of thin cirrus  

NASA Astrophysics Data System (ADS)

Airborne measurements of solar spectral radiance reflected by cirrus are performed with the HALO-Solar Radiation (HALO-SR) instrument onboard the High Altitude and Long Range Research Aircraft (HALO) in November 2010. The data are used to quantify the influence of surface albedo variability on the retrieval of cirrus optical thickness and crystal effective radius. The applied retrieval of cirrus optical properties is based on a standard two-wavelength approach utilizing measured and simulated reflected radiance in the visible and near-infrared spectral region. Frequency distributions of the surface albedos from Moderate resolution Imaging Spectroradiometer (MODIS) satellite observations are used to compile surface-albedo-dependent lookup tables of reflected radiance. For each assumed surface albedo the cirrus optical thickness and effective crystal radius are retrieved as a function of the assumed surface albedo. The results for the cirrus optical thickness are compared to measurements from the High Spectral Resolution Lidar (HSRL). The uncertainty in cirrus optical thickness due to local variability of surface albedo in the specific case study investigated here is below 0.1 and thus less than that caused by the measurement uncertainty of both instruments. It is concluded that for the retrieval of cirrus optical thickness the surface albedo variability is negligible. However, for the retrieval of crystal effective radius, the surface albedo variability is of major importance, introducing uncertainties up to 50%. Furthermore, the influence of the bidirectional reflectance distribution function (BRDF) on the retrieval of crystal effective radius was investigated and quantified with uncertainties below 10%, which ranges below the uncertainty caused by the surface albedo variability. The comparison with the independent lidar data allowed for investigation of the role of the crystal shape in the retrieval. It is found that if assuming aggregate ice crystals, the HSRL observations fit best with the retrieved optical thickness from HALO-SR.

Fricke, C.; Ehrlich, A.; Jäkel, E.; Bohn, B.; Wirth, M.; Wendisch, M.

2014-02-01

296

The crystal structure of faustite and its copper analogue turquoise  

Microsoft Academic Search

The crystal structure of faustite, ZnAI6(P04MOHhAH20, was determined using single-crystal data (Mo-KIX X-radiation, CCD area detector, 1624 unique reflections, RI = 4.91 %, wR2 = 9.23%), and compared with results of a reinvestigation of the structure of its copper analogue turquoise, CuAI6(P04MOH)gAH20 (2737 unique reflections, RI = 2.81%, wR2 = 6.90%). Both are isostructural and crystallize in space group PI,

U. Kolitsch; G. Giester

2000-01-01

297

Quantitative crystal structure descriptors from multiplicative congruential generators.  

PubMed

Special types of number-theoretic relations, termed multiplicative congruential generators (MCGs), exhibit an intrinsic sublattice structure. This has considerable implications within the crystallographic realm, namely for the coordinate description of crystal structures for which MCGs allow for a concise way of encoding the numerical structural information. Thus, a conceptual framework is established, with some focus on layered superstructures, which proposes the use of MCGs as a tool for the quantitative description of crystal structures. The multiplicative congruential method eventually affords an algorithmic generation of three-dimensional crystal structures with a near-uniform distribution of atoms, whereas a linearization procedure facilitates their combinatorial enumeration and classification. The outlook for homometric structures and dual-space crystallography is given. Some generalizations and extensions are formulated in addition, revealing the connections of MCGs with geometric algebra, discrete dynamical systems (iterative maps), as well as certain quasicrystal approximants. PMID:22338652

Hornfeck, Wolfgang

2012-03-01

298

Crystal structure of actinide metals at high compression  

SciTech Connect

The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure.

Fast, L. [Uppsala Univ. (Sweden). Physics Dept.; Soederlind, P. [Lawrence Livermore National Lab., CA (United States). Physics Dept.

1995-08-01

299

Size, separation, structural order, and mass density of molecules packing in water and ice  

PubMed Central

The structural symmetry and molecular separation in water and ice remain uncertain. We present herewith a solution to unifying the density, the structure order and symmetry, the size (H-O length dH), and the separation (dOO = dL + dH or the O:H length dL) of molecules packing in water and ice in terms of statistic mean. This solution reconciles: i) the dL and the dH symmetrization of the O:H-O bond in compressed ice, ii) the dOO relaxation of cooling water and ice and, iii) the dOO expansion of a dimer and between molecules at water surface. With any one of the dOO, the density ?(g·cm?3), the dL, and the dH, as a known input, one can resolve the rest quantities using this solution that is probing conditions or methods independent. We clarified that: i) liquid water prefers statistically the mono-phase of tetrahedrally-coordinated structure with fluctuation, ii) the low-density phase (supersolid phase as it is strongly polarized with even lower density) exists only in regions consisting molecules with fewer than four neighbors and, iii) repulsion between electron pairs on adjacent oxygen atoms dictates the cooperative relaxation of the segmented O:H-O bond, which is responsible for the performance of water and ice. PMID:24141643

Huang, Yongli; Zhang, Xi; Ma, Zengsheng; Li, Wen; Zhou, Yichun; Zhou, Ji; Zheng, Weitao; Sun, Chang Q.

2013-01-01

300

An unconventional bilayer ice structure on a NaCl(001) film  

NASA Astrophysics Data System (ADS)

Water-solid interactions are of broad importance both in nature and technology. The hexagonal bilayer model based on the Bernal-Fowler-Pauling ice rules has been widely adopted to describe water structuring at interfaces. Using a cryogenic scanning tunnelling microscope, here we report a new type of two-dimensional ice-like bilayer structure built from cyclic water tetramers on an insulating NaCl(001) film, which is completely beyond this conventional bilayer picture. A novel bridging mechanism allows the interconnection of water tetramers to form chains, flakes and eventually a two-dimensional extended ice bilayer containing a regular array of Bjerrum D-type defects. Ab initio density functional theory calculations substantiate this bridging growth mode and reveal a striking proton-disordered ice structure. The formation of the periodic Bjerrum defects with unusually high density may have a crucial role as H donor sites in directing multilayer ice growth and in catalysing heterogeneous chemical reactions on water-coated salt surfaces.

Chen, Ji; Guo, Jing; Meng, Xiangzhi; Peng, Jinbo; Sheng, Jiming; Xu, Limei; Jiang, Ying; Li, Xin-Zheng; Wang, En-Ge

2014-05-01

301

Supercooled Droplets and Ice Crystals in Mixed-Phase Clouds: Numerical Simulations Considering Isotropic Turbulence of the Ambient Flow Field  

NASA Astrophysics Data System (ADS)

In midlatitudes the formation and evolution of precipitation is the result of a chain of processes taking place in mixed-phase clouds. Due to the coexistence of supercooled water drops and ice particles in such clouds mutual interactions by collisions, i.e. riming and aggregation, take place leading to ice hydrometeors of a large precipitation size. In the past these collision mechanisms have been investigated - besides laboratory measurements - by numerical simulations of the collision process where trajectories of the participating hydrometeors have been calculated as occurring in an environment at rest (Pruppacher and Klett, Kluwer Academic Publishers, Dordrecht, 1997). However, as it is well-known the flow field in clouds is almost always turbulent (Siebert et al., Atmos. Res. 97 (2010) 426-437) except in undiluted updrafts of single strong convective clouds. And it has been argued that turbulence may enhance precipitation formation. As a consequence turbulence effects on the collisional interaction of cloud and other heavy particles came into focus during the last decade and gave rise to the description in terms of radial distribution function, mean radial relative velocity and the collection efficiency all derived from numerical simulations. Up to now mostly the turbulence influence on cloud droplet/cloud droplet collisions has been investigated (Ayala et al., New J. Phys. 10 (2008) 075015), (Bec et al., J. Fluid Mech. 646 (2010) 527-536). Much less is known about the influence of turbulence on particles in mixed phase clouds. This is mainly due to the various and complex shapes of the ice particles depending on the temperature, the supersaturation, and their life time. Hence, our knowledge about the behavior of ice crystals in turbulence is based on wind tunnel experiments. In the early stage ice crystals often have the shape of hexagonal plates or needles. In theoretical and numerical studies these are commonly approximated by ellipsoids. However, except in (Pinsky and Khain, Atmos. Res. 47-48 (1998) 69-86) only laminar flows have been considered so far. Therefore we have developed a numerical experiment with a novel setup (Kunnen et al., under review in Atmos. Res. (2013)). Therein synthetic turbulence is generated at the inflow and is then advected by a mean flow through the domain. The full Navier-Stokes equations are solved using a DNS method on an Eulerian Cartesian grid. The evolving decaying turbulence shares similarities with the grid-generated turbulence of wind tunnels. In this flow several million particle spheres as well as ellipsoids are advanced in a Lagrangian manner in order to represent the supercooled droplets and ice crystals out of a small region of a mixed-phase cloud. Statistics will be gathered about the orientation, the sedimentation velocities, the clustering, and the relative velocities of these particles. From this basis collision kernels can be calculated. These are input parameters for cloud models estimating the evolution of precipitation.

Siewert, Christoph; Kunnen, Rudie; Meinke, Matthias; Schröder, Wolfgang; Beheng, Klaus

2013-04-01

302

Reaction intermediates discovered in crystal structures of enzymes.  

PubMed

Crystal structures of enzymes have provided valuable information for the reaction mechanisms. Structures of the enzyme complex with different reaction intermediates are particularly valuable. In several cases, these structures of intermediates were discovered accidently, presumably by trapping in the crystal during freezing prior to X-ray data collection. High to atomic resolution structures reveal the detailed geometry of the reaction intermediate and its interactions within the enzyme active site. In other cases, the protein can be crystallized with its substrate, including examples of protease precursors that represent their own substrates. Examples are described of an FAD-dependent dehydrogenase, HIV protease and caspases, where the structures provide snapshots of steps in the reaction and the conformational changes occurring during the reaction. Complementary techniques such as computational chemistry, neutron crystallography, Laue crystallography, and time-resolved spectroscopy can give a more complete picture of the reaction. PMID:22607752

Weber, Irene T; Agniswamy, Johnson; Fu, Guoxing; Shen, Chen-Hsiang; Harrison, Robert W

2012-01-01

303

Water ice permafrost on Mars: Layering structure and subsurface distribution according to HEND/Odyssey and MOLA/MGS data  

E-print Network

Water ice permafrost on Mars: Layering structure and subsurface distribution according to HEND. [1] To elucidate the nature of permafrost in the shallow subsurface of Mars, we analyze jointly: Mitrofanov, I. G., et al. (2007), Water ice permafrost on Mars: Layering structure and subsurface

Zuber, Maria

304

Optimal convective brine drainage from sea ice and optimal brine channel spacing  

NASA Astrophysics Data System (ADS)

The drainage of brine from sea ice controls both the structural properties of sea ice, and forcing of the ocean thermohaline circulation. Sea ice consists of a porous array of ice crystals bathed in dense salty brine, which can be considered as a reactive porous medium or mushy layer. The buoyancy driven flow of brine leads to local dissolution of ice and the formation of brine channels: ice free conduits through which brine drains. It is observed that the spacing of brine channels and structure of the ice matrix evolve as sea ice grows. We consider nonlinear convection in a mushy layer undergoing steady state growth, applying a numerical model to investigate the mechanism controlling the spatial distribution of brine channels. The resulting dynamics yields insight into brine fluxes from young sea ice, and the consequent variations in sea ice microstructure.

Wells, Andrew; Orszag, Steven; Wettlaufer, John

2010-05-01

305

Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula  

Microsoft Academic Search

A structural glaciological description and analysis of surface morphological features of the Larsen C ice shelf, Antarctic Peninsula, is derived from satellite images spanning the period 1963-2007. The data are evaluated in two time ranges: a comparison of a 1963 satellite image photomosaic with a modern digital mosaic compiled using 2003\\/04 austral summer data; and an image series since 2003

N. F. Glasser; B. Kulessa; A. Luckman; D. Jansen; E. C. King; P. R. Sammonds; T. A. Scambos; K. C. Jezek

2009-01-01

306

Vegetation structure in gullies developed by the melting of ice wedges along Kolyma River, northern Siberia  

Microsoft Academic Search

Vegetation structure was surveyed in gullies developed by the melting of ice wedges along the Kolyma River, northern Siberia, using 72–50 × 50 cm plots. The mean total plant cover was approximately 50% on gley soils, which were only distributed in the gullies. Based on twinspan cluster analysis, four vegetation types were recognized: (i) Agrostis purpurascens grassland with Ceratodon purpureus

Shiro Tsuyuzaki; Takeshi Ishizaki; Toshiyuki Sato

1999-01-01

307

Strong anti-ice ability of nanohairs over micro-ratchet structures.  

