These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Structure of ice crystallized from supercooled water  

PubMed Central

The freezing of water to ice is fundamentally important to fields as diverse as cloud formation to cryopreservation. At ambient conditions, ice is considered to exist in two crystalline forms: stable hexagonal ice and metastable cubic ice. Using X-ray diffraction data and Monte Carlo simulations, we show that ice that crystallizes homogeneously from supercooled water is neither of these phases. The resulting ice is disordered in one dimension and therefore possesses neither cubic nor hexagonal symmetry and is instead composed of randomly stacked layers of cubic and hexagonal sequences. We refer to this ice as stacking-disordered ice I. Stacking disorder and stacking faults have been reported earlier for metastable ice I, but only for ice crystallizing in mesopores and in samples recrystallized from high-pressure ice phases rather than in water droplets. Review of the literature reveals that almost all ice that has been identified as cubic ice in previous diffraction studies and generated in a variety of ways was most likely stacking-disordered ice I with varying degrees of stacking disorder. These findings highlight the need to reevaluate the physical and thermodynamic properties of this metastable ice as a function of the nature and extent of stacking disorder using well-characterized samples. PMID:22232652

Malkin, Tamsin L.; Murray, Benjamin J.; Brukhno, Andrey V.; Anwar, Jamshed; Salzmann, Christoph G.

2012-01-01

2

Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.  

PubMed

Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by solution. We predict that micrometer-sized particles and nanoparticles have the same equilibrium internal structure. The variation of liquid-vapor surface tension with solute concentration is a key factor in determining whether a solution-embedded ice core or vapor-exposed ice cap is the equilibrium structure of the aerosols. In agreement with experiments, we predict that the structure of mixed-phase HNO3-water particles, representative of polar stratospheric clouds, consists of an ice core surrounded by freeze-concentrated solution. The results of this work are important to determine the phase state and internal structure of sea spray ultrafine aerosols and other mixed-phase particles under atmospherically relevant conditions. PMID:24820354

Hudait, Arpa; Molinero, Valeria

2014-06-01

3

Crystal structure and encapsulation dynamics of ice II-structured neon hydrate  

E-print Network

Crystal structure and encapsulation dynamics of ice II-structured neon hydrate Xiaohui Yua. Francisco, June 9, 2014 (sent for review April 24, 2014) Neon hydrate was synthesized and studied by in situ knowledge, we demonstrate that neon atoms can be enclathrated in water molecules to form ice II

Wang, Wei Hua

4

The growth habits and surface structure of ice crystals  

Microsoft Academic Search

Evidence to show that the layer growth of ice crystals occurs mainly by the surface diffusion of molecules to the growing steps is presented. Measurements of the rate-of-change of separation of adjacent growth steps allow the mean migration distance xs of molecules on the basal face to be deduced; this parameter shows a remarkable variation with temperature over the range

B. J. Mason; G. W. Bryant; A. P. Van den Heuvel

1963-01-01

5

Snow Ice Crystals  

NSDL National Science Digital Library

This article from Physics Today by Yoshinori Furukawa and John S. Wettlaufer and John S. Wettlaufer describes how ice crystals form on the earth. The resource includes graphics depicting how different shapes of ice crystals are formed.

Furukawa, Y.

6

Crystal structure of an insect antifreeze protein and its implications for ice binding.  

PubMed

Antifreeze proteins (AFPs) help some organisms resist freezing by binding to ice crystals and inhibiting their growth. The molecular basis for how these proteins recognize and bind ice is not well understood. The longhorn beetle Rhagium inquisitor can supercool to below -25 °C, in part by synthesizing the most potent antifreeze protein studied thus far (RiAFP). We report the crystal structure of the 13-kDa RiAFP, determined at 1.21 ? resolution using direct methods. The structure, which contains 1,914 nonhydrogen protein atoms in the asymmetric unit, is the largest determined ab initio without heavy atoms. It reveals a compressed ?-solenoid fold in which the top and bottom sheets are held together by a silk-like interdigitation of short side chains. RiAFP is perhaps the most regular structure yet observed. It is a second independently evolved AFP type in beetles. The two beetle AFPs have in common an extremely flat ice-binding surface comprising regular outward-projecting parallel arrays of threonine residues. The more active, wider RiAFP has four (rather than two) of these arrays between which the crystal structure shows the presence of ice-like waters. Molecular dynamics simulations independently reproduce the locations of these ordered crystallographic waters and predict additional waters that together provide an extensive view of the AFP interaction with ice. By matching several planes of hexagonal ice, these waters may help freeze the AFP to the ice surface, thus providing the molecular basis of ice binding. PMID:23486477

Hakim, Aaron; Nguyen, Jennifer B; Basu, Koli; Zhu, Darren F; Thakral, Durga; Davies, Peter L; Isaacs, Farren J; Modis, Yorgo; Meng, Wuyi

2013-04-26

7

Structural transformation in supercooled water controls the crystallization rate of ice.  

PubMed

One of water's unsolved puzzles is the question of what determines the lowest temperature to which it can be cooled before freezing to ice. The supercooled liquid has been probed experimentally to near the homogeneous nucleation temperature, T(H) ? 232 K, yet the mechanism of ice crystallization-including the size and structure of critical nuclei-has not yet been resolved. The heat capacity and compressibility of liquid water anomalously increase on moving into the supercooled region, according to power laws that would diverge (that is, approach infinity) at ~225 K (refs 1, 2), so there may be a link between water's thermodynamic anomalies and the crystallization rate of ice. But probing this link is challenging because fast crystallization prevents experimental studies of the liquid below T(H). And although atomistic studies have captured water crystallization, high computational costs have so far prevented an assessment of the rates and mechanism involved. Here we report coarse-grained molecular simulations with the mW water model in the supercooled regime around T(H) which reveal that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water explains its anomalous thermodynamics and also controls the rate and mechanisms of ice formation. The results of the simulations and classical nucleation theory using experimental data suggest that the crystallization rate of water reaches a maximum around 225 K, below which ice nuclei form faster than liquid water can equilibrate. This implies a lower limit of metastability of liquid water just below T(H) and well above its glass transition temperature, 136 K. By establishing a relationship between the structural transformation in liquid water and its anomalous thermodynamics and crystallization rate, our findings also provide mechanistic insight into the observed dependence of homogeneous ice nucleation rates on the thermodynamics of water. PMID:22113691

Moore, Emily B; Molinero, Valeria

2011-11-24

8

Structural transformation in supercooled water controls the crystallization rate of ice  

E-print Network

One of water's unsolved puzzles is the question of what determines the lowest temperature to which it can be cooled before freezing to ice. The supercooled liquid has been probed experimentally to near the homogeneous nucleation temperature TH{\\approx}232 K, yet the mechanism of ice crystallization - including the size and structure of critical nuclei - has not yet been resolved. The heat capacity and compressibility of liquid water anomalously increase upon moving into the supercooled region according to a power law that would diverge at Ts{\\approx}225 K,(1,2) so there may be a link between water's thermodynamic anomalies and the crystallization rate of ice. But probing this link is challenging because fast crystallization prevents experimental studies of the liquid below TH. And while atomistic studies have captured water crystallization(3), the computational costs involved have so far prevented an assessment of the rates and mechanism involved. Here we report coarse-grained molecular simulations with the mW water model(4) in the supercooled regime around TH, which reveal that a sharp increase in the fraction of four-coordinated molecules in supercooled liquid water explains its anomalous thermodynamics and also controls the rate and mechanism of ice formation. The simulations reveal that the crystallization rate of water reaches a maximum around 225 K, below which ice nuclei form faster than liquid water can equilibrate. This implies a lower limit of metastability of liquid water just below TH and well above its glass transition temperature Tg{\\approx}136 K. By providing a relationship between the structural transformation in liquid water, its anomalous thermodynamics and its crystallization rate, this work provides a microscopic foundation to the experimental finding that the thermodynamics of water determines the rates of homogeneous nucleation of ice.(5)

Emily B. Moore; Valeria Molinero

2011-09-27

9

Crystal structure and encapsulation dynamics of ice II-structured neon hydrate.  

PubMed

Neon hydrate was synthesized and studied by in situ neutron diffraction at 480 MPa and temperatures ranging from 260 to 70 K. For the first time to our knowledge, we demonstrate that neon atoms can be enclathrated in water molecules to form ice II-structured hydrates. The guest Ne atoms occupy the centers of D2O channels and have substantial freedom of movement owing to the lack of direct bonding between guest molecules and host lattices. Molecular dynamics simulation confirms that the resolved structure where Ne dissolved in ice II is thermodynamically stable at 480 MPa and 260 K. The density distributions indicate that the vibration of Ne atoms is mainly in planes perpendicular to D2O channels, whereas their distributions along the channels are further constrained by interactions between adjacent Ne atoms. PMID:25002464

Yu, Xiaohui; Zhu, Jinlong; Du, Shiyu; Xu, Hongwu; Vogel, Sven C; Han, Jiantao; Germann, Timothy C; Zhang, Jianzhong; Jin, Changqing; Francisco, Joseph S; Zhao, Yusheng

2014-07-22

10

Crystal structure and encapsulation dynamics of ice II-structured neon hydrate  

PubMed Central

Neon hydrate was synthesized and studied by in situ neutron diffraction at 480 MPa and temperatures ranging from 260 to 70 K. For the first time to our knowledge, we demonstrate that neon atoms can be enclathrated in water molecules to form ice II-structured hydrates. The guest Ne atoms occupy the centers of D2O channels and have substantial freedom of movement owing to the lack of direct bonding between guest molecules and host lattices. Molecular dynamics simulation confirms that the resolved structure where Ne dissolved in ice II is thermodynamically stable at 480 MPa and 260 K. The density distributions indicate that the vibration of Ne atoms is mainly in planes perpendicular to D2O channels, whereas their distributions along the channels are further constrained by interactions between adjacent Ne atoms. PMID:25002464

Yu, Xiaohui; Zhu, Jinlong; Du, Shiyu; Xu, Hongwu; Vogel, Sven C.; Han, Jiantao; Germann, Timothy C.; Zhang, Jianzhong; Jin, Changqing; Francisco, Joseph S.; Zhao, Yusheng

2014-01-01

11

Ice crystal ingestion by turbofans  

NASA Astrophysics Data System (ADS)

This Thesis will present the problem of inflight icing in general and inflight icing caused by the ingestion of high altitude ice crystals produced by high energy mesoscale convective complexes in particular, and propose a new device to prevent it based on dielectric barrier discharge plasma. Inflight icing is known to be the cause of 583 air accidents and more than 800 deaths in more than a decade. The new ice crystal ingestion problem has caused more than 100 flights to lose engine power since the 1990's, and the NTSB identified it as one of the causes of the Air France flight 447 accident in 1-Jun2008. The mechanics of inflight icing not caused by ice crystals are well established. Aircraft surfaces exposed to supercooled liquid water droplets will accrete ice in direct proportion of the droplet catch and the freezing heat transfer process. The multiphase flow droplet catch is predicted by the simple sum of forces on each spherical droplet and a droplet trajectory calculation based on Lagrangian or Eulerian analysis. The most widely used freezing heat transfer model for inflight icing caused by supercooled droplets was established by Messinger. Several computer programs implement these analytical models to predict inflight icing, with LEWICE being based on Lagrangian analysis and FENSAP being based on Eulerian analysis as the best representatives among them. This Thesis presents the multiphase fluid mechanics particular to ice crystals, and explains how it differs from the established droplet multiphase flow, and the obstacles in implementing the former in computational analysis. A new modification of the Messinger thermal model is proposed to account for ice accretion produced by ice crystal impingement. Because there exist no computational and experimental ways to fully replicate ice crystal inflight icing, and because existing ice protections systems consume vast amounts of energy, a new ice protection device based on dielectric barrier discharge plasma is proposed and built in this Thesis, called DBDAIS, with a complete description of the anti-ice cycle. Contrary to existing ice protection systems, which either heat the aircraft surfaces, or mechanically remove the accreted ice, the DBDAIS employs non-thermal plasma discharges to prevent ice accretion. A new apparatus that mimics inflight icing based on combining the liquid sprays of liquid nitrogen and water was designed and fabricated, named LNITA. The apparatus produces ice similar to glaze ice and rime ice, the two characteristic types of ice from inflight icing, at the cost of 1% of similar tests in icing wind tunnels. Nineteen experiments of the DBDAIS were performed in the LNITA. The results from the experiments point to 32 kV and 4 kHz being adequate to prevent ice accretion, with a power consumption of 1 W/cm2. This compares favorably to existing ice protection systems, which typically run at 10 W/cm2, and to the power consumption of a typical electric stove burner at maximum power, which is 5 W/cm2. To complete this Thesis, a design and development project is proposed to implement the DBDAIS in Unmanned Aircraft Systems (UAS), with the selection of standard FAA inflight icing conditions, the run of 240 LEWICE simulations, and an analysis of the run results. The computational results lead to the design of a wing boot covering the airfoil from 20% of the lower pressure surface to 4% of the upper suction surface as the optimal protection for a UAS.

Rios Pabon, Manuel A.

12

Effects of Ice-Crystal Structure on Halo Formation: Cirrus Cloud Experimental and Ray-Tracing Modeling Studies  

NASA Technical Reports Server (NTRS)

During the 1986 Project FIRE (First International Satellite Cloud Climatology Project Regional Experiment) field campaign, four 22 deg halo-producing cirrus clouds were studied jointly from a ground-based polarization lidar and an instrumented aircraft. The lidar data show the vertical cloud structure and the relative position of the aircraft, which collected a total of 84 slides by impaction, preserving the ice crystals for later microscopic examination. Although many particles were too fragile to survive impaction intact, a large fraction of the identifiable crystals were columns and radial bullet rosettes, with both displaying internal cavitations and radial plate-column combinations. Particles that were solid or displayed only a slight amount of internal structure were relatively rare, which shows that the usual model postulated by halo theorists, i.e., the randomly oriented, solid hexagonal crystal, is inappropriate for typical cirrus clouds. With the aid of new ray-tracing simulations for hexagonal hollow-ended column and bullet-rosette models, we evaluate the effects of more realistic ice-crystal structures on halo formation and lidar depolarization and consider why the common halo is not more common in cirrus clouds.

Sassen, Kenneth; Knight, Nancy C.; Takano, Yoshihide; Heymsfield, Andrew J.

1994-01-01

13

Ice crystallization during the manufacture of ice cream  

Microsoft Academic Search

Control of ice crystallization during the manufacture of ice cream is important for the development of proper texture, product quality and storage stability. Improving our somewhat limited understanding of the mechanisms that control ice-crystal formation, as well as of the effects of formulation and process factors, may lead to improvements in processing techniques.

Richard W. Hartel

1996-01-01

14

Possible Mechanisms for Turbofan Engine Ice Crystal Icing at High Altitude  

NASA Technical Reports Server (NTRS)

A thermodynamic model is presented to describe possible mechanisms of ice formation on unheated surfaces inside a turbofan engine compression system from fully glaciated ice crystal clouds often formed at high altitude near deep convective weather systems. It is shown from the analysis that generally there could be two distinct types of ice formation: (1) when the "surface freezing fraction" is in the range of 0 to 1, dominated by the freezing of water melt from fully or partially melted ice crystals, the ice structure is formed from accretion with strong adhesion to the surface, and (2) when the "surface melting fraction" is the range of 0 to 1, dominated by the further melting of ice crystals, the ice structure is formed from accumulation of un-melted ice crystals with relatively weak bonding to the surface. The model captures important qualitative trends of the fundamental ice-crystal icing phenomenon reported earlier1,2 from the research collaboration work by NASA and the National Research Council (NRC) of Canada. Further, preliminary analysis of test data from the 2013 full scale turbofan engine ice crystal icing test3 conducted in the NASA Glenn Propulsion Systems Laboratory (PSL) has also suggested that (1) both types of ice formation occurred during the test, and (2) the model has captured some important qualitative trend of turning on (or off) the ice crystal ice formation process in the tested engine low pressure compressor (LPC) targeted area under different icing conditions that ultimately would lead to (or suppress) an engine core roll back (RB) event.

Tsao, Jen-Ching; Struk, Peter M.; Oliver, Michael

2014-01-01

15

Relationships between ice cream mix viscoelasticity and ice crystal growth in ice cream  

Microsoft Academic Search

The relationship between ice cream mix viscoelasticity and ice crystal growth in ice cream as a function of stabilizer addition was studied by a simulation of freeze-concentration using a series of ice cream mixes containing reduced quantities of water. Ice cream mixes were formulated with guar gum concentrations ranging from 0 to 0.25% and a series of concentrated mixes from

S. Bolliger; H. Wildmoser; H. D. Goff; B. W. Tharp

2000-01-01

16

An Overview of NASA Engine Ice-Crystal Icing Research  

NASA Technical Reports Server (NTRS)

Ice accretions that have formed inside gas turbine engines as a result of flight in clouds of high concentrations of ice crystals in the atmosphere have recently been identified as an aviation safety hazard. NASA s Aviation Safety Program (AvSP) has made plans to conduct research in this area to address the hazard. This paper gives an overview of NASA s engine ice-crystal icing research project plans. Included are the rationale, approach, and details of various aspects of NASA s research.

Addy, Harold E., Jr.; Veres, Joseph P.

2011-01-01

17

Probing the structure of cometary ice.  

PubMed

Computer simulations of bulk and vapor deposited amorphous ices are presented. The structure of the bulk low density amorphous ice is in good agreement with experiments on pressure disordered amorphous ice. Both the low density bulk ice and the vapor deposited ices exhibit strong ordering. Vapor deposition of hot (300 K) water molecules onto a cold (77 K) substrate yields less porous ices than deposition of cold (77 K) water molecules onto a cold substrate. Both vapor deposited ices are more porous than the bulk amorphous ice. The structure of bulk high density amorphous ice is only in fair agreement with experimental results. Attempts to simulate high density amorphous ice via vapor deposition were not successful. Electron diffraction results on vapor deposited amorphous ice indicate that the temperature of the nucleation of the cubic phase depends upon the amount of time between the deposition and the onset of crystallization, suggesting that freshly deposited ice layers reconstruct on times of the order of hours. The temperature dependence of the microporosity of the vapor deposited amorphous ices might affect laboratory experiments that are aimed at simulating astrophysical ices in the context of the origin of prebiotic organic material and its transport to the Earth. PMID:11536679

Wilson, M A; Pohorille, A; Jenniskens, P; Blake, D F

1995-06-01

18

Ice crystallization in water's "no-man's land".  

PubMed

The crystallization of water at 180 K is studied through large-scale molecular dynamics simulations with the monatomic water model mW. This temperature is in the middle of water's "no-man's land," where rapid ice crystallization prevents the elucidation of the structure of liquid water and its transformation into ice with state of the art experimental methods. We find that critical ice nuclei (that contain less than ten water molecules) form in a time scale shorter than the time required for the relaxation of the liquid, suggesting that supercooled liquid water cannot be properly equilibrated in this region. We distinguish three stages in the crystallization of water at 180 K: concurrent nucleation and growth of ice, followed by consolidation that decreases the number density of ice nuclei, and finally, slow growth of the crystallites without change in their number density. The kinetics of the transformation along the three stages is well described by a single compacted exponential Avrami equation with n approximately 1.7. This work confirms the coexistence of ice and liquid after water is crystallized in "no-man's land": the formation of ice plateaus when there is still 15%-20% of liquid water in the systems, thinly dispersed between ice I crystals with linear dimensions ranging from 3 to 10 nm. We speculate that the nanoscopic size of the crystallites decreases their melting point and slows their evolution toward the thermodynamically most stable fully crystalline state. PMID:20590203

Moore, Emily B; Molinero, Valeria

2010-06-28

19

Mixing of the Immiscible: Hydrocarbons in Water-Ice near the Ice Crystallization Temperature.  

PubMed

Structural changes in hydrocarbon-doped water-ice during amorphous to crystalline phase conversion are investigated using polycyclic aromatic hydrocarbons (PAHs) as probes. We show that aggregation of impurity molecules occurs due to the amorphous-crystalline transition in ice, especially when they are hydrophobic molecules such as PAHs. Using ultraviolet-visible (UV-vis), Fourier-transform Infrared (FTIR), and laser-induced-fluorescence (LIF) spectroscopic techniques, we show that, although ice infrared absorption features change from a broad structureless band corresponding to amorphous ice to a sharp structured crystalline ice bands, simultaneously, sharper isolated PAH UV absorption features measured in the amorphous ice host turn broad upon ice crystallization. A simultaneous decrease in the monomer fluorescence and increase in the excimer emission band is observed, a clear indication for the formation of PAH molecular aggregates when amorphous ice is converted to crystalline ice at higher temperatures. Similar to the irreversible amorphous-crystalline phase transitions, the UV, fluorescence, and excimer emissions indicate that PAHs undergo irreversible aggregation. Our studies suggest that organic impurities exist as aggregates rather than monomers trapped in crystalline water-ice when cycled through temperatures that convert amorphous ice to crystalline ice, rendering a better insight into phenomena such as the formation of cometary crust. This aggregate formation also may significantly change the secondary reaction pathways and rates in impurity-doped ices in the lab, on Earth, in the solar system, and in the interstellar medium. PMID:25302532

Lignell, Antti; Gudipati, Murthy S

2015-03-19

20

Ice Crystal Size Distributions in Dynamically Frozen Model Solutions and Ice Cream as Affected by Stabilizers  

Microsoft Academic Search

Ice crystal size distributions of dynamically frozen model solutions and ice cream after hardening were determined through image analysis using low temper- ature scanning electron microscopy. The effect of the components of ice cream were studied through a ser- ies of model solutions and compared with ice cream. The ice crystal diameter at 50% of the cumulative distribution function for

A. A. Flores; H. D. Goff

1999-01-01

21

Fundamental Ice Crystal Accretion Physics Studies  

NASA Technical Reports Server (NTRS)

Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component such as a stator blade to degrade significantly, and could damage downstream components if shed.

Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

2012-01-01

22

Crystallization of amorphous water ice in the solar system.  

PubMed

Electron diffraction studies of vapor-deposited water ice have characterized the dynamical structural changes during crystallization that affect volatile retention in cometary materials. Crystallization is found to occur by nucleation of small domains, while leaving a significant part of the amorphous material in a slightly more relaxed amorphous state that coexists metastably with cubic crystalline ice. The onset of the amorphous relaxation is prior to crystallization and coincides with the glass transition. Above the glass transition temperature, the crystallization kinetics are consistent with the amorphous solid becoming a "strong" viscous liquid. The amorphous component can effectively retain volatiles during crystallization if the volatile concentration is approximately 10% or less. For higher initial impurity concentrations, a significant amount of impurities is released during crystallization, probably because the impurities are trapped on the surfaces of micropores. A model for crystallization over long timescales is described that can be applied to a wide range of impure water ices under typical astrophysical conditions if the fragility factor D, which describes the viscosity behavior, can be estimated. PMID:11539415

Jenniskens, P; Blake, D F

1996-12-20

23

Crystallization of amorphous water ice in the solar system  

NASA Technical Reports Server (NTRS)

Electron diffraction studies of vapor-deposited water ice have characterized the dynamical structural changes during crystallization that affect volatile retention in cometary materials. Crystallization is found to occur by nucleation of small domains, while leaving a significant part of the amorphous material in a slightly more relaxed amorphous state that coexists metastably with cubic crystalline ice. The onset of the amorphous relaxation is prior to crystallization and coincides with the glass transition. Above the glass transition temperature, the crystallization kinetics are consistent with the amorphous solid becoming a "strong" viscous liquid. The amorphous component can effectively retain volatiles during crystallization if the volatile concentration is approximately 10% or less. For higher initial impurity concentrations, a significant amount of impurities is released during crystallization, probably because the impurities are trapped on the surfaces of micropores. A model for crystallization over long timescales is described that can be applied to a wide range of impure water ices under typical astrophysical conditions if the fragility factor D, which describes the viscosity behavior, can be estimated.

Jenniskens, P.; Blake, D. F.

1996-01-01

24

Crystal size variations in Eemian-age ice from the GRIP ice core, Central Greenland  

Microsoft Academic Search

Continuous measurements of ice crystal size have been carried out on an 80 m sequence between 2790 and 2870 m depth in the GRIP ice core from Central Greenland. The ice in this interval is at present considered to orginate from the Eemian interglacial period. The record reveals that the crystal size in ice older than 100,000 yr is highly

Thorsteinn Thorsteinsson; Josef Kipfstuhl; Hajo Eicken; Sigfus J. Johnsen; Katrin Fuhrer

1995-01-01

25

Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions  

NASA Astrophysics Data System (ADS)

Here we show high-magnification images of hexagonal ice crystals acquired by Environmental Scanning Electron Microscopy (ESEM). Most ice crystals were grown and sublimated in the water vapor environment of an FEI-Quanta-200 ESEM, but crystals grown in a laboratory diffusion chamber were also transferred intact and imaged via ESEM. All of these images display prominent mesoscopic topography including linear striations, ridges, islands, steps, peaks, pits, and crevasses; the roughness is not observed to be confined to prism facets. The observations represent the most highly magnified images of ice surfaces yet reported and expand the range of conditions where the rough surface features are known to be conspicuous. Microscale surface topography is seen to be ubiquitously present at temperatures ranging from -10 °C to -40 °C, at super-saturated and sub-saturated conditions, on all crystal facets, and irrespective of substrate. Despite the constant presence of surface roughness, the patterns of roughness are observed to be dramatically different between growing and sublimating crystals, and transferred crystals also display qualitatively different patterns of roughness. Crystals are also demonstrated to sometimes exhibit inhibited growth in moderately supersaturated conditions following exposure to near-equilibrium conditions, a phenomena interpreted as evidence of 2-D nucleation. New knowledge of the characteristics of these features could affect the fundamental understanding of ice surfaces and their physical parameterization in the context of satellite retrievals and cloud modeling. Links to Supplement videos of ice growth and sublimation are provided.

Magee, N. B.; Miller, A.; Amaral, M.; Cumiskey, A.

2014-03-01

26

Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions  

NASA Astrophysics Data System (ADS)

Here we show high-magnification images of hexagonal ice crystals acquired by environmental scanning electron microscopy (ESEM). Most ice crystals were grown and sublimated in the water vapor environment of an FEI-Quanta-200 ESEM, but crystals grown in a laboratory diffusion chamber were also transferred intact and imaged via ESEM. All of these images display prominent mesoscopic topography including linear striations, ridges, islands, steps, peaks, pits, and crevasses; the roughness is not observed to be confined to prism facets. The observations represent the most highly magnified images of ice surfaces yet reported and expand the range of conditions in which rough surface features are known to be conspicuous. Microscale surface topography is seen to be ubiquitously present at temperatures ranging from -10 °C to -40 °C, in supersaturated and subsaturated conditions, on all crystal facets, and irrespective of substrate. Despite the constant presence of surface roughness, the patterns of roughness are observed to be dramatically different between growing and sublimating crystals, and transferred crystals also display qualitatively different patterns of roughness. Crystals are also demonstrated to sometimes exhibit inhibited growth in moderately supersaturated conditions following exposure to near-equilibrium conditions, a phenomenon interpreted as evidence of 2-D nucleation. New knowledge about the characteristics of these features could affect the fundamental understanding of ice surfaces and their physical parameterization in the context of satellite retrievals and cloud modeling. Links to supplemental videos of ice growth and sublimation are provided.

Magee, N. B.; Miller, A.; Amaral, M.; Cumiskey, A.

2014-11-01

27

Disturbed basal ice seen in radio echo images coincide with zones of big interlocking ice crystals.  

NASA Astrophysics Data System (ADS)

Improvement of the depth sounding radio echo sounding (RES) over Antarctica and Greenland Ice Sheet has made it possible to map the near basal layers that have not been 'seen' earlier due to the very high demand of attenuation needed to reach through more than 3000m of ice. The RES internal reflectors show that the near basal ice at many locations has disturbed layering. At the locations where ice cores reach the bedrock both in Greenland and Antarctica studies of the ice crystal size and orientation show that the near basal ice has big and interlocking ice crystals which suggests the ice is not actively deforming. These observations challenge the often used constitutive equations like Glens flow law in ice sheet modelling. A discussion of the impact of the RES findings on ice sheet modeling and the quest to find the oldest ice in Antarctic based on the anisotropy of the basal ice will follow.

Dahl-Jensen, Dorthe; Gogineni, Sivaprasad; Panton, Christian

2014-05-01

28

Factors Affecting the Changes of Ice Crystal Form in Ice Cream  

NASA Astrophysics Data System (ADS)

In this study, the shape of ice crystals in ice cream was quantitatively evaluated by introducing fractal analysis. A small droplet of commercial ice cream mix was quickly cooled to about -30°C on the cold stage of microscope. Subsequently, it was heated to -5°C or -10°C and then held for various holding time. Based on the captured images at each holding time, the cross-sectional area and the length of circumference for each ice crystal were measured to calculate fractal dimension using image analysis software. The results showed that the ice crystals were categorized into two groups, e.g. simple-shape and complicated-shape, according to their fractal dimensions. The fractal dimension of ice crystals became lower with increasing holding time and holding temperature. It was also indicated that the growing rate of complicated-shape ice crystals was relatively higher because of aggregation.

Wang, Xin; Watanabe, Manabu; Suzuki, Toru

29

Microscopic pattern of ice crystal growth in the presence of thermal hysteresis proteins  

SciTech Connect

This study examines the effect of thermal hysteresis proteins (THPs) from the winter flounder (Psuedopleuronectes americanus) on the ice-water interface morphology during freezing of aqueous solutions. Experiments were performed using a directional solidification stage, and the development of the two-phase interface was observed through a microscope and recorded by a video system. Unusual ice crystal morphologies were observed, including faceted ice crystal growth along the (1100) crystal plane; spicular or needlelike growth in the (1010) direction; and growth parallel to the c-axis, (0001), consisting of incorporated liquid inclusions bounded by hexagonal prism faces. The observed crystallographic structures can be explained as an effect of the interaction between the THPs and the primary prism faces of ice crystals. This results in an increase in the Gibbs free energy of these planes, followed by ice growth into the supercooled liquid adjacent to these faces.

Coger, R.; Rubinsky, B. (Univ. of California, Berkeley, CA (United States). Dept. of Mechanical Engineering); Fletcher, G. (Memorial Univ. of Newfoundland, St. John's, Newfoundland (Canada))

1994-08-01

30

Structures and phase transitions of amorphous ices  

Microsoft Academic Search

Molecular dynamics simulations have been carried out in order to clarify the structural and hydrogen bond network differences among high density amorphous ice (HDA), low density amorphous ice (LDA), and hexagonal ice (ice Ih). Ice Ih is transformed to HDA at 1.27 GPa and 77 K. A very long time (order of a nanosecond) to complete the transition is required.

Ichiro Okabe; Hideki Tanaka; Koichiro Nakanishi

1996-01-01

31

Crystal structure and prediction.  

PubMed

The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape. PMID:25422850

Thakur, Tejender S; Dubey, Ritesh; Desiraju, Gautam R

2015-04-01

32

Structural Characterization of Crystalline Ice Nanoclusters  

NASA Technical Reports Server (NTRS)

Water ice nanoclusters are useful analogs for studying a variety of processes that occur within icy grains in the extraterrestrial environment. The surface of ice nanoclusters prepared in the laboratory is similar to the surface of interstellar ice grains. In cold molecular clouds, the silicate cores of interstellar grains are typically approx. 100 nm in diameter and have a coating of impure amorphous water ice. Depositional, thermal and radiolytic processes leave the surface and subsurface molecules in a disordered state. In this state, structural defects become mobile and reactions of trapped gases and small molecules can occur. The large surface area of nanocluster deposits relative to their bulk allows for routine observation of such surface-mediated processes. Furthermore, the disordered surface and subsurface layers in nanocluster deposits mimic the structure of amorphous ice rinds found on interstellar dust grains. Transmission Electron Microscopy (TEM has been used tn characterize the crystallinity, growth mechanism, and size distribution of nanoclusters formed from a mixture of water vapor with an inert carrier gas that has been rapidly cooled to 77K. E M imaging reveals a Gaussian size distribution around a modal diameter that increases from approx. 15 to 30 nm as the percentage of water vapor within the mixture increases from 0.5 to 2.007, respectively . TEM bright and dark field imaging also reveals the crystalline nature of the clusters. h4any of the clusters show a mosaic structure in which crystalline domains originate at the center Other images show mirror planes that are separated by approx. 10 nm. Electron diffraction patterns of these clusters show that the clusters are composed of cubic ice with only a small hexagonal component. Further, the crystalline domain size is approximately the same as the modal diameter suggesting that the clusters are single crystals.

Blake, David

2000-01-01

33

Environmental Scanning Electron Microscopy of Ice Crystal Nucleation and Growth  

NASA Astrophysics Data System (ADS)

Ice crystal nucleation and growth are dual processes that can be studied uniquely through Environmental Scanning Electron Microscopy (ESEM). By utilizing differential pumping systems and a Peltier element to vary the vapor pressure and to achieve temperatures below the freezing point, respectively, it is possible to obtain supersaturated conditions relative to ice in the sample chamber of an Environmental Scanning Electron Microscope. Ice crystals were nucleated on a variety of atmospherically relevant substrates and grown in a pure water vapor environment in the chamber of a FEI-Quanta 200 ESEM. To initiate ice crystal nucleation, the Peltier element was set at a temperature between -10°C and -25°C, while the chamber water vapor pressure was adjusted to just below the frost point. Ice crystal nucleation and growth was then controlled by careful adjustments of chamber pressure and temperature, where high-magnification images of hexagonal ice crystals were acquired at nanoscale resolution. These images display prominent mesoscopic surface topography including linear strands, crevasses, islands, and steps. The surface features are seen to be ubiquitously present at all observed temperatures, at many supersaturated and subsaturated conditions, and on all crystal facets. Additionally, a pre-growth "shadow" resembling a dark spot sometimes appeared on areas of the sample stage immediately preceding ice crystal nucleation and growth. The observations represent the most highly magnified images of ice surfaces yet reported and significantly expand the range of ambient conditions where the features are conspicuous. New knowledge of the presence and characteristics of these features could transform the fundamental understanding of ice crystal growth kinetics and its physical parameterization in the context of atmospheric and cryospheric science. To the extent these observations are applicable to atmospheric ice, the results suggest that the radiative representation of ice and mixed-phase cloud properties in climate models could be markedly affected.

Amaral, M.; Miller, A. L.; Magee, N. B.

2012-12-01

34

Doppler lidar measurements of oriented planar ice crystals falling from supercooled and glaciated layer clouds  

E-print Network

The properties of planar ice crystals settling horizontally have been investigated using a vertically-pointing Doppler lidar. Strong specular reflections were observed from their oriented basal facets, identified by comparison with a second lidar pointing 4 degrees from zenith. Analysis of 17 months of continuous high-resolution observations reveal that these pristine crystals are frequently observed in ice falling from mid-level mixed-phase layer clouds (85% of the time for layers at -15C). Detailed analysis of a case study indicates that the crystals are nucleated and grow rapidly within the supercooled layer, then fall out, forming well-defined layers of specular reflection. Polarimetric radar measurements confirmed that a substantial fraction of the crystal population was well oriented. As the crystals fall into subsaturated air, specular reflection is observed to switch off as the crystal faces become rounded and lose their faceted structure. Specular reflection in ice falling from supercooled layers col...

Westbrook, CD; O'Connor, EJ; Hogan, RJ

2009-01-01

35

Backscattering by hexagonal ice crystals of cirrus clouds.  

PubMed

Light backscattering by randomly oriented hexagonal ice crystals of cirrus clouds is considered within the framework of the physical-optics approximation. The fine angular structure of all elements of the Mueller matrix in the vicinity of the exact backward direction is first calculated and discussed. In particular, an approximate equation for the differential scattering cross section is obtained. Its simple spectral dependence is discussed. Also, a hollow of the linear depolarization ratio around the exact backward direction inherent to the long hexagonal columns is revealed. PMID:23903169

Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia

2013-08-01

36

Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center  

NASA Technical Reports Server (NTRS)

The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Clevleand, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSLthe first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing would occur. The ice crystal icing event, an uncommanded reduction in thrust, was able to be turned on and off by manipulating cloud TWC. A flight test point where no ice crystal icing event occurred was also duplicated in PSL. Physics based computational tools were successfully used to predict tunnel settings to induce ice buildup along the low pressure compression system flow path for several test points at incrementally lower altitudes, demonstrating that development of ice crystal icing scaling laws is potentially feasible. Analysis of PSL test data showed that uncommanded reduction in thrust occurs during ice crystal cloud on operation prior to fan speed reduction. This supports previous findings that the reduction of thrust for this test article is due to ice buildup leading to a restricted airflow from either physical or aerodynamic blockage in the engine core flow path.

Oliver, Michael J.

2014-01-01

37

Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center  

NASA Technical Reports Server (NTRS)

The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal icing would occur. The ice crystal icing event, an uncommanded reduction in thrust, was able to be turned on and off by manipulating cloud TWC. A flight test point where no ice crystal icing event occurred was also duplicated in PSL. Physics based computational tools were successfully used to predict tunnel settings to induce ice buildup along the low pressure compression system flow path for several test points at incrementally lower altitudes, demonstrating that development of ice crystal icing scaling laws is potentially feasible. Analysis of PSL test data showed that uncommanded reduction in thrust occurs during ice crystal cloud on operation prior to fan speed reduction. This supports previous findings that the reduction of thrust for this test article is due to ice buildup leading to a restricted airflow from either physical or aerodynamic blockage in the engine core flow path.

Oliver, Michael J.

2014-01-01

38

Ice-Crystal Fallstreaks from Supercooled Liquid Water Parent Clouds  

NASA Technical Reports Server (NTRS)

On 31 December 2001, ice-crystal fallstreaks (e.g., cirrus uncinus, or colloquially "Mare's Tails") from supercooled liquid water parent clouds were observed by ground-based lidars pointed vertically from the Atmospheric Radiation Measurement Southern Great Plains (SGP) facility near Lamont, Oklahoma. The incidence of liquid phase cloud with apparent ice-phase precipitation is investigated. Scenarios for mixed-phase particle nucleation, and fallstreak formation and sustenance are discussed. The observations are unique in the context of the historical reverence given to the commonly observed c h s uncinus fallstreak (wholly ice) versus this seemingly contradictory coincidence of liquid water begetting ice-crystal streaks.

Campbell, James R.; O'C. Starr, David; Welton, Ellsworth J.; Spinhirne, James D.; Ferrare, Richard A.

2003-01-01

39

X-ray Diffraction Topographic Studies of Dislocations in Natural Large Ice Single Crystals  

Microsoft Academic Search

The method of X-ray diffraction topography was adopted to reveal the dislocation structure in natural, large ice single crystals which has been hitherto used for the extensive experiments of plastic deformation. The topographs show clear images of curved and straight dislocation lines lying on the basal planes of the crystal. Dislocation density is in the order of 104 cm-2 and

Akeharu Fukuda; Akira Higashi

1969-01-01

40

Effect of biopolymers on structure and ice recrystallization in dynamically frozen ice cream model systems.  

PubMed

Ice crystal growth and microstructure of sugarsolutions prepared with stabilizers (carboxymethyl cellulose [CMC], xanthan gum, locust bean gum [LBG], and gelatin) with or without milk solids-nonfat (MSNF) after freezing in a scraped surface heat exchanger and temperature cycling (5 cycles from -6 degrees C to -20 degrees C) were studied. Ice crystal growth was calculated from brightfield microscopic images acquired from samples before and after cycling. Freeze-substitution and low-temperature embedding (LR-Gold resin) were sample preparation techniques utilized for structure analyses by light microscopy and transmission electron microscopy. Differential staining for carbohydrates and proteins allowed the identification of stabilizer gel-like structures in LBG, gelatin, and gelatin/MSNF solutions. In the absence of milk proteins, xanthan and LBG were the most effective at retarding recrystallization, while in their presence, only xanthan had an effect. Cryo-gelation of the LBG was observed but is not the only mechanism of stabilizer action. Thermodynamic incompatibility between biopolymers was observed to promote localized high concentrations of milk proteins located at the ice crystal interface, probably exerting a water-holding action that significantly enhanced the stabilizer effect. Qualitatively, solution heterogeneity (phase separation) was directly proportional to ice crystal growth inhibition. It is suggested that water-holding by stabilizer and proteins, and in some cases steric hindrance induced by a stabilizer gel-like network, caused a reduction in the kinetics of the ice recrystallization phenomena and promoted mechanisms of melt-regrow instead of melt-diffuse-grow recrystallization, thus resulting in the preservation of the ice crystal size and in a small span of the ice crystal size distribution. PMID:12487439

Regand, A; Goff, H D

2002-11-01

41

The effect of ice crystal surface roughness on the retrieval of ice cloud microphysical and optical properties  

E-print Network

The effect of the surface roughness of ice crystals is not routinely accounted for in current cloud retrieval algorithms that are based on pre-computed lookup libraries. In this study, we investigate the effect of ice crystal surface roughness...

Xie, Yu

2007-09-17

42

Scattering Properties of Oriented Hexagonal Ice Crystals  

E-print Network

. In this study, the dipole approximation (DDA) method is employed to the scattering of light on oriented hexagonal ice columns and plates with various tilting angles. It is found that the oriented hexagonal ice particles tend to have strong backscattering...

Zhang, Feng

2010-01-14

43

The characteristics of mid-latitude and low-latitude ice cloud crystals  

NASA Astrophysics Data System (ADS)

An accurate understanding of the dimensional characteristics of atmospheric ice crystals is important for weather and climate models. Ice crystal fall speed which partially governs cloud lifetime is dependent on crystal mass and projected area. Ice cloud radiative properties are dependent on crystal shape as well as cloud optical thickness which can vary widely depending on local conditions and cloud formation mechanisms. These are some of the reasons that cirrus clouds are considered to be one of the most uncertain elements in the earth's climate system. This thesis addresses some of these uncertainties. Mid-latitude cirrus clouds are frequently composed of bullet rosette shaped ice crystals. Bullet rosettes can grow with hollow ends which affects their radiative properties. In chapter 2, the frequency of occurrence of bullet rosettes with hollows ends is investigated. The radiative properties of hollow crystals are investigated in Chapter 3. For a thin cloud (optical depth of unity) with hollow crystals would lead to a difference of 5 W/m2 in short wave radiation at the surface compared to solid crystals. The properties of low latitude sub-visible cirrus cloud particles have been poorly investigated due to the difficulty of reaching them with instrumented aircraft. The properties of sub-visible cirrus clouds are investigated through the analysis of a large dataset of aircraft observations in chapter 4. Parameterizations for particle area, mass, size distributions and mass weighted fall speeds are developed. Mass weighted fall speeds were found to be lower than predicted by previous parameterizations due to the lack of large particles compared to previous studies. Most atmospheric ice cloud particles are irregular in shape. The final two research topics addressed in this thesis investigate the dimensional characteristics of irregularly shaped ice particles. In chapter 5, the total surface area of irregular ice crystals is investigated. Knowledge of particle surface area is important for atmospheric chemistry applications. In Chapter 6, ice crystal projected area and mass are investigated using fractal geometry techniques. Ice crystal aggregation was simulated to investigate the structure of ice crystal aggregates. The fractal analysis allows the determination of mass dimensional relationships from particle projected area measurements.

Schmitt, Carl George

44

Mechanism of habit change for atmospheric ice crystal growth  

NASA Astrophysics Data System (ADS)

The basic mechanism that controls the shape change of ice crystal with temperature and supersaturation, or so-called ice crystal habit change, was investigated. From the preliminary analysis of experimental data, it was found that surface kinetic processes on the crystal are responsible in controlling the habit change. Therefore, relevant surface factors and processes were identified first. One of the most important factors was the line tension, or the surface free energy on the side of the two-dimensional embryo. Based on the physical meaning of the line tension and the surface tension, their fundamental difference was clarified under ideal conditions. A method to represent the hexagonal ice crystal lattice under random hydrogen arrangement was developed. Applying this last method, the surface factors such as the line tension and the surface tension for the ideal ice crystal were computed by using the intermolecular potential of the water molecule. Roles of liquid-like layer, transitional liquid layer and interface roughening in the habit change was clarified. The ordinary Brunaeur-Emmett-Teller (BET) adsorption equation was modified to describe the ice crystal growth problem. Through these analyses, the origin of the habit change was traced to the unique characteristic of the hydrogen bond that expands during freezing of water. The same characteristic led to a minimum in the free energy of two-dimensional embryo formation on the crystal plane through the line tension, which was shown to be a function of chemical potential difference. The operation of the two-dimensional nucleation mechanism for ice crystal growth was thus confirmed. Semiquantitative simulation of the habit change process for ice crystals growing both in air and in vapor alone after considering various surface factors was carried out, and the results showed a reasonable agreement with experimental data.

Lu, Qiu-Jiang

45

Enhanced and Oriented Riming of Growing Ice Crystals.  

NASA Astrophysics Data System (ADS)

Geometrically oriented riming was found in Formvar resin replicas of columnar ice crystals collected in cumulus clouds at -6°C during an aircraft field program in Texas. Rimed cloud droplets were found either on the ends of the crystals or in a girdle around the middle. Oriented riming is attributed to preferential collection on growing ice crystals with charge separations between the crystal body and growing ends. Droplet attraction to separated charge regions of growing ice crystals results in enhanced riming and increases the rate of precipitation development. Effects of this process on cloud electrification depend on whether the cloud droplets carry net charges or are polarized. The impact of this oriented riming process on several cloud electrification scenarios is discussed.

Finnegan, William G.; Chai, Steven K.; Detwiler, Andrew

2004-08-01

46

Ice Crystal Growth Rates Under Upper Troposphere Conditions  

NASA Technical Reports Server (NTRS)

Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

Peterson, Harold S.; Bailey, Matthew; Hallett, John

2010-01-01

47

Forces Generated by High Velocity Impact of Ice on a Rigid Structure  

NASA Technical Reports Server (NTRS)

Tests were conducted to measure the impact forces generated by cylindrical ice projectiles striking a relatively rigid target. Two types of ice projectiles were used, solid clear ice and lower density fabricated ice. Three forms of solid clear ice were tested: single crystal, poly-crystal, and "rejected" poly-crystal (poly-crystal ice in which defects were detected during inspection.) The solid ice had a density of approximately 56 lb/cu ft (0.9 gm/cu cm). A second set of test specimens, termed "low density ice" was manufactured by molding shaved ice into a cylindrical die to produce ice with a density of approximately 40 lb/cu ft (0.65 gm/cu cm). Both the static mechanical characteristics and the crystalline structure of the ice were found to have little effect on the observed transient response. The impact forces generated by low density ice projectiles, which had very low mechanical strength, were comparable to those of full density solid ice. This supports the hypothesis that at a velocity significantly greater than that required to produce fracture in the ice, the mechanical properties become relatively insignificant, and the impact forces are governed by the shape and mass of the projectile.

Pereira, J. Michael; Padula, Santo A., II; Revilock, Duane M.; Melis, Matthew E.

2006-01-01

48

Steady-state and stability analysis of a population balance based nonlinear ice cream crystallization model  

E-print Network

Steady-state and stability analysis of a population balance based nonlinear ice cream the key phenomenons of the crystallization process. In ice cream crystallization, it is well known that the quality of the product, that is the hardness and the texture of the ice cream, depends on the ice crystal

Boyer, Edmond

49

Superheating of ice crystals in antifreeze protein solutions  

PubMed Central

It has been argued that for antifreeze proteins (AFPs) to stop ice crystal growth, they must irreversibly bind to the ice surface. Surface-adsorbed AFPs should also prevent ice from melting, but to date this has been demonstrated only in a qualitative manner. Here we present the first quantitative measurements of superheating of ice in AFP solutions. Superheated ice crystals were stable for hours above their equilibrium melting point, and the maximum superheating obtained was 0.44?°C. When melting commenced in this superheated regime, rapid melting of the crystals from a point on the surface was observed. This increase in melting temperature was more appreciable for hyperactive AFPs compared to the AFPs with moderate antifreeze activity. For each of the AFP solutions that exhibited superheating, the enhancement of the melting temperature was far smaller than the depression of the freezing temperature. The present findings clearly show that AFPs adsorb to ice surfaces as part of their mechanism of action, and this absorption leads to protection of ice against melting as well as freezing. PMID:20215465

Celik, Yeliz; Graham, Laurie A.; Mok, Yee-Foong; Bar, Maya; Davies, Peter L.; Braslavsky, Ido

2010-01-01

50

Superheating of ice crystals in antifreeze protein solutions.  

PubMed

It has been argued that for antifreeze proteins (AFPs) to stop ice crystal growth, they must irreversibly bind to the ice surface. Surface-adsorbed AFPs should also prevent ice from melting, but to date this has been demonstrated only in a qualitative manner. Here we present the first quantitative measurements of superheating of ice in AFP solutions. Superheated ice crystals were stable for hours above their equilibrium melting point, and the maximum superheating obtained was 0.44 degrees C. When melting commenced in this superheated regime, rapid melting of the crystals from a point on the surface was observed. This increase in melting temperature was more appreciable for hyperactive AFPs compared to the AFPs with moderate antifreeze activity. For each of the AFP solutions that exhibited superheating, the enhancement of the melting temperature was far smaller than the depression of the freezing temperature. The present findings clearly show that AFPs adsorb to ice surfaces as part of their mechanism of action, and this absorption leads to protection of ice against melting as well as freezing. PMID:20215465

Celik, Yeliz; Graham, Laurie A; Mok, Yee-Foong; Bar, Maya; Davies, Peter L; Braslavsky, Ido

2010-03-23

51

Preferred Ice Crystal Orientation Fabric Measurements within the Greenland Ice Sheet Using Multi-Polarization Radar Data  

NASA Astrophysics Data System (ADS)

Discharge of ice from the Greenland Ice Sheet to the ocean has increased significantly over the last 25 years due to the acceleration of important outlet glaciers. It was reported that the Greenland Ice Sheet contributed about 2.5 m out of about 6 m of sea-level rise during the Eemian interglacial period. The temperatures during Eemian were reported to be about 8o×4o C higher than the mean of the past millennium. Laboratory measurements have shown that glacial ice, characterized by preferred crystal orientation fabric (COF), is three times more deformable than ice with randomly oriented crystalline structures. Layers characterized by preferred ice COF can influence the flow behavior of a glacier or ice sheet. However, COF measurements are typically obtained from ice cores, and thus are very spatially limited and mostly constrained to areas with little ice flow. A more efficient technique to map the extent of ice fabric over larger regions of ice sheets is needed to better understand the effects on large scale ice flow processes. Radar measurements are capable of discriminating between reflections caused by changes in density, electrical permittivity and COF by exploiting the anisotropic and birefringent properties of ice crystals. For this investigation two radar datasets were collected during the survey of the Greenland Eemian Ice Drilling Site (77.45°N 51.06°W) in August 2008, using a ground-based and chirped-pulse Multi-Channel Radar Depth Sounder (MCRDS) developed by the Center for Remote Sensing of Ice Sheets (CReSIS). The radar used two transmit and eight receive antennas at the center frequency of 150 MHz with a bandwidth of 30 MHz. The first data set consisted of polarimatric measurements acquired in a circular pattern (radius: 35 m) with two co-polarized antenna orientations (one transmitter and four receivers oriented with 90° offsets in the directions of the incident H-Field and E-Field, respectively). Analysis of the circular data shows a periodic power variation with four distinct extinction patterns occurring at 90 degree intervals starting at approximately 700 m depth. Furthermore a 20 degree phase change is observed between the E- and H-field data. Both observations suggest that approximately 72% of the 2542m ice column exhibits birefringent anisotropy caused by preferred ice crystal orientation. The second dataset was acquired in a grid pattern consisting of twenty 10-Km 2D lines (NW to SE) spaced at 0.5-Km and three 10-Km lines (NE to SW) spaced at 2.5-Km. Both transmit and eight receive antenna were oriented parallel to the vehicle track, resulting in E-Field co-polarized data. We will determine the dominant COF relative to the ice divide for a 100 square Km region around the NEEM camp using the results from both datasets. The results of this investigation will be compared to the NEEM ice core observations to determine the accuracy of the analysis. In this investigation we will provide a brief overview of the system and experiments and present the results of data analysis.

