Science.gov

Sample records for ice latent heat

  1. Study on Latent Heat of Fusion of Ice in Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Kumano, Hiroyuki; Asaoka, Tatsunori; Saito, Akio; Okawa, Seiji

    In this study, latent heat of fusion of ice in aqueous solutions was measured to understand latent heat of fusion of ice slurries. Propylene glycol, ethylene glycol, ethanol, NaCl and NaNO3 solutions were examined as the aqueous solutions. In the measurement, pure ice was put into the solution, and the temperature variation of the solution due to the melting of the ice was measured. Then, the effective latent heat of fusion was calculated from energy balance equation. When ice melts in solution, the concentration of the solution varies due to the melting of the ice, and dilution heat must be considered. Therefore, the latent heat of fusion of ice in aqueous solutions was predicted by considering the effects of dilution and freezing-point depression. The latent heat of fusion was also measured by differential scanning calorimetry(DSC) to compare the results obtained from the experiments with that obtained by DSC. As the result, it was found that the effective latent heat of fusion of ice decreased with the increase of the concentration of solution, and the effective latent heat of fusion was calculated from latent heat of fusion of pure ice and the effects of freezing-point depression and the dilution heat.

  2. Measurement of Latent Heat of Melting of Thermal Storage Materials for Dynamic Type Ice Thermal Storage

    NASA Astrophysics Data System (ADS)

    Sawada, Hisashi; Okada, Masashi; Nakagawa, Shinji

    In order to measure the latent heat of melting of ice slurries with various solute concentrations, an adiabatic calorimeter was constructed. Ice slurries were made from each aqueous solution of ethanol, ethylene glycol and silane coupling agent. The latent heat of melting of ice made from tap water was measured with the present calorimeter and the uncertainty of the result was one percent. Ice slurries were made both by mixing ice particles made from water with each aqueous solution and by freezing each aqueous solution with stirring in a vessel. The latent heat of melting of these ice slurries was measured with various concentrations of solution. The latent heat of melting decreased as the solute concentration or the freezing point depression increased. The latent heat of ice slurries made from ethanol or ethylene glycol aqueous solution agreed with that of ice made from pure water known already. The latent heat of melting of ice slurries made from silane coupling agent aqueous solution got smaller than that of ice made from pure water as the freezing point depression increased.

  3. The Measurement of the Specific Latent Heat of Fusion of Ice: Two Improved Methods.

    ERIC Educational Resources Information Center

    Mak, S. Y.; Chun, C. K. W.

    2000-01-01

    Suggests two methods for measuring the specific latent heat of ice fusion for high school physics laboratories. The first method is an ice calorimeter which is made from simple materials. The second method improves the thermal contact and allows for a more accurate measurement. Lists instructions for both methods. (Author/YDS)

  4. Latent heat induced rotation limited aggregation in 2D ice nanocrystals

    NASA Astrophysics Data System (ADS)

    Bampoulis, Pantelis; Siekman, Martin H.; Kooij, E. Stefan; Lohse, Detlef; Zandvliet, Harold J. W.; Poelsema, Bene

    2015-07-01

    The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma.

  5. Latent heat induced rotation limited aggregation in 2D ice nanocrystals.

    PubMed

    Bampoulis, Pantelis; Siekman, Martin H; Kooij, E Stefan; Lohse, Detlef; Zandvliet, Harold J W; Poelsema, Bene

    2015-07-21

    The basic science responsible for the fascinating shapes of ice crystals and snowflakes is still not understood. Insufficient knowledge of the interaction potentials and the lack of relevant experimental access to the growth process are to blame for this failure. Here, we study the growth of fractal nanostructures in a two-dimensional (2D) system, intercalated between mica and graphene. Based on our scanning tunneling spectroscopy data, we provide compelling evidence that these fractals are 2D ice. They grow while they are in material contact with the atmosphere at 20 °C and without significant thermal contact to the ambient. The growth is studied in situ, in real time and space at the nanoscale. We find that the growing 2D ice nanocrystals assume a fractal shape, which is conventionally attributed to Diffusion Limited Aggregation (DLA). However, DLA requires a low mass density mother phase, in contrast to the actual currently present high mass density mother phase. Latent heat effects and consequent transport of heat and molecules are found to be key ingredients for understanding the evolution of the snow (ice) flakes. We conclude that not the local availability of water molecules (DLA), but rather them having the locally required orientation is the key factor for incorporation into the 2D ice nanocrystal. In combination with the transport of latent heat, we attribute the evolution of fractal 2D ice nanocrystals to local temperature dependent rotation limited aggregation. The ice growth occurs under extreme supersaturation, i.e., the conditions closely resemble the natural ones for the growth of complex 2D snow (ice) flakes and we consider our findings crucial for solving the "perennial" snow (ice) flake enigma. PMID:26203037

  6. The Contribution of Englacial Latent Heat Transfer to Seaward Ice Flux from Regions of Convergent and Divergent Ice Flow in Western Greenland

    NASA Astrophysics Data System (ADS)

    Poinar, K.; Joughin, I. R.

    2014-12-01

    Glacial meltwater can refreeze within firn and crevasses, warming the ice through latent heat transfer. The consequent softening of the ice has been identified as a potential destabilization mechanism for the Greenland Ice Sheet, which would flow more quickly seaward with lower viscosity. We calculate the effect of meltwater refreezing within firn and englacial features on ice temperature and viscosity in two contrasting areas of western Greenland: Jakobshavn Isbrae, a convergent, fast-flowing outlet glacier, and the Pakitsoq area (Swiss Camp) directly to its north, a "dead zone" experiencing slow, divergent flow because of its location between two outlet glaciers. We explore how much refreezing affects the seaward velocity of ice in each location by comparing our modeled temperature profiles to borehole data. Pakitsoq ice shows significant englacial latent heat transfer, or cryo-hydrologic warming, while the ice in Jakobshavn has warmed largely due to percolation within the firn. We find that the Pakitsoq region is rather unique in western Greenland because of the long residence time of the ice in the ablation zone (800 years) there; ice flowing through Jakobshavn, by contrast, spends only 20 years in the ablation zone, not enough time for deep, diffusive englacial warming to occur. Examination of the velocity field of the ice sheet indicates that 70% of the ice flux through western Greenland spends insufficient time (200 years or less) in the ablation zone to produce significant englacial warming. Thus, the effects of englacial latent heat transfer may be fairly limited to regions of divergent flow such as Pakitsoq. Ice loss in these regions, which tend to be land-terminating, is dominated by surface melt rather than seaward ice motion, further suggesting that englacial heat transfer may have a lesser effect on the stability of the ice sheet than previously supposed.

  7. Understanding Latent Heat of Vaporization.

    ERIC Educational Resources Information Center

    Linz, Ed

    1995-01-01

    Presents a simple exercise for students to do in the kitchen at home to determine the latent heat of vaporization of water using typical household materials. Designed to stress understanding by sacrificing precision for simplicity. (JRH)

  8. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E.; Olson, W.

    2005-01-01

    Rainfall production is a fundamental process within the Earth;s hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations with the Tropics - as well as modify the energetic efficiencies of mid-latitude weather systems. This paper highlights the retrieval of observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional amount of rainfall over the global Tropics and sub-tropics - information which can be used to estimate the spacetime structure of latent heating across the Earth's low latitudes. A set of algorithm methodologies has and continues to be developed to estimate latent heating based on rain rate profile retrievals obtained from TRMM measurements. These algorithms are briefly described followed by a discussion of the foremost latent heating products that can be generate from them. The investigation then provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  9. Open cycle latent heat engine

    SciTech Connect

    Czaja, J.

    1989-12-19

    This patent describes an open cycle latent heat engine. It comprises: an elevator passageway having an entrance at a lower level and an exit at a higher level having a substantially higher elevation than the lower level; means for inputting warm water vapor into the lower level of the elevator passageway to produce a wet adiabatic expansion of moist air rising in the passageway; a condensate remover in the region of the exit from the elevator, the condensate remover being arranged for removing water condensed from the vapor at the higher elevation of the exit: compressor passageway descending from the region of the elevator passageway exit to the region of the elevator passageway entrance; an ejector arranged at a lower region of the compressor passageway and means for extracting energy from the air circulation flow established by the elevator passageway, the compressor passageway, and the ejector.

  10. Latent Heating from TRMM Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, E. A.; Adler, R.; Haddad, Z.; Hou, A.; Iguchi, T.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.

    2004-01-01

    Rainfall production is the fundamental variable within the Earth's hydrological cycle because it is both the principal forcing term in surface water budgets and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the tropics - as well as modifying the energetic efficiencies of midlatitude weather systems. This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) satellite observatory, which was launched in November 1997 as a joint American-Japanese space endeavor. Since then, TRMM measurements have been providing an accurate four-dimensional account of rainfall over the global tropics and sub-tropics, information which can be used to estimate the space-time structure of latent heating across the Earth's low latitudes. The paper examines how the observed TRMM distribution of rainfall has advanced an understanding of the global water and energy cycle and its consequent relationship to the atmospheric general circulation and climate via latent heat release. A set of algorithm methodologies that are being used to estimate latent heating based on rain rate retrievals from the TRMM observations are described. The characteristics of these algorithms and the latent heating products that can be generated from them are also described, along with validation analyses of the heating products themselves. Finally, the investigation provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, concluding with remarks intended to stimulate further research on latent heating retrieval from satellites.

  11. Retrieved Latent Heating from TRMM

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Smith, Eric A.; Houze Jr, Robert

    2008-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of precipitation formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the tropics with the associated latent heating (LH) accounting for three-fourths of the total heat energy available to the Earth's atmosphere. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. In the last decade, it has been established that standard products of LH from satellite measurements, particularly TRMM measurements, would be a valuable resource for scientific research and applications. Such products would enable new insights and investigations concerning the complexities of convection system life cycles, the diabatic heating controls and feedbacks related to meso-synoptic circulations and their forecasting, the relationship of tropical patterns of LH to the global circulation and climate, and strategies for improving cloud parameterizations in environmental prediction models. The status of retrieved TRMM LH products, TRMM LH inter-comparison and validation project, current TRMM LH applications and critic issues/action items (based on previous five TRMM LH workshops) is presented in this article.

  12. Latent Heating Structures Derived from TRMM

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E. A.; Adler, R.; Hou, A.; Kakar, R.; Krishnamurti, T.; Kummerow, C.; Lang, S.; Olson, W.; Satoh, S.

    2004-01-01

    Rainfall is the fundamental variable within the Earth's hydrological cycle because it is both the main forcing term leading to variations in continental and oceanic surface water budgets. The vertical distribution of latent heat release, which is accompanied with rain, modulates large-scale meridional and zonal circulations within the tropics as well as modifying the energetic efficiency of mid-latitude weather systems. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water.This paper focuses on the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission 0. The TRMM observatory, whose development was a joint US-Japan space endeavor, was launched in November 1997. TRMM measurements provide an accurate account of rainfall over the global tropics, information which can be .used to estimate the four-dimensional structure of latent heating across the entire tropical and sub-tropical regions. Various algorithm methodologies for estimating latent heating based on rain rate measurements from TRMM observations are described. The strengths and weaknesses of these algorithms, as well as the latent heating products generated by these algorithms, are also discussed along with validation analyses of the products. The investigation paper provides an overview of how TRMM-derived latent heating information is currently being used in conjunction with global weather and climate models, and concludes with remarks designed to stimulate further research on latent heating retrieval

  13. Dish-mounted latent heat buffer storage

    NASA Technical Reports Server (NTRS)

    Manvi, R.

    1981-01-01

    Dish-mounted latent heat storage subsystems for Rankine, Brayton, and Stirling engines operating at 427 C, 816 C, and 816 C respectively are discussed. Storage requirements definition, conceptual design, media stability and compatibility tests, and thermal performance analyses are considered.

  14. Latent Heat in Soil Heat Flux Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  15. Revisiting Black's experiments on the latent heats of water

    NASA Astrophysics Data System (ADS)

    Güémez, J.; Fiolhais, C.; Fiolhais, M.

    2002-01-01

    Historical experiments may help students to better understand some physical phenomena. We reproduced Black's original experiments on the latent heats of water (fusion and vaporization). To obtain both latent heats with reasonable accuracy we needed concepts, which were not used by Black, such as the water equivalent of a calorimeter and Newton's law of cooling. The melting experiment is adequate to obtain an accurate value for the latent heat with a small uncertainty, but the same is not true for the vaporization experiment.

  16. Low temperature latent heat thermal energy storage - Heat storage materials

    NASA Astrophysics Data System (ADS)

    Abhat, A.

    1983-01-01

    Heat-of-fusion storage materials for low temperature latent heat storage in the temperature range 0-120 C are reviewed. Organic and inorganic heat storage materials classified as paraffins, fatty acids, inorganic salt hydrates and eutectic compounds are considered. The melting and freezing behavior of the various substances is investigated using the techniques of Thermal Analysis and Differential Scanning Calorimetry. The importance of thermal cycling tests for establishing the long-term stability of the storage materials is discussed. Finally, some data pertaining to the corrosion compatibility of heat-of-fusion substances with conventional materials of construction is presented.

  17. Determination of the Latent Heats and Triple Point of Perfluorocyclobutane

    ERIC Educational Resources Information Center

    Briggs, A. G.; Strachan, A. N.

    1977-01-01

    Proposes the use of Perfluorocyclobutane in physical chemistry courses to conduct experiments on latent heat, triple point temperatures and pressures, boiling points, and entropy of vaporization. (SL)

  18. Solar thermoelectricity via advanced latent heat storage

    NASA Astrophysics Data System (ADS)

    Olsen, M. L.; Rea, J.; Glatzmaier, G. C.; Hardin, C.; Oshman, C.; Vaughn, J.; Roark, T.; Raade, J. W.; Bradshaw, R. W.; Sharp, J.; Avery, A. D.; Bobela, D.; Bonner, R.; Weigand, R.; Campo, D.; Parilla, P. A.; Siegel, N. P.; Toberer, E. S.; Ginley, D. S.

    2016-05-01

    We report on a new modular, dispatchable, and cost-effective solar electricity-generating technology. Solar ThermoElectricity via Advanced Latent heat Storage (STEALS) integrates several state-of-the-art technologies to provide electricity on demand. In the envisioned STEALS system, concentrated sunlight is converted to heat at a solar absorber. The heat is then delivered to either a thermoelectric (TE) module for direct electricity generation, or to charge a phase change material for thermal energy storage, enabling subsequent generation during off-sun hours, or both for simultaneous electricity production and energy storage. The key to making STEALS a dispatchable technology lies in the development of a "thermal valve," which controls when heat is allowed to flow through the TE module, thus controlling when electricity is generated. The current project addresses each of the three major subcomponents, (i) the TE module, (ii) the thermal energy storage system, and (iii) the thermal valve. The project also includes system-level and techno- economic modeling of the envisioned integrated system and will culminate in the demonstration of a laboratory-scale STEALS prototype capable of generating 3kWe.

  19. The effective latent heat of aqueous nanofluids

    NASA Astrophysics Data System (ADS)

    Lee, Soochan; Taylor, Robert A.; Dai, Lenore; Prasher, Ravi; Phelan, Patrick E.

    2015-06-01

    Nanoparticle suspensions, popularly termed ‘nanofluids’, have been extensively investigated for their thermal and radiative properties (Eastman et al 1996 Mater. Res. Soc. Proc. 457; Keblinski et al 2005 Mater. Today 8 36-44 Barber et al 2011 Nanoscale Res. Lett. 6 1-13 Thomas and Sobhan 2011 Nanoscale Res. Lett. 6 1-21 Taylor et al 2011 Nanoscale Res. Lett. 6 1-11 Fang et al 2013 Nano Lett. 13 1736-42 Otanicar et al 2010 J. Renew. Sustainable Energy 2 03310201-13 Prasher et al 2006 ASME J. Heat Transfer 128 588-95 Shin and Banerjee 2011 ASME J. Heat Transfer 133 1-4 Taylor and Phelan 2009 Int. J. Heat Mass Transfer 52 5339-48 Ameen et al 2010 Int. J. Thermophys. 31 1131-44 Lee et al 2014 Appl. Phys. Lett. 104 1-4). Such work has generated great controversy, although it is (arguably) generally accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the specific heat of molten salt-based nanofluids reported by Shin and Banerjee (2011 ASME J. Heat Transfer 133 1-4) and the critical heat flux mentioned by Taylor and Phelan (2009 Int. J. Heat Mass Transfer 52 5339-48). Another largely overlooked example is the reported effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids, as reported by Ameen et al (2010 Int. J. Thermophys. 31 1131-44). Through molecular dynamics (MD) modeling supplemented with limited experimental data they found that hfg increases with increasing nanoparticle concentration, for Pt nanoparticles (MD) and Al2O3 nanoparticles (experiments). Here, we extend those exploratory experiments in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased by the addition of graphite or silver nanoparticles. Our results to date indicate that, yes, hfg can be substantially impacted, by

  20. Retrieval of Latent Heating from TRMM Measurements

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Smith, E. A.; Adler, R. F.; Hou, A. Y.; Meneghini, R.; Simpson, J.; Haddad, Z. S.; Iguchi, T.; Satoh, S.; Kakar, R.; Krishnamurti, T. N.; Kummerow, C. D.; Lang, S.; Nakamura, K.; Nakazawa, T.; Okamoto, K.; Shige, S.; Olson, W. S.; Takayabu, Y.; Tripoli, G. J.; Yang, S.

    2006-01-01

    Precipitation, in driving the global hydrological cycle, strongly influences the behavior of the Earth's weather and climate systems and is central to their variability. Two-thirds of the global rainfall occurs over the Tropics, which leads to its profound effect on the general circulation of the atmosphere. This is because its energetic equivalent, latent heating (LH), is the tropical convective heat engine's primary fuel source as originally emphasized by Riehl and Malkus (1958). At low latitudes, LH stemming from extended bands of rainfall modulates large-scale zonal and meridional circulations and their consequent mass overturnings (e.g., Hartmann et al. 1984; Hack and Schubert 1990). Also, LH is the principal energy source in the creation, growth, vertical structure, and propagation of long-lived tropical waves (e.g., Puri 1987; Lau and Chan 1988). Moreover, the distinct vertical distribution properties of convective and stratiform LH profiles help influence climatic outcomes via their tight control on large-scale circulations (Lau and Peng 1987; Nakazawa 1988; Sui and Lau 1988; Emanuel et al. 1994; Yanai et al. 2000; Sumi and Nakazawa 2002; Schumacher et al. 2004). The purpose of this paper is to describe how LH profiles are being derived from satellite precipitation rate retrievals, focusing on those being made with Tropical Rainfall Measuring Mission (TRMM) satellite measurements.

  1. Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions

    NASA Technical Reports Server (NTRS)

    Geller, Marvin A.; Zhou, Tiehan; Love, Peter T.

    2015-01-01

    Recent satellite determinations of global distributions of absolute gravity wave (GW) momentum fluxes in the lower stratosphere show maxima over the summer subtropical continents and little evidence of GW momentum fluxes associated with the intertropical convergence zone (ITCZ). This seems to be at odds with parameterizations forGWmomentum fluxes, where the source is a function of latent heating rates, which are largest in the region of the ITCZ in terms of monthly averages. The authors have examined global distributions of atmospheric latent heating, cloud-top-pressure altitudes, and lower-stratosphere absolute GW momentum fluxes and have found that monthly averages of the lower-stratosphere GW momentum fluxes more closely resemble the monthly mean cloud-top altitudes rather than the monthly mean rates of latent heating. These regions of highest cloud-top altitudes occur when rates of latent heating are largest on the time scale of cloud growth. This, plus previously published studies, suggests that convective sources for stratospheric GW momentum fluxes, being a function of the rate of latent heating, will require either a climate model to correctly model this rate of latent heating or some ad hoc adjustments to account for shortcomings in a climate model's land-sea differences in convective latent heating.

  2. A solar air collector with integrated latent heat thermal storage

    NASA Astrophysics Data System (ADS)

    Charvat, Pavel; Ostry, Milan; Mauder, Tomas; Klimes, Lubomir

    2012-04-01

    Simulations of the behaviour of a solar air collector with integrated latent heat thermal storage were performed. The model of the collector was created with the use of coupling between TRNSYS 17 and MATLAB. Latent heat storage (Phase Change Material - PCM) was integrated with the solar absorber. The model of the latent heat storage absorber was created in MATLAB and the model of the solar air collector itself was created in TRNSYS with the use of TYPE 56. The model of the latent heat storage absorber allows specification of the PCM properties as well as other parameters. The simulated air collector was the front and back pass collector with the absorber in the middle of the air cavity. Two variants were considered for comparison; the light-weight absorber made of sheet metal and the heat-storage absorber with the PCM. Simulations were performed for the climatic conditions of the Czech Republic (using TMY weather data).

  3. A wind-driven, hybrid latent and sensible heat coastal polynya off Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Hirano, Daisuke; Fukamachi, Yasushi; Watanabe, Eiji; Ohshima, Kay I.; Iwamoto, Katsushi; Mahoney, Andrew R.; Eicken, Hajo; Simizu, Daisuke; Tamura, Takeshi

    2016-01-01

    The nature of the Barrow Coastal Polynya (BCP), which forms episodically off the Alaska coast in winter, is examined using mooring data, atmospheric reanalysis data, and satellite-derived sea-ice concentration and production data. We focus on oceanographic conditions such as water mass distribution and ocean current structure beneath the BCP. Two moorings were deployed off Barrow, Alaska in the northeastern Chukchi Sea from August 2009 to July 2010. For sea-ice season from December to May, a characteristic sequence of five events associated with the BCP has been identified; (1) dominant northeasterly wind parallel to the Barrow Canyon, with an offshore component off Barrow, (2) high sea-ice production, (3) upwelling of warm and saline Atlantic Water beneath the BCP, (4) strong up-canyon shear flow associated with displaced density surfaces due to the upwelling, and (5) sudden suppression of ice growth. A baroclinic current structure, established after the upwelling, caused enhanced vertical shear and corresponding vertical mixing. The mixing event and open water formation occurred simultaneously, once sea-ice production had stopped. Thus, mixing events accompanied by ocean heat flux from the upwelled warm water into the surface layer played an important role in formation/maintenance of the open water area (i.e., sensible heat polynya). The transition from a latent to a sensible heat polynya is well reproduced by a high-resolution pan-Arctic ice-ocean model. We propose that the BCP, previously considered to be a latent heat polynya, is a wind-driven hybrid latent and sensible heat polynya, with both features caused by the same northeasterly wind.

  4. Experimental study on latent heat storage characteristics of W/O emulsion -Supercooling rate of dispersed water drops by direct contact heat exchange-

    NASA Astrophysics Data System (ADS)

    Morita, Shin-ichi; Hayamizu, Yasutaka; Horibe, Akihiko; Haruki, Naoto; Inaba, Hideo

    2013-04-01

    Recently, much attention has been paid to investigate the latent heat storage system. Using of ice heat storage system brings an equalization of electric power demand, because it will solved the electric -power-demand-concentration on day-time of summer by the air conditioning. The flowable latent heat storage material, Oil/Water type emulsion, microencapsulated latent heat material-water mixture or ice slurry, etc., is enable to transport the latent heat in a pipe. The flowable latent heat storage material can realize the pipe size reduction and system efficiency improvement. Supercooling phenomenon of the dispersed latent heat storage material in continuous phase brings the obstruction of latent heat storage. The latent heat storage rates of dispersed water drops in W/O (Water/Oil) emulsion are investigated experimentally in this study. The water drops in emulsion has the diameter within 3 ˜ 25μm, the averaged water drop diameter is 7.3μm and the standard deviation is 2.9μm. The direct contact heat exchange method is chosen as the phase change rate evaluation of water drops in W/O emulsion. The supercooled temperature and the cooling rate are set as parameters of this study. The evaluation is performed by comparison between the results of this study and the past research. The obtained experimental result is shown that the 35K or more degree from melting point brings 100% latent heat storage rate of W/O emulsion. It was clarified that the supercooling rate of dispersed water particles in emulsion shows the larger value than that of the bulk water.

  5. Survey of sensible and latent heat thermal energy storage projects

    NASA Astrophysics Data System (ADS)

    Baylin, F.; Merino, M.

    1981-05-01

    Ongoing and completed research projects on sensible and latent heat thermal enegy storage for low, intermediate, and high temperature applications are reviewed. Projects in the United States and abroad are included. Several research efforts are in the index although the project descriptions are absent. Project lists are organized into four sections: short term sensible heat storage; seasonal sensible heat storage; latent heat storage; and models, economic analysis, and support studies. The organization of the Department of Energy programs managing many of these projects is also outlined. Projects are presented in a standard format that includes laboratory; funding level and period; status; project description; technical and economic parameters; and applications.

  6. Effects of dynamic heat fluxes on model climate sensitivity Meridional sensible and latent heat fluxes

    NASA Technical Reports Server (NTRS)

    Gutowski, W. J., Jr.; Wang, W.-C.; Stone, P. H.

    1985-01-01

    The high- and low-latitude radiative-dynamic (HLRD) climatic model of Wang et al. (1984) was used to study the effect of meridional heat (MH) fluxes on climate changes caused by increases of CO2 abundance and solar constant variations. However, the empirical MH parameterization of the HLRD model was replaced by physically based parameterization, which gives separate meridional sensible and latent heat fluxes and provides a complete representation of the dependence of the flux on the mean temperature field. Both parameterization methods yielded about the same changes in global mean surface temperature and ice line, and both produced only small changes in meridional temperature gradient, although the latter were even smaller with the physically based parameterizations. At any latitude, the hemispheric mean surface temperature, rather than MH fluxes, dominates the surface temperature changes.

  7. The meridional scale of baroclinic waves with latent heat release

    NASA Technical Reports Server (NTRS)

    Tang, Chung-Muh

    1988-01-01

    The control on the meridional scale of a class of the baroclinic waves exercised by latent heat release is analyzed. A meridional-scale equation is derived, in which the dry model and the moist model without the meridional variation of the baroclinic waves are revealed. It is shown that, in the dry model the stability analysis cannot determine the meridional scale of the baroclinic waves. When latent heat release is included, the meridional variation of the waves either vanishes or is finite. When the waves have the meridional variation with latent heat release, the growth rate increases as the heating increases for a given Froude number, and there are two modes - the first mode has a small ascending region and a large descending region, while the second mode has a small descending region and a large ascending region.

  8. Scale effects in the latent heat of melting in nanopores.

    PubMed

    Shin, J-H; Parlange, J-Y; Deinert, M R

    2013-07-28

    The curvature of a liquid vapor interface has long been known to change the equilibrium vapor pressure. It has also been shown that a capillary structure will affect the temperature at which both freezing and vaporization of a substance will occur. However, describing interfacial effects on the latent heat of a phase change has proven more difficult. Here, we present a classical thermodynamic model for how the latent heat of melting changes as the size of the particles undergoing the transition decreases. The scale dependence for the surface tension is taken into consideration using a Tolman length correction. The resulting model is tested by fitting to published experimental data for the latent heat of melting for benzene, heptane, naphthalene, and water contained in nano-porous glass. In all cases the model fits the data with a R(2) ≥ 0.94. PMID:23901997

  9. [Latent heat of vaporization in amaranth (Amaranthus hybridus)].