PubMed

A strong anti-ice property of nanohairs over micro-ratchet surfaces is observed. A long freezing delay of more than 185 min is achieved for a droplet on the nanohairs over ratchet structure with a period of ?290 ?m under -10 °C, which is attributed to the effective cooperation of the nano- and microstructures. PMID:24122128

Guo, Peng; Wen, Mengxi; Wang, Lei; Zheng, Yongmei

2014-04-21

308

Effects of an intense ice storm on the structure of a northern hardwood forest1  

Microsoft Academic Search

A major ice storm in January 1998 provided an opportunity to study the effects of a rare, intense distur- bance on the structure of the northern hardwood forest canopy. Canopy damage was assessed using visual damage classes within watersheds of different ages at the Hubbard Brook Experimental Forest (HBEF) and changes in leaf area index in two of these watersheds.

Anne G. Rhoads; Steven P. Hamburg; Timothy J. Fahey; Thomas G. Siccama; Elizabeth N. Hane; John Battles; Charles Cogbill; Jesse Randall; Geoff Wilson

309

Dynamics of Artificial Kagome `Spin Ice' In Geometrically Frustrated Permalloy Nano Structures  

Microsoft Academic Search

Thin films of ferro-magnetic material with lithographically designed geometries can be used as an analog for the study of spin ice or frustrated systems. Here we study the magnetic structure and magnetization dynamics of permalloy thin films in a frustrated, hexagonal geometry using Transmission Lorentz Microscopy. The permalloy films are evaporated through patterns defined by conventional electron beam lithography to

Yi Qi; Todd Brintlinger; John Cumings

2007-01-01

310

Crystal structure of a theta-class glutathione transferase.  

PubMed Central

Glutathione S-transferases (GSTs) are a family of enzymes involved in the cellular detoxification of xenotoxins. Cytosolic GSTs have been grouped into four evolutionary classes for which there are representative crystal structures of three of them. Here we report the first crystal structure of a theta-class GST. So far, all available GST crystal structures suggest that a strictly conserved tyrosine near the N-terminus plays a critical role in the reaction mechanism and such a role has been convincingly demonstrated by site-directed mutagenesis. Surprisingly, the equivalent residue in the theta-class structure is not in the active site, but its role appears to have been replaced by either a nearby serine or by another tyrosine residue located in the C-terminal domain of the enzyme. Images PMID:7774571

Wilce, M C; Board, P G; Feil, S C; Parker, M W

1995-01-01

311

Crystal structure, magnetic and electric properties of ternary neodymium stannides  

Microsoft Academic Search

New ternary Nd12Co6Sn and Nd6Co2Sn compounds were found in the Nd-rich part of the investigated Nd–Co–Sn system. The Nd12Co6Sn intermetallic compound crystallizes with the Sm12Ni6In structure type (space group Im3, a=0.9861(2) nm). The crystal structure of the Nd6Co2Sn stannide belongs to the Ho6Co2Ga structure type (space group Immm, a=0.9268(7) nm, b=0.9285(7) nm, c=0.9839(9) nm). A thermally induced transition was observed

V. Babyuk; P. Staszczuk; O. Bodak; Yu. Gorelenko; L. Romaka; Yu. Stadnyk

2004-01-01

312

Crystal structure of ScB/sub 12/  

SciTech Connect

The crystal structure of scandium dodecaboride was determined. The research material was a single crystal derived from an ingot obtained by fusion of metallic Sc and finely crystalline boron in an electric-arc furnace (Ar atmosphere). We used Laue, rotation, and inverse-lattice photography methods. The data confirmed that ScB/sub 12/ has a face-centered cubic structure. The investigation showed that with regard to the composition and structure of the resulting borides Sc exhibits complete analogy with Zr and is less similar to yttrium-group rare earth metals, for which the formation of tetraborides and hexaborides is characteristic.

Bruskov, V.A.; Zavalii, L.V.; Kuz'ma, Yu.B.

1988-08-01

313

Symmetry building Monte Carlo-based crystal structure prediction  

NASA Astrophysics Data System (ADS)

Methods are presented that allow for the automatic increase and preservation of symmetry during global optimization of crystal structures. This systematic building of symmetry allows for its incorporation into structure prediction simulations even when the space group information is not known a priori. It is shown that simulations that build and maintain symmetry converge much more rapidly to ground state crystal structures than when symmetry is ignored, allowing for the treatment of unit cells much larger than would otherwise be possible, especially when beginning from the P1 space group.

Michel, Kyle Jay; Wolverton, C.

2014-05-01

314

Cloud Resolving Simulations of Mixed-Phase Arctic Stratus Observed during BASE: Sensitivity to Concentration of Ice Crystals and Large-Scale Heat and Moisture Advection  

Microsoft Academic Search

The authors' previous idealized, two-dimensional cloud resolving model (CRM) simulations of Arctic stratus revealed a surprising sensitivity to the concentrations of ice crystals. In this paper, simulations of an actual case study observed during the Beaufort and Arctic Seas Experiment are performed and the results are compared to the observed data. It is again found in the CRM simulations that

Hongli Jiang; William R. Cotton; James O. Pinto; Judy A. Curry; Michael J. Weissbluth

2000-01-01

315

Band gap creation using quasiordered structures based on sonic crystals  

Microsoft Academic Search

It is well known that sonic crystals are periodic structures that present acoustic band gaps attenuation centered at frequencies related with the lattice constant of the structure. We present an approach based on genetic algorithms to create band gaps in a predetermined range of frequencies. The mechanism used by genetic algorithms to achieve this objective is the creation of vacancies

V. Romero-Garcķa; E. Fuster; L. M. Garcķa-Raffi; E. A. Sįnchez-Pérez; M. Sopena; J. Llinares; J. V. Sįnchez-Pérez

2006-01-01

316

On automation of the procedure for crystal structure model refinement  

SciTech Connect

The methods of automation of the procedure for crystal structure model refinement from experimental diffraction data, implemented in the ASTRA program package, are described. Such tools as statistical tests, parameter scanning, and data scanning reduce the time necessary for structural investigation. At strong correlations between parameters, especially when the data set is limited, parameter scanning has an advantage over the full-matrix refinement.

Dudka, A. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)], E-mail: dudka@ns.crys.ras.ru

2008-03-15

317

Boron-oxygen polyanion in the crystal structure of tunellite  

USGS Publications Warehouse

The crystal structure of tunellite, SrO??3B2O 3??4H2O, with infinite sheets of composition n[B6O9(OH)2]2-, has cations and water molecules in the spaces within the sheets. Adjacent sheets are held together by hydrogen bonding through the water molecules. The boron-oxygen polyanions provide the first example in hydrated borate crystals of one oxygen linked to three borons.

Clark, J. R.

1963-01-01

318

Photonics of liquid-crystal structures: A review  

Microsoft Academic Search

The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid\\u000a Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric\\u000a liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in\\u000a detail. The formation of

S. P. Palto; L. M. Blinov; M. I. Barnik; V. V. Lazarev; B. A. Umanskii; N. M. Shtykov

2011-01-01

319

Epitaxial growth, structure, and magnetism of epitaxial Ni80Fe20 single-crystal, bicrystal, and quad-crystal films  

E-print Network

Epitaxial growth, structure, and magnetism of epitaxial Ni80Fe20 single-crystal, bicrystal epitaxy MBE growth and structural and magnetic characterizations of high-quality single-crystal, bi the conclusion is made. II. SAMPLE PREPARATION AND MEASUREMENTS The crystal growth was carried out in a MBE

Huang, Jung-Chun

320

Magnetic vortex crystal formation in the antidot complement of square artificial spin ice  

NASA Astrophysics Data System (ADS)

We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.

de Araujo, C. I. L.; Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Mól, L. A. S.; Moura-Melo, W. A.; Pereira, A. R.

2014-03-01

321

Isothermal Ice-Crystallization Kinetics in the Gas-Diffusion Layer of a Proton-Exchange-Membrane Fuel Cell  

SciTech Connect

Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are investigated using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear icecrystallization rate expression is developed using Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction times follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. A validated rate expression is now available for predicting icecrystallization kinetics in GDLs.

Dursch, Thomas J.; Ciontea, Monica A.; Radke, Clayton J.; Weber, Adam Z.

2011-11-11

322

Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula  

NASA Astrophysics Data System (ADS)

A structural glaciological description and analysis of surface morphological features of the Larsen C ice shelf, Antarctic Peninsula, is derived from satellite images spanning the period 1963-2007. The data are evaluated in two time ranges: a comparison of a 1963 satellite image photomosaic with a modern digital mosaic compiled using 2003/04 austral summer data; and an image series since 2003 showing recent evolution of the shelf. We map the ice-shelf edge, rift swarms, crevasses and crevasse traces, and linear longitudinal structures (called 'flow stripes' or 'streak lines'). The latter are observed to be continuous over distances of up to 200 km from the grounding line to the ice-shelf edge, with little evidence of changes in pattern over that distance. Integrated velocity measurements along a flowline indicate that the shelf has been stable for ˜560 years in the mid-shelf area. Linear longitudinal features may be grouped into 12 units, each related to one or a small group of outlet feeder glaciers to the shelf. We observe that the boundaries between these flow units often mark rift terminations. The boundary zones originate upstream at capes, islands or other suture areas between outlet glaciers. In agreement with previous work, our findings imply that rift terminations within such suture zones indicate that they contain anomalously soft ice. We thus suggest that suture zones within the Larsen C ice shelf, and perhaps within ice shelves more generally, may act to stabilize them by reducing regional stress intensities and thus rates of rift lengthening.

Glasser, N. F.; Kulessa, B.; Luckman, A.; Jansen, D.; King, E. C.; Sammonds, P. R.; Scambos, T. A.; Jezek, K. C.

323

Crystal growth and twinned crystal structure of Sr2CaWO6.  

PubMed

Single crystals of Sr(2)CaWO(6) have been prepared by sintering at high temperature. Powder samples were compressed into rods and heated up to 1953 K. This seems a promising new route for further studies of the structure and physical properties of double perovskites. The structural model of Sr(2)CaWO(6) includes a quantitative description of the twinning shown by the diffraction pattern that should be present in almost any single-crystal specimen for this type of compound. PMID:20305344

Madariaga, G; Faik, A; Breczewski, T; Igartua, J M

2010-04-01

324

Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure  

DOEpatents

Yb[sup 3+] and Nd[sup 3+] doped Sr[sub 5](VO[sub 4])[sub 3]F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr[sub 5](VO[sub 4])[sub 3]F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr[sub 5](VO[sub 4])[sub 3]F, where the Sr[sup 2+] and F[sup [minus

Payne, S.A.; Kway, W.L.; DeLoach, L.D.; Krupke, W.F.; Chai, B.H.T.

1994-08-23

325

Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure  

DOEpatents

Yb.sup.3+ and Nd.sup.3+ doped Sr.sub.5 (VO.sub.4).sub.3 F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr.sub.5 (VO.sub.4).sub.3 F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr.sub.5 (VO.sub.4).sub.3 F, where the Sr.sup.2+ and F.sup.- ions are replaced by related chemical species, have similar properties.

Payne, Stephen A. (Castro Valley, CA); Kway, Wayne L. (Fremont, CA); DeLoach, Laura D. (Manteca, CA); Krupke, William F. (Pleasanton, CA); Chai, Bruce H. T. (Oviedo, FL)

1994-01-01

326

De-icing: recovery of diffraction intensities in the presence of ice rings.  