Velez-Gonzalez, J. A.; JiLu, L.; Leuschen, C.; Gogineni, P.; Van der Veen, C. J.; Tsoflias, G. P.; Drews, R.; Harish, A. R.

2013-12-01

52

Crystal Structure of Ovalene  

Microsoft Academic Search

THE synthesis of the hydrocarbon ovalene, or octabenzonaphthalene (Fig. 1) has recently been described by E. Clar1. We have now examined the crystal structure of this compound and find it to be remarkably similar to that of the analogous hydrocarbon coronene2,3. We are indebted to Dr. Clar for some very beautiful crystal specimens of ovalene, which made this work possible.

D. M. Donaldson; J. Monteath Robertson

1949-01-01

53

Ice-templated structures for biomedical tissue repair: From physics to final scaffolds  

NASA Astrophysics Data System (ADS)

Ice-templating techniques, including freeze-drying and freeze casting, are extremely versatile and can be used with a variety of materials systems. The process relies on the freezing of a water based solution. During freezing, ice nucleates within the solution and concentrates the solute in the regions between the growing crystals. Once the ice is removed via sublimation, the solute remains in a porous structure, which is a negative of the ice. As the final structure of the ice relies on the freezing of the solution, the variables which influence ice nucleation and growth alter the structure of ice-templated scaffolds. Nucleation, the initial step of freezing, can be altered by the type and concentration of solutes within the solution, as well as the set cooling rate before freezing. After nucleation, crystal growth and annealing processes, such as Ostwald ripening, determine the features of the final scaffold. Both crystal growth and annealing are sensitive to many factors including the set freezing temperature and solutes. The porous structures created using ice-templating allow scaffolds to be used for many diverse applications, from microfluidics to biomedical tissue engineering. Within the field of tissue engineering, scaffold structure can influence cellular behavior, and is thus critical for determining the biological stimulus supplied by the scaffold. The research focusing on controlling the ice-templated structure serves as a model for how other ice-templating systems might be tailored, to expand the applications of ice-templated structures to their full potential.

Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E.

2014-06-01

54

Ice-structuring peptides derived from bovine collagen.  

PubMed

Antifreeze proteins belonging to structurally diverse families of genetically coded proteins from several living organisms have been isolated and characterized in the past. This paper reports that collagen peptides of a certain molecular size range derived from Alcalase hydrolysis of bovine gelatin are able to inhibit recrystallization of ice in frozen ice cream mix as well as in frozen sucrose solutions in a manner similar to natural antifreeze proteins. The optimum conditions for producing such ice-structuring peptides (ISP) were hydrolysis at pH 9.0 for 30 min at 45 degrees C and an Alcalase-to-gelatin ratio of 0.176 unit per gram of gelatin. The collagen peptides were fractionated on size exclusion (Sephadex G-50) and ion exchange (sulfopropyl-Sephadex C-25) columns, and the molecular mass distribution of the ice-structuring peptide fractions was determined by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. The collagen peptide fractions in the molecular mass range of 600-2700 Da inhibited ice recrystallization in a supercooled ice cream mix and in concentrated sucrose solutions. The cationic collagen peptides within this fraction with molecular mass in the range of 1600-2400 Da were more effective than the anionic peptides in inhibiting ice crystal growth. PMID:19480387

Wang, ShaoYun; Damodaran, Srinivasan

2009-06-24

55

Formation of gas hydrate during crystallization of ethane-saturated amorphous ice  

NASA Astrophysics Data System (ADS)

Layers of ethane-saturated amorphous ice were prepared by depositing molecular beams of water and gas on a substrate cooled with liquid nitrogen. The heating of the layers was accompanied by vitrification (softening) followed by spontaneous crystallization. Crystallization of condensates under the conditions of deep metastability proceeded with gas hydrate formation. The vitrification and crystallization temperatures of the condensates were determined from the changes in their dielectric properties on heating. The thermal effects of transformations were recorded by differential thermal analysis. The crystallization of the amorphous water layers was studied by electron diffraction. Formation of a metastable packing with elements of a cubic diamond-like structure was noted.

Faizullin, M. Z.; Vinogradov, A. V.; Skokov, V. N.; Koverda, V. P.

2014-10-01

56

Freezing, melting and structure of ice in a hydrophilic nanopore.  

PubMed

The nucleation, growth, structure and melting of ice in 3 nm diameter hydrophilic nanopores are studied through molecular dynamics simulations with the mW water model. The melting temperature of water in the pore was T(m)(pore) = 223 K, 51 K lower than the melting point of bulk water in the model and in excellent agreement with experimental determinations for 3 nm silica pores. Liquid and ice coexist in equilibrium at the melting point and down to temperatures as low as 180 K. Liquid water is located at the interface of the pore wall, increasing from one monolayer at the freezing temperature, T(f)(pore) = 195 K, to two monolayers a few degrees below T(m)(pore). Crystallization of ice in the pore occurs through homogeneous nucleation. At the freezing temperature, the critical nucleus contains approximately 75 to 100 molecules, with a radius of gyration similar to the radius of the pore. The critical nuclei contain features of both cubic and hexagonal ice, although stacking of hexagonal and cubic layers is not defined until the nuclei reach approximately 150 molecules. The structure of the confined ice is rich in stacking faults, in agreement with the interpretation of X-ray and neutron diffraction experiments. Though the presence of cubic layers is twice as prevalent as hexagonal ones, the crystals should not be considered defective Ic as sequences with more than three adjacent cubic (or hexagonal) layers are extremely rare in the confined ice. PMID:20379503

Moore, Emily B; de la Llave, Ezequiel; Welke, Kai; Scherlis, Damian A; Molinero, Valeria

2010-04-28

57

The Examination by Electron Microscope of Ice Crystal Nuclei from Cloud Chamber Experiments  

Microsoft Academic Search

A method is described whereby ice crystals generated in a Bigg-Warner ice nuclei counter may be replicated on Formvar coated slides. The Formvar film, with replicas, is subsequently removed for examination in the electron microscope. The nuclei of the ice crystals remain on the Formvar after sublimation of the ice, and under favorable conditions, may be identified by their morphology

John Rucklidge

1965-01-01

58

Ice Growth Measurements from Image Data to Support Ice Crystal and Mixed-Phase Accretion Testing  

NASA Technical Reports Server (NTRS)

This paper describes the imaging techniques as well as the analysis methods used to measure the ice thickness and growth rate in support of ice-crystal icing tests performed at the National Research Council of Canada (NRC) Research Altitude Test Facility (RATFac). A detailed description of the camera setup, which involves both still and video cameras, as well as the analysis methods using the NASA Spotlight software, are presented. Two cases, one from two different test entries, showing significant ice growth are analyzed in detail describing the ice thickness and growth rate which is generally linear. Estimates of the bias uncertainty are presented for all measurements. Finally some of the challenges related to the imaging and analysis methods are discussed as well as methods used to overcome them.

Struk, Peter M.; Lynch, Christopher J.

2012-01-01

59

Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics  

PubMed Central

Ice-binding proteins that aid the survival of freeze-avoiding, cold-adapted organisms by inhibiting the growth of endogenous ice crystals are called antifreeze proteins (AFPs). The binding of AFPs to ice causes a separation between the melting point and the freezing point of the ice crystal (thermal hysteresis, TH). TH produced by hyperactive AFPs is an order of magnitude higher than that produced by a typical fish AFP. The basis for this difference in activity remains unclear. Here, we have compared the time dependence of TH activity for both hyperactive and moderately active AFPs using a custom-made nanolitre osmometer and a novel microfluidics system. We found that the TH activities of hyperactive AFPs were time-dependent, and that the TH activity of a moderate AFP was almost insensitive to time. Fluorescence microscopy measurement revealed that despite their higher TH activity, hyperactive AFPs from two insects (moth and beetle) took far longer to accumulate on the ice surface than did a moderately active fish AFP. An ice-binding protein from a bacterium that functions as an ice adhesin rather than as an antifreeze had intermediate TH properties. Nevertheless, the accumulation of this ice adhesion protein and the two hyperactive AFPs on the basal plane of ice is distinct and extensive, but not detectable for moderately active AFPs. Basal ice plane binding is the distinguishing feature of antifreeze hyperactivity, which is not strictly needed in fish that require only approximately 1°C of TH. Here, we found a correlation between the accumulation kinetics of the hyperactive AFP at the basal plane and the time sensitivity of the measured TH. PMID:25008081

Drori, Ran; Celik, Yeliz; Davies, Peter L.; Braslavsky, Ido

2014-01-01

60

Dependence of the single-scattering properties of small ice crystals on idealized shape models  

NASA Astrophysics Data System (ADS)

The projections of small ice crystals (with maximum dimension <50 ?m) appear quasi-circular when imaged by probes on aircraft flying through cloud. Therefore, idealized models constructed to calculate their single-scattering properties have included quasi-spherical models such as Chebyshev particles, Gaussian random spheres, and droxtals. Recently, an ice analogue grown from sodium fluorosilicate solution on a glass substrate, with several columns emanating from a common center of mass, was shown to be quasi-circular when imaged by state-of-the-art cloud probes. In this study, a new idealized model, called the budding Bucky ball (3B) that resembles the shape of the small ice analogue is developed. The corresponding single-scattering properties (scattering phase function P11 and asymmetry parameter g) are computed by a ray-tracing code. Compared with previously used models, 3B scatters less light in the forward and more light in the lateral and backward directions. The Chebyshev particles and Gaussian random spheres show smooth and featureless P11, whereas droxtals and 3Bs, which have a faceted structure, show several peaks in P11 associated with angles of minimum deviation. Overall, the difference in the forward (lateral; backward) scattering between models are up to 22% (994%; 132%), 20% (510%; 101%), and 16% (146%; 156%) for small ice crystals with respective area ratios of 0.85, 0.77, and 0.69. The g for different models varies by up to 25%, 23%, and 19% for particles with area ratios of 0.85, 0.77, and 0.69, respectively. Because the single-scattering properties of small ice crystals depend both on the choice of the idealized model and the area ratios used to characterize the small ice crystals, higher resolution observations of small ice crystals or direct observations of their single-scattering properties are required.

Um, J.; McFarquhar, G. M.

2011-04-01

61

Modeling variability in dendritic ice crystal backscattering cross sections at millimeter wavelengths using a modified Rayleigh-Gans theory  

NASA Astrophysics Data System (ADS)

Using the Generalized Multi-particle Mie-method (GMM), Botta et al. (in this issue) [7] created a database of backscattering cross sections for 412 different ice crystal dendrites at X-, Ka- and W-band wavelengths for different incident angles. The Rayleigh-Gans theory, which accounts for interference effects but ignores interactions between different parts of an ice crystal, explains much, but not all, of the variability in the database of backscattering cross sections. Differences between it and the GMM range from -3.5 dB to +2.5 dB and are highly dependent on the incident angle. To explain the residual variability a physically intuitive iterative method was developed to estimate the internal electric field within an ice crystal that accounts for interactions between the neighboring regions within it. After modifying the Rayleigh-Gans theory using this estimated internal electric field, the difference between the estimated backscattering cross sections and those from the GMM method decreased to within 0.5 dB for most of the ice crystals. The largest percentage differences occur when the form factor from the Rayleigh-Gans theory is close to zero. Both interference effects and neighbor interactions are sensitive to the morphology of ice crystals. Improvements in ice-microphysical models are necessary to predict or diagnose internal structures within ice crystals to aid in more accurate interpretation of radar returns. Observations of the morphology of ice crystals are, in turn, necessary to guide the development of such ice-microphysical models and to better understand the statistical properties of ice crystal morphologies in different environmental conditions.

Lu, Yinghui; Clothiaux, Eugene E.; Aydin, Kültegin; Botta, Giovanni; Verlinde, Johannes

2013-12-01

62

Physical and structural properties of the Greenland Ice Sheet Project 2 ice core: A review  

NASA Astrophysics Data System (ADS)

Substantial data sets have been collected on the relaxation characteristics, density, grain size, c axis fabrics, and ultrasonic velocities of the Greenland Ice Sheet Project 2 (GISP2) core to its contact with bedrock at 3053.4 m. Changes in all these properties paralleled closely those found in cores from Byrd Station, Antarctica, and Dye 3, Greenland. Density increased progressively with depth to a maximum of 0.921 Mg/m3 at about 1400 m, at which depth the ice became bubble free. Below about 2000 m, in situ densities began to decrease in response to increasing ice sheet temperatures. Since drilling, much of the ice core has undergone significant volume expansion (relaxation) due to microcracking and the exsolving of enclathratized gases, especially in the brittle ice zone between 650 and 1400 m. Grain size increased linearly to about 1000 m, thereafter remaining fairly constant until the Younger Dryas event at 1678 m where a twofold to threefold decrease in grain size occurred. These grain size changes were accompanied by a progressive clustering of crystal c axes toward the vertical, including a small increase in c axis concentration across the Younger Dryas/Holocene boundary. Increased dust levels in the Wisconsin ice have contributed to the maintenance of a fine-grained texture which, with its strong vertical c axis fabric, persisted to nearly 3000 m. However, beginning at about 2800 m, layers of coarse-grained ice intermixed with the much finer-grained matrix ice are observed. Below 3000 m the ice became very coarse grained. This change, attributed to annealing recrystallization at elevated temperatures in the ice sheet, was accompanied by a dispersed or ring-like redistribution of the c axes about the vertical. Ultrasonic measurements of vertical and horizontal P wave velocities made at 10-m intervals along the entire length of the GISP2 core fully confirmed the results of the crystallo-optical observations. A return to fine-grained ice coincided with the first appearance of brown, silty ice 13 m above bedrock. Bedrock material consisted of 48 cm of till, including boulders and cobbles, overlying gray biotite granite comprising the true bedrock. There is evidence that disturbed structure in the GISP2 cores begins little more than 70% of the way through the ice sheet. This disturbance increases with depth until it becomes large enough to cast suspicion on features lasting centuries or more in the bottom 10% of the ice sheet.

Gow, A. J.; Meese, D. A.; Alley, R. B.; Fitzpatrick, J. J.; Anandakrishnan, S.; Woods, G. A.; Elder, B. C.

1997-11-01

63

Effect of the Inhomogeneity of Ice Crystals on Retrieving Ice Cloud Optical Thickness and Effective Particle Size  

NASA Technical Reports Server (NTRS)

Spherical or spheroidal air bubbles are generally trapped in the formation of rapidly growing ice crystals. In this study the single-scattering properties of inhomogeneous ice crystals containing air bubbles are investigated. Specifically, a computational model based on an improved geometric-optics method (IGOM) has been developed to simulate the scattering of light by randomly oriented hexagonal ice crystals containing spherical or spheroidal air bubbles. A combination of the ray-tracing technique and the Monte Carlo method is used. The effect of the air bubbles within ice crystals is to smooth the phase functions, diminish the 22deg and 46deg halo peaks, and substantially reduce the backscatter relative to bubble-free particles. These features vary with the number, sizes, locations and shapes of the air bubbles within ice crystals. Moreover, the asymmetry factors of inhomogeneous ice crystals decrease as the volume of air bubbles increases. Cloud reflectance lookup tables were generated at wavelengths 0.65 m and 2.13 m with different air-bubble conditions to examine the impact of the bubbles on retrieving ice cloud optical thickness and effective particle size. The reflectances simulated for inhomogeneous ice crystals are slightly larger than those computed for homogenous ice crystals at a wavelength of 0.65 microns. Thus, the retrieved cloud optical thicknesses are reduced by employing inhomogeneous ice cloud models. At a wavelength of 2.13 microns, including air bubbles in ice cloud models may also increase the reflectance. This effect implies that the retrieved effective particle sizes for inhomogeneous ice crystals are larger than those retrieved for homogeneous ice crystals, particularly, in the case of large air bubbles.

Xie, Yu; Minnis, Patrick; Hu, Yong X.; Kattawar, George W.; Yang, Ping

2008-01-01

64

Ice Has Structure: H2O  

NSDL National Science Digital Library

This is a lesson about water and water-ice. Learners will explore the molecular geometry and mechanics of ice. They will create a model of H2O, investigate its molecular structure and its consistent shape. Faraday's experiment is used as background. Activities include small group miming, speaking, drawing, and/or writing. This is lesson 2 of 12 in the unit, Exploring Ice in the Solar System.

65

Computation of the scattering properties of nonspherical ice crystals  

E-print Network

This thesis is made up of three parts on the computation of scattering properties of nonspherical particles in the atmosphere. In the first part, a new crystal type-droxtal-is introduced to make a better representation of the shape of small ice...

Zhang, Zhibo

2004-11-15

66

Investigations of electromagnetic scattering by columnar ice crystals  

NASA Technical Reports Server (NTRS)

An integral equation approach was developed to determine the scattering and absorption of electromagnetic radiation by thin walled cylinders of arbitrary cross-section and refractive index. Based on this method, extensive numerical data was presented at infrared wavelengths for hollow hexagonal cross section cylinders which simulate columnar sheath ice crystals.

Weil, H.; Senior, T. B. A.

1976-01-01

67

Ice crystal growth in a dynamic thermal diffusion chamber  

NASA Technical Reports Server (NTRS)

Ice crystals were grown in a supersaturated environment produced by a dynamic thermal diffusion chamber, which employed two horizontal plates separated by a distance of 2.5 cm. Air was circulated between and along the 1.2 m length of the plates past ice crystals which nucleated and grew from a fiber suspended vertically between the two plates. A zoom stereo microscope with a magnification which ranged from 3X to 80X and both 35 mm still photographs and 16 mm time lapse cine films taken through the microscope were used to study the variation of the shape and linear growth rate of ice crystals as a function of the ambient temperature, the ambient supersaturation, and the forced ventilation velocity. The ambient growth conditions were varied over the range of temperature 0 to -40 C, over the range of supersaturation 4% to 50% with respect to ice, and over the range of forced ventilation velocities 0 cm/s to 20 cm/s.

Keller, V. W.

1980-01-01

68

Structural properties of impact ices accreted on aircraft structures  

NASA Technical Reports Server (NTRS)

The structural properties of ice accretions formed on aircraft surfaces are studied. The overall objectives are to measure basic structural properties of impact ices and to develop finite element analytical procedures for use in the design of all deicing systems. The Icing Research Tunnel (IRT) was used to produce simulated natural ice accretion over a wide range of icing conditions. Two different test apparatus were used to measure each of the three basic mechanical properties: tensile, shear, and peeling. Data was obtained on both adhesive shear strength of impact ices and peeling forces for various icing conditions. The influences of various icing parameters such as tunnel air temperature and velocity, icing cloud drop size, material substrate, surface temperature at ice/material interface, and ice thickness were studied. A finite element analysis of the shear test apparatus was developed in order to gain more insight in the evaluation of the test data. A comparison with other investigators was made. The result shows that the adhesive shear strength of impact ice typically varies between 40 and 50 psi, with peak strength reaching 120 psi and is not dependent on the kind of substrate used, the thickness of accreted ice, and tunnel temperature below 4 C.

Scavuzzo, R. J.; Chu, M. L.

1987-01-01

69

Dimensions and aspect ratios of natural ice crystals  

NASA Astrophysics Data System (ADS)

During the 2006 Tropical Warm Pool International Cloud Experiment (TWP-ICE) in the Tropics, the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC) in the Arctic, and the 2010 Small PARTicles In CirrUS (SPARTICUS) campaign in mid-latitudes, high-resolution images of ice crystals were recorded by a Cloud Particle Imager at temperatures (T) between -87 and 0 °C. The projected maximum dimension (D'), length (L'), and width (W') of pristine columns, plates, and component bullets of bullet rosettes were measured using newly developed software, the Ice Crystal Ruler. The number of bullets in each bullet rosette was also measured. Column crystals were further distinguished as either horizontally oriented columns or columns with other orientations to eliminate any orientation effect on the measured dimensions. Dimensions and aspect ratios (AR, dimension of major axis divided by dimension of minor axis) of crystals were determined as functions of temperature, geophysical location, and type of cirrus. Dimensions of crystals generally increased as temperature increased. Columns and bullets had larger dimensions (i.e., W') of the minor axis (i.e., a axis) for a given dimension (i.e., D' or L') of the major axis (i.e., c axis), and thus smaller AR, as T increased, whereas this trend did not occur for plate crystals. The average number of branches in bullet rosettes was 5.50±1.35 during three campaigns and 6.32±1.34 (5.46±1.34; 4.95±1.01) during TWP-ICE (SPARTICUS; ISDAC). The AR of bullets increased with the number of branches in bullet rosettes. Most dimensions of crystals and ARs of columnar crystals measured during SPARTICUS were larger than those measured during TWP-ICE and ISDAC at -67 < T < -35 °C and at -40 < T < -15 °C, respectively. The relative occurrence of varying pristine habits depended strongly on cirrus type (i.e., anvil or non-anvil clouds), with plates especially occurring more frequently in anvils. The L-W relationships of columns derived using current data exhibited a strong dependence on temperature; similar relationship determined in previous studies were within the range of the current data.

Um, J.; McFarquhar, G. M.; Hong, Y. P.; Lee, S.-S.; Jung, C. H.; Lawson, R. P.; Mo, Q.

2014-12-01

70

The alignment of ice crystals in changing electric fields  

NASA Astrophysics Data System (ADS)

Orientation of ice crystals in the form of thin plates (diameter up to 30 ?m, thickness 0.5 to a few ?m) was investigated optically for crystals nucleated in a supercooled cloud in a laboratory cold chamber. Random orientation caused by Brownian rotation of small crystals (apparent as twinkling) and alignment caused by airflow resulting from fall motion of larger crystals was changed by application of an electric field either as a step or as an oscillating square wave of variable frequency of order 1-10 Hz. Video records and time exposed still photographs demonstrated crystal fall, oscillation, and orientation changes with electric field magnitude and frequency. Thin film interference colours provided crystal thickness, mass, and moment of inertia. Realignment began for electric fields greater than 0.5-1 kV/m and was complete above 10 kV/m. Measurements of degree of alignment (from random orientation to completely parallel to the electric field) and its time dependence (of order tenths of seconds) are consistent with predictions of a theoretical oscillator model based on electrical torques on ellipsoids in viscous air. In a changing electric field at low frequency, the crystal realignment varies along with the variation field and at high frequency they remain aligned along the average field. These results are applied to larger crystals as occur in the atmosphere with implication for remote sensing of ice by radar and lidar as influenced by local electric fields and with the possibility of their remote measurement by optical observation of changing crystal orientations.

Foster, T. C.; Hallett, J.

71

Quasi-liquid layers on ice crystal surfaces are made up of two different phases  

PubMed Central

Ice plays crucially important roles in various phenomena because of its abundance on Earth. However, revealing the dynamic behavior of quasi-liquid layers (QLLs), which governs the surface properties of ice crystals at temperatures near the melting point, remains an experimental challenge. Here we show that two types of QLL phases appear that exhibit different morphologies and dynamics. We directly visualized the two types of QLLs on ice crystal surfaces by advanced optical microscopy, which can visualize the individual 0.37-nm-thick elementary steps on ice crystal surfaces. We found that they had different stabilities and different interactions with ice crystal surfaces. The two immiscible QLL phases appeared heterogeneously, moved around, and coalesced dynamically on ice crystal surfaces. This picture of surface melting is quite different from the conventional picture in which one QLL phase appears uniformly on ice crystal surfaces. PMID:22232653

Sazaki, Gen; Zepeda, Salvador; Nakatsubo, Shunichi; Yokomine, Makoto; Furukawa, Yoshinori

2012-01-01

72

Steady-state and stability analysis of a population balance based nonlinear ice cream crystallization model  

E-print Network

Steady-state and stability analysis of a population balance based nonlinear ice cream that adequately describes the key phenomena of the crystallization process. In ice cream crystallization, it is well known that the quality of the product, that is the hardness and the texture of the ice cream

Boyer, Edmond

73

Effects of carboxymethylcellulose and guar gum on ice crystal propagation in a sucrose-lactose solution  

Microsoft Academic Search

The effects of carboxymethylcellulose (CMC) and guar gum on ice crystal formation have been studied using a sucrose\\/lactose solution simulating the colloid-free phase of an ice cream mix. Freezing profiles, obtained over short time intervals, showed that the addition of guar gum markedly retarded ice crystal propagation in the sugar solution, whereas addition of CMC showed no effect. The influence

S. T. Wang; S. A. Barringer; P. M. T. Hansen

1998-01-01

74

Light Scattering by Quasi-Spherical Ice Crystals  

Microsoft Academic Search

The shapes and single-scattering properties of small, irregular, quasi-spherical ice crystals, with equivalent radii between approximately 8 and 90 mum and size parameters from about 90 to 1000, are studied using two-dimensional images measured by a cloud particle imager in midlatitude cirrus during the 2000 Cloud Intensive Operation Period conducted over the Atmospheric Radiation Measurement program's Southern Great Plains site.

Timo Nousiainen; Greg M. McFarquhar

2004-01-01

75

Charge Transfer Process During Collision of Riming Graupel Pellet with Small Ice Crystals within a Thundercloud  

NASA Technical Reports Server (NTRS)

A charge transfer process during the collision of a riming graupel pellet and an ice-crystal at low temperature is proposed. During riming, the surface structure of graupel deviates from perfect crystalline structure. A concept of quasi-solid layer (QSL) formation on the surface is introduced. This QSL contains defects formed during riming. In absence of impurities, positively charged X-defect abundance is considered in the outer layer. These defects are assumed to be the charge carriers during the charge transfer process. Some part of the QSL is stripped off by the colliding ice crystals, which thereby gain some positive charge, leaving the graupel pellet negatively charged. With the proposed model, fC to pC of charge transfer is observed per collision. A transition temperature between -10 C to -15 C is also noted beyond which the QSL concept does not hold. This transition temperature is dependent on the bulk liquid water content of the cloud.

Datta, Saswati; De, Utpal K.; Goswami, K.; Jones, Linwood

1999-01-01

76

Nanoscale Ice: Spectroscopic Ellipsometry of Epitaxially-Grown Crystals  

NASA Astrophysics Data System (ADS)

A new laboratory technique has been developed to examine the surface characteristics and kinetics of ice crystals at the nanoscale. Uncertainties remain regarding the fundamental physics of nucleation and depositional growth in atmospheric ice crystals. These molecular-scale uncertainties propagate upward into modeling outcomes at all scales of atmospheric interest: particle models, cloud models, mesoscale models, and climate models. Molecular-scale growth mechanisms and kinetics have been mainly inferred from bulk and particle-scale experiments as well as crystal-growth theory. The precarious nature of the ice surface resisted the first generation of direct nanoscale probing technologies, but new in-situ techniques including ESEM, AFM, and ellipsometry promise to divulge a wealth of new knowledge. Spectroscopic ellipsometry measures changes in the polarization state of light as it reflects off the surface of a thin film. This non-destructive technique is capable of measuring layer thicknesses as small as a single monolayer (~1 Å) and up to thicknesses of ~10 ?m. Other physical parameters including index of refraction and surface roughness are also accessible. At the TCNJ Cloud Physics Laboratory, a Horiba Scientific Auto-SE ellipsometer (440 - 1000 nm spectral range) has been adapted for in-situ measurements of ice crystals. The ice crystals are grown epitaxially on various horizontal substrates in a custom-built static diffusion chamber. The diffusion chamber is housed within a vacuum chamber and an optical path is provided from the ellipsometer light source to sample stage and back to the ellipsometer analyzer at 75° from normal. The diffusion chamber is cooled in two stages, with initial cooling accomplished with a fluid-chilled block and final chilling controlled by two independent thermoelectric cells. A wide range of temperatures, pressures, and saturation ratios are accessible: from 0°C to -30°C, 50mb to atmospheric pressure, and from subsaturated to greater that 200% RHi. Temperature and moisture profiles are continuously determined by platinum resistance thermometers. Optimization of cooling efficiencies are under way and should permit extension of temperature range to -60°C. Ongoing efforts are targeted at kinetic measurements of thickness changes in order to identify growth thresholds as a function of ambient conditions and nucleation mechanism.

Cumiskey, A.; Grippaldi, J.; Magee, N. B.

2011-12-01

77

The Structural Properties of Vapor Deposited Water Ice and Astrophysical Implications  

NASA Technical Reports Server (NTRS)

Films of vapor deposited water ice at low temperature (T<30 K) show a number of interesting structural changes during a gradual warmup. We would like to talk about the structure of the low temperature high density amorphous form of water ice, the process of crystallization, and some recent work on the morphological changes of water ice films at high temperature. The studies of the high density amorphous form are from in-situ electron microscopy as well as numerical simulations of molecular dynamics and have lead to new insights into the physical distinction between this high density amorphous form and the low density amorphous form. For the process of crystallization, we propose a model that describes the crystallization of water ice from the amorphous phase to cubic ice in terms of the nucleation of small domains in the ice. This model agrees well with the behavior of water ice in our electron microscopy studies and finds that pure water above the glass transition is a strong liquid. In more recent work, we have concentrated on temperatures above the crystallization temperature and we find interesting morphological changes related to the decrease in viscosity of the amorphous component in the cubic crystalline regime. Given enough time, we would like to put these results in an astrophysical context and discuss some observed features of the frost on interstellar grains and the bulk ice in comets.

Jenniskens, P.; Blake, D. F.; Chang, Sherwood (Technical Monitor)

1996-01-01

78

Optical Properties of Small Ice Crystals with Black Carbon Inclusions  

NASA Astrophysics Data System (ADS)

The optical properties of ice crystals play a fundamental role in modeling atmospheric radiation and hydrological cycle, which are critical in monitoring climate change. While Black Carbon (BC) is recognized as the dominant absorber with positive radiative forcing (warming) (Ramanathan & Carmichael, 2008), in-situ observations (Cappa, et al, 2012) indicate that the characterization of the mixing state of BC with ice crystals and other non-BC particles in global climate models (Ghan & Schwartz, 2007) needs further investigation. The limitation in the available mixing models is due to the drastically different absorbing properties of BC compared to other aerosols. We explore the scattering properties of ice crystals (in shapes commonly found in cirrus clouds and contrails - Yang, et al. 2012) with the inclusion of BC particles. The Discrete Dipole Approximation (DDA) (Yurkin & Hoekstra, 2011) is utilized to directly calculate the optical properties of the crystals with multiple BC inclusions, modeled as a distribution of spheres. The results are then compared with the most popular models of internal and external mixing (Liou, et al. 2011). The DDA calculations are carried out over a broad range of BC particle sizes and volume fractions within the crystal at the 532 nm wavelength and for ice crystals smaller than 50 ?m. The computationally intensive database generated in this study is critical for understanding the effect of different types of BC inclusions on the atmosphere radiative forcing. Examples will be discussed to illustrate the modification of BC optical properties by encapsulation in ice crystals and how the parameterization of the BC mixing state in global climate models can be improved. Acknowledgements Support by Sandia National Laboratories' LDRD (Laboratory Directed Research and Development) is gratefully acknowledged. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Cappa, C.D., Onasch, T.B., Massoli, et al. (2012). Radiative absorption enhancements due to the mixing state of atmospheric black carbon. Science, 337(6098), 1078-1081. Ghan, S.J., & Schwartz, S.E. (2007). Aerosol properties and processes: A path from field and laboratory measurements to global climate models. Bulletin of the American Meteorological Society, 88(7), 1059-1083. Liou, K.N., Takano, Y., & Yang, P. (2011). Light absorption and scattering by aggregates: Application to black carbon and snow grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(10), 1581-1594. Ramanathan, V., & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Nature Geoscience, 1(4), 221-227. Yang, P., Bi, L., Baum, B.A., et al. (2013). Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 ? m. Journal of the Atmospheric Sciences, 70(1), 330-347. Yurkin, M.A., & Hoekstra, A.G. (2011). The discrete-dipole-approximation code ADDA: capabilities and known limitations. Journal of Quantitative Spectroscopy and Radiative Transfer, 112(13), 2234-2247.

Yang, X.; Geier, M.; Arienti, M.

2013-12-01

79

Structure and Evolution of Ice Dwarf Planets  

NASA Astrophysics Data System (ADS)

Recent discoveries prompt a new assessment of the properties of large, transneptunian objects. With the system barycenter determined by Nix and Hydra and its size by stellar occulation, Charon's density is now known at 1.65 ± 0.06 g cm-3 (Buie et al., A.J. 132, 290, 2006). Structural calculations imply a 60/40 rock/ice ratio, lower than the system as a whole, but still geophysically significant. Early temperatures should have easily reached the ammonia-water ice eutectic, if not water-ice melting. While ice-rock differentiation is not assured in the presence of solid-state convection, convection is now known to be a less efficient heat transport mechanism compared with earlier parameterized convection models. If Charon managed to remain undifferentiated, it should have undergone prolonged cooling and internal conversion of ice I to II, with clear observational consequences. Bodies of the Pluto class mark the transition from solely ice-I shells (differentiation assumed) to shells with lower layers of higher-pressure ice phases (e.g., 2003 UB313); the Pluto class also marks the transition from bodies with Europa-type to Callisto-type oceans (if they have oceans), and if one ignores the possibility of intervening organic-rich layers. Although the very cold surfaces of the ice dwarfs work against the possibility of solid-state convection, the deep ice shells in Pluto-class bodies more than compensate; Pluto itself is near the tipping point for convective shut-down, a late stage in the evolution of large rock-ice bodies in which internal oceans thicken rather than thin. In contrast, the rapidly rotating 2003 EL61, if interpreted as Jacobi ellipsoid, has a density close to 2.6 g cm-3 (Rabinowitz et al., Ap. J. 639, 1238, 2006). This implies a Europa-like structure, 85/15 rock/ice by mass with an 100-km thick ice shell (though no ocean). This work supported by NASA OPR and New Horizons.

McKinnon, William B.; Barr, A. C.

2006-09-01

80

The Influence of Radiation on Ice Crystal Spectrum in the Upper Troposphere  

NASA Technical Reports Server (NTRS)

This theoretical study is carried out to investigate the effect of radiation on ice crystal spectrum in the upper troposphere. First, an explicit expression is obtained for the ice crystal growth rate that takes account of radiative and kinetic effects. Second, the expression is used to quantitatively analyze how radiation broadens the ice crystal spectrum and then reveal a new precipitation mechanism in the upper troposphere and the stratosphere. Third, the radiative effect is used to explain the subvisual clouds near the tropopause.

Zeng, Xiping

2008-01-01

81

Inorganic Crystal Structure Database (ICSD)  

National Institute of Standards and Technology Data Gateway

SRD 84 FIZ/NIST Inorganic Crystal Structure Database (ICSD) (PC database for purchase)   The Inorganic Crystal Structure Database (ICSD) is produced cooperatively by the Fachinformationszentrum Karlsruhe(FIZ) and the National Institute of Standards and Technology (NIST). The ICSD is a comprehensive collection of crystal structure data of inorganic compounds containing more than 140,000 entries and covering the literature from 1915 to the present.

82

Evolution of ice crystal regions on the microscale based on in situ observations  

NASA Astrophysics Data System (ADS)

properties of cirrus clouds largely influence their atmospheric radiative forcing. However, uncertainties remain in simulating/parameterizing the evolution of ice crystals. These uncertainties require more analyses in the Lagrangian view, yet most in situ observations are in the Eulerian view. Here we demonstrate a new method to separate out five phases of ice crystal evolution, using the horizontal spatial relationships between ice supersaturated regions (ISSRs) and ice crystal regions (ICRs). Based on global in situ data sets, we show that the samples of clear-sky ISSRs, ice crystal formation/growth, and evaporation/sedimentation are ~20%, 10%, and 70% of the total ISSR + ICR samples, respectively. In addition, the variance of number-weighted mean diameter (Dc) becomes narrower during the evolution, while the distribution of ice crystal number density (Nc) becomes wider. The new method helps to understand the evolution of ICRs and ISSRs on the microscale by using in situ Eulerian observations.

Diao, Minghui; Zondlo, Mark A.; Heymsfield, Andrew J.; Beaton, Stuart P.; Rogers, David C.

2013-07-01

83

Distributed ice accretion sensor for smart aircraft structures  

NASA Technical Reports Server (NTRS)

A distributed ice accretion sensor is presented, based on the concept of smart structures. Ice accretion is determined using spectral techniques to process signals from piezoelectric sensors integral to the airfoil skin. Frequency shifts in the leading edge structural skin modes are correlated to ice thickness. It is suggested that this method may be used to detect ice over large areas with minimal hardware. Results are presented from preliminary tests to measure simulated ice growth.

Gerardi, J. J.; Hickman, G. A.

1989-01-01

84

Formation of Ice Crystals and Dissipation of Supercooled Fog by Artificial Nucleation, and Variations of Crystal Habit at Early Growth Stages.  

NASA Astrophysics Data System (ADS)

The early stages of ice crystal formation in supercooled fogs were studied in detail by electron microscopy, and ice nucleation experiments using liquid propane seeding were conducted in a thermostatically controlled coldroom. Ice crystals, formed by rapid cooling created by the evaporation of liquid propane from a fine nozzle at temperatures from 0.1 to 40°C, were collected and replicated on filmed grids for electron microscope examinations. Most of the ice crystals formed immediately after the liquid propane seedings were spherical (although 20% were hexagonal) with diameters ranging from 0.3 to 3 m and with a mean diameter of 1.5 m. Electron microscopy revealed a grain boundary in some of the ice crystals.The production rates of ice crystals per gram of liquid propane seeding were measured at temperatures from 0.1 to 20°C. The production rate increased exponentially at temperatures from 0.1 to 4°C, and remained at about 1011 ice crystals per gram of liquid propane seeding at temperatures below 5°C.Experiments of supercooled fog dissipation by liquid propane seeding were performed in the coldroom. The results showed that supercooled fog dissipation becomes effective at temperatures colder than 0.5°C.The habit of early stage ice crystals formed at temperatures from 0.1 to 40°C and 90 to 160°C was studied. Two basic types of hexagonal plates and columns were observed at temperatures from 22 to 40°C. A cold stage was used with the electron microscope to investigate the structure of the crystals formed at temperatures of 90 to 160°C. Plates were observed at 100°C, and were analyzed as having a hexagonal form by their electron diffraction patterns. Cubic forms of ice crystals were observed below 100°C.

Kumai, Motoi

1982-04-01

85

Cryo-Microscopic Analysis of the Effects of Extra Cellular Proteins on Polycrystalline Ice Structure  

NASA Astrophysics Data System (ADS)

Recent work has demonstrated that microorganisms can occupy the liquid filled inter-crystalline veins in ice and maintain their metabolic activity under these conditions. While these discoveries have increased the extent of the biosphere to include the large continental ice sheets of Antarctica and Greenland as biomes, the habitat of the microorganisms within the inter-crystalline liquid veins is poorly understood. Certain cold tolerant organisms produce extra cellular proteins (i.e., ice-binding proteins) that have the ability to bind to the prism face of an ice crystal and inhibit recrystallization of ice. This phenotype affects the physical ice structure and the liquid vein network, potentially providing ice-inhabiting species a protective mechanism with which to control their habitat. One such microorganism is Chryseobacterium sp. V3519-10, a bacterium isolated from a depth of 3519 m in the Vostok Ice Core. Our investigation is examining the impact of extra cellular proteins from this ice-adapted bacterium on the formation of ice crystals and characterizing the inter-crystalline liquid filled vein network using cryo-microscopy.

Brox, T.; Skidmore, M. L.; Christner, B. C.; Achberger, A.

2010-12-01

86

Crystallization of CO2 ice at astronomical conditions  

NASA Astrophysics Data System (ADS)

Carbon dioxide is, after water and comparable to carbon monoxide, one of the most abundant frozen molecular species observed in the lines of sight towards many astrophysical media. We present here an experimental and theoretical investigation on carbon dioxide ices, generated in the lab in a range of temperature, density, amorphicity, and growing conditions (1), and simulated via high level theoretical calculations. Amorphous CO2 ice was generated at CAB by deposition onto a CsI substrate at 8 K under ultrahigh vacuum conditions in the 10-11 mbar range. The pressure increase used for the deposition of CO2 was very low, 10-9 mbar, to enable the formation of highly amorphous CO2 ice, at very low deposition rate. The transmittance infrared spectra, collected at several stages of sample growth, from 20 to 360 monolayers, are shown in the Figure. In a different set of experiments performed at IEM, the morphology of the amorphous CO2 ice has been studied using reflexion-absorption infrared (RAIR) spectroscopy. Calculated spectra of amorphous CO2 ice are obtained using the SIESTA code (2). In a first step, crystalline structures are processed by molecular dynamics to generate amorphous samples, which are subsequently relaxed until an equilibrium configuration is reached. The vibrational spectra of the amorphous solids are then calculated. The spectra of amorphous ice can change significantly depending on the density of the sample. An IR band, red-shifted with respect to ?3, has been identified as a witness of pure and amorphous CO2 ice. It vanishes when the sample becomes crystalline, either by temperature increase or by accumulation of increasing number of layers. The absence of this band in the observed spectra of solid CO2 is an indication that there is no pure and amorphous CO2 ice in inter- and circumstellar mantles References 1. Escribano, R., Muñoz Caro, G., Cruz-Díaz, G.A. Rodríguez-Lazcano, Y. and Maté, B., PNAS, accepted for publication, July 2013.. 2. Ordejón, P., Artacho, E., Soler, J.M., Phys. Rev. B, 53, R10441 (1996). Transmission spectra of CO2 ice samples deposited at 8 K, for increasing thickness expressed as monolayer coverage. Spectral regions of ?3 (stretching mode) and ?2 (bending mode), are shown on the left- and right-hand panels, respectively.

Escribano, R. M.; Munoz-Caro, G.; Cruz-Diaz, G.; Mate, B.; Rodriguez-Lazcano, Y.

2013-12-01

87

Directed Discovery of Crystal Structures  

NSDL National Science Digital Library

This contribution is modified from a published exercise "Directed Discovery of Crystal Structures Using Ball-and-Stick Models" [Mogk, 1997] . While the published exercise is based on student exploration of traditional ball-and-stick models of crystal structures, this modified version uses a similar "discovery-based" approach and the latest online crystallographic information and visualization software to teach the spatial relationships and crystal-chemical rules that govern the crystal structures of common minerals and crystalline solids. A few changes in the content have been made from the published exercise, mainly to accommodate the new digital media.

Dave Mogk

88

Ice Cream Structural Elements that Affect Melting Rate and Hardness  

Microsoft Academic Search

Statistical models were developed to reveal which structural elements of ice cream affect melting rate and hardness. Ice creams were frozen in a batch freezer with three types of sweetener, three levels of the emulsifier polysorbate 80, and two different draw temperatures to produce ice creams with a range of microstructures. Ice cream mixes were analyzed for viscosity, and finished

M. R. Muse; R. W. Hartel

2004-01-01

89

Polar nephelometer for light-scattering measurements of ice crystals.  

PubMed

We report on a small, lightweight polar nephelometer for the measurement of the light-scattering properties of cloud particles, specifically designed for use on a balloonborne platform in cirrus cloud conditions. The instrument consists of 33 fiber-optic light guides positioned in a two-dimensional plane from 5 degrees to 175 degrees that direct the scattered light to photodiode detectors-amplifier units. The system uses an onboard computer and data acquisition card to collect and store the measured signals. The instrument's calibration is tested by measurement of light scattered into a two-dimensional plane from small water droplets generated by an ultrasonic humidifier. Excellent comparisons between the measured water-droplet scattering properties and expectations generated by Mie calculation are shown. The measured scattering properties of ice crystals generated in a cold chamber also compare reasonably well with the theoretical results based on calculations from a unified theory of light scattering by ice crystals that use the particle size distribution measured in the chamber. PMID:18033557

Barkey, B; Liou, K N

2001-02-15

90

Workman-Reynolds freezing potential measurements between ice and dilute salt solutions for single ice crystal faces.  

PubMed

Workman-Reynolds freezing potentials have been measured for the first time across the interface between single crystals of ice 1h and dilute electrolyte solutions. The measured electric potential is a strictly nonequilibrium phenomenon and a function of the concentration of salt, freezing rate, orientation of the ice crystal, and time. When all these factors are controlled, the voltage is reproducible to the extent expected with ice growth experiments. Zero voltage is obtained with no growth or melting. For rapidly grown ice 1h basal plane in contact with a solution of 10 (-4) M NaCl the maximum voltage exceeds 30 V and decreases to zero at both high and low salt concentrations. These single-crystal experiments explain much of the data captured on this remarkable phenomenon since 1948. PMID:18720967

Wilson, P W; Haymet, A D J

2008-09-18

91

75 FR 8116 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Ice Crystal...  

Federal Register 2010, 2011, 2012, 2013, 2014

...National Cooperative Research and Production Act of 1993--Ice Crystal Consortium Notice is hereby given that, on December 31, 2009...15 U.S.C. 4301 et seq. (``the Act''), the Ice Crystal Consortium (``ICC'') has filed written...

2010-02-23

92

Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth.  

PubMed

Antifreeze proteins (AFPs) are a subset of ice-binding proteins that control ice crystal growth. They have potential for the cryopreservation of cells, tissues, and organs, as well as for production and storage of food and protection of crops from frost. However, the detailed mechanism of action of AFPs is still unclear. Specifically, there is controversy regarding reversibility of binding of AFPs to crystal surfaces. The experimentally observed dependence of activity of AFPs on their concentration in solution appears to indicate that the binding is reversible. Here, by a series of experiments in temperature-controlled microfluidic devices, where the medium surrounding ice crystals can be exchanged, we show that the binding of hyperactive Tenebrio molitor AFP to ice crystals is practically irreversible and that surface-bound AFPs are sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings rule out theories of AFP activity relying on the presence of unbound protein molecules. PMID:23300286

Celik, Yeliz; Drori, Ran; Pertaya-Braun, Natalya; Altan, Aysun; Barton, Tyler; Bar-Dolev, Maya; Groisman, Alex; Davies, Peter L; Braslavsky, Ido

2013-01-22

93

Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth  

PubMed Central

Antifreeze proteins (AFPs) are a subset of ice-binding proteins that control ice crystal growth. They have potential for the cryopreservation of cells, tissues, and organs, as well as for production and storage of food and protection of crops from frost. However, the detailed mechanism of action of AFPs is still unclear. Specifically, there is controversy regarding reversibility of binding of AFPs to crystal surfaces. The experimentally observed dependence of activity of AFPs on their concentration in solution appears to indicate that the binding is reversible. Here, by a series of experiments in temperature-controlled microfluidic devices, where the medium surrounding ice crystals can be exchanged, we show that the binding of hyperactive Tenebrio molitor AFP to ice crystals is practically irreversible and that surface-bound AFPs are sufficient to inhibit ice crystal growth even in solutions depleted of AFPs. These findings rule out theories of AFP activity relying on the presence of unbound protein molecules. PMID:23300286

Celik, Yeliz; Drori, Ran; Pertaya-Braun, Natalya; Altan, Aysun; Barton, Tyler; Bar-Dolev, Maya; Groisman, Alex; Davies, Peter L.; Braslavsky, Ido

2013-01-01

94

On the correlation between ice water content and ice crystal size and its application to radiative transfer and general circulation models  

Microsoft Academic Search

We performed correlation analysis involving ice water content (IWC) and mean effective ice crystal size (De) intended for application to climate models. For this purpose, ice crystal size distributions obtained from in situ measurements conducted from numerous field campaigns in the tropics, midlatitude, and Arctic regions were used and we show that IWC and De are well-correlated in this regional

K. N. Liou; Y. Gu; Q. Yue; G. McFarguhar

2008-01-01

95

Transformation of the snow crystal to a particle of ice  

NASA Astrophysics Data System (ADS)

To study the physical properties of snow under different meteorological conditions a mathematical model and numerical computer program were created and applied for some numerical modelling estimates. The non-linear mathematical model consists of partial differential equations and can be subdivided into a thermal part with phase changes in porous media, diffusion, structural transformation and mechanical parts. The model was applied to simulate the evolution of structural, thermal and mechanical parameters in a snow profile subject to meteorological parameters (air temperature and moisture, wind velocity, precipitation, density). The snow structure is very sensitive to the temporal variations of all external parameters: temperature, humidity, precipitation and wind-pumping. Snow deposited in cold weather conditions is transformed through densification, metamorphism and recrystallisation. Snow crystals have unstable shapes. The tendency for mass and heat to be redistributed through sublimation is to minimise the surface free energy. The result of these processes is to change the shape of a snow crystal to that of a sphere. The transformation of the initial singular stellar crystal to a number of small grains with the same mass as the original crystal is described mathematically. It gives the rates of the transformations. Based on this mathematical approach we can predict changes of the crystal shapes, number of crystals and other physical properties inside a snowpack subject to different meteorological conditions.

Guseva-Lozinski, Elena

96

Modeling of Commercial Turbofan Engine With Ice Crystal Ingestion: Follow-On  

NASA Technical Reports Server (NTRS)

The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in flight. The computational tool was utilized to help guide a portion of the PSL testing, and was used to predict ice accretion could also occur at significantly lower altitudes. The predictions were qualitatively verified by subsequent testing of the engine in the PSL. In a previous study, analysis of select PSL test data points helped to calibrate the engine icing computational tool to assess the risk of ice accretion. This current study is a continuation of that data analysis effort. The study focused on tracking the variations in wet bulb temperature and ice particle melt ratio through the engine core flow path. The results from this study have identified trends, while also identifying gaps in understanding as to how the local wet bulb temperature and melt ratio affects the risk of ice accretion and subsequent engine behavior.

Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

2014-01-01

97

The preparation and structure of salty ice VII under pressure.  