    PubMed

    Alvarado, J D; Toaza, E; Coloma, G

    1990-09-01

    The vapor pressure at four temperatures and 10 moisture contents in a range between 26.8 and 3.6 g/100 dry matter, were determined by the manometric method in two samples of milled amaranth seeds, known as "ataco" or "sangoracha". For each humidity, the relationship between vapor pressure of the flour and vapor pressure of water at different temperatures is satisfactorily described by power equations, which are herein presented. The slope was used in the determination of latent heat of vaporization, according to Othmer's law. An exponential equation describing the relationship between the rate of latent heat and moisture content on a dry basis are established and discussed. This allows calculation with sufficient exactitude of the latent heat of vaporization values in amaranth, particularly at low moisture contents. The data are useful in calculations for drying or extrusion operations, largely applied in cereals. PMID:2134140

  10. Joseph Black, carbon dioxide, latent heat, and the beginnings of the discovery of the respiratory gases.

    PubMed

    West, John B

    2014-06-15

    The discovery of carbon dioxide by Joseph Black (1728-1799) marked a new era of research on the respiratory gases. His initial interest was in alkalis such as limewater that were thought to be useful in the treatment of renal stone. When he studied magnesium carbonate, he found that when this was heated or exposed to acid, a gas was evolved that he called "fixed air" because it had been combined with a solid material. He showed that the new gas extinguished a flame, that it could not support life, and that it was present in gas exhaled from the lung. Within a few years of his discovery, hydrogen, nitrogen, and oxygen were also isolated. Thus arguably Black's work started the avalanche of research on the respiratory gases carried out by Priestley, Scheele, Lavoisier, and Cavendish. Black then turned his attention to heat and he was the first person to describe latent heat, that is the heat added or lost when a liquid changes its state, for example when water changes to ice or steam. Latent heat is a key concept in thermal physiology because of the heat lost when sweat evaporates. Black was a friend of the young James Watt (1736-1819) who was responsible for the development of early steam engines. Watt was puzzled why so much cooling was necessary to condense steam into water, and Black realized that the answer was the latent heat. The resulting improvements in steam engines ushered in the Industrial Revolution. PMID:24682452

  11. Design and simulation of latent heat storage units. Final report

    SciTech Connect

    Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C.

    1992-04-01

    This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.

  12. Design and simulation of latent heat storage units

    SciTech Connect

    Shamsundar, N.; Stein, E.; Rooz, E.; Bascaran, E.; Lee, T.C. )

    1992-04-01

    This report presents the results of two years of research and development on passive latent heat storage systems. Analytical models have been developed and extended, and a computer code for simulating the performance of a latent heat storage has been developed. The code is intended to be merged into a larger solar energy system simulation code and used for making realistic system studies. Simulation studies using a code which has a flexible and accurate routine for handling the storage subsystem should lead to the development of better systems than those in which storage is added on after the rest of the system has already been selected and optimized.

  13. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  14. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2011-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  15. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experimental and theoretical studies were made of the heat transfer characteristics of a latent heat storage unit used for a natural circulation cooling /latent heat storage system. Heating and cooling curves of the latent heat storage unit undergoing solid-liquid phase change of a PCM (lauric acid) was obtained by using anatural circulation loop of R22 which consisted of an electrically heated evaporater, a water cooled condenser and the latent heat storage unit. The latent heat storage unit showed a heat transfer performance which was high enough for practical use. An approximate theoretical analysis was conducted to investigate transient behavior of the latent heat storage unit. Predictions of the refrigerant and outer surface temperatures during the melting process were in fair agreement with the experimental data, whereas that of the refrigerant temperature during the solidification process was considerably lower than the measurement.

  16. Impact of ice cover in the Arctic on ocean-atmosphere turbulent heat fluxes

    NASA Astrophysics Data System (ADS)

    Selivanova, J. V.; Tilinina, N. D.; Gulev, S. K.; Dobrolubov, S. A.

    2016-01-01

    The impact of spatiotemporal variability of the ice-covered area in the Arctic on the value and interannual dynamics of turbulent heat fluxes on the ocean-atmosphere border is considered. An expected inverse dependence of the heat fluxes integrated over the Arctic area and the area of ice is not detected. The largest interannual oscillations of heat fluxes from the ocean to the atmosphere are timed to the varying position of the ice edge and, to a lesser extent, are connected with total area of ice. The role of the marginal ice zone in oceanic heat transfer is analyzed. In particular, it is shown that while moving along the marginal zone from the ice-free surface to the surface with an ice concentration of 0.8, latent and sensible heat fluxes are reduced by a factor of 2.5-3.

  17. A Wind-Driven, Hybrid Latent and Sensible Heat Coastal Polynya at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Hirano, D.; Fukamachi, Y.; Watanabe, E.; Iwamoto, K.; Mahoney, A. R.; Eicken, H.; Shimizu, D.; Ohshima, K. I.; Tamura, T.

    2014-12-01

    The nature of the Barrow Coastal Polynya (BCP) formed off the Alaska Coast in winter is examined using mooring data (temperature, salinity, and ocean current), atmospheric re-analysis data (ERA-Interim), and AMSR-E-derived sea-ice concentration and production data (Iwamoto et al., 2014). Previously, the BCP has been considered to be a latent heat polynya formed by predominantly offshore winds resulting in sea-ice divergence. Recently, it has been suggested that the sea-ice production rate in the BCP is suppressed by warm Pacific- or Atlantic-origin waters distributed beneath the BCP (e.g. Itoh et al., 2012). In this study, we focus on the oceanographic conditions such as water mass distribution and ocean current structure beneath the BCP, which have not been fully documented. A mooring was deployed off Barrow, Alaska in the northeast Chukchi Sea (71.23°N, 157.65°W, water depth 55 m) from August 2009 to July 2010. During the freeze-up period from December to May, five BCP events occurred in the same manner; 1) dominant wind parallel to Barrow Canyon, with an offshore component near Barrow, 2) high sea-ice production followed by sudden cessation of ice growth, 3) upwelling of warm (>2 K above freezing point) and saline (>34) Atlantic Water (AW) beneath the BCP, 4) strong up-canyon flow (>100cm/s) associated with density fluctuations. A baroclinic current structure, established after the upwelling, resulted in enhanced vertical shear, promoting vertical mixing. The mixing event and open water formation occurred simultaneously, once sea-ice production had stopped. Thus, mixing events accompanied by ocean heat flux from AW into the surface layer were likely to form/maintain the open water area that is a sensible heat polynya. The transition from a latent to a sensible heat polynya was well reproduced by a pan-Arctic ice-ocean model (COCO). We propose that the BCP is a hybrid latent and sensible heat polynya, with both processes driven by the same offshore wind.

  18. Filled Carbon Nanotubes: Superior Latent Heat Storage Enhancers

    SciTech Connect

    2009-04-01

    This factsheet describes a rstudy whose technical objective is to demonstrate the feasibility of filled carbon nanotubes (CNT) as latent heat storage enhancers, with potential applications as next generation thermal management fluids in diverse applications in industries ranging from high-demand microelectronic cooling, manufacturing, power generation, transportation, to solar energy storage.

  19. A study on cooling characteristics of clathrate compound as low temperature latent heat storage material

    NASA Astrophysics Data System (ADS)

    Kim, Chang Oh; Kim, Jin Heung; Chung, Nak Kyu

    2007-07-01

    Materials that can store low temperature latent heat are organic/inorganic chemicals, eutectic salt system and clathrate compound. Clathrate compound is the material that host compound in hydrogen bond forms cage and guest compound is included into it and combined. Crystallization of hydrate is generated at higher temperature than that of ice from pure water. And physical properties according to temperature are stable and congruent melting phenomenon is occurred without phase separation and it has relatively high latent heat. But clathrate compound still has supercooling problem occurred in the course of phase change and supercooling should be minimized because it affects efficiency of equipment very much. Therefore, various studies on additives to restrain this or heat storage methods are needed. Supercooling is the phenomenon that low temperature thermal storage material is not crystallized and existed as liquid for some time under phase change temperature. Because phase change into solid is delayed and it is existed as liquid due to this, heat transfer from low temperature thermal storage material is lowered. Therefore it is not crystallized at original phase change temperature and crystallized after cooled as much as supercooling degree and operation time of refrigerator is increased. In this study was investigated the cooling characteristics of the clathrate compound as a low temperature latent heat storage material. And additive was added to clathrate compound and its supercooling restrain effect was studied experimentally.

  20. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Some candidates for alkali metal and alkali halide mixtures suitable for thermal energy storage at temperatures 600 C are identified. A solar thermal system application which offer advantages such as precipitation of salt crystals away from heat transfer surfaces, increased thermal conductivity of phase change materials, corrosion inhibition, and a constant monotectic temperature, independent of mixture concentrations. By using the lighters, metal rich phase as a heat transfer medium and the denser, salt rich phase as a phase change material for latent heat storage, undesirable solidification on the heat transfer surface may be prevented, is presented.

  1. Latent Heating Retrieval from TRMM Observations Using a Simplified Thermodynamic Model

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.

    2003-01-01

    A procedure for the retrieval of hydrometeor latent heating from TRMM active and passive observations is presented. The procedure is based on current methods for estimating multiple-species hydrometeor profiles from TRMM observations. The species include: cloud water, cloud ice, rain, and graupel (or snow). A three-dimensional wind field is prescribed based on the retrieved hydrometeor profiles, and, assuming a steady-state, the sources and sinks in the hydrometeor conservation equations are determined. Then, the momentum and thermodynamic equations, in which the heating and cooling are derived from the hydrometeor sources and sinks, are integrated one step forward in time. The hydrometeor sources and sinks are reevaluated based on the new wind field, and the momentum and thermodynamic equations are integrated one more step. The reevalution-integration process is repeated until a steady state is reached. The procedure is tested using cloud model simulations. Cloud-model derived fields are used to synthesize TRMM observations, from which hydrometeor profiles are derived. The procedure is applied to the retrieved hydrometeor profiles, and the latent heating estimates are compared to the actual latent heating produced by the cloud model. Examples of procedure's applications to real TRMM data are also provided.

  2. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experiments were performed to investigate feasibility of using organic materials as a PCM for a latent heat storage unit of a natural circulation cooling/latent heat storage system. This system was designed to cool a shelter accommodating telecommunication equipment located in subtropical deserts or similar regions without using a power source. Taking into account practical considerations and the results of various experiments regarding the thermodynamic properties, thermal degradation, and corrosiveness to metals, lauric acid and iron was selected for the PCM and the latent heat storage unit material, respectively. Cyclic heating and cooling of the latent heat storage unit undergoing solid-liquid phase change was repeated for more than 430 days. The results showed that the heating-cooling curve was almost unchanged between the early stage and the 1,870th cycle. It was concluded that the latent heat storage unit could be used safely for more than ten years as a component of the cooling system.

  3. Latent heat sink in soil heat flux measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The surface energy balance includes a term for soil heat flux. Soil heat flux is difficult to measure because it includes conduction and convection heat transfer processes. Accurate representation of soil heat flux is an important consideration in many modeling and measurement applications. Yet, the...

  4. Shallow and Deep Latent Heating Modes Over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data

    NASA Technical Reports Server (NTRS)

    Takayabu, Yukari N.; Shige, Shoichi; Tao, Wei-Kuo; Hirota, Nagio

    2010-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large

  5. Intercomparison of Latent Heat Fluxes Over Global Oceans

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.; Chou, Ming-Dah

    2003-01-01

    Turbulent fluxes of momentum, moisture, and heat at the air-sea interface are essential for climate studies. Version 2 Goddard Satellite-based Surface Turbulent Fluxes (GSSTF2) has been derived from the Special Sensor Microwave/Imager (SSM/I) radiance measurements. This dataset, covering the period July 1987-December 2000 over global oceans, has a spatial resolution of 1 deg x 1 deg lat-long and a temporal resolution of 1 day. Turbulent fluxes are derived from the SSM/I surface winds and surface air humidity, as well as the 2-m air and sea surface temperatures (SST) of the NCEP/NCAR reanalysis, using a bulk aerodynamic algorithm based on the surface layer similarity theory. The GSSTF2 bulk flux model, and retrieved daily wind stress, latent heat flux, wind speed, and surface air humidity validate well with ship observations of ten field experiments over the tropical and midlatitude oceans during 1991-99. The global distributions of 1988-2000 annual- and seasonal-mean turbulent fluxes show reasonable patterns related to the atmospheric general circulation and seasonal variations. Latent heat fluxes and related input parameters over global oceans during 1992-93 have been compared among GSSTF1 (version 1), GSSTF2, HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data), NCEP/NCAR reanalysis, and one based on COADS (Comprehensive Ocean-Atmosphere Data Set). Our analyses suggest that the GSSTF2 latent heat flux, surface air humidity, surface wind, and SST are quite realistic compared to the other four flux datasets examined. However, significant differences are found among these five flux datasets. The GSSTF2, available at http://daac.gsfc.nasa.gov/CAMPAIGN_DOCS/hydrology/hd_gsstf2.O.html, is useful for climate studies.

  6. MJO Signals in Latent Heating: Results from TRMM Retrievals

    SciTech Connect

    Zhang, Chidong; Ling, Jian; Hagos, Samson M.; Tao, Wei-Kuo; Lang, Steve; Takayabu, Yukari N.; Shige, Shoichi; Katsumata, Masaki; Olson, William S.; L'Ecuyer, Tristan S.

    2010-11-01

    Four Tropical Rainfall Measuring Mission (TRMM) datasets of latent heating were diagnosed for signals in the Madden-Julian Oscillation (MJO). In all four datasets, vertical structures of latent heating are dominated by two components, one deep with its peak above the melting level and one shallow with its peak below. Profiles of the two components are nearly ubiquitous in longitude, allowing a separation of the vertical and zonal/temporal variations when the latitudinal dependence is not considered. All four datasets exhibit robust MJO spectral signals in the deep component as eastward propagating spectral peaks centered at period of 50 days and zonal wavenumber 1, well distinguished from lower- and higher-frequency power and much stronger than the corresponding westward power. The shallow component shows similar but slightly less robust MJO spectral peaks. MJO signals were further extracted from a combination of band-pass (30 – 90 day) filtered deep and shallow components. Largest amplitudes of both deep and shallow components of the MJO are confined to the Indian and western Pacific Oceans. There is a local minimum in the deep components over the Maritime Continent. The shallow components of the MJO differ substantially among the four TRMM datasets in their detailed zonal distributions in the eastern hemisphere. In composites of the heating evolution through the life cycle of the MJO, the shallow components lead the deep ones in some datasets and at certain longitudes. In many respects, the four TRMM datasets agree well in their deep components, but not in their shallow components and the phase relations between the deep and shallow components. These results indicate that caution must be exercised in applications of these latent heating data.

  7. Passive ice freezing-releasing heat pipe

    DOEpatents

    Gorski, Anthony J.; Schertz, William W.

    1982-01-01

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  8. Heat Shock Factor 1 Mediates Latent HIV Reactivation

    PubMed Central

    Pan, Xiao-Yan; Zhao, Wei; Zeng, Xiao-Yun; Lin, Jian; Li, Min-Min; Shen, Xin-Tian; Liu, Shu-Wen

    2016-01-01

    HSF1, a conserved heat shock factor, has emerged as a key regulator of mammalian transcription in response to cellular metabolic status and stress. To our knowledge, it is not known whether HSF1 regulates viral transcription, particularly HIV-1 and its latent form. Here we reveal that HSF1 extensively participates in HIV transcription and is critical for HIV latent reactivation. Mode of action studies demonstrated that HSF1 binds to the HIV 5′-LTR to reactivate viral transcription and recruits a family of closely related multi-subunit complexes, including p300 and p-TEFb. And HSF1 recruits p300 for self-acetylation is also a committed step. The knockout of HSF1 impaired HIV transcription, whereas the conditional over-expression of HSF1 improved that. These findings demonstrate that HSF1 positively regulates the transcription of latent HIV, suggesting that it might be an important target for different therapeutic strategies aimed at a cure for HIV/AIDS. PMID:27189267

  9. TRMM observations of latent heat distribution over the Indian summer monsoon region and associated dynamics

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, Kandula V.; Kishore Kumar, Karanam

    2016-05-01

    The latent heat released/absorbed in the Earth's atmosphere due to phase change of water molecule plays a vital role in various atmospheric processes. It is now well established that the latent heat released in the clouds is the secondary source of energy for driving the atmosphere, the Sun being the primary. In this context, studies on latent heat released in the atmosphere become important to understand the some of the physical processes taking place in the atmosphere. One of the important implications of latent heat release is its role in driving the circulations on various temporal and spatial scales. Realizing the importance of latent heat released in the clouds, a comprehensive study is carried out to understand its role in driving the mesoscale circulation. As Indian summer monsoon (ISM) serves as natural laboratory for studying the clouds and their microphysics, an attempt is made to explore the latent heat distribution over this region using 13 years of Tropical Rainfall Measuring Mission (TRMM) observations. The observed profiles of latent heating over ISM region showed large spatial and temporal variability in the magnitude thus reflecting the presence of organization of convection on mesoscale. The latent profiles in convective and stratiform regions are segregated to study the differences in their interaction with large-scale environment. Various re-analysis dataset were used to examine the role of latent heating distribution on the mesoscale circulation. The significance of the present study lies in establishing the vertical distribution of latent heating and their impact on the background circulation.

  10. Ice rheology and tidal heating of Enceladus

    NASA Astrophysics Data System (ADS)

    Shoji, D.; Hussmann, H.; Kurita, K.; Sohl, F.

    2013-09-01

    For the saturnian satellite Enceladus, the possible existence of a global ocean is a major issue. For the stability of an internal ocean, tidal heating is suggested as an effective heat source. However, assuming Maxwell rheology ice, it has been shown that a global scale ocean on Enceladus cannot be maintained (Roberts, J.F., Nimmo, F. [2008]. Icarus 194, 675-689). Here, we analyze tidal heating and the stability of a global ocean from the aspect of anelastic behavior. The Maxwell model is the most typical and widely used viscoelastic model. However, in the tidal frequency domain, energy is also dissipated by the anelastic response involving time-dependent or transient creep mechanisms, which is different from the viscoelastic response caused by steady-state creep. The Maxwell model cannot adequately address anelasticity, which has a large effect in the high viscosity range. Burgers and Andrade models are suggested as suitable models for the creep behavior of ice in the frequency domain. We calculate tidal heating in the ice layer and compare it with the radiated heat assuming both convection and conduction of the ice layer. Though anelastic behavior increases the heating rate, it is insufficient to maintain a global subsurface ocean if the ice layer is convecting, even though a wide parameter range is taken into account. One possibility to maintain a global ocean is that Enceladus’ ice shell is conductive and its tidal response is similar to that of the Burgers body with comparatively small transient shear modulus and viscosity. If the surface ice with large viscosity is dissipative by anelastic response, the heat produced in the ice layer would supersede the cooling rate and a subsurface ocean could be maintained without freezing.

  11. Heat transfer on accreting ice surfaces

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Keiko; Hansman, R. John, Jr.

    1990-01-01

    Based on previous observations of glaze ice accretion, a 'Multi-Zone' model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: to determine the laminar to turbulent transition location and to calculate the turbulent heat transfer coefficient. A two zone version of the Multi-Zone model is implemented in the LEWICE code, and compared with experimental heat transfer coefficient and ice accretin results. The analysis of the boundary layer transition, surface roughness, and viscous flow field effects significantly increased the accuracy in predicting heat transfer coefficients. The Multi-Zone model was found to greatly improve the ice accretion prediction for the cases compared.

  12. Heat transfer on accreting ice surfaces

    NASA Technical Reports Server (NTRS)

    Yamaguchi, Keiko; Hansman, R. John, Jr.

    1993-01-01

    Based on previous observations of glaze ice accretion on aircraft surfaces, a multizone model with distinct zones of different surface roughness is demonstrated. The use of surface roughness in the LEWICE ice accretion prediction code is examined. It was found that roughness is used in two ways: (1) to determine the laminar to turbulent boundary-layer transition location; and (2) to calculate the convective turbulent heat-transfer coefficient. A two-zone version of the multizone model is implemented in the LEWICE code, and compared with experimental convective heat-transfer coefficient and ice accretion results. The analysis of the boundary-layer transition, surface roughness, and viscous flowfield effects significantly increased the accuracy in predicting heat-transfer coefficients. The multizone model was found to significantly improve the ice accretion prediction for the cases compared.

  13. Wallboard with Latent Heat Storage for Passive Solar Applications

    SciTech Connect

    Kedl, R.J.

    2001-05-31

    Conventional wallboard impregnated with octadecane paraffin [melting point-23 C (73.5 F)] is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM (melting point, melting range, and heat of fusion), as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. The confirmed computer model may now be used in conjunction with a building heating and cooling code to evaluate design parameters and operational characteristics of latent heat storage wallboard for passive solar applications.

  14. Heating the Ice-Covered Lakes of the McMurdo Dry Valleys, Antarctica - Decadal Trends in Heat Content, Ice Thickness, and Heat Exchange

    NASA Astrophysics Data System (ADS)

    Gooseff, M. N.; Priscu, J. C.; Doran, P. T.; Chiuchiolo, A.; Obryk, M.

    2014-12-01

    Lakes integrate landscape processes and climate conditions. Most of the permanently ice-covered lakes in the McMurdo Dry Valleys, Antarctica are closed basin, receiving glacial melt water from streams for 10-12 weeks per year. Lake levels rise during the austral summer are balanced by sublimation of ice covers (year-round) and evaporation of open water moats (summer only). Vertical profiles of water temperature have been measured in three lakes in Taylor Valley since 1988. Up to 2002, lake levels were dropping, ice covers were thickening, and total heat contents were decreasing. These lakes have been gaining heat since the mid-2000s, at rates as high as 19.5x1014 cal/decade). Since 2002, lake levels have risen substantially (as much as 2.5 m), and ice covers have thinned (1.5 m on average). Analyses of lake ice thickness, meteorological conditions, and stream water heat loads indicate that the main source of heat to these lakes is from latent heat released when ice-covers form during the winter. An aditional source of heat to the lakes is water inflows from streams and direct glacieal melt. Mean lake temperatures in the past few years have stabilized or cooled, despite increases in lake level and total heat content, suggesting increased direct inflow of meltwater from glaciers. These results indicate that McMurdo Dry Valley lakes are sensitive indicators of climate processes in this polar desert landscape and demonstrate the importance of long-term data sets when addressing the effects of climate on ecosystem processes.

  15. Relating Convective and Stratiform Rain to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Stephen; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2010-01-01

    The relationship among surface rainfall, its intensity, and its associated stratiform amount is established by examining observed precipitation data from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR). The results show that for moderate-high stratiform fractions, rain probabilities are strongly skewed toward light rain intensities. For convective-type rain, the peak probability of occurrence shifts to higher intensities but is still significantly skewed toward weaker rain rates. The main differences between the distributions for oceanic and continental rain are for heavily convective rain. The peak occurrence, as well as the tail of the distribution containing the extreme events, is shifted to higher intensities for continental rain. For rainy areas sampled at 0.58 horizontal resolution, the occurrence of conditional rain rates over 100 mm/day is significantly higher over land. Distributions of rain intensity versus stratiform fraction for simulated precipitation data obtained from cloud-resolving model (CRM) simulations are quite similar to those from the satellite, providing a basis for mapping simulated cloud quantities to the satellite observations. An improved convective-stratiform heating (CSH) algorithm is developed based on two sources of information: gridded rainfall quantities (i.e., the conditional intensity and the stratiform fraction) observed from the TRMM PR and synthetic cloud process data (i.e., latent heating, eddy heat flux convergence, and radiative heating/cooling) obtained from CRM simulations of convective cloud systems. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. Major differences between the new and old algorithms include a significant increase in the amount of low- and midlevel heating, a downward emphasis in the level of maximum cloud heating by about 1 km, and a larger variance between land and ocean in

  16. Performance of direct contact latent heat storage unit

    SciTech Connect

    Farid, M.; Yacoub, K. )

    1989-01-01

    The performance of direct contact latent heat storage unit has been investigated in a glass column having an inside diameter and length of 0.2 m and 1.5 m respectively. Kerosene, as a heat transfer fluid, was bubbled through the continuous phase which was a solution of one of the hydrated salts: Na{sub 2}CO{sub 3}{center dot}10H{sub 2}O, Na{sub 2}SO{sub 4}{center dot}10H{sub 2}O, and Na{sub 2}HPO{sub 4}{center dot}12H{sub 2}O. The continuous phase temperature at different heights together with the kerosene inlet and outlet temperatures were measured with time during both heat charge and discharge. Theoretical prediction of the performance of the unit has been achieved employing the model for drop with internal circulation which was used to evaluate the transfer efficiency. Thermal efficiency of the nit was found to increase with the larger column. A sharp decrease in the magnitude of the heat transfer coefficient was observed soon after crystallization started. The coefficient increased significantly at higher kerosene flow rates due to the information of smaller bubbles.

  17. Satellite-observed latent heat release in a tropical cyclone

    NASA Technical Reports Server (NTRS)

    Adler, R. F.; Rodgers, E. B.

    1977-01-01

    The latent heat release (LHR) and the distribution of rainfall rate of a tropical cyclone as it grows from a tropical disturbance to a typhoon were determined from Nimbus 5 Electrically Scanning Microwave Radiometer data. The LHR (calculated over a circular area of 4 deg latitude radius) increased during the development and intensification of the storm from a magnitude of 2.7 x 10 to the fourteenth W (in the disturbance stage) to 8.8 x 10 to the fourteenth W (typhoon stage). The latter value corresponds to a mean rainfall rate of 2.0 mm/h. The more intense the cyclone and the greater the LHR, the greater the percentage contribution of the larger rainfall rates to the LHR. As a cyclone intensifies, the higher rainfall rates tend to concentrate toward the center of the circulation.

  18. Fluid Latent Heat Storage Material Using Ethanol Water Mixture

    NASA Astrophysics Data System (ADS)

    Ohkubo, Hidetoshi; Yasunari, Yuki

    Ethanol water mixture has a liquidus line ( or crystallizing line) and a solidus line (or melting line) that are separated, and therefore it can have both liquid and solid phases existing together. With advances in low temperature technology in recent days, ethanol water mixture is attaching more and more attention as an environment-friendly coolant or as a thermal storage material. In the present study, we observed the crystallization process in the mixture and carried out experiments to evaluate fluidity of the mixture, with the objective of utilizing an ethanol water mixture as a coolant or a thermal energy storage material. Crystal formation and growing process within a minute droplet of a binary mixture was modeled. As a result, we found a novel method to produce a fluid latent heat storage material continuously and an apparent coefficient of viscosity show that rotational speed and solid phase fraction have a strong effect on the fluidity of the mixture.

  19. Experimental measurements of heat transfer from an iced surface during artificial and natural cloud icing conditions

    NASA Technical Reports Server (NTRS)

    Kirby, Mark S.; Hansman, R. John, Jr.

    1988-01-01

    The heat transfer behavior of accreting ice surfaces in natural (flight test) and simulated (wind tunnel) cloud icing conditions were studied. Observations of wet and dry ice growth regimes as measured by ultrasonic pulse echo techniques were made. Observed wet and dry ice growth regimes at the stagnation point of a cylinder were compared with those predicted using a quasi steady state heat balance model. A series of heat transfer coefficients were employed by the model to infer the local heat transfer behavior of the actual ice surfaces. The heat transfer in the stagnation region was generally inferred to be higher in wind tunnel icing tests than in natural flight icing conditions.

  20. Conventional wallboard with latent heat storage for passive solar applications

    SciTech Connect

    Kedl, R.J.

    1990-01-01

    Conventional wallboard impregnated with octadecane paraffin (Melting Point -- 73.5{degree}F) is being developed as a building material with latent heat storage for passive solar applications. Impregnation was accomplished simply by soaking the wallboard in molten paraffin. Concentrations of paraffin in the combined product as high as 35{percent} by weight were achieved. In support of this concept, a computer model was developed to describe thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions where the PCM melts at a specific melting point. However, agreement between the model and an experimentally produced thermal transient involving impregnated wallboard was only good after the model was modified to allow the paraffin to melt over a temperature range. This was accomplished by replacing the heat of fusion with a triangular heat capacity relationship that mimics the triangular melt curve found through differential scanning calorimetry. When this change was made, agreement between the model and the experimental transient was very good. 4 refs., 8 figs.

  1. The surface latent heat flux anomalies related to major earthquake

    NASA Astrophysics Data System (ADS)

    Jing, Feng; Shen, Xuhui; Kang, Chunli; Xiong, Pan; Hong, Shunying

    2011-12-01

    SLHF (Surface Latent Heat Flux) is an atmospheric parameter, which can describe the heat released by phase changes and dependent on meteorological parameters such as surface temperature, relative humidity, wind speed etc. There is a sharp difference between the ocean surface and the land surface. Recently, many studies related to the SLHF anomalies prior to earthquakes have been developed. It has been shown that the energy exchange enhanced between coastal surface and atmosphere prior to earthquakes can increase the rate of the water-heat exchange, which will lead to an obviously increases in SLHF. In this paper, two earthquakes in 2010 (Haiti earthquake and southwest of Sumatra in Indonesia earthquake) have been analyzed using SLHF data by STD (standard deviation) threshold method. It is shows that the SLHF anomaly may occur in interpolate earthquakes or intraplate earthquakes and coastal earthquakes or island earthquakes. And the SLHF anomalies usually appear 5-6 days prior to an earthquake, then disappear quickly after the event. The process of anomaly evolution to a certain extent reflects a dynamic energy change process about earthquake preparation, that is, weak-strong-weak-disappeared.