PubMed

Macromolecular structures are routinely determined at cryotemperatures using samples flash-cooled in the presence of cryoprotectants. However, sometimes the best diffraction is obtained under conditions where ice formation is not completely ablated, with the result that characteristic ice rings are superimposed on the macromolecular diffraction. In data processing, the reflections that are most affected by the ice rings are usually excluded. Here, an alternative approach of subtracting the ice diffraction is tested. High completeness can be retained with little adverse effect upon the quality of the integrated data. This offers an alternate strategy when high levels of cryoprotectant lead to loss of crystal quality. PMID:20516627

Chapman, Michael S; Somasundaram, Thayumanasamy

2010-06-01

327

De-icing: recovery of diffraction intensities in the presence of ice rings  

PubMed Central

Macromolecular structures are routinely determined at cryotemperatures using samples flash-cooled in the presence of cryoprotectants. However, sometimes the best diffraction is obtained under conditions where ice formation is not completely ablated, with the result that characteristic ice rings are superimposed on the macromolecular diffraction. In data processing, the reflections that are most affected by the ice rings are usually excluded. Here, an alternative approach of subtracting the ice diffraction is tested. High completeness can be retained with little adverse effect upon the quality of the integrated data. This offers an alternate strategy when high levels of cryoprotectant lead to loss of crystal quality. PMID:20516627

Chapman, Michael S.; Somasundaram, Thayumanasamy

2010-01-01

328

High density amorphous ice at room temperature  

PubMed Central

The phase diagram of water is both unusual and complex, exhibiting a wide range of polymorphs including proton-ordered or disordered forms. In addition, a variety of stable and metastable forms are observed. The richness of H2O phases attests the versatility of hydrogen-bonded network structures that include kinetically stable amorphous ices. Information of the amorphous solids, however, is rarely available especially for the stability field and transformation dynamics—but all reported to exist below the crystallization temperature of approximately 150–170 K below 4–5 GPa. Here, we present the evidence of high density amorphous (HDA) ice formed well above the crystallization temperature at 1 GPa—well inside the so-called “no-man’s land.” It is formed from metastable ice VII in the stability field of ice VI under rapid compression using dynamic-diamond anvil cell (d-DAC) and results from structural similarities between HDA and ice VII. The formation follows an interfacial growth mechanism unlike the melting process. Nevertheless, the occurrence of HDA along the extrapolated melt line of ice VII resembles the ice Ih-to-HDA transition, indicating that structural instabilities of parent ice VII and Ih drive the pressure-induced amorphization. PMID:21518902

Chen, Jing-Yin; Yoo, Choong-Shik

2011-01-01

329

The spin ice Ho2Ti2O7 versus the spin liquid Tb2Ti2O7: field-induced magnetic structures  

NASA Astrophysics Data System (ADS)

We studied the field-induced magnetic structures of Ho2Ti2O7 spin ice by means of single-crystal neutron diffraction with a magnetic field applied along a [110] direction. These structures are compared to those of the spin liquid Tb2Ti2O7 previously measured in similar experimental conditions. For both compounds, magnetic structures of two types with k = 0 and k = (0, 0, 1) propagation vectors coexist at low temperature (1.6 K) and high applied field (7 T). The k = 0 structures are described by the basis functions of the same irreducible representation for both Tb2Ti2O7 and Ho2Ti2O7. On the other hand, the k = (0, 0, 1) structures of Tb2Ti2O7 and Ho2Ti2O7 correspond to different irreducible representations, leading to different magnetic structures.

Sazonov, A. P.; Gukasov, A.; Mirebeau, I.

2011-04-01

330

Crystal structure tuning in GaAs nanowires using HCl.  

PubMed

The use of HCl during growth of nanowires presents new possibilities for controlling the growth dynamics and resulting nanowire properties. In this paper, we investigate the effects of in situ HCl on the growth of Au-seeded GaAs nanowires in a growth regime where both wurtzite and zinc blende crystal structures are possible to achieve. We find that HCl changes the crystal structure of the nanowires from pure wurtzite to defect-free zinc blende. By comparing the growth of wurtzite-zinc blende heterostructures with and without the addition of HCl, it is deduced that HCl mainly interacts with Ga species prior incorporation, reducing the amount of Ga available to contribute to the growth. We conclude that the change in crystal structure is related to the reduction of Ga adatoms, and demonstrate the realization of wurtzite-zinc blende heterostructures with atomically sharp interfaces achieved only by adding HCl. PMID:24931099

Jacobsson, Daniel; Lehmann, Sebastian; Dick, Kimberly A

2014-07-21

331

Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures  

SciTech Connect

Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

Cowan, Benjamin; /Tech-X, Boulder; Lin, M.C.; /Tech-X, Boulder; Schwartz, Brian; /Tech-X, Boulder; Byer, Robert; /Stanford U., Phys. Dept.; McGuinness, Christopher; /Stanford U., Phys. Dept.; Colby, Eric; /SLAC; England, Robert; /SLAC; Noble, Robert; /SLAC; Spencer, James; /SLAC

2012-07-02

332

Crystal structure of simple metals at high pressures  

SciTech Connect

The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structures found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.

Degtyareva, Olga (Edinburgh)

2010-10-22

333

Impact of surface nanostructure on ice nucleation  

NASA Astrophysics Data System (ADS)

Nucleation of water on solid surface can be promoted noticeably when the lattice parameter of a surface matches well with the ice structure. However, the characteristic length of the surface lattice reported is generally less than 0.5 nm and is hardly tunable. In this paper, we show that a surface with nanoscale roughness can also remarkably promote ice nucleation if the characteristic length of the surface structure matches well with the ice crystal. A series of surfaces composed of periodic grooves with same depth but different widths are constructed in molecular dynamics simulations. Water cylinders are placed on the constructed surfaces and frozen at constant undercooling. The nucleation rates of the water cylinders are calculated in the simulation using the mean first-passage time method and then used to measure the nucleation promotion ability of the surfaces. Results suggest that the nucleation behavior of the supercooled water is significantly sensitive to the width of the groove. When the width of the groove matches well with the specific lengths of the ice crystal structure, the nucleation can be promoted remarkably. If the width does not match with the ice crystal, this kind of promotion disappears and the nucleation rate is even smaller than that on the smooth surface. Simulations also indicate that even when water molecules are adsorbed onto the surface structure in high-humidity environment, the solid surface can provide promising anti-icing ability as long as the characteristic length of the surface structure is carefully designed to avoid geometric match.

Zhang, Xiang-Xiong; Chen, Min; Fu, Ming

2014-09-01

334

New crystal structures of PII-type ATPases: excitement continues.  

PubMed

P-type ATPases are ATP-powered ion pumps, classified into five subfamilies (PI-PV). Of these, PII-type ATPases, including Ca2+-ATPase, Na+,K+-ATPase and gastric H+,K+-ATPase, among others, have been the most intensively studied. Best understood structurally and biochemically is Ca2+-ATPase from sarcoplasmic reticulum of fast twitch skeletal muscle (sarco(endo)plasmic reticulum Ca2+-ATPase 1a, SERCA1a). Since publication of the first crystal structure in 2000, it has continuously been a source of excitement, as crystal structures for new reaction intermediates always show large structural changes. Crystal structures now exist for most of the reaction intermediates, almost covering the entire reaction cycle. This year the crystal structure of a missing link, the E1·Mg2+ state, finally appeared, bringing another surprise: bound sarcolipin (SLN). The current status of two other important PII-type ATPases, Na+,K+-ATPase and H+,K+-ATPase, is also briefly described. PMID:23871101

Toyoshima, Chikashi; Cornelius, Flemming

2013-08-01

335

Microscopic characterization of defect structure in RDX crystals.  

PubMed

Three batches of the commercial energetic material RDX, as received from various production locations and differing in sensitivity towards shock initiation, have been characterized with different microscopic techniques in order to visualize the defect content in these crystals. The RDX crystals are embedded in an epoxy matrix and cross-sectioned. By a treatment of grinding and polishing of the crystals, the internal defect structure of a multitude of energetic crystals can be visualized using optical microscopy, scanning electron microscopy and confocal scanning laser microscopy. Earlier optical micrographs of the same crystals immersed in a refractive index matched liquid could visualize internal defects, only not in the required detail. The combination of different microscopic techniques allows for a better characterization of the internal defects, down to inclusions of approximately 0.5 ?m in size. The defect structure can be correlated to the sensitivity towards a high-amplitude shock wave of the RDX crystals embedded in a polymer bonded explosive. The obtained experimental results comprise details on the size, type and quantity of the defects. These details should provide modellers with relevant and realistic information for modelling defects in energetic materials and their effect on the initiation and propagation of shock waves in PBX formulations. PMID:24117989

Bouma, R H B; Duvalois, W; Van der Heijden, A E D M

2013-12-01

336

Electronic structure of the CuBS2 crystal  

NASA Astrophysics Data System (ADS)

The band structure and spectra of the total and projected densities of states of a new crystal of the chalcopyrite family, namely, CuBS2, have been calculated in terms of the density functional theory. It has been found that the crystal is a pseudo-direct-band-gap semiconductor, and the best theoretical estimate of the optical band gap is 3.44 eV. The upper valence band of the CuBS2 crystal basically consists of the contributions from the p states of S atoms and the d states of Cu atoms. The crystal splitting is 0.2 eV. The bottom of the conduction band is basically formed by the sp states of boron and sulfur atoms with an admixture of the s states of copper atoms.

Basalaev, Yu. M.; Gordienko, A. B.; Filippov, S. I.

2012-09-01

337

Internal motion in protein crystal structures  

PubMed Central

The binding states of the substrates and the environment have significant influence on protein motion. We present the analysis of such motion derived from anisotropic atomic displacement parameters (ADPs) in a set of atomic resolution protein structures. Local structural motion caused by ligand binding as well as functional loops showing cooperative patterns of motion could be inferred. The results are in line with proposed protonation states, hydrogen bonding patterns and the location of distinctly flexible regions: we could locate the mobile active site loop in a virus integrase, distinguish the subdomains in RNAse A and hydroxynitrile lyase, and reconstruct the molecular architecture in a xylanase. We demonstrate that the ADP-based motion analysis provides information at high level of detail and that the structural changes needed for substrate attachment or release may be derived from single X-ray structures. PMID:20198682

Schmidt, Andrea; Lamzin, Victor S

2010-01-01

338

Internal motion in protein crystal structures.  

PubMed

The binding states of the substrates and the environment have significant influence on protein motion. We present the analysis of such motion derived from anisotropic atomic displacement parameters (ADPs) in a set of atomic resolution protein structures. Local structural motion caused by ligand binding as well as functional loops showing cooperative patterns of motion could be inferred. The results are in line with proposed protonation states, hydrogen bonding patterns and the location of distinctly flexible regions: we could locate the mobile active site loop in a virus integrase, distinguish the subdomains in RNAse A and hydroxynitrile lyase, and reconstruct the molecular architecture in a xylanase. We demonstrate that the ADP-based motion analysis provides information at high level of detail and that the structural changes needed for substrate attachment or release may be derived from single X-ray structures. PMID:20198682

Schmidt, Andrea; Lamzin, Victor S

2010-05-01

339

Modal Analysis of the Ice-Structure Interaction Problem  

E-print Network

-structure interaction, modal analysis, PoincarƩ mapping, recurrence plot) Copyright 2008, Michael A. Venturella #12. (1992) is employed to identify any periodic behavior of the system response. Recurrence plotting is also

Patil, Mayuresh

340

Formation of the structure of gold nanoclusters during crystallization  

SciTech Connect

The structure formation in gold nanoparticles 1.6-5.0 nm in diameter is studied by molecular dynamics simulation using a tight-binding potential. The simulation shows that the initial fcc phase in small Au clusters transforms into other structural modifications as temperature changes. As the cluster size increases, the transition temperature shifts toward the melting temperature of the cluster. The effect of various crystallization conditions on the formation of the internal structure of gold nanoclusters is studied in terms of microcanonical and canonical ensembles. The stability boundaries of various crystalline isomers are analyzed. The obtained dependences are compared with the corresponding data obtained for copper and nickel nanoparticles. The structure formation during crystallization is found to be characterized by a clear effect of the particle size on the stability of a certain isomer modification. Nickel and copper clusters are shown to exhibit common features in the formation of their structural properties, whereas gold clusters demonstrate much more complex behavior.

Gafner, Yu. Ya., E-mail: ygafner@khsu.ru; Goloven'ko, Zh. V.; Gafner, S. L. [Khakassian State University (Russian Federation)] [Khakassian State University (Russian Federation)

2013-02-15

341

Structure of self - assembled two-dimensional spherical crystals  

NASA Astrophysics Data System (ADS)

Dense spherical particles on a flat surface usually pack into a simple triangular lattice, similar to billiard balls at the start of a game. The minimum energy configuration for interacting particles on the curved surface of a sphere, however, presents special difficulties, as recognized already by J.J. Thomson. We describe experimental investigations of the structure of two-dimensional spherical crystals. The crystals, formed by beads self-assembled on water droplets in oil, serve as model systems for exploring very general theories about the minimum energy configurations of particles with arbitrary repulsive interactions on curved surfaces. Above a critical system size we find that crystals develop distinctive high-angle grain boundaries or "scars" not found in planar crystals. The number of excess defects in a scar is shown to grow linearly with the dimensionless system size. First experiments where the melting of the crystal structure was observable will be discussed. Dynamic triangulation methods allow the analysis of the dynamics of the defects. Possible modifications towards mechanically stabilized self assembly structures result in so called Colloidosomes, which are promising for many different encapsulation purposes.

Bausch, Andreas R.

2004-03-01

342

Photonics of liquid-crystal structures: A review  

SciTech Connect

The original results of studies of the electro-optical and laser effects which have been performed at the Laboratory of Liquid Crystals of the Institute of Crystallography, Russian Academy of Sciences, over the last few years are reviewed. Cholesteric liquid crystals as vivid representatives of photonic structures and their behavior in an electric field are considered in detail. The formation of higher harmonics in the periodic distribution of the director field in a helical liquid crystal structure and, correspondingly, the new (anharmonic) mode of electro-optical effects are discussed. Another group of studies is devoted to bistable light switching by an electric field in chiral nematics. Polarization diffraction gratings controlled by an electric field are also considered. The results of studies devoted to microlasers on various photonic structures with cholesteric and nematic liquid crystals are considered in detail. Particular attention is given to the new regime: leaky-mode lasing. Designs of liquid crystal light amplifiers and their polarization, field, and spectral characteristics are considered in the last section.