PubMed

It is widely accepted that ice, no matter what phase, is unable to incorporate large amounts of salt into its structure. This conclusion is based on the observation that on freezing of salt water, ice expels the salt almost entirely as brine. Here, we show that this behaviour is not an intrinsic physico-chemical property of ice phases. We demonstrate by neutron diffraction that substantial amounts of dissolved LiCl can be built homogeneously into the ice VII structure if it is produced by recrystallization of its glassy (amorphous) state under pressure. Such 'alloyed' ice VII has significantly different structural properties compared with pure ice VII, such as an 8% larger unit cell volume, 5 times larger displacement factors, an absence of a transition to an ordered ice VIII structure and plasticity. Our study suggests that there could be a whole new class of 'salty' high-pressure ice forms. PMID:19349969

Klotz, Stefan; Bove, Livia E; Strässle, Thierry; Hansen, Thomas C; Saitta, Antonino M

2009-05-01

98

Enhanced high-temperature ice nucleation ability of crystallized aerosol particles after preactivation at low temperature  

NASA Astrophysics Data System (ADS)

In cloud chamber experiments with crystallized aqueous ammonium sulfate, oxalic acid, and succinic acid solution droplets, we have studied a preactivation mechanism that markedly enhances the particles' heterogeneous ice nucleation ability. First cloud expansion experiments were performed at a high temperature (267-244 K) where the crystallized particles did not promote any heterogeneous ice nucleation. Ice nucleation at this temperature, however, could be triggered by temporarily cooling the crystallized particles to a lower temperature. This is because upon crystallization, residuals of the aqueous solution are trapped within the crystals. These captured liquids can freeze when cooled below their respective homogeneous or heterogeneous freezing temperature, leading to the formation of ice pockets in the crystalline particles. When warmed again to the higher temperature, ice formation by the preactivated particles occurred via depositional and deliquescence-induced ice growth, with ice active fractions ranging from 1 to 4% and from 4 to 20%, respectively. Preactivation disappeared above the eutectic temperature, which for the organic acids are close to the melting point of ice. This mechanism could therefore contribute to the very small fraction of atmospheric aerosol particles that are still ice active well above 263 K.

Wagner, Robert; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin

2014-07-01

99

Soap Froths and Crystal Structures  

E-print Network

We propose a physical mechanism to explain the crystal symmetries found in macromolecular and supramolecular micellar materials. We argue that the packing entropy of the hard micellar cores is frustrated by the entropic interaction of their brush-like coronas. The latter interaction is treated as a surface effect between neighboring Voronoi cells. The observed crystal structures correspond to the Kelvin and Weaire-Phelan minimal foams. We show that these structures are stable for reasonable areal entropy densities.

Primoz Ziherl; Randall D. Kamien

2000-07-14

100

Ikaite crystal distribution in Arctic winter sea ice and implications for CO2 system dynamics  

NASA Astrophysics Data System (ADS)

The precipitation of ikaite (CaCO3·6H2O) in polar sea ice is critical to the efficiency of the sea ice-driven carbon pump and potentially important to the global carbon cycle, yet the spatial and temporal occurrence of ikaite within the ice is poorly known. We report unique observations of ikaite in unmelted ice and vertical profiles of ikaite abundance and concentration in sea ice for the crucial season of winter. Ice was examined from two locations: a 1 m thick land-fast ice site and a 0.3 m thick polynya site, both in the Young Sound area (74° N, 20° W) of NE Greenland. Ikaite crystals, ranging in size from a few µm to 700 µm were observed to concentrate in the interstices between the ice platelets in both granular and columnar sea ice. In vertical sea-ice profiles from both locations, ikaite concentration determined from image analysis, decreased with depth from surfaceice values of 700-900 µmol kg-1 ice (~ 25 × 106 crystals kg-1) to bottom-layer values of 100-200 µmol kg-1 ice (1-7 × 106 kg-1), all of which are much higher (4-10 times) than those reported in the few previous studies. Direct measurements of total alkalinity (TA) in surface layers fell within the same range as ikaite concentration whereas TA concentrations in bottom layers were twice as high. This depth-related discrepancy suggests interior ice processes where ikaite crystals form in surface sea ice layers and partly dissolved in bottom layers. From these findings and model calculations we relate sea ice formation and melt to observed pCO2 conditions in polar surface waters, and hence, the air-sea CO2 flux.

Rysgaard, S.; Søgaard, D. H.; Cooper, M.; Pu?ko, M.; Lennert, K.; Papakyriakou, T. N.; Wang, F.; Geilfus, N. X.; Glud, R. N.; Ehn, J.; McGinnnis, D. F.; Attard, K.; Sievers, J.; Deming, J. W.; Barber, D.

2012-12-01

101

Isomorph invariance of the structure and dynamics of classical crystals  

NASA Astrophysics Data System (ADS)

This paper shows by computer simulations that some crystalline systems have curves in their thermodynamic phase diagrams, so-called isomorphs, along which structure and dynamics in reduced units are invariant to a good approximation. The crystals are studied in a classical-mechanical framework, which is generally a good description except significantly below melting. The existence of isomorphs for crystals is validated by simulations of particles interacting via the Lennard-Jones pair potential arranged into a face-centered cubic (fcc) crystalline structure; the slow vacancy-jump dynamics of a defective fcc crystal is also shown to be isomorph invariant. In contrast, a NaCl crystal model does not exhibit isomorph invariances. Other systems simulated, though in less detail, are the Wahnström binary Lennard-Jones crystal with the MgZn2 Laves crystal structure, monatomic fcc crystals of particles interacting via the Buckingham pair potential and via a purely repulsive pair potential diverging at a finite separation, an ortho-terphenyl molecular model crystal, and SPC/E hexagonal ice. Except for NaCl and ice, the crystals simulated all have isomorphs. Based on previous simulations of liquid models, we conjecture that crystalline solids with isomorphs include most or all formed by atoms or molecules interacting via metallic or van der Waals forces, whereas covalently bonded or hydrogen-bonded crystals are not expected to have isomorphs; crystals of ions or dipolar molecules constitute a limiting case for which isomorphs are only expected when the Coulomb interactions are relatively weak. We briefly discuss the consequences of the findings for theories of melting and crystallization.

Albrechtsen, Dan E.; Olsen, Andreas E.; Pedersen, Ulf R.; Schrøder, Thomas B.; Dyre, Jeppe C.

2014-09-01

102

Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)  

NASA Astrophysics Data System (ADS)

In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmosphere Model version 5.3 (CAM5.3), the effects of pre-existing ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of the cirrus cloud rather than in the whole area of the cirrus cloud. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The pre-existing ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and pre-existing ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 106 m-2) is less than that from the LP (8.46 × 106 m-2) and BN (5.62 × 106 m-2) parameterizations. As a result, the experiment using the KL parameterization predicts a much smaller anthropogenic aerosol long-wave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2) and BN (0.39 W m-2) parameterizations.

Shi, X.; Liu, X.; Zhang, K.

2015-02-01

103

Structure of Water Ice in the Solar System  

NASA Technical Reports Server (NTRS)

Nearly all of the properties of solar system ices (chemical reaction rates, volatile retention and release, vaporization behavior, thermal conductivity, infrared spectral characteristics and the like) are a direct consequence of ice structure. However, the characterization of astrophysical ices and their laboratory analogs has typically utilized indirect measurements which yield phenomenological interpretations. When water ice is vapor-deposited at 14 K and warmed until it volatilizes in moderate vacuum, the ice undergoes a series of amorphous to amorphous and amorphous to crystalline structural transitions which we have characterized by diffraction methods. These structural transitions correlate with and underlie many phenomena observed in laboratory infrared and gas release experiments. The elucidation of the dynamic structural changes which occur in vapor-deposited water ice as a function of time, temperature and radiation history allows for the more complete interpretation of remote observations of astrophysical ices and their laboratory analogs.

Blake, David; Jenniskens, Peter; Chang, Sherwood (Technical Monitor)

1996-01-01

104

Stability relationship for water droplet crystallization with the NASA Lewis icing spray  

NASA Technical Reports Server (NTRS)

In order to produce small droplets for icing cloud simulation, high pressure air atomizing nozzles are used. For certain icing testing applications, median drop sizes as small as 5 mm are needed, which require air atomizing pressures greater than 3000 kPa. Isentropic expansion of the ambient temperature atomizing air to atmospheric pressure can result in air stream temperatures of -160 C which results in ice crystals forming in the cloud. To avoid such low temperatures, it is necessary to heat the air and water to high initial temperatures. An icing spray research program was conducted to map the temperatures below which ice crystals form. A soot slide technique was used to determine the presence of crystals in the spray.

Marek, C. John; Bartlett, C. Scott

1987-01-01

105

Changing structures and dynamics of western Antarctic Peninsula Ice Shelves  

NASA Astrophysics Data System (ADS)

Over the last three decades, Antarctic Peninsula Ice Shelves have shown a pattern of sustained retreat, often ending in catastrophic and rapid breakup. This study provides a detailed analysis of the structures and dynamics of three western Antarctic Peninsula ice shelves: Bach, Stange and George VI Ice Shelves. Spatial extent and glaciological surface features were mapped for each ice shelf from 1973 to 2010 using optical and radar satellite images to assess their structural evolution, historical dynamics and stability. InSAR and feature-tracking methods were used to assess the recent dynamic configurations of the ice shelves from 1989 to 2010. Repeat ICESat measurements were used to evaluate their vertical changes from 2003 to 2008. On Bach Ice Shelf, the formation of two large fractures near the ice front is linked to widespread thinning (~2 ma-1) and sustained retreat (~360 km2). It looks likely that iceberg calving along these fractures will alter the frontal geometry sufficiently to promote enhanced, irreversible retreat within the next decade. On George VI Ice Shelf, acceleration is observed at both ice fronts; linked to a release of back-stresses through continued ice loss (1995 km2 in total). The most significant changes are recorded at its southern ice front, with ice flow accelerating up to 360% between ca. 1989 and ca. 2010, coupled with widespread rifting and a mean thinning rate of 2.1 ma-1. On Stange Ice Shelf, shear-induced fracturing was observed between two flow units, also linked to widespread thinning (~4.2 ma-1). A semi-quantitative assessment reveals that the southern margin of George VI Ice Shelf is most susceptible to rapid retreat, whilst its northern ice front, Bach Ice Shelf and the northern front of Stange Ice Shelf are more vulnerable than those situated on the east Antarctic Peninsula.

Glasser, N. F.; Holt, T. O.; Quincey, D. J.; Fricker, H.; Siegfried, M. R.

2013-12-01

106

Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber  

E-print Network

particles generated in a laboratory cloud chamber are measured with a lightweight polar nephelometer with a diode laser beam. This cloud chamber produces distinct plate and hollow column ice crystal types. The cloud chamber developed at the Desert Re- search Institute has been used to produce ice clouds composed

Liou, K. N.

107

Static charging of aircraft by collisions with ice crystals (+) A. J. Illingworth and S. J. Marsh  

E-print Network

negatively because of the triboelectric or frictional charging occurring as water or ice particles collide803 Static charging of aircraft by collisions with ice crystals (+) A. J. Illingworth and S. J 1986) Résumé. - Des expériences de laboratoire, mesurant le transfert de charge lors de collisions de

Paris-Sud XI, Université de

108

Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures  

PubMed Central

Background and Aims Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Methods Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Key Results Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per ?m2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. Conclusions The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches. PMID:24368198

Wesley-Smith, James; Berjak, Patricia; Pammenter, N. W.; Walters, Christina

2014-01-01

109

Analysis of ice crystal habits derived from MISR and MODIS observations over the ARM Southern Great Plains site  

Microsoft Academic Search

We have developed a look-up table approach for retrieving cloud phase (water or ice) and best-fit ice crystal scattering model from coincident Multiangle Imaging Spectroradiometer (MISR) and Moderate Resolution Imaging Spectroradiometer (MODIS) data. We present statistics of cloud phase and radiatively effective ice crystal habit for 5 years of Terra overpasses of the Atmospheric Radiation Measurement (ARM) Program's Southern Great

Sally A. McFarlane; Roger T. Marchand

2008-01-01

110

Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1.  

PubMed

The ability to tolerate environmental stresses is crucial for all living organisms, and gene duplication is one of the sources for evolutionary novelties. Arabidopsis thaliana INDUCER OF CBF EXPRESSION1 and 2 (ICE1 and ICE2) encode MYC-type bHLH (basic helix-loop-helix) transcription factors. They confer cold stress tolerance by induction of the CBF/DREB1 regulon and regulate stomata formation. Although ICE2 is closely related to ICE1, its origin and role in cold response remains uncertain. Here, we used a bioinformatics/phylogenetic approach to uncover the ICE2 evolutionary history, structural evolution and functional divergence from the putative ancestral gene. Sequence diversification from ICE1 included the gain of cis-acting elements in ICE2 promoter sequence that may provide meristem-specific and defense-related gene expression. By analyzing transgenic Arabidopsis lines with ICE2 over-expression we showed that it contributes to stomata formation, flowering time regulation and cold response. Constitutive ICE2 expression led to induced meristem freezing tolerance, resulting from activation of CBF1 and CBF3 genes and ABA biosynthesis by NCED3 induction. We presume that ICE2 gene has originated from a duplication event about 17.9MYA followed by sub- and neofunctionalization of the ancestral ICE1 gene. Moreover, we predict its role in pathogen resistance and flowering time regulation. PMID:25443829

Kurbidaeva, Amina; Ezhova, Tatiana; Novokreshchenova, Maria

2014-12-01

111

Crystal structure refinement with SHELXL.  

PubMed

The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as `a CIF') containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors. PMID:25567568

Sheldrick, George M

2015-01-01

112

Crystal structure refinement with SHELXL  

PubMed Central

The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as ‘a CIF’) containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors. PMID:25567568

Sheldrick, George M.

2015-01-01

113

II. Properties of Water 1. Ice and Liquid water structure  

E-print Network

II. Properties of Water 1. Ice and Liquid water structure 2. Cohesion / Surface Tension 3. High and Properties Water's molecular structure and capacity to donate and accept hydrogen bonds give it unusual.6: Five Critical Properties of Water 1. Ice and liquid water structure Temperature 0°C Temperature > 0°C

Frey, Terry

114

Crystal structure of fenpropathrin  

PubMed Central

In the title compound [systematic name: cyano­(3-phen­oxy­phen­yl)methyl 2,2,3,3-tetra­methyl­cyclo­propane­carboxyl­ate], C22H23NO3, which is the pyrethroid insecticide fenpropathrin, the dihedral angle between the cyclo­propane ring plane and the carboxyl­ate group plane is 88.25?(11)°. The dihedral angle between the benzene and phenyl rings in the phen­oxy­benzyl group is 82.99?(4)°. In the crystal, C—H?N hydrogen bonds and weak C—H?? inter­actions link adjacent mol­ecules, forming loop chains along the b-axis direction. PMID:25553036

Kang, Gihaeng; Jeon, Youngeun; Lee, Sangjin; Kim, Tae Ho

2014-01-01

115

Structural Basis for Antifreeze Activity of Ice-binding Protein from Arctic Yeast*  

PubMed Central

Arctic yeast Leucosporidium sp. produces a glycosylated ice-binding protein (LeIBP) with a molecular mass of ?25 kDa, which can lower the freezing point below the melting point once it binds to ice. LeIBP is a member of a large class of ice-binding proteins, the structures of which are unknown. Here, we report the crystal structures of non-glycosylated LeIBP and glycosylated LeIBP at 1.57- and 2.43-? resolution, respectively. Structural analysis of the LeIBPs revealed a dimeric right-handed ?-helix fold, which is composed of three parts: a large coiled structural domain, a long helix region (residues 96–115 form a long ?-helix that packs along one face of the ?-helix), and a C-terminal hydrophobic loop region (243PFVPAPEVV251). Unexpectedly, the C-terminal hydrophobic loop region has an extended conformation pointing away from the body of the coiled structural domain and forms intertwined dimer interactions. In addition, structural analysis of glycosylated LeIBP with sugar moieties attached to Asn185 provides a basis for interpreting previous biochemical analyses as well as the increased stability and secretion of glycosylated LeIBP. We also determined that the aligned Thr/Ser/Ala residues are critical for ice binding within the B face of LeIBP using site-directed mutagenesis. Although LeIBP has a common ?-helical fold similar to that of canonical hyperactive antifreeze proteins, the ice-binding site is more complex and does not have a simple ice-binding motif. In conclusion, we could identify the ice-binding site of LeIBP and discuss differences in the ice-binding modes compared with other known antifreeze proteins and ice-binding proteins. PMID:22303017

Lee, Jun Hyuck; Park, Ae Kyung; Do, Hackwon; Park, Kyoung Sun; Moh, Sang Hyun; Chi, Young Min; Kim, Hak Jun

2012-01-01

116

Laboratory Investigation of Contact Freezing and the Aerosol to Ice Crystal Transformation Process  

SciTech Connect

This project has been focused on the following objectives: 1. Investigations of the physical processes governing immersion versus contact nucleation, specifically surface-induced crystallization; 2. Development of a quadrupole particle trap with full thermodynamic control over the temperature range 0 to –40 °C and precisely controlled water vapor saturation ratios for continuous, single-particle measurement of the aerosol to ice crystal transformation process for realistic ice nuclei; 3. Understanding the role of ice nucleation in determining the microphysical properties of mixed-phase clouds, within a framework that allows bridging between laboratory and field measurements.

Shaw, Raymond A. [Michigan Technological University

2014-10-28

117

Crystal structure of chlorfluazuron.  

PubMed

The title compound (systematic name: 1-{3,5-di-chloro-4-[3-chloro-5-(tri-fluoro-meth-yl)pyridin-2-yl-oxy]phen-yl}-3-(2,6-difluoro-benzo-yl)urea), C20H9Cl3F5N3O3, is a benzoyl-phenyl-urea insecticide. The dihedral angles between the planes of the central di-chloro-phenyl and the terminal di-fluoro-phenyl and chloro-pyridyl rings are 79.51?(6) and 78.84 6)°, respectively. In the crystal, pairs of N-H?O hydrogen bonds link adjacent mol-ecules, forming R 2 (2)(8) inversion dimers. In addition, the dimers are linked by short F?Cl [3.1060?(16)?Å] and Cl?Cl [3.2837?(7)?Å] contacts, as well as weak inter-molecular ?-? inter-actions [ring centroid separation = 3.6100?(11) and 3.7764?(13)?Å], resulting in a two-dimensional architecture parallel to (111). PMID:25705506

Cho, Seonghwa; Kim, Jineun; Lee, Sangjin; Kim, Tae Ho

2015-01-01

118

Crystal structure of chlorfluazuron  

PubMed Central

The title compound (systematic name: 1-{3,5-di­chloro-4-[3-chloro-5-(tri­fluoro­meth­yl)pyridin-2-yl­oxy]phen­yl}-3-(2,6-difluoro­benzo­yl)urea), C20H9Cl3F5N3O3, is a benzoyl­phenyl­urea insecticide. The dihedral angles between the planes of the central di­chloro­phenyl and the terminal di­fluoro­phenyl and chloro­pyridyl rings are 79.51?(6) and 78.84 6)°, respectively. In the crystal, pairs of N—H?O hydrogen bonds link adjacent mol­ecules, forming R 2 2(8) inversion dimers. In addition, the dimers are linked by short F?Cl [3.1060?(16)?Å] and Cl?Cl [3.2837?(7)?Å] contacts, as well as weak inter­molecular ?–? inter­actions [ring centroid separation = 3.6100?(11) and 3.7764?(13)?Å], resulting in a two-dimensional architecture parallel to (111). PMID:25705506

Cho, Seonghwa; Kim, Jineun; Lee, Sangjin; Kim, Tae Ho

2015-01-01

119

Crystal structure of difenoconazole  

PubMed Central

In the title compound difenoconazole [systematic name: 1-({2-[2-chloro-4-(4-chloro­phen­oxy)phen­yl]-4-methyl-1,3-dioxolan-2-yl}meth­yl)-1H-1,2,4-triazole], C19H17Cl2N3O3, the dihedral angle between the planes of the 4-chloro­phenyl and 2-chloro­phenyl rings is 79.34?(9)°, while the dihedral angle between the planes of the triazole ring and the dioxolanyl group is 59.45?(19)°. In the crystal, pairs of C—H?N hydrogen bonds link adjacent mol­ecules, forming dimers with R 2 2(6) loops. In addition, the dimers are linked by C—H?O hydrogen bonds, resulting in a three-dimensional architecture. Disorder was modeled for one C atom of the dioxolanyl group over two sets of sites with an occupancy ratio of 0.566?(17):0.434?(17). PMID:25484812

Cho, Seonghwa; Kang, Gihaeng; Lee, Sangjin; Kim, Tae Ho

2014-01-01

120

Light-scattering properties of plate and column ice crystals generated in a laboratory cold chamber.  

PubMed

Angular scattering properties of ice crystal particles generated in a laboratory cloud chamber are measured with a lightweight polar nephelometer with a diode laser beam. This cloud chamber produces distinct plate and hollow column ice crystal types for light-scattering experiments and provides a controlled test bed for comparison with results computed from theory. Ice clouds composed predominantly of plates and hollow columns generated noticeable 22 degrees and 46 degrees halo patterns, which are predicted from geometric ray-tracing calculations. With the measured ice crystal shape and size distribution, the angular scattering patterns computed from geometrical optics with a significant contribution by rough surfaces closely match those observed from the nephelometer. PMID:12269578

Barkey, Brian; Bailey, Matt; Liou, Kuo-Nan; Hallett, John

2002-09-20

121

Crystallization, melting, and structure of water nanoparticles at atmospherically relevant temperatures.  

PubMed

Water nanoparticles play an important role in atmospheric processes, yet their equilibrium and nonequilibrium liquid-ice phase transitions and the structures they form on freezing are not yet fully elucidated. Here we use molecular dynamics simulations with the mW water model to investigate the nonequilibrium freezing and equilibrium melting of water nanoparticles with radii R between 1 and 4.7 nm and the structure of the ice formed by crystallization at temperatures between 150 and 200 K. The ice crystallized in the particles is a hybrid form of ice I with stacked layers of the cubic and hexagonal ice polymorphs in a ratio approximately 2:1. The ratio of cubic ice to hexagonal ice is insensitive to the radius of the water particle and is comparable to that found in simulations of bulk water around the same temperature. Heating frozen particles that contain multiple crystallites leads to Ostwald ripening and annealing of the ice structures, accompanied by an increase in the amount of ice at the expense of the liquid water, before the particles finally melt from the hybrid ice I to liquid, without a transition to hexagonal ice. The melting temperatures T(m) of the nanoparticles are not affected by the ratio of cubic to hexagonal layers in the crystal. T(m) of the ice particles decreases from 255 to 170 K with the particle size and is well described by the Gibbs-Thomson equation, T(m)(R) = T(m)(bulk) - K(GT)/(R - d), with constant K(GT) = 82 ± 5 K·nm and a premelted liquid of width d = 0.26 ± 0.05 nm, about one monolayer. The freezing temperatures also decrease with the particles' radii. These results are important for understanding the composition, freezing, and melting properties of ice and liquid water particles under atmospheric conditions. PMID:22452637

Johnston, Jessica C; Molinero, Valeria

2012-04-18

122

Ultrasonically triggered freezing of aqueous solutions: Influence of initial oxygen content on ice crystals' size distribution  

NASA Astrophysics Data System (ADS)

Samples of mannitol's aqueous solution at various contents of dissolved oxygen were frozen with the help of ultrasound and the ice crystals size distributions were measured by optical microscopy. Increasing the oxygen content led to a fair decreasing of the average crystals size and an increasing of the homogeneity of the size of crystals within the sample. The average size appeared simply as inversely proportional to the oxygen content in the initial liquid solution.

Jabbari-Hichri, Amira; Peczalski, Roman; Laurent, Pierre

2014-09-01

123

Arctic ice shelves and ice islands: Origin, growth and disintegration, physical characteristics, structural-stratigraphic variability, and dynamics  

SciTech Connect

Ice shelves are thick, floating ice masses most often associated with Antarctica where they are seaward extensions of the grounded Antarctic ice sheet and sources of many icebergs. However, there are also ice shelves in the Arctic, primarily located along the north coast of Ellesmere Island in the Canadian High Arctic. The only ice shelves in North America and the most extensive in the north polar region, the Ellesmere ice shelves originate from glaciers and from sea ice and are the source of ice islands, the tabular icebergs of the Arctic Ocean. The present state of knowledge and understanding of these ice features is summarized in this paper. It includes historical background to the discovery and early study of ice shelves and ice islands, including the use of ice islands as floating laboratories for polar geophysical research. Growth mechanisms and age, the former extent and the twentieth century disintegration of the Ellesmere ice shelves, and the processes and mechanisms of ice island calving are summarized. Surface features, thickness, thermal regime, and the size, shape, and numbers of ice islands are discussed. The structural-stratigraphic variability of ice islands and ice shelves and the complex nature of their growth and development are described. Large-scale and small-scale dynamics of ice islands are described, and the results of modeling their drift and recurrence intervals are presented. The conclusion identifies some unanswered questions and future research opportunities and needs. 97 refs., 18 figs.

Jeffries, M.O. (Univ. of Alaska, Fairbanks (United States))

1992-08-01

124

Using New Optical Scattering Measurements to Identify Atmospheric Aerosols, Dusts, and Ice Crystals  

NASA Astrophysics Data System (ADS)

While the availability of recent satellites such as Moderate-resolution Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) offer improved accuracy and global coverage of nonspherical aerosol and cloud particles, such measurements still rely on gross assumptions in determination of particle type. In particular, the size and composition-dependent scattering properties of nonspherical dust and ice crystals are needed to determine the individual contributions of dust and ice to the scattering of sunlight and the earth's radiative budget. An added challenge is that the presence of dust and ice often coincide in the atmosphere because dust is an effective ice nucleus. A new in-situ instrument, the Cloud and Aerosol Spectrometer with Polarization (CASPOL) from Droplet Measurement Technologies measures light scattered by aerosols in the forward and backward directions, with an additional polarized detector in the backward direction. Scattering by a single particle can be measured by all three detectors for aerosols in a broad range of sizes, 0.6 micrometers < diameter < 50 micrometers. The CASPOL is a unique measurement tool, since unlike most in-situ probes, it measures these optical properties on a particle-by-particle basis. In this laboratory study, single particle CASPOL measurements for thirteen atmospherically relevant dusts were obtained and their optical scattering signatures were evaluated. In addition, a Continuous Flow Diffusion Chamber (CFDC) was used as an ice crystal generator to produce ice crystals via both homogenous and heterogeneous nucleation mechanisms under well-controlled laboratory conditions. Optical scattering properties of the nucleated ice crystals were then measured by the CASPOL. The total and polarized backscatter intensities were found to vary with particle size for all dust types. Using a new optical signature technique all but one dust type could be categorized into one of three optical scattering groups. Significant differences between the optical properties of single dust and ice particles of the same size were observed. Differences between the optical signatures of homogeneously and heterogeneously nucleated ice crystals were not statistically significant. In addition, assuming size distributions representative of dust and cirrus ice clouds in the atmosphere, we used the CASPOL single particle data to estimate the additive composite backscatter intensity and depolarization ratio for these populations of non spherical particles in the atmosphere, and hence their contributions to the Earth's radiative budget. Our results suggest that atmospheric ice crystals can be identified and quantified independent from the dust particles on which they form based on analysis of their backscatter and depolarization signals. Information provided by the CASPOL measurements could improve interpretation of remote sensing measurements of many types of aerosol and cloud particles.

Brooks, S. D.; Orcutt, J. M.; Glen, A.

2013-12-01

125

Investigation of nucleation, dynamic growth and surface properties of single ice crystals  

NASA Astrophysics Data System (ADS)

Nucleation, dynamic growth and optical light scattering properties of a fixed single ice crystal have been experimentally characterized in dependence of both, the type of the ice nucleus (IN) and the prevailing thermodynamic conditions. The set up was developed based on the laminar flow tube LACIS (Leipzig Aerosol Cloud Interaction Simulator, Stratmann et al., 2004; Hartmann et al., 2011). The flow tube is equipped with a SID3-type (Small Ice Detector, Kaye et al., 2008) instrument called LISA (LACIS Ice Scattering Apparatus) and an additional optical microscope. For the investigations, a single (IN with a dry size of 2-10 micrometer is attached to a thin glass fiber and positioned within the optical measuring volume of LISA. The fixed particle is exposed to the thermodynamically controlled air flow, exiting the flow tube. Temperature and saturation ratio in the measuring volume can be varied on a time scale of 1-2 s by adjusting the humidified gas flow. Dependent on the thermodynamic conditions, ice nucleation and ice particle growth/shrinkage occur and can be studied. Thereby, the LISA instrument is applied to obtain 2-D light scattering patterns, and the additional optical microscope allows a time dependent visualization of the ice crystal. Both devices together allow to investigate the influence of the thermodynamic conditions on ice particle growth, the particle shape and its surface properties (i.e., its surface roughness, Ulanowski et al., 2011; Ulanowski et al., 2012; Ulanowski et al., 2013)). The thermodynamic conditions in the optical measuring volume have been extensively characterized using a) computational fluid dynamics (CFD) calculations, b) temperature and dew-point measurements, and c) evaluation of droplet and ice particle growth data. Furthermore, we successfully performed condensation freezing and deposition nucleation experiments with ATD (Arizona Test Dust), kaolinite, illite and SnomaxTM (Johnson Controls Snow, Colorado, USA) particles. In the experiments we could prove that different types of IN, as well as different temperatures and saturation ratios result in different growth rates and ice crystal shapes, but also in different surface properties. Regarding on single ice crystal, the surface roughness can also be modified by varying the prevailing thermodynamic conditions. Thereby, the surface roughness tends to increase for growing and to decrease for shrinking particles. Here, we will present current results of the thermodynamic characterization measurements and the ongoing ice crystal growth experiments.

Voigtlaender, Jens; Herenz, Paul; Chou, Cédric; Bieligk, Henner; Clauss, Tina; Niedermeier, Dennis; Ritter, Georg; Ulanowski, Joseph Z.; Stratmann, Frank

2014-05-01

126

Examinations of ice formation processes in Florida cumuli using ice nuclei measurements of anvil ice crystal particle residues  

E-print Network

] A continuous flow diffusion chamber (CFDC) was used to measure ice formation by cloud particle residuals during cirrus formed from convection. The CFDC sampled residual particles remaining after evaporation of cloud, determination of the ice nucleation ability of particles that included the presumed nuclei for cloud

127

laboratory studies on the uptake of organic compounds by ice crystals  

NASA Astrophysics Data System (ADS)

Anthropogenic aerosols produced from biomass burning are known to increase the number of cloud condensation nuclei in the atmosphere at most latitudes. This reduces cloud droplet size, which prevents raindrop formation at shallower levels in the atmosphere. Vertical convection processes force particles and water vapor to rise up to the upper troposphere. At lower temperatures, ice crystals are formed via heterogeneous freezing of supercooled droplets containing particles known as ice nuclei (IN) and/or via condensation of supercooled water onto IN directly from the vapor, followed by freezing. Ice crystals grow by vapor deposition, by collision of supercooled drops with ice particles and by collision of ice crystals. The grown ice crystals melt on their way down and turn into rain. Most of the precipitation falling to the surface at midlatitudes originates as ice. The adsorption of organic gases emitted from fossil fuel combustion like BTEX may alter particle growth and sublimation rates in the atmosphere. This may also change precipitation rates, which impact the climate world-wide. Considering importance of ice in atmospheric science, laboratory studies are carried out to quantify organic vapor adsorption onto ice. At temperatures between 0 and -40^oC, organic gases at ppb gas levels are allowed to adsorb to the surface of ice crystals with surface properties similar to atmospheric ice. For the experiments, a vertical ice chamber (stainless-steel) with 10 different screen inserts (stainless-steel) was constructed. The chamber is 39 cm in length and 10,5 cm in diameter. The size of the stainless-steel mesh of the screens was chosen by the size of the ice crystals and is 0.14 cm. The ice chamber is located inside a 2x2 m walk-in cold chamber. Prior to the addition of the organic gases, the precleaned carrier gas of synthetic air is humidified to ice saturation in the walk-in cold chamber by passing the carrier stream through a 10 m long and 5 cm in diameter aluminum pipe. Resulting super cooled droplets are removed by stainless-steel-wool. The carrier gas is mixed outside the ice chamber in various proportions with a defined gas mixture of 60 different organic compounds. This mixture is allowed to flow through the ice chamber at defined pressures and temperatures. The concentrations of the compounds in the gas phase are determined at the inlet and the outlet of the ice chamber by a mobile GC (AirmoVoc1020). Additionally, the amount of adsorbed compounds is determined by a very sensitive method based on solid-phase-micro-extraction (SPME) followed by GC/FID. The resulting sorption coefficients for different gas concentrations are plotted vs the reciprocal of the absolute temperature for all substances. First results dealing with the adsorption properties of the investigated organic compounds.

Fries, E.; Jaeschke, W.

2003-04-01

128

Effects of preexisting ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5)  

NASA Astrophysics Data System (ADS)

In order to improve the treatment of ice nucleation in a more realistic manner in the Community Atmospheric Model version 5.3 (CAM5.3), the effects of preexisting ice crystals on ice nucleation in cirrus clouds are considered. In addition, by considering the in-cloud variability in ice saturation ratio, homogeneous nucleation takes place spatially only in a portion of cirrus cloud rather than in the whole area of cirrus cloud. With these improvements, the two unphysical limiters used in the representation of ice nucleation are removed. Compared to observations, the ice number concentrations and the probability distributions of ice number concentration are both improved with the updated treatment. The preexisting ice crystals significantly reduce ice number concentrations in cirrus clouds, especially at mid- to high latitudes in the upper troposphere (by a factor of ~10). Furthermore, the contribution of heterogeneous ice nucleation to cirrus ice crystal number increases considerably. Besides the default ice nucleation parameterization of Liu and Penner (2005, hereafter LP) in CAM5.3, two other ice nucleation parameterizations of Barahona and Nenes (2009, hereafter BN) and Kärcher et al. (2006, hereafter KL) are implemented in CAM5.3 for the comparison. In-cloud ice crystal number concentration, percentage contribution from heterogeneous ice nucleation to total ice crystal number, and preexisting ice effects simulated by the three ice nucleation parameterizations have similar patterns in the simulations with present-day aerosol emissions. However, the change (present-day minus pre-industrial times) in global annual mean column ice number concentration from the KL parameterization (3.24 × 106 m-2) is obviously less than that from the LP (8.46 × 106 m-2) and BN (5.62 × 106 m-2) parameterizations. As a result, experiment using the KL parameterization predicts a much smaller anthropogenic aerosol longwave indirect forcing (0.24 W m-2) than that using the LP (0.46 W m-2) and BN (0.39 W m-2) parameterizations.

Shi, X.; Liu, X.; Zhang, K.

2014-07-01

129

Seismic wave propagation in anisotropic ice - Part 2: Effects of crystal anisotropy in geophysical data  

NASA Astrophysics Data System (ADS)

We investigate the propagation of seismic waves in anisotropic ice. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections; (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded travel times. Velocities calculated from the polycrystal elasticity tensor derived for the anisotropic fabric from measured COF eigenvalues of the EDML ice core, Antarctica, show good agreement with the velocity trend determined from vertical seismic profiling. The agreement of the absolute velocity values, however, depends on the choice of the monocrystal elasticity tensor used for the calculation of the polycrystal properties. We make use of abrupt changes in COF as a common reflection mechanism for seismic and radar data below the firn-ice transition to determine COF-induced reflections in either data set by joint comparison with ice-core data. Our results highlight the possibility to complement regional radar surveys with local, surface-based seismic experiments to separate isochrones in radar data from other mechanisms. This is important for the reconnaissance of future ice-core drill sites, where accurate isochrone (i.e. non-COF) layer integrity allows for synchronization with other cores, as well as studies of ice dynamics considering non-homogeneous ice viscosity from preferred crystal orientations.

Diez, A.; Eisen, O.; Hofstede, C.; Lambrecht, A.; Mayer, C.; Miller, H.; Steinhage, D.; Binder, T.; Weikusat, I.

2015-02-01

130

DISCOVERY OF CRYSTALLIZED WATER ICE IN A SILHOUETTE DISK IN THE M43 REGION  

SciTech Connect

We present the 1.9-4.2 {mu}m spectra of the five bright (L {<=} 11.2) young stars associated with silhouette disks with a moderate to high inclination angle of 39 Degree-Sign -80 Degree-Sign in the M42 and M43 regions. The water ice absorption is seen toward d121-1925 and d216-0939, while the spectra of d182-316, d183-405, and d218-354 show no water ice feature around 3.1 {mu}m within the detection limits. By comparing the water ice features toward nearby stars, we find that the water ice absorption toward d121-1925 and d216-0939 most likely originates from the foreground material and the surrounding disk, respectively. The angle of the disk inclination is found to be mainly responsible for the difference of the optical depth of the water ice among the five young stars. Our results suggest that there is a critical inclination angle between 65 Degree-Sign and 75 Degree-Sign for the circumstellar disk where the water ice absorption becomes strong. The average density at the disk surface of d216-0939 was found to be 6.38 Multiplication-Sign 10{sup -18} g cm{sup -3}. The water ice absorption band in the d216-0939 disk is remarkable in that the maximum optical depth of the water ice band is at a longer wavelength than detected before. It indicates that the primary carrier of the feature is purely crystallized water ice at the surface of the d216-0939 disk with characteristic size of {approx}0.8 {mu}m, which suggests grain growth. This is the first direct detection of purely crystallized water ice in a silhouette disk.

Terada, Hiroshi [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A'ohoku Place, Hilo, HI 96720 (United States); Tokunaga, Alan T., E-mail: terada@subaru.naoj.org [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu 96822 (United States)

2012-07-01

131

The crystal structure of katayamalite  

Microsoft Academic Search

The crystal structure of katayamalite has been determined by Patterson method and refined by the least-squares method using single crystal diffractometer data, giving R = 0.057 for 5785 reflections. Formula: (K,Na)Li.Ca,(Ti,Fe'+,Mn)2(Si60'8).(OH,F)2' Cell dimensions: a 9.721(2), b 16.923(3), c 19.942(3)A, a 91.43(10t, iJ 104.15(11t, 'Y 89.94(10t, space group Cl, Z = 4; or a 9.763(2), b 9.721(2), c 19.942(3)A, a 104.15(11t,

Toshio KATO; Nobuhide MURAKAMI

1985-01-01

132

Loads on an O-Shore Structure due to an Ice Floe Impact  

Microsoft Academic Search

In the paper, the problem of dynamic impact of a floating ice sheet at an o-shore structure is considered. It is assumed that during an interaction event the dominant mechanism is the brittle fracture of ice at the ice-structure interface, that is, elastic and creep eects in ice are ignored. Since in natural conditions the edge of floating ice is

Ryszard Staroszczyk

2007-01-01

133

Modeling the Influence of Antifreeze Proteins on Three-Dimensional Ice Crystal Melt Shapes using a Geometric Approach  

E-print Network

The melting of pure axisymmetric ice crystals has been described previously by us within the framework of so-called geometric crystal growth. Nonequilibrium ice crystal shapes evolving in the presence of hyperactive antifreeze proteins (hypAFPs) are experimentally observed to assume ellipsoidal geometries ("lemon" or "rice" shapes). To analyze such shapes we harness the underlying symmetry of hexagonal ice Ih and extend two-dimensional geometric models to three-dimensions to reproduce the experimental dissolution process. The geometrical model developed will be useful as a quantitative test of the mechanisms of interaction between hypAFPs and ice.

Jun Jie Liu; Yangzong Qin; Maya Bar Dolev; Yeliz Celik; J. S. Wettlaufer; Ido Braslavsky

2012-07-12

134

Crystal structures of tungsten disulfide and diselenide  

NASA Astrophysics Data System (ADS)

The crystal structures of the 2 H- and 3 R-forms of WS 2 have been refined from single-crystal data. The results are summarized and the interatomic distances are compared with those in related compounds.

Schutte, W. J.; De Boer, J. L.; Jellinek, F.

1987-10-01

135

Crystal structures of tungsten disulfide and diselenide  

Microsoft Academic Search

The crystal structures of the 2H- and 3R-forms of WS2 have been refined from single-crystal data. The results are summarized and the interatomic distances are compared with those in related compounds.

W. J. Schutte; J. L. de Boer; F. Jellinek

1987-01-01

136

Structural studies of hydrogen, oxygen and ice at very high pressures  

NASA Astrophysics Data System (ADS)

High brilliance and high stability make the European Synchrotron Radiation Facility an ideal instrument for structural studies at very high pressures, especially for low-Z materials were high compressibility and poor scattering power are associated with very small sample volumes. We review here measurements on hydrogen, oxygen and ice VII to pressures beyond 100 GPa using single crystal and powder techniques. A brief discussion of future prospects is also included.

Häusermann, D.

1996-01-01

137

Crystal structure of lignin peroxidase  

SciTech Connect

The crystal structure of lignin peroxidase (LiP) from the basidiomycete Phanerochaete chrysosporium has been determined to 2.6 [Angstrom] resolution by using multiple isomorphous replacement methods and simulated annealing refinement. Of the 343 residues, residues 3-335 have been accounted for in the electron density map, including four disulfide bonds. The overall three-dimensional structure is very similar to the only other peroxidase in this group for which a high-resolution crystal structure is available, cytochrome c peroxidase, despite the fact that the sequence identity is only [approx]20%, LiP has four disulfide bonds, while cytochrome c peroxidase has none, and Lip is larger (343 vs. 294 residues). The basic helical fold and connectivity defined by 11 helical segments with the heme sandwiched between the distal and proximal helices found in cytochrome c peroxidase is maintained in LiP. Both enzymes have a histidine as a proximal heme ligand, which is hydrogen bonded to a buried aspartic acid side chain. The distal or peroxide binding pocket also is similar, including the distal arginine and histidine. The most striking difference is that, whereas cytochrome c peroxidase has tryptophans contacting the distal and proximal heme surfaces, LiP has phenylalanines. This in part explains why, in the reaction with peroxides, cytochrome c peroxidase forms an amino acid-centered free radical, whereas LiP forms a porphyrin [pi] cation radical. 42 refs., 4 figs., 2 tabs.

Edwards, S.L. (Center for Advanced Research in Biotechnology, Rockville, MD (United States) National Institutes of Health, Bethesda, MD (United States)); Raag, R. (Center for Advanced Research in Biotechnology, Rockville, MD (United States)); Wariishi, Hiroyuki; Gold, M.H. (Oregon Graduate Institute of Science and Technology, Beaverton (United States)); Poulos, T.L. (Center for Advanced Reseaarch in Biotechnology, Rockville, MD (United States) Univ. of California, Irvine (United States))

1993-01-15

138

Simplification for Fraunhofer diffracting pattern of various randomly oriented ice crystals in cirrus.  

PubMed

This paper deals with Fraunhofer diffraction by an ensemble of independent randomly oriented ice crystals of assorted shapes, like those of cirrus clouds. There is no restriction on the shape of each crystal. It is shown that light flux density in the Fourier plane is azimuth-invariant and varies as 1/sin(4)?, ? being the angle of diffraction. The analytical formula proposed is exact. The key point of this study is conservation of electromagnetic energy. PMID:23201960

Pujol, Olivier; Brogniez, Gérard; Labonnote, Laurent

2012-09-01

139

Best face forward: crystal-face competition at the ice-water interface.  

PubMed

The ice-water interface plays an important role in determining the outcome of both biological and environmental processes. Under ambient pressure, the most stable form of ice is hexagonal ice (Ih). Experimentally probing the surface free energy between each of the major faces of Ih ice and the liquid is both experimentally and theoretically challenging. The basis for the challenge is the near-equality of the surface free energy for the major faces along with the tendency of water to supercool. As a result, morphology from crystallization initiated below 0 °C is kinetically controlled. The reported work circumvents supercooling consequences by providing a polycrystalline seed, followed by isothermal, equilibrium growth. Natural selection among seeded faces results in a single crystal. A record of the growth front is preserved in the frozen boule. Crystal orientation at the front is revealed by examining the boule cross section with two techniques: (1) viewing between crossed polarizers to locate the optical axis and (2) etching to distinguish the primary-prism face from the secondary-prism face. Results suggest that the most stable ice-water interface at 0 °C is the secondary-prism face, followed by the primary-prism face. The basal face that imparts the characteristic hexagonal shape to snowflakes is a distant third. The results contrast with those from freezing the vapor where the basal and primary-prism faces have comparable free energy followed by the secondary-prism face. PMID:24784996

Shultz, Mary Jane; Bisson, Patrick J; Brumberg, Alexandra

2014-07-17

140

Seismic wave propagation in anisotropic ice - Part 2: Effects of crystal anisotropy in geophysical data  

NASA Astrophysics Data System (ADS)

We investigate the propagation of seismic waves in anisotropic ice. Two effects are important: (i) sudden changes in crystal orientation fabric (COF) lead to englacial reflections; (ii) the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, recorded traveltimes. Velocities calculated from the polycrystal elasticity tensor derived for the anisotropic fabric from measured COF eigenvalues of the EDML ice core, Antarctica, show good agreement with the velocity trend determined from a vertical seismic profiling. The agreement of the absolute velocity values, however, depends on the choice of the monocrystal elasticity tensor used for the calculation of the polycrystal properties. With this validation of seismic velocities we make use of abrupt changes in COF as common reflection mechanism for seismic and radar data below the firn-ice transition to investigate their occurrence by comparison with ice-core data. Our results highlight the possibility to complement regional radar surveys with local, surface-based seismic deployment to separate isochrones in radar data from other mechanisms. This is important for the reconnaissance of future ice-core drill sites, where accurate isochrone (i.e. non-COF) layer integrity allows for synchronization with other cores, as well as studies of ice dynamics considering non-homogeneous viscosity from preferred crystal orientations.

Diez, A.; Eisen, O.; Hofstede, C.; Lambrecht, A.; Mayer, C.; Miller, H.; Steinhage, D.; Binder, T.; Weikusat, I.

2014-08-01

141

Crystallization of amorphous ice as the cause of Comet P/Halley's outburst at 14 AU  

NASA Technical Reports Server (NTRS)

An explanation is provided for the postperihelion eruption of Comet P/Halley, detected in February 1991 and believed to have started three months earlier, namely, the crystallization of amorphous ice taking place in the interior of the porous nucleus, at depths of a few tens of meters, accompanied by the release of trapped gases. Numerical calculations show that for a bulk density of 0.5 g/cu cm and a pore size of 1 micron crystallization occurs on the outbound leg of Comet P/Halley's orbit, at heliocentric distances between 5 AU and 17 AU. The trapped gas is released and flows to the surface through the porous medium. It may also open wider channels, as the internal pressures obtained surpass the tensile strength of cometary ice. The outflowing gas carries with it grains of ice and dust, and thus can explain the large amounts of dust observed in the coma at 14.3 AU and beyond.

Prialnik, D.; Bar-Nun, A.

1992-01-01

142

NASA Glenn Propulsion Systems Lab: 2012 Inaugural Ice Crystal Cloud Calibration Procedure and Results  

NASA Technical Reports Server (NTRS)

The inaugural calibration of the ice crystal and supercooled liquid water clouds generated in NASA Glenn's engine altitude test facility, the Propulsion Systems Lab (PSL) is reported herein. This calibration was in support of the inaugural engine ice crystal validation test. During the Fall of 2012 calibration effort, cloud uniformity was documented via an icing grid, laser sheet and cloud tomography. Water content was measured via multi-wire and robust probes, and particle sizes were measured with a Cloud Droplet Probe and Cloud Imaging Probe. The environmental conditions ranged from 5,000 to 35,000 ft, Mach 0.15 to 0.55, temperature from +50 to -35 F and relative humidities from less than 1 percent to 75 percent in the plenum.

VanZante, Judith F.; Rosine, Bryan M.

2014-01-01

143

April 1983 Y. Takano and S. Asano 289 Fraunhofer Diffraction by Ice Crystals Suspended  

E-print Network

or circular apertures (Jacobowitz, 1971; Wendling et al., 1979). More recently, Coleman and Liou (1981April 1983 Y. Takano and S. Asano 289 Fraunhofer Diffraction by Ice Crystals Suspended 1982,in revisedform 8 February 1983) Abstract Fraunhofer diffraction has been explicitly formulated

Takano, Yoshihide

144

Theoretical Determination of the Efficiency of Aerosol Particle Collection by Falling Columnar Ice Crystals  

Microsoft Academic Search

A theoretical model for the removal of aerosol particles by falling columnar ice crystals which incorporates gravitational, inertial, thermophoreic, diffusiophoretic, and electrostatic mechanisms has been formulated. The results of this trajectory model, combined with earlier resuslts, determine the collection efficiency for submicron particles as a flux onto a collector surface for any geometry and due to Brownian diffusion, thermo- and

N. L. Miller; P. K. Wano

1989-01-01

145

Geometric-opticsintegral-equation method for light scattering by nonspherical ice crystals  

E-print Network

A significant number of cloud particles in the Earth's atmosphere is ice crystals. They reflect sunlight budget in the Earth and the atmosphere sys- tem, and hence its climate, must begin with an understanding are largely composed of bullet rosettes, solid and hollow columns, plates, and aggregates with sizes ranging

Liou, K. N.

146

Depolarization of lidar returns by small ice crystals: An application to contrails  

Microsoft Academic Search

Measurements of the lidar linear depolarization ratio delta can be a powerful remote sensing technique for characterizing the microphysics of contrail particles. Since young contrails often consist of relatively small ice crystals, the quantitative interpretation of lidar measurements requires accurate theoretical computations of delta for polydisperse, randomly oriented nonspherical particles with size parameters ranging from zero to at least several

Michael I. Mishchenko; Kenneth Sassen

1998-01-01

147

Advantages of ice crystal growth experiments in a low gravity environment  

NASA Technical Reports Server (NTRS)

The effects of convective fluid motions and mechanical supports on ice crystal growth in experiments conducted on earth can be inferred from studies conducted in their absence in a low-gravity environment. Current experimental results indicate the effects may be significant.

Anderson, B. J.; Keller, V. W.; Hallett, J.

1979-01-01

148

Simulations of Photonic Crystal and Dielectric Structures  

SciTech Connect

Dielectric materials and photonic crystal structures have electromagnetic properties that could potentially offer great benefits for accelerators. Computer simulation plays a critical role in designing, understanding, and optimizing these structures, especially the non-intuitive photonic crystal structures for which there is no relevant zeroth-order analytic model.