  2. Retrieved Vertical Profiles of Latent Heat Release Using TRMM Rainfall Products

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Olson, W. S.; Meneghini, R.; Yang, S.; Simpson, J.; Kummerow, C.; Smith, E.

    2000-01-01

    This paper represents the first attempt to use TRMM rainfall information to estimate the four dimensional latent heating structure over the global tropics for February 1998. The mean latent heating profiles over six oceanic regions (TOGA COARE IFA, Central Pacific, S. Pacific Convergence Zone, East Pacific, Indian Ocean and Atlantic Ocean) and three continental regions (S. America, Central Africa and Australia) are estimated and studied. The heating profiles obtained from the results of diagnostic budget studies over a broad range of geographic locations are used to provide comparisons and indirect validation for the heating algorithm estimated heating profiles. Three different latent heating algorithms, the Goddard Convective-Stratiform (CSH) heating, the Goddard Profiling (GPROF) heating, and the Hydrometeor heating (HH) are used and their results are intercompared. The horizontal distribution or patterns of latent heat release from the three different heating retrieval methods are quite similar. They all can identify the areas of major convective activity (i.e., a well defined ITCZ in the Pacific, a distinct SPCZ) in the global tropics. The magnitude of their estimated latent heating release is also not in bad agreement with each other and with those determined from diagnostic budget studies. However, the major difference among these three heating retrieval algorithms is the altitude of the maximum heating level. The CSH algorithm estimated heating profiles only show one maximum heating level, and the level varies between convective activity from various geographic locations. These features are in good agreement with diagnostic budget studies. By contrast, two maximum heating levels were found using the GPROF heating and HH algorithms. The latent heating profiles estimated from all three methods can not show cooling between active convective events. We also examined the impact of different TMI (Multi-channel Passive Microwave Sensor) and PR (Precipitation Radar

  3. Sensitivity of Latent Heating Profiles to Environmental Conditions: Implications for TRMM and Climate Research

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The Tropical Rainfall Measuring Mission (TRMM) as a part of NASA's Earth System Enterprise is the first mission dedicated to measuring tropical rainfall through microwave and visible sensors, and includes the first spaceborne rain radar. Tropical rainfall comprises two-thirds of global rainfall. It is also the primary distributor of heat through the atmosphere's circulation. It is this circulation that defines Earth's weather and climate. Understanding rainfall and its variability is crucial to understanding and predicting global climate change. Weather and climate models need an accurate assessment of the latent heating released as tropical rainfall occurs. Currently, cloud model-based algorithms are used to derive latent heating based on rainfall structure. Ultimately, these algorithms can be applied to actual data from TRMM. This study investigates key underlying assumptions used in developing the latent heating algorithms. For example, the standard algorithm is highly dependent on a system's rainfall amount and structure. It also depends on an a priori database of model-derived latent heating profiles based on the aforementioned rainfall characteristics. Unanswered questions remain concerning the sensitivity of latent heating profiles to environmental conditions (both thermodynamic and kinematic), regionality, and seasonality. This study investigates and quantifies such sensitivities and seeks to determine the optimal latent heating profile database based on the results. Ultimately, the study seeks to produce an optimized latent heating algorithm based not only on rainfall structure but also hydrometeor profiles.

  4. Heat capacity and latent heat measurements of CoMnSi using a microcalorimeter.

    PubMed

    Miyoshi, Y; Morrison, K; Moore, J D; Caplin, A D; Cohen, L F

    2008-07-01

    A new method of utilizing a commercial silicon nitride membrane calorimeter to measure the latent heat at a first order phase transition is presented. The method is a direct measurement of the thermoelectric voltage jump induced by the latent heat, in a thermally isolated system ideally suited for single crystal and small microgram samples. We show that when combined with the ac calorimetry technique previously developed, the resultant thermal measurement capabilities are extremely powerful. We demonstrate the applicability of the combined method with measurements on a 100 microm size fragment of CoMnSi exhibiting a sizable magnetocaloric effect near room temperature, and obtain good agreement with previously reported values on bulk samples. PMID:18681727

  5. Wallboard with latent heat storage for passive solar applications

    SciTech Connect

    Kedl, R.J.

    1991-05-01

    Conventional wallboard impregnated with octadecane paraffin is being developed as a building material with latent heat storage for passive solar and other applications. Impregnation was accomplished simply by soaking the wallboard in molten wax. Concentrations of wax in the combined product as high as 35% by weight can be achieved. Scale-up of the soaking process, from small laboratory samples to full-sized 4- by 8-ft sheets, has been successfully accomplished. The required construction properties of wallboard are maintained after impregnation, that is, it can be painted and spackled. Long-term, high-temperature exposure tests and thermal cycling tests showed no tendency of the paraffin to migrate within the wallboard, and there was no deterioration of thermal energy storage capacity. In support of this concept, a computer model was developed to handle thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions and also by comparison with temperatures measured in wallboard during an experimentally generated thermal transient. Agreement between the model and known solution was excellent. Agreement between the model and thermal transient was good, only after the model was modified to allow the PCM to melt over a temperature range, rather than at a specific melting point. When the melting characteristics of the PCM, as determined from a differential scanning calorimeter plot, were used in the model, agreement between the model and transient data was very good. 11 refs., 25 figs., 2 tabs.

  6. Development of composite latent/sensible heat storage media

    SciTech Connect

    Petri, R.; Ong, E.T.; Kardas, A. )

    1990-12-01

    Results of an on-going program to develop a composite latent-sensible thermal energy storage medium, trade marked CompPhase, are presented. The target application area was periodic kiln energy recovery. The concept is that of a composite salt/ceramic material processed such that the medium maintains its shape and mechanical integrity through the salt melting temperature. As such, the media can be fabricated into a variety of shapes suitable for packed beds, fluidized beds, or direct contact heat exchangers. The properties of ten carbonate salt or eutectic mixtures of carbonate salts were reviewed to select the most appropriate candidates for development. Three salts and two ceramic materials were evaluated in laboratory tests to select the final material, a composite of sodium-barium eutectic/magnesium oxide, for development. Two methods of processing the constituent powders for fabrication into storage pellets were developed, and one method was applied to pellet fabrication by commercial processing equipment. Two different preliminary cost estimates bracketed the expected cost of commercially fabricating storage pellets. Also, two modifications to the material processing method were suggested to reduce costs. Thermal cycling was conducted on laboratory produced experimental pellets and on prototype pellets fabricated by commercial processes. Detailed laboratory tests to determine composite mechanical and thermal properties were conducted. It is concluded that further laboratory, field, and economic studies are required before the concept of composite storage media can be considered fully developed for commercialization. 5 refs., 73 figs., 20 tabs.

  7. Preparation of fine powdered composite for latent heat storage

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Pomaleski, Marina; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particle size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.

  8. Indirectly heated fluidized bed biomass gasification using a latent heat ballast

    SciTech Connect

    Pletka, R.; Brown, R.; Smeenk, J.

    1998-12-31

    The objective of this study is to improve the heating value of gas produced during gasification of biomass fuels using an indirectly heated gasifier based on latent heat ballasting. The latent heat ballast consists of lithium fluoride salt encased in tubes suspended in the reactor. The lithium fluoride has a melting point that is near the desired gasification temperature. With the ballast a single reactor operating in a cyclic mode stores energy during a combustion phase and releases it during a pyrolysis phase. Tests were carried out in a fluidized bed reactor to evaluate the concept. The time to cool the reactor during the pyrolysis phase from 1,172 K (1,650 F) to 922 K (1,200 F) increased 102% by use of the ballast system. This extended pyrolysis time allowed 33% more biomass to be gasified during a cycle. Additionally, the total fuel fraction pyrolyzed to produce useful gas increased from 74--80%. Higher heating values of 14.2 to 16.6 MJ/Nm{sup 3} (382--445 Btu/scf) on a dry basis were obtained from the ballasted gasifier.

  9. Latent heat exchange in the boreal and arctic biomes.

    PubMed

    Kasurinen, Ville; Alfredsen, Knut; Kolari, Pasi; Mammarella, Ivan; Alekseychik, Pavel; Rinne, Janne; Vesala, Timo; Bernier, Pierre; Boike, Julia; Langer, Moritz; Belelli Marchesini, Luca; van Huissteden, Ko; Dolman, Han; Sachs, Torsten; Ohta, Takeshi; Varlagin, Andrej; Rocha, Adrian; Arain, Altaf; Oechel, Walter; Lund, Magnus; Grelle, Achim; Lindroth, Anders; Black, Andy; Aurela, Mika; Laurila, Tuomas; Lohila, Annalea; Berninger, Frank

    2014-11-01

    In this study latent heat flux (λE) measurements made at 65 boreal and arctic eddy-covariance (EC) sites were analyses by using the Penman-Monteith equation. Sites were stratified into nine different ecosystem types: harvested and burnt forest areas, pine forests, spruce or fir forests, Douglas-fir forests, broadleaf deciduous forests, larch forests, wetlands, tundra and natural grasslands. The Penman-Monteith equation was calibrated with variable surface resistances against half-hourly eddy-covariance data and clear differences between ecosystem types were observed. Based on the modeled behavior of surface and aerodynamic resistances, surface resistance tightly control λE in most mature forests, while it had less importance in ecosystems having shorter vegetation like young or recently harvested forests, grasslands, wetlands and tundra. The parameters of the Penman-Monteith equation were clearly different for winter and summer conditions, indicating that phenological effects on surface resistance are important. We also compared the simulated λE of different ecosystem types under meteorological conditions at one site. Values of λE varied between 15% and 38% of the net radiation in the simulations with mean ecosystem parameters. In general, the simulations suggest that λE is higher from forested ecosystems than from grasslands, wetlands or tundra-type ecosystems. Forests showed usually a tighter stomatal control of λE as indicated by a pronounced sensitivity of surface resistance to atmospheric vapor pressure deficit. Nevertheless, the surface resistance of forests was lower than for open vegetation types including wetlands. Tundra and wetlands had higher surface resistances, which were less sensitive to vapor pressure deficits. The results indicate that the variation in surface resistance within and between different vegetation types might play a significant role in energy exchange between terrestrial ecosystems and atmosphere. These results suggest the need

  10. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during

  11. Latent Heating Retrievals Using the TRMM Precipitation Radar: A Multi-Seasonal Study

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, S.; Meneghini, R.; Halverson, J.; Johnson, R.; Simpson, J.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid, and solid water. Present largescale weather and climate models can simulate latent heat release only crudely, thus reducing their confidence in predictions on both global and regional scales. This paper represents the first attempt to use NASA Tropical Rainfall Measuring Mission (TRMM) rainfall information to estimate the four-dimensional structure of global monthly latent heating profiles over the global tropics from December 1997 to October 2000. The Goddard Convective-Stratiform. Heating (CSH) algorithm and TRMM precipitation radar data are used for this study. We will examine and compare the latent heating structures between 1997-1998 (winter) ENSO and 1998-2000 (non-ENSO). We will also examine over the tropics. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental; Indian oceans vs west Pacific; Africa vs S. America) will be also examined and compared. In addition, we will examine the relationship between latent heating (max heating level) and SST. The period of interest also coincides with several TRMM field campaigns that recently occurred over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and in the central Pacific in 1999 (KWAJEX). Sounding diagnosed Q1 budgets from these experiments could provide a means of validating the retrieved profiles of latent heating from the CSH algorithm.

  12. A model for the latent heat of melting in free standing metal nanoparticles

    SciTech Connect

    Shin, Jeong-Heon; Deinert, Mark R.

    2014-04-28

    Nanoparticles of many metals are known to exhibit scale dependent latent heats of melting. Analytical models for this phenomenon have so far failed to completely capture the observed phenomena. Here we present a thermodynamic analysis for the melting of metal nanoparticles in terms of their internal energy and a scale dependent surface tension proposed by Tolman. The resulting model predicts the scale dependence of the latent heat of melting and is confirmed using published data for tin and aluminum.

  13. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2011-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as specific spacecraft orientations in Low Earth Orbit (LEO) and low beta angle Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  14. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2009-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation.

  15. Testing and Failure Mechanisms of Ice Phase Change Material Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Stephan, Ryan A.; Hawkins-Reynolds, Ebony

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM s have over evaporators in this scenario is that they do not use a consumable. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents the results of testing that occurred from March through September of 2010 and builds on testing that occurred during the previous year.

  16. Development, Testing, and Failure Mechanisms of a Replicative Ice Phase Change Material Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Hansen, Scott; Stephan, Ryan A.

    2010-01-01

    Phase change materials (PCM) may be useful for thermal control systems that involve cyclical heat loads or cyclical thermal environments such as Low Earth Orbit (LEO) and Low Lunar Orbit (LLO). Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. One advantage that PCM's have over evaporators in this scenario is that they do not use a consumable. Wax PCM units have been baselined for the Orion thermal control system and also provide risk mitigation for the Altair Lander. However, the use of water as a PCM has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. An ice PCM heat exchanger that replicates the thermal energy storage capacity of an existing wax PCM unit was fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion are investigated. This paper presents the results to date of this investigation. Nomenclature

  17. Environmental Forcing of Super Typhoon Paka's (1997) Latent Heat Structure

    NASA Technical Reports Server (NTRS)

    Rodgers, Edward B.; Olson, William; Halverson, Jeff; Simpson, Joanne; Pierce, Harold

    1999-01-01

    The distribution and intensity of total (i.e., combined stratified and convective processes) rainrate/latent heat release (LHR) were derived for tropical cyclone Paka during the period 9-21 December, 1997 from the F-10, F-11, F-13, and F-14 Defense Meteorological Satellite Special Sensor Microwave/Imager and the Tropical Rain Measurement Mission Microwave Imager observations. These observations were frequent enough to capture three episodes of inner core convective bursts that preceded periods of rapid intensification and a convective rainband (CRB) cycle. During these periods of convective bursts, satellite sensors revealed that the rainrates/LHR: 1) increased within the inner eye wall region; 2) were mainly convectively generated (nearly a 65% contribution), 3) propagated inwards; 4) extended upwards within the middle and upper-troposphere, and 5) became electrically charged. These factors may have caused the eye wall region to become more buoyant within the middle and upper-troposphere, creating greater cyclonic angular momentum, and, thereby, warming the center and intensifying the system. Radiosonde measurements from Kwajalein Atoll and Guam, sea surface temperature observations, and the European Center for Medium Range Forecast analyses were used to examine the necessary and sufficient condition for initiating and maintaining these inner core convective bursts. For example, the necessary conditions such as the atmospheric thermodynamics (i.e., cold tropopause temperatures, moist troposphere, and warm SSTs [greater than 26 deg]) suggested that the atmosphere was ideal for Paka's maximum potential intensity (MPI) to approach super-typhoon strength. Further, Paka encountered weak vertical wind shear (less than 15 m/s ) before interacting with the westerlies on 21 December. The sufficient conditions, on the other hand, appeared to have some influence on Paka's convective burst, but the horizontal moisture flux convergence values in the outer core were weaker than

  18. Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

    NASA Technical Reports Server (NTRS)

    Leimkuehler, Thomas O.; Bue, Grant C.

    2009-01-01

    A phase change material (PCM) heat sink using super cooled ice as a nontoxic, nonflammable PCM is being developed. The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented along with recommendations for further development of this technology.

  19. Evolution of Latent Heating Profiles in Two MC3E MCSs

    NASA Astrophysics Data System (ADS)

    Saleeby, S. M.; Marinescu, P. J.; van den Heever, S. C.; Kreidenweis, S. M.

    2015-12-01

    Mesoscale convective systems (MCSs) can be separated into convective and stratiform regions, with each region being associated with characteristic microphysical processes. As such, latent heating that occurs within convective and stratiform regions also has distinct vertical profiles. The latent heating in MCSs plays an important role in the (1) redistribution of energy and moisture from near the Earth's surface to the upper atmosphere, (2) generation of buoyancy forcing for updrafts and downdrafts, and (3) creation of pressure waves that can propagate away from the MCS and alter the surrounding environment. During the various stages of an MCS's lifecycle, the latent heating vertical profiles within the convective and stratiform regions can change. To provide details on these dynamic latent heating profiles, results from two MCS simulations will be presented. Three-dimensional, cloud-resolving model simulations are performed using the Regional Atmospheric Modeling System (RAMS) to represent two MCS events from the Midlatitude Continental Convective Cloud Experiment (MC3E), which occurred in Spring 2011 in the Southern Great Plains of the United States. Comparisons of simulations against observations demonstrate that both simulations capture many features of the observed MC3E MCS events very well, such as precipitation, cold pool strength, and MCS cloud structure. Precipitation regions within these simulations are broken up into convective and stratiform regions using a convective-stratiform separation algorithm. Region-specific latent heating vertical profiles are assessed both as averages over the simulation and as a function of time. In the middle and upper troposphere, convective region warming from latent heating decreases in magnitude throughout the MCS lifecycle, while stratiform warming increases in magnitude in a more confined region between 4 and 8 kilometers above the surface. In the lower troposphere, cooling from latent heating is dominant in both

  20. Characteristics of Precipitation, Cloud, and Latent Heating Associated with the Madden-Julian Oscillation

    NASA Technical Reports Server (NTRS)

    Lau, K-M.; Wu, H-T.

    2010-01-01

    This study investigates the evolution of cloud and rainfall structures associated with Madden Julian oscillation (MJO) using Tropical Rainfall Measuring Mission (TRMM) data. Two complementary indices are used to define MJO phases. Joint probability distribution functions (PDFs) of cloud-top temperature and radar echo-top height are constructed for each of the eight MJO phases. The genesis stage of MJO convection over the western Pacific (phases 1 and 2) features a bottom-heavy PDF, characterized by abundant warm rain, low clouds, suppressed deep convection, and higher sea surface temperature (SST). As MJO convection develops (phases 3 and 4), a transition from the bottom-heavy to top-heavy PDF occurs. The latter is associated with the development of mixed-phase rain and middle-to-high clouds, coupled with rapid SST cooling. At the MJO convection peak (phase 5), a top-heavy PDF contributed by deep convection with mixed-phase and ice-phase rain and high echo-top heights (greater than 5 km) dominates. The decaying stage (phases 6 and 7) is characterized by suppressed SST, reduced total rain, increased contribution from stratiform rain, and increased nonraining high clouds. Phase 7, in particular, signals the beginning of a return to higher SST and increased warm rain. Phase 8 completes the MJO cycle, returning to a bottom-heavy PDF and SST conditions similar to phase 1. The structural changes in rain and clouds at different phases of MJO are consistent with corresponding changes in derived latent heating profiles, suggesting the importance of a diverse mix of warm, mixed-phase, and ice-phase rain associated with low-level, congestus, and high clouds in constituting the life cycle and the time scales of MJO.

  1. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  2. Fundamental Properties of TBAF Clathrate for Usage as a Latent Heat Storage at a Room Temperature

    NASA Astrophysics Data System (ADS)

    Mizushima, Takanari; Kawamura, Hiroshi; Takao, Shingo; Yabe, Akira

    For promotion of further energy conservation, development of a coolant with a higher heat capacity regulated around a room temperature is strongly required. As a candidate of such a new coolant, we employ the clathrate hydrate, i.e., a mixture of Tetra n-butyl ammonium fluoride (TBAF) and water. This clathrate hydrate is composed of the micro crystals with an order of 100 μm in dimension. It retains fluidity and melting point at a room temperature of about 25 °C. Moreover, the melting point is able to be controlled between 25 °C and 0 °C by changing the concentration of TBAF. The temperature can be regulated by its latent heat at the melting point. Characteristics such as the latent heat and the crystal structure of the clathrate have been experimentally obtained to confirm the feasibility for its usage as the latent heat storage around a room temperature.

  3. Active latent heat storage with a screw heat exchanger - experimental results for heat transfer and concept for high pressure steam

    NASA Astrophysics Data System (ADS)

    Zipf, Verena; Willert, Daniel; Neuhäuser, Anton

    2016-05-01

    An innovative active latent heat storage concept was invented and developed at Fraunhofer ISE. It uses a screw heat exchanger (SHE) for the phase change during the transport of a phase change material (PCM) from a cold to a hot tank or vice versa. This separates heat transfer and storage tank in comparison to existing concepts. A test rig has been built in order to investigate the heat transfer coefficients of the SHE during melting and crystallization of the PCM. The knowledge of these characteristics is crucial in order to assess the performance of the latent heat storage in a thermal system. The test rig contains a double shafted SHE, which is heated or cooled with thermal oil. The overall heat transfer coefficient U and the convective heat transfer coefficient on the PCM side hPCM both for charging and discharging have been calculated based on the measured data. For charging, the overall heat transfer coefficient in the tested SHE was Uch = 308 W/m2K and for discharging Udis = 210 W/m2K. Based on the values for hPCM the overall heat transfer coefficients for a larger SHE with steam as heat transfer fluid and an optimized geometry were calculated with Uch = 320 W/m2K for charging and Udis = 243 W/m2K for discharging. For pressures as high as p = 100 bar, an SHE concept has been developed, which uses an organic fluid inside the flight of the SHE as working media. With this concept, the SHE can also be deployed for very high pressure, e.g. as storage in solar thermal power plants.

  4. Ice pack heat sink subsystem - Phase 1, Volume 1

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, fabrication, and test at one-g of a functional laboratory model (non-flight) ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions are discussed. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  5. Implicit measurement of the latent heat in a magnetocaloric NiMnIn Heusler alloy

    NASA Astrophysics Data System (ADS)

    Ghahremani, Mohammadreza; ElBidweihy, Hatem; Bennett, Lawrence H.; Della Torre, Edward; Zou, Min; Johnson, Francis

    2013-05-01

    The latent heat linked with the first-order transformation of a NiMnIn Heusler alloy has been studied through direct measurements of the adiabatic temperature change, ΔTad, during magnetization process. The experimental procedure used guarantees independent data points and negates any contribution of hysteretic losses to the magnetocaloric effect. Thus, the differences between the magnitudes of ΔTad measurements during the magnetization with the initial temperature change directions from low-to-high and high-to-low are solely attributed to the latent heat exchange, which accompanies the irreversible structural first-order transformation. An estimate of the latent heat inducing such differences is about 0.292 J/g.

  6. The role of water vapor and its associated latent heating in extreme Beaufort coastal storm surge events

    NASA Astrophysics Data System (ADS)

    Gyakum, J. R.; Small, D. L.; Atallah, E.; Liu, N.; Kuo, Y.

    2009-12-01

    During the rather limited ice-free season that typically may occur from late July through early October, the Beaufort Sea region is susceptible to extreme windstorms, many of which produce damaging storm surges to low-lying coastal communities. During the most recent years, the ice-free season has lengthened, suggesting an increased vulnerability of coastal communities to cyclogenesis-related windstorms. Therefore, our research focuses on the dynamic and thermodynamic mechanisms responsible for significant surface wind events during the ice-free season in this region. We demonstrate that these storm surge events are often associated with the generation of large-scale atmospheric circulation regomes conducive to North American droughts. Our analysis methodology includes the detailed synoptic-dynamic analysis, including numerical experiments, on a case of an especially long-lived extreme storm surge that occurred in September 1999. We utilize conventional surface and upper-air station data, along with satellite and ground-based water vapor data. We also utilize global and regional reanalysis data to document the synoptic-scale and mesoscale environments associated with the cyclogenesis events. Our numerical experiments with the Weather Research and Forecasting (WRF) model include sensitivity testing with COSMIC-derived water vapor data, and sensitivity tests to illustrate the relative roles that latent heating plays in the storm surge event, at various stages in its lifecycle. A particularly important finding of our research on the devastating September 1999 storm surge event is that a relatively rare case of explosive cyclogenesis in the Gulf of Alaska is a key player in this Beaufort storm surge. The deep-tropospheric latent heating during the explosive cyclogenesis generates a dynamic tropopause ridge. This ridge in turn induces surface ridging that contributes to the strong west-northwesterlies associated with the storm surge. This generation of the dynamic

  7. Experimental investigation of the latent heat of vaporization in aqueous nanofluids

    SciTech Connect

    Lee, Soochan; Phelan, Patrick E. Dai, Lenore; Prasher, Ravi; Gunawan, Andrey; Taylor, Robert A.

    2014-04-14

    This paper reports an experimental investigation of the latent heat of vaporization (h{sub fg}) in nanofluids. Two different types of nanoparticles, graphite and silver, suspended in deionized water were exposed to a continuous laser beam (130 mW, 532 nm) to generate boiling. The latent heat of vaporization in the nanofluids was determined by the measured vapor mass generation and the heat input. To ensure that the measured h{sub fg} values are independent of heating method, the experiments were repeated with an electrically heated hot wire as a primary heat input. These experiments show considerable variation in the h{sub fg} of nanofluids. That is, graphite nanofluid exhibits an increased h{sub fg} and silver nanofluid shows a decrease in h{sub fg} compared to the value for pure water. As such, these results indicate that relatively low mass fractions of nanoparticles can apparently create large changes in h{sub fg}.

  8. The impact of latent heating on the location and strength of the tropical easterly jet

    NASA Astrophysics Data System (ADS)

    Rao, Samrat; Srinivasan, Jayaraman

    2016-04-01

    The tropical easterly jet (TEJ) is a prominent atmospheric circulation feature observed during the Asian summer monsoon. It is generally assumed that sensible heating over the Tibetan Plateau directly influences the location of the TEJ. However, other studies have suggested the importance of latent heating in determining the jet location. In this paper, the relative importance of latent heating on the maintenance of the TEJ is explored through simulations with a general circulation model. The simulation of the TEJ by the Community Atmosphere Model, version 3.1 is discussed in detail. These simulations showed that the location of the TEJ is well correlated with the location of the precipitation. Significant zonal shifts in the location of the precipitation resulted in similar shifts in the zonal location of the TEJ. These zonal shifts had minimal effect on the large-scale structure of the jet. Further, provided that precipitation patterns were relatively unchanged, orography did not directly impact the location of the TEJ. These changes were robust even with changes in the cumulus parameterization. This suggests the potential important role of latent heating in determining the location and structure of the TEJ. These results were used to explain the significant differences in the zonal location of the TEJ in the years 1988 and 2002. To understand the contribution of the latitudinal location of latent heating on the strength of the TEJ, aqua-planet simulations were carried out. It has been shown that for similar amounts of net latent heating, the jet is stronger when heating is in the higher tropical latitudes. This may partly explain the reason for the jet to be very strong during the JJA monsoon season.

  9. Simulation and evaluation of latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Sigmon, T. W.

    1980-01-01

    The relative value of thermal energy storage (TES) for heat pump storage (heating and cooling) as a function of storage temperature, mode of storage (hotside or coldside), geographic locations, and utility time of use rate structures were derived. Computer models used to simulate the performance of a number of TES/heat pump configurations are described. The models are based on existing performance data of heat pump components, available building thermal load computational procedures, and generalized TES subsystem design. Life cycle costs computed for each site, configuration, and rate structure are discussed.

  10. Sensitivity of model parameterizations for simulated latent heat flux at the snow surface for complex mountain sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The snowcover energy balance is typically dominated by net radiation and sensible and latent heat fluxes. Validation of the two latter components is rare and often difficult to undertake at complex mountain sites. Latent heat flux, the focus of this paper, is the primary coupling mechanism between...

  11. Ice friction: Role of non-uniform frictional heating and ice premelting

    NASA Astrophysics Data System (ADS)

    Persson, B. N. J.