Palto, S. P., E-mail: palto@online.ru; Blinov, L. M.; Barnik, M. I.; Lazarev, V. V.; Umanskii, B. A.; Shtykov, N. M. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

2011-07-15

343

Crystal structure and microstructure of cholesteryl oleyl carbonate.  

PubMed

The crystal structure as well as the microstructure, i.e., size and strain, of crystallites of cholesteryl oleyl carbonate was determined from X-ray powder diffraction data. The X-ray line broadening was analyzed through the refinement of TCH-pseudo-Voigt function parameters (isotropic effects) and the refinement of multipolar functions, i.e., symmetrized cubic harmonics (anisotropic effects). The crystal structure turns out to be primitive monoclinic, space group Pc, type I monolayer having two molecules per unit cell with parameters: a=18.921±0.006?, b=12.952±0.003?, c=9.276±0.002? and ?=91.32±0.03°. The average size of a well ground specimen of crystallites was 60nm. The average micro-strain, e.g., 45×10(-4) has been tentatively attributed to fatty chain conformational disorder. The unit cell parameters, including the lamellar thickness, of COC crystal is very closely similar to those of another, structurally similar cholesterol ester, e.g., cholesteryl oleate (CO) crystal, space group P2(1), type II monolayer. Type I monolayer structure has been established for COC on the basis of the intensity calculations of the XRD profiles of both CO and COC. The dipolar and structural disorder in a 4:1 molar, binary mixture of CO and COC can be accommodated in an induced smectic phase with a lamellar thickness, which is nearly equal to that of pure CO or pure COC. PMID:20951687

Das, Pradip; De, Joyes

2011-01-01

344

CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE  

SciTech Connect

Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

2009-01-01

345

[Band electronic structures and crystal packing forces  

SciTech Connect

We investigated the electronic and structural properties of low-dimensional materials and explored the structure-property correlations governing their physical properties. Progress was made on how to interpret the scanning tunneling microscopy and atomic force microscopy images of layered materials and on how to account for charge density wave instabilities in 2-D metals. Materials studied included transition metal chalcogenides, transition metal halides, organic conducting salts, Mo bronzes, A[sub 2]PdH[sub 2], fullerenes, squarate tetrahydrate polymers Fe, Cu(C[sub 4]O[sub 4])4[center dot]H[sub 2]O, BEDT salts, etc.

Not Available

1993-01-01

346

Crystal structure and vibrational spectral studies of a new organic-inorganic crystal: 4-Benzylpiperidinium trioxonitrate  

NASA Astrophysics Data System (ADS)

Single crystals of a new organic-inorganic crystal, 4-benzylpiperidinium trioxonitrate (4-BPPN) were grown by slow evaporation at room temperature and were characterized by X-ray diffraction, DTA-TG measurement, FT-IR and FT-Raman spectroscopies. The title compound crystallizes in the monoclinic system P21/c at room temperature with the following parameters: a = 12.787(8) Å, b = 9.007(5) Å, c = 11.120(5) Å, ? = 95.974(2)° and Z = 4. Its crystal structure is packing of alternated inorganic and organic layers parallel to (a, c) planes. The different components are connected by a bi-dimensional network of N-H⋯O hydrogen bonds. The ability of ions to form spontaneous three-dimensional structure through N-H⋯O hydrogen bond is fully utilized. These hydrogen bonds give notable vibrational effects. The optimized molecular structure and the vibrational spectra were calculated by the Density Functional Theory (DFT) method using the B3LYP function with the 6-31G(d) basis set. All observed vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our DFT calculations as a primary source of attribution and also by comparison with the previous results for similar compounds. Good consistency is found between the calculated results and the experimental structure, IR, and Raman spectra.

Kessentini, Yassmin; Ben Ahmed, Ali; Al-Juaid, Salih S.; Mhiri, Tahar; Elaoud, Zakaria

2014-08-01

347

Crystal structure and vibrational spectral studies of a new organic-inorganic crystal: 4-Benzylpiperidinium trioxonitrate.  

PubMed

Single crystals of a new organic-inorganic crystal, 4-benzylpiperidinium trioxonitrate (4-BPPN) were grown by slow evaporation at room temperature and were characterized by X-ray diffraction, DTA-TG measurement, FT-IR and FT-Raman spectroscopies. The title compound crystallizes in the monoclinic system P21/c at room temperature with the following parameters: a=12.787(8)Å, b=9.007(5)Å, c=11.120(5)Å, ?=95.974(2)° and Z=4. Its crystal structure is packing of alternated inorganic and organic layers parallel to (a, c) planes. The different components are connected by a bi-dimensional network of N-H?O hydrogen bonds. The ability of ions to form spontaneous three-dimensional structure through N-H?O hydrogen bond is fully utilized. These hydrogen bonds give notable vibrational effects. The optimized molecular structure and the vibrational spectra were calculated by the Density Functional Theory (DFT) method using the B3LYP function with the 6-31G(d) basis set. All observed vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our DFT calculations as a primary source of attribution and also by comparison with the previous results for similar compounds. Good consistency is found between the calculated results and the experimental structure, IR, and Raman spectra. PMID:24755637

Kessentini, Yassmin; Ben Ahmed, Ali; Al-Juaid, Salih S; Mhiri, Tahar; Elaoud, Zakaria

2014-08-14

348

Evidence from Crystal Structures in Regard to Atomic Structures  

Microsoft Academic Search

The distribution of valence electrons in the diamond and similar crystals.-Because of the cubical symmetry, the equivalent scattering power of all the atoms, and the absence of pyro- and piezo-electric effect, the atoms in the diamond cannot be held together as a result of the transfer of electrons from atom to atom. Symmetry requirements also eliminate any cubical arrangement of

Maurice L. Huggins

1926-01-01

349

CO2 (dry ice) cleaning system  

NASA Astrophysics Data System (ADS)

Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system components include: a dry ice pellet supply, a non-reactive propellant gas source, a pellet and propellant metering device, and a media transport and acceleration hose and nozzle arrangement. Dry ice cleaning system operating parameters include: choice of propellant gas, its pressure and temperature, dry ice mass flow rate, dry ice pellet size and shape, and acceleration nozzle configuration. These parameters may be modified to fit different applications. ice cleaning industry will depend upon timely data acquisition of the effects that independent changes in these parameters have on cleaning rates, with respect to different surface coating and substrate combinations. &With this data, optimization of cleaning rates for particular applications will be possible. The analysis of the applicable range of modulation of these parameters, within system component mechanical constraints, has just begun.

Barnett, Donald M.

1995-03-01

350

Crystal structure of catechol O-methyltransferase.  

PubMed

Catechol O-methyltransferase (COMT, EC 2.1.1.6) is important in the central nervous system because it metabolizes catecholamine neurotransmitters such as dopamine. The enzyme catalyses the transfer of the methyl group from S-adenosyl-L-methionine (AdoMet) to one hydroxyl group of catechols. COMT also inactivates catechol-type compounds such as L-DOPA. With selective inhibitors of COMT in combination with L-DOPA, a new principle has been realized in the therapy of Parkinson's disease. Here we solve the atomic structure of COMT to 2.0 A resolution, which provides new insights into the mechanism of the methyl transfer reaction. The co-enzyme-binding domain is strikingly similar to that of an AdoMet-dependent DNA methylase, indicating that all AdoMet methylases may have a common structure. PMID:8127373

Vidgren, J; Svensson, L A; Liljas, A

1994-03-24

351

Materials research at Stanford University. [composite materials, crystal structure, acoustics  

NASA Technical Reports Server (NTRS)

Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

1975-01-01

352

Crystal structures and morphologies of fractionated milk fat in nanoemulsions.  

PubMed

The triacylglycerol (TAG) crystal structures and morphologies of fractionated milk lipids in nanoemulsions were investigated at 4°C. Droplet size (0.17 versus 1.20?m), lipid composition (stearin versus olein) and cooling rate (1 versus 10°Cmin(-1)) had an influence on the structural properties. Five crystal polymorphs (?, ?'1, ?'2, ?1, and ?2) were formed with either triple and/or double chain length structures in the solid phases of the emulsified systems. X-ray scattering peak intensities were reduced with the nanoemulsion particles. The internal structure of TAG exhibited stacking of individual lamellar layers (3.8-4.2nm). Various anisometric shapes of fat nanoparticles were formed due to a highly sharp curvature of the nano-size droplets. The shape of olein nanoparticles was more polyhedral compared to the stearin. TAG crystals arranged in a planar-layered organisation at the slower cooling rate. These differences imply that the nanometric confinement of oil droplets modifies the fat crystal habit. PMID:25308656

Truong, Tuyen; Morgan, Garry P; Bansal, Nidhi; Palmer, Martin; Bhandari, Bhesh

2015-03-15

353

Unusual Features of Crystal Structures of Some Simple Copper Compounds  

ERIC Educational Resources Information Center

Some simple copper compounds have unusual crystal structures. Cu[subscript 3]N is cubic with N atoms at centers of octahedra formed by 6 Cu atoms. Cu[subscript 2]O (cuprite) is also cubic; O atoms are in tetrahedra formed by 4 Cu atoms. These tetrahedra are linked by sharing vertices forming two independent networks without linkages between them.…

Douglas, Bodie

2009-01-01

354

Crystal Structures of Thermostable Xylose Isomerases from Thermus caldophilus and  

E-print Network

of XI makes it a useful enzyme for converting glucose to fructose for the industrial production of high-fructose corn syrup. However, XIs in general have higher KM and lower kcat for D-glucose than for D of Science and Technology, Daejon 305-333, Korea The crystal structures of highly thermostable xylose

Suh, Se Won

355

Structure of desheptapeptide (B24–B30) insulin in a new crystal form  

Microsoft Academic Search

The structure of desheptapeptide (B24–B30) insulin (DHPI) in a new crystal form (form B) has been determined and refined to\\u000a 0.2 nm resolution. The crystals were obtained under the same crystallization condition as previously reported crystal form\\u000a (form A). The overall structures of the two crystal forms are similar but obvious differences can be observed in crystal packing\\u000a and local

Sujin Bao; Jiping Zhang; Wenrui Chang; Dongcai Liang

1999-01-01

356

Crystal structure of photolysed carbonmonoxy-myoglobin.  

PubMed

Myoglobin is a globular haem protein that reversibly binds ligands such as O2 and CO. Single photons of visible light can break the covalent bond between CO and the haem iron in carbon-monoxy-myoglobin (MbCO) and thus form an unstable intermediate, Mb*CO, with the CO inside the protein. The ensuing rebinding process has been extensively studied as a model for the interplay of dynamics, structure and function in protein reactions. We have used X-ray crystallography at liquid-helium temperatures to determine the structure of Mb*CO to a resolution of 1.5 A. The photodissociated CO lies on top of the haem pyrrole ring C. Comparison with the CO-bound and unligated myoglobin structures reveals that on photodissociation of the CO, the haem 'domes', the iron moves partially out of the haem plane, the iron-proximal histidine bonds is compressed, the F helix is strained and the distal histidine swings towards the outside of the ligand-binding pocket. PMID:7935843

Schlichting, I; Berendzen, J; Phillips, G N; Sweet, R M

1994-10-27

357

Crystal Structure and Stereochemistry Study of 2-Substituted Benzoxazole Derivatives  

PubMed Central

The structure of 2-[(4-chlorophenylazo) cyanomethyl] benzoxazole, C15H9ClN4O (I), has triclinic (P1?) symmetry. The structure displays N–H ? N hydrogen bonding. The structure of 2-[(arylidene) cyanomethyl] benzoxazoles, C17H10N2O3 (II), has triclinic (P1?) symmetry. The structure displays C–H ? N, C–H ? C hydrogen bonding. In (I), the chlorophenyl and benzoxazole groups adopt a trans configuration with respect to the central cyanomethyle hydrazone moiety. Compound (II) crystallized with two molecules in the asymmetric unit shows cisoid conformation between cyano group and benzoxazole nitrogen, contrary to (I). In (II) the benzodioxole has an envelope conformation (the C17 atom is the flap atom). The molecular geometry obtained using molecular mechanics (MM) calculations has been discussed along with the results of single crystal analysis. PMID:24944828

Mabied, Ahmed F.; Shalaby, Elsayed M.; Zayed, Hamdia A.; El-Kholy, Esmat; Farag, Ibrahim S. A.; Ahmed, Naima A.