Werner, G. R. [Center for Integrated Plasma Studies, University of Colorado, Boulder, CO 80309 (United States)

2010-11-04

149

Flow in Polycrystalline Ice  

NSDL National Science Digital Library

This is a virtual journal article about polycrystalline ice. It focuses on plastic deformation, specific flow characteristics and crystallographic preferred orientations associated with polycrystalline ice within glaciers. Part I covers Polycrystalline aggregates deformed in pure-shear; Dynamic recrystallisation; Grain shape and preferred orientation change; Fabric; Evolution of glacial ice during deformation. Part II covers: Time lapse photography; Glaciers; Dislocations; Bernal-Fowler rule; Generation of defect structures; Crystal structure; Ice; Basal glide; Strain rate for glide on basal systems; Critical resolved shear stress; Non-basal glide; Diffusional flow; Plastic deformation; Primary creep; Secondary creep; Tertiary creep; Deformation maps; Grain growth; Grain size reduction; Anisotropic flow law for ice.

Chris Wilson

150

Seismicity within a propagating ice shelf rift: The relationship between icequake locations and ice shelf structure  

NASA Astrophysics Data System (ADS)

Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the austral summers of 2004-2007. We apply a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show ice shelf rifting is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of 1 to 3 h. Even during periods of quiescence, we find significant deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (Mw > -2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50 m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with the propagating ice shelf rifts.

Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

2014-04-01

151

Ice surfaces: macroscopic effects of microscopic structure  

E-print Network

, Michael Faraday began a 20 year inves- tigation into the properties of snow and ice. Faraday's publications based on this research (see, for example, Faraday 1860) clearly demonstrate the notion that melt solid, the general temperature remaining the same. Although Faraday and Tyndall's (Tyndall 1858

Wettlaufer, John S.

152

Structural Transitions in Amorphous Water Ice and Astrophysical Implications  

Microsoft Academic Search

Selected area electron diffraction is used to monitor structural changes of vapor-deposited water ice in vacuum during warm-up from 15 to 188 K. A progression of three amorphous forms of water ice is found with well-defined transitions. The formation of a high-density amorphous form (I_ah) at 15 K is confirmed, and the transition to the more familiar low-density form (I_aI)

Peter Jenniskens; David F. Blake

1994-01-01

153

Structure order, local potentials, and physical anomalies of water ice  

E-print Network

Hydrogen-bond forms a pair of asymmetric, coupled, H-bridged oscillators with ultra-short-range interactions and memory. hydrogen bond cooperative relaxation and the associated binding electron entrapment and nonbonding electron polarization discriminate water and ice from other usual materials in the physical anomalies. As a strongly correlated fluctuating system, water prefers the statistically mean of tetrahedrally-coordinated structure with a supersolid skin that is elastic, polarized, ice like, hydrophobic, with 3/4 density.

Chang Q Sun

2014-07-11

154

New crystal structure maps for intermetallic compounds  

NASA Astrophysics Data System (ADS)

New crystal structure maps have been proposed on the basis of the 0953-8984/9/38/008/img6 molecular orbital calculations of electronic structures. Two electronic parameters have been introduced and employed as new parameters for the classification of crystal structures. One is the bond order and the other is the d-orbital energy level of elements. Both of them change following the position of elements in the periodic table. With these parameters crystal structure maps have been constructed for aluminides, silicides, and some transition-metal-based compounds. There is a clear separation of the crystal structures on the maps. These maps are found to be applicable to the prediction of crystal structures not only for binary compounds but also for ternary compounds. The possibilities of structural modification of 0953-8984/9/38/008/img7 and 0953-8984/9/38/008/img8 by alloying are also discussed with the aid of these maps.

Harada, Yoshihisa; Morinaga, Masahiko; Saito, Jun-ichi; Takagi, Yasuharu

1997-09-01

155

Charge transfer measurements during single ice crystal collisions with a target growing by riming  

NASA Astrophysics Data System (ADS)

Direct measurements of the electric charge separated from individual collisions between vapor grown ice crystals and an artificial graupel growing by riming have been made in the present laboratory work. The measurements were performed with an impact velocity of 8.5 m s-1, the ambient temperature was varied in the range -5 to -20°C, the average ice crystal sizes between 20 to 40 ?m, with an effective liquid water content up to 1.5 g m-3. The magnitude of the charge separated per collision is on the order of 10 fC, and the sign of the average charge depends on the ambient temperature for the present EW. We found that the artificial graupel charges positively for temperatures above -12°C and negatively for temperatures below -14°C. The current results are compared with those obtained by other authors that used the multiple crystal collision technique.

Pereyra, Rodolfo G.; Avila, Eldo E.

2002-12-01

156

Ice Rheology Beyond Planet Earth  

Microsoft Academic Search

Barclay Kamb is well known for his seminal work on the motions and internal flow of glaciers, but he was also a pioneer in research on the crystal structures, chemical bonding, and rheologies of the high-pressure phases of ice. In the flow and fracture of terrestrial materials, no rock is more studied than ice. Water ice also has an important

W. B. Durham; S. H. Kirby; L. A. Stern

2001-01-01

157

Elementary steps at the surface of ice crystals visualized by advanced optical microscopy  

PubMed Central

Due to the abundance of ice on earth, the phase transition of ice plays crucially important roles in various phenomena in nature. Hence, the molecular-level understanding of ice crystal surfaces holds the key to unlocking the secrets of a number of fields. In this study we demonstrate, by laser confocal microscopy combined with differential interference contrast microscopy, that elementary steps (the growing ends of ubiquitous molecular layers with the minimum height) of ice crystals and their dynamic behavior can be visualized directly at air-ice interfaces. We observed the appearance and lateral growth of two-dimensional islands on ice crystal surfaces. When the steps of neighboring two-dimensional islands coalesced, the contrast of the steps always disappeared completely. We were able to discount the occurrence of steps too small to detect directly because we never observed the associated phenomena that would indicate their presence. In addition, classical two-dimensional nucleation theory does not support the appearance of multilayered two-dimensional islands. Hence, we concluded that two-dimensional islands with elementary height (0.37 and 0.39 nm on basal and prism faces, respectively) were visualized by our optical microscopy. On basal and prism faces, we also observed the spiral growth steps generated by screw dislocations. The distance between adjacent spiral steps on a prism face was about 1/20 of that on a basal face. Hence, the step ledge energy of a prism face was 1/20 of that on a basal face, in accord with the known lower-temperature roughening transition of the prism face. PMID:20974928

Sazaki, Gen; Zepeda, Salvador; Nakatsubo, Shunichi; Yokoyama, Etsuro; Furukawa, Yoshinori

2010-01-01

158

Formation of Large (Approximately 100 micrometers) Ice Crystals Near the Tropical Tropopause  

NASA Technical Reports Server (NTRS)

Recent high-altitude aircraft measurements with in situ imaging instruments indicated the presence of relatively large (approx.100 microns length), thin (aspect ratios of approx.6:1 or larger) hexagonal plate ice crystals near the tropical tropopause in very low concentrations (<0.01/L). These crystals were not produced by deep convection or aggregation. We use simple growth-sedimentation calculations as well as detailed cloud simulations to evaluate the conditions required to grow the large crystals. Uncertainties in crystal aspect ratio leave a range of possibilities, which could be constrained by knowledge of the water vapor concentration in the air where the crystal growth occurred. Unfortunately, water vapor measurements made in the cloud formation region near the tropopause with different instruments ranged from <2 ppmv to approx.3.5 ppmv. The higher water vapor concentrations correspond to very large ice supersaturations (relative humidities with respect to ice of about 200%). If the aspect ratios of the hexagonal plate crystals are as small as the image analysis suggests (6:1, see companion paper (Lawson et al., 2008)) then growth of the large crystals before they sediment out of the supersaturated layer would only be possible if the water vapor concentration were on the high end of the range indicated by the different measurements (>3 ppmv). On the other hand, if the crystal aspect ratios are quite a bit larger (approx.10:1), then H2O concentrations toward the low end of the measurement range (approx.2-2.5 ppmv) would suffice to grow the large crystals. Gravity-wave driven temperature and vertical wind perturbations only slightly modify the H2O concentrations needed to grow the crystals. We find that it would not be possible to grow the large crystals with water concentrations less than 2 ppmv, even with assumptions of a very high aspect ratio of 15 and steady upward motion of 2 cm/s to loft the crystals in the tropopause region. These calculations would seem to imply that the measurements indicating water vapor concentrations less than 2ppmv are implausible, but we cannot rule out the possibility that higher humidity prevailed upstream of the aircraft measurements and the air was dehydrated by the cloud formation. Simulations of the cloud formation with a detailed model indicate that homogeneous freezing should generate ice concentrations larger than the observed concentrations (20/L), and even concentrations as low as 20/L should have depleted the vapor in excess of saturation and prevented growth of large crystals. It seems likely that the large crystals resulted from ice nucleation on effective heterogeneous nuclei at low ice supersaturations. Improvements in our understanding of detailed cloud microphysical processes require resolution of the water vapor measurement discrepancies in these very cold, dry regions of the atmosphere.

Jensen, E. J.; Pfister, L.; Bui, T. V.; Lawson, P.; Baker, B.; Mo, Q.; Baumgardner, D.; Weinstock, E. M.; Smith, J. B.; Moyer, E. J.; Hanisco, T. F.; Sayres, D. S.; SaintClair, J. M.; Alexander, M.; Toon, O. B.; Smith, J. A.

2008-01-01

159

Crystal Structure of the Carboxyltransferase Domain of  

E-print Network

Crystal Structure of the Carboxyltransferase Domain of Acetyl­Coenzyme A Carboxylase Hailong Zhang, Zhiru Yang,* Yang Shen,* Liang Tong Acetyl­coenzyme A carboxylases (ACCs) are required determined the crystal structure of the free enzyme and the coenzyme A complex of yeast CT at 2.7 angstrom

Tong, Liang

160

Crystal structure analysis of intermetallic compounds  

NASA Technical Reports Server (NTRS)

Study concerns crystal structures and lattice parameters for a number of new intermetallic compounds. Crystal structure data have been collected on equiatomic compounds, formed between an element of the Sc, Ti, V, or Cr group and an element of the Co or Ni group. The data, obtained by conventional methods, are presented in an easily usable tabular form.

Conner, R. A., Jr.; Downey, J. W.; Dwight, A. E.

1968-01-01

161

Structural effects of ice grain surfaces on the hydrogenation of CO at low temperatures  

E-print Network

Experiments on the hydrogenation of CO on crystalline and amorphous ice at 15 K were carried out to investigate the structural effects of the ice surface. The effective rate of H atom addition to CO on the amorphous ice was found to be larger than that on the crystalline ice, while CO depletion on crystalline ice became larger after long exposure.We demonstrated that the CO-coverage on the ice surfaces dominates the effective reaction rate rather than the surface structure. The larger depletion of CO on crystalline ice, as compared to amorphous ice, suggests easier desorption of CO and/or products by the heat of the reaction.

Hidaka, H; Kouchi, A; Watanabe, N

2008-01-01

162

Structural effects of ice grain surfaces on the hydrogenation of CO at low temperatures  

E-print Network

Experiments on the hydrogenation of CO on crystalline and amorphous ice at 15 K were carried out to investigate the structural effects of the ice surface. The effective rate of H atom addition to CO on the amorphous ice was found to be larger than that on the crystalline ice, while CO depletion on crystalline ice became larger after long exposure.We demonstrated that the CO-coverage on the ice surfaces dominates the effective reaction rate rather than the surface structure. The larger depletion of CO on crystalline ice, as compared to amorphous ice, suggests easier desorption of CO and/or products by the heat of the reaction.

H. Hidaka; N. Miyauchi; A. Kouchi; N. Watanabe

2008-05-22

163

Seismicity within a propagating ice shelf rift: the relationship between icequake locations and ice shelf structure  

USGS Publications Warehouse

Iceberg calving is a dominant mass loss mechanism for Antarctic ice shelves, second only to basal melting. An important known process involved in calving is the initiation and propagation of through-penetrating fractures called rifts; however, the mechanisms controlling rift propagation remain poorly understood. To investigate the mechanics of ice-shelf rifting, we analyzed seismicity associated with a propagating rift tip on the Amery Ice Shelf, using data collected during the Austral summers of 2004-2007. We investigated seismicity associated with fracture propagation using a suite of passive seismological techniques including icequake locations, back projection, and moment tensor inversion. We confirm previous results that show that seismicity is characterized by periods of relative quiescence punctuated by swarms of intense seismicity of one to three hours. However, even during periods of quiescence, we find significant seismic deformation around the rift tip. Moment tensors, calculated for a subset of the largest icequakes (MW?>?-2.0) located near the rift tip, show steeply dipping fault planes, horizontal or shallowly plunging stress orientations, and often have a significant volumetric component. They also reveal that much of the observed seismicity is limited to the upper 50?m of the ice shelf. This suggests a complex system of deformation that involves the propagating rift, the region behind the rift tip, and a system of rift-transverse crevasses. Small-scale variations in the mechanical structure of the ice shelf, especially rift-transverse crevasses and accreted marine ice, play an important role in modulating the rate and location of seismicity associated with propagating ice shelf rifts.

Heeszel, David S.; Fricker, Helen A.; Bassis, Jeremy N.; O'Neel, Shad; Walter, Fabian

2014-01-01

164

A modified scheme that parameterizes depositional growth of ice crystal: A modeling study of pre-summer torrential rainfall case over Southern China  

NASA Astrophysics Data System (ADS)

Depositional growth of cloud ice is estimated and its parameterization schemes are compared through the two-dimensional cloud-resolving modeling analysis of pre-summer heavy rainfall over southern China. Hsie et al. (1980) and Krueger et al. (1995) developed parameterization schemes to calculate depositional growth of cloud ice by estimating the growth timescale under the assumption that the ice crystal concentration is independent of crystal size. A new scheme is proposed by Zeng et al. (2008) under the assumption that the ice crystal concentration is proportional to the mass of ice crystal. Hsie's and Krueger's schemes produce small amount of cloud ice similar to what Zeng's scheme with low ice crystal concentration does. When ice crystal concentration is increased to a high value in Zeng's scheme, the simulation generates anomalous depositional growth of cloud ice and thus anomalous area expansion of stratiform rainfall. Zeng's scheme is modified by changing radius of base ice crystal from 0 to 40 ?m in the calculation of depositional growth of cloud ice. The modified scheme with high ice crystal concentration greatly reduces growth of cloud ice and thus fractional coverage of stratiform rainfall.

Shen, Xinyong; Huang, Wei; Qing, Tao; Huang, Wenyan; Li, Xiaofan

2014-03-01

165

Pack-Ice Studies in the Arctic Ocean  

Microsoft Academic Search

The annual stratification of pack ice has been examined. Summer layers are formed either by arrested growth or by thin layers of fresh-water ice. The crystal structure and the salt content of the ice reflect the seasonal cycle. During the growth of ice a pro- nounced orientation of crystalline structure develops; it is determined by vertical as well as by

W. Schwarzacher

1959-01-01

166

The application of time-dependent ice crystal trajectory and growth model for the evaluation of cloud seeding experiment using liquid carbon dioxide  

NASA Astrophysics Data System (ADS)

This study evaluated the results of cloud seeding experiment conducted on 17th January, 2008, in western Kyushu, Japan, using simplified time-dependent ice crystal growth and trajectory cloud model, which is characterized by 1) depositional diffusion growth process only of an ice crystal, and 2) the pursuit of the growing ice crystal based on wind field and ice crystal terminal velocity. For the estimation of the ice crystal growth and trajectory, the model specifies ice supersaturation ratio that expresses the degree of competition growth among ice crystals formed by LC seeding for existing water vapor, assuming no effect of natural ice crystals. The model is based on ice crystal growth along a- and c-axes depending on air temperature and ice supersatuation, according to Chen and Lamb (1994). The cloud seeding experiment was conducted by applying homogeneous nucleation (rapid cooling of air mass and subsequent formation of many ice crystals~1013/g LC) of Liquid Carbon (LC) dioxide seeding under typical winter-type snowfall-inducing weather situation characterized by the outbreak of cold air masses from the Siberia. The result of aircraft horizontally-penetrating seeding of LC into lower layer (-2 degree C) of supercooled convective cloud with 1km thickness above the freezing level led to the formation of an artificially-induced 'isolated' radar echo (the left figures of Fig. 1) in dominant 'no-natural radar echo region'. In other words, natural biases were eliminated by the formation of the isolated radar echo. This fact provides the shortcut for evaluating the result of cloud seeding experiment. In the next, the observed cloud seeding results were evaluated by estimating the trajectory of artificially-induced growing ice crystal. The results show that the trajectory of artificial ice crystals depends on the degree of completion growth mode. Free growth brings rapid growth of an ice crystal and, therefore, the ice crystal falls into lower layers for a short time. On the other hand, as the degree of competition is higher, ice crystal growth and falling are slower. The result (the right figure of Fig. 1) showed that the movement of observed isolated radar echo formed after LC cloud seeding is closely related to the trajectories of artificially-induced ice crystals depending on the specification of ice supersaturation. Therefore, it was found that time-dependent ice crystal growth and trajectory model is a useful tool for the evaluation of cloud seeding results regardless of its simplification and many uncertain factors. Fig.1 The left figure shows the movement of isolated radar echo formed by LC seeding. The right figure shows the comparison between observed radar echo location and estimated ice crystal location.

Nishiyama, K.; Wakimizu, K.; Maki, T.; Suzuki, Y.; Morita, O.; Tomine, K.

2012-12-01

167

General equations for the motions of ice crystals and water drops in gravitational and electric fields  

NASA Technical Reports Server (NTRS)

General equations for the Reynolds number of a variety of types of ice crystals and water drops are given in terms of the Davies, Bond, and Knudsen numbers. The equations are in terms of the basic physical parameters of the system and are valid for calculating velocities in gravitational and electric fields over a very wide range of sizes and atmospheric conditions. The equations are asymptotically matched at the bottom and top of the size spectrum, useful when checking large computer codes. A numerical system for specifying the dimensional properties of ice crystals is introduced. Within the limits imposed by such variables as particle density, which have large deviations, the accuracy of velocities appears to be within 10 percent over the entire range of sizes of interest.

Nisbet, John S.

1988-01-01

168

Possible Evidence for Crystallization of Astrophysical Ice Analogs by Heavy and Energetic Cosmic Rays  

NASA Astrophysics Data System (ADS)

We present an experimental study about the alteration of the 3300 cm-1 band (?_1 vibration mode) in the infrared spectra of water-rich ices due to the bombardments with heavy, highly-charged, and energetic ions (15.7 MeV 16O5+; 46 MeV 58Ni13+). The experiments simulate the physical chemistry as well possible morphological changes induced by heavy-ion cosmic rays at water-rich astrophysical ices. The measurements were performed inside a high vacuum chamber at the heavy-ion accelerator GANIL (Grand Accelerateur National d'Ions Lourds) in Caen, France. The experiments employed pure amorphous water ice and mixed H_2O:CO_2 amorphous ices at 13 K. In-situ analysis was performed by a Fourier transform infrared spectrometer (FTIR) at different ion fluences. After the ion bombardment the center of this water band is shifted to lower frequencies (longer wavelength).We suggest this behavior may be attributed to the destruction of small water clusters (n=2,3), as well the production of larger clusters (n>5), both as a result of energy delivered by the fast ions (and its secondary electrons) along the neighborhood of the ion tracks inside the ices. The vibration of individual small water clusters are representative for the left wing of the ?_1 band in water ice while larger individual clusters are important for the right wing (lower energy). An experiment employing H_2O:CO_2 ice at 80 K, showing a small crystallization degree, does not show changes in the water ?_1 profile during the ion bombardment. The results suggest that a small degree of crystallization may be achieved in the amorphous astrophysical ices after the extensive bombardment with heavy and energetic ions. This may give us some clues about the crystalline water features observed at some cold regions in the interstellar medium such as the ices around young stellar objects, and also at some frozen surfaces of outer solar system bodies. Both regions are highly exposed to galactic cosmic rays.

Pilling, S.; Seperuelo Duarte, E.; da Silveira, E. F.; Rothard, H.; Domaracka, A.; Boduch, P.

2011-05-01

169

Backscatter ratios for arbitrary oriented hexagonal ice crystals of cirrus clouds.  

PubMed

Three dimensionless ratios widely used for interpretation of lidar signals, i.e., the color ratio, lidar ratio, and depolarization ratio, have been calculated for hexagonal ice crystals of cirrus clouds as functions of their spatial orientation. The physical-optics algorithm developed earlier by the authors is applied. It is shown that these ratios are minimal at the horizontal crystal orientation. Then these quantities increase with the effective tilt angle approaching the asymptotic values of the random particle orientation. The values obtained are consistent with the available experimental data. PMID:25360985

Borovoi, Anatoli; Konoshonkin, Alexander; Kustova, Natalia

2014-10-01

170

Chemical Characterization of Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Aircraft in the ISDAC 2008 Study  

SciTech Connect

Although it has been shown that size of atmospheric particles has a direct correlation with their ability to act as cloud droplet and ice nuclei, the influence of composition of freshly emitted and aged particles in nucleation processes is poorly understood. In this work we combine data from field measurements of ice nucleation with chemical imaging of the sampled particles to link aerosol composition with ice nucleation ability. Field measurements and sampling were conducted during the Indirect and Semidirect Aerosols Campaign (ISDAC) over Barrow, Alaska, in the springtime of 2008. In-situ ice nucleation measurements were conducted using a Continuous Flow Diffusion Chamber (CFDC). Measured number concentrations of ice nuclei (IN) varied from frequent values of 0.01 per liter to more than 10 per liter. Residuals of airborne droplets and ice crystals were collected through a counterflow virtual impactor (CVI). The compositions of individual atmospheric particles and the residuals were studied using Computer Controlled Scanning Electron Microscopy with Energy Dispersive X-ray analysis (CCSEM/EDX) and Scanning Transmission X-ray Microscopy coupled with Near Edge X-ray Absorption Fine Structure spectroscopy (STXM/NEXAFS). Chemical analysis of cloud particle residuals collected during an episode of high ice nucleation suggests that both size and composition may influence aerosol's ability to act as IN. The STXM/NEXAFS chemical composition maps of individual residuals have characteristic structures of either inorganic or black carbon cores coated by organic materials. In a separate flight, particle samples from a biomass burning plume were collected. Although it has previously been suggested that episodes of biomass burning contribute to increased numbers of highly effective ice nuclei, in this episode we observed that only a small fraction were effective ice nuclei. Most of the particles from the biomass plume episode were smaller in size and were composed of homogeneous organic material without identifiable cores.

Hiranuma, Naruki; Brooks, Sarah D.; Moffet, Ryan C.; Glen, Andrew; Laskin, Alexander; Gilles, Marry K.; Liu, Peter; MacDonald, A. M.; Strapp, J. Walter; McFarquhar, Greg

2013-06-24

171

Solvation structure of ice-binding antifreeze proteins  

NASA Astrophysics Data System (ADS)

Antifreeze proteins (AFPs) can be found in organisms which survive at subzero temperatures. They were first discovered in polar fishes since the 1950's [1] and have been isolated meanwhile also from insects, plants, and bacteria. While AFPs shift the freezing point of water below the bulk melting point and hence can prevent recrystallization; the effect is non-colligative and there is a pronounced hysteresis between freezing and melting. For many AFPs it is generally accepted that they function through an irreversible binding to the ice-water interface which leads to a piecewise convex growth front with a lower nonequilibrium freezing point due to the Kelvin effect. Recent molecular dynamics simulations of the AFP from Choristoneura fumiferana reveal that the solvation structures of water at ice-binding and non-ice-binding faces of the protein are crucial for understanding how the AFP binds to the ice surface and how it is protected from being overgrown [2]. We use density functional theory of classical fluids in order to assess the microscopic solvent structure in the vicinity of protein faces with different surface properties. With our method, binding energies of different protein faces to the water-ice-interface can be computed efficiently in a simplified model. [1] Y. Yeh and R.E. Feeney, Chem. Rev. 96, 601 (1996). [2] D.R. Nutt and J.C. Smith, J. Am. Chem. Soc. 130, 13066 (2008).

Hansen-Goos, Hendrik; Wettlaufer, John

2009-03-01

172

Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature  

NASA Astrophysics Data System (ADS)

Water has a number of anomalous physical properties, and some of these become drastically enhanced on supercooling below the freezing point. Particular interest has focused on thermodynamic response functions that can be described using a normal component and an anomalous component that seems to diverge at about 228 kelvin (refs 1,2,3 ). This has prompted debate about conflicting theories that aim to explain many of the anomalous thermodynamic properties of water. One popular theory attributes the divergence to a phase transition between two forms of liquid water occurring in the `no man's land' that lies below the homogeneous ice nucleation temperature (TH) at approximately 232 kelvin and above about 160 kelvin, and where rapid ice crystallization has prevented any measurements of the bulk liquid phase. In fact, the reliable determination of the structure of liquid water typically requires temperatures above about 250 kelvin. Water crystallization has been inhibited by using nanoconfinement, nanodroplets and association with biomolecules to give liquid samples at temperatures below TH, but such measurements rely on nanoscopic volumes of water where the interaction with the confining surfaces makes the relevance to bulk water unclear. Here we demonstrate that femtosecond X-ray laser pulses can be used to probe the structure of liquid water in micrometre-sized droplets that have been evaporatively cooled below TH. We find experimental evidence for the existence of metastable bulk liquid water down to temperatures of kelvin in the previously largely unexplored no man's land. We observe a continuous and accelerating increase in structural ordering on supercooling to approximately 229 kelvin, where the number of droplets containing ice crystals increases rapidly. But a few droplets remain liquid for about a millisecond even at this temperature. The hope now is that these observations and our detailed structural data will help identify those theories that best describe and explain the behaviour of water.

Sellberg, J. A.; Huang, C.; McQueen, T. A.; Loh, N. D.; Laksmono, H.; Schlesinger, D.; Sierra, R. G.; Nordlund, D.; Hampton, C. Y.; Starodub, D.; Deponte, D. P.; Beye, M.; Chen, C.; Martin, A. V.; Barty, A.; Wikfeldt, K. T.; Weiss, T. M.; Caronna, C.; Feldkamp, J.; Skinner, L. B.; Seibert, M. M.; Messerschmidt, M.; Williams, G. J.; Boutet, S.; Pettersson, L. G. M.; Bogan, M. J.; Nilsson, A.

2014-06-01

173

Preparation for Scaling Studies of Ice-Crystal Icing at the NRC Research Altitude Test Facility  

NASA Technical Reports Server (NTRS)

This paper describes experiments conducted at the National Research Council (NRC) of Canadas Research Altitiude Test Facility between March 26 and April 11, 2012. The tests, conducted collaboratively between NASA and NRC, focus on three key aspects in preparation for later scaling work to be conducted with a NACA 0012 airfoil model in the NRC Cascade rig: (1) cloud characterization, (2) scaling model development, and (3) ice-shape profile measurements. Regarding cloud characterization, the experiments focus on particle spectra measurements using two shadowgraphy methods, cloud uniformity via particle scattering from a laser sheet, and characterization of the SEA Multi-Element probe. Overviews of each aspect as well as detailed information on the diagnostic method are presented. Select results from the measurements and interpretation are presented which will help guide future work.

Struk, Peter M.; Bencic, Timothy J.; Tsao, Jen-Ching; Fuleki, Dan; Knezevici, Daniel C.

2013-01-01

174

Introduction to Crystal Structure: Bond Strength  

NSDL National Science Digital Library

This exercise is designed to familiarize students with some basic crystal structures The exercise helps students fully understand the nature and significance of ionic bonds and Pauling's second rule It also builds a bit on Pauling's first rule (radius ratio principle) It is one of several related activities, all of which are intended to help students understand the nature of ionic crystals

Dexter Perkins

175

High-frequency microwave anti-\\/de-icing system for carbon-reinforced airfoil structures  

Microsoft Academic Search

An aircraft may be subjected to icing for a variety of meteorological reasons during the flight. Ice formation on the plane and in particular on the aerodynamically carrying structures adversely affects the flight behaviour. Conventional de-icing methods for aluminum wings are characterised by a high energy consumption during the flight and slow ice melting due to thermal diffusion of the

Lambert Feher; Manfred Thumm

2001-01-01

176

The Structure of Ice Nanoclusters and Thin-films of Water Ice: Implications for Icy Grains in Cold Molecular Clouds  

NASA Technical Reports Server (NTRS)

The cubic to hexagonal phase transformation in water ice (I(sub c) yields I(sub h)) is used to measure the extent to which surface structure and impurities control bulk properties. In pure crystalline (I(sub c)) water ice nanoclusters and in thin-films of impure water ice, I(sub c) yields I(sub h) occurs at lower temperatures than in thin-films of pure water ice. The disordered surface of the 20 nm diameter nanoclusters promotes transformations or reactions which would otherwise be kinetically hindered. Likewise, impurities such as methanol introduce defects into the ice network, thereby allowing sluggish structural transitions to proceed. Such surface-related phenomena play an important role in promoting chemical reactions on interstellar ice grains within cold molecular clouds, where the first organic compounds are formed.

Delzeit, Lance; Blake, David; Uffindell, Christine; DeVincenzi, Donald L. (Technical Monitor)

2000-01-01

177

Terahertz Time Domain Spectroscopy of Simple Astrophysically Relevant Ices: the Structure of the Ice  

NASA Astrophysics Data System (ADS)

International astronomical facilities, in particular the Herschel Space Telescope, SOFIA and ALMA, are currently characterizing the interstellar medium (ISM) by collecting a huge amount of new THz spectral data that must be compared to THz laboratory spectra to be interpreted. The latter, however, are largely lacking, and this severely restricts the scientific impact of the astronomical observations. We have recently constructed a new THz time-domain spectroscopy system to investigate the spectra of interstellar relevant ice analogs in the range between 0.3 - 7 THz. The system is coupled to a FT-IR spectrometer to monitor the ices in the mid-IR (4000 - 500 cm^{-1}). The THz region of the electromagnetic spectrum is dominated by large amplitude motions, such as phonon modes and intermolecular vibrations, along with high-frequency torsional motions of individual species. This talk will focus on the laboratory investigation of the composition and structure of the bulk phases of interstellar ice analogs (i.e., H_{2}O, CO_{2}, CO, CH_{3}OH, NH_{3}, CH_{4}). Different temperatures, mixing ratios, and matrix isolation experiments will be shown. The ultimate goal of this research project is to provide the scientific community with an extensive THz ice-database, which will allow quantitative studies of the ISM, and guide future astronomical observations of species in the solid phase.

Ioppolo, Sergio; Allodi, Marco A.; McGuire, Brett A.; Kelley, Matthew J.; Blake, Geoffrey A.

2013-06-01

178

Sea Ice  

NSDL National Science Digital Library

In this resource, students will discover that there are notable differences between sea ice and fresh-water ice, such as density. In on segment, students learn that the first sign of freezing on the sea is an oily appearance of the water caused by the formation of needle-like crystals. The site explains the relationship between growth and the rate at which heat flows from the water and that the ice pack can alter its shape and dimension due to the movement of winds, currents, thermal expansion, and contraction of the ice. Types of ice described here include new ice, nilas, young ice, first-year ice, and old ice while the forms of ice covered include pancake ice, brash ice, ice cake, floe, and fast ice. The site also explains the meteorological and oceanographic factors that control the amount and movement of ice.

179

Evaluation of Morphological Change and Aggregation Process of Ice Crystals in Frozen Food by Using Fractal Analysis  

NASA Astrophysics Data System (ADS)

Size and shape of ice crystals in frozen food materials are very important because they affect not only quality of foods but also the viability of industrial processing such as freeze-drying of concentration. In this study, 30%wt sucrose solution is used as test samples. For examining the effect of stabilizerspectine and xantan gum is added to the sucrose solution. They are frozen on the cold stage of microscope to be observed their growing ice crystals under the circumstance of -10°C. Their size and shape are measured and quantitatively evaluated by applying fractal analysis. lce crystal of complicated shape has large fractal dimension, and vice versa. It successflly categorized the ice crystals into two groups; one is a group of large size and complicated shape, and the other is a group of small size and plain shape. The critical crystal size between the two groups is found to become larger with increasing holding time. It suggests a phenomenological model for metamorphoses process of ice crystals. Further, it is indicated that xantan gum is able to suppress the smoothing of ice crystals.

Koshiro, Yoko; Watanabe, Manabu; Takai, Rikuo; Hagiwara, Tomoaki; Suzuki, Toru

180

Ice  

NSDL National Science Digital Library

When a chunk of ice "twice the size of Manhattan" broke away from the northernmost part of the Antarctic Peninsula in February, ice was at the forefront of scientific news. Now, with the spectacular discovery of bacteria in Antarctic ice and with new evidence of slush beneath the frozen surface of Jupiter's moon Europa, water in its frozen form is once again in the news. The discovery of living organisms in the Antarctic ecosystem, described in the June 26, 1998 issue of Science, is significant because it presents a model for "how life may have arisen and persisted on other worlds." Scientists speculate that if organisms can thrive in the hard ice of Antarctica, they may possibly have done so on Europa and Mars. Galileo's closest approach to Europa occurred on July 21, 1998, offering new images of ice in space. The nine sites listed offer insights and details of the recent findings and discoveries related to ice.

Harris, Kathryn Louise.

181

ICSD Web: the Inorganic Crystal Structure Database  

NSDL National Science Digital Library

This site contains a free demonstration version of the Inorganic Crystal Structure Database. This database contains a 3325 structure subset of the 76,480 inorganic structures as of 2004. The demo version can be queried and accessed by a web-interface which allows multiple methods of searching, and the resulting crystal structures can then be viewed online (with the CHIME plug-in) or downloaded for viewing with other visualization software. Also included on the site are updates of bug fixes, conditions of use and prices, tips for displaying the structures, a gallery of images, a flash movie, and instructions for installing a ICSD server.

Hewat Alan

182

Ab initio molecular crystal structures, spectra, and phase diagrams.  

PubMed

Conspectus Molecular crystals are chemists' solids in the sense that their structures and properties can be understood in terms of those of the constituent molecules merely perturbed by a crystalline environment. They form a large and important class of solids including ices of atmospheric species, drugs, explosives, and even some organic optoelectronic materials and supramolecular assemblies. Recently, surprisingly simple yet extremely efficient, versatile, easily implemented, and systematically accurate electronic structure methods for molecular crystals have been developed. The methods, collectively referred to as the embedded-fragment scheme, divide a crystal into monomers and overlapping dimers and apply modern molecular electronic structure methods and software to these fragments of the crystal that are embedded in a self-consistently determined crystalline electrostatic field. They enable facile applications of accurate but otherwise prohibitively expensive ab initio molecular orbital theories such as Møller-Plesset perturbation and coupled-cluster theories to a broad range of properties of solids such as internal energies, enthalpies, structures, equation of state, phonon dispersion curves and density of states, infrared and Raman spectra (including band intensities and sometimes anharmonic effects), inelastic neutron scattering spectra, heat capacities, Gibbs energies, and phase diagrams, while accounting for many-body electrostatic (namely, induction or polarization) effects as well as two-body exchange and dispersion interactions from first principles. They can fundamentally alter the role of computing in the studies of molecular crystals in the same way ab initio molecular orbital theories have transformed research practices in gas-phase physical chemistry and synthetic chemistry in the last half century. In this Account, after a brief summary of formalisms and algorithms, we discuss applications of these methods performed in our group as compelling illustrations of their unprecedented power in addressing some of the outstanding problems of solid-state chemistry, high-pressure chemistry, or geochemistry. They are the structure and spectra of ice Ih, in particular, the origin of two peaks in the hydrogen-bond-stretching region of its inelastic neutron scattering spectra, a solid-solid phase transition from CO2-I to elusive, metastable CO2-III, pressure tuning of Fermi resonance in solid CO2, and the structure and spectra of solid formic acid, all at the level of second-order Møller-Plesset perturbation theory or higher. PMID:24754304

Hirata, So; Gilliard, Kandis; He, Xiao; Li, Jinjin; Sode, Olaseni

2014-09-16

183

Ice friction: The effects of surface roughness, structure, and hydrophobicity  

SciTech Connect

The effect of surface roughness, structure, and hydrophobicity on ice friction is studied systematically over a wide range of temperature and sliding speeds using several metallic interfaces. Hydrophobicity in combination with controlled roughness at the nanoscale is achieved by femtosecond laser irradiation to mimic the lotus effect on the slider's surface. The controlled roughness significantly increases the coefficient of friction at low sliding speeds and temperatures well below the ice melting point. However, at temperatures close to the melting point and relatively higher speeds, roughness and hydrophobicity significantly decrease ice friction. This decrease in friction is mainly due to the suppression of capillary bridges in spite of the presence of surface asperities that facilitate their formation. Finally, grooves oriented in the sliding direction also significantly decrease friction in the low velocity range compared to scratches and grooves randomly distributed over a surface.

Kietzig, Anne-Marie; Hatzikiriakos, Savvas G.; Englezos, Peter [Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 (Canada)

2009-07-15

184

A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse  

Microsoft Academic Search

This study provides a detailed structural glaciological analysis of changes in surface structures on the Larsen B ice shelf on the Antarctic Peninsula prior to its collapse in February-March 2002. Mapped features include the ice-shelf front, rifts, crevasses, longitudinal linear surface structures and meltwater features. We define domains on the ice shelf related to glacier source areas and demonstrate that,

N. F. Glasser; T. A. Scambos

2008-01-01

185

Influence of particle aspect ratio on the midinfrared extinction spectra of wavelength-sized ice crystals.  

PubMed

We have used the T-matrix method and the discrete dipole approximation to compute the midinfrared extinction cross-sections (4500-800 cm(-1)) of randomly oriented circular ice cylinders for aspect ratios extending up to 10 for oblate and down to 1/6 for prolate particle shapes. Equal-volume sphere diameters ranged from 0.1 to 10 microm for both particle classes. A high degree of particle asphericity provokes a strong distortion of the spectral habitus compared to the extinction spectrum of compactly shaped ice crystals with an aspect ratio around 1. The magnitude and the sign (increase or diminution) of the shape-related changes in both the absorption and the scattering cross-sections crucially depend on the particle size and the values for the real and imaginary part of the complex refractive index. When increasing the particle asphericity for a given equal-volume sphere diameter, the values for the overall extinction cross-sections may change in opposite directions for different parts of the spectrum. We have applied our calculations to the analysis of recent expansion cooling experiments on the formation of cirrus clouds, performed in the large coolable aerosol and cloud chamber AIDA of Forschungszentrum Karlsruhe at a temperature of 210 K. Depending on the nature of the seed particles and the temperature and relative humidity characteristics during the expansion, ice crystals of various shapes and aspect ratios could be produced. For a particular expansion experiment, using Illite mineral dust particles coated with a layer of secondary organic matter as seed aerosol, we have clearly detected the spectral signatures characteristic of strongly aspherical ice crystal habits in the recorded infrared extinction spectra. We demonstrate that the number size distributions and total number concentrations of the ice particles that were generated in this expansion run can only be accurately derived from the recorded infrared spectra when employing aspect ratios as high as 10 in the retrieval approach. Remarkably, the measured spectra could also be accurately fitted when employing an aspect ratio of 1 in the retrieval. The so-deduced ice particle number concentrations, however, exceeded the true values, determined with an optical particle counter, by more than 1 order of magnitude. Thus, the shape-induced spectral changes between the extinction spectra of platelike ice crystals of aspect ratio 10 and compactly shaped particles of aspect ratio 1 can be efficiently balanced by deforming the true number size distribution of the ice cloud. As a result of this severe size/shape ambiguity in the spectral analysis, we consider it indispensable to cross-check the infrared retrieval results of wavelength-sized ice particles with independent reference measurements of either the number size distribution or the particle morphology. PMID:18004822

Wagner, Robert; Benz, Stefan; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Leisner, Thomas

2007-12-20

186

Crystallization and preliminary X-ray crystallographic analysis of an ice-binding protein (FfIBP) from Flavobacterium frigoris PS1.  

PubMed

Ice growth in a cold environment is fatal for polar organisms, not only because of the physical destruction of inner cell organelles but also because of the resulting chemical damage owing to processes such as osmotic shock. The properties of ice-binding proteins (IBPs), which include antifreeze proteins (AFPs), have been characterized and IBPs exhibit the ability to inhibit ice growth by binding to specific ice planes and lowering the freezing point. An ice-binding protein (FfIBP) from the Gram-negative bacterium Flavobacterium frigoris PS1, which was isolated from the Antarctic, has recently been overexpressed. Interestingly, the thermal hysteresis activity of FfIBP was approximately 2.5?K at 50?µM, which is ten times higher than that of the moderately active IBP from Arctic yeast (LeIBP). Although FfIBP closely resembles LeIBP in its amino-acid sequence, the antifreeze activity of FfIBP appears to be much greater than that of LeIBP. In an effort to understand the reason for this difference, an attempt was made to solve the crystal structure of FfIBP. Here, the crystallization and X-ray diffraction data of FfIBP are reported. FfIBP was crystallized using the hanging-drop vapour-diffusion method with 0.1?M sodium acetate pH 4.4 and 3?M sodium chloride as precipitant. A complete diffraction data set was collected to a resolution of 2.9?Å. The crystal belonged to space group P4(1)22, with unit-cell parameters a = b = 69.4, c = 178.2?Å. The asymmetric unit contained one monomer. PMID:22750870

Do, Hackwon; Lee, Jun Hyuck; Lee, Sung Gu; Kim, Hak Jun

2012-07-01

187

Polarization lidar observations of backscatter phase matrices from oriented ice crystals and rain.  

PubMed

Oriented particles can exhibit different polarization properties than randomly oriented particles. These properties cannot be resolved by conventional polarization lidar systems and are capable of corrupting the interpretation of depolarization ratio measurements. Additionally, the typical characteristics of backscatter phase matrices from atmospheric oriented particles are not well established. The National Center for Atmospheric Research High Spectral Resolution Lidar was outfitted in spring of 2012 to measure the backscatter phase matrix, allowing it to fully characterize the polarization properties of oriented particles. The lidar data analyzed here considers operation at 4°, 22° and 32° off zenith in Boulder, CO, USA (40.0°N,105.2°W). The HSRL has primarily observed oriented ice crystal signatures at lidar tilt angles near 32° off zenith which corresponds to an expected peak in backscatter from horizontally oriented plates. The maximum occurrence frequency of oriented ice crystals is measured at 5 km, where 2% of clouds produced significant oriented ice signatures by exhibiting diattenuation in their scattering matrices. The HSRL also observed oriented particle characteristics of rain at all three tilt angles. Oriented signatures in rain are common at all three tilt angles. As many as 70% of all rain observations made at 22° off zenith exhibited oriented signatures. The oriented rain signatures exhibit significant linear diattenuation and retardance. PMID:25090513

Hayman, Matthew; Spuler, Scott; Morley, Bruce

2014-07-14

188

Pholcodine monohydrate: Crystal structure and polymorphism  

NASA Astrophysics Data System (ADS)

The first crystal structure elucidation of pholcodine monohydrate, an important antitussive active pharmaceutical ingredient is reported herein. The studied compound crystallizes in the orthorhombic system in the space group P212121. Each H2O molecule is shared by two pholcodine molecules via three strong hydrogen bonds. The detailed crystallization screening from several different organic solvents afforded single crystals with various quality, all exhibiting prism-to-needlelike micro morphology. The investigation of the obtained single crystals by means of several physico-chemical, solid-state instrumental techniques (FT-IR, DSC, TG/DTG and XRPD) proved that pholcodine monohydrate exists in a single crystalline modification, identical to the commercial form of the compound.

Petruševski, Gjorgji; Zba?nik, Marija; Kajdžanoska, Marina; Ugarkovic, Sonja; Trim?eski, Vase; Kaitner, Branko; Jovanovski, Gligor; Makreski, Petre

2013-07-01

189

Kinetic pathways to the magnetic charge crystal in artificial dipolar spin ice  

NASA Astrophysics Data System (ADS)

We experimentally investigate magnetic frustration effects in thermally active artificial kagome spin ice. Starting from a paramagnetic state, the system is cooled down below the Curie temperature of the constituent material. The resulting magnetic configurations show that our arrays are locally brought into the so-called spin ice 2 phase, predicted by at-equilibrium Monte Carlo simulations and characterized by a magnetic charge crystal embedded in a disordered kagome spin lattice. However, by studying our arrays on a larger scale, we find the unambiguous signature of an out-of-equilibrium physics. Comparing our findings with numerical simulations, we interpret the efficiency of our thermalization procedure in terms of kinetic pathways that the system follows upon cooling and which drive the arrays into degenerate low-energy manifolds that are hardly accessible otherwise.

Chioar, I. A.; Canals, B.; Lacour, D.; Hehn, M.; Santos Burgos, B.; Mente?, T. O.; Locatelli, A.; Montaigne, F.; Rougemaille, N.

2014-12-01

190

Ice island creation, drift, recurrences, mechanical properties, and interactions with arctic offshore oil production structures  

SciTech Connect

Research and engineering studies on first-year sea ice for over two decades has resulted in the design, construction, and operation of jacket platforms, of artificial islands, and of massive gravity structures which routinely withstand moving sea ice of thickness up to 2 meters. However, the less-common interactions between such structures and moving multiyear ice ([ge]3 meters thick), and also moving ice islands (10 to 60 meters thick) remain as the unknown and potentially most serious hazard for Arctic offshore structures. In this study, research was addressed across the complete span of remaining questions regarding such features. Ice island components, thickness distributions, scenarios and models for the interactions of massive ice features with offshore structures, all were considered. Ice island morphology and calving studies were directed at the cluster of 19 ice islands produced in a calving from the Ward Hunt Ice Shelf on Ellesmere Island in 1983, and also at a calving from the Milne Ice Shelf in 1988. The statistics of ice island dynamics, on both a short-term small-scale basis and also on a long-term basis, were studied. Typical wind velocities of 5 to 7.5 meters per second led to ice island speeds of about 0.014 of the wind speed, at an angle of 20[degrees] to the right of the wind direction. Ice island samples were tested for their stress/strain characteristics. Compressive strength values ranged from 1.64 MPa at a strain rate of 2 [times] 10[sup [minus]7] s[sup [minus]1] to 6.75 MPa at a strain rate of 1 [times] 10[sup [minus]3] s[sup [minus]1]. Scenarios for ice island/structure interactions were developed, and protective countermeasures such as spray ice and ice rubble barriers were suggested. Additional computer modeling of structure/ice interactions for massive ice features is recommended.

Sackinger, W.M.; Jeffries, M.O.; Li, Fucheng; Lu, Mingchi.

1991-03-01

191

Amphidynamic Crystals: Structural Blueprints for Molecular Machines  

Microsoft Academic Search

By considering the relation between molecular structure, molecular dynamics, and phase order,\\u000a we suggest that certain structures should be able to make up supramolecular assemblies with structurally\\u000a programmed molecular dynamics. Given that the simplest members of these structures should have the\\u000a elements required to form a rigid lattice with moving parts, we propose the term amphidynamic\\u000a crystals to describe them. We

Steven D. Karlen; Miguel A. Garcia-Garibay

192

Natural photonic crystals: formation, structure, function  

NASA Astrophysics Data System (ADS)

The structure and properties of natural photonic crystals are discussed using the colored scales of the beetle Lamprocyphus augustus as an example. While the exact mechanism behind the formation of these biopolymeric photonic structures has yet to be fully explored, similarities of these structures to intracellular cubic membrane architectures are introduced. Some crucial parameters behind the formation of cubic membranes are discussed. Using these insights, intracellular cubic membrane structures are transformed into an extracellular environment.

Bartl, Michael H.; Dahlby, Michael R.; Barrows, Frank P.; Richens, Zachary J.; Terooatea, Tommy; Jorgensen, Matthew R.

2012-03-01

193

Crystal structure of plant photosystem I  

Microsoft Academic Search

Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on Earth. The conversion of sunlight into chemical energy is driven by two multisubunit membrane protein complexes named photosystem I and II. We determined the crystal structure of the complete photosystem I (PSI) from a higher plant (Pisum sativum var. alaska) to 4.4Å resolution. Its intricate structure shows

Adam Ben-Shem; Felix Frolow; Nathan Nelson

2003-01-01

194

Building Crystal Structure Ball Models Using Pre-Drilled Templates: Sheet Structures, Tridymite, and Cristobalite  

NSDL National Science Digital Library

This activity involves building crystal structure ball models in order to strengthen students' understanding of crystalline order, relative atomic size, atomic coordination, crystal chemistry, and crystal symmetry.

Kurt Hollocher

195

Ice formation and growth shape bacterial community structure in Baltic Sea drift ice.  

PubMed

Drift ice, open water and under-ice water bacterial communities covering several developmental stages from open water to thick ice were studied in the northern Baltic Sea. The bacterial communities were assessed with 16S rRNA gene terminal-restriction fragment length polymorphism and cloning, together with bacterial abundance and production measurements. In the early stages, open water and pancake ice were dominated by Alphaproteobacteria and Actinobacteria, which are common bacterial groups in Baltic Sea wintertime surface waters. The pancake ice bacterial communities were similar to the open-water communities, suggesting that the parent water determines the sea-ice bacterial community in the early stages of sea-ice formation. In consolidated young and thick ice, the bacterial communities were significantly different from water bacterial communities as well as from each other, indicating community development in Baltic Sea drift ice along with ice-type changes. The thick ice was dominated by typical sea-ice genera from classes Flavobacteria and Gammaproteobacteria, similar to those in polar sea-ice bacterial communities. Since the thick ice bacterial community was remarkably different from that of the parent seawater, results indicate that thick ice bacterial communities were recruited from the rarer members of the seawater bacterial community. PMID:25764550

Eronen-Rasimus, Eeva; Lyra, Christina; Rintala, Janne-Markus; Jürgens, Klaus; Ikonen, Vilma; Kaartokallio, Hermanni

2015-02-01

196

Ice-crystal absorption: a comparison between theory and implications for remote sensing.  