    2015-12-01

    The low friction of ice is usually attributed to the formation of a thin water film due to melting of ice by frictional heating. Melting of ice is a first order phase transition where physical quantities like mass density, the elastic modulus or the shear strength changes abruptly at the transition temperature. Thus, one may expect the friction coefficient to change abruptly at some characteristic sliding speed, when the melt water film is produced. We show that taking into account that, due to non-uniform frictional heating, melting does not occur simultaneously in all the ice contact regions, the transition is not abrupt but still more rapid (as a function of sliding speed) than observed experimentally. The slower than expected drop in the friction with increasing sliding speed may be a consequence of the following paradoxical phenomena: before the melt-water film is formed, the friction of ice is high and a large frictional heating occur which may result in the melting of the ice. If a thin (nanometer) water film would form, the friction becomes low which results in small frictional heating and the freezing of the water film. This suggests a region in sliding speed where a thin (nanometer) surface layer of the ice may be in a mixed state with small ice-like and water-like domains, which fluctuate rapidly in space and time. Alternatively, and more likely, heat-softening of the ice may occur resulting in a thin, statistically homogeneous (in the lateral direction) layer of disordered ice, with a shear strength which decreases continuously as the ice surface temperature approaches the bulk melting temperature. This layer could be related to surface premelting of ice. Using a phenomenological expression for the frictional shear stress, I show that the calculated ice friction is in good agreement with experimental observations.

  12. Daily evapotranspiration estimates by scaling instantaneous latent heat flux derived from a two-source model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Radiometric brightness temperature can be used in energy balance models that estimate sensible and latent heat fluxes of the land surface. However, brightness temperature is usually available only at one time of day when acquired from aircraft, fine-scale satellite platforms, or infrared thermometer...

  13. Robust estimates of soil moisture and latent heat flux coupling strength obtained from triple collocation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Land surface models (LSMs) are often applied to predict the one-way coupling strength between surface soil moisture (SM) and surface latent heat (LH) flux. However, the ability of LSMs to accurately represent such coupling has not been adequately established. Likewise, the estimation of one-way SM/L...

  14. Experimental simulation of latent heat thermal energy storage and heat pipe thermal transport for dish concentrator solar receiver

    NASA Technical Reports Server (NTRS)

    Narayanan, R.; Zimmerman, W. F.; Poon, P. T. Y.

    1981-01-01

    Test results on a modular simulation of the thermal transport and heat storage characteristics of a heat pipe solar receiver (HPSR) with thermal energy storage (TES) are presented. The HPSR features a 15-25 kWe Stirling engine power conversion system at the focal point of a parabolic dish concentrator operating at 827 C. The system collects and retrieves solar heat with sodium pipes and stores the heat in NaF-MgF2 latent heat storage material. The trials were run with a single full scale heat pipe, three full scale TES containers, and an air-cooled heat extraction coil to replace the Stirling engine heat exchanger. Charging and discharging, constant temperature operation, mixed mode operation, thermal inertial, etc. were studied. The heat pipe performance was verified, as were the thermal energy storage and discharge rates and isothermal discharges.

  15. Sensible and latent heat loss from the body surface of Holstein cows in a tropical environment

    NASA Astrophysics Data System (ADS)

    Maia, A. S. C.; Dasilva, R. G.; Battiston Loureiro, C. M.

    2005-09-01

    The general principles of the mechanisms of heat transfer are well known, but knowledge of the transition between evaporative and non-evaporative heat loss by Holstein cows in field conditions must be improved, especially for low-latitude environments. With this aim 15 Holstein cows managed in open pasture were observed in a tropical region. The latent heat loss from the body surface of the animals was measured by means of a ventilated capsule, while convective heat transfer was estimated by the theory of convection from a horizontal cylinder and by the long-wave radiation exchange based on the Stefan-Boltzmann law. When the air temperature was between 10 and 36°C the sensible heat transfer varied from 160 to -30 W m-2, while the latent heat loss by cutaneous evaporation increased from 30 to 350 W m-2. Heat loss by cutaneous evaporation accounted for 20-30% of the total heat loss when air temperatures ranged from 10 to 20°C. At air temperatures >30°C cutaneous evaporation becomes the main avenue of heat loss, accounting for approximately 85% of the total heat loss, while the rest is lost by respiratory evaporation.

  16. The Calculation of the Heat Required for Wing Thermal Ice Prevention in Specified Icing Conditions

    NASA Technical Reports Server (NTRS)

    Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A.; Neel, Carr B., Jr.

    1947-01-01

    Flight tests were made in natural icing conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to ice formation were made simultaneously with the procurement of airfoil thermal data. The extent of knowledge on the meteorology of icing, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.

  17. Passive ice freezing-releasing heat pipe. [Patent application

    DOEpatents

    Gorski, A.J.; Schertz, W.W.

    1980-09-29

    A heat pipe device has been developed which permits completely passive ice formation and periodic release of ice without requiring the ambient temperature to rise above the melting point of water. This passive design enables the maximum amount of cooling capacity to be stored in the tank.

  18. Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Latent Heating Profiles

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.; Shie, Chung-Lin; L'Ecuyer, Tristan S.; Tao, Wei-Kuo

    2009-01-01

    In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2

  19. Ice pack heat sink subsystem - phase 1, volume 2

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    The design, development, and test of a functional laboratory model ice pack heat sink subsystem are discussed. Operating instructions to include mechanical and electrical schematics, maintenance instructions, and equipment specifications are presented.

  20. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. Additional information is included in the original extended abstract.

  1. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs. S. America ) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model. Review of other latent heating algorithms will be discussed in the workshop.

  2. Imprint of the ENSO on rainfall and latent heating variability over the Southern South China Sea from TRMM observations

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Huang, Ke

    2016-04-01

    Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) during the winter monsoon between 1998 and 2010. Although the height of maximum latent heating remained nearly constant at around 7 km in all of the years, the year-to-year changes in the magnitudes of maximum latent heating over the region were noticeable. The interannual variations of the convective- stratiform rainfall and latent heating over the southern SCS were highly anti-correlated with the Niño-3 index, with more (less) rainfall and latent heating during La Niña (El Niño) years. Analysis of the large-scale environment revealed that years of active rainfall and latent heating corresponded to years of large deep convergence and relative humidity at 600 hPa. The moisture budget diagnosis indicated that the interannual variation of humidity at 600 hPa was largely modulated by the vertical moisture advection. The year-to-year changes in rainfall over the southern SCS were mainly caused by the interannual variations of the dynamic component associated with anomalous upward motions in the middle troposphere, while the interannual variations of the thermodynamic component associated with changes in surface specific humidity played a minor role. Larger latent heating over the southern SCS during La Niña years may possibly further enhance the local Hadley circulation over the SCS in the wintertime.

  3. Copper-silicon-magnesium alloys for latent heat storage

    DOE PAGESBeta

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-06-21

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  4. Copper-Silicon-Magnesium Alloys for Latent Heat Storage

    NASA Astrophysics Data System (ADS)

    Gibbs, P. J.; Withey, E. A.; Coker, E. N.; Kruizenga, A. M.; Andraka, C. E.

    2016-06-01

    The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. Two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.

  5. A neural network to retrieve the mesoscale instantaneous latent heat flux over oceans from SSM/I observations

    NASA Technical Reports Server (NTRS)

    Bourras, D.; Eymard, L.; Liu, W. T.

    2000-01-01

    The turbulent latent and sensible heat fluxes are necessary to study heat budget of the upper ocean or initialize ocean general circulation models. In order to retrieve the latent heat flux from satellite observations authors mostly use a bulk approximation of the flux whose parameters are derived from different instrument. In this paper, an approach based on artificial neural networks is proposed and compared to the bulk method on a global data set and 3 local data sets.

  6. Metal-halide mixtures for latent heat energy storage

    NASA Technical Reports Server (NTRS)

    Chen, K.; Manvi, R.

    1981-01-01

    Alkali metal and alkali halide mixtures are identified which may be suitable for thermal energy storage at temperatures above 600 C. The use of metal-halides is appropriate because of their tendency to form two immiscible melts with a density difference, which reduces scale formation and solidification on heat transfer surfaces. Also, the accumulation of phase change material along the melt interface is avoided by the self-dispersing characteristic of some metal-halides, in particular Sr-SrCl2, Ba-BaCl2, and Ba-BaBr2 mixtures. Further advantages lie in their high thermal conductivities, ability to cope with thermal shock, corrosion inhibition, and possibly higher energy densities.

  7. Convective and Stratiform Precipitation Processes and their Relationship to Latent Heating

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Lang, Steve; Zeng, Xiping; Shige, Shoichi; Takayabu, Yukari

    2009-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.

  8. Uncertainty in Tropical Ocean Latent Heat Flux Variability During the Last 25 Years

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.; Lu, H.-I.; Bosilovich, M. G.; Miller, T. L.

    2007-01-01

    When averaged over the tropical oceans (30deg N/S), latent heat flux anomalies derived from passive microwave satellite measurements as well as reanalyses and climate models driven with specified seal-surface temperatures show considerable disagreement in their decadal trends. These estimates range from virtually no trend to values over 8.4 W/sq m decade. Satellite estimates also tend to have a larger interannual signal related to El Nino/Southern Oscillation (ENSO) events than do reanalyses or model simulations. An analysis of wind speed and humidity going into bulk aerodynamic calculations used to derive these fluxes reveals several error sources. Among these are apparent remaining intercalibration issues affecting passive microwave satellite 10 m wind speeds and systematic biases in retrieval of near-surface humidity. Likewise, reanalyses suffer from discontinuities in availability of assimilated data that affect near surface meteorological variables. The results strongly suggest that current latent heat flux trends are overestimated.

  9. Comparison of Several Methods of Cyclic De-Icing of a Gas-Heated Airfoil

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H.; Bowden, Dean T.

    1953-01-01

    Several methods of cyclic de-icing of a gas-heated airfoil were investigated to determine ice-removal characteristics and heating requirements. The cyclic de-icing system with a spanwise ice-free parting strip in the stagnation region and a constant-temperature gas-supply duct gave the quickest and most reliable ice removal. Heating requirements for the several methods of cyclic de-icing are compared, and the savings over continuous ice prevention are shown. Data are presented to show the relation of surface temperature, rate of surface heating, and heating time to the removal of ice.

  10. Spectral Retrieval of Latent Heating Profiles from TRMM PR Data: Comparison of Look-Up Tables

    NASA Technical Reports Server (NTRS)

    Shige, Shoichi; Takayabu, Yukari N.; Tao, Wei-Kuo; Johnson, Daniel E.; Shie, Chung-Lin

    2003-01-01

    The primary goal of the Tropical Rainfall Measuring Mission (TRMM) is to use the information about distributions of precipitation to determine the four dimensional (i.e., temporal and spatial) patterns of latent heating over the whole tropical region. The Spectral Latent Heating (SLH) algorithm has been developed to estimate latent heating profiles for the TRMM Precipitation Radar (PR) with a cloud- resolving model (CRM). The method uses CRM- generated heating profile look-up tables for the three rain types; convective, shallow stratiform, and anvil rain (deep stratiform with a melting level). For convective and shallow stratiform regions, the look-up table refers to the precipitation top height (PTH). For anvil region, on the other hand, the look- up table refers to the precipitation rate at the melting level instead of PTH. For global applications, it is necessary to examine the universality of the look-up table. In this paper, we compare the look-up tables produced from the numerical simulations of cloud ensembles forced with the Tropical Ocean Global Atmosphere (TOGA) Coupled Atmosphere-Ocean Response Experiment (COARE) data and the GARP Atlantic Tropical Experiment (GATE) data. There are some notable differences between the TOGA-COARE table and the GATE table, especially for the convective heating. First, there is larger number of deepest convective profiles in the TOGA-COARE table than in the GATE table, mainly due to the differences in SST. Second, shallow convective heating is stronger in the TOGA COARE table than in the GATE table. This might be attributable to the difference in the strength of the low-level inversions. Third, altitudes of convective heating maxima are larger in the TOGA COARE table than in the GATE table. Levels of convective heating maxima are located just below the melting level, because warm-rain processes are prevalent in tropical oceanic convective systems. Differences in levels of convective heating maxima probably reflect

  11. The effects of latent heat release on the waves with Ekman pumping

    NASA Technical Reports Server (NTRS)

    Tang, C. M.

    1984-01-01

    The problem of the effects of the latent heat release on the waves with both upper and lower boundary frictional effects is investigated. The influence of the vertical shear of the basic wind in these models will be investigated. These investigations will shed some light on the method of solution to the problem of including the effect of Ekman pumping on the moist baroclinic waves in the model of Tang and Fichtl.

  12. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  13. Latent Heat and Sensible Heat Fluxes Simulation in Maize Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Safa, B.

    2015-12-01

    Latent Heat (LE) and Sensible Heat (H) flux are two major components of the energy balance at the earth's surface which play important roles in the water cycle and global warming. There are various methods for their estimation or measurement. Eddy covariance is a direct and accurate technique for their measurement. Some limitations lead to prevention of the extensive use of the eddy covariance technique. Therefore, simulation approaches can be utilized for their estimation. ANNs are the information processing systems, which can inspect the empirical data and investigate the relations (hidden rules) among them, and then make the network structure. In this study, multi-layer perceptron neural network trained by the steepest descent Back-Propagation (BP) algorithm was tested to simulate LE and H flux above two maize sites (rain-fed & irrigated) near Mead, Nebraska. Network training and testing was fulfilled using hourly data of including year, local time of day (DTime), leaf area index (LAI), soil water content (SWC) in 10 and 25 cm depths, soil temperature (Ts) in 10 cm depth, air temperature (Ta), vapor pressure deficit (VPD), wind speed (WS), irrigation and precipitation (P), net radiation (Rn), and the fraction of incoming Photosynthetically Active Radiation (PAR) absorbed by the canopy (fPAR), which were selected from days of year (DOY) 169 to 222 for 2001, 2003, 2005, 2007, and 2009. The results showed high correlation between actual and estimated data; the R² values for LE flux in irrigated and rain-fed sites were 0.9576, and 0.9642; and for H flux 0.8001, and 0.8478, respectively. Furthermore, the RMSE values ranged from 0.0580 to 0.0721 W/m² for LE flux and from 0.0824 to 0.0863 W/m² for H flux. In addition, the sensitivity of the fluxes with respect to each input was analyzed over the growth stages. Thus, the most powerful effects among the inputs for LE flux were identified net radiation, leaf area index, vapor pressure deficit, wind speed, and for H

  14. Cold Heat Storage Characteristics of O/W-type Latent Heat Emulsion Including Continuum Phase of Water Treated with a Freezing Point Depression

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    This paper deals with flow and cold heat storage characteristics of the oil (tetradecane, C14H30, freezing point 278.9 K, Latent heat 229 kJ/kg)/water emulsion as a latent heat storage material having a low melting point. The test emulsion includes a water-urea solution as a continuum phase. The freezing point depression of the continuum phase permits enhancement of the heat transfer rate of the emulison, due to the large temperature difference between the latent heat storage material and water-urea solution. The velocity of emulsion flow and the inlet temperature of coolant in a coiled double tube heat exchanger are chosen as the experimental parameters. The pressure drop, the heat transfer coefficient of the emulsion in the coiled tube are measured in the temperture region over solid and liquid phase of the latent heat storage material. The finishing time of the cold heat storage is defined experimentally in the range of sensible and latent heat storage. It is clarified that the flow behavior of the emulsion as a non-Newtonian fluid has an important role in cold heat storage. The useful nondimentional correlation equations for the additional pressure loss coefficient, the heat transfer coefficient and the finishing time of the cold heat storage are derived in terms of Dean number and heat capacity ratio.

  15. A method to model latent heat for transient analysis using NASTRAN

    NASA Technical Reports Server (NTRS)

    Harder, R. L.

    1982-01-01

    A sample heat transfer analysis is demonstrated which includes the heat of fusion. The method can be used to analyze a system with nonconstant specific heat. The enthalpy is introduced as an independent degree of freedom at each node. The user input consists of a curve of temperature as a function of enthalpy, which may include a constant temperature phase change. The basic NASTRAN heat transfer capability is used to model the effects of latent heat with existing direct matrix output and nonlinear load data cards. Although some user care is required, the numerical stability of the integration is quite good when the given recommendations are followed. The theoretical equations used and the NASTRAN techniques are shown.

  16. Including latent and sensible heat fluxes from sea spray in global weather and climate models

    NASA Astrophysics Data System (ADS)

    Copsey, Dan

    2016-04-01

    Most standard weather and climate models calculate interfacial latent (evaporation) and sensible heat fluxes over the ocean based on parameterisations of atmospheric turbulence, using the wave state only in the calculation of surface roughness length. They ignore latent and sensible heat fluxes generated by sea spray, which is an acceptable assumption at low wind speeds. However at high wind speeds (> 15 m/s) a significant amount of sea spray is generated from the sea surface which, while airborne, cools to an equilibrium temperature, absorbs heat and releases moisture before re-impacting the sea surface. This could impact, for example, the total heat loss from the Southern Ocean (which is anomalously warm in Met Office coupled models) or the accuracy of tropical cyclone forecasts. A modified version of the Fairall sea spray parameterisation scheme has been tested in the Met Office Unified Model including the JULES surface exchange model in both climate and NWP mode. The fast part of the scheme models the temperature change of the droplets to an equilibrium temperature and the slow part of the scheme models the evaporation and heat absorption while the droplets remain airborne. Including this scheme in the model cools and moistens the near surface layers of the atmosphere during high wind events, including tropical cyclones. Sea spray goes on to increase the convection intensity and precipitation near the high wind events in the model.

  17. Vertical Profiles of Latent Heat Release over the Global Tropics using TRMM rainfall products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2001. Rainfall, latent heating and radar reflectivity structures between El Nino (DE 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs. west Pacific, Africa vs. S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in strtaiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  18. Vertical Profiles of Latent Heat Release over the Global Tropics Using TRMM Rainfall Products from December 1997 to November 2002

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.

    2003-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in straitform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMXX), Brazil in 1999 (TRMM- LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  19. Vertical Profiles of Latent Heat Release Over the Global Tropics using TRMM Rainfall Products from December 1997 to November 2001

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Starr, David (Technical Monitor)

    2002-01-01

    NASA Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) derived rainfall information will be used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to November 2000. Rainfall, latent heating and radar reflectivity structures between El Nino (DJF 1997-98) and La Nina (DJF 1998-99) will be examined and compared. The seasonal variation of heating over various geographic locations (i.e., oceanic vs continental, Indian ocean vs west Pacific, Africa vs S. America) will also be analyzed. In addition, the relationship between rainfall, latent heating (maximum heating level), radar reflectivity and SST is examined and will be presented in the meeting. The impact of random error and bias in stratiform percentage estimates from PR on latent heating profiles is studied and will also be presented in the meeting. The Goddard Cumulus Ensemble Model is being used to simulate various mesoscale convective systems that developed in different geographic locations. Specifically, the model estimated rainfall, radar reflectivity and latent heating profiles will be compared to observational data collected from TRMM field campaigns over the South China Sea in 1998 (SCSMEX), Brazil in 1999 (TRMM-LBA), and the central Pacific in 1999 (KWAJEX). Sounding diagnosed heating budgets and radar reflectivity from these experiments can provide the means to validate (heating product) as well as improve the GCE model.

  20. New latent heat storage system with nanoparticles for thermal management of electric vehicles

    NASA Astrophysics Data System (ADS)

    Javani, N.; Dincer, I.; Naterer, G. F.

    2014-12-01

    In this paper, a new passive thermal management system for electric vehicles is developed. A latent heat thermal energy storage with nanoparticles is designed and optimized. A genetic algorithm method is employed to minimize the length of the heat exchanger tubes. The results show that even the optimum length of a shell and tube heat exchanger becomes too large to be employed in a vehicle. This is mainly due to the very low thermal conductivity of phase change material (PCM) which fills the shell side of the heat exchanger. A carbon nanotube (CNT) and PCM mixture is then studied where the probability of nanotubes in a series configuration is defined as a deterministic design parameter. Various heat transfer rates, ranging from 300 W to 600 W, are utilized to optimize battery cooling options in the heat exchanger. The optimization results show that smaller tube diameters minimize the heat exchanger length. Furthermore, finned tubes lead to a higher heat exchanger length due to more heat transfer resistance. By increasing the CNT concentration, the optimum length of the heat exchanger decreases and makes the improved thermal management system a more efficient and competitive with air and liquid thermal management systems.

  1. Icing Characteristics and Anti-Icing Heat Requirements for Hollow and Ternally Modified Gas-Heated Inlet Guide Vanes

    NASA Technical Reports Server (NTRS)

    Gray, Vernon H.; Bowden, Dean T.

    1950-01-01

    A two-dimensional inlet-guide-vane cascade was investigated to determine the effects of ice formations on the pressure losses across the guide vanes and to evaluate the heated gas flow and temperature required to prevent Icing at various conditions. A gas flow of approximately 0.4 percent of the inlet-air flow was necessary for anti-icing a hollow guide-vane stage at an inlet-gas temperature of 500 F under the following icing conditions: air velocity, 280 miles per hour; water content, 0.9 gram per cubic meter; and Inlet-air static temperature, 00 F. Also presented are the anti-icing gas flows required with modifications of the hollow Internal gas passage, which show heatinput savings greater than 50 percent.

  2. Sensible and Latent Heat Exchange at the Soil Surface Beneath a Maize Canopy

    NASA Astrophysics Data System (ADS)

    Sauer, Thomas John

    Soil heat and vapor exchange at the soil surface beneath a plant canopy was measured using heat and vapor source plates. Data from field and laboratory experiments were used to derive equations predicting interfacial heat and vapor transfer coefficients for inclusion in an existing, comprehensive soil-plant-atmosphere model, Cupid. Heat and vapor source plates constructed of anodized aluminum (305 by 864 mm by 13 mm thick) were installed level with the soil surface within a maize (Zea mays, L.) field to provide an area of known and controllable temperature and/or vapor pressure and sensible and/or latent heat flux. Sensible heat flux density was determined from an energy budget analysis while evaporation from wetted felt fabric on one plate's surface was used to determine the latent heat flux density. Flux measurements were combined with measured temperature and vapor pressure differences to determine the interfacial transfer coefficients. Field measurements were made during all stages of canopy development and were supplemented by extensive measurements of the local microclimate. Controlled forced convection experiments were also conducted in a wind tunnel using three levels of turbulence intensity and two arrays of aluminum roughness elements to assess the effects of turbulence and surface roughness on heat and mass transfer. Measured interfacial transfer coefficients during the field experiments ranged from 2 to 30 mm s ^{-1} over wind speeds of 5 to 280 cm s^{-1} measured 3 cm above the plate surface. Equations based on dimensionless parameters were developed and fit to the wind tunnel data, compared with the field data, and incorporated into the computer model. The new transfer coefficient relationships had less scatter and were more closely correlated to within -canopy wind speed than the previous formulations. Predictions of canopy microclimate characteristics were significantly improved as compared to those predictions obtained using transfer coefficients

  3. Turbulent heat transfer as a control of platelet ice growth in supercooled under-ice ocean boundary layers

    NASA Astrophysics Data System (ADS)

    McPhee, Miles G.; Stevens, Craig L.; Smith, Inga J.; Robinson, Natalie J.

    2016-04-01

    Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.

  4. Turbulent heat transfer as a control of platelet ice growth in supercool under-ice ocean boundary-layers

    NASA Astrophysics Data System (ADS)

    McPhee, M. G.; Stevens, C. L.; Smith, I. J.; Robinson, N. J.

    2015-11-01

    Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, identified processes that influence growth at the interface of an ice surface in contact with supercool seawater. The data suggest that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. We hypothesize that platelet growth in supercool water under thick ice is rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the under-side of ice shelves and sea ice in the vicinity of ice shelves.

  5. Latent heat thermal energy storage: Determination of properties of storage media and development of a new transfer system

    NASA Astrophysics Data System (ADS)

    Abhat, A.; Aboul-Enein, S.; Malatidis, N. A.

    1982-01-01

    A latent heat storage system for low temperature solar heating applications was developed. Latent heat storage materials were studied and a heat exchanger design was evaluated. Thermophysical properties of 14 organic and inorganic heat storage materials, including 5 inexpensive commercial paraffins, 2 fatty acids, and 5 salt hydrates, were measured with a precision differential scanning calorimeter. Data pertaining to phase transition temperature, enthalphy and, specific heat of the heat storage materials in solid and liquid phases were taken. The influence of thermal cycling on the melting and freezing behavior of the materials and on changes in thermophysical properties was analyzed. A heat exchanger with finned annulus heat exchanger elements was investigated. Tests were performed, using two laboratory models that employed a paraffin, two fatty acids and one salt hydrate as heat storage materials.

  6. Evaluation and Application of Satellite-Based Latent Heating Profile Estimation Methods

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Grecu, Mircea; Yang, Song; Tao, Wei-Kuo

    2004-01-01

    In recent years, methods for estimating atmospheric latent heating vertical structure from both passive and active microwave remote sensing have matured to the point where quantitative evaluation of these methods is the next logical step. Two approaches for heating algorithm evaluation are proposed: First, application of heating algorithms to synthetic data, based upon cloud-resolving model simulations, can be used to test the internal consistency of heating estimates in the absence of systematic errors in physical assumptions. Second, comparisons of satellite-retrieved vertical heating structures to independent ground-based estimates, such as rawinsonde-derived analyses of heating, provide an additional test. The two approaches are complementary, since systematic errors in heating indicated by the second approach may be confirmed by the first. A passive microwave and combined passive/active microwave heating retrieval algorithm are evaluated using the described approaches. In general, the passive microwave algorithm heating profile estimates are subject to biases due to the limited vertical heating structure information contained in the passive microwave observations. These biases may be partly overcome by including more environment-specific a priori information into the algorithm s database of candidate solution profiles. The combined passive/active microwave algorithm utilizes the much higher-resolution vertical structure information provided by spaceborne radar data to produce less biased estimates; however, the global spatio-temporal sampling by spaceborne radar is limited. In the present study, the passive/active microwave algorithm is used to construct a more physically-consistent and environment-specific set of candidate solution profiles for the passive microwave algorithm and to help evaluate errors in the passive algorithm s heating estimates. Although satellite estimates of latent heating are based upon instantaneous, footprint- scale data, suppression

  7. Method and apparatus for inoculating crystallization seeds into a liquid latent heat storage substance

    SciTech Connect

    Lindner, F.; Scheunemann, K.

    1984-07-24

    A method and apparatus for inoculating a liquid latent heat storage substance of the type convertible to the solid state on cooling is disclosed. A portion of the substance is caused to crystallize on a cooled active surface, immersed in the substance and preferably vertically arranged, whereupon the active surface is heated to fuse-off the formed crystals to release them into the liquid portion of the storage substance to thus form inoculation seeds on which further crystallization of the storage substance takes place on withdrawal of heat from same. In one described embodiment, a pair of active surfaces is provided by using a Peltier element operating with a DC source having selectively reversible polarity whereby one surface is cooled down while the other is heated and vice versa, depending on the instant polarity of the DC source. In another embodiment, the active surface is alternately heated and cooled by heat carrier medium of a heat pump circulation system drawn from the respective sections of the system in alternating fashion. Due to the formation of crystallization seeds from the heat storage substance, problems normally associated with the use of a foreign inoculation substance are avoided.

  8. Computational modeling of latent-heat-storage in PCM modified interior plaster

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Maděra, Jiří; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek

    2016-06-01

    The latent heat storage systems represent a promising way for decrease of buildings energy consumption with respect to the sustainable development principles of building industry. The presented paper is focused on the evaluation of the effect of PCM incorporation on thermal performance of cement-lime plasters. For basic characterization of the developed materials, matrix density, bulk density, and total open porosity are measured. Thermal conductivity is accessed by transient impulse method. DSC analysis is used for the identification of phase change temperature during the heating and cooling process. Using DSC data, the temperature dependent specific heat capacity is calculated. On the basis of the experiments performed, the supposed improvement of the energy efficiency of characteristic building envelope system where the designed plasters are likely to be used is evaluated by a computational analysis. Obtained experimental and computational results show a potential of PCM modified plasters for improvement of thermal stability of buildings and moderation of interior climate.