2014-01-01

358

Photonic Crystal Electrode to be Used in Organic LED Structures  

NASA Astrophysics Data System (ADS)

In this work we report the possibility to obtain a high refractive index grid anode directly on the substrate surface by fabricating a relatively large-area photonic crystal (PC) structure using the combinations of electron beam lithography (EBL) and focused ion beam (FIB) techniques. The performance of the realized photonic crystal (PC) structure were enhanced by milling the ITO layer until the glass substrate and by removing the further refractive index jump between the PC and the substrate. The good properties of highly conductive poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), ensured a continuous path for the current and a high refractive index jump for the PC structure by filling the holes in the PC structure.

Petti, L.; Rippa, M.; Capasso, R.; Nenna, G.; De Girolamo Del Mauro, A.; La Ferrara, V.; Pacheri Madathil, A.; Minarini, C.

2013-01-01

359

Domain Structures in Nematic Liquid Crystals on a Polycarbonate Surface  

PubMed Central

Alignment of nematic liquid crystals on polycarbonate films obtained with the use of solvents with different solvations is studied. Domain structures occurring during the growth on the polymer surface against the background of the initial thread-like or schlieren texture are demonstrated. It is established by optical methods that the domains are stable formations visualizing the polymer surface structures. In nematic droplets, the temperature-induced transition from the domain structure with two extinction bands to the structure with four bands is observed. This transition is shown to be caused by reorientation of the nematic director in the liquid crystal volume from the planar alignment to the homeotropic state with the pronounced radial configuration of nematic molecules on the surface. The observed textures are compared with different combinations of the volume LC orientations and the radial distribution of the director field and the disclination lines at the polycarbonate surface. PMID:23965955

Parshin, Alexander M.; Gunyakov, Vladimir A.; Zyryanov, Victor Y.; Shabanov, Vasily F.

2013-01-01

360

Crystal Structure of the Bacillus subtilis Superoxide Dismutase  

SciTech Connect

The sodA gene of Bacillus subtilis was expressed in Escherichia coli, purified and crystallized. The crystal structure of MnSOD was solved by molecular replacement with four dimers per asymmetric unit and refined to an R factor of 21.1% at 1.8 {angstrom} resolution. The dimer structure is very similar to that of the related enzyme from B. anthracis. Larger structural differences were observed with the human MnSOD, which has one less helix in the helical domain and a longer loop between two -strands and also showed differences in three amino acids at the intersubunit interface in the dimer compared with the two bacterial MnSODs. These structural differences can be exploited in the design of drugs that selectively target the Bacillus enzymes.

Liu, Ping; Ewis, H.E.; Huang, Y.-J; Lu, C.-D.; Tai, P.C.; Weber, Irene T. (GSU)

2008-06-01

361

Structure and switching dynamics in ferroelectric crystal and liquid crystal thin films  

NASA Astrophysics Data System (ADS)

The structure and switching dynamics of ferroelectric solid state and liquid crystal thin films were investigated experimentally using x-ray scattering, dielectric measurements, and optical microspectroscopy. Crystalline piezoelectric ferroelectric films, formed by sol-gel and sputter deposition, were developed and analyzed for application as high speed nonvolatile memories. Ferroelectric liquid crystal devices were studied for application as fast electro-optic light valves in spatial light modulator applications. A novel thermo-optical effect in ferroelectric lead magnesium niobate suitable for use in pressure sensing applications was discovered.

Clark, Noel A.; Scott, James F.

1993-03-01

362

Molecular and crystal structures of 4-acylphenyl 4'-alkyloxybenzoates  

NASA Astrophysics Data System (ADS)

The crystal structures of four liquid-crystal (LC) compounds belonging to 4-acylphenyl 4'-alkyloxybenzoates with the general formula C n H2 n + 1-C(O)-C6H4-O-C(O)-C6H4-O-C m H2 m + 1 numbered as 1/6, 1/7, 2/7, and 3/7 (the numbers in the code indicate the ratios of the numbers of alkyl-chain units, n/ m) are determined. Compounds 1/6 and 1/7 form smectic and nematic phases, but they are monotropic mesogens, whereas compounds 2/7 and 3/7 form only an enantiotropic smectic phase. Compound 3/7 crystallizes in two crystal modifications—triclinic with Z' = 2 ( 3/7 tr ) and monoclinic with Z' = 4 (sp. gr. P2, 3/7 mon ). All crystals consist of alternating aromatic and aliphatic regions and are characterized by the presence of weak directional interactions, such as C-H...O hydrogen bonds and ?-stacking interactions. This provides the necessary conditions for the formation of a mesophase, and the existence of two types of structure-forming units is in line with the formation of a smectic phase. An explanation is proposed for the monotropic properties of 1/6 and 1/7.

Konstantinov, I. I.; Churakov, A. V.; Kuz'mina, L. G.

2013-01-01

363

Magnetic assembly of nonmagnetic particles into photonic crystal structures.  

PubMed

We report the rapid formation of photonic crystal structures by assembly of uniform nonmagnetic colloidal particles in ferrofluids using external magnetic fields. Magnetic manipulation of nonmagnetic particles with size down to a few hundred nanometers, suitable building blocks for producing photonic crystals with band gaps located in the visible regime, has been difficult due to their weak magnetic dipole moment. Increasing the dipole moment of magnetic holes has been limited by the instability of ferrofluids toward aggregation at high concentration or under strong magnetic field. By taking advantage of the superior stability of highly surface-charged magnetite nanocrystal-based ferrofluids, in this paper we have been able to successfully assemble 185 nm nonmagnetic polymer beads into photonic crystal structures, from 1D chains to 3D assemblies as determined by the interplay of magnetic dipole force and packing force. In a strong magnetic field with large field gradient, 3D photonic crystals with high reflectance (83%) in the visible range can be rapidly produced within several minutes, making this general strategy promising for fast creation of large-area photonic crystals using nonmagnetic particles as building blocks. PMID:20945882

He, Le; Hu, Yongxing; Kim, Hyoki; Ge, Jianping; Kwon, Sunghoon; Yin, Yadong

2010-11-10

364

Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal  

NASA Astrophysics Data System (ADS)

Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

Sankari, R. Siva; Perumal, Rajesh Narayana

2014-04-01

365

Synthesis, crystal structure, and photoluminescence of a zinc metalloporphyrin  

NASA Astrophysics Data System (ADS)

A zinc metalloporphyrin, ZnTCPP(acetone) ( 1) (TCPP = meso-tetra(4-carboxyphenyl)porphyrin), has been prepared via a solvothermal reaction and structurally characterized by single-crystal X-ray diffraction. Compound 1 features an isolated structure with a planar macrocycle and an embedded zinc ion binded to four pyrrole nitrogen atoms and one acetone oxygen atom. Photoluminescent investigation reveals that compound 1 displays an intensive emission in the red region.

Chen, Wen-Tong; Yi, Xiu-Guang; Luo, Zhi-Gang; Fu, Hong-Ru; Liu, Juan

2014-07-01

366

Crystal structure of new AsS2 compound  

NASA Astrophysics Data System (ADS)

AsS2 single crystals have been obtained for the first time from an As2S3 melt at pressures above 6 GPa and temperatures above 800 K in the As2S3 ? AsS + AsS2 reaction. The monoclinic structure of the new high-pressure phase is solved by X-ray diffraction analysis and compared to the structure of high-pressure AsS phase, which was studied previously.

Bolotina, N. B.; Brazhkin, V. V.; Dyuzheva, T. I.; Lityagina, L. M.; Kulikova, L. F.; Nikolaev, N. A.; Verin, I. A.

2013-01-01

367

The crystal structure of gold telluride iodide AuTel  

Microsoft Academic Search

The crystal structure of AuTel has been determined. It is monoclinic with space group P21\\/c, a = 7.3130, b = 7.6242, c = 7.2550 Å, beta = 106.263°, and Z = 4. Intensities were measured on an automatic diffractometer, and the structure was refined, with anisotropic temperature factors, to R = 0.055. With a distorted square-planar coordination by three bridging

J. Fenner; D. Mootz

1978-01-01

368

Strong anti-ice ability of nanohairs over micro-ratchet structures  

NASA Astrophysics Data System (ADS)

A strong anti-ice property of nanohairs over micro-ratchet surfaces is observed. A long freezing delay of more than 185 min is achieved for a droplet on the nanohairs over ratchet structure with a period of ~290 ?m under -10 °C, which is attributed to the effective cooperation of the nano- and microstructures.A strong anti-ice property of nanohairs over micro-ratchet surfaces is observed. A long freezing delay of more than 185 min is achieved for a droplet on the nanohairs over ratchet structure with a period of ~290 ?m under -10 °C, which is attributed to the effective cooperation of the nano- and microstructures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04061e

Guo, Peng; Wen, Mengxi; Wang, Lei; Zheng, Yongmei

2014-03-01

369

Crystal structure of interleukin 8: Symbiosis of NMR and crystallography  

SciTech Connect

The crystal structure of a host defense system chemotactic factor, interleukin 8, has been solved by molecular replacement using as a model the solution structure derived from nuclear magnetic resonance experiments. The structure was refined with 2 {angstrom} x-ray data to an R factor of 0.817. A comparison indicates some potential differences between the structure in solution and in the crystalline state. The analysis also predicts that residues 4 through 9 on the amino terminus and the {beta}-bend, which includes His-33, may be important for receptor binding.

Baldwin, E.T.; Weber, I.T.; St. Charles, R.; Xuan, Jiancheng; Matsushima, Kouji; Wlodawer, A. (National Cancer Inst., Frederick, MD (United States)); Appella, E.; Clore, G.M.; Gronenborn, A.M. (National Inst. of Health, Bethesda, MD (United States)); Yamada, Masaki (Dainippon Pharmaceutical Co., Ltd., Osaka (Japan)); Edwards, B.F.P. (Wayne State Univ. School of Medicine, Detroit, MI (United States))

1991-01-15

370

Crystal growth, spectral, structural and optical studies of ?-conjugated stilbazolium crystal: 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate.  

PubMed

Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from (1)H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (001) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (?) and energy band gap (E(g)) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser. PMID:24531108

Krishna Kumar, M; Sudhahar, S; Bhagavannarayana, G; Mohan Kumar, R

2014-05-01

371

Crystal structure and physical characterization of neotame methanol solvate  

Microsoft Academic Search

The crystal structure of the methanol solvate (empirical formula: 2C20H30N2O5·3CH3OH) of a new dipeptide sweetener, neotame (N-(3,3-dimethylbutyl)-L-a-aspartyl-L-phenylalanine 1-methyl ester), has been determined. Crystal data: a = 9.8989(1), b = 18.1331(1), c = 27.5725(1) Å, orthorhombic, space group P212121, with Z = 4. Each unit cell includes 8 neotame and 12 methanol molecules. Disorder exists in one neotame molecule and one

Zedong Dong; Victor G. Young; Brian E. Padden; Steve A. Schroeder; Indra Prakash; Eric J. Munson; David J. W. Grant

1999-01-01

372

Laser crystal analysis using the OLCAO electronic structure method  

NASA Astrophysics Data System (ADS)

This work investigates the theoretical analysis of laser crystals through the band structure method of Orthogonalized Linear Combination of Atomic Orbitals. A review of the more traditional theoretical method, the Crystal Field Theory, is provided for comparison with the Orthogonalized Linear Combination of Atomic Orbitals theory. The benefits of the more computationally intensive band structure method in analyzing the complicated crystal structures typical of laser materials are presented. The method is then utilized to study Cr4+-doped yttrium aluminum garnet and its application as a passive Q-switch device. The detailed analysis provided by the Orthogonalized Linear Combination of Atomic Orbitals method leads to an alternate model for optical transitions within the passive Q-switch application, and experimental evidence validating this model is presented. The method is then used to study undoped, bulk yttrium aluminum garnet and gadolinium scandium gallium garnet crystals with emphasis on the radiation hardness of laser rods using these hosts. Plans for future work are presented, including a suggestion of how this powerful theoretical method can be used in a predictive mode to facilitate the design of novel laser materials.

Brickeen, Brian Keith

1999-12-01

373

Electronic structures of lead iodide based low-dimensional crystals  

NASA Astrophysics Data System (ADS)

The electronic structures of three-dimensional and two-dimensional lead-halide-based crystals CH3NH3PbI3 and (C4H9NH3)2PbI4 are investigated by photoelectron spectroscopy and band calculations using the linear combination of atomic orbitals within the density-functional theory. For both crystals, the top of the valence band is found to consist mainly of the ?-antibonding states of Pb 6s and I 5p orbitals, and the bottom of the conduction band to be composed primarily of the ?-antibonding states of Pb 6p and I 5s orbitals. Photoelectron spectra of the valence-band region indicate that the electronic structures change depending on the dimensionality of the crystals. Based on the calculation results, the differences observed in the spectra are rationalized in terms of narrowing bandwidth as the dimensionality decreases from three to two dimensions. It is shown that the bandwidth narrowing of the two-dimensional crystal is due to zero dispersion in the vertical direction and the Jahn-Teller effect in the layered structure. These effects lead to a wideband gap and high exciton stability in (C4H9NH3)2PbI4.