PubMed

The problem of the disagreement between cirrus crystal sizes determined remotely and by in situ measurements is shown to be due to inappropriate application of Mie theory. We retrieved the absorption optical depth at 8.3 and 11.1 mum from 11 tropical anvil cirrus clouds, using data from the High Resolution Infrared Radiation Sounder (HIRS). We related the absorption optical depth ratio between the two wavelengths to crystal size (the size was defined in terms of the crystal median mass dimension) by assuming Mie theory applied to ice spheres and anomalous diffraction theory (ADT) applied to hexagonal columns, hexagonal plates, bullet rosettes, and aggregates (polycrystals). The application of Mie theory to retrievals yielded crystal sizes approximately one third those obtained with ADT. The retrievals of crystal size by use of HIRS data are compared with measurements of habit and crystal size obtained from in situ measurements of tropical anvil cirrus particles. The results of the comparison show that ADT provides the more realistic retrieval. Moreover, we demonstrate that at infrared wavelengths retrieval of crystal size depends on assumed habit. The reason why Mie theory predicts smaller sizes than ADT is shown to result from particle geometry and enhanced absorption owing to the capture of photons from above the edge of the particle (tunneling). The contribution of particle geometry to absorption is three times greater than from tunneling, but this process enhances absorption by a further 35%. The complex angular momentum and T-matrix methods are used to show that the contribution to absorption by tunneling is diminished as the asphericity of spheroidal particles is increased. At an aspect ratio of 6 the contribution to the absorption that is due to tunneling is substantially reduced for oblate particles, whereas for prolate particles the tunneling contribution is reduced by 50% relative to the sphere. PMID:18273143

Baran, A J; Foot, J S; Mitchell, D L

1998-04-20

197

Data mining chemistry and crystal structure  

NASA Astrophysics Data System (ADS)

The availability of large amounts of data generated by high-throughput computing and experimentation has generated interest in the application of machine learning techniques to materials science. Machine learning of materials behavior requires the use of feature vectors that capture compositional or structural information influence a target property. We present methods for assessing the similarity of compositions, substructures, and crystal structures. Similarity measures are important for the classification and clustering of data points, allowing for the organization of data and the prediction of materials properties. The similarity functions between ions, compositions, substructures and crystal structure are based upon a data-mined probability with which two ions will substitute for each other within the same structure prototype. The composition similarity is validated via the prediction of crystal structure prototypes for oxides from the Inorganic Crystal Structure Database. It performs particularly well on the quaternary oxides, predicting the correct prototype within 5 guesses 90% of the time. The sustructural similarity is validated via the prediction of Li insertion sites in the oxides; it finds all of the Li sites with less than 8 incorrect guesses 90% of the time.

Yang, Lusann W.

198

Crystal structure and chirality of natural floridoside.  

PubMed

The crystal structure and absolute configuration of natural floridoside (2-O-alpha-D-galactopyranosylglycerol) were determined by single-crystal X-ray diffraction analysis. The space group is orthorhombic P2(1)2(1)2(1) with Z=4, a=4.885(1), b=9.734(1), c=23.886(2) A at 296 +/- 2 K. The structure was solved by a direct method and refined to R=0.0351 from 1914 reflections of Cu Kalpha radiation. PMID:14572727

Simon-Colin, Christelle; Michaud, François; Léger, Jean-Michel; Deslandes, Eric

2003-10-31

199

Cirrus clouds millimeter-wave reflectivity comparison with in-situ ice crystal airborne data  

NASA Astrophysics Data System (ADS)

In an effort to evaluate scattering models for particle size distributions of ice crystals within cirrus clouds, simultaneous data was collected in March 2000 during the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Cloud Intensive operational period (Cloud IOP) at the Cloud and Radiation Testbed (CART) site in Lamont, Oklahoma. In situ measurements of ice particles were collected using the National Center for Atmospheric Research (NCAR) Video Ice Particle Sampler (VIPS), which flew on the University of North Dakota Citation research aircraft. Ground-based vertical radar profiles were collected using the University of Massachusetts (UMass) 33GHz/95GHz Cloud Profiler Radar System (CPRS). Data from both sensors was used to retrieve and compare the equivalent radar reflectivity at Ka band (33GHz). The equivalent radar reflectivity measured by the ground-based, zenith-looking, CPRS radar at Ka band and compared to the reflectivity computed from the airborne VIPS samples of particle size distribution, N(D), using Mie theory. As anticipated the equivalent reflectivity of the radar and VIPS were similar at the time the UND Citation overflew the radar.

Morales, Jose; Trabal, Jorge; Cruz-Pol, Sandra L.; Sekelsky, Stephen M.

2004-12-01

200

Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method  

NASA Astrophysics Data System (ADS)

The invariant imbedding T-matrix method (II-TM) is employed to compute the optical properties of randomly oriented ice crystals of various shapes including hexagonal columns, hollow columns, droxtals, bullet rosettes and aggregates. The II-TM is shown to be numerically stable and capable of obtaining the single-scattering properties of hexagonal ice crystals with size parameters up to 150. The 22° and 46° halo peaks in the phase function of compact hexagonal ice crystals begin to emerge at a size parameter of approximately 80 and tend to become insensitive to particle size as the corresponding size parameter approaches 150. Furthermore, the II-TM solutions are shown to be in agreement with their counterparts based on the discrete dipole approximation (DDA) method and the pseudo-spectral time-domain (PSTD) method. In addition, the accuracy of the improved geometric-optics method (IGOM) is examined for randomly oriented hexagonal ice crystal cases over a wide size-parameter range from the resonant to geometric-optics regimes. The II-TM is also used to study the effects of particle surface roughness and internal inclusions on the single-scattering properties of ice particles.

Bi, Lei; Yang, Ping

2014-05-01

201

Role of small ice crystals in radiative properties of cirrus: A case study, FIRE II, November 22, 1991  

NASA Technical Reports Server (NTRS)

Aircraft observations of cirrus cloud were made near Coffeyville, Kansas, during November 1991 as part of the First ISCCP Regional Experiment II (FIRE II) project. Cloud ice particle spectra measurements were made using both a particle measuring system (PMS) 2DC probe and an ice particle replicator. Particles larger than 200 micrometers were column rosettes. The replicator shows the presence of large numbers of ice crystals smaller than 66 micrometers (two PMS size bins) that are not recorded by the PMS 2DC probe. Calculations based on the replicator data of the geometrical blocked area and absorption cross section of the cloud per unit volume show that small particles can contribute significantly to and sometimes dominate both the solar extinction and the infrared emission. Intercomparison is made of the ice particle size, area, and mass distributions determined by these different instruments. Power law relationships for area occluded by a crystal as a function of crystal maximum dimension were computed from the PMS 2DC data. The wavelength-dependent infrared absorption cross section per volume was computed using a simple model based on anomalous diffraction and area and mass dimensional relationships for the ice crystals.

Arnott, W. Patrick; Dong, Yayi; Hallett, John; Poellot, Michael R.

1994-01-01

202

Requirements for structure determination of aperiodic crystals  

NASA Astrophysics Data System (ADS)

Using computer simulation, we compared the Patterson functions of one-dimensional (1D) randomly packed and quasiperiodic Fibonacci lattices with or without disorder, and a 2D Penrose lattice and random packing of pentagons (icosahedral glass model). Based on these comparisons, we derived some empirical guidelines for distinguishing ideal quasicrystals from aperiodic crystals with disorder using diffraction data. In contrast to periodic crystals, it is essential to include the background to obtain correct Patterson functions of the average structure since the background contains unresolved peaks. In particular, a Bragg peak scattering measurement cannot, in general, determine the structure of aperiodic crystals. Instead, a diffuse scattering measurement is required, which determines the absolute value of the diffraction background, in addition to the Bragg peaks. We further estimate that, dependent upon the disorder present, it is necessary to include up to 75% of the total diffracted intensity in any analysis.

Li, Xiao-Ou; Stern, Edward A.; Ma, Yanjun

1991-01-01

203

Advanced Optical Diagnostics for Ice Crystal Cloud Measurements in the NASA Glenn Propulsion Systems Laboratory  

NASA Technical Reports Server (NTRS)

A light extinction tomography technique has been developed to monitor ice water clouds upstream of a direct connected engine in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center (GRC). The system consists of 60 laser diodes with sheet generating optics and 120 detectors mounted around a 36-inch diameter ring. The sources are pulsed sequentially while the detectors acquire line-of-sight extinction data for each laser pulse. Using computed tomography algorithms, the extinction data are analyzed to produce a plot of the relative water content in the measurement plane. To target the low-spatial-frequency nature of ice water clouds, unique tomography algorithms were developed using filtered back-projection methods and direct inversion methods that use Gaussian basis functions. With the availability of a priori knowledge of the mean droplet size and the total water content at some point in the measurement plane, the tomography system can provide near real-time in-situ quantitative full-field total water content data at a measurement plane approximately 5 feet upstream of the engine inlet. Results from ice crystal clouds in the PSL are presented. In addition to the optical tomography technique, laser sheet imaging has also been applied in the PSL to provide planar ice cloud uniformity and relative water content data during facility calibration before the tomography system was available and also as validation data for the tomography system. A comparison between the laser sheet system and light extinction tomography resulting data are also presented. Very good agreement of imaged intensity and water content is demonstrated for both techniques. Also, comparative studies between the two techniques show excellent agreement in calculation of bulk total water content averaged over the center of the pipe.

Bencic, Timothy J.; Fagan, Amy; Van Zante, Judith F.; Kirkegaard, Jonathan P.; Rohler, David P.; Maniyedath, Arjun; Izen, Steven H.

2013-01-01

204

A Numerical Study of the Effect of Electric Charges on the Efficiency with which Planar Ice Crystals Collect Supercooled Cloud Drops  

Microsoft Academic Search

A theoretical model is presented which allows determination of the efficiency with which electrically charged, simple planar ice crystals collide with electrically charged supercooled cloud drops. The calculations are carried out for ice crystal plates of diameter between 100 and 1300 m colliding with cloud drops of diameters between 2 and 170 m. The electric charges Q (esu) residing on

J. J. Martin; P. K. Wang; H. R. Pruppacher; R. L. Pitter

1981-01-01

205

162 J. Opt. Soc. Am. A/Vol. 12, No. 1/January 1995 P. Yang and K. N. Liou Light scattering by hexagonal ice crystals  

E-print Network

of localized waves, from which the electric and magnetic fields at the particle surface (near field) can, scattering properties for more complex ice crystal shapes have also been determined by the geometric ray by hexagonal ice crystals: comparison of finite-difference time domain and geometric optics models Ping Yang

Liou, K. N.

206

Sea ice and water column structure on the eastern Bering Sea shelf  

NASA Astrophysics Data System (ADS)

Seasonal sea ice is a defining characteristic of the eastern Bering Sea shelf, and plays a critical role in determining the vertical structure of temperature and salinity over this shelf. Ice movement relative to local winds, ice composition, and the impact of both arrival and retreat of ice on the water column at four mooring sites over the middle shelf are examined. Ice forms primarily in coastal regions and is advected over the southern and outer shelves. Ice drift from satellite data for two representative years, 2003 and 2007, was ~2% of local NCEP wind speed and oriented 44° to the right of the winds (r2=0.25). Measurements from 30 ice cores collected in 2006-2009 gave an average salinity of 5.62±0.88, and an average nitrate concentration of 0.99±0.83 ?M. Time series data collected at the biophysical moorings in the Bering Sea (1995-2012) were used to explore the evolution of the water column under ice. At the northern mooring, M8, the water column had mixed and cooled to ~-1 °C prior to the arrival of ice. Little melt occurred after ice arrival. At the other three moorings, the ocean temperature was 2-4 °C when ice arrived, resulting in extensive melt. Melting ice freshened and cooled the upper water column, resulting in stratification, which persisted for 10-25 days. Wind-induced water-column mixing occurred more slowly under the ice than in ice-free waters. An estimated 1.4 m of ice melted with the first arrival of ice at the three southern moorings where the latent heat of fusion accounted for approximately half the observed cooling. During ice retreat, there appeared to be little ice melt around the southern two moorings, but an estimated 0.8 m at M5 and M8. The extent of ice melt sets up the water column for the following summer.

Sullivan, Margaret E.; Kachel, Nancy B.; Mordy, Calvin W.; Salo, Sigrid A.; Stabeno, Phyllis J.

2014-11-01

207

Shear induced structures in crystallizing cocoa butter  

NASA Astrophysics Data System (ADS)

Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.

Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.

2004-03-01

208

Crystal structure of the anthrax lethal factor  

Microsoft Academic Search

Lethal factor (LF) is a protein (relative molecular mass 90,000) that is critical in the pathogenesis of anthrax. It is a highly specific protease that cleaves members of the mitogen-activated protein kinase kinase (MAPKK) family near to their amino termini, leading to the inhibition of one or more signalling pathways. Here we describe the crystal structure of LF and its

Andrew D. Pannifer; Thiang Yian Wong; Robert Schwarzenbacher; Martin Renatus; Carlo Petosa; Jadwiga Bienkowska; D. Borden Lacy; R. John Collier; Stephen H. Leppla; Philip Hanna; Robert C. Liddington

2001-01-01

209

Crystal structure of a plectonemic RNA supercoil  

SciTech Connect

Genome packaging is an essential housekeeping process in virtually all organisms for proper storage and maintenance of genetic information. Although the extent and mechanisms of packaging vary, the process involves the formation of nucleic-acid superstructures. Crystal structures of DNA coiled coils indicate that their geometries can vary according to sequence and/or the presence of stabilizers such as proteins or small molecules. However, such superstructures have not been revealed for RNA. Here we report the crystal structure of an RNA supercoil, which displays one level higher molecular organization than previously reported structures of DNA coiled coils. In the presence of an RNA-binding protein, two interlocking RNA coiled coils of double-stranded RNA, a 'coil of coiled coils', form a plectonemic supercoil. Molecular dynamics simulations suggest that protein-RNA interaction is required for the stability of the supercoiled RNA. This study provides structural insight into higher order packaging mechanisms of nucleic acids.

Stagno, Jason R.; Ma, Buyong; Li, Jess; Altieri, Amanda S.; Byrd, R. Andrew; Ji, Xinhua (NCI); (Maryland)

2012-12-14

210

Flies expand the repertoire of protein structures that bind ice.  

PubMed

An antifreeze protein (AFP) with no known homologs has been identified in Lake Ontario midges (Chironomidae). The midge AFP is expressed as a family of isoforms at low levels in adults, which emerge from fresh water in spring before the threat of freezing temperatures has passed. The 9.1-kDa major isoform derived from a preproprotein precursor is glycosylated and has a 10-residue tandem repeating sequence xxCxGxYCxG, with regularly spaced cysteines, glycines, and tyrosines comprising one-half its 79 residues. Modeling and molecular dynamics predict a tightly wound left-handed solenoid fold in which the cysteines form a disulfide core to brace each of the eight 10-residue coils. The solenoid is reinforced by intrachain hydrogen bonds, side-chain salt bridges, and a row of seven stacked tyrosines on the hydrophobic side that forms the putative ice-binding site. A disulfide core is also a feature of the similar-sized beetle AFP that is a ?-helix with seven 12-residue coils and a comparable circular dichroism spectrum. The midge and beetle AFPs are not homologous and their ice-binding sites are radically different, with the latter comprising two parallel arrays of outward-pointing threonines. However, their structural similarities is an amazing example of convergent evolution in different orders of insects to cope with change to a colder climate and provide confirmation about the physical features needed for a protein to bind ice. PMID:25561557

Basu, Koli; Graham, Laurie A; Campbell, Robert L; Davies, Peter L

2015-01-20

211

A hierarchical structure for apatite crystals  

Microsoft Academic Search

Based on the experimental results taken from the references, a reasonable hierarchical structure of apatite (both fluorapatite and hydroxyapatite) crystals has been proposed for the first time. The structure consists of four levels of the hierarchy: the smallest level is made of single unit-cells and\\/or Posner's clusters with the linear dimensions slightly below 1 nm, the second level comprises X-ray

Sergey V. Dorozhkin

2007-01-01

212

Photonic Crystal Laser-Driven Accelerator Structures  

SciTech Connect

Laser-driven acceleration holds great promise for significantly improving accelerating gradient. However, scaling the conventional process of structure-based acceleration in vacuum down to optical wavelengths requires a substantially different kind of structure. We require an optical waveguide that (1) is constructed out of dielectric materials, (2) has transverse size on the order of a wavelength, and (3) supports a mode with speed-of-light phase velocity in vacuum. Photonic crystals---structures whose electromagnetic properties are spatially periodic---can meet these requirements. We discuss simulated photonic crystal accelerator structures and describe their properties. We begin with a class of two-dimensional structures which serves to illustrate the design considerations and trade-offs involved. We then present a three-dimensional structure, and describe its performance in terms of accelerating gradient and efficiency. We discuss particle beam dynamics in this structure, demonstrating a method for keeping a beam confined to the waveguide. We also discuss material and fabrication considerations. Since accelerating gradient is limited by optical damage to the structure, the damage threshold of the dielectric is a critical parameter. We experimentally measure the damage threshold of silicon for picosecond pulses in the infrared, and determine that our structure is capable of sustaining an accelerating gradient of 300 MV/m at 1550 nm. Finally, we discuss possibilities for manufacturing these structures using common microfabrication techniques.

Cowan, Benjamin M.

2007-08-22

213

Crystallization and preliminary X-ray crystallographic studies of the ice-binding protein from the Arctic [correction of Aantarctic] yeast Leucosporidium sp. AY30.  

PubMed

Freezing is dangerous to cellular organisms because it causes an increase in the concentration of ions and other solutes in the plasma, denatures biomolecules and ruptures cell membranes. Some cold-adapted organisms can survive at subzero temperatures by producing proteins that bind to and inhibit the growth of ice crystals. To better understand the structure and function of these proteins, the ice-binding protein from Leucosporidium sp. AY30 (LeIBP) was overexpressed, purified and crystallized. The native crystal belonged to space group P4(3)2(1)2, with unit-cell parameters a=b=98.05, c=106.13?Å. Since LeIBP lacks any cysteine or methionine residues, two leucine residues (Leu69 and Leu155) were substituted by methionine residues in order to obtain selenomethionine-substituted LeIBP for use in multiple-wavelength anomalous diffraction (MAD) phasing. The selenomethionine-substituted mutant crystallized in the same space group as the native protein. PMID:21795798

Park, Ae Kyung; Park, Kyoung Sun; Kim, Hak Jun; Park, Hyun; Ahn, In Young; Chi, Young Min; Moon, Jin Ho

2011-07-01

214

A design protocol for tailoring ice-templated scaffold structure  

PubMed Central

In this paper, we show, for the first time, the key link between scaffold architecture and latent heat evolution during the production of porous biomedical collagen structures using freeze-drying. Collagen scaffolds are used widely in the biomedical industry for the repair and reconstruction of skeletal tissues and organs. Freeze-drying of collagen slurries is a standard industrial process, and, until now, the literature has sought to characterize the influence of set processing parameters including the freezing protocol and weight percentage of collagen. However, we are able to demonstrate, by monitoring the local thermal events within the slurry during solidification, that nucleation, growth and annealing processes can be controlled, and therefore we are able to control the resulting scaffold architecture. Based on our correlation of thermal profile measurements with scaffold architecture, we hypothesize that there is a link between the fundamental freezing of ice and the structure of scaffolds, which suggests that this concept is applicable not only for collagen but also for ceramics and pharmaceuticals. We present a design protocol of strategies for tailoring the ice-templated scaffold structure. PMID:24402916

Pawelec, K. M.; Husmann, A.; Best, S. M.; Cameron, R. E.

2014-01-01

215

Predicting Polymeric Crystal Structures by Evolutionary Algorithms  

E-print Network

The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures for a given chemical composition. Here we extend this method to predict the crystal structure of polymers by performing constrained evolutionary search, where each monomeric unit is treated as one or several building blocks with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings using these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely polyethylene (PE), polyacetylene (PA), poly(glycolic acid) (PGA), poly(vinyl chloride) (PVC), poly(oxymethylene) (POM), poly(phenylene oxide) (PPO), and poly (p-phenylene sulfide) (PPS). By fixing the orientation of polymeric chains, this method can be further extended to predict all polymorphs of poly(vinylidene fluoride) (PVDF), and the complex linear polymer crystals, such as nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.

Qiang Zhu; Vinit Sharma; Artem R Oganov; Rampi Ramprasad

2014-06-05

216

Crystal growth investigations of ice/water interfaces from molecular dynamics simulations: Profile functions and average properties  

NASA Astrophysics Data System (ADS)

Attempts to simulate crystal growth of ice from liquid water and to provide a consistent microscopic description of this process have been challenging tasks. In this paper we have adapted our previously developed molecular dynamics simulation methodology to enable the investigation of steady-state directional crystal growth/melting of ice. Specifically, we examine ice/water systems of the (001), (110), and (111) faces of ice Ic and the (0001), (10bar 10), and (11bar 20) faces of ice Ih, where the TIP4P, TIP4P-Ew, and SPC/E water models have been utilized. The influence of different growth/melting conditions (temperature gradients and growth velocities) is investigated. Profile functions of properties of interest across the interface are obtained from nonequilibrium steady-state simulations and provide consistent descriptions of ice/water interfaces. The widths of the various crystallographic faces are found to increase in the apparent order Ic111, Ih0001 < Ih10bar 10 < Ih11bar 20 < Ic001 < Ic110. The observed growth rates were in agreement with experimental values and the possible dependence on the various faces is explored. The melting temperatures obtained with the present methodology for the different models are in good agreement with estimates from other work.

Razul, M. S. Gulam; Kusalik, P. G.

2011-01-01

217

Response of salt structures to ice-sheet loading: implications for ice-marginal and subglacial processes  

NASA Astrophysics Data System (ADS)

During the past decades the effect of glacioisostatic adjustment has received much attention. However, the response of salt structures to ice-sheet loading and unloading is poorly understood. Our study aims to test conceptual models of the interaction between ice-sheet loading and salt structures by finite-element modelling. The results are discussed with regard to their implications for ice-marginal and subglacial processes. Our models consist of 2D plane-strain cross-sections, which represent simplified geological cross-sections from the Central European Basin System. The model layers represent (i) sedimentary rocks of elastoplastic rheology, (ii) a viscoelastic diapir and layer of salt and (iii) an elastoplastic basement. On top of the model, a temporarily variable pressure simulates the advance and retreat of an ice sheet. The durations of the individual loading phases were defined to resemble the durations of the Pleistocene ice advances in northern central Europe. The geometry and rheology of the model layers and the magnitude, spatial distribution and timing of ice-sheet loading were systematically varied to detect the controlling factors. All simulations indicate that salt structures respond to ice-sheet loading. An ice advance towards the diapir causes salt flow from the source layer below the ice sheet towards the diapir, resulting in an uplift of up to +4 m. The diapir continues to rise as long as the load is applied to the source layer but not to the crest of the diapir. When the diapir is transgressed by the ice sheet the diapir is pushed down (up to -36 m) as long as load is applied to the crest of the diapir. During and after ice unloading large parts of the displacement are compensated by a reversal of the salt flow. Plastic deformation of the overburden is restricted to the area immediately above the salt diapir. The displacements after unloading range between -3.1 and +2.7 m. Larger displacements are observed in models with deep-rooted diapirs, thicker ice sheets, longer duration of the loading phase, thicker salt source layers and lower viscosity of the salt. The rise or fall of diapirs triggered or amplified by ice-sheet loading are likely to affect glacigenic deformation, erosion and deposition above the diapir and within the rim synclines. Ice-load induced uplift in front of an ice sheet will provide favourable conditions for the formation of push moraines, for example by creating a topographic obstacle and inclining potential detachments. Subglacial subsidence of salt structures will enhance erosion by providing a preferential drainage pathway and fracturing of the overburden of the salt structure and thereby contribute to the incision of tunnel valleys. However, the resulting displacements are probably too low to have a marked effect on the advance or retreat pattern of the ice sheets.

Lang, Jörg; Hampel, Andrea; Brandes, Christian; Winsemann, Jutta

2014-10-01

218

Crystal structure and magnetic structure of TbOOH  

Microsoft Academic Search

The monoclinic modification of terbium oxide hydroxide, TbOOH, was prepared using hydrothermal technique. The crystal structure was investigated by three-dimensional single-crystal X-ray analysis and was refined to a conventional R-value of 8.1%. The space group is P21\\/m, No. 11, with a = 6.04 Å, b = 3.69 Å, c = 4.33 Å, and beta = 109.0°. The terbium atom is

A. Nørlund Christensen; S. Quézel

1974-01-01

219

5.841 Crystal Structure Refinement, Fall 2006  

E-print Network

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and ...

Mueller, Peter

220

5.067 Crystal Structure Refinement, Fall 2007  

E-print Network

This course in crystal structure refinement examines the practical aspects of crystal structure determination from data collection strategies to data reduction and basic and advanced refinement problems of organic and ...

Mueller, Peter

221

CALYPSO: A method for crystal structure prediction  

NASA Astrophysics Data System (ADS)

We have developed a software package CALYPSO (Crystal structure AnaLYsis by Particle Swarm Optimization) to predict the energetically stable/metastable crystal structures of materials at given chemical compositions and external conditions (e.g., pressure). The CALYPSO method is based on several major techniques (e.g. particle-swarm optimization algorithm, symmetry constraints on structural generation, bond characterization matrix on elimination of similar structures, partial random structures per generation on enhancing structural diversity, and penalty function, etc.) for global structural minimization from scratch. All of these techniques have been demonstrated to be critical to the prediction of global stable structure. We have implemented these techniques into the CALYPSO code. Testing of the code on many known and unknown systems shows high efficiency and the highly successful rate of this CALYPSO method [Y. Wang, J. Lv, L. Zhu, Y. Ma, Phys. Rev. B 82 (2010) 094116] [29]. In this paper, we focus on descriptions of the implementation of CALYPSO code and why it works.

Wang, Yanchao; Lv, Jian; Zhu, Li; Ma, Yanming

2012-10-01

222

Retrieval of cirrus optical thickness and assessment of ice crystal shape from ground-based imaging spectrometry  

NASA Astrophysics Data System (ADS)

A ground-based hyperspectral imaging spectrometer (AisaEAGLE, manufactured by Specim Ltd., Finland) is applied to measure downward spectral radiance fields with high spatial (1024 spatial pixels within 36.7° field of view), spectral (488 spectral pixels, 400-970 nm, 1.25 nm full width at half maximum), and temporal (4-30 Hz) resolution. The calibration, measurement and data evaluation procedures are introduced. A new method is presented to retrieve the cirrus optical thickness (?ci) using the spectral radiance data collected by AisaEAGLE. The data were collected during the Cloud Aerosol Radiation and tuRbulence of trade wInd cumuli over BArbados (CARRIBA) project in 2011. The spatial inhomogeneity of the investigated cirrus is characterised by the standard deviation of the retrieved ?ci as well as the width of its frequency distribution. By comparing measured and simulated downward solar spectral radiance as a function of scattering angle, some evidence of the prevailing cirrus ice crystal shape can be obtained and subsequently used to substantiate the retrieval of ?ci. The sensitivity of the retrieval method with respect to surface albedo, effective radius (reff), cloud height and ice crystal shape is quantified. An enhanced sensitivity of the retrieved ?ci is found with respect to the surface albedo (up to 30%) and ice crystal shape (up to 90%). The sensitivity with regard to the effective ice crystal radius (≤ 5%) and the cloud height (≤ 0.5%) is rather small and can be neglected.

Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Heyner, F.; Wendisch, M.

2013-08-01

223

THE STRUCTURE OF SURFACE H{sub 2}O LAYERS OF ICE-COVERED PLANETS WITH HIGH-PRESSURE ICE  

SciTech Connect

Many extrasolar (bound) terrestrial planets and free-floating (unbound) planets have been discovered. While the existence of bound and unbound terrestrial planets with liquid water is an important question, of particular importance is the question of these planets' habitability. Even for a globally ice-covered planet, geothermal heat from the planetary interior may melt the interior ice, creating an internal ocean covered by an ice shell. In this paper, we discuss the conditions that terrestrial planets must satisfy for such an internal ocean to exist on the timescale of planetary evolution. The question is addressed in terms of planetary mass, distance from a central star, water abundance, and abundance of radiogenic heat sources. In addition, we investigate the structure of the surface H{sub 2}O layers of ice-covered planets by considering the effects of ice under high pressure (high-pressure ice). As a fiducial case, a 1 M{sub ?} planet at 1 AU from its central star and with 0.6-25 times the H{sub 2}O mass of the Earth could have an internal ocean. We find that high-pressure ice layers may appear between the internal ocean and the rock portion on a planet with an H{sub 2}O mass over 25 times that of the Earth. The planetary mass and abundance of surface water strongly restrict the conditions under which an extrasolar terrestrial planet may have an internal ocean with no high-pressure ice under the ocean. Such high-pressure ice layers underlying the internal ocean are likely to affect the habitability of the planet.

Ueta, S.; Sasaki, T., E-mail: ueta@geo.titech.ac.jp, E-mail: takanori@geo.titech.ac.jp [Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

2013-10-01

224

Crystal structure of riboflavin synthase  

SciTech Connect

Riboflavin synthase catalyzes the dismutation of two molecules of 6,7-dimethyl-8-(1'-D-ribityl)-lumazine to yield riboflavin and 4-ribitylamino-5-amino-2,6-dihydroxypyrimidine. The homotrimer of 23 kDa subunits has no cofactor requirements for catalysis. The enzyme is nonexistent in humans and is an attractive target for antimicrobial agents of organisms whose pathogenicity depends on their ability to biosynthesize riboflavin. The first three-dimensional structure of the enzyme was determined at 2.0 {angstrom} resolution using the multiwavelength anomalous diffraction (MAD) method on the Escherichia coli protein containing selenomethionine residues. The homotrimer consists of an asymmetric assembly of monomers, each of which comprises two similar {beta} barrels and a C-terminal {alpha} helix. The similar {beta} barrels within the monomer confirm a prediction of pseudo two-fold symmetry that is inferred from the sequence similarity between the two halves of the protein. The {beta} barrels closely resemble folds found in phthalate dioxygenase reductase and other flavoproteins. The three active sites of the trimer are proposed to lie between pairs of monomers in which residues conserved among species reside, including two Asp-His-Ser triads and dyads of Cys-Ser and His-Thr. The proposed active sites are located where FMN (an analog of riboflavin) is modeled from an overlay of the {beta} barrels of phthalate dioxygenase reductase and riboflavin synthase. In the trimer, one active site is formed, and the other two active sites are wide open and exposed to solvent. The nature of the trimer configuration suggests that only one active site can be formed and be catalytically competent at a time.

Liao, D.-I.; Wawrzak, Z.; Calabrese, J.C.; Viitanen, P.V.; Jordan, D.B. (DuPont); (NWU)

2010-03-05

225

T-1020 NaI crystal test for DM-Ice  

SciTech Connect

This is a memorandum of understanding between the Fermi National Accelerator Laboratory (Fermilab) and the experiments of the NaI Crystal Test for DM-Ice from the University of Wisconsin who have committed to participate in detector tests to be carried out during the 2011-2012 Fermilab Neutrino program. The memorandum is intended primarily for the purpose of recording expectations for budget estimates and work allocations for Fermilab, the funding agencies and the participating institutions. It reflects an arrangement that currently is satisfactory to the parties; however, it is recognized and anticipated that changing circumstances of the evolving research program will necessitate revisions. The parties agree to modify this memorandum to reflect such required adjustments. Actual contractual obligations will be set forth in separate documents. The DM-Ice collaboration is designing a sodium-iodide (NaI) based detector for a direct dark matter search. The detectors should have low readout noise and background levels to carry out a sensitive search. A 17-kg version of the experiment is running at the South Pole, 2500 m deep in the Antarctic ice, and a large scale experiment is currently being designed. One of the keys to the success of the experiment is to have a good understanding of the background levels intrinsic in the NaI detectors. To measure the background level, the detectors have to be shielded against cosmic rays. The lead shielding used for DAMIC in the Minos Underground Areas is a well-suited location for this test since it offers enough overburden to shield against cosmic rays, lead shielding, and experimental infrastructure. The goal of the test is to assess the background levels in the detector and to assess the characteristics of phosphorescence induced by muons and 100 keV-3 MeV gamma rays.

Maruyama, Reina; Heeger, Karsten; Pierpoint, Zachary; Pettus, Walter; Broerman, Benjamin; Hilgenberg, Chris; Webber, David; /Wisconsin U., Madison

2011-11-03

226

Convective Troposphere-Stratosphere Transport in the Tropics and Hydration by ice Crystals Geysers  

NASA Astrophysics Data System (ADS)

Twenty-five years ago the suggestion was made by Danielsen of direct fast convective penetration of tropospheric air in the stratosphere over land convective systems. Although the existence of the mechanism is accepted, it was thought to be rare and thus its contribution to Troposphere-Stratosphere Transport (TST) of chemical species and water vapour at global scale unimportant at global scale. In contrast to this assumption, observations of temperature, water vapour, ice particles, long-lived tropospheric species during HIBISCUS, TROCCINOX and SCOUT-O3 over Brazil, Australia and Africa and more recently CALIPSO aerosols observations suggest that it is a general feature of tropical land convective regions in the summer. Particularly relevant to stratospheric water vapour is the observation of geyser like ice crystals in the TTL over overshooting events which may result in the moistening of the stratosphere. Although such events successfully captured by small scale Cloud-Resolving Models may have a significant impact on stratospheric ozone chemistry and climate, they are currently totally ignored by NWPs, CTMs and CCMs. Several recent balloon and aircraft observations of overshoots and CRM simulations will be shown illustrating the mechanism, as well as observations from a variety of satellites suggesting a significant impact at global scale.

Pommereau, J.

2008-12-01

227

Estimation of cirrus cloud effective ice crystal shapes using visible reflectances from dual-satellite measurements  

NASA Astrophysics Data System (ADS)

This study develops and examines a multiangle, multisatellite method for determining effective cloud particle shapes from reflectances observed at visible wavelengths. The technique exploits the significant differences in the various cloud particle shape phase functions near the backscatter direction to infer particle shape from a combination of views from a near-backscatter angle and a side scattering angle. Adding-doubling calculations confirm that the optimal viewing combinations include one near-backscatter angle and another between 60° and 150°. Sensitivity to shape increases with solar zenith angle. A total of 28 collocated, visible images from pairs of currently operating meteorological satellites with the desired viewing combinations were analyzed for particle shape. Matching reflectances from images with optimal viewing angles clearly separates water droplet from ice crystal clouds. Reflectance pairs from matched pixels containing ice crystals can be explained by the range of selected microphysical models. The most common retrieved shapes correspond to combinations of hexagonal compacts (aspect ratio of unity), hexagonal columns, and bullet rosettes. Although no single microphysical model can account for the observed variability, taken together, the models used for retrieving cloud particle size by the Clouds and the Earth's Radiant Energy System and the Moderate Resolution Imaging Spectroradiometer Projects can account for most of the reflectance variability observed in this limited data set. Additional studies are needed to assess the uncertainties in retrieved shapes due to temporal and spatial mismatches, anisotropic and bright background reflectances, and calibration errors and to validate the retrieved shapes. While applicable to a limited number of dual-satellite viewing combinations for current research and operational meteorological satellites, this approach could be used most extensively to derive effective particle size, shape, and optical depth from a combination of an imaging satellite in an L1 orbit, like Triana, and any other lower Earth orbiting satellites.

Chepfer, Helene; Minnis, Patrick; Young, David; Nguyen, Louis; Arduini, Robert F.

2002-12-01

228

Estimation of Cirrus Cloud Effective Ice Crystal Shapes using Visible Reflectances from Dual-Satellite Measurements  

NASA Technical Reports Server (NTRS)

This study develops and examines a multiangle, multisatellite method for determining effective cloud particle shapes from reflectances observed at visible wavelengths. The technique exploits the significant differences in the various cloud particle shape phase functions near the backscatter direction to infer particle shape from a combination of views from a near-backscatter angle and a side scattering angle. Adding-doubling calculations confirm that the optimal viewing combinations include one near-backscatter angle and another between 60" and 150". Sensitivity to shape increases with solar zenith angle. A total of 28 collocated, visible images from pairs of currently operating meteorological satellites with the desired viewing combinations were analyzed for particle shape. Matching reflectances from images with optimal viewing angles clearly separates water droplet from ice crystal clouds. Reflectance pairs from matched pixels containing ice crystals can be explained by the range of selected microphysical models. The most common retrieved shapes correspond to combinations of hexagonal compacts (aspect ratio of unity), hexagonal columns, and bullet rosettes. Although no single microphysical model can account for the observed variability, taken together, the models used for retrieving cloud particle size by the Clouds and the Earth's Radiant Energy System and the Moderate Resolution Imaging Spectroradiometer Projects can account for most of the reflectance variability observed in this limited data set. Additional studies are needed to assess the uncertainties in retrieved shapes due to temporal and spatial mismatches, anisotropic and bright background reflectances, and calibration errors and to validate the retrieved shapes. While applicable to a limited number of dual-satellite viewing combinations for current research and operational meteorological satellites, this approach could be used most extensively to derive effective particle size, shape, and optical depth from a combination of an imaging satellite in an L1 orbit, like Triana, and any other lower Earth orbiting Satellites.

Chepfer, Helene; Minnis, Patrick; Young, David; Nguyen, Louis; Arduini, Robert F.

2002-01-01

229

Fourier Analysis and Structure Determination--Part III: X-ray Crystal Structure Analysis.  

ERIC Educational Resources Information Center

Discussed is single crystal X-ray crystal structure analysis. A common link between the NMR imaging and the traditional X-ray crystal structure analysis is reported. Claims that comparisons aid in the understanding of both techniques. (MVL)

Chesick, John P.

1989-01-01

230

Exploring Crystal Structures with XtalDraw  

NSDL National Science Digital Library

At the end of this exercise students will be able to use computer-based software to draw crystal structures and visualize symmetries present in minerals. By varying the way in which atoms or groups of atoms are displayed, they will begin to see how atoms link through bonds. Students will also begin to investigate the effects of variable composition on bonding on unit cell parameters.

Wendy Panero

231

Crystal Structures of the ?2-Adrenergic Receptor  

NASA Astrophysics Data System (ADS)

G protein coupled receptors (GPCRs) constitute the largest family of membrane proteins in the human genome, and are responsible for the majority of signal transduction events involving hormones and neuro-transmitters across the cell membrane. GPCRs that bind to diffusible ligands have low natural abundance, are relatively unstable in detergents, and display basal G protein activation even in the absence of ligands. To overcome these problems two approaches were taken to obtain crystal structures of the ?2-adrenergic receptor (?2AR), a well-characterized GPCR that binds cate-cholamine hormones. The receptor was bound to the partial inverse agonist carazolol and co-crystallized with a Fab made to a three-dimensional epitope formed by the third intracellular loop (ICL3), or by replacement of ICL3 with T4 lysozyme. Small crystals were obtained in lipid bicelles (?2AR-Fab) or lipidic cubic phase (?2AR-T4 lysozyme), and diffraction data were obtained using microfocus technology. The structures provide insights into the basal activity of the receptor, the structural features that enable binding of diffusible ligands, and the coupling between ligand binding and G-protein activation.

Weis, William I.; Rosenbaum, Daniel M.; Rasmussen, Søren G. F.; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Yao, Xiao-Jie; Day, Peter W.; Parnot, Charles; Fung, Juan J.; Ratnala, Venkata R. P.; Kobilka, Brian K.; Cherezov, Vadim; Hanson, Michael A.; Kuhn, Peter; Stevens, Raymond C.; Edwards, Patricia C.; Schertler, Gebhard F. X.; Burghammer, Manfred; Sanishvili, Ruslan; Fischetti, Robert F.; Masood, Asna; Rohrer, Daniel K.

232

Predicting polymeric crystal structures by evolutionary algorithms  

NASA Astrophysics Data System (ADS)

The recently developed evolutionary algorithm USPEX proved to be a tool that enables accurate and reliable prediction of structures. Here we extend this method to predict the crystal structure of polymers by constrained evolutionary search, where each monomeric unit is treated as a building block with fixed connectivity. This greatly reduces the search space and allows the initial structure generation with different sequences and packings of these blocks. The new constrained evolutionary algorithm is successfully tested and validated on a diverse range of experimentally known polymers, namely, polyethylene, polyacetylene, poly(glycolic acid), poly(vinyl chloride), poly(oxymethylene), poly(phenylene oxide), and poly (p-phenylene sulfide). By fixing the orientation of polymeric chains, this method can be further extended to predict the structures of complex linear polymers, such as all polymorphs of poly(vinylidene fluoride), nylon-6 and cellulose. The excellent agreement between predicted crystal structures and experimentally known structures assures a major role of this approach in the efficient design of the future polymeric materials.

Zhu, Qiang; Sharma, Vinit; Oganov, Artem R.; Ramprasad, Ramamurthy

2014-10-01

233

The peculiarities of water crystallization and ice melting processes in the roots of one-year plants (Plantago major L.).  

PubMed

Results are presented of a water phase transition study in plantain (Plantago major L.) roots, which were used as a model system to research the peculiarities of water crystallization and ice melting processes in complex heterogeneous biological systems. It was confirmed that water in such systems is crystallized in two clearly distinguished temperature ranges: -10 to -25 degree capital ES, Cyrillic and -25 to -45 degree capital ES, Cyrillic. These water fractions are conditionally attributed to extracellular (-10 to -25 degree capital ES, Cyrillic) and intracellular (-25 to -45 degree capital ES, Cyrillic) solutions. A possible explanation is given for such significant supercooling of the intracellular solution. The values of osmotic pressures of extra- and intracellular solutions were determined according to ice melting curves. It is noted that the intracellular solution, which crystallized at lower temperatures, had a lower osmotic pressure. PMID:18754062

Bakradze, N; Kiziria, E; Sokhadze, V; Gogichaishvili, S

2008-01-01

234

A hierarchical structure for apatite crystals.  

PubMed

Based on the experimental results taken from the references, a reasonable hierarchical structure of apatite (both fluorapatite and hydroxyapatite) crystals has been proposed for the first time. The structure consists of four levels of the hierarchy: the smallest level is made of single unit-cells and/or Posner's clusters with the linear dimensions slightly below 1 nm, the second level comprises X-ray coherent scattering blocks of 50-80 nm in size, the third level is represented by dislocation blocks of 0.3-2.0 microm in size and, finally, there are macroblocks of 35-50 microm in size. PMID:17323170

Dorozhkin, Sergey V

2007-02-01

235

Geometry of crystal structure with defects. I. Euclidean picture  

SciTech Connect

Continuously distributed defects of crystal structure are considered. The starting point is the Euclidean geometry of the ideal crystal lattice and the topological description of the distortion of the crystal structure. It is shown how the non-Euclidean geometry of distorted crystal structure, as well as the basic assumptions of the phenomenological plasticity theory concerning the deformation of a continuum, are related to those theories. A form for an affine connection describing continuously distributed dislocations is proposed.

Trzesowski, A.

1987-04-01

236

Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements.  

PubMed

We investigate hydrometeor habits at the AIDA chamber with a newly developed in-line holographic microscope HOLographic Imager for Microscopic Objects (HOLIMO). Sizes and habits of ice crystals and droplets in a mixed-phase cloud experiment are related to relative humidity with respect to ice (RH(ice)), temperature (T), and experiment time. This experiment is initiated with supercooled water drops. As a result, ice crystals within a maximum particle diameter size range of 2 to 118 microm (average size of 19 microm) are detected and 63% of them reveal regular habits. The observed particle habits match those predicted for a given RH(ice) and T. Two different growth modes emerge from this cloud. The first one appears during water injection and reveals mainly optical particle sizes in the range of 5 to 250 microm. The second mode grows to sizes of 5 to 63 microm, just after the particles of the first one fall out. It is found that an increasing aspect ratio chi of maximum length over thickness from 2 to 20 as obtained by HOLIMO corresponds to a decreasing linear depolarization ratio from 0.1 to 0.04, as independently obtained by depolarization measurements. PMID:19844319

Amsler, Peter; Stetzer, Olaf; Schnaiter, Martin; Hesse, Evelyn; Benz, Stefan; Moehler, Ottmar; Lohmann, Ulrike

2009-10-20

237

Crystal Structure of A-amylose: a Revisit from Synchrotron Microdiffraction Analysis of Single Crystals  

E-print Network

1 Crystal Structure of A-amylose: a Revisit from Synchrotron Microdiffraction Analysis of Single;2 Abstract The three-dimensional structure of A-amylose crystals, as a model of the crystal domains of A the resolution of important new fine details. These include a distortion of the amylose double helices resulting

Paris-Sud XI, Université de

238

MODELLING RADIATIVELY ACTIVE WATER-ICE CLOUDS: IMPACT ON THE THERMAL STRUCTURE AND WATER CYCLE.  

E-print Network

MODELLING RADIATIVELY ACTIVE WATER-ICE CLOUDS: IMPACT ON THE THERMAL STRUCTURE AND WATER CYCLE. J. The essential role of water-ice clouds in shaping the thermal structure of the martian atmosphere has been long the evolution of the water cycle in details. Since then, many evidences of the radiative effect of clouds

Madeleine, Jean-Baptiste

239

PROTEIN STRUCTURE REPORT Crystal structure of the Yersinia type III  

E-print Network

, 2005; FINAL REVISION July 15, 2005; ACCEPTED July 27, 2005) Abstract The plague-causing bacterium of oligomerization is discussed. Keywords: Yersinia pestis; plague; type III secretion; YscE; crystal structure Yersinia pestis, the causative agent of plague, utilizes a type III secretion system (T3SS) to inject

240

Crystal Structure of the 30S Ribosomal Subunit from Thermus Thermophilus. Purification, Crystallization and Structure Determination  

SciTech Connect

We describe the crystallization and structure determination of the 30 S ribosomal subunit from Thermus thermophilus. Previous reports of crystals that diffracted to 10 {angstrom} resolution were used as a starting point to improve the quality of the diffraction. Eventually, ideas such as the addition of substrates or factors to eliminate conformational heterogeneity proved less important than attention to detail in yielding crystals that diffracted beyond 3 {angstrom} resolution. Despite improvements in technology and methodology in the last decade, the structure determination of the 30 S subunit presented some very challenging technical problems because of the size of the asymmetric unit, crystal variability and sensitivity to radiation damage. Some steps that were useful for determination of the atomic structure were: the use of anomalous scattering from the LIII edges of osmium and lutetium to obtain the necessary phasing signal; the use of tunable, third-generation synchrotron sources to obtain data of reasonable quality at high resolution; collection of derivative data precisely about a mirror plane to preserve small anomalous differences between Bijvoet mates despite extensive radiation damage and multi-crystal scaling; the pre-screening of crystals to ensure quality, isomorphism and the efficient use of scarce third-generation synchrotron time; pre-incubation of crystals in cobalt hexaammine to ensure isomorphism with other derivatives; and finally, the placement of proteins whose structures had been previously solved in isolation, in conjunction with biochemical data on protein-RNA interactions, to map out the architecture of the 30 S subunit prior to the construction of a detailed atomic-resolution model.

Clemons, William M.; Brodersen, Ditlev E.; McCutcheonn, John P.; May, Joanna L.C.; Carter, Andrew P.; Morgan-Warren, Robert J.; Wimberly, Brian T.; Ramakrishnan, Venki (MRC); (Utah); (MRC)

2009-10-07

241

Winter ice processes and pool habitat associated with two types of constructed instream structures  

USGS Publications Warehouse

There is little information on the winter features of salmonid habitats associated with constructed instream structures to provide guidance when planning habitat improvement projects. We assessed winter habitat features for trout of the genera Oncorhynchus and Salvelinus in pools associated with two types of instream structures constructed on a low-gradient reach of a mountain stream in western Wyoming with a mean wetted width of 6.4 m. Pool habitat was affected by temporal variability in ice formations from fall into winter. As surface ice and snow accumulated with the progression of winter, variation in ice formations was less frequent and winter habitat conditions became more stable. However, groundwater inflow that maintained water temperatures at 0.2-0.6??C in a portion of the study reach appeared to contribute to incomplete surface ice cover and variation in ice formations in pools through most of the winter. Hanging dams and anchor ice dams were the primary ice features that affected winter habitat in pools associated with constructed instream structures. Trout were observed in these pools in the fall but tended to abandon pools with variation in ice formations as winter progressed. The potential impacts of groundwater inflow and winter ice processes on trout habitat in pools associated with instream structures should be considered when planning habitat improvement projects. ?? Copyright by the American Fisheries Society 2005.

Barrineau, C.E.; Hubert, W.A.; Dey, P.D.; Annear, T.C.

2005-01-01

242

Snow Crystals  

NSDL National Science Digital Library

This site describes snow crystals and snowflakes. Although a common meteorological phenomenon, snow crystal growth is a fascinating and poorly understood process, in which remarkably complex and beautifully symmetric structures appear, quite literally, out of thin air. The many facets of snow crystals are described here, along with the attempts to understand their formation. Site highlights include research on creating designer snow crystals in the laboratory, the history of early snow crystal observations, snow crystal photography, properties of frozen precipitation, and a snow crystal primer for a short course in snow crystal physics - what snow crystals are, how they form, and why they form the way they do. Information is offered on snow crystal classification, preservation, and unusual crystal forms. An extensive image gallery of lab-created crystal forms is available, with enlargeable thumbnail images. There are even instructions for users on how to create crystals. This could be made into a classroom activity, as the science of the growth is explained. Snowflake Physics discusses diffusion, dendrite growth, ice surface physics, electric growth, and ice properties. A vast list of related links is also provided.

Kenneth Libbrecht

243

Crystal structure of the Golgi casein kinase  

PubMed Central

The family with sequence similarity 20 (Fam20) kinases phosphorylate extracellular substrates and play important roles in biomineralization. Fam20C is the Golgi casein kinase that phosphorylates secretory pathway proteins within Ser-x-Glu/pSer motifs. Mutations in Fam20C cause Raine syndrome, an osteosclerotic bone dysplasia. Here we report the crystal structure of the Fam20C ortholog from Caenorhabditis elegans. The nucleotide-free and Mn/ADP-bound structures unveil an atypical protein kinase-like fold and highlight residues critical for activity. The position of the regulatory ?C helix and the lack of an activation loop indicate an architecture primed for efficient catalysis. Furthermore, several distinct elements, including the presence of disulfide bonds, suggest that the Fam20 family diverged early in the evolution of the protein kinase superfamily. Our results reinforce the structural diversity of protein kinases and have important implications for patients with disorders of biomineralization. PMID:23754375

Xiao, Junyu; Tagliabracci, Vincent S.; Wen, Jianzhong; Kim, Soo-A; Dixon, Jack E.

2013-01-01

244

Crystal structure of plant photosystem I  

NASA Astrophysics Data System (ADS)

Oxygenic photosynthesis is the principal producer of both oxygen and organic matter on Earth. The conversion of sunlight into chemical energy is driven by two multisubunit membrane protein complexes named photosystem I and II. We determined the crystal structure of the complete photosystem I (PSI) from a higher plant (Pisum sativum var. alaska) to 4.4Å resolution. Its intricate structure shows 12 core subunits, 4 different light-harvesting membrane proteins (LHCI) assembled in a half-moon shape on one side of the core, 45 transmembrane helices, 167 chlorophylls, 3 Fe-S clusters and 2 phylloquinones. About 20 chlorophylls are positioned in strategic locations in the cleft between LHCI and the core. This structure provides a framework for exploration not only of energy and electron transfer but also of the evolutionary forces that shaped the photosynthetic apparatus of terrestrial plants after the divergence of chloroplasts from marine cyanobacteria one billion years ago.