  9. Latent heat of magnetization for MnFeSi0 . 33P0 . 66

    NASA Astrophysics Data System (ADS)

    Roy, Prasenjit; de Groot, Robert A.; Theoretical Chemistry Team

    2015-03-01

    Magnetic refrigeration is a very promising environmental-friendly method to encounter the energy shortage of the world by implementing the magnetocaloric effect. MnFeSiP series of materials are distinguishable magnetocaloric meterial for the use of non-toxic, inexpensive elements as well as high efficiency. There are several ways to measure the efficiency of the MCE, viz.- measuring the adiabatic temperature change or measuring the entropy change at the transition. MnFeSiP materials show a first order magneto-elastic phase transition at the Curie temperature (TC). This simultaneous occourance of the magnetic and elastic transition in this material account for a higher ΔTad (or high entropy change), which is linearly proportional to the Latent heat (L) of magnetization. Experimentally L can be determined with techniques such as Differential Scanning Calorimetry. In our study we use VASP in addition to the Phonopy package, to determine the finite temperature properties of the system. Quasi Harmonic Approximation was applied successfully to determine the Gibbs free energy of MnFeSi0.33 P0.66. Hence we show a phase transition around 425 K. From the temperature derivative of G , the specific heat was obtained and finally the latent heat was obtained. Foundation for fundamental research on matter.

  10. A portable direct-PV thermoelectric vaccine refrigerator with ice storage through heat pipes

    NASA Astrophysics Data System (ADS)

    Jiajitsawat, Somchai

    The objective of this research work was to develop a portable solar refrigeration system capable of maintaining vaccine temperatures between 2 °C and 8 °C. The main system under this study consisted of thermoelectric modules as cooling generators with latent heat energy storage (LHES) using water as cooling backup along with heat pipes as passive temperature controllers to avoid freezing the vaccines. The system was fabricated and tested. The results showed that the system can maintain the vaccine storage temperature at 2 °C and 8 °C under ambient temperature up to 30 °C with minimum power consumption of 30 Watt. The proposed heat pipes to maintain the vaccine storage temperature satisfied the design criteria. However, the energy consumption of the TEM was higher than anticipated. A small vapor compressor system was tested and shows promise to replace the TEM for cooling. Inserting the aluminum matrix in the ice chamber not only decreased the charging time but also decreased the discharging time since less phase change material was available for energy storage. Three models of the system were developed under different assumptions. The lumped model was adequate to predict the system performance during charging process. The other distributed models were able to predict the melting and cooling time more accurately than that of the lumped model and provided more detailed on the temperature distribution and change of the water phase in the ice chamber.

  11. A methodology for mapping forest latent heat flux densities using remote sensing

    NASA Technical Reports Server (NTRS)

    Pierce, Lars L.; Congalton, Russell G.

    1988-01-01

    Surface temperatures and reflectances of an upper elevation Sierran mixed conifer forest were monitored using the Thematic Mapper Simulator sensor during the summer of 1985 in order to explore the possibility of using remote sensing to determine the distribution of solar energy on forested watersheds. The results show that the method is capable of quantifying the relative energy allocation relationships between the two cover types defined in the study. It is noted that the method also has the potential to map forest latent heat flux densities.

  12. Effects of latent heating on driving atmospheric circulation of brown dwarfs and directly imaged giant planets

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam P.

    2015-12-01

    Growing observations of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs), such as brightness variability and surface maps have provided evidence for strong atmospheric circulation on these worlds. Previous studies that serve to understand the atmospheric circulation of BDs include modeling of convection from the interior and its interactions with stably stratified atmospheres. These models show that such interactions can drive an atmospheric circulation, forming zonal jets and/or vortices. However, these models are dry, not including condensation of various chemical species. Latent heating from condensation of water has previously been shown to play an important role on driving the zonal jets on four giant planets in our solar system. As such, condensation cycles of various chemical species are believed to be an important source in driving the atmospheric circulation of BDs and directly imaged EGPs. Here we present results from three-dimensional simulations for the atmospheres of BDs and EGPs based on a general circulation model that includes the effect of a condensate cycle. Large-scale latent heating and molecular weight effect due to condensation of a single species are treated explicitly. We examine the circulation patterns caused by large-scale latent heating which results from condensation of silicate vapor in hot dwarfs and water vapor in the cold dwarfs. By varying the abundance of condensable vapor and the radiative timescale, we conclude that under normal atmospheric conditions of BDs (hot and thus with relatively short radiative timescale), latent heating alone by silicate vapor is unable to drive a global circulation, leaving a quiescent atmosphere, because of the suppression to moist instability by downward transport of dry air. Models with relatively long radiative timescale, which may be the case for cooler bodies, tend to maintain an active hydrological cycle and develop zonal jets. Once condensation happens, storms driven by

  13. Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin.

    PubMed

    Havenith, George; Bröde, Peter; den Hartog, Emiel; Kuklane, Kalev; Holmer, Ingvar; Rossi, Rene M; Richards, Mark; Farnworth, Brian; Wang, Xiaoxin

    2013-03-15

    Calculation of evaporative heat loss is essential to heat balance calculations. Despite recognition that the value for latent heat of evaporation, used in these calculations, may not always reflect the real cooling benefit to the body, only limited quantitative data on this is available, which has found little use in recent literature. In this experiment a thermal manikin, (MTNW, Seattle, WA) was used to determine the effective cooling power of moisture evaporation. The manikin measures both heat loss and mass loss independently, allowing a direct calculation of an effective latent heat of evaporation (λeff). The location of the evaporation was varied: from the skin or from the underwear or from the outerwear. Outerwear of different permeabilities was used, and different numbers of layers were used. Tests took place in 20°C, 0.5 m/s at different humidities and were performed both dry and with a wet layer, allowing the breakdown of heat loss in dry and evaporative components. For evaporation from the skin, λeff is close to the theoretical value (2,430 J/g) but starts to drop when more clothing is worn, e.g., by 11% for underwear and permeable coverall. When evaporation is from the underwear, λeff reduction is 28% wearing a permeable outer. When evaporation is from the outermost layer only, the reduction exceeds 62% (no base layer), increasing toward 80% with more layers between skin and wet outerwear. In semi- and impermeable outerwear, the added effect of condensation in the clothing opposes this effect. A general formula for the calculation of λeff was developed. PMID:23329814

  14. Persistent unstable atmospheric boundary layer enhances sensible and latent heat loss in a tropical great lake: Lake Tanganyika

    NASA Astrophysics Data System (ADS)

    Verburg, Piet; Antenucci, Jason P.

    2010-06-01

    Energy fluxes across the surface of lakes regulate heat storage and affect the water balance. Sensible and latent heat fluxes are affected by atmospheric stability, especially for large lakes. We examined the effect of atmospheric stability on the heat fluxes on seasonal time scales at Lake Tanganyika, East Africa, by estimating hourly sensible and latent heat fluxes and net radiation using thermistor chains and meteorological stations. The atmosphere was almost always unstable, in contrast to the atmosphere above North American Great Lakes which is unstable in winter and stable in summer. Persistent atmospheric instability resulted in a 13% and 18% increase in the annual mean heat loss by latent and sensible heat fluxes, respectively, relative to conditions of neutral stability. The persistent unstable atmosphere is caused by a higher water surface temperature compared with air temperature, which we argue is the case in general in (sub)tropical lakes. Low humidity further enhanced the frequency of unstable conditions and enhanced the exchange of heat and vapor from the lake to the atmosphere. The estimated heat fluxes were sensitive to the temporal scale of data inputs and to the local values of parameters such as air density. To our knowledge this is the first paper that demonstrates and quantifies the effect of atmospheric stability on latent and sensible heat fluxes from a lake on an annual basis, using data collected from the lake surface.

  15. Performance of direct contact latent heat storage units with two hydrated salts

    SciTech Connect

    Farid, M.M. ); Khalaf, A.N. )

    1994-02-01

    The performance of a direct contact latent heat storage unit, that consists of two columns with different hydrated salts, has been investigated. Na[sub 2]CO[sub 3]-10H[sub 2]O (sodium carbonate decahydrate) and Na[sub 2]S[sub 2]O[sub 3][center dot]5H[sub 2]O (sodium thiosulphate pentahydrate) were contained in separate columns both having an inside diameter and total length of 0.184 m and 1.0 m, respectively. During heat charge, the hot keresone as a heat transfer fluid was bubbled through the sodium thiosulfate solution first. The partially cooled kerosene was then pumped to the second column containing the sodium thiosulfate solution first. The partially cooled kerosene was then pumped to the second column containing the sodium carbonate solution, discharging most of its heat content. Flow direction was reversed during heat discharge. The continuous phase temperature in the two columns, as well as kerosene inlet and outlet temperatures, were measured continuously. Results showed significant improvement in heat transfer rates by using two separate columns containing similar or different salts. The use of a combination of two different salts, having different crystallization temperatures, and contained in different columns connected in series, may provide better means of heat storage by allowing the system to operate as a phase change storage for longer periods of operation. This is particularly suitable for solar energy applications in which the collector temperature may vary significantly during the day.

  16. Geothermal Heating, Convective Flow and Ice Thickness on Mars

    NASA Technical Reports Server (NTRS)

    Rosenberg, N. D.; Travis, B. J.; Cuzzi, J.

    2001-01-01

    Our 3D calculations suggest that hydrothermal circulation may occur in the martian regolith and may significantly thin the surface ice layer on Mars at some locations due to the upwelling of warm convecting fluids driven solely by background geothermal heating. Additional information is contained in the original extended abstract.

  17. The relationship between latent heating, vertical velocity, and precipitation processes: The impact of aerosols on precipitation in organized deep convective systems

    NASA Astrophysics Data System (ADS)

    Tao, Wei-Kuo; Li, Xiaowen

    2016-06-01

    A high-resolution, two-dimensional cloud-resolving model with spectral-bin microphysics is used to study the impact of aerosols on precipitation processes in both a tropical oceanic and a midlatitude continental squall line with regard to three processes: latent heating (LH), cold pool dynamics, and ice microphysics. Evaporative cooling in the lower troposphere is found to enhance rainfall in low cloud condensation nuclei (CCN) concentration scenarios in the developing stages of a midlatitude convective precipitation system. In contrast, the tropical case produced more rainfall under high CCN concentrations. Both cold pools and low-level convergence are stronger for those configurations having enhanced rainfall. Nevertheless, latent heat release is stronger (especially after initial precipitation) in the scenarios having more rainfall in both the tropical and midlatitude environment. Sensitivity tests are performed to examine the impact of ice and evaporative cooling on the relationship between aerosols, LH, and precipitation processes. The results show that evaporative cooling is important for cold pool strength and rain enhancement in both cases. However, ice microphysics play a larger role in the midlatitude case compared to the tropics. Detailed analysis of the vertical velocity-governing equation shows that temperature buoyancy can enhance updrafts/downdrafts in the middle/lower troposphere in the convective core region; however, the vertical pressure gradient force (PGF) is of the same order and acts in the opposite direction. Water loading is small but of the same order as the net PGF-temperature buoyancy forcing. The balance among these terms determines the intensity of convection.

  18. Latent heat at the first order phase transition point of SU(3) gauge theory

    NASA Astrophysics Data System (ADS)

    Shirogane, Mizuki; Ejiri, Shinji; Iwami, Ryo; Kanaya, Kazuyuki; Kitazawa, Masakiyo; WHOT-QCD Collaboration

    2016-07-01

    We calculate the energy gap (latent heat) and pressure gap between the hot and cold phases of the SU(3) gauge theory at the first order deconfining phase transition point. We perform simulations around the phase transition point with the lattice size in the temporal direction Nt=6 , 8 and 12 and extrapolate the results to the continuum limit. We also investigate the spatial volume dependence. The energy density and pressure are evaluated by the derivative method with nonperturabative anisotropy coefficients. We adopt a multipoint reweighting method to determine the anisotropy coefficients. We confirm that the anisotropy coefficients approach the perturbative values as Nt increases. We find that the pressure gap vanishes at all values of Nt when the nonperturbative anisotropy coefficients are used. The spatial volume dependence in the latent heat is found to be small on large lattices. Performing extrapolation to the continuum limit, we obtain Δ ɛ /T4=0.75 ±0.17 and Δ (ɛ -3 p )/T4=0.623 ±0.056 .

  19. A Latent Heat Retrieval and its Effects on the Intensity and Structure Change of Hurricane Guillermo (1997). Part I: The Algorithm and Observations.

    NASA Technical Reports Server (NTRS)

    Guimond, Stephen R.; Bourassa, mark A.; Reasor, Paul D.

    2011-01-01

    The release of latent heat in clouds is an essential part of the formation and I intensification ohurricanes. The community knows very little about the intensity and structure of latent heating due largely to inadequate observations. In this paper, a new method for retrieving the latent heating field in hurricanes from airborne Dopple radar is presented and fields from rapidly intensifying Hurricane Guillermo (1997) are shown.

  20. TRMM Latent Heating Retrieval and Comparisons with Field Campaigns and Large-Scale Analyses

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Takayabu, Yukuri; Lang, S.; Shige, S.; Olson, W.; Hou, A.; Jiang, X.; Zhang, C.; Lau, W.; Krishnamurti, T.; Waliser, D.; Grecu, M.; Ciesielski, P. E.; Johnson, R. H.; Houze, R.; Kakar, R.; Nakamura, K.; Braun, S.; Hagos, S.; Oki, R.; Bhardwaj, A.

    2012-01-01

    Rainfall production is a fundamental process within the Earth's hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating (LH), is one of the principal sources of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The vertical distribution of LH has a strong influence on the atmosphere, controlling large-scale tropical circulations, exciting and modulating tropical waves, maintaining the intensities of tropical cyclones, and even providing the energetics of midlatitude cyclones and other mobile midlatitude weather systems. Moreover, the processes associated with LH result in significant non-linear changes in atmospheric radiation through the creation, dissipation and modulation of clouds and precipitation. Yanai et al. (1973) utilized the meteorological data collected from a sounding network to present a pioneering work on thermodynamic budgets, which are referred to as the apparent heat source (Q1) and apparent moisture sink (Q2). Yanai's paper motivated the development of satellite-based LH algorithms and provided a theoretical background for imposing large-scale advective forcing into cloud-resolving models (CRMs). These CRM-simulated LH and Q1 data have been used to generate the look-up tables used in LH algorithms. This paper examines the retrieval, validation, and application of LH estimates based on rain rate quantities acquired from the Tropical Rainfall Measuring Mission satellite (TRMM). TRMM was launched in November 1997 as a joint enterprise between the American and Japanese space agencies -- with overriding goals of providing accurate four-dimensional estimates of rainfall and LH over the global Tropics and subtropics equatorward of 35o. Other literature has acknowledged the achievement of the first goal of obtaining an accurate rainfall climatology. This paper describes the

  1. Passive and Active Microwave Remote Sensing of Precipitation and Latent Heating Distributions in the Tropics from TRMM

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Haddad, Ziad S.; Tao, Wei-Kuo; Wang, Yansen; Lang, Stephen E.; Braun, Scott A.; Chiu, Christine; Wang, Jian-Jian

    2002-01-01

    Passive and active microwave remote sensing data are analyzed to identify signatures of precipitation and vertical motion in tropical convection. A database of cloud/radiative model simulations is used to quantify surface rain rates and latent heating profiles that are consistent with these signatures. At satellite footprint-scale (approximately 10 km), rain rate and latent heating estimates are subject to significant random errors, but by averaging the estimates in space and time, random errors are substantially reduced, Bias errors have been minimized by improving the microphysics in the supporting cloud/radiative model simulations, and by imposing a consistent definition of remotely-sensed and model-simulated convective/stratiform rain coverage. Remotely-sensed precipitation and latent heating distributions in the tropics are derived from Tropical Rainfall Measuring Mission (TRMM) and Special Sensor Microwave/ Imager (SSM/ I) sensor data. The prototype Version 6 TRMM passive microwave algorithm typically yields average heating profiles with maxima between 6 and 7 km altitude for organized mesoscale convective systems. Retrieved heating profiles for individual convective systems are compared to coincident estimates based upon a combination of dual-Doppler radar and rawinsonde data. Also, large-scale latent heating distributions are compared to estimates derived from a simpler technique that utilizes observations of surface rain rate and stratiform rain proportion to infer vertical heating structure. Results of these tests will be presented at the conference.

  2. Combined solar heat and power system with a latent heat storage - system simulations for an economic assessment

    NASA Astrophysics Data System (ADS)

    Zipf, Verena; Neuhäuser, Anton

    2016-05-01

    Decentralized solar combined heat and power (CHP) systems can be economically feasible, especially when they have a thermal storage. In such systems, heat provided by solar thermal collectors is used to generate electricity and useful heat for e.g. industrial processes. For the supply of energy in times without solar irradiation, a thermal storage can be integrated. In this work, the performance of a solar CHP system using an active latent heat storage with a screw heat exchanger is investigated. Annual yield calculations are conducted in order to calculate annual energy gains and, based on them; economic assumptions are used to calculated economic numbers in order to assess the system performance. The energy savings of a solar system, compared to a system with a fossil fuel supply, are calculated. Then the net present value and the dynamic payback are calculated with these savings, the initial investment costs and the operational costs. By interpretation and comparison of these economic numbers, an optimum system design in terms of solar field size and storage size was determined. It has been shown that the utilization of such systems can be economical in remote areas without gas and grid connection. Optimal storage design parameters in terms of the temperature differences in the heat exchanger and the storage capacity have been determined which can further increase the net present value of such system.

  3. Materials compatibility in Dish-Stirling solar generators using Cu-Si-Mg eutectic for latent heat storage

    NASA Astrophysics Data System (ADS)

    Kruizenga, A. M.; Withey, E. A.; Andraka, C. E.; Gibbs, P. J.

    2016-05-01

    Dish-Stirling systems are a strong candidate to meet cost production goals for solar thermal power production. Thermal energy storage improves the capacity factor of thermal power systems; copper-silicon-magnesium eutectic alloys have been investigated as potential latent heat storage materials. This work examines the ability of commercially available plasma spray coatings to serve as protective barriers with these alloys, while highlighting mechanistic insights into materials for latent heat storage systems. Computed tomography was leveraged as a rapid screening tool to assess the presence of localized attack in tested coatings.

  4. Novel functional materials from renewable lipids: Amphiphilic antimicrobial polymers and latent heat thermal energy storage

    NASA Astrophysics Data System (ADS)

    Floros, Michael Christopher

    Vegetable oils represent an ideal and renewable feedstock for the synthesis of a variety of functional materials. However, without financial incentive or unique applications motivating a switch, commercial products continue to be manufactured from petrochemical resources. Two different families of high value, functional materials synthesized from vegetable oils were studied. These materials demonstrate superior and unique performance to comparable petrochemical analogues currently on the market. In the first approach, 3 amphiphilic thermoplastic polytriazoles with differing lipophilic segment lengths were synthesized in a polymerization process without solvents or catalysts. Investigation of monomer structure influence on the resultant functional behaviour of these polymers found distinctive odd/even behaviour reliant on the number of carbon atoms in the monomers. Higher concentrations of triazole groups, due to shorter CH2 chains in the monomeric dialkynes, resulted in more brittle polymers, displaying higher tensile strengths but reduced elongation to break characteristics. These polymers had similar properties to commercial petroleum derived thermoplastics. One polymer demonstrated self-assembled surface microstructuring, and displayed hydrophobic properties. Antimicrobial efficacy of the polymers were tested by applying concentrated bacterial solutions to the surfaces, and near complete inhibition was demonstrated after 4 hours. Scanning electron microscope images of killed bacteria showed extensive membrane damage, consistent with the observed impact of other amphiphilic compounds in literature. These polytriazoles are suited for applications in medical devices and implants, where major concerns over antibiotic resistance are prevalent. In the second approach, a series of symmetric, saturated diester phase change materials (PCMs) were also synthesized with superior latent heat values compared to commercial petrochemical analogues. These diesters exhibit

  5. Climate Sensitivity to Realistic Solar Heating of Snow and Ice

    NASA Astrophysics Data System (ADS)

    Flanner, M.; Zender, C. S.

    2004-12-01

    Snow and ice-covered surfaces are highly reflective and play an integral role in the planetary radiation budget. However, GCMs typically prescribe snow reflection and absorption based on minimal knowledge of snow physical characteristics. We performed climate sensitivity simulations with the NCAR CCSM including a new physically-based multi-layer snow radiative transfer model. The model predicts the effects of vertically resolved heating, absorbing aerosol, and snowpack transparency on snowpack evolution and climate. These processes significantly reduce the model's near-infrared albedo bias over deep snowpacks. While the current CCSM implementation prescribes all solar radiative absorption to occur in the top 2 cm of snow, we estimate that about 65% occurs beneath this level. Accounting for the vertical distribution of snowpack heating and more realistic reflectance significantly alters snowpack depth, surface albedo, and surface air temperature over Northern Hemisphere regions. Implications for the strength of the ice-albedo feedback will be discussed.

  6. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Knowles, G. R.; Mathur, A. K.; Budimir, J.

    1979-01-01

    Active heat exchange concepts for use with thermal energy storage systems in the temperature range of 250 C to 350 C, using the heat of fusion of molten salts for storing thermal energy are described. Salt mixtures that freeze and melt in appropriate ranges are identified and are evaluated for physico-chemical, economic, corrosive and safety characteristics. Eight active heat exchange concepts for heat transfer during solidification are conceived and conceptually designed for use with selected storage media. The concepts are analyzed for their scalability, maintenance, safety, technological development and costs. A model for estimating and scaling storage system costs is developed and is used for economic evaluation of salt mixtures and heat exchange concepts for a large scale application. The importance of comparing salts and heat exchange concepts on a total system cost basis, rather than the component cost basis alone, is pointed out. The heat exchange concepts were sized and compared for 6.5 MPa/281 C steam conditions and a 1000 MW(t) heat rate for six hours. A cost sensitivity analysis for other design conditions is also carried out.

  7. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Iacomini, Christie; Paul, Heather, L.

    2008-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (LCO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas is a significant heat transfer mechanism for the warming of the adsorbent bed because it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously. A NASA Small Business Innovative Research (SBIR) Phase 1 contract was performed to investigate condensing and icing as applied to MTSA to enable higher fidelity modeling and assess the impact of geometry variables on CIHX performance for future CIHX design optimization. Specifically, a design tool was created using analytical relations to explore the complex, interdependent design space of a condensing ice heat exchanger. Numerous variables were identified as having nontrivial contributions

  8. Organization of ice flow by localized regions of elevated geothermal heat flux

    NASA Astrophysics Data System (ADS)

    Pittard, M. L.; Galton-Fenzi, B. K.; Roberts, J. L.; Watson, C. S.

    2016-04-01

    The impact of localized regions of elevated geothermal heat flux on ice sheet dynamics is largely unknown. Simulations of ice dynamics are produced using poorly resolved and low-resolution estimates of geothermal heat flux. Observations of crustal heat production within the continental crust underneath the Lambert-Amery glacial system in East Antarctica indicate that high heat flux regions of at least 120 mW m-2 exist. Here we investigate the influence of simulated but plausible, localized regions of elevated geothermal heat flux on ice dynamics using a numerical ice sheet model of the Lambert-Amery glacial system. We find that high heat flux regions have a significant effect across areas of slow-moving ice with the influence extending both upstream and downstream of the geothermal anomaly, while fast-moving ice is relatively unaffected. Our results suggest that localized regions of elevated geothermal heat flux may play an important role in the organization of ice sheet flow.

  9. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  10. Robust estimates of soil moisture and latent heat flux coupling strength obtained from triple collocation

    NASA Astrophysics Data System (ADS)

    Crow, Wade T.; Lei, Fangni; Hain, Christopher; Anderson, Martha C.; Scott, Russell L.; Billesbach, David; Arkebauer, Timothy

    2015-10-01

    Land surface models (LSMs) are often applied to predict the one-way coupling strength between surface soil moisture (SM) and latent heat (LH) flux. However, the ability of LSMs to accurately represent such coupling has not been adequately established. Likewise, the estimation of SM/LH coupling strength using ground-based observational data is potentially compromised by the impact of independent SM and LH measurements errors. Here we apply a new statistical technique to acquire estimates of one-way SM/LH coupling strength which are nonbiased in the presence of random error using a triple collocation approach based on leveraging the simultaneous availability of independent SM and LH estimates acquired from (1) LSMs, (2) satellite remote sensing, and (3) ground-based observations. Results suggest that LSMs do not generally overestimate the strength of one-way surface SM/LH coupling.

  11. Dehumidification: Prediction of Condensate Flow Rate for Plate-Fin Tube Heat Exchangers Using the Latent j Factor

    SciTech Connect

    Baxter, V.D.; Chen, D.T.; Conklin, J.C.

    1999-03-15

    Condensate flow rate is an important factor in designing dehumidifiers or evaporators. In this paper, the latentj fimtor is used to analyze the dehumidification performance of two plate-fin tube heat exchangers. This latent j factor, analogous to the total j factor, is a flmction of the mass transfa coefllcient, the volumetric air flow rate, and the Schmidt number. This latent j factor did predict condensate flow rate more directly and accurately than any other sensiblej factor method. The Iatentj factor has been used in the present study because the sensible j factor correlations presented in the literature failed to predict the condensate flow rate at high Reynolds numbers. Results show that the latent j i%ctor em be simply correlated as a fhnction of the Reynolds number based on the tube outside diameter and number of rows of the heat exchanger.

  12. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 1; Method and Uncertainties

    NASA Technical Reports Server (NTRS)

    Olson, William S.; Kummerow, Christian D.; Yang, Song; Petty, Grant W.; Tao, Wei-Kuo; Bell, Thomas L.; Braun, Scott A.; Wang, Yansen; Lang, Stephen E.; Johnson, Daniel E.

    2004-01-01

    A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating/drying profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and non-convective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud resolving model simulations, and from the Bayesian formulation itself. Synthetic rain rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in instantaneous rain rate estimates at 0.5 deg resolution range from approximately 50% at 1 mm/h to 20% at 14 mm/h. These errors represent about 70-90% of the mean random deviation between collocated passive microwave and spaceborne radar rain rate estimates. The cumulative algorithm error in TMI estimates at monthly, 2.5 deg resolution is relatively small (less than 6% at 5 mm/day) compared to the random error due to infrequent satellite temporal sampling (8-35% at the same rain rate).

  13. Discussion on the Correlation of Surface Latent Heat Flux Variation and Marine Earthquakes

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Zhang, W.; Wang, W.; Ren, H.; Yan, G.

    2011-12-01

    In recent years, the relationship between the anomalous variation of SLHF (Surface Latent Heat Flux) and marine earthquakes has been a new subject of seismology study. It is a key problem that how to detect and extract the abnormal changes which is directly or indirectly result of seismic activities from the whole complicated latent heat flux varying background. In this presentation, by using SLHF data of NCEP (National Center for Environmental Prediction), we discussed the SLHF behaviors prior and post to five giant marine earthquakes (Sumatra, 2001/01/12, Mw9.1; Papua, 2009/01/03, Ms7.7; Samoa 2009/09/29, Ms8.0; Haiti, 2010/01/12, Ms7.0 and Tohoku, 2011/03/11, Mw 9.0). Besides, we also analyzed the long-term relationship of earthquakes and so-called SLHF anomalies of the five individual study areas in twenty years. The results suggest that, (1) the SLHF variations which happened before Tohoku and Papua earthquake were probably not anomalies, and they might not be caused by these events; (2) there were many "anomalies" which cannot find out any earthquake in the study area might be related to; (3) there were more than 60% earthquakes without any SLHF varying precursors; (4) related factors should be taken into account as many as possible to analyze correlation between SLHF variation and seismic activities; (5) we should investigate long time series data instead of focusing on individual earthquake event; (6) the detecting procedure should be formalized and related parameters should be got rid of subjective or retroactive adjustment.

  14. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.; Mathur, A. K.

    1980-01-01

    Five tasks to select, design, fabricate, test and evaluate candidate active heat exchanger modules for future applications to solar and conventional utility power plants were discussed. Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion phase change materials (PCMs) in the temperature range of 250 to 350 C. Twenty-six heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were selected for small-scale experimentation: a coated tube and shell heat exchanger and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over 50 candidate inorganic salt mixtures. Based on a salt screening process, eight major component salts were selected initially for further evaluation. The most attractive major components in the temperature range of 250 to 350 C appeared to be NaNO3, NaNO2, and NaOH. Sketches of the two active heat exchange concepts selected for test are given.