Umebayashi, T.; Asai, K.; Kondo, T.; Nakao, A.

2003-04-01

374

Structural characteristics and second order nonlinear optical properties of borate crystals  

E-print Network

and related effects of an assigned crystal. It might not only form the basis but also provide an opportunityStructural characteristics and second order nonlinear optical properties of borate crystals D. Xue optical (NLO) responses of some typical borate crystals with various crystal structures have been

OsnabrĆ¼ck, UniversitƤt

375

Crystal structure and mechanistic investigation of the twister ribozyme.  

PubMed

We present a crystal structure at 2.3-Å resolution of the recently described nucleolytic ribozyme twister. The RNA adopts a previously uncharacterized compact fold based on a double-pseudoknot structure, with the active site at its center. Eight highly conserved nucleobases stabilize the core of the ribozyme through the formation of one Watson-Crick and three noncanonical base pairs, and the highly conserved adenine 3' of the scissile phosphate is bound in the major groove of an adjacent pseudoknot. A strongly conserved guanine nucleobase directs its Watson-Crick edge toward the scissile phosphate in the crystal structure, and mechanistic evidence supports a role for this guanine as either a general base or acid in a concerted, general acid-base-catalyzed cleavage reaction. PMID:25038788

Liu, Yijin; Wilson, Timothy J; McPhee, Scott A; Lilley, David M J

2014-09-01

376

Trapping of topological-structural defects in Coulomb crystals.  

PubMed

We study experimentally and theoretically structural defects which are formed during the transition from a laser cooled cloud to a Coulomb crystal, consisting of tens of ions in a linear radio frequency trap. We demonstrate the creation of predicted topological defects ("kinks") in purely two-dimensional crystals and also find kinks which show novel dynamical features in a regime of parameters not considered before. The kinks are always observed at the center of the trap, showing a large nonlinear localized excitation, and the probability of their occurrence saturates at ?0.5. Simulations reveal a strong anharmonicity of the kink's internal mode of vibration, due to the kink's extension into three dimensions. As a consequence, the periodic Peierls-Nabarro potential experienced by a discrete kink becomes a globally confining potential, capable of trapping one cooled defect at the center of the crystal. PMID:23581315

Mielenz, M; Brox, J; Kahra, S; Leschhorn, G; Albert, M; Schaetz, T; Landa, H; Reznik, B

2013-03-29

377

The structure and dynamics of carbon dioxide and water containing ices investigated via THz and mid-IR spectroscopy.  

PubMed

Icy dust grains play a key role in the chemistry of the interstellar medium. The cumulative outcome of recent observations, laboratory studies, and astrochemical models indicates that solid-phase reaction mechanisms may dominate the formation of complex organic molecules such as amino acids and sugars in space. Consequently, the composition and structure of the icy grain mantle may significantly influence solid-phase reaction pathways. In this work, we present a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3-7.5 THz; 10-250 cm(-1)) and the mid-IR (400-4000 cm(-1)). The instruments are capable of performing a variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as Herschel, SOFIA, and ALMA. Experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high vacuum conditions with the goal of investigating the structure of the ice. We tentatively observe a new feature in both amorphous solid water and crystalline water at 33 cm(-1) (1 THz). In addition, our studies of mixed and layered ices show how it is possible to identify the location of carbon dioxide as it segregates within the ice by observing its effect on the THz spectrum of water ice. The THz spectra of mixed and layered ices are further analyzed by fitting their spectral features to those of pure amorphous solid water and crystalline water ice to quantify the effects of temperature changes on structure. From the results of this work, it appears that THz spectroscopy is potentially well suited to study thermal transformations within the ice. PMID:24394213

Allodi, Marco A; Ioppolo, Sergio; Kelley, Matthew J; McGuire, Brett A; Blake, Geoffrey A

2014-02-28

378

Chemical characterization of individual particles and residuals of cloud droplets and ice crystals collected on board research aircraft in the ISDAC 2008 study  

NASA Astrophysics Data System (ADS)

Ambient particles and the dry residuals of mixed-phase cloud droplets and ice crystals were collected during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) near Barrow, Alaska, in spring of 2008. The collected particles were analyzed using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy to identify physico-chemical properties that differentiate cloud-nucleating particles from the total aerosol population. A wide range of individually mixed components was identified in the ambient particles and residuals including organic carbon compounds, inorganics, carbonates, and black carbon. Our results show that cloud droplet residuals differ from the ambient particles in both size and composition, suggesting that both properties may impact the cloud-nucleating ability of aerosols in mixed-phase clouds. The percentage of residual particles which contained carbonates (47%) was almost four times higher than those in ambient samples. Residual populations were also enhanced in sea salt and black carbon and reduced in organic compounds relative to the ambient particles. Further, our measurements suggest that chemical processing of aerosols may improve their cloud-nucleating ability. Comparison of results for various time periods within ISDAC suggests that the number and composition of cloud-nucleating particles over Alaska can be influenced by episodic events bringing aerosols from both the local vicinity and as far away as Siberia.

Hiranuma, N.; Brooks, S. D.; Moffet, R. C.; Glen, A.; Laskin, A.; Gilles, M. K.; Liu, P.; MacDonald, A. M.; Strapp, J. W.; McFarquhar, G. M.

2013-06-01

379

On the characterization of crystallization and ice adhesion on smooth and rough surfaces using molecular dynamics  

NASA Astrophysics Data System (ADS)

Coarse-grained molecular dynamics is utilized to quantify the behavior of a supercooled water drop on smooth and rough surfaces. Crystallization on rough surface is characterized based on wetting states. Freezing temperature and work of adhesion of water droplet are linearly associated with roughness parameters corresponding to the Cassie-Baxter and Wenzel states. The behavior is insensitive to different surface-fluid affinity. We show in general, for Wenzel states, work of adhesion is higher than that of Cassie-Baxter state for surfaces that have identical freezing temperatures.

Singh, Jayant K.; Müller-Plathe, Florian

2014-01-01

380

Multiferroicity in spin ice Ho2Ti2O7: An investigation on single crystals  

NASA Astrophysics Data System (ADS)

The single crystals of rare-earth titanate pyrochlore compound Ho2Ti2O7 are grown and their multiferroicity along the [110] and [111] directions is investigated. The ferroelectricity below ˜28 K, with a polarization of ˜2.50 ?C/m2 along the ?111? direction at 2 K, qualitatively fitting with the theoretical scenario proposed by Khomskii (Nat. Commun. 3, 904 (2012)), is revealed. The magnetoelectric responses along both the [110] and [111] directions are observed, but different underlying mechanisms associated with the specific spin configurations are suggested.

Liu, D.; Lin, L.; Liu, M. F.; Yan, Z. B.; Dong, S.; Liu, J.-M.

2013-05-01

381

Crystal and molecular structure of N-methylpiperidine betaine hydrochloride  

NASA Astrophysics Data System (ADS)

A 1:1 complex between N-methylpiperidine betaine and hydrochloric acid, MPBH·Cl, has been characterized by single crystal X-ray analysis, FTIR spectroscopy, and DFT calculations. The crystals are monoclinic, space group P2 1/ n, with a=6.0644(3), b=13.0220(6), c=12.7653(7) Å, ?=101.925(5)°. The piperidine ring adopts a chair conformation with the -CH 2COOH group in an axial and the-CH 3 group in an equatorial position. In the crystal, the Cl -anion is engaged in a medium-strong hydrogen bond with the COOH group (O-H⋯Cl -=2.9503(7) Å), in several C-H⋯Cl - contacts and, additionally, in three N +⋯Cl -intermolecular interactions. Four conformations (axial and equatorial, both protonated and unprotonated) of MPBHCl were examined by the B3LYP/6-31G(d,p) method. The calculated structure of MPBH·Cl(ax) is very similar to that in the crystal, except the N(1)-C(8)-C(9)-O(1) and N(1)-C(8)-C(9)-O(2) units, which are planar in the crystal but nonplanar in the isolated molecule. Powder FTIR spectra of MPBH·Cl and its deuterated analogue (MPBD·Cl) were measured and assignments of the observed bands to vibrations of the hydrogen bond and to internal vibrations are proposed.

Dega-Szafran, Z.; Szafran, M.; Dulewicz, E.; Addlagatta, A.; Jaskólski, M.

2003-06-01

382

Hot ice computer  

Microsoft Academic Search

We experimentally demonstrate that supersaturated solution of sodium acetate, commonly called ‘hot ice’, is a massively-parallel unconventional computer. In the hot ice computer data are represented by a spatial configuration of crystallization induction sites and physical obstacles immersed in the experimental container. Computation is implemented by propagation and interaction of growing crystals initiated at the data-sites. We discuss experimental prototypes

Andrew Adamatzky

2009-01-01

383

Crystal shape-dependent magnetic susceptibility and Curie law crossover in the spin ices Dy2Ti2O7 and Ho2Ti2O7  

NASA Astrophysics Data System (ADS)

We present an experimental determination of the isothermal magnetic susceptibility of the spin ice materials Dy2Ti2O7 and Ho2Ti2O7 in the temperature range 1.8-300 K. The use of spherical crystals has allowed accurate correction for demagnetizing fields and allowed the true bulk isothermal susceptibility ?T(T) to be estimated. This has been compared against a theoretical expression based on a Husimi tree approximation to the spin ice model. Agreement between experiment and theory is excellent at T > 10 K, but systematic deviations occur below that temperature. Our results largely resolve an apparent disagreement between neutron scattering and bulk measurements that has been previously noted. They also show that the use of non-spherical crystals in magnetization studies of spin ice may introduce very significant systematic errors, although we note some interesting—and possibly new—systematics concerning the demagnetizing factor in cuboidal samples. Finally, our results show how experimental susceptibility measurements on spin ices may be used to extract the characteristic energy scale of the system and the corresponding chemical potential for emergent magnetic monopoles.

Bovo, L.; Jaubert, L. D. C.; Holdsworth, P. C. W.; Bramwell, S. T.

2013-09-01

384

Crystal shape-dependent magnetic susceptibility and Curie law crossover in the spin ices Dy2Ti2O7 and Ho2Ti2O7.  

PubMed

We present an experimental determination of the isothermal magnetic susceptibility of the spin ice materials Dy2Ti2O7 and Ho2Ti2O7 in the temperature range 1.8-300 K. The use of spherical crystals has allowed accurate correction for demagnetizing fields and allowed the true bulk isothermal susceptibility ?T(T) to be estimated. This has been compared against a theoretical expression based on a Husimi tree approximation to the spin ice model. Agreement between experiment and theory is excellent at T > 10 K, but systematic deviations occur below that temperature. Our results largely resolve an apparent disagreement between neutron scattering and bulk measurements that has been previously noted. They also show that the use of non-spherical crystals in magnetization studies of spin ice may introduce very significant systematic errors, although we note some interesting--and possibly new--systematics concerning the demagnetizing factor in cuboidal samples. Finally, our results show how experimental susceptibility measurements on spin ices may be used to extract the characteristic energy scale of the system and the corresponding chemical potential for emergent magnetic monopoles. PMID:23988470

Bovo, L; Jaubert, L D C; Holdsworth, P C W; Bramwell, S T

2013-09-25

385

Crystal structure of a putative isochorismatase hydrolase from Oleispira antarctica  

PubMed Central

Isochorismatase-like hydrolases (IHL) constitute a large family of enzymes divided into five structural families (by SCOP). IHLs are crucial for siderophore-mediated ferric iron acquisition by cells. Knowledge of the structural characteristics of these molecules will enhance the understanding of the molecular basis of iron transport, and perhaps resolve which of the mechanisms previously proposed in the literature is the correct one. We determined the crystal structure of the apo-form of a putative isochorismatase hydrolase OaIHL (PDB code: 3LQY) from the antarctic ?-proteobacterium Oleispira antarctica, and did comparative sequential and structural analysis of its closest homologs. The characteristic features of all analyzed structures were identified and discussed. We also docked isochorismate to the solved crystal structure by in silico methods, to highlight the interactions of the active center with the substrate. The putative isochorismate hydrolase OaIHL from Oleispira antarctica possesses the typical catalytic triad for IHL proteins. Its active center resembles those IHLs with a D-K-C catalytic triad, rather than those variants with a D-K-X triad. OaIHL shares some structural and sequential features with other members of the IHL superfamily. In silico docking results showed that despite small differences in active site composition, isochorismate binds to in the structure of OaIHL in a similar mode to its binding in phenazine biosynthesis protein PhzD (PDB code 1NF8). PMID:22350524