Ben-Shem, Adam; Frolow, Felix; Nelson, Nathan

2003-12-01

245

Examining Crystal Fabric Develoment in Ice: Cryo EBSD, Deformation Experiments and the Link to En-glacial Reflectivity  

NASA Astrophysics Data System (ADS)

Over the past few years, cryogenic electron back-scatter diffraction (Cryo-EBSD) has been increasingly used to examine micro-structures in both natural and experimentally deformed ice samples on a micron-scale. Experiments that investigate grain size-sensitive behavior require working on fine-grained ice. These samples present a number of experimental challenges. Issues that present particular difficulties include stable mounting of ice samples, transport of mounted samples and producing a planar, frost-free and damage-free surface. Recent work at the new Otago Ice Deformation Lab has led to the development of a number of experimental methods that help overcome these challenges and enable routine EBSD analysis of fine-grained ice. A brief outline of these experimental methods and some EBSD results from variably deformed ice samples will be presented. Shear deformation experiments on polycrystalline ice are being conducted in order to further explore the relationships between deformation, processes of recrystallization, and the development of anisotropic fabrics that lead to en-glacial seismic reflections. Self-contained, refrigerated deformation units fitted with digital controllers and hardware have been designed for unconfined deformation experiments on polycrystalline synthetic ice. Methods of analysis, from time-lapse photography to random-point tracking, are being employed for monitoring strain in real time. Various methods have been explored for monitoring the development of anisotropic fabrics in ice during progressive deformation. Ultra-sonic transducers can be used to monitor wave velocity changes in various orientations in materials under strain. These experiments have been designed with the objective of quantifying the relationship between deformation fabrics and en-glacial seismic reflectivity observed in thick grounded ice sheets.

Vaughan, Matthew; Prior, David; Seidemann, Meike; Gorman, Andrew; Lilly, Kat; Langhorne, Pat; Easingwood, Richard; Golding, Narayana; Durham, Bill

2014-05-01

246

Simulation of the Extinction Efficiency, the Absorption Efficiency and the Asymmetry Factor of Ice Crystals and Relevant Applications to the Study of Cirrus Cloud Radiative Properties  

E-print Network

The single-scattering properties of six non-spherical ice crystals, droxtals, plates, solid columns, hollow columns, aggregates and 6-branch bullet rosettes are simulated. The anomalous diffraction theory (ADT) is applied to the simulation...

Lu, Kai

2010-10-12

247

Crystal structure of yeast Sco1  

SciTech Connect

The Sco family of proteins are involved in the assembly of the dinuclear CuA site in cytochrome c oxidase (COX), the terminal enzyme in aerobic respiration. These proteins, which are found in both eukaryotes and prokaryotes, are characterized by a conserved CXXXC sequence motif that binds copper ions and that has also been proposed to perform a thiol:disulfide oxidoreductase function. The crystal structures of Saccharomyces cerevisiae apo Sco1 (apo-ySco1) and Sco1 in the presence of copper ions (Cu-ySco1) were determined to 1.8- and 2.3-{angstrom} resolutions, respectively. Yeast Sco1 exhibits a thioredoxin-like fold, similar to that observed for human Sco1 and a homolog from Bacillus subtilis. The Cu-ySco1 structure, obtained by soaking apo-ySco1 crystals in copper ions, reveals an unexpected copper-binding site involving Cys181 and Cys216, cysteine residues present in ySco1 but not in other homologs. The conserved CXXXC cysteines, Cys148 and Cys152, can undergo redox chemistry in the crystal. An essential histidine residue, His239, is located on a highly flexible loop, denoted the Sco loop, and can adopt positions proximal to both pairs of cysteines. Interactions between ySco1 and its partner proteins yeast Cox17 and yeast COX2 are likely to occur via complementary electrostatic surfaces. This high-resolution model of a eukaryotic Sco protein provides new insight into Sco copper binding and function.

Abajian, Carnie; Rosenzweig, Amy C. (NWU)

2010-03-05

248

Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar.  

PubMed

Layers of quasi-horizontally oriented ice crystals in cirrus clouds are observed by a two-wavelength polarization lidar. These layers of thickness of several hundred meters are identified by three attributes: the backscatter reveals a sharp ridge while the depolarization ratio and color ratio become deep minima. These attributes have been justified by theoretical calculations of these quantities within the framework of the physical-optics approximation. PMID:25322032

Borovoi, Anatoli; Balin, Yurii; Kokhanenko, Grigorii; Penner, Iogannes; Konoshonkin, Alexander; Kustova, Natalia

2014-10-01

249

Dense packing crystal structures of physical tetrahedra  

E-print Network

We present a method for discovering dense packings of general convex hard particles and apply it to study the dense packing behavior of a one-parameter family of particles with tetrahedral symmetry representing a deformation of the ideal mathematical tetrahedron into a less ideal, physical, tetrahedron and all the way to the sphere. Thus, we also connect the two well studied problems of sphere packing and tetrahedron packing on a single axis. Our numerical results uncover a rich optimal-packing behavior, compared to that of other continuous families of particles previously studied. We present four structures as candidates for the optimal packing at different values of the parameter, providing an atlas of crystal structures which might be observed in systems of nano-particles with tetrahedral symmetry.

Yoav Kallus; Veit Elser

2010-11-17

250

Dense packing crystal structures of physical tetrahedra  

E-print Network

We present a method for discovering dense packings of general convex hard particles and apply it to study the dense packing behavior of a one-parameter family of particles with tetrahedral symmetry representing a deformation of the ideal mathematical tetrahedron into a less ideal, physical, tetrahedron and all the way to the sphere. Thus, we also connect the two well studied problems of sphere packing and tetrahedron packing on a single axis. Our numerical results uncover a rich optimal-packing behavior, compared to that of other continuous families of particles previously studied. We present four structures as candidates for the optimal packing at different values of the parameter, providing an atlas of crystal structures which might be observed in systems of nano-particles with tetrahedral symmetry.

Kallus, Yoav

2010-01-01

251

Radiostratigraphy and age structure of the Greenland Ice Sheet  

NASA Astrophysics Data System (ADS)

Several decades of ice-penetrating radar surveys of the Greenland and Antarctic ice sheets have observed numerous widespread internal reflections. Analysis of this radiostratigraphy has produced valuable insights into ice sheet dynamics and motivates additional mapping of these reflections. Here we present a comprehensive deep radiostratigraphy of the Greenland Ice Sheet from airborne deep ice-penetrating radar data collected over Greenland by The University of Kansas between 1993 and 2013. To map this radiostratigraphy efficiently, we developed new techniques for predicting reflection slope from the phase recorded by coherent radars. When integrated along track, these slope fields predict the radiostratigraphy and simplify semiautomatic reflection tracing. Core-intersecting reflections were dated using synchronized depth-age relationships for six deep ice cores. Additional reflections were dated by matching reflections between transects and by extending reflection-inferred depth-age relationships using the local effective vertical strain rate. The oldest reflections, dating to the Eemian period, are found mostly in the northern part of the ice sheet. Within the onset regions of several fast-flowing outlet glaciers and ice streams, reflections typically do not conform to the bed topography. Disrupted radiostratigraphy is also observed in a region north of the Northeast Greenland Ice Stream that is not presently flowing rapidly. Dated reflections are used to generate a gridded age volume for most of the ice sheet and also to determine the depths of key climate transitions that were not observed directly. This radiostratigraphy provides a new constraint on the dynamics and history of the Greenland Ice Sheet.

MacGregor, Joseph A.; Fahnestock, Mark A.; Catania, Ginny A.; Paden, John D.; Prasad Gogineni, S.; Young, S. Keith; Rybarski, Susan C.; Mabrey, Alexandria N.; Wagman, Benjamin M.; Morlighem, Mathieu

2015-02-01

252

Application of ground-based hyperspectral imaging to retrieve ice crystal shape and fields of cirrus optical thickness  

NASA Astrophysics Data System (ADS)

A ground-based hyperspectral imaging spectrometer (AisaEAGLE) is applied to measure downward spectral radiance fields with high spatial (1024 spatial pixels within 36.7° field of view), spectral (488 spectral pixels, 400-970 nm, 1.25 nm full width at half maximum) and temporal (4-30 Hz) resolution. The calibration, measurement, and data evaluation procedures are introduced. A method is presented to retrieve the cirrus optical thickness ?ci using ground-based spectral radiance data collected by AisaEAGLE. On the basis of four measurement cases during the second campaign of the Cloud Aerosol Radiation and tuRbulence of trade wInd cumuli over BArbados (CARRIBA) project in 2011 the spatial inhomogeneity of the investigated cirrus is characterized by the standard deviation of the retrieved ?ci, as well as the width of the frequency distribution of the retrieved ?ci. By comparing measured and simulated downward solar radiance as a function of scattering angle, a first estimation of the detected cirrus ice crystal shape is given and used in the retrieval of the ?ci. The sensitivity of the retrieval method with respect to surface albedo, effective radius reff, cloud height, and ice crystal shape was characterized. Significant sensitivities of the retrieval method were found for the assumed surface albedo (up to 30%) and ice crystal shape (up to 90%). The sensitivity with regard to the effective radius (≤ 5%) and the cloud height (≤ 0.5%) is rather small and can be neglected.

Schäfer, M.; Bierwirth, E.; Ehrlich, A.; Heyner, F.; Wendisch, M.

2013-02-01

253

Tightly integrated single- and multi-crystal data collection strategy calculation and parallelized data processing in JBluIce beamline control system.  

PubMed

The calculation of single- and multi-crystal data collection strategies and a data processing pipeline have been tightly integrated into the macromolecular crystallographic data acquisition and beamline control software JBluIce. Both tasks employ wrapper scripts around existing crystallographic software. JBluIce executes scripts through a distributed resource management system to make efficient use of all available computing resources through parallel processing. The JBluIce single-crystal data collection strategy feature uses a choice of strategy programs to help users rank sample crystals and collect data. The strategy results can be conveniently exported to a data collection run. The JBluIce multi-crystal strategy feature calculates a collection strategy to optimize coverage of reciprocal space in cases where incomplete data are available from previous samples. The JBluIce data processing runs simultaneously with data collection using a choice of data reduction wrappers for integration and scaling of newly collected data, with an option for merging with pre-existing data. Data are processed separately if collected from multiple sites on a crystal or from multiple crystals, then scaled and merged. Results from all strategy and processing calculations are displayed in relevant tabs of JBluIce. PMID:25484844

Pothineni, Sudhir Babu; Venugopalan, Nagarajan; Ogata, Craig M; Hilgart, Mark C; Stepanov, Sergey; Sanishvili, Ruslan; Becker, Michael; Winter, Graeme; Sauter, Nicholas K; Smith, Janet L; Fischetti, Robert F

2014-12-01

254

Spatial and temporal variations in the age structure of Arctic sea ice  

USGS Publications Warehouse

Spatial and temporal variations in the age structure of Arctic sea ice are investigated using a new reverse chronology algorithm that tracks ice-covered pixels to their location and date of origin based on ice motion and concentration data. The Beaufort Gyre tends to harbor the oldest (>10 years old) sea ice in the western Arctic while direct ice advection pathways toward the Transpolar Drift Stream maintain relatively young (10 years old (10+ year age class) were observed during 1989-2003. Since the mid-1990s, losses to the 10+ year age class lacked compensation by recruitment due to a prior depletion of all mature (6-10 year) age classes. Survival of the 1994 and 1996-1998 sea ice generations reestablished most mature age classes, and thereby the potential to increase extent of the 10+ year age class during the mid-2000s.

Belchansky, G.I.; Douglas, D.C.; Platonov, N.G.

2005-01-01

255

The structural changes of water ice I during warmup  

NASA Technical Reports Server (NTRS)

The polymorph transitions of vapor deposited water ice I during warmup from 15 K to 210 K was mapped by means of selected area electron diffraction. The polymorph transitions account for many phenomena observed in laboratory analog studies of cometary outgassing and radial diffusion in UV photolyzed interstellar ices.

Jenniskens, Peter; Blake, David F.

1994-01-01

256

Changes in the Velocity Structure of the Greenland Ice Sheet  

Microsoft Academic Search

Using satellite radar interferometry observations of Greenland, we detected widespread glacier acceleration below 66° north between 1996 and 2000, which rapidly expanded to 70° north in 2005. Accelerated ice discharge in the west and particularly in the east doubled the ice sheet mass deficit in the last decade from 90 to 220 cubic kilometers per year. As more glaciers accelerate

Eric Rignot; Pannir Kanagaratnam

2006-01-01

257

Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.  

ERIC Educational Resources Information Center

Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

Hong, Y. S.; And Others

1980-01-01

258

Short Article The Crystal Structure of the Intact E. coli  

E-print Network

the crystal structure of the intact Escherichia coli RelB2E2 complex at 2.8 A° resolution, comprising both The Escherichia coli relBE locus encodes a bacterial type II toxin- antitoxin (TA) complex consisting of a toxinStructure Short Article The Crystal Structure of the Intact E. coli RelBE Toxin-Antitoxin Complex

Passmore, Lori A.

259

Crystal structure of an amphiphilic foldamer reveals a 48-mer assembly comprising a hollow truncated octahedron  

PubMed Central

Foldamers provide an attractive medium to test the mechanisms by which biological macromolecules fold into complex three-dimensional structures, and ultimately to design novel protein-like architectures with properties unprecedented in nature. Here, we describe a large cage-like structure formed from an amphiphilic arylamide foldamer crystallized from aqueous solution. Forty eight copies of the foldamer assemble into a 5 nm cage-like structure, an omnitruncated octahedron filled with well-ordered ice-like water molecules. The assembly is stabilised by a mix of arylamide stacking interaction, hydrogen bonding and hydrophobic forces. The omnitruncated octahedra tessellate to form a cubic crystal. These findings may provide an important step towards the design of nanostructured particles resembling spherical viruses. PMID:24705140

Pavone, Vincenzo; Zhang, Shao-Qing; Merlino, Antonello; Lombardi, Angela; Wu, Yibing; DeGrado, William F.

2014-01-01

260

Aggregate Structure and Free Energy Changes in Chromonic Liquid Crystals  

E-print Network

Aggregate Structure and Free Energy Changes in Chromonic Liquid Crystals Alexandra J. Dickinson, Swarthmore College, Swarthmore, PA, USA Past and recent x-ray and absorption data on chromonic liquid crystal phase forms at higher concentrations. Keywords: aggregation; chromonic; liquid crystals

Collings, Peter

261

Crystal structure of Junin virus nucleoprotein.  

PubMed

Junin virus (JUNV) has been identified as the aetiological agent of Argentine haemorrhagic fever (AHF), which is a serious public health problem with approximately 5 million people at risk. It is treated as a potential bioterrorism agent because of its rapid transmission by aerosols. JUNV is a negative-sense ssRNA virus that belongs to the genus Arenavirus within the family Arenaviridae, and its genomic RNA contains two segments encoding four proteins. Among these, the nucleoprotein (NP) has essential roles in viral RNA synthesis and immune suppression, but the molecular mechanisms of its actions are only partially understood. Here, we determined a 2.2 Å crystal structure of the C-terminal domain of JUNV NP. This structure showed high similarity to the Lassa fever virus (LASV) NP C-terminal domain. However, both the structure and function of JUNV NP showed differences compared with LASV NP. This study extends our structural insight into the negative-sense ssRNA virus NPs. PMID:23884367

Zhang, Yinjie; Li, Le; Liu, Xiang; Dong, Shishang; Wang, Wenming; Huo, Tong; Guo, Yu; Rao, Zihe; Yang, Cheng

2013-10-01

262

Crystal structures of the human adiponectin receptors.  

PubMed

Adiponectin stimulation of its receptors, AdipoR1 and AdipoR2, increases the activities of 5' AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor (PPAR), respectively, thereby contributing to healthy longevity as key anti-diabetic molecules. AdipoR1 and AdipoR2 were predicted to contain seven transmembrane helices with the opposite topology to G-protein-coupled receptors. Here we report the crystal structures of human AdipoR1 and AdipoR2 at 2.9 and 2.4 Å resolution, respectively, which represent a novel class of receptor structure. The seven-transmembrane helices, conformationally distinct from those of G-protein-coupled receptors, enclose a large cavity where three conserved histidine residues coordinate a zinc ion. The zinc-binding structure may have a role in the adiponectin-stimulated AMPK phosphorylation and UCP2 upregulation. Adiponectin may broadly interact with the extracellular face, rather than the carboxy-terminal tail, of the receptors. The present information will facilitate the understanding of novel structure-function relationships and the development and optimization of AdipoR agonists for the treatment of obesity-related diseases, such as type 2 diabetes. PMID:25855295

Tanabe, Hiroaki; Fujii, Yoshifumi; Okada-Iwabu, Miki; Iwabu, Masato; Nakamura, Yoshihiro; Hosaka, Toshiaki; Motoyama, Kanna; Ikeda, Mariko; Wakiyama, Motoaki; Terada, Takaho; Ohsawa, Noboru; Hato, Masakatsu; Ogasawara, Satoshi; Hino, Tomoya; Murata, Takeshi; Iwata, So; Hirata, Kunio; Kawano, Yoshiaki; Yamamoto, Masaki; Kimura-Someya, Tomomi; Shirouzu, Mikako; Yamauchi, Toshimasa; Kadowaki, Takashi; Yokoyama, Shigeyuki

2015-04-16

263

Ice Cover as a Factor Driving Microbial Community Structure in the Laurentian Great Lakes  

NASA Astrophysics Data System (ADS)

Lakes serve as rapid responding sentinels of human influence on the natural environment rendering them powerful tools to advance our understanding of a changing climate on microbial community structure and function. Whereas we possess a baseline knowledge of microbial diversity in the Great Lakes, we know little about how these communities respond to the manifestations of climate change. Through collaboration with U.S.- and Canadian Coast Guards, winter surveys have been conducted on Lake Erie since 2007. The surveys have captured extremes in ice extent ranging from expansive ice cover through 2011 to nearly ice-free waters in winter 2012, a condition driven by a warm positive Arctic Oscillation. We showed that dramatic changes in annual ice cover were accompanied by equally dramatic shifts in phytoplankton community structure. Expansive ice cover documented for Lake Erie in winters 2010 and 2011 supported ice-associated phytoplankton blooms dominated by physiologically robust, filamentous centric diatoms. Transcriptomic analysis of the winter bloom offers insights into the success of this psychrophilic community. By comparison, ice free conditions promoted the growth of small-sized cells supported by analysis of size-fractionated chlorophyll a and flow cytometry. The phytoplankton community in winter 2013 was dominated by microplankton-sized filamentous diatoms, coincident with expansive ice cover and thus returning to the size structure of the 2010 and 2011 communities. Reduced size is recognized as a universal ecological response to global warming in aquatic systems although it usually marks a response to climate warming over multiple years, not a single season as reported here. Fig. 1. Winter surveys conducted on Lake Erie over two years demonstrated tight coupling between microplankton Chl a biomass and total Chl a during winter 2010-11 (purple, green), a year of expansive ice cover. A warm positive Arctic Oscillation resulted in negligible ice cover on Lake Erie in 2011-12. Coincident with the ice-free conditions, a strong departure from a microplankton-dominated system was documented (red, yellow).

McKay, R. M.; Beall, B.; Oyserman, B.; Smith, D.; Bullerjahn, G.; Morris, P.; Twiss, M. R.

2013-12-01

264

Magnetism and Crystal Structure of Zirconium Compound with Laves Structure  

Microsoft Academic Search

Magnetic studies were performed on intermetallic compounds with Laves-type structure, (Zr, Nb)Fe2, (Zr, Mo)Fe2, Zr(Fe, Mn)2, Zr(Fe, V)2, and Zr(Fe, Co)2. The crystal structure of all the compounds except Zr(Fe, Co)2 changes from the MgCu2 type to MgZn2 type with decreasing ZrFe2 content. The magnetism changes from ferromagnetism to paramagnetism with change from MgCu2 type to MgZn2 type, and it

K. Kanematsu

1968-01-01

265

Sensitivity of Cirrus Bidirectional Reflectance at MODIS Bands to Vertical Inhomogeneity of Ice Crystal Habits and Size Distribution  

NASA Technical Reports Server (NTRS)

A common assumption in satellite imager-based cirrus retrieval algorithms is that the radiative properties of a cirrus cloud may be represented by those associated with a specific ice crystal shape (or habit) and a single particle size distribution. However, observations of cirrus clouds have shown that the shapes and sizes of ice crystals may vary substantially with height within the clouds. In this study we investigate the sensitivity of the top-of-atmosphere bidirectional reflectances at two MODIS bands centered at 0.65 micron and 2.11 micron to the cirrus models assumed to be either a single homogeneous layer or three distinct but contiguous, layers. First, we define the single- and three-layer cirrus cloud models with respect to ice crystal habit and size distribution on the basis of in situ replicator data acquired during the First ISCCP Regional Experiment (FIRE-II), held in Kansas during the fall of 1991. Subsequently, fundamental light scattering and radiative transfer theory is employed to determine the single scattering and the bulk radiative properties of the cirrus cloud. Regarding the radiative transfer computations, we present a discrete form of the adding/doubling principle by introducing a direct transmission function, which is computationally straightforward and efficient an improvement over previous methods. For the 0.65 micron band, at which absorption by ice is negligible, there is little difference between the bidirectional reflectances calculated for the one- and three-layer cirrus models, suggesting that the vertical inhomogeneity effect is relatively unimportant. At the 2.11 micron band, the bidirectional reflectances computed for both optically thin (tau = 1) and thick (tau = 10) cirrus clouds show significant differences between the results for the one- and three-layer models. The reflectances computed for the three-layer cirrus model are substantially larger than those computed for the single-layer cirrus. Finally, we find that cloud reflectance is very sensitive to the optical properties of the small crystals that predominate in the top layer of the three-layer cirrus model. It is critical to define the most realistic geometric shape for the small "quasi-spherical" ice crystals in the top layer for obtaining reliable single-scattering parameters and bulk radiative properties of cirrus.

Yang, P.; Gao, B.-C.; Baum, B. A.; Wiscombe, W.; Hu, Y.; Nasiri, S. L.; Soulen, P. F.; Heymsfield, A. J.; McFarquhar, G. M.; Miloshevich, L. M.

2000-01-01

266

Ice island creation, drift, recurrences, mechanical properties, and interactions with arctic offshore oil production structures. Final report  

SciTech Connect

Research and engineering studies on first-year sea ice for over two decades has resulted in the design, construction, and operation of jacket platforms, of artificial islands, and of massive gravity structures which routinely withstand moving sea ice of thickness up to 2 meters. However, the less-common interactions between such structures and moving multiyear ice ({ge}3 meters thick), and also moving ice islands (10 to 60 meters thick) remain as the unknown and potentially most serious hazard for Arctic offshore structures. In this study, research was addressed across the complete span of remaining questions regarding such features. Ice island components, thickness distributions, scenarios and models for the interactions of massive ice features with offshore structures, all were considered. Ice island morphology and calving studies were directed at the cluster of 19 ice islands produced in a calving from the Ward Hunt Ice Shelf on Ellesmere Island in 1983, and also at a calving from the Milne Ice Shelf in 1988. The statistics of ice island dynamics, on both a short-term small-scale basis and also on a long-term basis, were studied. Typical wind velocities of 5 to 7.5 meters per second led to ice island speeds of about 0.014 of the wind speed, at an angle of 20{degrees} to the right of the wind direction. Ice island samples were tested for their stress/strain characteristics. Compressive strength values ranged from 1.64 MPa at a strain rate of 2 {times} 10{sup {minus}7} s{sup {minus}1} to 6.75 MPa at a strain rate of 1 {times} 10{sup {minus}3} s{sup {minus}1}. Scenarios for ice island/structure interactions were developed, and protective countermeasures such as spray ice and ice rubble barriers were suggested. Additional computer modeling of structure/ice interactions for massive ice features is recommended.

Sackinger, W.M.; Jeffries, M.O.; Li, Fucheng; Lu, Mingchi

1991-03-01

267

Structural Analysis of the Redesigned Ice/Frost Ramp Bracket  

NASA Technical Reports Server (NTRS)

This paper describes the interim structural analysis of a redesigned Ice/Frost Ramp bracket for the Space Shuttle External Tank (ET). The proposed redesigned bracket consists of mounts for attachment to the ET wall, supports for the electronic/instrument cables and propellant repressurization lines that run along the ET, an upper plate, a lower plate, and complex bolted connections. The eight nominal bolted connections are considered critical in the summarized structural analysis. Each bolted connection contains a bolt, a nut, four washers, and a non-metallic spacer and block that are designed for thermal insulation. A three-dimensional (3D) finite element model of the bracket is developed using solid 10-node tetrahedral elements. The loading provided by the ET Project is used in the analysis. Because of the complexities associated with accurately modeling the bolted connections in the bracket, the analysis is performed using a global/local analysis procedure. The finite element analysis of the bracket identifies one of the eight bolted connections as having high stress concentrations. A local area of the bracket surrounding this bolted connection is extracted from the global model and used as a local model. Within the local model, the various components of the bolted connection are refined, and contact is introduced along the appropriate interfaces determined by the analysts. The deformations from the global model are applied as boundary conditions to the local model. The results from the global/local analysis show that while the stresses in the bolts are well within yield, the spacers fail due to compression. The primary objective of the interim structural analysis is to show concept viability for static thermal testing. The proposed design concept would undergo continued design optimization to address the identified analytical assumptions and concept shortcomings, assuming successful thermal testing.

Phillips, D. R.; Dawicke, D. S.; Gentz, S. J.; Roberts, P. W.; Raju, I. S.

2007-01-01

268

Structural, Spectral And Optical Characterization Of Calcium Barium Tartrate Crystals  

NASA Astrophysics Data System (ADS)

Single crystals of Calcium Barium tartrate (CBT) were grown by controlled diffusion in silica gel at ambient temperature. The structural characterization of the grown crystals was carried out by Powder X-ray diffraction analysis. The functional groups present in the crystals were identified using Fourier Transform Infrared spectral analysis. The UV-Vis-NIR transmission spectrum was recorded to study the optical transparency of the grown crystals.

Freeda, M. Mary; Priya, R. Krishna; Freeda, T. H.; Delphine, S. Mary

2011-10-01

269

Crystal structure of human uroporphyrinogen decarboxylase.  

PubMed Central

Uroporphyrinogen decarboxylase (URO-D) catalyzes the fifth step in the heme biosynthetic pathway, converting uroporphyrinogen to coproporphyrinogen by decarboxylating the four acetate side chains of the substrate. This activity is essential in all organisms, and subnormal activity of URO-D leads to the most common form of porphyria in humans, porphyria cutanea tarda (PCT). We have determined the crystal structure of recombinant human URO-D at 1.60 A resolution. The 40.8 kDa protein is comprised of a single domain containing a (beta/alpha)8-barrel with a deep active site cleft formed by loops at the C-terminal ends of the barrel strands. Many conserved residues cluster at this cleft, including the invariant side chains of Arg37, Arg41 and His339, which probably function in substrate binding, and Asp86, Tyr164 and Ser219, which may function in either binding or catalysis. URO-D is a dimer in solution (Kd = 0.1 microM), and this dimer also appears to be formed in the crystal. Assembly of the dimer juxtaposes the active site clefts of the monomers, suggesting a functionally important interaction between the catalytic centers. PMID:9564029

Whitby, F G; Phillips, J D; Kushner, J P; Hill, C P

1998-01-01

270

Crystal Structures of Respiratory Pathogen Neuraminidases  

SciTech Connect

Currently there is pressing need to develop novel therapeutic agents for the treatment of infections by the human respiratory pathogens Pseudomonas aeruginosa and Streptococcus pneumoniae. The neuraminidases of these pathogens are important for host colonization in animal models of infection and are attractive targets for drug discovery. To aid in the development of inhibitors against these neuraminidases, we have determined the crystal structures of the P. aeruginosa enzyme NanPs and S. pneumoniae enzyme NanA at 1.6 and 1.7 {angstrom} resolution, respectively. In situ proteolysis with trypsin was essential for the crystallization of our recombinant NanA. The active site regions of the two enzymes are strikingly different. NanA contains a deep pocket that is similar to that in canonical neuraminidases, while the NanPs active site is much more open. The comparative studies suggest that NanPs may not be a classical neuraminidase, and may have distinct natural substrates and physiological functions. This work represents an important step in the development of drugs to prevent respiratory tract colonization by these two pathogens.

Hsiao, Y.; Parker, D; Ratner, A; Prince, A; Tong, L

2009-01-01

271

Crystal-like low frequency phonons in the low-density amorphous and high-density amorphous ices.  

PubMed

The structure and vibrational properties of high- and low-density amorphous (HDA and LDA, respectively) ices have been determined using reverse Monte Carlo, molecular dynamics, and lattice dynamics simulations. This combined approach leads to a more accurate and detailed structural description of HDA and LDA ices when compared to experiment than was previously possible. The water molecules in these ices form well connected hydrogen-bond networks that exhibit modes of vibration that extend throughout the solid and can involve up to 70% of all molecules. However, the networks display significant differences in their dynamical behavior. In HDA, the extended low-frequency vibrational modes occur in dense parallel two dimensional layers of water that are approximately 10 nm thick. In contrast, the extended modes in LDA resemble a holey structure that encapsulates many small pockets of nonparticipating water molecules. PMID:19044969

Belosludov, R V; Subbotin, O S; Mizuseki, H; Rodger, P M; Kawazoe, Y; Belosludov, V R

2008-09-21

272

Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape  

NASA Technical Reports Server (NTRS)

Hurricane Nora traveled up the Bala Peninsula coast in the unusually warm El Nino waters of September 1997, until rapidly decaying as it approached Southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western US, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the Southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized. Importantly, at both the FARS and CART sites the cirrus generated spectacular optical displays, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar polarization data indicate widespread regions of uniform ice plate orientations, and in situ particle masticator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea-salt nuclei in thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-saltcontaminated ice crystals during the extended period of cirrus cloud maintenance. The reference that marine microliters are embedded in the replicas of ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the implications for understanding cirrus radiative properties or a global scale, are discussed.

Sassen, Kenneth; Arnott, W. Patrick; OCStarr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.

2002-01-01

273

Crystal structures of saposins A and C  

PubMed Central

Saposins A and C are sphingolipid activator proteins required for the lysosomal breakdown of galactosylceramide and glucosylceramide, respectively. The saposins interact with lipids, leading to an enhanced accessibility of the lipid headgroups to their cognate hydrolases. We have determined the crystal structures of human saposins A and C to 2.0 Å and 2.4 Å, respectively, and both reveal the compact, monomeric saposin fold. We confirmed that these two proteins were monomeric in solution at pH 7.0 by analytical centrifugation. However, at pH 4.8, in the presence of the detergent C8E5, saposin A assembled into dimers, while saposin C formed trimers. Saposin B was dimeric under all conditions tested. The self-association of the saposins is likely to be relevant to how these small proteins interact with lipids, membranes, and hydrolase enzymes. PMID:16823039

Ahn, Victoria E.; Leyko, Paul; Alattia, Jean-René; Chen, Lu; Privé, Gilbert G.

2006-01-01

274

Crystal structure of betulinic acid methanol monosolvate.  

PubMed

The title compound [systematic name: 3?-hy-droxy-lup-20(29)-en-28-oic acid methanol monosolvate], C30H48O3·CH3OH, is a solvent pseudopolymorph of a naturally occurring plant-derived lupane-type penta-cyclic triterpenoid, which was isolated from the traditional Chinese medicinal plant Syzygium jambos (L.) Alston. The dihedral angle between the planes of the carb-oxy-lic acid group and the olefinic group is 12.17?(18)°. The A/B, B/C, C/D and D/E ring junctions are all trans-fused. In the crystal, O-H?O hydrogen bonds involving the hy-droxy and carb-oxy-lic acid groups and the methanol solvent mol-ecule give rise to a two-dimensional network structure lying parallel to (001). PMID:25553022

Tang, Wei; Chen, Neng-Hua; Li, Guo-Qiang; Wang, Guo-Cai; Li, Yao-Lan

2014-12-01

275

Crystal structure of betulinic acid methanol monosolvate  

PubMed Central

The title compound [systematic name: 3?-hy­droxy­lup-20(29)-en-28-oic acid methanol monosolvate], C30H48O3·CH3OH, is a solvent pseudopolymorph of a naturally occurring plant-derived lupane-type penta­cyclic triterpenoid, which was isolated from the traditional Chinese medicinal plant Syzygium jambos (L.) Alston. The dihedral angle between the planes of the carb­oxy­lic acid group and the olefinic group is 12.17?(18)°. The A/B, B/C, C/D and D/E ring junctions are all trans-fused. In the crystal, O—H?O hydrogen bonds involving the hy­droxy and carb­oxy­lic acid groups and the methanol solvent mol­ecule give rise to a two-dimensional network structure lying parallel to (001). PMID:25553022

Tang, Wei; Chen, Neng-Hua; Li, Guo-Qiang; Wang, Guo-Cai; Li, Yao-Lan

2014-01-01

276

Crystal structure of a snake venom cardiotoxin  

SciTech Connect

Cardiotoxin V/sup II/4 from Naja mossambica crystallizes in space group P6/sub 1/ (a = b = 73.9 A; c = 59.0 A) with two molecules of toxin (molecular mass = 6715 Da) in the asymmetric unit. The structure was solved by using a combination of multiple isomorphous replacement and density modification methods. Model building and least-squares refinement led to an agreement factor of 27% for a data set to 3-A resolution prior to any inclusion of solvent molecules. The topology of the molecule is similar to that found in short and long snake neurotoxins, which block the nicotinic acetylcholine receptor. Major differences occur in the conformation of the central loop, resulting in a change in the concavity of the molecule. Hydrophobic residues are clustered in two distinct areas. The existence of stable dimeric entities in the crystalline state, with the formation of a six-stranded antiparallel ..beta.. sheet, may be functionally relevant.

Rees, B.; Samama, J.P.; Thierry, J.C.; Gilibert, M.; Fischer, J.; Schweitz, H.; Lazdunski, M.; Moras, D.

1987-05-01

277

Formation of structured nanophases in halide crystals.  

PubMed

When halide crystals KCl and NaCl are slightly doped by PbCl(2), (in orders of 10(-4)?mol/mol) the structurally stable nanophases ("quantum dots") are formed via nucleation within the bulks of their matrices. Using lattice modeling we have found in KCl-Pb system natural nucleation pathway from single impurity-vacancy complex to Suzuki phase, not demonstrated in previous analyses; further transition to PbCl(2) is difficult due to high stability of this phase. In the case of NaCl-Pb, no stable "end point" of aggregation was observed and our calculations suggest nucleation may readily proceed to large PbCl(2) clusters when initially formed platelike cluster reaches a certain critical thickness. These results coincide with our experimental data. PMID:21495761

Kulveit, J; Demo, P; Polák, K; Sveshnikov, A M; Kožíšek, Z

2011-04-14

278

Formation of structured nanophases in halide crystals  

NASA Astrophysics Data System (ADS)

When halide crystals KCl and NaCl are slightly doped by PbCl_2, (in orders of 10^{-4} mol/mol) the structurally stable nanophases ("quantum dots") are formed via nucleation within the bulks of their matrices. Using lattice modeling we have found in KCl-Pb system natural nucleation pathway from single impurity-vacancy complex to Suzuki phase, not demonstrated in previous analyses; further transition to PbCl_2 is difficult due to high stability of this phase. In the case of NaCl-Pb, no stable "end point" of aggregation was observed and our calculations suggest nucleation may readily proceed to large PbCl_2 clusters when initially formed platelike cluster reaches a certain critical thickness. These results coincide with our experimental data.

Kulveit, J.; Demo, P.; Polák, K.; Sveshnikov, A. M.; Kožíšek, Z.

2011-04-01

279

Radiation effects in water ice: A near-edge x-ray absorption fine structure study  

SciTech Connect

The changes in the structure and composition of vapor-deposited ice films irradiated at 20 K with soft x-ray photons (3-900 eV) and their subsequent evolution with temperatures between 20 and 150 K have been investigated by near-edge x-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K edge. We observe the hydroxyl OH, the atomic oxygen O, and the hydroperoxyl HO{sub 2} radicals, as well as the oxygen O{sub 2} and hydrogen peroxide H{sub 2}O{sub 2} molecules in irradiated porous amorphous solid water (p-ASW) and crystalline (I{sub cryst}) ice films. The evolution of their concentrations with the temperature indicates that HO{sub 2}, O{sub 2}, and H{sub 2}O{sub 2} result from a simple step reaction fuelled by OH, where O{sub 2} is a product of HO{sub 2} and HO{sub 2} a product of H{sub 2}O{sub 2}. The local order of ice is also modified, whatever the initial structure is. The crystalline ice I{sub cryst} becomes amorphous. The high-density amorphous phase (I{sub a}h) of ice is observed after irradiation of the p-ASW film, whose initial structure is the normal low-density form of the amorphous ice (I{sub a}l). The phase I{sub a}h is thus peculiar to irradiated ice and does not exist in the as-deposited ice films. A new 'very high density' amorphous phase--we call I{sub a}vh--is obtained after warming at 50 K the irradiated p-ASW ice. This phase is stable up to 90 K and partially transforms into crystalline ice at 150 K.

Laffon, C.; Lacombe, S.; Bournel, F.; Parent, Ph. [Laboratoire de Chimie-Physique, Matiere et Rayonnement, UMR 7614, Universite Pierre et Marie Curie et CNRS, 11 Rue Pierre et Marie Curie, 75231 Paris, Cedex 05 (France); Laboratoire des Collisions Atomiques et Moleculaires, UMR 8625, Universite Paris Sud 11, 91405 Orsay Cedex (France); Laboratoire de Chimie-Physique, Matiere et Rayonnement, UMR 7614, Universite Pierre et Marie Curie et CNRS, 11 Rue Pierre et Marie Curie, 75231 Paris, Cedex 05 (France)

2006-11-28

280

Radiation effects in water ice: A near-edge x-ray absorption fine structure study  

NASA Astrophysics Data System (ADS)

The changes in the structure and composition of vapor-deposited ice films irradiated at 20K with soft x-ray photons (3-900eV) and their subsequent evolution with temperatures between 20 and 150K have been investigated by near-edge x-ray absorption fine structure spectroscopy (NEXAFS) at the oxygen K edge. We observe the hydroxyl OH, the atomic oxygen O, and the hydroperoxyl HO2 radicals, as well as the oxygen O2 and hydrogen peroxide H2O2 molecules in irradiated porous amorphous solid water (p-ASW) and crystalline (Icryst) ice films. The evolution of their concentrations with the temperature indicates that HO2, O2, and H2O2 result from a simple step reaction fuelled by OH, where O2 is a product of HO2 and HO2 a product of H2O2. The local order of ice is also modified, whatever the initial structure is. The crystalline ice Icryst becomes amorphous. The high-density amorphous phase (Iah ) of ice is observed after irradiation of the p-ASW film, whose initial structure is the normal low-density form of the amorphous ice (Ial). The phase Iah is thus peculiar to irradiated ice and does not exist in the as-deposited ice films. A new "very high density" amorphous phase—we call Iavh—is obtained after warming at 50K the irradiated p-ASW ice. This phase is stable up to 90K and partially transforms into crystalline ice at 150K.

Laffon, C.; Lacombe, S.; Bournel, F.; Parent, Ph.

2006-11-01

281

Influence of freezing conditions on ice crystallisation in ice cream  

Microsoft Academic Search

Successful optimisation of the ice cream freezing process to deliver a product with small ice crystals, and therefore a smooth texture, requires an understanding of the mechanisms of ice crystallisation. The purpose of this work was to relate the processing variables available to the ice cream manufacturer to measured ice crystal size distributions, with a view to elucidating the dominant

A. B. Russell; P. E. Cheney; S. D. Wantling

1999-01-01

282

Geostatistical Characterization of Snow-Depth Structures on Sea Ice Near Point Barrow, Alaska—A Contribution to the AMSR-Ice03 Field Validation Campaign  

Microsoft Academic Search

The objective of this paper is to characterize spatial properties of snow-depth structures and their role as indicators of sea-ice properties and sea-ice-morphogenetic processes, and to provide quantitative measures of sea-ice properties that may be utilized in analyses of passive-microwave data. Snow-depth data collected near Point Barrow, Alaska, as part of the AMSRIce03 Field Validation Campaign for Advanced Microwave Scanning

Ute C. Herzfeld; James A. Maslanik; Matthew Sturm

2006-01-01

283

Preface to some crystal structure communications  

Microsoft Academic Search

Crystals are prepared and\\/or recrystallized [solvent] in one of the chemistry departments of our university. One crystal is selected [approximate size] and used on an Enraf-Nonius CAD4 single-crystal diffractometer, employing Cu Ker (X = 1.54184 ,&) or Mo Ka (~ = 0.71073 ,~) radiation with a graphite crystal monochromator. The unit-cell dimensions are determined from the angular settings of 25

J. M. M. Smits; H. Behm; W. P. Bosman; Paul T. Beurskens

1988-01-01

284

Superionics: crystal structures and conduction processes  

NASA Astrophysics Data System (ADS)

Superionic conductors are compounds that exhibit exceptionally high values of ionic conductivity within the solid state. Indeed, their conductivities often reach values of the order of 1 OHgr-1 cm-1, which are comparable to those observed in the molten state. Following Faraday's first observation of high ionic conductivity within the solids bgr-PbF2 and Ag2S in 1836, a fundamental understanding of the nature of the superionic state has provided one of the major challenges in the field of condensed matter science. However, experimental and theoretical approaches to their study are often made difficult by the extensive dynamic structural disorder which characterizes superionic conduction and the inapplicability of many of the commonly used approximations in solid state physics. Nevertheless, a clearer picture of the nature of the superionic state at the ionic level has emerged within the past few decades. Many different techniques have contributed to these advances, but the most significant insights have been provided by neutron scattering experiments and molecular dynamics simulations. This review will summarize the state of current knowledge concerning the crystal structures and conduction processes of superionic conductors, beginning with a comparison of the behaviour of two of the most widely studied binary compounds, AgI and bgr-PbF2. Each can be considered a parent of two larger families of highly conducting compounds which are related by either chemical or structural means. These include perovskite-structured oxides and Li+ containing spinel-structured compounds, which have important commercial applications in fuel cells and lightweight batteries, respectively. In parallel with these discussions, the relative importance of factors such as bonding character and the properties of the mobile and immobile ions (charge, size, polarizability, etc) in promoting the extensive lattice disorder which characterizes superionic behaviour will be assessed and the possibilities for predicting a priori which compounds will display high ionic conductivity discussed.

Hull, Stephen

2004-07-01

285

Numerical simulation of the flow fields around falling ice crystals with inclined orientation and the hydrodynamic torque  

NASA Astrophysics Data System (ADS)

The flow field and orientation of ice particles are fundamental information to understand cloud microphysical processes, optical phenomena, and electric-field induced orientation and to improve remote sensing of ice clouds. The purpose of this study is to investigate the flow fields and hydrodynamic torques of falling ice columns and hexagonal plates with their largest dimension inclined with respect to the airflow. The Reynolds numbers range from 2 to 70 for columns and 2 to 120 for plates. The flow fields are obtained by numerically solving the relevant Navier-Stokes equations under the assumption of air incompressibility. It was found that for the intermediate Reynolds number the streamlines around the inclined crystals exhibit less spiral rotation behind them than those around the stable posture. The vorticity magnitude was larger in the upstream side and broader in the downstream than the one without inclination. For plates, a high-pressure dome on the center of the lower basal face disappears with inclination, possibly leading to an increase of riming there. The torques acting on the crystals have a local maximum over the inclined angle and exhibit almost symmetric around 45° over the range of Reynolds numbers. The torque parameterization was performed under pressures of 300, 500, and 800 hPa as a function of Reynolds number and aspect ratio. It was found that the time scale of rotation for plates is smaller than the one for columns. Furthermore, the torque formula was applied to assess alignment of crystals along electric fields. It was found that these crystals of millimeter size require 120 kV/m for the electrical alignment, which agrees with previous studies.

Hashino, Tempei; Chiruta, Mihai; Polzin, Dierk; Kubicek, Alexander; Wang, Pao K.

2014-12-01

286

A study of fat and air structures in ice cream  

Microsoft Academic Search

Three ice cream mixes of conventional composition with varying emulsifier content (no emulsifier; 0.15% mono- and di-glycerides; 0.15% mono- and di-glycerides plus 0.06% polysorbate 80) were frozen using three different freezing regimes (continuous freezer at low and high back pressure and batch freezer) in order to prepare a series of ice cream samples with varying levels of fat destabilization and

H. D. Goff; E. Verespej; A. K. Smith

1999-01-01

287

Analytical method for band structure calculation of photonic crystal fibers filled with liquid crystal.  

PubMed

An analytical method for band structure calculations of photonic crystal fibers with liquid crystal infiltrations is presented. The scalar eigenvalue equation is extended to treat both isotropic and anisotropic materials by introducing a coefficient to describe the index contrast between the extraordinary and ordinary refractive index of the liquid crystal. The simple model provides a fast insight into bandgap formation in photonic crystal fibers filled with anisotropic material such as liquid crystal, which would be useful to aid the design based on such fibers. PMID:18545370

Hu, Juan Juan; Ren, Guobin; Shum, Ping; Yu, Xia; Wang, Guanghui; Lu, Chao

2008-04-28

288

Undergraduates Improve upon Published Crystal Structure in Class Assignment  

ERIC Educational Resources Information Center

Recently, 57 undergraduate students at the University of Michigan were assigned the task of solving a crystal structure, given only the electron density map of a 1.3 Å crystal structure from the electron density server, and the position of the N-terminal amino acid. To test their knowledge of amino acid chemistry, the students were not given the…

Horowitz, Scott; Koldewey, Philipp; Bardwell, James C.

2014-01-01

289

Neutron-diffraction studies of magnetic structures of crystals  

Microsoft Academic Search

The contemporary state of neutron diffraction of magnetic structures is analyzed from the standpoint of the theory of symmetry of crystals. It is shown that the varied and numerous structures determined in neutron-diffraction studies can be classified and described by the theory of representations of space groups of crystals. This approach is based on expanding the spin density of the

Yurii A Izyumov

1980-01-01

290

Crystal Structure of Adenosine 5-Phosphosulfate Kinase from Penicillium chrysogenum,  

E-print Network

Crystal Structure of Adenosine 5-Phosphosulfate Kinase from Penicillium chrysogenum, Ian J. Mac crystal structure of ligand-free APS kinase from the filamentous fungus, Penicillium chrysogenum focuses on APS kinase from the filamentous fungus, Penicillium chrysogenum, an enzyme possessing several

Fisher, Andrew J.

291

Growth and crystal structure of the BeAl 6O 10 single crystals  

NASA Astrophysics Data System (ADS)

Unlike earlier published works we have established incongruent melting for the compound BeAl 6O 10 (BHA). The conditions of growing crystals from their own melt with a superstoichiometric excess of BeO, using the Czochralski method, have been determined. The nature of inclusions in grown BHA crystals is described. On the basis of X-ray crystal structure analysis and data of spectroscopic studies the symmetry and space group of BHA crystal structure have been refined, as well as uncertainties arising in their interpretation are discussed.

Alimpiev, A. I.; Merkulov, A. A.; Solntsev, V. P.; Tsvetkov, E. G.; Matrosov, V. N.; Pestryakov, E. V.

2002-04-01

292

High-speed prediction of crystal structures for organic molecules  

NASA Astrophysics Data System (ADS)

We developed a master-worker type parallel algorithm for allocating tasks of crystal structure optimizations to distributed compute nodes, in order to improve a performance of simulations for crystal structure predictions. The performance experiments were demonstrated on TUT-ADSIM supercomputer system (HITACHI HA8000-tc/HT210). The experimental results show that our parallel algorithm could achieve speed-ups of 214 and 179 times using 256 processor cores on crystal structure optimizations in predictions of crystal structures for 3-aza-bicyclo(3.3.1)nonane-2,4-dione and 2-diazo-3,5-cyclohexadiene-1-one, respectively. We expect that this parallel algorithm is always possible to reduce computational costs of any crystal structure predictions.

Obata, Shigeaki; Goto, Hitoshi

2015-02-01

293

Low modulus polymer packaged optical fiber sensor for macrocrack monitoring in ice structures of cold regions  

NASA Astrophysics Data System (ADS)

Ice structures provide load-bearing capability for energy exploitation and transportation in cold regions. Meanwhile, staff and facilities take a risk due to large amounts of distributed macrocracks in ice roads, ice bridges, and ice platforms. It is critical to monitor macrocracks for detecting and understanding the fracture process under such a harsh environment. Aiming to obtain real-time, long-term, and quantitative crack opening information for ice structures, this paper presents a feasibility study on monitoring macrocracks with a low modulus polymer packaged optical fiber sensor. Brillouin optical time-domain analysis-based sensing technology is utilized for the distributed strain measurement. According to in situ monitoring requirements, a type of silicone rubber material with appropriate mechanical properties is selected to fabricate the sensor. On this basis, a strain transfer analysis on the packaged and embedded sensor is carried out to derive the relation between the optical measurement and the increment of the crack width. The prototypes have been evaluated by demonstration tests on a tensile device and an ice road model. The experimental results show the sensor can survive in a cold environment and under the large strain resulting from the macrocrack opening. These measured data agree well with the linear calibration. The macrocracks opening in large-scale ice structures can be characterized based on the optical sensor.

Ren, Peng; Zhou, Zhi

2014-09-01

294

Crystal and magnetic structure of Mn3IrSi  

Microsoft Academic Search

A new ternary Ir-Mn-Si phase with stoichiometry Mn3IrSi has been synthesized and found to crystallize in the cubic AlAu4-type structure, space group P213 with Z=4, which is an ordered form of the beta-Mn structure. The unit cell dimension was determined by x-ray powder diffraction to a=6.4973(3) Å. In addition to the crystal structure, we have determined the magnetic structure and

T. Eriksson; R. Lizárraga; S. Felton; L. Bergqvist; Y. Andersson; P. Nordblad; O. Eriksson

2004-01-01

295

Lactose Crystallization in Ice Cream. IV. Factors Responsible for Reduced Incidence of Sandiness  

Microsoft Academic Search

SUMMARY An explanation was sought for the virtual disappearance of sandiness from commercial ice cream. Only five of 36 commercial samples became sandy when stored seven months at 12 F. Nuclei formation was accelerated by drawing ice cream from freezers at low temperatures and hardening it rapidly. Partial sub- stitution of corn syrup solids for sucrose neither delayed the development

T. A. Nickerson

1962-01-01

296

Ice Cream  

NSDL National Science Digital Library

In this chemistry activity, learners use the lowered freezing point of water to chill another mixture (ice cream) to the solid state. Learners will record the temperature of the ice before and after mixing it with the ice cream ingredients and discover that adding a solute to a solvent lowers the freezing point of that solvent (also known as a colligative property). This activity can also be used to introduce learners to crystallization.