  15. The variability of hop latent viroid as induced upon heat treatment.

    PubMed

    Matousek, J; Patzak, J; Orctová, L; Schubert, J; Vrba, L; Steger, G; Riesner, D

    2001-09-01

    We have previously shown that heat treatment of hop plants infected by hop latent viroid (HLVd) reduces viroid levels. Here we investigate whether such heat treatment leads to the accumulation of sequence variability in HLVd. We observed a negligible level of mutated variants in HLVd under standard cultivation conditions. In contrast, the heat treatment of hop led to HLVd degradation and, simultaneously, to a significant increase in sequence variations, as judged from temperature gradient-gel electrophoresis analysis and cDNA library screening by DNA heteroduplex analysis. Thirty-one cDNA clones (9.8%) were identified as deviating forms. Sequencing showed mostly the presence of quadruple and triple mutants, suggesting an accumulation of mutations in HLVd during successive replication cycles. Sixty-nine percent of base changes were localised in the left half and 31% in the right half of the secondary structure proposed for this viroid. No mutations were found in the central part of the upper conserved region. A "hot spot" region was identified in a domain known as a "pathogenicity domain" in the group representative, potato spindle tuber viroid. Most mutations are predicted to destabilise HLVd secondary structure. All mutated cDNAs, however, were infectious and evolved into complex progeny populations containing molecular variants maintained at low levels. PMID:11531412

  16. Measured performance of the heat exchanger in the NASA icing research tunnel under severe icing and dry-air conditions

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Vanfossen, J.; Nussle, R.

    1987-01-01

    Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.

  17. Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Lei, Ruibo; Li, Na; Heil, Petra; Cheng, Bin; Zhang, Zhanhai; Sun, Bo

    2014-01-01

    The conductive and oceanic heat fluxes and the mass balance of sea ice were investigated utilizing an ice mass balance buoy (IMB) deployed in the Arctic Ocean. After IMB deployment, the ice thinned from 1.95 m in late August to 1.46 m by mid-October 2008. From then on, ice growth until mid-June 2009 increased the ice thickness to 3.12 m. The ice temperature and consequently the conductive heat flux at the ice surface exhibited persistent high-frequency variations due to diurnal and synoptic-scale atmospheric forcing. These signals propagated downward with damped magnitude and temporal lag. The competition of oceanic and conductive heat flux dominated the low-frequency variations of ice growth. However, high-frequency variations in ice growth were controlled largely by the oceanic heat flux. From mid-November 2008 to mid-June 2009, the average oceanic heat flux along a track from 86.2°N, 115.2°W to 84.6°N, 33.9°W was 7.1 W/m2. This was in agreement with that derived from an IMB deployed in 2005, about 1.5° to the north of our buoy. We attributed the relatively high oceanic heat flux (10-15 W/m2) observed during autumn and early winter to summer warming of the surface ocean. Upward mixing of warm deep water, as observed when our buoy drifted over the shallow region of the Lomonosov Ridge (85.4°-85.9°N, 52.2°-66.4°W), demonstrated the impact of bathymetry on the oceanic heat flux under ice cover, and consequently on the basal ice mass balance.

  18. Sensible heat balance estimates of transient soil ice contents for freezing and thawing conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil ice content is an important component for winter soil hydrology. The sensible heat balance (SHB) method using measurements from heat pulse probes (HPP) is a possible way to determine transient soil ice content. In a previous study, in situ soil ice contents estimates with the SHB method were in...

  19. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  20. A dual-temperature-difference approach to estimate daytime sensible and latent heat fluxes under advective conditions during BEAREX08

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dual-Temperature-Difference (DTD) approach uses continuous radiometric surface temperature measurements in a two-source (soil + vegetation) energy balance model to solve for the daytime evolution of the sensible and latent heat fluxes. By using the surface-air temperature difference at two time...

  1. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Lefrois, R. T.

    1980-01-01

    Alternative mechanizations of active heat exchange concepts were analyzed for use with heat of fusion Phase Change Materials (PCM's) in the temperature range of 250 C to 350 C for solar and conventional power plant applications. Over 24 heat exchange concepts were reviewed, and eight were selected for detailed assessment. Two candidates were chosen for small-scale experimentation: a coated tube and shell that exchanger, and a direct contact reflux boiler. A dilute eutectic mixture of sodium nitrate and sodium hydroxide was selected as the PCM from over fifty inorganic salt mixtures investigated. Preliminary experiments with various tube coatings indicated that a nickel or chrome plating of Teflon or Ryton coating had promise of being successful. An electroless nickel plating was selected for further testing. A series of tests with nickel-plated heat transfer tubes showed that the solidifying sodium nitrate adhered to the tubes and the experiment failed to meet the required discharge heat transfer rate of 10 kW(t). Testing of the reflux boiler is under way.

  2. Thickness of ice on perennially frozen lakes.

    PubMed

    McKay, C P; Clow, G D; Wharton, R A; Squyres, S W

    1985-02-14

    The dry valleys of southern Victoria Land, constituting the largest ice-free expanse in the Antarctic, contain numerous lakes whose perennial ice cover is the cause of some unique physical and biological properties. Although the depth, temperature and salinity of the liquid water varies considerably from lake to lake, the thickness of the ice cover is remarkably consistent, ranging from 3.5 to 6 m, which is determined primarily by the balance between conduction of energy out of the ice and the release of latent heat at the ice-water interface and is also affected by the transmission and absorption of sunlight. In the steady state, the release of latent heat at the ice bottom is controlled by ablation from the ice surface. Here we present a simple energy-balance model, using the measured ablation rate of 30 cm yr-1, which can explain the observed ice thickness. PMID:11539028

  3. Thickness of ice on perennially frozen lakes

    USGS Publications Warehouse

    McKay, C.P.; Clow, G.D.; Wharton, R.A., Jr.; Squyres, S. W.

    1985-01-01

    The dry valleys of southern Victoria Land, constituting the largest ice-free expanse in the Antarctic, contain numerous lakes whose perennial ice cover is the cause of some unique physical and biological properties 1-3. Although the depth, temperature and salinity of the liquid water varies considerably from lake to lake, the thickness of the ice cover is remarkably consistent1, ranging from 3.5 to 6m, which is determined primarily by the balance between conduction of energy out of the ice and the release of latent heat at the ice-water interface and is also affected by the transmission and absorption of sunlight. In the steady state, the release of latent heat at the ice bottom is controlled by ablation from the ice surface. Here we present a simple energy-balance model, using the measured ablation rate of 30 cm yr-1, which can explain the observed ice thickness. ?? 1985 Nature Publishing Group.

  4. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Kosson, R.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application (300 MW sub t storage for 6 hours). Two concepts were selected for hardware development: (1) a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and (2) a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which was nickel plated to decrease adhesion forces. In addition to improving performance by providing a nearly constant transfer rate during discharge, these active heat exchanger concepts were estimated to cost at least 25% less than the passive tube-shell design.

  5. Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    NASA Technical Reports Server (NTRS)

    Robert, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.

    2012-01-01

    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth's energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat

  6. Characterization of Turbulent Latent and Sensible Heat Flux Exchange Between the Atmosphere and Ocean in MERRA

    NASA Technical Reports Server (NTRS)

    Roberts, J. Brent; Robertson, Franklin R.; Clayson, Carol Anne; Bosilovich, Michael G.

    2012-01-01

    Turbulent fluxes of heat and moisture across the atmosphere-ocean interface are fundamental components of the Earth s energy and water balance. Characterizing both the spatiotemporal variability and the fidelity of these exchanges of heat and moisture is critical to understanding the global water and energy cycle variations, quantifying atmosphere-ocean feedbacks, and improving model predictability. This study examines the veracity of the recently completed NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) product with respect to its representation of the surface turbulent heat fluxes. A validation of MERRA turbulent heat fluxes and near-surface bulk variables at local, high-resolution space and time scales is achieved by making comparisons to a large suite of direct observations. Both in situ and satellite-observed gridded surface heat flux estimates are employed to investigate the spatial and temporal variability of the surface fluxes with respect to their annual mean climatologies, their seasonal covariability of near-surface bulk parameters, and their representation of extremes. The impact of data assimilation on the near-surface parameters is assessed through evaluation of incremental analysis update tendencies produced by the assimilation procedure. It is found that MERRA turbulent surface heat fluxes are relatively accurate for typical conditions but have systematically weak vertical gradients in moisture and temperature and have a weaker covariability between the near-surface gradients and wind speed than found in observations. This results in an underestimate of the surface latent and sensible heat fluxes over the western boundary current and storm track regions. The assimilation of observations mostly acts to bring MERRA closer to observational products by increasing moisture and temperature near the surface and decreasing the near-surface wind speeds. The major patterns of spatial and temporal variability of the turbulent heat

  7. The application of satellite data to study the effects of latent heat release on cyclones

    NASA Technical Reports Server (NTRS)

    Clark, J. H. E.

    1984-01-01

    Generalized energetics were studied for nonlinear inviscid symmetric instability (SI). It was found that the linear theory fails to predict the stability in certain cases where the basic state is transitional between stability and instability. The initial growth of the SI perturbations can be fairly well approximated by linear theory, but the long time nonlinear evaluations will be bonded energetically if the SI region is finite. However, a further extension of the energetics to conditional symmetric instability (CSI) shows that the nonlinear evolution of circulation will energetically depend much more on the precipitation in a complicated way. By treating the latent heat as a source which is implicitly related to the motion field, the existence, uniqueness and stability of steady viscous (CSI) circulations are studied. Viscous CSI circulations are proved to be unique and asymptotically stable when the heat sources are weak and less sensitive to the motion perturbations. By considering the fact that moist updrafts are narrow and using eddy viscosity of 0(1,000 m squared/s) the stability criterion suggests that some frontal rainbands were probably dominated by the CSI mechanism even in their mature quasi-steady stage.

  8. Active heat exchange system development for latent heat thermal energy storage

    NASA Technical Reports Server (NTRS)

    Alario, J.; Haslett, R.

    1980-01-01

    Various active heat exchange concepts were identified from among three generic categories: scrapers, agitators/vibrators and slurries. The more practical ones were given a more detailed technical evaluation and an economic comparison with a passive tube-shell design for a reference application. Two concepts selected for hardware development are a direct contact heat exchanger in which molten salt droplets are injected into a cooler counterflowing stream of liquid metal carrier fluid, and a rotating drum scraper in which molten salt is sprayed onto the circumference of a rotating drum, which contains the fluid heat sink in an internal annulus near the surface. A fixed scraper blade removes the solidified salt from the surface which has been nickel plated to decrease adhesion forces. Suitable phase change material (PCM) storage media with melting points in the temperature range of interest (250 C to 400 C) were investigated. The specific salt recommended for laboratory tests was a chloride eutectic (20.5KCl-24/5 NaCl-55.0MgCl 2% by wt.), with a nominal melting point of 385 C.

  9. Cloud-scale simulation study on the evolution of latent heat processes of mesoscale convective system accompanying heavy rainfall: The Hainan case

    NASA Astrophysics Data System (ADS)

    Li, Jiangnan; Wu, Kailu; Li, Fangzhou; Chen, Youlong; Huang, Yanbin

    2016-03-01

    This paper investigates the structure of latent heat budgets and dynamical structure of mesoscale convective systems (MCS) accompanying heavy rain using a cloud-scale model WRF simulation for the Hainan case. Results show that: (1) according to the fractions skill score and HK scores, the WDM6 scheme is more suitable to predict the rainfall than other microphysical schemes. (2) During the lifetime of MCSs, the top two heating microphysical processes are water vapor condensed into cloud water and water vapor condensed into rainwater. The total latent heat is closely related to the top two heating processes. However, the change of latent heat released by some microphysical processes is not identical with the different rainfall processes. (3) The total latent heat of MCS1 increases during the short life, while the total latent heat of MCS2 and MCS3 reach maximum during the mature stage. The difference is mainly caused by the latent heat of water vapor condensed into cloud water and rainwater. The total latent heat released by cond and rcond of MCS1 is smallest during the mature stage, while it is largest during the mature stage of MCS2 and MCS3. (4) The vertical motions are different with different MCSs. The descending motion of the short-lived process (MCS1) is strongest during the mature stage. It caused the smallest latent heat released by water vapor condensed into cloud water and rainwater at the same period. Besides, there are some differences in the change of latent heat released by microphysical processes of MCS2 and MCS3, which are closely related to the drag force of the vertical motion.

  10. Verification of High Resolution Soil Moisture and Latent Heat in Germany

    NASA Astrophysics Data System (ADS)

    Samaniego, L. E.; Warrach-Sagi, K.; Zink, M.; Wulfmeyer, V.

    2012-12-01

    Improving our understanding of soil-land-surface-atmosphere feedbacks is fundamental to make reliable predictions of water and energy fluxes on land systems influenced by anthropogenic activities. Estimating, for instance, which would be the likely consequences of changing climatic regimes on water availability and crop yield, requires of high resolution soil moisture. Modeling it at large-scales, however, is difficult and uncertain because of the interplay between state variables and fluxes and the significant parameter uncertainty of the predicting models. At larger scales, the sub-grid variability of the variables involved and the nonlinearity of the processes complicate the modeling exercise even further because parametrization schemes might be scale dependent. Two contrasting modeling paradigms (WRF/Noah-MP and mHM) were employed to quantify the effects of model and data complexity on soil moisture and latent heat over Germany. WRF/Noah-MP was forced ERA-interim on the boundaries of the rotated CORDEX-Grid (www.meteo.unican.es/wiki/cordexwrf) with a spatial resolution of 0.11o covering Europe during the period from 1989 to 2009. Land cover and soil texture were represented in WRF/Noah-MP with 1×1~km MODIS images and a single horizon, coarse resolution European-wide soil map with 16 soil texture classes, respectively. To ease comparison, the process-based hydrological model mHM was forced with daily precipitation and temperature fields generated by WRF during the same period. The spatial resolution of mHM was fixed at 4×4~km. The multiscale parameter regionalization technique (MPR, Samaniego et al. 2010) was embedded in mHM to be able to estimate effective model parameters using hyper-resolution input data (100×100~km) obtained from Corine land cover and detailed soil texture fields for various horizons comprising 72 soil texture classes for Germany, among other physiographical variables. mHM global parameters, in contrast with those of Noah-MP, were

  11. Estimation of the average exchanges in momentum and latent heat between the atmosphere and the oceans with Seasat observations

    NASA Technical Reports Server (NTRS)

    Liu, W. T.

    1983-01-01

    Ocean-surface momentum flux and latent heat flux are determined from Seasat-A data from 1978 and compared with ship observations. Momentum flux was measured using the Seasat-A scatterometer system (SASS) heat flux, with the scanning multichannel MW radiometer (SMMR). Ship measurements were quality selected and averaged to increase their reliability. The fluxes were computed using a bulk parameterization technique. It is found that although SASS effectively measures momentum flux, variations in atmospheric stability and sea-surface temperature cause deviations which are not accounted for by the present data-processing algorithm. The SMMR-latent-heat-flux algorithm, while needing refinement, is shown to given estimations to within 35 W/sq m in its present form, which removes systematic error and uses an empirically determined transfer coefficient.

  12. Investigation of Condensing Ice Heat Exchangers for MTSA Technology Development

    NASA Technical Reports Server (NTRS)

    Padilla, Sebastian; Powers, Aaron; Ball, Tyler; Lacomini, Christie; Paul, Heather L.

    2009-01-01

    Metabolic heat regenerated Temperature Swing Adsorption (MTSA) technology is being developed for thermal, carbon dioxide (CO2) and humidity control for a Portable Life Support Subsystem (PLSS). Metabolically-produced CO2 present in the ventilation gas of a PLSS is collected using a CO2-selective adsorbent via temperature swing adsorption. The temperature swing is initiated through cooling to well below metabolic temperatures. Cooling is achieved with a sublimation heat exchanger using water or liquid carbon dioxide (L CO2) expanded below sublimation temperature when exposed to low pressure or vacuum. Subsequent super heated vapor, as well as additional coolant, is used to further cool the astronaut. The temperature swing on the adsorbent is then completed by warming the adsorbent with a separate condensing ice heat exchanger (CIHX) using metabolic heat from moist ventilation gas. The condensed humidity in the ventilation gas is recycled at the habitat. The water condensation from the ventilation gas represents a significant source of potential energy for the warming of the adsorbent bed as it represents as much as half of the energy potential in the moist ventilation gas. Designing a heat exchanger to efficiently transfer this energy to the adsorbent bed and allow the collection of the water is a challenge since the CIHX will operate in a temperature range from 210K to 280K. The ventilation gas moisture will first freeze and then thaw, sometimes existing in three phases simultaneously.

  13. A comparison of surface sensible and latent heat fluxes from aircraft and surface measurements in FIFE 1987

    NASA Technical Reports Server (NTRS)

    Kelly, Robert D.; Smith, Eric A.; Macpherson, J. Ian

    1990-01-01

    Surface fluxes of sensible and latent heat over a tall-grass prairie in central Kansas, as measured by 22 surface stations during FIFE 1987, are compared with values gained indirectly by linear extrapolation of aircraft-measured flux profiles to the surface. The results of 33 such comparisons covering the period 26 June to 13 October 1987 indicate that the sensible heat flux profiles were generally more linear with less scatter in the measurements at each level than were the latent heat flux profiles, the profile extrapolations of sensible heat flux in general underestimate the surface averages by about 30 percent, with slightly better agreement during periods of small flux, and the profile extrapolations of latent heat flux in general underestimate the surface averages by about 15 percent, with overestimates during periods of small fluxes (dry conditions) and overestimates during periods of large fluxes (moist conditions). Possible origins of the differences between the two sets of measurements are discussed, as directions for further research.

  14. A Comparison of Latent Heat Fluxes over Global Oceans for Four Flux Products

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Nelkin, Eric; Ardizzone, Joe; Atlas, Robert M.

    2003-01-01

    To improve our understanding of global energy and water cycle variability, and to improve model simulations of climate variations, it is vital to have accurate latent heat fluxes (LHF) over global oceans. Monthly LHF, 10-m wind speed (U10m), 10-m specific humidity (Q10h), and sea-air humidity difference (Qs-Q10m) of GSSTF2 (version 2 Goddard Satellite-based Surface Turbulent Fluxes) over global Oceans during 1992-93 are compared with those of HOAPS (Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data), NCEP (NCEP/NCAR reanalysis). The mean differences, standard deviations of differences, and temporal correlation of these monthly variables over global Oceans during 1992-93 between GSSTF2 and each of the three datasets are analyzed. The large-scale patterns of the 2yr-mean fields for these variables are similar among these four datasets, but significant quantitative differences are found. The temporal correlation is higher in the northern extratropics than in the south for all variables, with the contrast being especially large for da Silva as a result of more missing ship data in the south. The da Silva has extremely low temporal correlation and large differences with GSSTF2 for all variables in the southern extratropics, indicating that da Silva hardly produces a realistic variability in these variables. The NCEP has extremely low temporal correlation (0.27) and large spatial variations of differences with GSSTF2 for Qs-Q10m in the tropics, which causes the low correlation for LHF. Over the tropics, the HOAPS LHF is significantly smaller than GSSTF2 by approx. 31% (37 W/sq m), whereas the other two datasets are comparable to GSSTF2. This is because the HOAPS has systematically smaller LHF than GSSTF2 in space, while the other two datasets have very large spatial variations of large positive and negative LHF differences with GSSTF2 to cancel and to produce smaller regional-mean differences. Our analyses suggest that the GSSTF2 latent heat flux

  15. Aircraft- and tower-based fluxes of carbon dioxide, latent, and sensible heat

    NASA Technical Reports Server (NTRS)

    Desjardins, R. L.; Hart, R. L.; Macpherson, J. I.; Schuepp, P. H.; Verma, S. B.

    1992-01-01

    Fluxes of carbon dioxide, water vapor, and sensible heat obtained over a grassland ecosystem, during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), using an aircraft- and two tower-based systems are compared for several days in 1987 and in 1989. The tower-based cospectral estimates of CO2, sensible heat, water vapor, and momentum, expressed as a function of wavenumber K times sampling height z, are relatively similar to the aircraft-based estimates for K x z greater than 0.1. A measurable contribution to the fluxes is observed by tower-based systems at K x z less than 0.01 but not by the aircraft-based system operating at an altitude of approximately 100 m over a 15 x 15 km area. Using all available simultaneous aircraft and tower data, flux estimates by both systems were shown to be highly correlated. As expected from the spatial variations of the greenness index, surface extrapolation of airborne flux estimates tended to lie between those of the two tower sites. The average fluxes obtained, on July 11, 1987, and August 4, 1989, by flying a grid pattern over the FIFE site agreed with the two tower data sets for CO2, but sensible and latent heat were smaller than those obtained by the tower-based systems. However, in general, except for a small underestimation due to the long wavelength contributions and due to flux divergence with height, the differences between the aircraft- and tower-based surface estimates of fluxes appear to be mainly attributable to differences in footprint, that is, differences in the area contributing to the surface flux estimates.

  16. Using satellite and reanalysis data to evaluate the representation of latent heating in extratropical cyclones in a climate model

    NASA Astrophysics Data System (ADS)

    Hawcroft, Matt; Dacre, Helen; Forbes, Richard; Hodges, Kevin; Shaffrey, Len; Stein, Thorwald

    2016-06-01

    Extratropical cyclones are a key feature of the weather in the extratropics, which climate models need to represent in order to provide reliable projections of future climate. Extratropical cyclones produce significant precipitation and the associated latent heat release can play a major role in their development. This study evaluates the ability of a climate model, HiGEM, to represent latent heating in extratropical cyclones. Remote sensing data is used to investigate the ability of both the climate model and ERA-Interim (ERAI) reanalysis to represent extratropical cyclone cloud features before latent heating itself is assessed. An offline radiance simulator, COSP, and the ISCCP and CloudSat datasets are used to evaluate comparable fields from HiGEM and ERAI. HiGEM is found to exhibit biases in the cloud structure of extratropical cyclones, with too much high cloud produced in the warm conveyor belt region compared to ISCCP. Significant latent heating occurs in this region, derived primarily from HiGEM's convection scheme. ERAI is also found to exhibit biases in cloud structure, with more clouds at lower altitudes than those observed in ISCCP in the warm conveyor belt region. As a result, latent heat release in ERAI is concentrated at lower altitudes. CloudSat indicates that much precipitation may be produced at too low an altitude in both HiGEM and ERAI, particularly ERAI, and neither capture observed variability in precipitation intensity. The potential vorticity structure in composite extratropical cyclones in HiGEM and ERAI is also compared. A more pronounced tropopause ridge evolves in HiGEM on the leading edge of the composite as compared to ERAI. One future area of research to be addressed is what impact these biases in the representation of latent heating have on climate projections produced by HiGEM. The biases found in ERAI indicate caution is required when using reanalyses to study cloud features and precipitation processes in extratropical cyclones or

  17. Conditions for bubble elongation in cold ice-sheet ice

    USGS Publications Warehouse

    Alley, R.B.; Fitzpatrick, J.J.

    1999-01-01

    Highly elongated bubbles are sometimes observed in ice-sheet ice. Elongation is favored by rapid ice deformation, and opposed by diffusive processes. We use simple models to show that vapor transport dominates diffusion except possibly very close to the melting point, and that latent-heat effects are insignificant. Elongation is favored by larger bubbles at pore close-off, but is nearly independent of bubble compression below close-off. The simple presence of highly elongated bubbles indicates only that a critical ice-strain rate has been exceeded for significant time, and provides no information on possible disruption of stratigraphic continuity by ice deformation.

  18. Heat Transfer Near An Ice-Ocean Interface In Supercooled Water

    NASA Astrophysics Data System (ADS)

    McPhee, M.; Stanton, T. P.; Shaw, W. J.

    2012-12-01

    Turbulence measurements in the oceanic boundary layer under fast sea ice near Erebus Glacier Tongue in McMurdo Sound, Antarctica, provided a unique opportunity to investigate ice-ocean heat and momentum transfer during platelet ice growth in a supercooled seawater environment. Platelets are often a major constituent of sea ice growth near ice shelves and are thought to be an important factor in forming basal marine ice under shelves supporting an active "ice pump" (i.e., where water cooled to freezing by melting at depth becomes supercooled as it advects to lower pressures). Temperature and conductivity profiles in Oct-Nov, 2010, showed the water column to be supercooled to about 15 m, confirmed by ice growth on suspended cables. Turbulence data near the ice-ocean boundary were used to infer heat transfer rates and momentum flux by both direct covariance and spectral techniques. Although limited in duration by ice accretion on the instrumentation, our results indicated tidally modulated, but consistently downward heat flux. An unexpected result was that heat flux appeared to follow a bulk heat transfer formula based on the product of friction velocity and departure from freezing temperature (negative for supercooled water), not unlike that for melting ice in water above freezing. This illustrates that the capacity of seawater to turbulently diffuse heat released by freezing away from the boundary constrains platelet growth.

  19. Study of Cold Heat Energy Release Characteristics of Flowing Ice Water Slurry in a Pipe

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Ozaki, Koichi; Yokota, Maki

    This paper has dealt with melting heat transfer characteristics of ice water slurry in an inside tube of horizontal double tube heat exchanger in which a hot water circulated in an annular gap between the inside and outside tubes. Two kinds of heat exchangers were used; one is made of acrylic resin tube for flow visualization and the other is made of stainless steel tube for melting heat transfer measurement. The result of flow visualization revealed that ice particles flowed along the top of inside tube in the ranges of small ice packing factor and low ice water slurry velocity, while ice particles diffused into the whole of tube and flowed like a plug built up by ice particles for large ice packing factor and high velocity. Moreover, it was found that the flowing ice plug was separated into numbers of small ice clusters by melting phenomenon. Experiments of melting heat transfer were carried out under some parameters of ice packing factor, ice water slurry flow rate and hot water temperature. Consequently, the correlation equation of melting heat transfer was derived as a function of those experimental parameters.

  20. Trends and Variations of Ocean Surface Latent Heat Flux: Results from GSSTF2c Data Set

    NASA Technical Reports Server (NTRS)

    Gao, Si; Chiu, Long S.; Shie, Chung-Lin

    2013-01-01

    Trends and variations of Goddard Satellite-based Surface Turbulent Fluxes (GSSTF) version 2c (GSSTF2c) latent heat flux (LHF) are examined. This version of LHF takes account of the correction in Earth incidence angle. The trend of global mean LHF for GSSTF2c is much reduced relative to GSSTF version 2b Set 1 and Set 2 for the same period 1988-2008. Temporal increase of GSSTF2c LHF in the two decades is 11.0%, in which 3.1%, 5.8%, and 2.1% are attributed to the increase in wind, the increase in sea surface saturated air humidity, and the decrease in near-surface air humidity, respectively. The first empirical orthogonal function of LHF is a conventional El Nino Southern Oscillation (ENSO) mode. However, the trends in LHF are independent of conventional ENSO phenomena. After removing ENSO signal, the pattern of LHF trends is primarily determined by the pattern of air-sea humidity difference trends.

  1. Sources of discrepancies between satellite-derived and land surface model estimates of latent heat fluxes

    NASA Astrophysics Data System (ADS)

    Lipton, Alan E.; Liang, Pan; Jiménez, Carlos; Moncet, Jean-Luc; Aires, Filipe; Prigent, Catherine; Lynch, Richard; Galantowicz, John F.; d'Entremont, Robert P.; Uymin, Gennady

    2015-03-01

    Monthly-average estimates of latent heat flux have been derived from a combination of satellite-derived microwave emissivities, day-night differences in land surface temperature (from microwave AMSR-E), downward solar and infrared fluxes from ISCCP cloud analysis, and MODIS visible and near-infrared surface reflectances. The estimates, produced with a neural network, were compared with data from the Noah land surface model, as produced for GLDAS-2, and with two alternative estimates derived from different datasets and methods. Areas with extensive, persistent, substantial discrepancies between the satellite and land surface model fluxes have been analyzed with the aid of data from flux towers. The sources of discrepancies were found to include problems with the model surface roughness length and turbulent exchange coefficients for midlatitude cropland areas in summer, inaccuracies in the precipitation data that were used as forcing for the land surface model, and model underestimation of transpiration in some forests during dry periods. At the tower sites analyzed, agreement with tower data was generally closer for our satellite-derived fluxes than for the land surface model fluxes, in terms of monthly averages.