Goral, Anna M.; Tkaczuk, Karolina L.; Chruszcz, Maksymilian; Kagan, Olga; Savchenko, Alexei; Minor, Wladek

2012-01-01

386

Random hcp and fcc structures in thermoresponsive microgel crystals  

NASA Astrophysics Data System (ADS)

Monodisperse thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) microgel particles having a diameter of 520 nm were synthesized by free-radical precipitation polymerization and centrifuged to obtain a concentrated suspension. The centrifuged mother suspension was made to self-order into a crystalline state by repeated annealing beyond the volume phase transition (VPT) of the particles. We report here the three-dimensional (3D) real space structure, determined using a confocal laser scanning microscope, of PNIPAM microgel crystal samples prepared by two different recrystallized routes: (1) solidifying a shear melted colloidal liquid (referred as as-prepared sample) and (2) slow cooling of a colloidal liquid (referred as recrystallized sample). We have recorded images of several regions of the crystal with each region containing 15 horizontal crystal planes for determining the in-plane [two-dimensional (2D)] and 3D pair-correlation functions. The 2D pair-correlation function g(r) revealed hexagonal long-range order of particles in the layers with a lattice constant of 620 nm. The analysis of stacking sequence of layers recorded on as-prepared sample has revealed the existence of stacking disorder with an average stacking probability ?~0.42. This value of ? together with the analysis of 3D pair-correlation function determined from particle positions revealed the structure of microgel crystals in the as-prepared sample to be random hexagonal close packing. We report the first observation of a split second peak in the 3D g(r) of the microgel crystals obtained from a shear melted liquid. Upon melting the sample above VPT and recrystallizing it the split second peak disappeared and the crystals are found to have a face centered cubic (fcc) structure with ?~0.95. From simulations, the split second peak is shown to arise from the displacement of some of the B-planes from the ideal hcp positions. The present results are discussed in light of those reported for charged and hard sphere colloidal crystals and plausible reasons for observing two different structures are also explained.

Brijitta, J.; Tata, B. V. R.; Joshi, R. G.; Kaliyappan, T.

2009-08-01

387

Chirality in Liquid Crystals: from Microscopic Origins to Macroscopic Structure  

E-print Network

Molecular chirality leads to a wonderful variety of equilibrium structures, from the simple cholesteric phase to the twist-grain-boundary phases, and it is responsible for interesting and technologically important materials like ferroelectric liquid crystals. This paper will review some recent advances in our understanding of the connection between the chiral geometry of individual molecules and the important phenomenological parameters that determine macroscopic chiral structure. It will then consider chiral structure in columnar systems and propose a new equilibrium phase consisting of a regular lattice of twisted ropes.

T. C. Lubensky; A. B. Harris; Randall D. Kamien; Gu Yan

1997-10-31

388

Crystal structure of four-stranded Oxytricha telomeric DNA  

NASA Technical Reports Server (NTRS)

The sequence d(GGGGTTTTGGGG) from the 3' overhang of the Oxytricha telomere has been crystallized and its three-dimensional structure solved to 2.5 A resolution. The oligonucleotide forms hairpins, two of which join to make a four-stranded helical structure with the loops containing four thymine residues at either end. The guanine residues are held together by cyclic hydrogen bonding and an ion is located in the centre. The four guanine residues in each segment have a glycosyl conformation that alternates between anti and syn. There are two four-stranded molecules in the asymmetric unit showing that the structure has some intrinsic flexibility.

Kang, C.; Zhang, X.; Ratliff, R.; Moyzis, R.; Rich, A.

1992-01-01

389

Rigidity analysis of protein biological assemblies and periodic crystal structures  

PubMed Central

Background We initiate in silico rigidity-theoretical studies of biological assemblies and small crystals for protein structures. The goal is to determine if, and how, the interactions among neighboring cells and subchains affect the flexibility of a molecule in its crystallized state. We use experimental X-ray crystallography data from the Protein Data Bank (PDB). The analysis relies on an effcient graph-based algorithm. Computational experiments were performed using new protein rigidity analysis tools available in the new release of our KINARI-Web server http://kinari.cs.umass.edu. Results We provide two types of results: on biological assemblies and on crystals. We found that when only isolated subchains are considered, structural and functional information may be missed. Indeed, the rigidity of biological assemblies is sometimes dependent on the count and placement of hydrogen bonds and other interactions among the individual subchains of the biological unit. Similarly, the rigidity of small crystals may be affected by the interactions between atoms belonging to different unit cells. We have analyzed a dataset of approximately 300 proteins, from which we generated 982 crystals (some of which are biological assemblies). We identified two types of behaviors. (a) Some crystals and/or biological assemblies will aggregate into rigid bodies that span multiple unit cells/asymmetric units. Some of them create substantially larger rigid cluster in the crystal/biological assembly form, while in other cases, the aggregation has a smaller effect just at the interface between the units. (b) In other cases, the rigidity properties of the asymmetric units are retained, because the rigid bodies did not combine. We also identified two interesting cases where rigidity analysis may be correlated with the functional behavior of the protein. This type of information, identified here for the first time, depends critically on the ability to create crystals and biological assemblies, and would not have been observed only from the asymmetric unit. For the Ribonuclease A protein (PDB file 5RSA), which is functionally active in the crystallized form, we found that the individual protein and its crystal form retain the flexibility parameters between the two states. In contrast, a derivative of Ribonuclease A (PDB file 9RSA), has no functional activity, and the protein in both the asymmetric and crystalline forms, is very rigid. For the vaccinia virus D13 scaffolding protein (PDB file 3SAQ), which has two biological assemblies, we observed a striking asymmetry in the rigidity cluster decomposition of one of them, which seems implausible, given its symmetry. Upon careful investigation, we tracked the cause to a placement decision by the Reduce software concerning the hydrogen atoms, thus affecting the distribution of certain hydrogen bonds. The surprising result is that the presence or lack of a very few, but critical, hydrogen bonds, can drastically affect the rigid cluster decomposition of the biological assembly. Conclusion The rigidity analysis of a single asymmetric unit may not accurately reflect the protein's behavior in the tightly packed crystal environment. Using our KINARI software, we demonstrated that additional functional and rigidity information can be gained by analyzing a protein's biological assembly and/or crystal structure. However, performing a larger scale study would be computationally expensive (due to the size of the molecules involved). Overcoming this limitation will require novel mathematical and computational extensions to our software. PMID:24564201

2013-01-01

390

Solution Structures, Dynamics, and Ice Growth Inhibitory Activity of Peptide Fragments Derived from an Antarctic Yeast Protein  

PubMed Central

Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several ?-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of ?-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities. PMID:23209600

Asmawi, Azren A.; Rahman, Mohd Basyaruddin A.; Murad, Abdul Munir A.; Mahadi, Nor M.; Basri, Mahiran; Rahman, Raja Noor Zaliha A.; Salleh, Abu B.; Chatterjee, Subhrangsu; Tejo, Bimo A.; Bhunia, Anirban

2012-01-01

391

Mars water-ice clouds and precipitation.  

PubMed

The light detection and ranging instrument on the Phoenix mission observed water-ice clouds in the atmosphere of Mars that were similar to cirrus clouds on Earth. Fall streaks in the cloud structure traced the precipitation of ice crystals toward the ground. Measurements of atmospheric dust indicated that the planetary boundary layer (PBL) on Mars was well mixed, up to heights of around 4 kilometers, by the summer daytime turbulence and convection. The water-ice clouds were detected at the top of the PBL and near the ground each night in late summer after the air temperature started decreasing. The interpretation is that water vapor mixed upward by daytime turbulence and convection forms ice crystal clouds at night that precipitate back toward the surface. PMID:19574386

Whiteway, J A; Komguem, L; Dickinson, C; Cook, C; Illnicki, M; Seabrook, J; Popovici, V; Duck, T J; Davy, R; Taylor, P A; Pathak, J; Fisher, D; Carswell, A I; Daly, M; Hipkin, V; Zent, A P; Hecht, M H; Wood, S E; Tamppari, L K; Renno, N; Moores, J E; Lemmon, M T; Daerden, F; Smith, P H

2009-07-01

392

Incorporation of Frazil Ice into a Sea Ice/Ocean Model Nikhil Radia1  

E-print Network

ice consists of millimetre-sized crystals which are formed through supercooling of the sea is needed, usually in the form of an foreign crystal. Fig 1. Frazil Ice. Fig 2. Example of a polynya (left in the ocean cavity beneath an ice shelf. The model categorizes ice crystals into different size classes

393

Impact of Ice Ages on the genetic structure of trees and shrubs.  

PubMed Central

Data on the genetic structure of tree and shrub populations on the continental scale have accumulated dramatically over the past decade. However, our ability to make inferences on the impact of the last ice age still depends crucially on the availability of informative palaeoecological data. This is well illustrated by the results from a recent project, during which new pollen fossil maps were established and the variation in chloroplast DNA was studied in 22 European species of trees and shrubs. Species exhibit very different levels of genetic variation between and within populations, and obviously went through very different histories after Ice Ages. However, when palaeoecological data are non-informative, inferences on past history are difficult to draw from entirely genetic data. On the other hand, as illustrated by a study in ponderosa pine, when we can infer the species' history with some certainty, coalescent simulations can be used and new hypotheses can be tested. PMID:15101576

Lascoux, Martin; Palme, Anna E; Cheddadi, Rachid; Latta, Robert G

2004-01-01

394

Ice as a matrix for IR-matrix-assisted laser desorption/ionization: mass spectra from a protein single crystal.  

PubMed Central

Lasers emitting in the ultraviolet wavelength range of 260-360 nm are almost exclusively used for matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of macromolecules. Reports about the use of lasers emitting in the infrared first appeared in 1990/1991. In contrast to MALDI in the ultraviolet, a very limited number of reports on IR-MALDI have since been published. Several matrices have been identified for infrared MALDI yielding spectra of a quality comparable to those obtained in the ultraviolet. Water (ice) was recognized early as a potential matrix because of its strong O-H stretching mode near 3 microm. Interest in water as matrix derives primarily from the fact that it is the major constituent of most biological tissues. If functional as matrix, it might allow the in situ analysis of macromolecular constituents in frozen cell sections without extraction or exchanging the water. We present results that show that IR-MALDI of lyophilized proteins, air dried protein solutions, or protein crystals up to a molecular mass of 30 kDa is possible without the addition of any separate matrix. Samples must be frozen to retain a sufficient fraction of the water of hydration in the vacuum. The limited current sensitivity, requiring at least 10 pmol of protein for a successful analysis needs to be further improved. Images Fig. 5 PMID:8692933

Berkenkamp, S; Karas, M; Hillenkamp, F

1996-01-01

395

Crystal Structure of a Hyperactive Escherichia coli Glycerol Kinase Mutant Gly230 f Asp Obtained Using Microfluidic Crystallization Devices,  

E-print Network

Crystal Structure of a Hyperactive Escherichia coli Glycerol Kinase Mutant Gly230 f Asp Obtained ABSTRACT: The crystal structure of an Escherichia coli glycerol kinase mutant Gly230 f Asp (GKG230D GK monomer conformations in the presence of glycerol and in the absence of a nucleotide substrate

Quake, Stephen R.

396

Crystal structure and electronic structure of CePt2In7.  

PubMed

We report a corrected crystal structure for the CePt2In7 superconductor, refined from single crystal x-ray diffraction data. The corrected crystal structure shows a different Pt-In stacking along the c-direction in this layered material than was previously reported. In addition, all of the atomic sites are fully occupied with no evidence of atom site mixing, resolving a discrepancy between the observed high resistivity ratio of the material and the atomic disorder present in the previous structural model. The Ce-Pt distance and coordination is typical of that seen in all other reported CenMmIn3n+2?m compounds. Our band structure calculations based on the correct structure reveal three bands at the Fermi level that are more 3D than those previously proposed, and density functional theory (DFT) calculations show that the new structure has a significantly lower energy. PMID:25211386

Klimczuk, T; Walter, O; Müchler, L; Krizan, J W; Kinnart, F; Cava, R J

2014-10-01

397

Crystal structure and electronic structure of CePt2In7  

NASA Astrophysics Data System (ADS)

We report a corrected crystal structure for the CePt2In7 superconductor, refined from single crystal x-ray diffraction data. The corrected crystal structure shows a different Pt-In stacking along the c-direction in this layered material than was previously reported. In addition, all of the atomic sites are fully occupied with no evidence of atom site mixing, resolving a discrepancy between the observed high resistivity ratio of the material and the atomic disorder present in the previous structural model. The Ce-Pt distance and coordination is typical of that seen in all other reported CenMmIn3n+2?m compounds. Our band structure calculations based on the correct structure reveal three bands at the Fermi level that are more 3D than those previously proposed, and density functional theory (DFT) calculations show that the new structure has a significantly lower energy.