The Science House

2014-01-28

297

Spatial and temporal variations in the age structure of Arctic sea ice  

USGS Publications Warehouse

Spatial and temporal variations in the age structure of Arctic sea ice are investigated using a new reversechronology algorithm that tracks ice-covered pixels to their location and date of origin based on ice motion and concentration data. The Beaufort Gyre tends to harbor the oldest (>10 years old) sea ice in the western Arctic while direct ice advection pathways toward the Transpolar Drift Stream maintain relatively young (???5 years) ice in the eastern Arctic. Persistent net losses (-4.2% yr-1) in extent of ice >10 years old (10+ year age class) were observed during 1989-2003. Since the mid-1990s, losses to the 10+ year age class lacked compensation by recruitment due to a prior depletion of all mature (6-10 year) age classes. Survival of the 1994 and 1996-1998 sea ice generations reestablished most mature age classes, and thereby the potential to increase extent of the 10+ year age class during the mid-2000s. Copyright 2005 by the American Geophysical Union.

Belchansky, G.I.; Douglas, D.C.; Platonov, N.G.

2005-01-01

298

Southern Ocean frontal structure and sea-ice formation rates revealed by elephant seals  

PubMed Central

Polar regions are particularly sensitive to climate change, with the potential for significant feedbacks between ocean circulation, sea ice, and the ocean carbon cycle. However, the difficulty in obtaining in situ data means that our ability to detect and interpret change is very limited, especially in the Southern Ocean, where the ocean beneath the sea ice remains almost entirely unobserved and the rate of sea-ice formation is poorly known. Here, we show that southern elephant seals (Mirounga leonina) equipped with oceanographic sensors can measure ocean structure and water mass changes in regions and seasons rarely observed with traditional oceanographic platforms. In particular, seals provided a 30-fold increase in hydrographic profiles from the sea-ice zone, allowing the major fronts to be mapped south of 60°S and sea-ice formation rates to be inferred from changes in upper ocean salinity. Sea-ice production rates peaked in early winter (April–May) during the rapid northward expansion of the pack ice and declined by a factor of 2 to 3 between May and August, in agreement with a three-dimensional coupled ocean–sea-ice model. By measuring the high-latitude ocean during winter, elephant seals fill a “blind spot” in our sampling coverage, enabling the establishment of a truly global ocean-observing system. PMID:18695241

Charrassin, J.-B.; Hindell, M.; Rintoul, S. R.; Roquet, F.; Sokolov, S.; Biuw, M.; Costa, D.; Boehme, L.; Lovell, P.; Coleman, R.; Timmermann, R.; Meijers, A.; Meredith, M.; Park, Y.-H.; Bailleul, F.; Goebel, M.; Tremblay, Y.; Bost, C.-A.; McMahon, C. R.; Field, I. C.; Fedak, M. A.; Guinet, C.

2008-01-01

299

Ganymede's internal structure including thermodynamics of magnesium sulfate oceans in contact with ice  

NASA Astrophysics Data System (ADS)

The large icy moons of Jupiter contain vast quantities of liquid water, a key ingredient for life. Ganymede and Callisto are weaker candidates for habitability than Europa, in part because of the model-based assumption that high-pressure ice layers cover their seafloors and prevent significant water-rock interaction. Water-rock interactions may occur, however, if heating at the rock-ice interface melts the high pressure ice. Highly saline fluids would be gravitationally stable, and might accumulate under the ice due to upward migration, refreezing, and fractionation of salt from less concentrated liquids. To assess the influence of salinity on Ganymede's internal structure, we use available phase-equilibrium data to calculate activity coefficients and predict the freezing of water ice in the presence of aqueous magnesium sulfate. We couple this new equation of state with thermal profiles in Ganymede's interior-employing recently published thermodynamic data for the aqueous phase-to estimate the thicknesses of layers of ice I, III, V, and VI. We compute core and silicate mantle radii consistent with available constraints on Ganymede's mass and gravitational moment of inertia. Mantle radii range from 800 to 900 km for the values of salt and heat flux considered here (4-44 mW m-2 and 0 to 10 wt% MgSO4). Ocean concentrations with salinity higher than 10 wt% have little high pressure ice. Even in a Ganymede ocean that is mostly liquid, achieving such high ocean salinity is permissible for the range of likely S/Si ratios. However, elevated salinity requires a smaller silicate mantle radius to satisfy mass and moment-of-inertia constraints, so ice VI is always present in Ganymede's ocean. For lower values of heat flux, oceans with salinity as low as 3 wt% can co-exist with ice III. Available experimental data indicate that ice phases III and VI become buoyant for salinity higher than 5 wt% and 10 wt%, respectively. Similar behavior probably occurs for ice V at salinities higher than 10 wt%. Flotation can occur over tens of kilometers of depth, indicating the possibility for upward ‘snow’ or other exotic modes of heat and material transport. We assess Ganymede's interior structure for oceans with magnesium sulfate. New activity models predict freezing of ice in magnesium sulfate solutions. High ocean salinities are permitted by constraints on Ganymede's sulfur content. Stability under high pressure ice implies water rock contact and layered oceans. Upward ‘snow’ of high-pressure ices occurs in the lower depths of salty oceans.

Vance, Steve; Bouffard, Mathieu; Choukroun, Mathieu; Sotin, Christophe

2014-06-01

300

Ice Rheology Beyond Planet Earth  

NASA Astrophysics Data System (ADS)

Barclay Kamb is well known for his seminal work on the motions and internal flow of glaciers, but he was also a pioneer in research on the crystal structures, chemical bonding, and rheologies of the high-pressure phases of ice. In the flow and fracture of terrestrial materials, no rock is more studied than ice. Water ice also has an important presence on other solar system bodies, in particular the moons of the outer solar system, where its flow may extend to deep interiors. Most of these low-density (< 2 Mg/m3) moons have volume fractions of ice well above 0.5, and the largest moons, for example Ganymede, Callisto, and Titan, have sufficient internal pressures to stabilize the high-pressure phases II, III, V, VI, VII, and, possibly in early satellite history, ice VIII. The rheology of ice I has important influence on the surface morphologies of the moons, and the rheologies of all these phases (including ice I) can affect the thermal evolution of the moons by governing the rates of advection of internal radiogenic heat. Polycrystalline ice I under terrestrial conditions is far warmer than ice I in most planetary settings. The phenomenon of "premelting" in ice at T > 255 K leads to high grain-boundary mobility and much higher activation energy in warm ice than in cold ice under the same stress, so the flow of terrestrial ice may not be a good analog for that in the outer solar system. Phenomena from the rheological law itself to the development of lattice preferred orientation may be affected. Of the high-pressure phases through ice VI (all whose rheologies have been explored to date), ices III and VI are the weakest, an effect that, as Kamb has pointed out, parallels and draws explanation from the high rate of dielectric relaxation in those phases. Ice III is exceptionally weak and is stable over a very small part of the (P, T) phase diagram that is situated very close to possible planetary temperature profiles. This could lead to either self-regulation or instability in convective flow depending on the assumptions of the model. Experimental investigation of the transformation of metastable ice I to ice II under non-hydrostatic stress has led to the discovery of transformational faulting (a mechanically unstable transformation under shear with possible applications to deep earthquake faulting in Earth's mantle) and a stable stress-induced ice I to ice II transformation mechanism involving anisotropic growth of ice II inclusions, producing a simple form of metamorphic foliation.

Durham, W. B.; Kirby, S. H.; Stern, L. A.

2001-12-01

301

Microphysical Consequences of the Spatial Distribution of Ice Nucleation in Mixed-Phase Stratiform Clouds  

SciTech Connect

Mixed-phase stratiform clouds can persist even with steady ice precipitation fluxes, and the origin and microphysical properties of the ice crystals are of interest. Vapor deposition growth and sedimentation of ice particles along with a uniform volume source of ice nucleation, leads to a power law relation between ice water content wi and ice number concentration ni with exponent 2.5. The result is independent of assumptions about the vertical velocity structure of the cloud and is therefore more general than the related expression of Yang et al. [2013]. The sensitivity of the wi-ni relationship to the spatial distribution of ice nucleation is confirmed by Lagrangian tracking and ice growth with cloud-volume, cloud-top, and cloud-base sources of ice particles through a time-dependent cloud field. Based on observed wi and ni from ISDAC, a lower bound of 0.006 m^3/s is obtained for the ice crystal formation rate.

Yang, Fan; Ovchinnikov, Mikhail; Shaw, Raymond A.

2014-07-28

302

Crystal structure of 2-pentyl­oxybenzamide  

PubMed Central

In the title mol­ecule, C12H17NO2, the amide NH2 group is oriented toward the pent­yloxy substituent and an intra­molecular N—H?O hydrogen bond is formed with the pent­yloxy O atom. The benzene ring forms dihedral angles of 2.93?(2) and 5.60?(2)° with the amide group and the pent­yloxy group mean planes, respectively. In the crystal, mol­ecules are linked by pairs of N—H?O hydrogen bonds, forming inversion dimers with their mol­ecular planes parallel, but at an offset of 0.45?(1)?Å to each other. These dimers are ordered into two types of symmetry-related columns extended along the a axis, with the mean plane of one set of dimers in a column approximately parallel to (121) and the other in a column approximately parallel to (1-21). The two planes form a dihedral angle of 85.31?(2)°, and are linked via C—H?O hydrogen bonds and C—H?? inter­actions, forming a three-dimensional framework structure. PMID:25484660

Bugenhagen, Bernhard; Al Jasem, Yosef; Thiemann, Thies

2014-01-01

303

Crystal structure of lithium beryllium hydride  

NASA Astrophysics Data System (ADS)

Analysis of powder diffraction data, published by Bell and Coates, reveals that LiBeH3 and Li2BeH4 both have an fcc translation group with lattice constants 5.09 and 5.14 Å, respectively. The cubic cell of each contains eight formula units; so the total atomic concentrations, 3.03×1023 and 4.12×1023 cm-3, exceed that of diamond by factors of 1.7 and 2.3. The computed densities are 1.91 and 2.63 g/cm3. Both crystals have a modified perovskite structure involving cubes with edges half the size of the lattice constant. The (otherwise) sc lattice is broken by a chemical superstructure in LiBeH3 and by an orientational superstructure in Li2BeH4. The ``conduction''-electron density of the latter is 4.71×1023 cm3; so the equivalent-sphere-radius parameter is rs=1.51 Bohr, a value in the range typically assumed for metallic hydrogen. Infrared absorption at 1600 cm-1 (~=2300 K) was reported. Consequently, these compounds, if metallic, may manifest the high-temperature superconductivity often envisioned for metallic hydrogen.

Overhauser, A. W.

1987-01-01

304

Sea Ice, an Antarctic Habitat  

NSDL National Science Digital Library

A 'click-and-learn' sub site hosted by the Alfred Wegener Institute Foundation for Polar and Marine Research (AWI), this is a succinct, educational tour of sea-ice and its associated ecological communities. Short synopses introduce the dynamics of sea-ice formation, the microstructure of sea-ice (including crystal structure, brine channels, and ice algae), the effects of ice melt on resident organisms, the logistics of sea-ice research, and _land fast-ice_ and platelet ice habitats. Introductions also exist for the following organisms: krill; whales (i.e., Orcas, southern bottlenosesd dolphins, minke whales); sea birds (i.e., skuas and snow petrals), penguins (i.e., emperor, adelie, and chinstraps), and seals (i.e., weddell, crabeater, leopard, and ross.) Enlargeable thumbnail images accompany the habitat and inhabitant descriptions. Further investigations (at an accelerated level) are prompted with the inclusion of bibliographic references and scientific research presentations (in PDF format) on fast-ice and platelet ice, as well as links to the main site for the AWI.

305

Part A: Cirrus ice crystal nucleation and growth. Part B: Automated analysis of aircraft ice particle data  

NASA Technical Reports Server (NTRS)

Specific measurement of cirrus crystals by aircraft and temperature modified CN are used to specify measurements necessary to provide a basis for a conceptual model of cirrus particle formation. Key to this is the ability to measure the complete spectrum of particles at cirrus levels. The most difficult regions for such measurement is from a few to 100 microns, and uses a replicator. The details of the system to automate replicator data analysis are given, together with an example case study of the system provided from a cirrus cloud in FIRE 2, with particles detectable by replicator and FSSP, but not 2DC.

Arnott, William P.; Hallett, John; Hudson, James G.

1995-01-01

306

Photonic crystals for monitoring fatigue phenomena in steel structures  

NASA Astrophysics Data System (ADS)

This paper introduces the concept and development of a strain sensing system for structural application based on the properties of photonic crystals. Photonic crystals are artificially created periodic structures, usually produced in the thinfilm form, where optical properties are tailored by a periodicity in the refractive index. The idea of using the crystal as a sensor is based on the observation that a distortion in the crystal structure produces a change in the reflected bandwidth. When a photonic crystal is designed to operate in the visible part of the spectrum, a permanent distortion of the film results in a change in its apparent color. This property makes photonic crystals suitable for permanent monitoring of structural elements, as any critical changes in the strain field can be promptly and easily detected by visual inspection. A simple and low-cost example of photonic crystals consists of opals synthesized by vertical deposition. In this contribution we introduce a target application for the fatigue monitoring of wind turbines, and then provide the reader with some basic information concerning modeling of the crystal architecture and fabrication of these structures. Next we discuss their application to strain measurement, specifying how reflection and transmission properties of the opals have to be designed to satisfy the expected strain response of the sensor. Finally, we present the preliminary results of a laboratory validation carried out on thin films applied to a rubber support.

Zonta, Daniele; Chiappini, Andrea; Chiasera, Alessandro; Ferrari, Maurizio; Pozzi, Matteo; Battisti, Lorenzo; Benedetti, Matteo

2009-03-01

307

Evolutionary Crystal Structure Prediction and Novel High-Pressure Phases  

Microsoft Academic Search

\\u000a Prediction of stable crystal structures at given pressure-temperature conditions, based only on the knowledge of the chemical\\u000a composition, is a central problem of condensed matter physics. This extremely challenging problem is often termed “crystal\\u000a structure prediction problem”, and recently developed evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary\\u000a Xtallography) made an important progress in solving it, enabling efficient and reliable prediction

Artem R. Oganov; Yanming Ma; Andriy O. Lyakhov; Mario Valle; Carlo Gatti

2010-01-01

308

In vivo protein crystallization opens new routes in structural biology  

PubMed Central

Protein crystallization in cells has been observed several times in nature. However, owing to their small size these crystals have not yet been used for X-ray crystallographic analysis. We prepared nano-sized in vivo–grown crystals of Trypanosoma brucei enzymes and applied the emerging method of free-electron laser-based serial femtosecond crystallography to record interpretable diffraction data. This combined approach will open new opportunities in structural systems biology. PMID:22286384

Koopmann, Rudolf; Cupelli, Karolina; Redecke, Lars; Nass, Karol; DePonte, Daniel P; White, Thomas A; Stellato, Francesco; Rehders, Dirk; Liang, Mengning; Andreasson, Jakob; Aquila, Andrew; Bajt, Sasa; Barthelmess, Miriam; Barty, Anton; Bogan, Michael J; Bostedt, Christoph; Boutet, Sébastien; Bozek, John D; Caleman, Carl; Coppola, Nicola; Davidsson, Jan; Doak, R Bruce; Ekeberg, Tomas; Epp, Sascha W; Erk, Benjamin; Fleckenstein, Holger; Foucar, Lutz; Graafsma, Heinz; Gumprecht, Lars; Hajdu, Janos; Hampton, Christina Y; Hartmann, Andreas; Hartmann, Robert; Hauser, Günter; Hirsemann, Helmut; Holl, Peter; Hunter, Mark S; Kassemeyer, Stephan; Kirian, Richard A; Lomb, Lukas; Maia, Filipe R N C; Kimmel, Nils; Martin, Andrew V; Messerschmidt, Marc; Reich, Christian; Rolles, Daniel; Rudek, Benedikt; Rudenko, Artem; Schlichting, Ilme; Schulz, Joachim; Seibert, M Marvin; Shoeman, Robert L; Sierra, Raymond G; Soltau, Heike; Stern, Stephan; Strüder, Lothar; Timneanu, Nicusor; Ullrich, Joachim; Wang, Xiaoyu; Weidenspointner, Georg; Weierstall, Uwe; Williams, Garth J; Wunderer, Cornelia B; Fromme, Petra; Spence, John C H; Stehle, Thilo; Chapman, Henry N; Betzel, Christian; Duszenko, Michael

2012-01-01

309

Links between the structure of an Antarctic shallow-water community and ice-scour frequency  

Microsoft Academic Search

Ice is a major structuring force in marine and freshwater environments at high latitudes. Although recovery from scouring has been quantified in time, the frequency of scouring in the Antarctic has not. We placed grids of markers at 9–17 m depth at two sites, to study ice-scouring over 2 years at Adelaide island (Antarctic Peninsula). We quantified the time scale of scour

Kirsty M. Brown; Keiron P. P. Fraser; David K. A. Barnes; Lloyd S. Peck

2004-01-01

310

Cryogenic structure and ice content of lacustrine sediments in the Yukon River Basin, Alaska  

NASA Astrophysics Data System (ADS)

Lacustrine sediments often present a significant part of the upper permafrost of plains and lowlands of Alaska. Lacustrine sediments in their contemporary state vary from ice-poor to extremely ice-rich. The ice content depends on initial conditions of freezing and further history of permafrost development, which can include partial degradation and recovery of permafrost. In Alaska, the primary mechanism of freezing and cryogenic structure formation of lacustrine sediments is para-syngenetic (term by E.M. Katasonov, 1978), typical of sediments accumulated in lakes surrounded by permafrost. Though the freezing of such sediments occurs before or immediately after the termination of sedimentation (similar to syngenetic permafrost), the freezing conditions and cryogenic structure of para-syngenetic permafrost are similar to epigenetic permafrost. The ice lenses in para-syngenetic sediments are often inclined, and the ice content is relatively small in the central parts of refrozen taliks. This type of ice distribution is generally governed by the migration of water to multidirectional fronts of freezing. We studied the cryogenic structure of lacustrine sediments across different regions of the Yukon River Basin, Alaska, including Koyukuk Flats (Hozatka Lake area), Innoko Lowlands, and Tanana-Kuskokwim Lowlands (Lake Minchumina area). Study sites are located in the discontinuous permafrost zone, where permafrost was encountered mainly within uplifted peat plateaus. Field work included study of natural exposures and drilling. The upper part of studied sections is formed by frozen organic soils up to 2-3 -m -thick underlain by lacustrine silt, which is mostly ice-rich. Volume of visible ice in silt reaches at places 40% and more. A combination of layered and reticulate cryostructures is the most typical and common cryostructure assemblage. The thickness of ice lenses generally varies from 1 to 5 cm and occasionally reaches 10 cm. Aggradation of ice during the freezing of lacustrine silt caused a sufficient heave of the ground surface. Remnants of peat plateaus are surrounded by unfrozen bogs and fens, a result of thawing and settling of ice-rich lacustrine silt. Thermokarst scars initially form at places where ice-rich silt is not protected by a thick layer of organic soil. Further development of thermokarst bogs is related mostly to lateral enlargement of thaw bulbs and collapsing of the margins of peat plateaus. Lacustrine silt within taliks is covered by woody peat accumulated under forests during the permafrost plateau stage and then by aquatic sphagnum peat accumulated after collapse.

Kanevskiy, M. Z.; Jorgenson, M. T.; Shur, Y.; O'Donnell, J.; Harden, J. W.; Fortier, D.

2009-12-01

311

Crystal structure and characterization of pyrroloquinoline quinone disodium trihydrate  

PubMed Central

Background Pyrroloquinoline quinone (PQQ), a tricarboxylic acid, has attracted attention as a growth factor, and its application to supplements and cosmetics is underway. The product used for these purposes is a water-soluble salt of PQQ disodium. Although in the past, PQQ disodiumpentahydrates with a high water concentration were used, currently, low hydration crystals of PQQ disodiumpentahydrates are preferred. Results We prepared a crystal of PQQ disodium trihydrate in a solution of ethanol and water, studied its structure, and analyzed its properties. In the prepared crystal, the sodium atom interacted with the oxygen atom of two carboxylic acids as well as two quinones of the PQQ disodium trihydrate. In addition, the hydration water of the prepared crystal was less than that of the conventional PQQ disodium crystal. From the results of this study, it was found that the color and the near-infrared (NIR) spectrum of the prepared crystal changed depending on the water content in the dried samples. Conclusions The water content in the dried samples was restored to that in the trihydrate crystal by placing the samples in a humid environment. In addition, the results of X-ray diffraction (XRD) and X-ray diffraction-differential calorimetry (XRD-DSC) analyses show that the phase of the trihydrate crystal changed when the crystallization water was eliminated. The dried crystal has two crystalline forms that are restored to the original trihydrate crystals in 20% relative humidity (RH). This crystalline (PQQ disodium trihydrate) is stable under normal environment. PMID:22713213

2012-01-01

312

Dielectric constant adjustments in computations of the scattering properties of solid ice crystals using the Generalized Multi-particle Mie method  

NASA Astrophysics Data System (ADS)

Ice crystal scattering properties at microwave radar wavelengths can be modeled with the Generalized Multi-particle Mie (GMM) method by decomposing an ice crystal into a cluster of tiny spheres composed of solid ice. In this decomposition the mass distribution of the tiny spheres in the cluster is no longer equivalent to that in the original ice crystal because of gaps between the tiny spheres. To compensate for the gaps in the cluster representation of an ice crystal in the GMM computation of crystal scattering properties, the Maxwell Garnett approximation is used to estimate what the dielectric function of the tiny spheres (i.e., the inclusions) in the cluster must be to make the cluster of tiny spheres with associated air gaps (i.e., the background matrix) dielectrically equivalent to the original solid ice crystal. Overall, compared with the T-matrix method for spheroids outside resonance regions this approach agrees to within mostly 0.3 dB (and often better) in the horizontal backscattering cross section ?hh and the ratio of horizontal and vertical backscattering cross sections ?hh/?vv, and 6% for the amplitude scattering matrix elements Re{S22-S11} and Im{S22} in the forward direction. For crystal sizes and wavelengths near resonances, where the scattering parameters are highly sensitive to the crystal shape, the differences are generally within 1.2 dB for ?hh and ?hh/?vv, 20% for Re{S22-S11} and 6% for Im{S22}. The Discrete Dipole Approximation (DDA) results for the same spheroids are generally closer than those of GMM to the T-matrix results. For hexagonal plates the differences between GMM and the DDA at a W-band wavelength (3.19 mm) are mostly within 0.6 dB for ?hh, 1 dB for ?hh/?vv, 11% for Re{S22-S11} and 12% for Im{S22}. For columns the differences are within 0.3 dB for ?hh and ?hh/?vv, 8% for Re{S22-S11} and 4% for Im{S22}. This method shows higher accuracy than an alternative method that artificially increases the thickness of ice plates to provide the same mass as the original ice crystal.

Lu, Yinghui; Aydin, Kültegin; Clothiaux, Eugene E.; Verlinde, Johannes

2014-03-01

313

Photonic Crystal Structures with Tunable Structure Color as Colorimetric Sensors  

PubMed Central

Colorimetric sensing, which transduces environmental changes into visible color changes, provides a simple yet powerful detection mechanism that is well-suited to the development of low-cost and low-power sensors. A new approach in colorimetric sensing exploits the structural color of photonic crystals (PCs) to create environmentally-influenced color-changeable materials. PCs are composed of periodic dielectrics or metallo-dielectric nanostructures that affect the propagation of electromagnetic waves (EM) by defining the allowed and forbidden photonic bands. Simultaneously, an amazing variety of naturally occurring biological systems exhibit iridescent color due to the presence of PC structures throughout multi-dimensional space. In particular, some kinds of the structural colors in living organisms can be reversibly changed in reaction to external stimuli. Based on the lessons learned from natural photonic structures, some specific examples of PCs-based colorimetric sensors are presented in detail to demonstrate their unprecedented potential in practical applications, such as the detections of temperature, pH, ionic species, solvents, vapor, humidity, pressure and biomolecules. The combination of the nanofabrication technique, useful design methodologies inspired by biological systems and colorimetric sensing will lead to substantial developments in low-cost, miniaturized and widely deployable optical sensors. PMID:23539027

Wang, Hui; Zhang, Ke-Qin

2013-01-01

314

Ice-templated structures for biomedical tissue repair: From physics to final scaffolds  

E-print Network

to the increased surface area of solute which 3 CRYSTAL GROWTH 9 can participate in nucleation reactions [43, 50]. An increase in surface area per unit volume provides more nucleation sites, thus catalyzing the nucleation of ice at higher temperatures, leading... Cl) increased ionic salt concentration, decreased growth rate [61] Solute Concentration 5-30wt% sucrose increased solute concentration, [56] 2-6wt% carboxymethyl cellulose decreased growth rate [60] Viscosity 2wt% carboxymethyl cellulose (15-1012 Pa · sn, n = 0...

Pawelec, K. M.; Husmann, A; Best, Serena Michelle; Cameron, Ruth Elizabeth

2014-04-11

315

Novel photonic crystal cavities and related structures.  

SciTech Connect

The key accomplishment of this project is to achieve a much more in-depth understanding of the thermal emission physics of metallic photonic crystal through theoretical modeling and experimental measurements. An improved transfer matrix technique was developed to enable incorporation of complex dielectric function. Together with microscopic theory describing emitter radiative and non-radiative relaxation dynamics, a non-equilibrium thermal emission model is developed. Finally, experimental methodology was developed to measure absolute emissivity of photonic crystal at high temperatures with accuracy of +/-2%. Accurate emissivity measurements allow us to validate the procedure to treat the effect of the photonic crystal substrate.

Luk, Ting Shan

2007-11-01

316

Crystal structure of ?-d,l-allose  

PubMed Central

The title compound, C6H12O6, a C-3 position epimer of glucose, was crystallized from an equimolar mixture of d- and l-allose. It was confirmed that d-allose (l-allose) formed ?-pyran­ose with a 4 C 1 (1 C 4) conformation in the crystal. In the crystal, molecules are linked by O—H?O hydrogen bond, forming a three-dimensional framework. The cell volume of the racemic ?-d,l-allose is 739.36?(3)?Å3, which is about 10?Å3 smaller than that of chiral ?-d-allose [V = 751.0?(2)?Å3].

Ishii, Tomohiko; Senoo, Tatsuya; Kozakai, Taro; Fukada, Kazuhiro; Sakane, Genta

2015-01-01

317

Band structure analysis of crystals with discontinuous metallic wires  

Microsoft Academic Search

The band structure for normal propagation of crystals with finite straight metallic wires is studied for different wire diameters and lengths. The crystal is considered as a set of parallel grids. Dispersion characteristics are obtained by using a transmission line model where the parameters are calculated from the reflection and transmission coefficients of the grids. These coefficients are computed rigorously

Halim Boutayeb; Tayeb A. Denidni; Abdel Razik Sebak; Larbi Talbi

2005-01-01

318

Hydroflux synthesis and crystal structure of new lanthanide tungstate oxyhydroxides  

NASA Astrophysics Data System (ADS)

Single crystals of Na5Ln(OH)6WO4 where Ln = Er, Tm, and Yb were grown out of a NaOH hydroflux. The crystals were characterized by single crystal X-ray diffraction and were found to crystallize in the monoclinic space group I2/a. The lattice parameter ranges for the three structures are a = 11.2024(7) Å-11.2412(6) Å, b = 16.1850(10) Å-16.2220(10) Å, and c = 11.9913(7) Å-12.0323(7) Å while the ? angle range is 101.999(2)°-102.025(2)°.

Latshaw, Allison M.; Smith, Mark D.; Chance, W. Michael; zur Loye, Hans-Conrad

2015-04-01

319

The Crystal Structures of the Tryparedoxin-Tryparedoxin Peroxidase Couple Unveil the Structural Determinants of  

E-print Network

The Crystal Structures of the Tryparedoxin-Tryparedoxin Peroxidase Couple Unveil the Structural of electrons by the tryparedoxin/tryparedoxin peroxidase system (TXN/TXNPx) to reduce the hydroperoxides A (2012) The Crystal Structures of the Tryparedoxin-Tryparedoxin Peroxidase Couple Unveil the Structural

Paris-Sud XI, Université de

320

Freezing and melting behavior of an octyl ?-D-glucoside-water binary system--inhibitory effect of octyl ?-D-glucoside on ice crystal formation.  

PubMed

Phase transition behavior of lyotropic liquid crystals of an octyl ?-D-glucoside (OG)-water binary system during ice freezing and melting was studied by differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Not the thermotropic, but the lyotropic phase transition due to the change of OG concentration during ice freezing and melting was observed. The concentration-temperature phase diagram of the binary system was constructed. Melting temperature of ice, T(m), lyotropic phase transition temperature, T(tr), and glass transition temperatures of unfrozen phases in the absence and presence of ice, T(g) and T(g)', were shown in the phase diagram. The phase diagram indicated that the OG aqueous system was concentrated to ca. 90-92 wt% by ice freezing and exhibited glass transition at T(g)'. An observation of the concentration-gradient specimen by the cryo-POM showed the evidence of the inhibitory effects of OG on nucleation and growth of ice crystals in the extremely high OG concentration system in which the lamellar liquid crystalline phase was formed. This study provided the importance of the influence of concentration change by ice freezing on the behaviour of the sugar-based surfactant-water system under low temperature conditions. PMID:23133837

Ogawa, Shigesaburo; Asakura, Kouichi; Osanai, Shuichi

2012-12-21

321

Metal insulator semiconductor structure single crystal silicon liquid crystal light valve  

NASA Astrophysics Data System (ADS)

Detailed description of the structure, operation, fabrication, and performance of a fast-response metal- insulator-semiconductor structure single crystal silicon liquid crystal light valve (MIS-Si-LCLV) is given. A 45 degree(s) twisted nematic liquid crystal configuration has been utilized. A MIS-Si-LCLV is demonstrated with a limiting resolution of 40 lp/mm over a 45 mm aperture and contrast ratios of > 50:1, input light sensitivities at (lambda) equals 930 nm ((Delta) (lambda) equals 40 nm) of better than 30 (mu) W/cm2 and response times as fast as 20 ms have been measured.

Gao, JiaoBo; Ye, Ke-fei; Feng, Yue-you

1996-09-01

322

Influence of local surface albedo variability and ice crystal shape on passive remote sensing of thin cirrus  

NASA Astrophysics Data System (ADS)

Airborne measurements of solar spectral radiance reflected by cirrus are performed with the HALO-Solar Radiation (HALO-SR) instrument onboard the High Altitude and Long Range Research Aircraft (HALO) in November 2010. The data are used to quantify the influence of surface albedo variability on the retrieval of cirrus optical thickness and crystal effective radius. The applied retrieval of cirrus optical properties is based on a standard two-wavelength approach utilizing measured and simulated reflected radiance in the visible and near-infrared spectral region. Frequency distributions of the surface albedos from Moderate resolution Imaging Spectroradiometer (MODIS) satellite observations are used to compile surface-albedo-dependent lookup tables of reflected radiance. For each assumed surface albedo the cirrus optical thickness and effective crystal radius are retrieved as a function of the assumed surface albedo. The results for the cirrus optical thickness are compared to measurements from the High Spectral Resolution Lidar (HSRL). The uncertainty in cirrus optical thickness due to local variability of surface albedo in the specific case study investigated here is below 0.1 and thus less than that caused by the measurement uncertainty of both instruments. It is concluded that for the retrieval of cirrus optical thickness the surface albedo variability is negligible. However, for the retrieval of crystal effective radius, the surface albedo variability is of major importance, introducing uncertainties up to 50%. Furthermore, the influence of the bidirectional reflectance distribution function (BRDF) on the retrieval of crystal effective radius was investigated and quantified with uncertainties below 10%, which ranges below the uncertainty caused by the surface albedo variability. The comparison with the independent lidar data allowed for investigation of the role of the crystal shape in the retrieval. It is found that if assuming aggregate ice crystals, the HSRL observations fit best with the retrieved optical thickness from HALO-SR.

Fricke, C.; Ehrlich, A.; Jäkel, E.; Bohn, B.; Wirth, M.; Wendisch, M.

2014-02-01

323

Structural, optical and electrical characteristics of a new NLO crystal  

NASA Astrophysics Data System (ADS)

A new nonlinear optical (NLO) organic crystal 1-[4-({(E)-[4-(methylsulfanyl)phenyl]methylidene}amino)phenyl]ethanone (MMP) has been grown by slow evaporation technique at ambient temperature. The crystal structure of MMP was determined by single crystal X-ray diffraction. MMP crystallizes in non-centrosymmetric monoclinic system with space group P21. The FT-IR spectrum recorded for new crystal confirmed the presence of various functional groups in the material. MMP was found to be thermally stable up to 300 °C. The grown crystal was optically transparent in the wavelength range of 400-1100 nm. The second harmonic generation (SHG) efficiency of the crystal was measured by the classical powder technique using Nd:YAG laser and was found to be 4.13 times more efficient than reference material, urea. Third order nonlinear parameters were measured by employing the Z-scan technique. The laser damage threshold for MMP crystal was determined to be 4.26 GW/cm2. The Brewster angle technique was employed to measure the refractive index of the crystal and the values for green and red wavelengths were found to be 1.35 and 1.33, respectively. The dielectric and electrical measurements were carried out to study the different polarization mechanisms and conductivity of the crystal.

D'silva, E. D.; Krishna Podagatlapalli, G.; Venugopal Rao, S.; Dharmaprakash, S. M.

2012-09-01

324

The Effect of High Pressure on Crystal Structure Topology   

E-print Network

This thesis describes the effects of the application of high pressure to single crystals of small organic compounds. A range of different structural analysis techniques have been used with the emphasis on whole molecule interactions rather than atom...

Wood, Peter Andrew

2008-01-01

325

A machine learning approach to crystal structure prediction  

E-print Network

This thesis develops a machine learning framework for predicting crystal structure and applies it to binary metallic alloys. As computational materials science turns a promising eye towards design, routine encounters with ...

Fischer, Christopher Carl

2007-01-01

326

Crystal morphology characteristics of the domain structure and superconducting properties of 123 single crystals  

Microsoft Academic Search

The characteristics of the domain structure of YBa(2-x)Sr(x)Cu3O(7-delta) single crystals are investigated for x = 0, 0.2, 0.4. and 0.5. A domain structure analysis is also carried out for TmBa(1.5)Sr(0.5)Cu3O(7-delta) single crystals. Various types of domain structure in these materials are identified, and a relationship is established between the domain structure type and the characteristics of the superconducting transition.

A. I. Otko; A. A. Nosenko; O. P. Bal'Va; M. B. Kosmyna; S. F. Prokopovich; A. S. Chernyi

1991-01-01

327

The crystal structure of faustite and its copper analogue turquoise  

Microsoft Academic Search

The crystal structure of faustite, ZnAI6(P04MOHhAH20, was determined using single-crystal data (Mo-KIX X-radiation, CCD area detector, 1624 unique reflections, RI = 4.91 %, wR2 = 9.23%), and compared with results of a reinvestigation of the structure of its copper analogue turquoise, CuAI6(P04MOH)gAH20 (2737 unique reflections, RI = 2.81%, wR2 = 6.90%). Both are isostructural and crystallize in space group PI,

U. Kolitsch; G. Giester

2000-01-01

328

Crystal structure of a actinide metals at high compression  

SciTech Connect

The crystal structures of some light actinide metals are studied theoretically as a function of applied pressure. The first principles electronic structure theory is formulated in the framework of density functional theory, with the gradient corrected local density approximation of the exchange-correlation functional. The light actinide metals are shown to be well described as itinerant (metallic) f-electron metals and generally, they display a crystal structure which have, in agreement with previous theoretical suggestions, increasing degree of symmetry and closed-packing upon compression. The theoretical calculations agree well with available experimental data. At very high compression, the theory predicts closed-packed structures such as the fcc or the hcp structures or the nearly closed-packed bcc structure for the light actinide metals. A simple canonical band picture is presented to explain in which particular closed-packed form these metals will crystallize at ultra-high pressure. {copyright} {ital 1996 American Institute of Physics.}

Fast, L. [Condensed Matter Theory Group, Physics Department, Uppsala University, Box 530 (Sweden); Soederlind, P. [Physics Department, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

1996-05-01

329

Supercooled Droplets and Ice Crystals in Mixed-Phase Clouds: Numerical Simulations Considering Isotropic Turbulence of the Ambient Flow Field  

NASA Astrophysics Data System (ADS)

In midlatitudes the formation and evolution of precipitation is the result of a chain of processes taking place in mixed-phase clouds. Due to the coexistence of supercooled water drops and ice particles in such clouds mutual interactions by collisions, i.e. riming and aggregation, take place leading to ice hydrometeors of a large precipitation size. In the past these collision mechanisms have been investigated - besides laboratory measurements - by numerical simulations of the collision process where trajectories of the participating hydrometeors have been calculated as occurring in an environment at rest (Pruppacher and Klett, Kluwer Academic Publishers, Dordrecht, 1997). However, as it is well-known the flow field in clouds is almost always turbulent (Siebert et al., Atmos. Res. 97 (2010) 426-437) except in undiluted updrafts of single strong convective clouds. And it has been argued that turbulence may enhance precipitation formation. As a consequence turbulence effects on the collisional interaction of cloud and other heavy particles came into focus during the last decade and gave rise to the description in terms of radial distribution function, mean radial relative velocity and the collection efficiency all derived from numerical simulations. Up to now mostly the turbulence influence on cloud droplet/cloud droplet collisions has been investigated (Ayala et al., New J. Phys. 10 (2008) 075015), (Bec et al., J. Fluid Mech. 646 (2010) 527-536). Much less is known about the influence of turbulence on particles in mixed phase clouds. This is mainly due to the various and complex shapes of the ice particles depending on the temperature, the supersaturation, and their life time. Hence, our knowledge about the behavior of ice crystals in turbulence is based on wind tunnel experiments. In the early stage ice crystals often have the shape of hexagonal plates or needles. In theoretical and numerical studies these are commonly approximated by ellipsoids. However, except in (Pinsky and Khain, Atmos. Res. 47-48 (1998) 69-86) only laminar flows have been considered so far. Therefore we have developed a numerical experiment with a novel setup (Kunnen et al., under review in Atmos. Res. (2013)). Therein synthetic turbulence is generated at the inflow and is then advected by a mean flow through the domain. The full Navier-Stokes equations are solved using a DNS method on an Eulerian Cartesian grid. The evolving decaying turbulence shares similarities with the grid-generated turbulence of wind tunnels. In this flow several million particle spheres as well as ellipsoids are advanced in a Lagrangian manner in order to represent the supercooled droplets and ice crystals out of a small region of a mixed-phase cloud. Statistics will be gathered about the orientation, the sedimentation velocities, the clustering, and the relative velocities of these particles. From this basis collision kernels can be calculated. These are input parameters for cloud models estimating the evolution of precipitation.

Siewert, Christoph; Kunnen, Rudie; Meinke, Matthias; Schröder, Wolfgang; Beheng, Klaus

2013-04-01

330

The Crystal and Molecular Structure of Dianhydrogossypol  

Microsoft Academic Search

Dianhydrogossypol (4,4?-dihydroxy-5,5?-diisopropyl-7,7?-dimethyl-bis(3H-naphtho[1,8-bc]furan-3-one)) was made by refluxing gossypol in m-xylene. Proton NMR spectroscopy was used to confirm that complete conversion was achieved over a time period of several hours.\\u000a Single crystals of the compound were obtained by slow evaporation from dichloromethane. Diffraction studies indicate that\\u000a this crystal form is tetragonal with a I41\\/a space group and with cell dimensions of a = b = 33.8265(4) Å,

Samat A. Talipov; Azimjon A. Mamadrakhimov; Zavkibek G. Tiljakov; Michael K. Dowd; Bakhtiyar T. Ibragimov; Muhabbat T. Xonkeldieva

2009-01-01

331

Crystal Structure of DL-Alanine Sulfate  

Microsoft Academic Search

Crystals of [(C3NO2H7)2·H2SO4] composition were analyzed by single-crystal X-ray diffraction (triclinic, P\\u000a$${\\\\bar 1}$$\\u000a, a = 7.431(3), b = 9.826(3), c = 10.081(3) Å, a = 120.07(5), ß = 104.73(5), ? = 94.24(5)°). The independent part of the unit cell contains two alanine molecules and one sulfate ion. The amino group is additionally protonated in both molecules. One of

Yu. I. Smolin; A. E. Lapshin; G. A. Pankova; Yu. N. Osipova

2004-01-01

332

Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein–ice interaction  

Microsoft Academic Search

Background Antifreeze proteins are found in certain fish inhabiting polar sea water. These proteins depress the freezing points of blood and body fluids below that of the surrounding sea water by binding to and inhibiting the growth of seed ice crystals. The proteins are believed to bind irreversibly to growing ice crystals in such a way as to change the

Frank D Sönnichsen; Carl I DeLuca; Peter L Davies; Brian D Sykes

1996-01-01

333

Size, separation, structural order, and mass density of molecules packing in water and ice  

PubMed Central

The structural symmetry and molecular separation in water and ice remain uncertain. We present herewith a solution to unifying the density, the structure order and symmetry, the size (H-O length dH), and the separation (dOO = dL + dH or the O:H length dL) of molecules packing in water and ice in terms of statistic mean. This solution reconciles: i) the dL and the dH symmetrization of the O:H-O bond in compressed ice, ii) the dOO relaxation of cooling water and ice and, iii) the dOO expansion of a dimer and between molecules at water surface. With any one of the dOO, the density ?(g·cm?3), the dL, and the dH, as a known input, one can resolve the rest quantities using this solution that is probing conditions or methods independent. We clarified that: i) liquid water prefers statistically the mono-phase of tetrahedrally-coordinated structure with fluctuation, ii) the low-density phase (supersolid phase as it is strongly polarized with even lower density) exists only in regions consisting molecules with fewer than four neighbors and, iii) repulsion between electron pairs on adjacent oxygen atoms dictates the cooperative relaxation of the segmented O:H-O bond, which is responsible for the performance of water and ice. PMID:24141643

Huang, Yongli; Zhang, Xi; Ma, Zengsheng; Li, Wen; Zhou, Yichun; Zhou, Ji; Zheng, Weitao; Sun, Chang Q.

2013-01-01

334

An unconventional bilayer ice structure on a NaCl(001) film.  

PubMed

Water-solid interactions are of broad importance both in nature and technology. The hexagonal bilayer model based on the Bernal-Fowler-Pauling ice rules has been widely adopted to describe water structuring at interfaces. Using a cryogenic scanning tunnelling microscope, here we report a new type of two-dimensional ice-like bilayer structure built from cyclic water tetramers on an insulating NaCl(001) film, which is completely beyond this conventional bilayer picture. A novel bridging mechanism allows the interconnection of water tetramers to form chains, flakes and eventually a two-dimensional extended ice bilayer containing a regular array of Bjerrum D-type defects. Ab initio density functional theory calculations substantiate this bridging growth mode and reveal a striking proton-disordered ice structure. The formation of the periodic Bjerrum defects with unusually high density may have a crucial role as H donor sites in directing multilayer ice growth and in catalysing heterogeneous chemical reactions on water-coated salt surfaces. PMID:24874452

Chen, Ji; Guo, Jing; Meng, Xiangzhi; Peng, Jinbo; Sheng, Jiming; Xu, Limei; Jiang, Ying; Li, Xin-Zheng; Wang, En-Ge

2014-01-01

335

Size, separation, structural order, and mass density of molecules packing in water and ice  

NASA Astrophysics Data System (ADS)

The structural symmetry and molecular separation in water and ice remain uncertain. We present herewith a solution to unifying the density, the structure order and symmetry, the size (H-O length dH), and the separation (dOO = dL + dH or the O:H length dL) of molecules packing in water and ice in terms of statistic mean. This solution reconciles: i) the dL and the dH symmetrization of the O:H-O bond in compressed ice, ii) the dOO relaxation of cooling water and ice and, iii) the dOO expansion of a dimer and between molecules at water surface. With any one of the dOO, the density ?(g.cm-3), the dL, and the dH, as a known input, one can resolve the rest quantities using this solution that is probing conditions or methods independent. We clarified that: i) liquid water prefers statistically the mono-phase of tetrahedrally-coordinated structure with fluctuation, ii) the low-density phase (supersolid phase as it is strongly polarized with even lower density) exists only in regions consisting molecules with fewer than four neighbors and, iii) repulsion between electron pairs on adjacent oxygen atoms dictates the cooperative relaxation of the segmented O:H-O bond, which is responsible for the performance of water and ice.

Huang, Yongli; Zhang, Xi; Ma, Zengsheng; Li, Wen; Zhou, Yichun; Zhou, Ji; Zheng, Weitao; Sun, Chang Q.

2013-10-01

336

NMR characterization of the pore structure and anisotropic self-diffusion in salt water Ice  

PubMed

NMR imaging and one- and two-dimensional self-diffusion propagator measurements of the liquid phase in salt water ice are presented. The properties of the network of brine-filled pores are found to depend on the growth conditions of the ice. Two types of samples are compared: (a) shock-frozen ice produced in the probe in situ and (b) ice grown over several hours under controlled conditions. By shock-freezing, an ice structure could be produced which featured streak-like porous channels of diameters of up to 300 &mgr;m allowing almost unrestricted self-diffusion along one preferential axis but reduced diffusivities in the remaining directions. In ice grown under controlled conditions, the pore sizes are near the resolution limit of the imaging experiment of typically 50 &mgr;m. For this type of samples, strongly non-Gaussian self-diffusion propagators are obtained, indicating restricted self-diffusion on rms scales of 30 &mgr;m. Common to all samples was the observation of highly anisotropic self-diffusion. One- and two-dimensional propagators are compared in order to estimate the degree of anisotropy and the size of the restrictions. Copyright 2000 Academic Press. PMID:10729262

Menzel; Han; Stapf; Blumich

2000-04-01

337

The Crystal and Molecular Structure of Dianhydrogossypol  

Technology Transfer Automated Retrieval System (TEKTRAN)

Dianhydrogossypol (4,4'-dihydroxy-5,5'-diisopropyl-7,7'-dimethyl-bis(3H-naphtho[1,8-bc]furan-3-one)) was made by refluxing gossypol in m-xylene. Proton NMR confirmed that complete conversion was achieved over several hours. Single crystals were obtained by slow evaporation of the product from dichl...

338

The local structure and crystallization of FeB nanoparticle  

NASA Astrophysics Data System (ADS)

Using molecular dynamics simulation, we have studied the structural evolution of FeB nanoparticle under annealing and the physical properties of its polymorphs such as crystalline, amorphous and mixed samples. The main focus of present work is the crystallization mechanism and the local structure of polymorphs of FeB nanoparticle. The simulation result shows that the amorphous sample undergoes the crystallization via the nucleation mechanism. During the crystallization, B atoms move out the places where the Fe crystal locates, and diffuse to the boundary region of Fe crystal. The crystal growth proceeds when this boundary region attains specific properties which are defined by the fraction of B atoms and the energies of AB-atoms and CB-atoms. Further our study indicates that unlike amorphous sample, the crystalline and mixed samples consist of three distinct parts including Fe crystalline and two FeB amorphous parts (B-poor and B-rich amorphous part). The different polymorphs of FeB nanoparticle differ in the local structure, size of Fe crystal and energies of different type atoms.

Kien, P. H.; Thao, N. T.; Hung, P. K.

2014-12-01

339

Microbial production of ice crystals in clouds as a novel atmospheric biosignature  

NASA Astrophysics Data System (ADS)

A diverse assembly of exoplanets has been discovered during recent decades (Howard 2013), their atmospheres providing some of the most accessible evidence for the presence of biological activity on these planets. Metabolic gases have been commonly proposed as atmospheric biosignatures (Seager et al 2012). However, airborne microbes are also involved in cloud- and precipitation formation on Earth. Thus, meteorological phenomena may serve as alternative atmospheric biosignatures, for which appropriate observational techniques have yet to be developed. The atmospheric part of the Earth's water cycle heavily relies on the presence of nucleating particles, which promote the condensation and freezing of atmospheric water, both potentially leading to precipitation. While cloud condensation nuclei are diverse and relatively common, ice nuclei are poorly understood and comparably rare airborne particles. According to current knowledge, most ice nucleation below ñ15?C is driven by the presence of inorganic dust particles, which are considered inactive at higher temperatures. Biogenic IN are the only reported particles that promote ice formation above ñ10?C. Some bacteria, e.g. Pseudomonas syringae, produce Ice Nucleation Active (INA) proteins that are most efficient ice nuclei currently known. These INA bacteria are common in the atmosphere, and may thus be involved in precipitation processes of mixed phase clouds (Möhler et al 2007). We investigate the relevance of bacterial INA proteins for atmospheric processes using three approaches: (i) study of the presence of INA bacteria and their INA proteins in the atmosphere, (ii) a detailed molecular and physical study of isolated INA proteins, and finally (iii) a modeling study of the importance of INA proteins for ice-path in clouds as well as their importance for precipitation. During 14 precipitation events, we observed that 12% of isolated bacteria carried INA genes. INA bacteria had likely been emitted to the atmosphere from terrestrial surfaces, e.g. by convective transport. Additionally, we found INA biological fragments <220 nm in two precipitation samples (199, 482 INA per L), which indicates that in addition to intact cells, bacterial fragments that are more abundant than cells could also impact atmospheric processes. In order to study isolated INA proteins, we sequenced the INA gene from one of the isolated bacteria, Pseudomonas sp. R10.79. The INA gene will be expressed, purified and introduced into nano-discs. These INA nano-discs will facilitate a detailed molecular and physical study of INA proteins and its ice active properties. Most of modeling approaches rely on parameterizations based on classical nucleation theory, e.g. CH08 (Chen et al 2008), when introducing INA bacteria into climate models. Instead, we used an experimentally derived parameterization HAR13 (Hartmann et al 2013), when introducing bacteria into a 1-d operational weather forecast model HIRLAM (Unden et al 2002). By comparison HAR13 yields more ice and is more sensitive to the change of bacterial densities than CH08. While CH08 is a function of the size of the ice nuclei, HAR13 is a function of the number of INA protein complexes. INA protein complexes are the locations where the nucleation occurs and their number appears to be a more important parameter than cell size. We suggest that the study of individual INA proteins complexes both alone and on cell surfaces will lead to a better understanding of ice nucleation by INA bacteria.

Santl-Temkiv, T.; Sahyoun, M.; Kjeldsen, H.; Ling, M.; Boesen, T.; Karlson, U. G.; Finster, K.

2014-03-01

340

Crystal structure and vibrational spectra of piperazinium bis(4-hydroxybenzenesulphonate) molecular-ionic crystal  

NASA Astrophysics Data System (ADS)

The piperazinium bis(4-hydroxybenzenesulphonate) crystallizes from water solution at room temperature in P2 1/ c space group of monoclinic system. The crystals are built up of doubly protonated piperazinium cations and ionized 4-hydroxybenzenesulphonate anions that interact through weak hydrogen bonds of O-H⋯O and N-H⋯O type. Mutual orientation of anions is determined by non-conventional hydrogen bonds of C-H⋯? type. Room temperature powder FT IR and FT Raman measurements were carried out. The vibrational spectra are in full agreement with the structure obtained from X-ray crystallography. The big single crystals of the title salt can be grown.