  2. A comparison of small and larger mesoscale latent heat and radiative fluxes: December 6 case study

    NASA Technical Reports Server (NTRS)

    Gultepe, I.; Starr, David; Heymsfield, A. J.

    1993-01-01

    Because of the small amounts of water vapor, the potential for rapid changes, and the very cold temperatures in the upper troposphere, moisture measuring instruments face several problems related to calibration and response. Calculations of eddy moisture fluxes are, therefore, subject to significant uncertainty. The purpose of this study is to examine the importance of latent heat (moisture) fluxes due to small and larger mesoscale circulations in comparison to radiative fluxes within cirrus. Scale separation is made at about 1 km because of significant changes in the structures within cirrus. Only observations at warmer than -40 C are used in this study. The EG&G hygrometer that is used for measuring dewpoint temperature (Td) is believed to be fairly accurate down to -40 C. On the other hand, Lyman-Alpha (L-alpha) hygrometer measurements of moisture may include large drift errors. In order to compensate for these drift errors, the L-alpha hygrometer is often calibrated against the EG&G hygrometer. However, large errors ensue for Td measurements at temperatures less than -40 C. The cryogenic hygrometer frost point measurements may be used to calibrate L-alpha measurements at temperatures less than -40 C. In this study, however, measurements obtained by EG&G hygrometer and L-alpha measurements are used for the flux calculations.

  3. Thickness of tropical ice and photosynthesis on a snowball Earth

    NASA Technical Reports Server (NTRS)

    McKay, C. P.

    2000-01-01

    On a completely ice-covered "snowball" Earth the thickness of ice in the tropical regions would be limited by the sunlight penetrating into the ice cover and by the latent heat flux generated by freezing at the ice bottom--the freezing rate would balance the sublimation rate from the top of the ice cover. Heat transfer models of the perennially ice-covered Antarctic dry valley lakes applied to the snowball Earth indicate that the tropical ice cover would have a thickness of 10 m or less with a corresponding transmissivity of > 0.1%. This light level is adequate for photosynthesis and could explain the survival of the eukaryotic algae.

  4. The Impact of Geothermal Heat on the Scandinavian Ice Sheet's LGM Extent

    NASA Astrophysics Data System (ADS)

    Szuman, Izabela; Ewertowski, Marek W.; Kalita, Jakub Z.

    2016-04-01

    The last Scandinavian ice sheet attained its most southern extent over Poland and Germany, protruding c. 200 km south of the main ice sheet mass. There are number of factors that may control ice sheet dynamics and extent. One of the less recognised is geothermal heat, which is heat that is supplied to the base of the ice sheet. A heat at the ice/bed interface plays a crucial role in controlling ice sheet stability, as well as impacting basal temperatures, melting, and ice flow velocities. However, the influence of geothermal heat is still virtually neglected in reconstructions and modelling of paleo-ice sheets behaviour. Only in a few papers is geothermal heat recalled though often in the context of past climatic conditions. Thus, the major question is if and how spatial differences in geothermal heat had influenced paleo-ice sheet dynamics and in consequence their extent. Here, we assumed that the configuration of the ice sheet along its southern margin was moderately to strongly correlated with geothermal heat for Poland and non or negatively correlated for Germany.

  5. Comparison of Heat Transfer from Airfoil in Natural and Simulated Icing Conditions

    NASA Technical Reports Server (NTRS)

    Gelder, Thomas F.; Lewis, James P.

    1951-01-01

    An investigation of the heat transfer from an airfoil in clear air and in simulated icing conditions was conducted in the NACA Lewis 6- by 9-foot icing-research tunnel in order to determine the validity of heat-transfer data as obtained in the tunnel. This investiation was made on the same model NACA 65,2-016 airfoil section used in a previous flight study, under similar heating, icing, and operating conditions. The effect of tunnel turbulence, in clear air and in icingwas indicated by the forward movement of transition from laminar to turbulent heat transfer. An analysis of the flight results showed the convective heat transfer in icing to be considerably different from that measured in clear air and. only slightly different from that obtained in the icing-research tunnel during simulated icing.

  6. Heat flux through sea ice in the western Weddell Sea: Convective and conductive transfer processes

    NASA Astrophysics Data System (ADS)

    Lytle, V. I.; Ackley, S. F.

    1996-04-01

    The heat flux through the snow and sea ice cover and at the ice/ocean interface were calculated at five sites in the western Weddell Sea during autumn and early winter 1992. The ocean heat flux averaged 7 ± 2 W/m2 from late February to early June, and average ice/air heat flux in the second-year floes depended on the depth of the snow cover and ranged from 9 to 17 (±0.8) W/m2. In late February, three of the five sites had an ice surface which was depressed below sea level, resulting, at two of the sites, in a partially flooded snow cover and a slush layer at the snow/ice interface. As this slush layer froze to form snow ice, the dense brine which was rejected flowed out through brine drainage channels and was replaced by lower-salinity, nutrient-rich seawater from the ocean upper layer. We estimate that about half of the second-year ice in the region was covered with this slush layer early in the winter. As the slush layer froze, over a 2- to 3-week period, the convection within the ice transported salt from the ice to the upper ocean and increased total heat flux through the overlying ice and snow cover. On an area-wide basis, approximately 10 cm of snow ice growth occurred within second-year pack ice, primarily during a 2- to 3-week period in February and March. This ice growth, near the surface of the ice, provides a salt flux to the upper ocean equivalent to 5 cm of ice growth, despite the thick (about 1 m) ice cover, in addition to the ice growth in the small (area less than 5%), open water regions.

  7. Convective Heat Transfer from Castings of Ice Roughened Surfaces in Horizontal Flight

    NASA Technical Reports Server (NTRS)

    Dukhan, Nihad; Vanfossen, G. James, Jr.; Masiulaniec, K. Cyril; Dewitt, Kenneth J.

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Eight different types of ice growths, characterizing different types of roughness, were obtained from these plates, from which aluminum castings were made. Test strips taken from these castings were outfitted with heat flux gages, such that when placed in a dry wind tunnel, they could be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for parallel flow, which simulates horizontal flight, were studied. The results of this investigation can be used to help size heaters for wings, helicopter rotor blades, jet engine intakes, etc., or de-icing for anti-icing applications where the flow is parallel to the iced surface.

  8. Heat-transfer analysis of the basal melting of Antarctic ice shelves

    SciTech Connect

    Minale, M.; Astarita, G.

    1993-12-01

    Basal melting of Antarctic ice shelves is an important element in the overall balance of Antarctic ice. A heat-transfer model for the basal melting of the Drygalski Ice Tongue is presented. The model does not contain any adjustable parameter. The calculated basal melting rate agrees very well with the value estimated from an overall ice balance on the ice tongue. It is concluded that relatively simple concepts of transport phenomena may be used to model some important features of the dynamics of the Antarctic ice sheet.

  9. The Estimation Surface Latent Heat Flux Over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Schwemmer, Geary K.; Vandemark, Doug; Evans, Keith; Miller, David O.

    1999-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method utilizes aerosol lidar backscatter data, multi-channel infrared radiometer data and microwave scatterometer data acquired onboard the NASA P-3B research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from the scatterometers and the lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via bulk aerodynamic formulae. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement. However, the SSM/I values are biased high by about 30 W/sq m. In addition, the MABL height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone top, bottom and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.62, 0.67 and 0.61, respectively.

  10. The Estimation of Surface Latent Heat Flux over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Schwemmer, Geary K.; Vandemark, Doug; Evans, Keith; Miller, David O.; Demoz, Belay B.; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method utilizes aerosol lidar backscatter data, multi-channel infrared radiometer data, and microwave scatterometer data acquired onboard the NASA P-313 research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from scatterometers and lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via a bulk aerodynamic formula. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement. However, the SSM/I values are biased low by about 15 W/sq m. In addition, the Marine Atmospheric Boundary Layer (MABL) height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone depth, MABL height and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.39, 0.43 and 0.71, respectively.

  11. The Estimation of Surface Latent Heat Flux Over the Ocean and its Relationship to Marine Atmospheric Boundary Layer (MABL) Structure

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Miller, David O.; Schwemmer, Geary

    2000-01-01

    A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method uses aerosol lidar backscatter data, multi-channel infrared radiometer data and microwave scatterometer data acquired onboard the NASA P-3B research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from the scatterometers and the lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via bulk aerodynamic formulae. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement with an rms error and bias of about 50 and 25 W per square meters, respectively. In addition, the MABL height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone top, bottom and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.62, 0.67 and 0.61, respectively.

  12. Ice Pack Heat Sink Subsystem - Phase I. [astronaut liquid cooling garment design and testing

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.

    1973-01-01

    This paper describes the design and test at one-g of a functional laboratory model (non-flight) Ice Pack Heat Sink Subsystem to be used eventually for astronaut cooling during manned space missions. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick connect/disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  13. Development of approximate method to analyze the characteristics of latent heat thermal energy storage system

    SciTech Connect

    Saitoh, T.S.; Hoshi, Akira

    1999-07-01

    Third Conference of the Parties to the U.N. Framework Convention on Climate Change (COP3) held in last December in Kyoto urged the industrialized nation to reduce carbon dioxide (CO{sub 2}) emissions by 5.2 percent (on the average) below 1990 level until the period between 2008 and 2012 (Kyoto protocol). This implies that even for the most advanced countries like the US, Japan, and EU implementation of drastic policies and overcoming many barriers in market should be necessary. One idea which leads to a path of low carbon intensity is to adopt an energy storage concept. One of the reasons that the efficiency of the conventional energy systems has been relatively low is ascribed to lacking of energy storage subsystem. Most of the past energy systems, for example, air-conditioning system, do not have energy storage part and the system usually operates with low energy efficiency. Firstly, the effect of reducing CO{sub 2} emissions was also examined if the LHTES subsystems were incorporated in all the residential and building air-conditioning systems. Another field of application of the LHTES is of course transportation. Future vehicle will be electric or hybrid vehicle. However, these vehicles will need considerable energy for air-conditioning. The LHTES system will provide enough energy for this purpose by storing nighttime electricity or rejected heat from the radiator or motor. Melting and solidification of phase change material (PCM) in a capsule is of practical importance in latent heat thermal energy storage (LHTES) systems which are considered to be very promising to reduce a peak demand of electricity in the summer season and also reduce carbon dioxide (CO{sub 2}) emissions. Two melting modes are involved in melting in capsules. One is close-contact melting between the solid bulk and the capsule wall, and another is natural convection melting in the liquid (melt) region. Close-contact melting processes for a single enclosure have been solved using several

  14. Thermal history of comets during residence in the Oort cloud - Effect of radiogenic heating in combination with the very low thermal conductivity of amorphous ice

    NASA Technical Reports Server (NTRS)

    Haruyama, Jun'ichi; Yamamoto, Tetsuo; Mizutani, Hitoshi; Greenberg, J. M.

    1993-01-01

    The thermal history of long-period comets initially composed of amorphous ice is studied. It is shown that such comets with a small nucleus thermal conductivity (kappa) experience a runaway increase in the internal temperature during residence in the Oort cloud. The temperature increase is a result of rapid release of the latent heat at crystallization triggered by gradual heating due to decay of radioactive nuclides. The time of the runaway temperature increase is about ten to a hundred million years after the formation of the nucleus depending on the fraction of refractory grains which contain radioactive nuclides. Most of the amorphous ice in the nuclides except just beneath the surface transforms into crystalline ice due to the runaway temperature increase. This implies that the ice in short-period comets is crystalline from the initial time when the long-period comet becomes a short-period one. In comets with large kappa the temperature does not rise much compared to the small kappa case and the initial amorphous ice is preserved. A criterion for the crystallization of the nucleus ice is derived.

  15. Melting and solidification characteristics of a mixture of two types of latent heat storage material in a vessel

    NASA Astrophysics Data System (ADS)

    Yu, JikSu; Horibe, Akihiko; Haruki, Naoto; Machida, Akito; Kato, Masashi

    2016-01-01

    In this study, we investigated the fundamental melting and solidification characteristics of mannitol, erythritol, and their mixture (70 % by mass mannitol: 30 % by mass erythritol) as potential phase-change materials (PCMs) for latent heat thermal energy storage systems, specifically those pertaining to industrial waste heat, having temperatures in the range of 100-250 °C. The melting point of erythritol and mannitol, the melting peak temperature of their mixture, and latent heat were measured using differential scanning calorimetry. The thermal performance of the mannitol mixture was determined during melting and solidification processes, using a heat storage vessel with a pipe heat exchanger. Our results indicated phase-change (fusion) temperatures of 160 °C for mannitol and 113 and 150 °C for the mannitol mixture. Nondimensional correlation equations of the average heat transfer during the solidification process, as well as the temperature and velocity efficiencies of flowing silicon oil in the pipe and the phase-change material (PCM), were derived using several nondimensional parameters.

  16. Re-examining the roles of surface heat flux and latent heat release in a "hurricane-like" polar low over the Barents Sea

    NASA Astrophysics Data System (ADS)

    Kolstad, Erik W.; Bracegirdle, Thomas J.; Zahn, Matthias

    2016-07-01

    Polar lows are intense mesoscale cyclones that occur at high latitudes in both hemispheres during winter. Their sometimes evidently convective nature, fueled by strong surface fluxes and with cloud-free centers, have led to some polar lows being referred to as "arctic hurricanes." Idealized studies have shown that intensification by hurricane development mechanisms is theoretically possible in polar winter atmospheres, but the lack of observations and realistic simulations of actual polar lows have made it difficult to ascertain if this occurs in reality. Here the roles of surface heat fluxes and latent heat release in the development of a Barents Sea polar low, which in its cloud structures showed some similarities to hurricanes, are studied with an ensemble of sensitivity experiments, where latent heating and/or surface fluxes of sensible and latent heat were switched off before the polar low peaked in intensity. To ensure that the polar lows in the sensitivity runs did not track too far away from the actual environmental conditions, a technique known as spectral nudging was applied. This was shown to be crucial for enabling comparisons between the different model runs. The results presented here show that (1) no intensification occurred during the mature, postbaroclinic stage of the simulated polar low; (2) surface heat fluxes, i.e., air-sea interaction, were crucial processes both in order to attain the polar low's peak intensity during the baroclinic stage and to maintain its strength in the mature stage; and (3) latent heat release played a less important role than surface fluxes in both stages.

  17. An Analytical Study of Heat Requirements for Icing Protection of Radomes

    NASA Technical Reports Server (NTRS)

    Lewis, James P

    1953-01-01

    The heat requirements for the icing protection of two radome configurations have been studied over a range of design icing conditions. Both the protection limits of a typical thermal protection system and the relative effects of the various icing variables have been determined. For full evaporation of all impinging water, an effective heat density of 14 watts per square inch was required. When a combination of the evaporation and running wet surface systems was employed, a heat requirement of 5 watts per square inch provided protection at severe icing and operating conditions.

  18. Estimating the daily course of Konza Prairie latent Heat fluxes using a modified Tergra model

    NASA Astrophysics Data System (ADS)

    Hope, Allen S.

    1992-11-01

    The Tergra model simulates the daily course of water and energy flows through the soil-plantatmosphere system and was intended for use with remotely sensed data. In its original form, the model is not well suited to estimating spatial patterns of latent heat flux (λE) in the Konza Prairie since the determination of canopy resistance requires knowledge of vegetation height, and the defined relationship between leaf water potential and rc is specific to C3 plants. The canopy resistance component of Tergra was replaced by a routine that includes the calculation of minimum canopy resistance (rcm) from the normalized difference vegetation index (NDVI) and stress adjustment factors for leaf water potential and vapor pressure deficit to determine actual canopy resistance (rc). The relationship between rc and leaf water potential is defined for both C3 and C4 plants, and total λE is obtained from the sum of the proportional contributions from these two vegetation classes. The modified Tergra model (Tergra-2) was tested using input and flux data collected at four First ISLSCP Field Experiment (FIFE) sites during three periods characterized by different soil moisture conditions. Tergra-2 was found to be a good simulator of λE and in most cases gave substantially better results than those obtained using the original model. The greatest inaccuracy using Tergra-2 occurred under extremely dry soil moisture conditions, whereas absolute errors for both models tended to increase around solar noon. Leaf water potential was the dominant stress factor affecting modeled rc. It was concluded that vapor pressure deficit and leaf water potential should not be regarded as completely independent factors affecting rc. A brief comparison of modeled and observed canopy temperatures is presented and discussed.

  19. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites

    NASA Astrophysics Data System (ADS)

    Wilson, Kell B.; Baldocchi, Dennis D.; Aubinet, Marc; Berbigier, Paul; Bernhofer, Christian; Dolman, Han; Falge, Eva; Field, Chris; Goldstein, Allen; Granier, Andre; Grelle, Achim; Halldor, Thorgeirsson; Hollinger, Dave; Katul, Gabriel; Law, B. E.; Lindroth, Anders; Meyers, Tilden; Moncrieff, John; Monson, Russ; Oechel, Walter; Tenhunen, John; Valentini, Riccardo; Verma, Shashi; Vesala, Timo; Wofsy, Steve

    2002-12-01

    The warm season (mid-June through late August) partitioning between sensible (H) and latent (LE) heat flux, or the Bowen ratio (β = H/LE), was investigated at 27 sites over 66 site years within the international network of eddy covariance sites (FLUXNET). Variability in β across ecosystems and climates was analyzed by quantifying general climatic and surface characteristics that control flux partitioning. The climatic control on β was quantified using the climatological resistance (Ri), which is proportional to the ratio of vapor pressure deficit (difference between saturation vapor pressure and atmospheric vapor pressure) to net radiation (large values of Ri decrease β). The control of flux partitioning by the vegetation and underlying surface was quantified by computing the surface resistance to water vapor transport (Rc, with large values tending to increase β). There was a considerable range in flux partitioning characteristics (Rc, Ri and β) among sites, but it was possible to define some general differences between vegetation types and climates. Deciduous forest sites and the agricultural site had the lowest values of Rc and β (0.25-0.50). Coniferous forests typically had a larger Rc and higher β (typically between 0.50 and 1.00 but also much larger). However, there was notable variability in Rc and Ri between coniferous site years, most notably differences between oceanic and continental climates and sites with a distinct dry summer season (Mediterranean climate). Sites with Mediterranean climates generally had the highest net radiation, Rc, Ri, and β. There was considerable variability in β between grassland site years, primarily the result of interannual differences in soil water content and Rc.

  20. Revisiting the latent heat nudging scheme for the rainfall assimilation of a simulated convective storm

    NASA Astrophysics Data System (ADS)

    Leuenberger, D.; Rossa, A.

    2007-12-01

    Next-generation, operational, high-resolution numerical weather prediction models require economical assimilation schemes for radar data. In the present study we evaluate and characterise the latent heat nudging (LHN) rainfall assimilation scheme within a meso-γ scale NWP model in the framework of identical twin simulations of an idealised supercell storm. Consideration is given to the model’s dynamical response to the forcing as well as to the sensitivity of the LHN scheme to uncertainty in the observations and the environment. The results indicate that the LHN scheme is well able to capture the dynamical structure and the right rainfall amount of the storm in a perfect environment. This holds true even in degraded environments but a number of important issues arise. In particular, changes in the low-level humidity field are found to affect mainly the precipitation amplitude during the assimilation with a fast adaptation of the storm to the system dynamics determined by the environment during the free forecast. A constant bias in the environmental wind field, on the other hand, has the potential to render a successful assimilation with the LHN scheme difficult, as the velocity of the forcing is not consistent with the system propagation speed determined by the wind. If the rainfall forcing moves too fast, the system propagation is supported and the assimilated storm and forecasts initialised therefrom develop properly. A too slow forcing, on the other hand, can decelerate the system and eventually disturb the system dynamics by decoupling the low-level moisture inflow from the main updrafts during the assimilation. This distortion is sustained in the free forecast. It has further been found that a sufficient temporal resolution of the rainfall input is crucial for the successful assimilation of a fast moving, coherent convective storm and that the LHN scheme, when applied to a convective storm, appears to necessitate a careful tuning.

  1. Surface renewal performance to independently estimate sensible and latent heat fluxes in heterogeneous crop surfaces

    NASA Astrophysics Data System (ADS)

    Suvočarev, K.; Shapland, T. M.; Snyder, R. L.; Martínez-Cob, A.

    2014-02-01

    Surface renewal (SR) analysis is an interesting alternative to eddy covariance (EC) flux measurements. We have applied two recent SR approaches, with different theoretical background, that from Castellví (2004), SRCas, and that from Shapland et al. (2012a,b), SRShap. We have applied both models for sensible (H) and latent (LE) heat flux estimation over heterogeneous crop surfaces. For this, EC equipments, including a sonic anemometer CSAT3 and a krypton hygrometer KH20, were located in two zones of drip irrigated orchards of late and early maturing peaches. The measurement period was June-September 2009. The SRCas is based on similarity concepts for independent estimation of the calibration factor (α), which varies with respect to the atmospheric stability. The SRShap is based on analysis of different ramp dimensions, separating the ones that are flux-bearing from the others that are isotropic. According to the results obtained here, there was a high agreement between the 30-min turbulent fluxes independently derived by EC and SRCas. The SRShap agreement with EC was slightly lower. Estimation of fluxes determined by SRCas resulted in higher values (around 11% for LE) with respect to EC, similarly to previously published works over homogeneous canopies. In terms of evapotranspiration, the root mean square error (RMSE) between EC and SR was only 0.07 mm h-1 (for SRCas) and 0.11 mm h-1 (for SRShap) for both measuring spots. According to the energy balance closure, the SRCas method was as reliable as the EC in estimating the turbulent fluxes related to irrigated agriculture and watershed distribution management, even when applied in heterogeneous cropping systems.

  2. A preliminary evaluation of surface latent heat flux as an earthquake precursor

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhao, J.; Wang, W.; Ren, H.; Chen, L.; Yan, G.

    2013-06-01

    The relationship between variations in surface latent heat flux (SLHF) and marine earthquakes has been a popular subject of recent seismological studies. So far, there are two key problems: how to identify the abnormal SLHF variations from complicated background signals, and how to ensure that the anomaly results from earthquake. In this paper, we proposed four adjustable parameters for identification, classified the relationship and analyze SLHF changes several months before six marine earthquakes by employing daily SLHF data. Besides, we also quantitatively evaluate the long-term relationship between earthquakes and SLHF anomalies for the six study areas over a 20 yr period preceding each earthquake. The results suggest: (1) before the South Sandwich Islands, Papua, Samoa and Haiti earthquakes, the SLHF variations above their individual background levels have relatively low amplitudes and are difficult to be considered as precursory anomalies; (2) after removing the clustering effect, most of the anomalies prior to these six earthquakes are not temporally related to any earthquake in each study area in time sequence; (3) for each case, apart from Haiti, more than half of studied earthquakes which were moderate even devastating earthquakes (larger than Mw = 5.3) had no precursory variations in SLHF; and (4) the correlation between SLHF and seismic activity depends largely on data accuracy and parameter settings. Before any application of SLHF data on earthquake prediction, we suggest that anomaly-identifying standards should be established based on long-term regional analysis to eliminate subjectivity. Furthermore, other factors which may result in SLHF variations also should be carefully considered.

  3. A preliminary evaluation of surface latent heat flux as an earthquake precursor

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Zhao, J.; Wang, W.; Ren, H.; Chen, L.; Yan, G.

    2013-10-01

    The relationship between variations in surface latent heat flux (SLHF) and marine earthquakes has been a popular subject of recent seismological studies. So far, there are two key problems: how to identify the abnormal SLHF variations from complicated background signals, and how to ensure that the anomaly results from an earthquake. In this paper, we proposed four adjustable parameters for identification, classified the relationship and analyzed SLHF changes several months before six marine earthquakes by employing daily SLHF data. Additionally, we also quantitatively evaluate the long-term relationship between earthquakes and SLHF anomalies for the six study areas over a 20 yr period preceding each earthquake. The results suggest the following: (1) before the South Sandwich Islands, Papua, Samoa and Haiti earthquakes, the SLHF variations above their individual background levels have relatively low amplitudes and are difficult to be considered as precursory anomalies; (2) after removing the clustering effect, most of the anomalies prior to these six earthquakes are not temporally related to any earthquake in each study area in time sequence; (3) for each case, apart from Haiti, more than half of the studied earthquakes, which were moderate and even devastating earthquakes (larger than Mw = 5.3), had no precursory variations in SLHF; and (4) the correlation between SLHF and seismic activity depends largely on data accuracy and parameter settings. Before any application of SLHF data on earthquake prediction, we suggest that anomaly-identifying standards should be established based on long-term regional analysis to eliminate subjectivity. Furthermore, other factors that may result in SLHF variations should also be carefully considered.

  4. Coupled fvGCM-GCE Modeling System, TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2004-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to imiprove the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. I this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the Goddard research plan of using Weather Research Forecast (WRF) model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  5. Coupled fvGCM-GCE Modeling System: TRMM Latent Heating and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D GCE model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF will be developed by the end of 2004 and production runs will be conducted at the beginning of 2005. The purpose of this proposal is to augment the current Goddard MMF and other cloud modeling activities. In this talk, I will present: (1) A summary of the second Cloud Modeling Workshop took place at NASA Goddard, (2) A summary of the third TRMM Latent Heating Workshop took place at Nara Japan, (3) A brief discussion on the GCE model on developing a global cloud simulator.

  6. Field test and sensitivity analysis of a sensible heat balance method to determine ice contents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil ice content impacts winter vadose zone hydrology. It may be possible to estimate changes in soil ice content with a sensible heat balance (SHB) method, using measurements from heat pulse (HP) sensors. Feasibility of the SHB method is unknown because of difficulties in measuring soil thermal pro...

  7. Numerical Simulation of Internal Heat Transfer Phenomena Occurring During De-Icing of Aircraft Components

    NASA Technical Reports Server (NTRS)

    DeWitt, Keneth J.

    1996-01-01

    An experimental study to determine the convective heat transfer coefficient from castings made from ice-roughened plates is reported. A corresponding topic, 'Measurements of the Convective Heat Transfer Coefficient from Ice Roughened Surfaces in Parallel and Accelerated Flows,' is presented.

  8. Effect of Atmospheric Forcing Resolution on Delivery of Ocean Heat to the Antarctic Floating Ice Shelves

    NASA Astrophysics Data System (ADS)

    Klinck, J. M., II; Dinniman, M. S.; Bromwich, D. H.; Holland, D. M.

    2014-12-01

    Oceanic melting of the base of the floating Antarctic ice shelves is now thought to be a more significant cause of mass loss for the Antarctic ice sheet than iceberg calving. In this study, we use a 10 km horizontal resolution circum-Antarctic ocean/sea ice/ice shelf model (based on ROMS) to study the delivery of ocean heat to the base of the ice shelves. The atmospheric forcing comes from the ERA-Interim reanalysis (~80 km resolution) and from simulations using the Polar-optimized WRF model (30 km resolution) where the upper atmosphere was relaxed to the ERA-Interim reanalysis. Total basal ice shelf melt increases by 14% with the higher resolution winds but only 3% with both the higher resolution winds and atmospheric surface temperatures. The higher resolution winds lead to more heat being delivered to the ice shelf cavities from the adjacent ocean and an increase in the efficiency of heat transfer between the water and the ice. The higher resolution winds also lead to changes in the heat delivered from the open ocean to the continental shelves as well as changes in the heat lost to the atmosphere over the shelves and the sign of these changes varies regionally. Addition of the higher resolution temperatures to the winds results in lowering, primarily during summer, the wind driven increase in heat advected into the ice shelf cavities due to colder summer air temperatures near the coast.

  9. Heat transfer distributions around nominal ice accretion shapes formed on a cylinder in the NASA Lewis icing research tunnel

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J.; Simoneau, R. J.; Olsen, W. A.; Shaw, R. J.