Klimczuk, T.; Walter, O.; Müchler, L.; Krizan, J. W.; Kinnart, F.; Cava, R. J.

2014-10-01

398

MEAT, POULTRY, Still contains ice  

E-print Network

MEAT, POULTRY, SEAFOOD Still contains ice crystals and feels as cold, there will be some texture and Clavor loss. Discard DAIRY Still contains ice crystals and feels Ice cream, frozen yogurt Discard Discard Cheese (soft and semi-soft) Refreeze. May

Liskiewicz, Maciej

399

Ice is a Mineral  

NSDL National Science Digital Library

This is a lesson about the characteristics of ice as a mineral and how it compares to other minerals with respect to hardness. Learners will observe ice crystals, develop a hardness scale and position ice on it. Learners will also practice working collaboratively in a team. Activities include small group miming, speaking, drawing, and/or writing. This is lesson 3 of 12 in the unit, Exploring Ice in the Solar System.

400

Micro-spectroscopic mapping: revealing internal structures of zircon crystals  

NASA Astrophysics Data System (ADS)

Natural zircon crystals typically deviate from perfect crystallinity and ideal chemical composition. If non-ideality features are not homogeneously distributed within a crystal but show a heterogeneity pattern, this is referred to as its "internal structure". Internal structures of zircon are mostly first caused by the heterogeneous incorporation of trace elements during crystal growth. Over time, these primary patterns may become more complex after being overprinted by radioactive self-irradiation and heterogeneous alteration or recrystallization. Internal structures may provide valuable information about the origin and post-growth history of zircon crystals. Further, they need to be recognized for sound microprobe dating, for instance to avoid biased results when straddling zones of different age. Revealing internal structures has thus become an important tool in zircon research. It is mostly done by means of backscattered electrons or cathodoluminescence imaging. These two techniques are advantageous over optical microscopy in the cross-polarized mode as the volume resolution is better and simple polished mounts instead of doubly-sided sections are needed. A disadvantage, however, is that the impact of electron beam during analysis causes local structural changes. Quantitative studies of the real structure of zircon samples, such as determination of the degree of the radiation damage, is therefore tainted with potential uncertainty when being done after electron probe analysis. As an alternative, we present images of internal zircon structures generated through visible laser excitation and mapping of the Raman and photoluminescence light. Due to the time-consuming mapping procedure, such images will perhaps not be routinely used. For detailed studies, however, they may provide most valuable information. Photoluminescence maps provide, for instance, information on both the distribution of rare earth elements (band integrals) and the short-range order (band broadening) whereas Raman-based images are most sensitive for revealing patterns of heterogeneous radiation damage. Application of micro-spectroscopic mappings to the study of zircon crystals from the Gold Butte block, Nevada, and the Adirondack Mountains, New York State, are presented.

Nasdala, L.; Reiners, P. W.; Hanchar, J. M.

2003-04-01

401

Synthesis, structural and spectroscopic investigations of nanostructured samarium oxalate crystals.  

PubMed

Nanostructured samarium oxalate crystals were prepared via microwave assisted co-precipitation method. The crystal structure and morphology of the sample were analyzed using X-ray powder diffraction, Scanning electron microscopy and Transmission electron microscopy. The presence of functional groups is ascertained by Fourier transform infrared spectroscopy. Samarium oxalate nanocrystals of average size 20 nm were aggregated together to form nano-plate structure in sub-microrange. Detailed spectroscopic investigation of the prepared phosphor material was carried out by Judd-Ofelt analysis based on the UV-Visible-NIR absorption spectra and photoluminescence emission spectra. The analysis reveals that the transition from energy level (4)G5/2 to (6)H7/2 of Sm(3+) ion has maximum branching ratio and the corresponding orange emission can be used for display applications. PMID:24334063

Vimal, G; Mani, Kamal P; Biju, P R; Joseph, Cyriac; Unnikrishnan, N V; Ittyachen, M A

2014-03-25

402

Synthesis, structural and spectroscopic investigations of nanostructured samarium oxalate crystals  

NASA Astrophysics Data System (ADS)

Nanostructured samarium oxalate crystals were prepared via microwave assisted co-precipitation method. The crystal structure and morphology of the sample were analyzed using X-ray powder diffraction, Scanning electron microscopy and Transmission electron microscopy. The presence of functional groups is ascertained by Fourier transform infrared spectroscopy. Samarium oxalate nanocrystals of average size 20 nm were aggregated together to form nano-plate structure in sub-microrange. Detailed spectroscopic investigation of the prepared phosphor material was carried out by Judd-Ofelt analysis based on the UV-Visible-NIR absorption spectra and photoluminescence emission spectra. The analysis reveals that the transition from energy level 4G5/2 to 6H7/2 of Sm3+ ion has maximum branching ratio and the corresponding orange emission can be used for display applications.

Vimal, G.; Mani, Kamal P.; Biju, P. R.; Joseph, Cyriac; Unnikrishnan, N. V.; Ittyachen, M. A.

2014-03-01

403

Crystal structure of BIS(Betaine) hydrochloride monohydrate  

NASA Astrophysics Data System (ADS)

Bis(betaine) hydrochloride monohydrate, 2Me 3NCH 2COO·HCI·H 2O, crystallizes in space group Pnma (No. 62), with a=11.904(1), b=22.454(5), c=5.624(1) Å, and Z=4. The structure has been refined to RinF=0.046 for 863 observed (| Fo||>6?| Fo|) Mo K? data. the carboxylate groups of a pair of betaine molecules are bridged by a proton to form a centrosymmetric dimer featuring a very strong hydrogen bond of length 2.454(4) Å. The crystal structure comprises a packing of such [(Me 3NCH 2COO) 2H] + moieties and hydrogen-bonded (Cl -·H 2O) ? zigzag chains running parallel to the c axis.

Chen, Xiao-Ming; Mak, Thomas C. W.

1990-11-01

404

Crystal structure of bis(pyridine betaine) hydrochloride monohydrate  

NASA Astrophysics Data System (ADS)

Bis(pyridine betaine) hydrochloride monohydrate, 2C 5H 5NCH 2COO·HCl·H 2O, crystallizes in space group Pnna (No. 52), with a=15.623(3), b=19.707(3), c=5.069(1) Å, and Z=4. The structure has been refined to RF=0.067 for 1207 observed (| F0|>6?| F0|) Mo K? data. The carboxylate groups of a pair of pyridine betaine molecules are bridged by a proton to form a centrosymmetric dimer featuring a very strong hydrogen bond of length 2.436(6) Å. The crystal structure comprises a packing of such [(C 5H 5NCH 2COO) 2H] + moieties and hydrogen-bonded (Cl -{dH 2O} ?) zigzag chains running parallel to the c axis.

Xiao-Ming, Chen; Mak, Thomas C. W.

1990-04-01

405

Thermoresponsive composite hydrogels with aligned macroporous structure by ice-templated assembly  

PubMed Central

Natural tissues, such as bone, tendon, and muscle, have well defined hierarchical structures, which are crucial for their biological and mechanical functions. However, mimicking these structural features still remains a great challenge. In this study, we use ice-templated assembly and UV-initiated cryo-polymerization to fabricate a novel kind of composite hydrogel which have both aligned macroporous structure at micrometer scale and a nacre-like layered structure at nanoscale. Such hydrogels are macroporous, thermoresponsive, and exhibit excellent mechanical performance (tough and high stretchable), attractive properties that are of significant impact on the wide applications of composite hydrogels, especially as tissue-engineering scaffolds. The fabrication method in this study including freeze-casting and cryo-polymerization can also be applied to other materials, which makes it promising for designing and developing smart and multifunctional composite hydrogels with hierar chical structures. PMID:24489436

Bai, Hao; Polini, Alessandro; Delattre, Benjamin; Tomsia, Antoni P.

2014-01-01

406

Acetylcholinesterase inhibition by fasciculin: Crystal structure of the complex  

Microsoft Academic Search

The crystal structure of the snake toxin fasciculin, bound to mouse acetylcholinesterase (mAChE), at 3.2 Å resolution reveal s a synergistic three-point anchorage consistent with the picomolar dissociation constant of the complex. Loop II of fasciculin contains a cluster of hydrophobic residues that interact with the peripheral anionic site of the enzyme and sterically occlude substrate access to the catalytic

Yves Bourne; Palmer Taylor; Pascale Marchot

1995-01-01

407

Lithium niobate: Summary of physical properties and crystal structure  

Microsoft Academic Search

Ferroelectric lithium niobate (LiNbO3) is widely used in integrated and guided-wave optics because of its favorable optical, piezoelectric, electro-optic, elastic, photoelastic, and photorefractive properties. However, detailed summaries of its pertinent physical properties and crystal structure are not readily available. In this tutorial paper, the important tensor physical properties and their mathematical descriptions are compiled and presented. The essential features of

R. S. Weis; T. K. Gaylord

1985-01-01

408

Crystal structures explain functional properties of two E. coli porins  

Microsoft Academic Search

Porins form aqueous channels that aid the diffusion of small hydrophilic molecules across the outer membrane of Gram-negative bacteria. The crystal structures of matrix porin and phosphoporin both reveal trimers of identical subunits, each subunit consisting of a 16-stranded anti-parallel beta-barrel containing a pore. A long loop inside the barrel contributes to a constriction of the channel where the charge

S. W. Cowan; T. Schirmer; G. Rummel; M. Steiert; R. Ghosh; R. A. Pauptit; J. N. Jansonius; J. P. Rosenbusch

1992-01-01

409

Crystal structure of an H\\/ACA box ribonucleoprotein particle  

Microsoft Academic Search

H\\/ACA ribonucleoprotein particles (RNPs) are a family of RNA pseudouridine synthases that specify modification sites through guide RNAs. They also participate in eukaryotic ribosomal RNA processing and are a component of vertebrate telomerases. Here we report the crystal structure, at 2.3Å resolution, of an entire archaeal H\\/ACA RNP consisting of proteins Cbf5, Nop10, Gar1 and L7ae, and a single-hairpin H\\/ACA

Ling Li; Keqiong Ye

2006-01-01

410

Crystal Structures of Cisplatin Bound to a Human Copper Chaperone  

SciTech Connect

Copper trafficking proteins, including the chaperone Atox1 and the P{sub 1B}-type ATPase ATP7B, have been implicated in cellular resistance to the anticancer drug cisplatin. We have determined two crystal structures of cisplatin-Atox1 adducts that reveal platinum coordination by the conserved CXXC copper-binding motif. Direct interaction of cisplatin with this functionally relevant site has significant implications for understanding the molecular basis for resistance mediated by copper transport pathways.

Boal, Amie K.; Rosenzweig, Amy C.; (NWU)

2010-08-16

411

Incommensurate composite crystal structure of scandium-II  

SciTech Connect

The long-unknown crystal structure of the high pressure phase scandium-II was solved by powder x-ray diffraction and was found to have tetragonal host channels along the c axis and guest chains that are incommensurate with the host, as well as the high pressure phases of Ba, Sr, Bi, and Sb. The pressure dependences of the lattice constants, the incommensurability, the atomic distances, and the atomic volume were investigated.

Fujihisa, Hiroshi; Gotoh, Yoshito; Yamawaki, Hiroshi; Sakashita, Mami; Takeya, Satoshi; Honda, Kazumasa [National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 (Japan); Akahama, Yuichi; Kawamura, Haruki [Graduate School of Material Science, University of Hyogo, 3-2-1 Koto, Kamigohri, Hyogo 678-1297 (Japan)

2005-10-01

412

Micro-machined infrared emitter with metallic photonic crystals structure  

NASA Astrophysics Data System (ADS)

Infrared emitter (IR) with photonic crystal structure formed by a hexagonal array of holes has been designed. The processes for fabricating the emitter are developed basing on using silicon-on-insulator (SOI) wafer. The emission spectrum of the IR emitter is measured with spectroradiometer. The experimental results show that the infrared emitter exhibits a strong narrow-band emission in middle infrared range. The wavelengths of the measured emission peaks agree well with the theoretical prediction.

Li, Fangqiang; San, Haisheng; Cheng, Meijing; Chen, Xuyuan

2009-05-01

413

Interferometric studies of domain structures in potassium niobate single crystals  

Microsoft Academic Search

Interferometric studies of domain structures in KNbO3 single crystals, grown by using excess of K2CO3 as a flux are reported. The surface deformations produced on the pseudocubic (001) planes by the stable patterns of 90°, 60° and 180° domains have been studied and discussed. If the observed plane is not the plane of the shear, the 90° domains are inclined

K G Deshmukh; S G Ingle