Marchewka, M. K.; Pietraszko, A.

2008-02-01

341

Single-crystal growth, crystal and electronic structure of NaCoO 2  

Microsoft Academic Search

Single crystals of NaCoO2 have been successfully synthesized for the first time by a flux method at 1323K. A single-crystal X-ray diffraction study confirmed the trigonal R3?m space group and the lattice parameters a=2.8897(15)A?, c=15.609(3)A?. The crystal structure has been refined to the conventional values R=1.9% and wR=2.1% for 309 independent observed reflections. The electron density distribution of NaCoO2 has

Yasuhiko Takahashi; Yoshito Gotoh; Junji Akimoto

2003-01-01

342

Crystal Structure and Interaction Dependence of the Crystal-Melt Interfacial Free Energy  

Microsoft Academic Search

We examine via molecular simulation the dependence of the crystal-melt interfacial free energy gamma on molecular interaction and crystal structure (fcc vs bcc) for systems interacting with inverse-power repulsive potentials, u(r)=?(sigma\\/r)n, 6<=n<=100. Both the magnitude and anisotropy of gamma are found to increase as the range of the potential increases. Also we find that gammabcc

Ruslan L. Davidchack; Brian B. Laird

2005-01-01

343

Datamining protein structure databanks for crystallization patterns of proteins.  

PubMed

A study of 345 protein structures selected among 1,500 structures determined by nuclear magnetic resonance (NMR) methods, revealed useful correlations between crystallization properties and several parameters for the studied proteins. NMR methods of structure determination do not require the growth of protein crystals, and hence allow comparison of properties of proteins that have or have not been the subject of crystallographic approaches. One- and two-dimensional statistical analyses of the data confirmed a hypothesized relation between the size of the molecule and its crystallization potential. Furthermore, two-dimensional Bayesian analysis revealed a significant relationship between relative ratio of different secondary structures and the likelihood of success for crystallization trials. The most immediate result is an apparent correlation of crystallization potential with protein size. Further analysis of the data revealed a relationship between the unstructured fraction of proteins and the success of its crystallization. Utilization of Bayesian analysis on the latter correlation resulted in a prediction performance of about 64%, whereas a two-dimensional Bayesian analysis succeeded with a performance of about 75%. PMID:12594078

Valafar, Homayoun; Prestegard, James H; Valafar, Faramarz

2002-12-01

344

Investigating the « ice mélange » in an ice-shelf coastal rift along the Princess Ragnhild Coast (Antarctica)  

NASA Astrophysics Data System (ADS)

This paper presents the first results of a glaciological investigation conducted in the vicinity of the new Belgian Antarctic research station "Princess Elisabeth" during the 2008-2009 Antarctic field season. The study is part of the BELISSIMA project which aim is to investigate the dynamics of transition zones at the grounding line and the interaction of the ice sheet and the ice-shelf with the ocean, with respect to the stability of the ice sheet. The studied site is a conspicuous rift zone developed in a short floating ice shelf, a few kilometres downstream from the grounding line associated with the presence of a coastal ice dome. The rift, very close to the location of the old Belgian Station "Base Roi Baudouin", is about 10 km long and between 0.5 and 4 km wide. A natural ramp on the eastern apex of the rift allowed access to the rift base, from where a series of five, 10-38 m-long cores were recovered. Visual observation of these cores indicates that they consist of heterogeneous ice types, which is typical of what is often referred to as the "ice mélange". Wind-blown snow, firn and ice dominate outside the rift and within the rift's apex ramp. However, within the base of the rift proper, where episodic tensional stresses dominate, the ice is correspondingly more heavily crevassed and shows clear surface albedo contrasts, suggesting material heterogeneity. Ice cores from these areas show an abrupt transition within a few metres of the surface from surface-derived firn and ice to a sharply contrasting ice type that is translucent, greenish, and bubble-free -interpreted as marine ice. Such ice results from the consolidation of frazil ice crystals which are known to be forming in Ice Shelf Water through ice-ocean interactions in other regions of Antarctica (e.g. Filchner-Ronne Ice Shelf, Amery ice Shelf, Nansen Ice Shelf). One of our drill sites was located in a surface outcrop of marine ice, yielding 13 m of solid translucent ice, overlying ~0.5 m of fragile and loosely consolidated ice before the sub-shelf interface was reached. Borehole images from below this interface reveal an additional thickness of at least 5 m of loose platelet ice crystals located below the shelf, suggesting an active thermohaline convection in the region. The paper presents textural, structural, bulk salinity, bulk density and stable isotopes (DeltaD, Delta18O) results from the five ice cores and discusses origin and transformation of the various ice types forming the "ice mélange" and their potential impact on the welding efficiency of the rift.

Depoorter, Mathieu; Samyn, Denis; Hubbard, Bryn; Pattyn, Frank; Matsuoka, Kenny; Dierckx, Marie; Tison, Jean-Louis

2010-05-01

345

Predicting crystal structure by merging data mining with quantum mechanics  

E-print Network

ARTICLES Predicting crystal structure by merging data mining with quantum mechanics CHRISTOPHER C@mit.edu Published online: 9 July 2006; doi:10.1038/nmat1691 Modern methods of quantum mechanics have proved with quantum mechanics if an algorithm to direct the search through the large space of possible structures

Ceder, Gerbrand

346

Structures of Four Crystal Forms of Decaplanin by Christopher Lehmanna  

E-print Network

birthday The glycopeptide antibiotic decaplanin (1; formerly known as MM 47761 and M86-1410) crystallizes facilitated the MAD structure solution. The structures contain the dimer units typical of antibiotics related threat presented by pathogens that have developed multiple resistance to antibiotics [1], in particular

347

Hexagonal structures for two-dimensional photonic crystals  

Microsoft Academic Search

Periodic dielectric structures have been recently proposed to inhibit spontaneous emission in semiconductors. From this suggestion, the new concepts of photonic band gap and photonic crystal have been developed. Zero-threshold lasers, waveguides, antenna substrates, filters and polarizers are promising applications. We propose a new class of two-dimensional periodic dielectric structures with hexagonal symmetry. We study the gap opening according to

D. Cassagne; C. Jouanin; D. Bertho

1996-01-01

348

Optimization of liquid crystal structures for real time holography applications.  

PubMed

In this paper we present results of experiments designed to increase our understanding of the photorefractive effect occurring during processes of dynamic hologram generation in Hybrid Photorefractive Liquid Crystal Structures (HPLCS). We also propose equivalent mathematical model which can be used to optimize those structures in order to obtain the highest diffraction efficiency in possibly shortest time. PMID:22109472

Sahraoui, B; Anczykowska, A; Bartkiewicz, S; Mysliwiec, J

2011-11-21

349

Boron-oxygen polyanion in the crystal structure of tunellite  

USGS Publications Warehouse

The crystal structure of tunellite, SrO??3B2O 3??4H2O, with infinite sheets of composition n[B6O9(OH)2]2-, has cations and water molecules in the spaces within the sheets. Adjacent sheets are held together by hydrogen bonding through the water molecules. The boron-oxygen polyanions provide the first example in hydrated borate crystals of one oxygen linked to three borons.

Clark, J.R.

1963-01-01

350

Crystal Structure of L-Histidinium 2-Nitrobenzoate  

PubMed Central

A new nonlinear optical organic compound, namely, L-histidinium 2-nitrobenzoate (abbreviated as LH2NB (I); ([C6H10N3O2]+ [C7H4NO4]?)), was synthesized. The molecular structure of LH2NB (I) was elucidated using single crystal X-ray diffraction technique. The second harmonic generation (SHG) efficiency of this compound is about two times that of the standard potassium dihydrogen phosphate crystals. PMID:22536482

Natarajan, Subramanian; Moovendaran, Kalimuthu; Kalyana Sundar, Jeyaperumal; Ravikumar, Krishnan

2012-01-01

351

De-icing: recovery of diffraction intensities in the presence of ice rings  

PubMed Central

Macromolecular structures are routinely determined at cryotemperatures using samples flash-cooled in the presence of cryoprotectants. However, sometimes the best diffraction is obtained under conditions where ice formation is not completely ablated, with the result that characteristic ice rings are superimposed on the macromolecular diffraction. In data processing, the reflections that are most affected by the ice rings are usually excluded. Here, an alternative approach of subtracting the ice diffraction is tested. High completeness can be retained with little adverse effect upon the quality of the integrated data. This offers an alternate strategy when high levels of cryoprotectant lead to loss of crystal quality. PMID:20516627

Chapman, Michael S.; Somasundaram, Thayumanasamy

2010-01-01

352

De-icing: recovery of diffraction intensities in the presence of ice rings  

SciTech Connect

Macromolecular structures are routinely determined at cryotemperatures using samples flash-cooled in the presence of cryoprotectants. However, sometimes the best diffraction is obtained under conditions where ice formation is not completely ablated, with the result that characteristic ice rings are superimposed on the macromolecular diffraction. In data processing, the reflections that are most affected by the ice rings are usually excluded. Here, an alternative approach of subtracting the ice diffraction is tested. High completeness can be retained with little adverse effect upon the quality of the integrated data. This offers an alternate strategy when high levels of cryoprotectant lead to loss of crystal quality.

Chapman, Michael S.; Somasundaram, Thayumanasamy (Oregon State U.); (FSU)

2010-11-03

353

High density amorphous ice at room temperature  

PubMed Central

The phase diagram of water is both unusual and complex, exhibiting a wide range of polymorphs including proton-ordered or disordered forms. In addition, a variety of stable and metastable forms are observed. The richness of H2O phases attests the versatility of hydrogen-bonded network structures that include kinetically stable amorphous ices. Information of the amorphous solids, however, is rarely available especially for the stability field and transformation dynamics—but all reported to exist below the crystallization temperature of approximately 150–170 K below 4–5 GPa. Here, we present the evidence of high density amorphous (HDA) ice formed well above the crystallization temperature at 1 GPa—well inside the so-called “no-man’s land.” It is formed from metastable ice VII in the stability field of ice VI under rapid compression using dynamic-diamond anvil cell (d-DAC) and results from structural similarities between HDA and ice VII. The formation follows an interfacial growth mechanism unlike the melting process. Nevertheless, the occurrence of HDA along the extrapolated melt line of ice VII resembles the ice Ih-to-HDA transition, indicating that structural instabilities of parent ice VII and Ih drive the pressure-induced amorphization. PMID:21518902

Chen, Jing-Yin; Yoo, Choong-Shik

2011-01-01

354

Crystal Structures of Two Putative Phosphoheptose  

SciTech Connect

Structural genomic centers use both NMR spectroscopic and X-ray crystallographic methods to determine three-dimensional structures of proteins on a genomic scale in a high-throughput mode and to deposit in the PDB. The main goal of structural genomics is to determine a large number of protein structures to complement the ever-expanding database of genome sequences. Another role of structural genomics is to delineate the correspondence between sequence and structure space; a number of protein structures from otherwise unrelated (i.e., 8-10% sequence identity) families often prove to have remarkably similar folds. This finding, in turn, allows better understanding of the structure-function relationships in those proteins for which either structures are not available or cannot be experimentally determined.

Seetharaman,J.; Rajashankar, K.; Solarzano, V.; Kniewel, R.; Lima, C.; Bonanno, J.; Burley, S.; Swaminathan, S.

2006-01-01

355

Isothermal Ice-Crystallization Kinetics in the Gas-Diffusion Layer of a Proton-Exchange-Membrane Fuel Cell  

SciTech Connect

Nucleation and growth of ice in the fibrous gas-diffusion layer (GDL) of a proton-exchange membrane fuel cell (PEMFC) are investigated using isothermal differential scanning calorimetry (DSC). Isothermal crystallization rates and pseudo-steady-state nucleation rates are obtained as a function of subcooling from heat-flow and induction-time measurements. Kinetics of ice nucleation and growth are studied at two polytetrafluoroethylene (PTFE) loadings (0 and 10 wt %) in a commercial GDL for temperatures between 240 and 273 K. A nonlinear icecrystallization rate expression is developed using Johnson-Mehl-Avrami-Kolmogorov (JMAK) theory, in which the heat-transfer-limited growth rate is determined from the moving-boundary Stefan problem. Induction times follow a Poisson distribution and increase upon addition of PTFE, indicating that nucleation occurs more slowly on a hydrophobic fiber than on a hydrophilic fiber. The determined nucleation rates and induction times follow expected trends from classical nucleation theory. A validated rate expression is now available for predicting icecrystallization kinetics in GDLs.

Dursch, Thomas J.; Ciontea, Monica A.; Radke, Clayton J.; Weber, Adam Z.

2011-11-11

356

Crystal engineering with thioureas: A structure-based inquiry  

NASA Astrophysics Data System (ADS)

Structural trends applicable to crystal engineering were studied in three classes of thiourea-based compounds. The aim of the study was to identify, predict, and ultimately design reliable single-molecule structural features, which could then be used to engineer crystals with desirable properties. In one class of compounds, this goal was achieved: N-alkyl and N-aryl derivatives of N,N'-bis(3-thioureidopropyl)piperazine adopted an identical conformation in the solid state, which resulted in near-identical crystal packing. A second class of closely related compounds, N-substituted tris(2-thioureidoethyl)amines, showed no such reliability in the solid state, likely because the parent structure lacked hydrogen-bonding functionalities sufficient to control intramolecular structure. In the third class of compounds that we studied, 1-benzoyl-3-(2-pyridyl)thioureas, substitution patterns were often predictive of molecular conformation; however, these intramolecular trends did not lead to recognizable crystal packing motifs. Nevertheless, certain physical properties observed in this last class of compounds---color, solubility, and often crystallinity---were conformer-specific, interestingly without any apparent relevance to crystal lattice structure. Solution-state and solid-state conformational trends in these 1-benzoyl-3-(2-pyridyl)thioureas have been documented, and speculations as to the source of color in one of the two observed conformations have been noted.

Paisner, Kathryn A.

2011-12-01

357

Magnetic vortex crystal formation in the antidot complement of square artificial spin ice  

NASA Astrophysics Data System (ADS)

We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.

de Araujo, C. I. L.; Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Mól, L. A. S.; Moura-Melo, W. A.; Pereira, A. R.

2014-03-01

358

Magnetic vortex crystal formation in the antidot complement of square artificial spin ice  

SciTech Connect

We have studied ferromagnetic nickel thin films patterned with square lattices of elongated antidots that are negative analogues of square artificial spin ice. Micromagnetic simulations and direct current magnetic moment measurements reveal in-plane anisotropy of the magnetic hysteresis loops, and the formation of a dense array of magnetic vortices with random polarization and chirality. These multiply-connected antidot arrays could be superior to lattices of disconnected nanodisks for investigations of vortex switching by applied electric current.

Araujo, C. I. L. de, E-mail: dearaujo@ufv.br; Silva, R. C.; Ribeiro, I. R. B.; Nascimento, F. S.; Felix, J. F.; Ferreira, S. O.; Moura-Melo, W. A.; Pereira, A. R. [Departamento de Física, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais (Brazil); Mól, L. A. S. [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais (Brazil)

2014-03-03

359

Surface structure and stability of the Larsen C ice shelf, Antarctic Peninsula  

Microsoft Academic Search

A structural glaciological description and analysis of surface morphological features of the Larsen C ice shelf, Antarctic Peninsula, is derived from satellite images spanning the period 1963-2007. The data are evaluated in two time ranges: a comparison of a 1963 satellite image photomosaic with a modern digital mosaic compiled using 2003\\/04 austral summer data; and an image series since 2003

N. F. Glasser; B. Kulessa; A. Luckman; D. Jansen; E. C. King; P. R. Sammonds; T. A. Scambos; K. C. Jezek

2009-01-01

360

Characterization of ice cream structure by direct optical microscopy. Influence of freezing parameters  

Microsoft Academic Search

The main objective of this study was to develop and to set up a new optical direct microscopy method, based on the reflected light flux differences, with episcopic axial lighting to characterize the different phases structure of commercial overrun ice creams. Firstly, the results obtained have been validated by two others methods, a destructive method by dispersion and observation by

Alexandre Caillet; Claudia Cogné; Julien Andrieu; Pierre Laurent; Alain Rivoire

2003-01-01

361

The Arctic Cone Exploration Structure: A Mobile Offshore Drilling Unit for Heavy Ice Cover  

Microsoft Academic Search

This paper reports on the results of a rig development program which began in 1981 to design a mobile drilling unit which could operate beyond the 50 ft depth contour in the most exposed ice conditions. The Arctic Cone Exploration Structure (ACES) project has produced the design of what is likely to be the prototype for heavy-duty, bottom-founded mobile rigs

R. C. Byrd; R. Coleman; R. Weiss; L. Boaz; E. Sauve; R. M. White

1984-01-01

362

Link between the diversity, heterogeneity and kinetic properties of amorphous ice structures  

E-print Network

Based on neutron wide-angle diffraction and small-angle neutron scattering experiments, we show that there is a correlation between the preparational conditions of amorphous ice structures, their microscopic structural properties, the extent of heterogeneities on a mesoscopic spatial scale and the transformation kinetics. There are only two modifications that can be identified as homogeneous disordered structures, namely the very high-density vHDA and the low-density amorphous LDA ice. Structures showing an intermediate static structure factor with respect to vHDA and LDA are heterogeneous phases. This holds independently from their preparation procedure, i.e. either obtained by pressure amorphisation of ice I_h or by heating of vHDA. The degree of heterogeneity can be progressively suppressed when higher pressures and temperatures are applied for the sample preparation. In accordance with the suppressed heterogeneity the maximum of the static structure factor displays a pronounced narrowing of the first strong peak, shifting towards higher Q-numbers. Moreover, the less heterogeneous the obtained structures are the slower is the transformation kinetics from the high--density modifications into LDA. The well known high-density amorphous structure HDA does not constitute any particular state of the amorphous water network. It is formed due to the preparational procedure working in liquid nitrogen as thermal bath, i.e. at about 77 K.

Michael Marek Koza; Thomas Hansen; Roland P. May; Helmut Schober

2006-02-08

363

Crystal structures of bile salts: Sodium taurocholate  

Microsoft Academic Search

Crystals of sodium taurocholate (NaC26H44NO7S · 2.5 H2O) belonging to the triclinic space groupP1 have unit cell parametersa = 12.731 (2),b = 16.104 (2),c = 7.628 (1) ?A, a =83.40 (1),ß = 101.20 (1), ? = 105.35 (1)°, and two molecules in the asymmetric unit. The refinement, carried out on 4424 observed reflections, gaveR = 0.059 andRw = 0.066. The

Anna Rita Campanelli; Sofia Candeloro De Sanctis; Angelo Antonio D'Archivio; Edoardo Giglio; Lucid Scaramuzza

1991-01-01

364

Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure  

DOEpatents

Yb[sup 3+] and Nd[sup 3+] doped Sr[sub 5](VO[sub 4])[sub 3]F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr[sub 5](VO[sub 4])[sub 3]F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr[sub 5](VO[sub 4])[sub 3]F, where the Sr[sup 2+] and F[sup [minus

Payne, S.A.; Kway, W.L.; DeLoach, L.D.; Krupke, W.F.; Chai, B.H.T.

1994-08-23

365

Ytterbium- and neodymium-doped vanadate laser hose crystals having the apatite crystal structure  

DOEpatents

Yb.sup.3+ and Nd.sup.3+ doped Sr.sub.5 (VO.sub.4).sub.3 F crystals serve as useful infrared laser media that exhibit low thresholds of oscillation and high slope efficiencies, and can be grown with high optical quality. These laser media possess unusually high absorption and emission cross sections, which provide the crystals with the ability to generate greater gain for a given amount of pump power. Many related crystals such as Sr.sub.5 (VO.sub.4).sub.3 F crystals doped with other rare earths, transition metals, or actinides, as well as the many structural analogs of Sr.sub.5 (VO.sub.4).sub.3 F, where the Sr.sup.2+ and F.sup.- ions are replaced by related chemical species, have similar properties.

Payne, Stephen A. (Castro Valley, CA); Kway, Wayne L. (Fremont, CA); DeLoach, Laura D. (Manteca, CA); Krupke, William F. (Pleasanton, CA); Chai, Bruce H. T. (Oviedo, FL)

1994-01-01

366

Band-structure determination for finite 3-D photonic crystals  

NASA Astrophysics Data System (ADS)

The partial band structure from a finite photonic crystal is determined using a model based on light diffraction and the transfer-matrix formalism. The predictions from such a model are compared to an experimental measurement of the bands in the LU direction of a face centered cubic colloidal crystal. Then, both the theoretical predictions and the experimental measurements are compared with the usual band-structure calculation based on a plane-wave expansion with perfectly periodic boundary conditions. As in measurements performed in the past, discrepancies between the predictions of this later model and the experimentally determined bands are observed. On the contrary, using the model presented based on light propagation through a finite crystal, where no periodicity is imposed in the direction perpendicular to any of the set of planes considered to determine a specific branch of the band structure, we found a very good agreement between the experimentally determined and the predicted bandwidths.

Botey, M.; Maymó, M.; Martorell, J.

2005-07-01

367

Compact Couplers for Photonic Crystal Laser-Driven Accelerator Structures  

SciTech Connect

Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90{sup o}. We discuss details of the computation and the resulting transmission. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

Cowan, Benjamin; /Tech-X, Boulder; Lin, M.C.; /Tech-X, Boulder; Schwartz, Brian; /Tech-X, Boulder; Byer, Robert; /Stanford U., Phys. Dept.; McGuinness, Christopher; /Stanford U., Phys. Dept.; Colby, Eric; /SLAC; England, Robert; /SLAC; Noble, Robert; /SLAC; Spencer, James; /SLAC

2012-07-02

368

Impact of ice crystal habit on the parameterization of cloud microphysical properties when using 94ghz polarimetric scanning cloud radar during STORMVEX  

NASA Astrophysics Data System (ADS)

Through the analysis of scanning polarimetric W-band cloud radar data collected during STORMVEX, an algorithm has been developed to both identify and parameterize various ice crystal habits present within mixed-phase clouds. Armed with a unique dataset, the development of the algorithm took advantage of a slant 45° linear depolarization ratio (SLDR) measurement that was made as a function of the radar elevation angle when in range height indicator (RHI) scanning mode. This measurement technique proved to be invaluable in that it limited the influence of the particle's maximum dimension on the measured depolarization, which instead became more a function of the ice particle's shape. Validated through in situ measurements; pristine dendrites, lightly rimed dendrites, rimed stellar crystals, aggregates of dendrites, columns, and graupel particles were identified and matched with specific SLDR signatures. With a known ice particle habit and SLDR signature, the ice particle habit identification segment of the newly developed algorithm was then applied to the entire dataset consisting of 38,190 individual scans, in order to identify ice particle habits at a combined 849,745 range-heights and scanning angles. Through this analysis and the use of a chi-square test statistic, the predominant ice particle habit could be determined. Of primary interest in this study were the parameterizations of the ice particle mass and radar backscatter cross section. Through the modeling of the chosen ice particle habit as an oblate spheroid, these parameterizations were carried out in part by relying on previously published empirical studies as well as T-matrix scattering calculations of oblate spheroids composed of an ice/air mixture. Due to the computational expense of T-matrix calculations, however, a new T-matrix scaling factor was derived from the Clausius-Mossotti relation, which relates the refractive index of a material to its polarizability. With this scaling factor, new T-matrix results could be found, still functions of ice particle mass and shape. Using this new parameterization scheme, a radar-based cloud microphysical property retrieval algorithm was then executed for two cases and compared to generic parameterizations. Results show that the potential difference in the retrieved microphysical properties for the generic versus the ice particle habit-based parameterization could be as high as a factor of two.

Hammonds, Kevin Don

369

Measurement of the size of intracellular ice crystals in mouse oocytes using a melting point depression method and the influence of intracellular solute concentrations  

PubMed Central

Characterization of intracellular ice formed during the cooling procedures of cells significantly benefits the development and optimization design of cryopreservation or cryosurgery techniques. In this study, we investigated the influence of the concentration of extracellular non-permeable and permeable solutes on the melting points of the intracellular ice in mouse oocytes using cryomicroscopy. The results showed that the melting points of the intracellular ice are always lower than the extracellular ice. Based on this observation and the Gibbs-Thomson relation, we established a physical model to calculate the size of intracellular ice crystals and described its relationship with the concentrations of intracellular permeating solutes and macromolecules. This model predicts that the increased concentration of macromolecules in cells, by increasing the extracellular non-permeating solute concentration, can significantly lower the required concentration of permeable solutes for intracellular vitrification. The prediction was tested through the cryomicroscopic observation of the co-existence of intracellular vitrification and extracellular crystallization during cooling at 100°C/min when the extracellular solutions contain 5 molal (m) ethylene glycol and 0.3 to 0.6 m NaCl. PMID:19729005

Han, Xu; Critser, John K.

2009-01-01

370

The Cloud Particle Spectrometer with Polarization Detection (CPSPD): A next generation open-path cloud probe for distinguishing liquid cloud droplets from ice crystals  

NASA Astrophysics Data System (ADS)

The differentiation of small water droplets and ice crystals by in situ measurements, in the size range < 50 ?m, remains a challenge and the lack of such measurements is an obstacle to progress in understanding ice formation in clouds. A new microphysical instrument, the Cloud Particle Spectrometer with Polarization Detection (CPSPD), has been developed that measures light intensity scattered (in forward and backward directions) by individual cloud particles that pass through a focused laser beam and derives their size and thermodynamic phase (liquid or ice) in the optical diameter range from 2 to 50 ?m. The optical equivalent diameter is derived from the light scattered in the forward direction. The change in polarization state of the incident light, caused by interaction with the cloud particle, is determined from the polarized components of the backscattered light. The CPSPD, along with several other cloud microphysical probes, has been flown on the University of North Dakota Citation aircraft in mixed phase clouds. It has also been deployed and operated at the Zugspitze research station studying mountain clouds. The preliminary results show that liquid cloud droplets can be distinguished from ice crystals and that the ice fraction can be estimated; an important parameter for better understanding of cloud processes, particularly that of glaciation.

Baumgardner, Darrel; Newton, Roy; Krämer, Martina; Meyer, Jessica; Beyer, Alexander; Wendisch, Manfred; Vochezer, Paul

2014-06-01

371

Crystal chemistry and structure refinement of five hydrated calcium borates  

USGS Publications Warehouse

The crystal structures of the five known members of the series Ca2B6O11??xH2O (x = 1, 5, 5, 7, 9, and 13) have been refined by full-matrix least-squares techniques, yielding bond distances and angles with standard errors of less than 0??01 A?? and 0??5??, respectively. The results illustrate the crystal chemical principles that govern the structures of hydrated borate compounds. The importance of hydrogen bonding in the ferroelectric transition of colemanite is confirmed by more accurate proton assignments. ?? 1964.

Clark, J.R.; Appleman, D.E.; Christ, C.L.

1964-01-01

372

Crystal Structure Effect on Electrical Properties of Ysz Ceramics  

NASA Astrophysics Data System (ADS)

YSZ samples were prepared by Plasma Spray (PS) and Electron Beam Physical Vapor Deposition (EB-PVD) respectively. Microstructure and morphology were observed by SEM and XRD. Grain size of PS-YSZ was non-uniform caused by the inclusion of nano particle by molten particle and column crystal structure was observed for EB-PVD-YSZ. The Arrhenius plots of two samples were graphed by analysis of the measurement results of AC impedance spectra. The conductive mechanisms for EB-PVD and PS YSZ were different due to the crystal structure.

Zhang, Chunxia; Gong, Shengkai; Zhou, Chungen; Xu, Huibin

373

Recrystallization of ice during bulk storage of ice cream  

Microsoft Academic Search

Ice recrystallization was studied in 1.9 L containers of ice cream stored so that surface temperature of ice cream was controlled with fluctuations of ±1.0 °C. Core and surface samples were taken at regular intervals and analyzed for ice crystal size by cold-stage microscopy and image analysis. Mean ice crystal size plotted vs. time0.33 resulted in a straight line, with

Daniel P. Donhowe; Richard W. Hartel

1996-01-01

374

Crystal Structures of Monomeric Actin Bound to Cytochalasin D  

PubMed Central

The fungal toxin cytochalasin D (CD) interferes with the normal dynamics of the actin cytoskeleton by binding to the barbed end of actin filaments. Despite its widespread use as a tool for studying actin-mediated processes, the exact location and nature of its binding to actin has not been previously determined. Here we describe two crystal structures of an expressed monomeric actin in complex with CD, one obtained by soaking preformed actin crystals with CD, and the other by co-crystallization. The binding site for CD, in the hydrophobic cleft between actin subdomains 1 and 3, is the same in the two structures. Polar and hydrophobic contacts play an equally important role in CD binding, and six hydrogen bonds stabilize the actin-CD complex. Many unrelated actin-binding proteins and marine toxins target this cleft, and the hydrophobic pocket at the front end of the cleft (viewing actin with subdomain 2 in the upper right corner). CD differs in that it binds to the back half of the cleft. The ability of CD to induce actin dimer formation and actin-catalyzed ATP hydrolysis may be related to its unique binding site, and the necessity to fit its bulky macrocycle into this cleft. Contacts with residues lining this cleft appear to be crucial to capping and/or severing. The co-crystallized actin-CD structure also revealed changes in actin conformation. A rotation of ~6° of the smaller actin domain (subdomains 1 and 2) with respect to the larger domain (subdomains 3 and 4) results in small changes in crystal packing that allow the D-loop to adopt an extended loop structure, instead of being disordered as it is in most crystal structures of actin. We speculate that these changes represent a potential conformation that the actin monomer can adopt on the pathway to polymerization or in the filament. PMID:18938176

Nair, Usha B.; Joel, Peteranne B.; Wan, Qun; Lowey, Susan; Rould, Mark A.; Trybus, Kathleen M.

2008-01-01

375

Crystal structure of the human spastin AAA domain  

PubMed Central

Hereditary spastic paraplegia (HSP) is a motor neuron disease caused by a progressive degeneration of the motor axons of the corticospinal tract. Point mutations or exon deletions in the microtubule-severing ATPase, spastin, are responsible for approximately 40% of cases of autosomal dominant HSP. Here, we report the 3.3 Å X-ray crystal structure of a hydrolysis- deficient mutant (E442Q) of the human spastin protein AAA domain. This structure is analyzed in the context of the existing Drosophila melanogaster spastin AAA domain structure and crystal structures of other closely related proteins in order to build a more unifying framework for understanding the structural features of this group of microtubule-severing ATPases. PMID:22446388

Taylor, Jennifer L.; White, Susan Roehl; Lauring, Brett; Kull, F. Jon

2012-01-01

376

Crystal structure of the human spastin AAA domain.  

PubMed

Hereditary spastic paraplegia (HSP) is a motor neuron disease caused by a progressive degeneration of the motor axons of the corticospinal tract. Point mutations or exon deletions in the microtubule-severing ATPase, spastin, are responsible for approximately 40% of cases of autosomal dominant HSP. Here, we report the 3.3 Å X-ray crystal structure of a hydrolysis-deficient mutant (E442Q) of the human spastin protein AAA domain. This structure is analyzed in the context of the existing Drosophila melanogaster spastin AAA domain structure and crystal structures of other closely related proteins in order to build a more unifying framework for understanding the structural features of this group of microtubule-severing ATPases. PMID:22446388

Taylor, Jennifer L; White, Susan Roehl; Lauring, Brett; Kull, F Jon

2012-08-01

377

Formation of the structure of gold nanoclusters during crystallization  

SciTech Connect

The structure formation in gold nanoparticles 1.6-5.0 nm in diameter is studied by molecular dynamics simulation using a tight-binding potential. The simulation shows that the initial fcc phase in small Au clusters transforms into other structural modifications as temperature changes. As the cluster size increases, the transition temperature shifts toward the melting temperature of the cluster. The effect of various crystallization conditions on the formation of the internal structure of gold nanoclusters is studied in terms of microcanonical and canonical ensembles. The stability boundaries of various crystalline isomers are analyzed. The obtained dependences are compared with the corresponding data obtained for copper and nickel nanoparticles. The structure formation during crystallization is found to be characterized by a clear effect of the particle size on the stability of a certain isomer modification. Nickel and copper clusters are shown to exhibit common features in the formation of their structural properties, whereas gold clusters demonstrate much more complex behavior.

Gafner, Yu. Ya., E-mail: ygafner@khsu.ru; Goloven'ko, Zh. V.; Gafner, S. L. [Khakassian State University (Russian Federation)] [Khakassian State University (Russian Federation)

2013-02-15

378

CO2 (dry ice) cleaning system  

NASA Technical Reports Server (NTRS)

Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system components include: a dry ice pellet supply, a non-reactive propellant gas source, a pellet and propellant metering device, and a media transport and acceleration hose and nozzle arrangement. Dry ice cleaning system operating parameters include: choice of propellant gas, its pressure and temperature, dry ice mass flow rate, dry ice pellet size and shape, and acceleration nozzle configuration. These parameters may be modified to fit different applications. The growth of the dry ice cleaning industry will depend upon timely data acquisition of the effects that independent changes in these parameters have on cleaning rates, with respect to different surface coating and substrate combinations. With this data, optimization of cleaning rates for particular applications will be possible. The analysis of the applicable range of modulation of these parameters, within system component mechanical constraints, has just begun.

Barnett, Donald M.

1995-01-01

379

CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE  

SciTech Connect

Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

2009-01-01

380

Crystal structures of carbonates up to Mbar pressures determined by single crystal synchrotron radiation diffraction  

NASA Astrophysics Data System (ADS)

The recent improvements at synchrotron beamlines, currently allow single crystal diffraction experiments at extreme pressures and temperatures [1,2] on very small single crystal domains. We successfully applied such technique to determine the crystal structure adopted by carbonates at mantle pressures. The knowledge of carbon-bearing phases is in fact fundamental for any quantitative modelling of global carbon cycle. The major technical difficulty arises after first order transitions or decomposition reactions, since original crystal (apx. 10x10x5 ?m3) is transformed in much smaller crystalline domains often with random orientation. The use of 3D reciprocal space visualization software and the improved resolution of new generation flat panel detectors, however, allow both identification and integration of each single crystal domain, with suitable accuracy for ab-initio structure solution, performed with direct and charge-flipping methods and successive structure refinements. The results obtained on carbonates, indicate two major crystal-chemistry trends established at high pressures. The CO32- units, planar and parallel in ambient pressure calcite and dolomite structures, becomes non parallel in calcite- and dolomite-II and III phases, allowing more flexibility in the structures with possibility to accommodate strain arising from different cation sizes (Ca and Mg in particular). Dolomite-III is therefore also observed to be thermodynamically stable at lower mantle pressures and temperatures, differently from dolomite, which undergoes decomposition into pure end-members in upper mantle. At higher pressure, towards Mbar (lowermost mantle and D'' region) in agreement with theoretical calculations [3,4] and other experimental results [5], carbon coordination transform into 4-fold CO4 units, with different polymerisation in the structure depending on carbonate composition. The second important crystal chemistry feature detected is related to Fe2+ in Fe-bearing magnesite, which spontaneously oxidises at HP/HT, forming Fe3+ carbonates, Fe3+ oxides and reduced carbon (diamonds). Single crystal diffraction approach allowed full structure determination of these phases, yielding to the discovery of few unpredicted structures, such as Mg2Fe2C4O13 and Fe13O19, which can be well reproduced in different experiments. Mg2Fe2C4O13 carbonate present truncated chain C4O13 groups, and Fe13O19 oxide, whose stoichiometry is intermediate between magnetite and hematite, is a one-layer structure, with features encountered in superconducting materials. The results fully support the ideas of unexpected complexities in the mineralogy of the lowermost mantle, and single crystal technique, once properly optimized in ad-hoc synchrotron beamlines, is fundamental for extracting accurate structural information, otherwise rarely accessible with other experimental techniques. References: [1] Merlini M., Hanfland M. (2013). Single crystal diffraction at Mbar conditions by synchrotron radiation. High Pressure Research, in press. [2] Dubrovinsky et al., (2010). High Pressure Research, 30, 620-633. [3] Arapan et al. (1997). Phys. Rev. Lett., 98, 268501. [4] Oganov et al. (2008) EPSL, 273, 38-47. [5] Boulard et al. (2011) PNAS, 108, 5184-5187.

Merlini, M.

2013-12-01

381

Crystal Structure Representations for Machine Learning Models of Formation Energies  

E-print Network

We introduce and evaluate a set of feature vector representations of crystal structures for machine learning (ML) models of formation energies of solids. ML models of atomization energies of organic molecules have been successful using a Coulomb matrix representation of the molecule. We consider three ways to generalize such representations to periodic systems: (i) a matrix where each element is related to the Ewald sum of the electrostatic interaction between two different atoms in the unit cell repeated over the lattice; (ii) an extended Coulomb-like matrix that takes into account a number of neighboring unit cells; and (iii) an Ansatz that mimics the periodicity and the basic features of the elements in the Ewald sum matrix by using a sine function of the crystal coordinates of the atoms. The representations are compared for a Laplacian kernel with Manhattan norm, trained to reproduce formation energies using a data set of 3938 crystal structures obtained from the Materials Project. For training sets consi...

Faber, Felix; von Lilienfeld, O Anatole; Armiento, Rickard

2015-01-01

382

Crystal growth, structure analysis and characterisation of 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid single crystal  

NASA Astrophysics Data System (ADS)

Single crystal of dielectric material 2 - (1, 3 - dioxoisoindolin - 2 - yl) acetic acid has been grown by slow evaporation solution growth method. The grown crystal was harvested in 25 days. The crystal structure was analyzed by Single crystal X - ray diffraction. UV-vis-NIR analysis was performed to examine the optical property of the grown crystal. The thermal property of the grown crystal was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The dielectric measurements were carried out and the dielectric constant was calculated and plotted at all frequencies.

Sankari, R. Siva; Perumal, Rajesh Narayana

2014-04-01

383

A design protocol for tailoring ice-templated scaffold structure  

E-print Network

In this paper, we show, for the first time, the key link between scaffold architecture and latent heat evolution during the production of porous biomedical collagen structures using freeze-drying. Collagen scaffolds are used widely in the biomedical...

Pawelec, K. A.; Husmann, A.; Best, Serena Michelle; Cameron, Ruth Elizabeth

2014-03-06

384

Crystal structure of a human GABAA receptor  

PubMed Central

Summary Type-A ?-aminobutyric acid receptors (GABAARs) are the principal mediators of rapid inhibitory synaptic transmission in the human brain. A decline in GABAAR signalling triggers hyperactive neurological disorders such as insomnia, anxiety and epilepsy. Here we present the first three-dimensional structure of a GABAAR, the human ?3 homopentamer, at 3 Å resolution. This structure reveals architectural elements unique to eukaryotic Cys-loop receptors, explains the mechanistic consequences of multiple human disease mutations and shows a surprising structural role for a conserved N-linked glycan. The receptor was crystallised bound to a previously unknown agonist, benzamidine, opening a new avenue for the rational design of GABAAR modulators. The channel region forms a closed gate at the base of the pore, representative of a desensitised state. These results offer new insights into the signalling mechanisms of pentameric ligand-gated ion channels and enhance current understanding of GABAergic neurotransmission. PMID:24909990

Miller, Paul S.; Aricescu, A. Radu

2014-01-01

385

Crystal structures of two engineered thiol trypsins.  

PubMed

We have determined the three-dimensional structures of engineered rat trypsins which mimic the active sites of two classes of cysteine proteases. The catalytic serine was replaced with cysteine (S195C) to test the ability of sulfur to function as a nucleophile in a serine protease environment. This variant mimics the cysteine trypsin class of thiol proteases. An additional mutation of the active site aspartate to an asparagine (D102N) created the catalytic triad of the papain-type cysteine proteases. Rat trypsins S195C and D102N,S195C were solved to 2.5 and 2.0 A, respectively. The refined structures were analyzed to determine the structural basis for the 10(6)-fold loss of activity of trypsin S195C and the 10(8)-fold loss of activity of trypsin D102N,S195C, relative to rat trypsin. The active site thiols were found in a reduced state in contrast to the oxidized thiols found in previous thiol protease structures. These are the first reported structures of serine proteases with the catalytic centers of sulfhydryl proteases. Structure analysis revealed only subtle global changes in enzyme conformation. The substrate binding pocket is unaltered, and active site amino acid 102 forms hydrogen bonds to H57 and S214 as well as to the backbone amides of A56 and H57. In trypsin S195C, D102 is a hydrogen-bond acceptor for H57 which allows the other imidazole nitrogen to function as a base during catalysis. In trypsin D102N,S195C, the asparagine at position 102 is a hydrogen-bond donor to H57 which places a proton on the imidazole nitrogen proximal to the nucleophile. This tautomer of H57 is unable to act as a base in catalysis.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2611228

McGrath, M E; Wilke, M E; Higaki, J N; Craik, C S; Fletterick, R J

1989-11-28

386

Effect of local structures on structural evolution during crystallization in undercooled metallic glass-forming liquids.  

PubMed

The effect of local structures on structural evolution during the crystallization of undercooled ZrCu metallic glass-forming liquid was studied via molecular dynamics simulations. It is found that body-centered-cubic (bcc)-like clusters play a key role in structural evolution during crystallization. In contrast to previous speculations, the number of bcc-like crystal nuclei does not change much before the onset of crystallization. Instead, the development of a bcc-like critical nucleus during annealing leads to a strong spatial correlation with other nuclei in its surroundings, forming a crystalline structure template. It is also found that the size distribution of bcc-like nuclei follows a power-law form with an exponential cutoff in the early stage of annealing, but changes to a pure power-law behavior just before the onset of crystallization. This implies that the crystalline structure template has fractal feature and the undercooled liquids evolve to a self-organized critical state before the onset of crystallization, which might trigger the subsequent rapid crystallization. According to the graph theory analysis, it is also found that the observed large scatter of the onset time of crystallization in different liquid samples results from the connectivity of the bcc-like clusters. PMID:23445019

Wu, Z W; Li, M Z; Wang, W H; Song, W J; Liu, K X

2013-02-21

387

Effect of local structures on structural evolution during crystallization in undercooled metallic glass-forming liquids  

NASA Astrophysics Data System (ADS)

The effect of local structures on structural evolution during the crystallization of undercooled ZrCu metallic glass-forming liquid was studied via molecular dynamics simulations. It is found that body-centered-cubic (bcc)-like clusters play a key role in structural evolution during crystallization. In contrast to previous speculations, the number of bcc-like crystal nuclei does not change much before the onset of crystallization. Instead, the development of a bcc-like critical nucleus during annealing leads to a strong spatial correlation with other nuclei in its surroundings, forming a crystalline structure template. It is also found that the size distribution of bcc-like nuclei follows a power-law form with an exponential cutoff in the early stage of annealing, but changes to a pure power-law behavior just before the onset of crystallization. This implies that the crystalline structure template has fractal feature and the undercooled liquids evolve to a self-organized critical state before the onset of crystallization, which might trigger the subsequent rapid crystallization. According to the graph theory analysis, it is also found that the observed large scatter of the onset time of crystallization in different liquid samples results from the connectivity of the bcc-like clusters.

Wu, Z. W.; Li, M. Z.; Wang, W. H.; Song, W. J.; Liu, K. X.

2013-02-01

388

Crystal growth, spectral, structural and optical studies of ?-conjugated stilbazolium crystal: 4-Bromobenzaldehyde-4?-N?-methylstilbazolium tosylate  

NASA Astrophysics Data System (ADS)

Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4?-N?-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from 1H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (0 0 1) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (?) and energy band gap (Eg) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser.

Krishna Kumar, M.; Sudhahar, S.; Bhagavannarayana, G.; Mohan Kumar, R.

389

Crystal growth, spectral, structural and optical studies of ?-conjugated stilbazolium crystal: 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate.  

PubMed

Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from (1)H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (001) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (?) and energy band gap (E(g)) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser. PMID:24531108

Krishna Kumar, M; Sudhahar, S; Bhagavannarayana, G; Mohan Kumar, R

2014-05-01

390

Materials research at Stanford University. [composite materials, crystal structure, acoustics  

NASA Technical Reports Server (NTRS)

Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

1975-01-01

391

The Crystal Structure of the Human Hepatitis B Virus Capsid  

Microsoft Academic Search

Hepatitis B is a small enveloped DNA virus that poses a major hazard to human health. The crystal structure of the T = 4 capsid has been solved at 3.3 Å resolution, revealing a largely helical protein fold that is unusual for icosahedral viruses. The monomer fold is stabilized by a hydrophobic core that is highly conserved among human viral

S. A Wynne; R. A Crowther; A. G. W Leslie

1999-01-01

392

Crystal structure of S-glutathiolated carbonic anhydrase III  

Microsoft Academic Search

S-Glutathiolation of carbonic anhydrase III (CAIII) occurs rapidly in hepatocytes under oxidative stress. The crystal structure of the S-glutathiolated CAIII from rat liver reveals covalent adducts on cysteines 183 and 188. Electrostatic charge and steric contacts at each modification site inversely correlate with the relative rates of reactivity of these cysteines toward glutathione (GSH). Diffuse electron density associated with the

Robert J. Mallis; Bradley W. Poland; Tapan K. Chatterjee; Rory A. Fisher; Steven Darmawan; Richard B. Honzatko; James A. Thomas

2000-01-01

393

Crystal structure of the Anabaena sensory rhodopsin transducer  

PubMed Central

Presented in this paper are crystal structures of the Anabaena sensory rhodopsin transducer (ASRT), a soluble cytoplasmic protein that interacts with the first structurally characterized eubacterial retinylidene photoreceptor Anabaena sensory rhodopsin (ASR). Four crystal structures of ASRT from three different spacegroups were obtained, in all of which ASRT is present as a planar (C4) tetramer, consistent with our characterization of ASRT as a tetramer in solution. The ASRT tetramer is tightly packed with large interfaces where the well-structured ?-sandwich portion of the monomers provides the bulk of the tetramer-forming interactions and forms a flat, stable surface on one side of the tetramer (the “?-face”). Only one of our four different ASRT crystals reveals a C-terminal ?-helix in the otherwise all-? protein, together with a large loop from each monomer on the opposite face of the tetramer (the “?-face”), which is flexible and largely disordered in the other three crystal forms. Gel filtration demonstrates that ASRT forms stable tetramers in solution and isothermal microcalorimetry shows that the ASRT tetramer binds to ASR with a stoichiometry of one ASRT tetramer per one ASR photoreceptor with a Kd of 8 ?M. Possible mechanisms for the interaction of this transducer tetramer with the ASR photoreceptor via its flexible ?-face to mediate transduction of the light signal are discussed. PMID:17289074

Vogeley, Lutz; Trivedi, Vishwa D.; Sineshchekov, Oleg A.; Spudich, Elena N.; Spudich, John L.; Luecke, Hartmut

2007-01-01

394

COMMUNICATION Crystal Structure of Apaf-1 Caspase Recruitment  

E-print Network

a proteolytic cascade that leads to apoptotic cell death. We report the crystal structure of the Apaf-1 CARD). It triggers the proteolytic cascade by activating caspase-9 (Thornberry & Lazebnik, 1998) in response as molecules that bind to them like Apaf-1 and RAIDD. DEDs often occur as tandem repeats and are found

Joshua-Tor, Leemor

395

Unusual Features of Crystal Structures of Some Simple Copper Compounds  

ERIC Educational Resources Information Center

Some simple copper compounds have unusual crystal structures. Cu[subscript 3]N is cubic with N atoms at centers of octahedra formed by 6 Cu atoms. Cu[subscript 2]O (cuprite) is also cubic; O atoms are in tetrahedra formed by 4 Cu atoms. These tetrahedra are linked by sharing vertices forming two independent networks without linkages between them.…

Douglas, Bodie

2009-01-01

396

Classification, representation and prediction of crystal structures of ionic compounds  

Microsoft Academic Search

The aim of this paper is to show that with the aid of a qualitative model of ionic bonding, including polarizability, many crystal structures, mainly of halides and chalcogenides, can be explained or even predicted. Polarization of O2- and F- ions may be neglected unless these ions have very small, or small and highly charged cation neighbours. The polarizability of

E. W. Gorter

1970-01-01

397

Crystal structures and morphologies of fractionated milk fat in nanoemulsions.  

PubMed

The triacylglycerol (TAG) crystal structures and morphologies of fractionated milk lipids in nanoemulsions were investigated at 4°C. Droplet size (0.17 versus 1.20 ?m), lipid composition (stearin versus olein) and cooling rate (1 versus 10°C min(-1)) had an influence on the structural properties. Five crystal polymorphs (?, ?'1, ?'2, ?1, and ?2) were formed with either triple and/or double chain length structures in the solid phases of the emulsified systems. X-ray scattering peak intensities were reduced with the nanoemulsion particles. The internal structure of TAG exhibited stacking of individual lamellar layers (3.8-4.2 nm). Various anisometric shapes of fat nanoparticles were formed due to a highly sharp curvature of the nano-size droplets. The shape of olein nanoparticles was more polyhedral compared to the stearin. TAG crystals arranged in a planar-layered organisation at the slower cooling rate. These differences imply that the nanometric confinement of oil droplets modifies the fat crystal habit. PMID:25308656

Truong, Tuyen; Morgan, Garry P; Bansal, Nidhi; Palmer, Martin; Bhandari, Bhesh

2015-03-15

398

~ Animation of Crystal Structure Variations with Pressure, Temperature and Composition  

E-print Network

~ Animation of Crystal Structure Variations with Pressure, Temperature and Composition Robert T as a function of temperature, pressure and composition. Examples of these animations are found on the cover another is an effective way to make the computer animations. This paper presents an outline

Downs, Robert T.

399

Magnetic activity at infrared frequencies in structured metallic photonic crystals  

Microsoft Academic Search

We derive the effective permeability and permittivity of a nanostructured metallic photonic crystal by analysing the complex reflection and transmission coefficients for slabs of various thicknesses. These quantities were calculated using the transfer matrix method. Our results indicate that these structures could be used to realize a negative effective permeability, at least up to infrared frequencies. The origin of the

J B Pendry

2002-01-01

400

Light propagation in liquid crystals and liquid crystalline structures  

Microsoft Academic Search

Liquid crystals are optically complex materials, characterized in general by anisotropy, loss and chirality. Understanding light propagation both in uniform samples, and in stratified structures consisting of layers of such materials is of considerable interest for fundamental reasons. It is also essential for the effective use of these materials in technology. Light propagation in matter can be understood classically in

Haijun Yuan

2000-01-01

401

Exotic behavior and crystal structures of calcium under pressure  

E-print Network

Exotic behavior and crystal structures of calcium under pressure Artem R. Oganova,b,1 , Yanming Mac that calcium undergoes sev- eral counterintuitive transitions under pressure: fcc bcc simple cubic Ca-IV Ca-V, and becomes a good superconductor in the simple cubic and higher-pressure phases. Here, using ab initio

Oganov, Artem R.