    1984-01-01

    Local heat transfer coefficients were obtained on irregular cylindrical shapes which typify the accretion of ice on circular cylinders in cross flow. The ice shapes were grown on a 5.1 cm (2.0 in.) diameter cylinder in the NASA Lewis Icing Research Tunnel. The shapes were 2, 5, and 15 min accumulations of glaze ice and 15 min accumulation of rime ice. Heat transfer coefficients were also measured around the cylinder with no ice accretion. These icing shapes were averaged axially to obtain a nominal shape of constant cross section for the heat transfer tests. Heat transfer coefficients around the perimeter of each shape were measured with electrically heated copper strips embedded in the surface of the model which was cast from polyurethane foam. Each strip contained a thermocouple to measure the local surface temperature. The models were run in a 15.2 x 68.6 cm (6 x 27 in.) wind tunnel at several velocities. Background turbulence in the wind tunnel was less than 0.5 percent. The models were also run with a turbulence producing grid which gave about 3.5 percent turbulence at the model location with the model removed. The effect of roughness was also simulated with sand grains glued to the surface. Results are presented as Nusselt number versus angle from the stagnation line for the smooth and rough models for both high and low levels of free stream turblence. Roughness of the surface in the region prior to flow separation plays a major role in determining the heat transfer distribution.

  10. Heat transfer distributions around nominal ice accretion shapes formed on a cylinder in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Van Fossen, G. J.; Simoneau, R. J.; Olsen, W. A.; Shaw, R. J.

    1984-01-01

    Local heat transfer coefficients were obtained on irregular cylindrical shapes which typify the accretion of ice on circular cylinders in cross flow. The shapes were 2, 5, and 15 min accumulations of glaze ice and 15 min accumulation of rime ice. These icing shapes were averaged axially to obtain a nominal shape of constant cross section for the heat transfer tests. Heat transfer coefficients were also measured around the cylinder with no ice accretion. The models were run in a 15.2 x 68.6 cm (6 x 27 in.) wind tunnel at several velocities. The models were also run with a turbulence producing grid which gave about 3.5 percent turbulence. The effect of roughness was also simulated with sand grains glued to the surface. Results are presented as Nusselt number versus angle from the stagnation line for the smooth and rough models for both high and low levels of free stream turbulence. Roughness of the surface in the region prior to flow separation plays a major role in determining the heat transfer distribution. Free stream turbulence does not affect the distribution of heat transfer in this region but raises the level by a nearly uniform amount. For the rime shape, roughness had a larger effect in the near wedge shaped region past the initial separation point.

  11. Observation of oceanic heat flux to the sea ice using ice-tethered moorings: Canada Basin, Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Ha, Ho Kyung; Yae Son, Eun; Park, Jae Hun; Cole, Sylvia; Park, Keyhong; Sul La, Hyoung

    2016-04-01

    It is important to figure out the physical mechanisms (e.g. shear, turbulence) below the sea ice, because of its direct influence on oceanic heat flux that is closely related to sea ice melt. A short-term (3.5 days) mooring was conducted in August 2014 to measure the vertical profiles of velocity, salinity and temperature within the sea-ice boundary layer. The mooring package consisted of an acoustic Doppler current profiler (ADCP) and 3 MicroCats. A long-term mooring of an ice-tethered profiler with modular acoustic velocity sensor (MAVS) was conducted to acquire vertical profiles of salinity, temperature, pressure and velocity in the marginal ice zone. The mooring data was analyzed to examine the role of the Pacific Summer Water (PSW) as a heat source, which can provide oceanic heat to the overlying layer. The ADCP data showed distinctive upper-velocity fields induced by entrainment of the sea ice. It appeared up to about 15 m depth during the entire observation period. Periodical components of MAVS data were extracted through wavelet transform. Since sea ice extent is relatively low in summer, the wind forcing could be effectively delivered in the form of a near 12 hours period oscillation to the 60 m depth where the PSW was occupying. Even in winter, while the sea surface was fully covered with the sea ice, near 12 hours period oscillation was appeared at 60 m depth. In September and January, strong 12 hours period oscillation appeared up to a deeper layer, which is deeper than 150 m depth where the wind forcing is hard to reach. The relationship between the heat flux and the oscillation strength will be discussed during the presentation.

  12. Effect of fetch length on latent heat flux data accuracy calculated by Bowen ratio energy balance method

    NASA Astrophysics Data System (ADS)

    Pozníková, Gabriela; Fischer, Milan; Trnka, Miroslav; Orság, Matěj; Kučera, Jiří; Žalud, Zdeněk

    2013-04-01

    Bowen ratio energy balance (BREB) is one of the most widely used indirect methods for deriving latent heat (LE) and sensible heat fluxes. The BREB technique relies on net radiation, ground heat flux, and air temperature and humidity gradients measurements. Whilst the first two mentioned can be practically considered as point measurements, the source area of temperature and humidity gradients is at least one order of magnitudes larger. Therefore, the horizontal, homogeneous and extensive area is necessary prerequisite for correct flux determination by BREB method. An ideal fetch for BREB has been reported to be within 10 to 200 times the height of upper measuring level above zero plane displacement. This broad range is a result of different atmospheric stratifications and surface roughness, but the fetch to height ratio 100:1 has become generally acknowledged as a rule of thumb. In this study, data from four different BREB systems above various covers (two poplar plantations, grassland and turf grass field) will be used to calculate and analyse LE for different fetches. Data were recorded in Domanínek near Bystřice nad Pernštejnem in Czech-Moravian highlands where two BREB systems have measured above poplar plantation and turf grass since summer 2008 until present and two more systems have been placed above grassland and another poplar plantation at the beginning of 2011 and have measured until present time. During the measurements changing wind direction limited the fetch of particular BREB systems on the sites. That is why LE calculated for particular fetch lengths will be split into three categories - fetch classes ("good", "medium", and "bad") according to prevailing wind direction and corresponding fetch. These categories will be delimited using the simple footprint model. Fetches with more than 75% of the measured entities coming from the area of interest will be considered as the "good" ones. The "medium" class will contain fetches with 50-75% of the flux

  13. Invisible polynyas: Modulation of fast ice thickness by ocean heat flux on the Canadian polar shelf

    NASA Astrophysics Data System (ADS)

    Melling, Humfrey; Haas, Christian; Brossier, Eric

    2015-02-01

    Although the Canadian polar shelf is dominated by thick fast ice in winter, areas of young ice or open water do recur annually at locations within and adjacent to the fast ice. These polynyas are detectable by eye and sustained by wind or tide-driven ice divergence and ocean heat flux. Our ice-thickness surveys by drilling and towed electromagnetic sounder reveal that visible polynyas comprise only a subset of thin-ice coverage. Additional area in the coastal zone, in shallow channels and in fjords is covered by thin ice which is too thick to be discerned by eye. Our concurrent surveys by CTD reveal correlation between thin fast ice and above-freezing seawater beneath it. We use winter time series of air and ocean temperatures and ice and snow thicknesses to calculate the ocean-to-ice heat flux as 15 and 22 W/m2 at locations with thin ice in Penny Strait and South Cape Fjord, respectively. Near-surface seawater above freezing is not a sufficient condition for ocean heat to reach the ice; kinetic energy is needed to overcome density stratification. The ocean's isolation from wind under fast ice in winter leaves tides as the only source. Two tidal mechanisms driving ocean heat flux are discussed: diffusion via turbulence generated by shear at the under-ice and benthic boundaries, and the internal hydraulics of flow over topography. The former appears dominant in channels and the coastal zone and the latter in some silled fjords where and when the layering of seawater density permits hydraulically critical flow.

  14. The effect of ocean heat flux on seasonal ice growth in Young Sound (Northeast Greenland)

    NASA Astrophysics Data System (ADS)

    Kirillov, Sergei; Dmitrenko, Igor; Babb, David; Rysgaard, Søren; Barber, David

    2015-07-01

    The seasonal ice cover plays an important role in the climate system limiting the exchange of heat and momentum across the air-water interface. Among other factors, sea ice is sensitive to the ocean heat flux. In this study, we use in situ oceanographic, sea ice, and meteorological data collected during winter 2013/2014 in Young Sound (YS) fjord in Northeast Greenland to estimate the ocean heat flux to the landfast ice cover. During the preceding ice-free summer, incident solar radiation caused sea surface temperatures of up to 5-6°C. Subsequently, this heat was transferred down to the intermediate depths, but returned to the surface and retarded ice growth throughout winter. Two different approaches were used to estimate the ocean heat fluxes; (i) a residual method based on a 1-D thermodynamic ice growth model and (ii) a bulk parameterization using friction velocities and available heat content of water beneath the ice. The average heat flux in the inner YS varied from 13 W m-2 in October-December to less than 2 W m-2 in January-May. An average heat flux of 9 W m-2 was calculated for the outer YS. Moreover, we show that the upward heat flux in the outer fjord is strongly modulated by surface outflow, which produced two maxima in heat flux (up to 18-24 W m-2) during 26 December to 27 January and from 11 February to 14 March. By May 2014, the upward ocean heat flux reduced the landfast ice thickness by 18% and 24% in the inner and outer YS, respectively.

  15. Preliminary Results of Cyclical De-Icing of a Gas-Heated Airfoil

    NASA Technical Reports Server (NTRS)

    Gray, V. H.; Bowden, D. T.; VonGlahn, U.

    1952-01-01

    An NACA 65(sub 1)-212 airfoil of 8-foot chord was provided with a gas-heated leading edge for investigations of cyclical de-icing. De-icing was accomplished with intermittent heating of airfoil segments that supplied hot gas to chordwise passages in a double-skin construction. Ice removal was facilitated by a spanwise leading-edge parting strip which was continuously heated from the gas-supply duct. Preliminary results demonstrate that satisfactory cyclical ice removal occurs with ratios of cycle time to heat-on period (cycle ratio) from 10 to 26. For minimum runback, efficient ice removal, and minimum total heat input, short heat-on periods of about 15 seconds with heat-off periods of 260 seconds gave the best results. In the range of conditions investigated, the prime variables in the determination of the required heat input for cyclical ice removal were the air temperature and the cycle ratio; heat-off period, liquid water content, airspeed, and angle of attack had only secondary effects on heat input rate.

  16. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems

    DOE PAGESBeta

    Feng, Fei; Chen, Jiquan; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Liu, Meng; Zhang, Nannan; Guo, Yang; Yu, Jian; Sun, Minmin

    2015-12-09

    Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000–2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolutionmore » imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m2. Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating variables

  17. Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems

    SciTech Connect

    Feng, Fei; Chen, Jiquan; Li, Xianglan; Yao, Yunjun; Liang, Shunlin; Liu, Meng; Zhang, Nannan; Guo, Yang; Yu, Jian; Sun, Minmin

    2015-12-09

    Accurate estimation of latent heat flux (LE) is critical in characterizing semiarid ecosystems. Many LE algorithms have been developed during the past few decades. However, the algorithms have not been directly compared, particularly over global semiarid ecosystems. In this paper, we evaluated the performance of five LE models over semiarid ecosystems such as grassland, shrub, and savanna using the Fluxnet dataset of 68 eddy covariance (EC) sites during the period 2000–2009. We also used a modern-era retrospective analysis for research and applications (MERRA) dataset, the Normalized Difference Vegetation Index (NDVI) and Fractional Photosynthetically Active Radiation (FPAR) from the moderate resolution imaging spectroradiometer (MODIS) products; the leaf area index (LAI) from the global land surface satellite (GLASS) products; and the digital elevation model (DEM) from shuttle radar topography mission (SRTM30) dataset to generate LE at region scale during the period 2003–2006. The models were the moderate resolution imaging spectroradiometer LE (MOD16) algorithm, revised remote sensing based Penman–Monteith LE algorithm (RRS), the Priestley–Taylor LE algorithm of the Jet Propulsion Laboratory (PT-JPL), the modified satellite-based Priestley–Taylor LE algorithm (MS-PT), and the semi-empirical Penman LE algorithm (UMD). Direct comparison with ground measured LE showed the PT-JPL and MS-PT algorithms had relative high performance over semiarid ecosystems with the coefficient of determination (R2) ranging from 0.6 to 0.8 and root mean squared error (RMSE) of approximately 20 W/m2. Empirical parameters in the structure algorithms of MOD16 and RRS, and calibrated coefficients of the UMD algorithm may be the cause of the reduced performance of these LE algorithms with R2 ranging from 0.5 to 0.7 and RMSE ranging from 20 to 35 W/m2 for MOD16, RRS and UMD. Sensitivity analysis showed that radiation and vegetation terms were the dominating

  18. Results of an Icing test on a NACA 0012 airfoil in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Shin, Jaiwon; Bond, Thomas H.

    1992-01-01

    Tests were conducted in the Icing Research Tunnel (IRT) at the NASA Lewis Research Center to document the current capability of the IRT, focused mainly on the repeatability of the ice shape over a range of icing conditions. Measurements of drag increase due to the ice accretion were also made to document the repeatability of drag. Surface temperatures of the model were obtained to show the effects of latent-heat release by the freezing droplets and heat transfer through the ice layer. The repeatability of the ice shape was very good at low temperatures, but only fair at near freezing temperatures. In general, drag data shows good repeatability.

  19. Precipitation and Latent Heating Distributions from Satellite Passive Microwave Radiometry. Part 2; Evaluation of Estimates Using Independent Data

    NASA Technical Reports Server (NTRS)

    Yang, Song; Olson, William S.; Wang, Jian-Jian; Bell, Thomas L.; Smith, Eric A.; Kummerow, Christian D.

    2004-01-01

    Rainfall rate estimates from space-borne k&ents are generally accepted as reliable by a majority of the atmospheric science commu&y. One-of the Tropical Rainfall Measuring Mission (TRh4M) facility rain rate algorithms is based upon passive microwave observations fiom the TRMM Microwave Imager (TMI). Part I of this study describes improvements in the TMI algorithm that are required to introduce cloud latent heating and drying as additional algorithm products. Here, estimates of surface rain rate, convective proportion, and latent heating are evaluated using independent ground-based estimates and satellite products. Instantaneous, OP5resolution estimates of surface rain rate over ocean fiom the improved TMI algorithm are well correlated with independent radar estimates (r approx. 0.88 over the Tropics), but bias reduction is the most significant improvement over forerunning algorithms. The bias reduction is attributed to the greater breadth of cloud-resolving model simulations that support the improved algorithm, and the more consistent and specific convective/stratiform rain separation method utilized. The bias of monthly, 2.5 deg. -resolution estimates is similarly reduced, with comparable correlations to radar estimates. Although the amount of independent latent heating data are limited, TMI estimated latent heating profiles compare favorably with instantaneous estimates based upon dual-Doppler radar observations, and time series of surface rain rate and heating profiles are generally consistent with those derived from rawinsonde analyses. Still, some biases in profile shape are evident, and these may be resolved with: (a) additional contextual information brought to the estimation problem, and/or; (b) physically-consistent and representative databases supporting the algorithm. A model of the random error in instantaneous, 0.5 deg-resolution rain rate estimates appears to be consistent with the levels of error determined from TMI comparisons to collocated radar

  20. The use of simple physiological and environmental measures to estimate the latent heat transfer in crossbred Holstein cows

    NASA Astrophysics Data System (ADS)

    Santos, Severino Guilherme Caetano Gonçalves dos; Saraiva, Edilson Paes; Pimenta Filho, Edgard Cavalcanti; Gonzaga Neto, Severino; Fonsêca, Vinicus França Carvalho; Pinheiro, Antônio da Costa; Almeida, Maria Elivania Vieira; de Amorim, Mikael Leal Cabral Menezes

    2016-07-01

    The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation (P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m2. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m2 for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.

  1. Experimental Technique and Assessment for Measuring the Convective Heat Transfer Coefficient from Natural Ice Accretions

    NASA Technical Reports Server (NTRS)

    Masiulaniec, K. Cyril; Vanfossen, G. James, Jr.; Dewitt, Kenneth J.; Dukhan, Nihad

    1995-01-01

    A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Nine flat plates, 18 inches square, were obtained from which aluminum castings were made that gave good ice shape characterizations. Test strips taken from these plates were outfitted with heat flux gages, such that when placed in a dry wind tunnel, can be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for both parallel and accelerating flow will be studied. The smooth plate model verification baseline data as well as one ice roughened test case are presented.

  2. Improvement of discharge characteristics of latent heat thermal energy storage unit by using carbon fibers

    SciTech Connect

    Fukai, Jun; Oishi, Akira; Kodama, Yoshikazu; Kanou, Makoto; Miyatake, Osamu

    1999-07-01

    Many phase change materials have unacceptably low thermal conductivities. Metal fins, metal honeycombs and metal matrices have been examined to enhance the thermal conductivity of the PCMs. This study proposed an enhancement technique using carbon fibers with high thermal conductivity. The thermal conductivity of the carbon fibers prepared in this study is 220 W/(m{center_dot}K). Paraffin wax (0.26 W/(m{center_dot}K) in solid phase) and Na{sub 2}SO{sub 4}{center_dot}10H{sub 2}O-mixture (0.8 W/(m{center_dot}K) in solid phase) were selected as heat storage media. The fibers were uniformly mixed with th PCM encapsulated in a cylindrical capsule. The effective thermal conductivities of the fibers/PCM composites were measured. Figure A-1 shows the ratio of the effective thermal conductivity of the composite (k{sub c}) to the thermal conductivity of the phase change material (k{sub m}). The figure demonstrates that the fibers essentially enhance the thermal conductivities of paraffin. For paraffin, there is little dependence of the effective thermal conductivity on the fiber length (L{sub f}). Though the k{sub c}/k{sub m} for Na{sub 2}SO{sub 4}{center_dot}10H{sub 2}O-mixture is lower than that of the paraffin wax, 2% fibers increase the thermal conductivity of the PCM by a factor of about three. This value is almost identical to the thermal conductivity of ice (2.2 W/(m{center_dot}K)). The effect of the carbon fibers on discharge characteristics of a thermal energy storage system was investigated. Capsules containing a carbon fibers/paraffin composite are packed into a thermal energy storage unit. The inlet fluid temperature (T{sub in})and the outlet fluid temperature (T{sub out}) were measured during the discharge process. Figure A-2 shows a typical result of the experiments. Remarkable effect of the fibers is observed after the outlet temperature reaches the phase change temperature ({approx}60 C). That is, the period where the outlet temperature is maintained near the

  3. Assimilating Latent Heat Fluxes From Meteorological Geostationary Satellite Data In A Hydrological Model At The Scale of 20000 Km2

    NASA Astrophysics Data System (ADS)

    Roulin, E.

    This paper focuses on the use of evapotranspiration estimated from Meteosat data and from conventional meteorological information in a simple hydrological model at the scale of the river Scheldt and the river Meuse basins in Belgium and France. The radia- tive balance at the ground is computed from infrared and visible counts, radiosound- ing profiles and meteorological information from the synoptic network (Roulin et al., 1996). Latent heat flux is computed using the Monin-Obukhov theory and data of an automatic station. The ratio between latent heat flux and energy balance at the automatic station is used to infer evapotranspiration over the whole area (Gellens- Meulenberghs, 2000). The hydrological model is adapted from a conceptual model onto a grid of cells with 50 km2 area. Seven vegetation covers are represented. Wa- ter from vegetation and two soil buckets is depleted regarding the Penman-Monteith potential evapotranspiration. A simple assimilation scheme of the evapotranspiration from Meteosat is applied for the year 1995. The results are compared with soil mois- ture data gathered during a field campaign in a study area of 2200 km2 by UCL (Auquière et al., 1997).

  4. Sensitivity of a climatologically-driven sea ice model to the ocean heat flux

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Good, M. R.

    1982-01-01

    Ocean heat flux sensitivity was studied on a numerical model of sea ice covering the Weddell Sea region of the southern ocean. The model is driven by mean monthly climatological atmospheric variables. For each model run, the ocean heat flux is uniform in both space and time. Ocean heat fluxes below 20 W m to the minus 2 power do not provide sufficient energy to allow the ice to melt to its summertime thicknesses and concentrations by the end of the 14 month simulation, whereas ocean heat fluxes of 30 W m to the minus 2 power and above result in too much ice melt, producing the almost total disappearance of ice in the Weddell Sea by the end of the 14 months. These results are dependent on the atmospheric forcing fields.

  5. Ice-Sheet Enhancement of Volcanism and Geothermal Heat Flux: a Stress Modeling Approach

    NASA Astrophysics Data System (ADS)

    Stevens, N. T.; Parizek, B. R.; Alley, R. B.

    2015-12-01

    Bore-hole and geophysically inferred geothermal heat fluxes beneath the Greenland Ice Sheet, particularly at the head of the Northeast Greenland Ice Stream, are in some places higher than suggested by the underlying geology. Geologically rapid changes in lithospheric loading during ice-sheet growth and decay produce large changes in the effective stress state beneath and nearby. Oscillating loads will cause oscillating melt volume in deep rocks, and the nonlinear increase of melt migration velocity with melt fraction means that extended ice-age cycling will enhance upward melt migration. Our numerically efficient simulations of ice-sheet/lithosphere interactions produce crustal stresses similar to values estimated to allow dike emplacement and vug-wave migration. Maximum tensile and shear stresses shift both horizontally and vertically during ice sheet growth and decay, suggesting multi-step transport of melt upwards to or near the base of the ice sheet. We thus suggest that regions of high geothermal heat flux arose from cyclic ice-sheet loading, which enhanced melt extraction from a deep source (possibly linked to passage of the Iceland hot spot). We further suggest that similar processes may have been important elsewhere beneath or near present or former ice sheets, potentially enhancing volcanism as well as geothermal flux.

  6. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    NASA Astrophysics Data System (ADS)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2014-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands ( P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  7. Latent heat loss and sweat gland histology of male goats in an equatorial semi-arid environment

    NASA Astrophysics Data System (ADS)

    de Melo Costa, Cíntia Carol; Maia, Alex Sandro Campos; Neto, José Domingues Fontenele; Oliveira, Steffan Edward Octávio; de Queiroz, João Paulo Araújo Fernandes

    2013-03-01

    The objective of this work was to quantify the heat loss by cutaneous evaporation of goats in an equatorial semi-arid environment. The latent heat loss from the body surfaces of these ten undefined breed goats was measured using a ventilated capsule in sun and shade and in the three body regions (neck, flank and hindquarters). Skin samples from these three regions were histologically analyzed to relate the quantity of sweat glands, the area of sweat glands and the epithelium thickness of each of these regions to the heat loss by cutaneous evaporation of the examined goats. The epithelium thickness that was measured varied significantly for body regions with different quantities and areas of sweat glands (P < 0.01). Among the body regions that were examined, the samples from the neck demonstrated the highest epithelium thickness (16.23 ± 0.13 μm). However, the samples of sweat glands from the flank had the biggest area (43330.51 ± 778.71 μm2) and quantity per square centimeter (390 ± 9 cm-2). After the animals were exposed to sun, the flanks lost the greatest amount of heat by cutaneous evaporation (73.03 ± 1.75 W m-2) and possessed the highest surface temperatures (39.47 ± 0.18 °C). The histological characteristics may have influenced the heat loss by cutaneous evaporation that was observed in the flank region after the animals were exposed to sun.

  8. Latent heat of the first-order magnetic transition of MnFeSi0.33P0.66

    NASA Astrophysics Data System (ADS)

    Roy, P.; Brück, E.; de Groot, R. A.

    2016-04-01

    The latent heat of a magnetoelastic phase transition is used as a measure of the magnetocaloric effect since it is directly proportional to the entropy change. Taking MnFeSi0.33P0.66 as a model magnetocaloric material, density functional theory calculations in addition to the phonon calculations based on the density functional perturbation theory were performed in order to calculate the latent heat of the magnetoelastic phase transition. The Curie temperature (TC) was determined by taking into account the quasiharmonic approximation and the configurational entropy. The material exhibits a first-order magnetic transition accompanied by a large latent-heat (19.97 kJ/kg) near-room-temperature operation.

  9. Latent heat contribution to the direct magnetocaloric effect in Ni–Mn–Ga shape memory alloys with coupled martensitic and magnetic transformations

    NASA Astrophysics Data System (ADS)

    Caballero-Flores, R.; Sánchez-Alarcos, V.; Recarte, V.; Pérez-Landazábal, J. I.; Gómez-Polo, C.

    2016-05-01

    We report the direct magnetocaloric response of materials that present a second-order phase transition in the temperature range where a first-order structural transition also occurs. In particular, the influence of the latent heat on the field-induced adiabatic temperature change has been analyzed in a Ni–Mn–Ga alloy with coupled martensitic and magnetic transformations. It is found that discrepancies around 20% arise depending on whether the latent heat is taken into account or not. From the observed results, a general expression for the indirect determination of the adiabatic temperature change, that takes into account the contributions of both the martensitic and magnetic transformations, is proposed and experimentally confirmed. The observed key role of the latent heat allows us to understand why materials with first-order transformations do not present adiabatic temperature changes as higher as those which would correspond to materials undergoing second-order transformations with similar isothermal entropy change.

  10. Regional CO2 and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling

    SciTech Connect

    Riley, W. J.; Biraud, S.C.; Torn, M.S.; Fischer, M.L.; Billesbach, D.P.; Berry, J.A.

    2009-08-15

    Characterizing net ecosystem exchanges (NEE) of CO{sub 2} and sensible and latent heat fluxes in heterogeneous landscapes is difficult, yet critical given expected changes in climate and land use. We report here a measurement and modeling study designed to improve our understanding of surface to atmosphere gas exchanges under very heterogeneous land cover in the mostly agricultural U.S. Southern Great Plains (SGP). We combined three years of site-level, eddy covariance measurements in several of the dominant land cover types with regional-scale climate data from the distributed Mesonet stations and Next Generation Weather Radar precipitation measurements to calibrate a land surface model of trace gas and energy exchanges (isotope-enabled land surface model (ISOLSM)). Yearly variations in vegetation cover distributions were estimated from Moderate Resolution Imaging Spectroradiometer normalized difference vegetation index and compared to regional and subregional vegetation cover type estimates from the U.S. Department of Agriculture census. We first applied ISOLSM at a 250 m spatial scale to account for vegetation cover type and leaf area variations that occur on hundred meter scales. Because of computational constraints, we developed a subsampling scheme within 10 km 'macrocells' to perform these high-resolution simulations. We estimate that the Atmospheric Radiation Measurement Climate Research Facility SGP region net CO{sub 2} exchange with the local atmosphere was -240, -340, and -270 gC m{sup -2} yr{sup -1} (positive toward the atmosphere) in 2003, 2004, and 2005, respectively, with large seasonal variations. We also performed simulations using two scaling approaches at resolutions of 10, 30, 60, and 90 km. The scaling approach applied in current land surface models led to regional NEE biases of up to 50 and 20% in weekly and annual estimates, respectively. An important factor in causing these biases was the complex leaf area index (LAI) distribution within

  11. Latent Heat Flux Estimate Through an Energy Water Balance Model and Land Surface Temperature from Remote Sensing

    NASA Astrophysics Data System (ADS)

    Corbari, Chiara; Sobrino, Jose A.; Mancini, Marco; Hidalgo, Victoria

    2011-01-01

    Soil moisture plays a key role in the terrestrial water cycle and is responsible for the partitioning of precipitation between runoff and infiltration. Moreover, surface soil moisture controls the redistribution of the incoming solar radiation on land surface into sensible and latent heat fluxes. Recent developments have been made to improve soil moisture dynamics predictions with hydrologic land surface models (LSMs) that compute water and energy balances between the land surface and the low atmosphere. However, most of the time soil moisture is confined to an internal numerical model variable mainly due to its intrinsic space and time variability and to the well known difficulties in assessing its value from remote sensing as from in situ measurements. In order to exploit the synergy between hydrological distributed models and thermal remote sensed data, FEST-EWB, a land surface model that solves the energy balance equation, was developed. In this hydrological model, the energy budget is solved looking for the representative thermodynamic equilibrium temperature (RET) defined as the land surface temperature that closes the energy balance equation. So using this approach, soil moisture is linked to the latent heat flux and then to LST. In this work the relationship between land surface temperature and soil moisture is analysed using LST from AHS (airborne hyperspectral scanner), with a spatial resolution of 2-4 m, LST from MODIS, with a spatial resolution of 1000 m, and thermal infrared radiometric ground measurements that are compared with the thermodynamic equilibrium temperature from the energy water balance model. Moreover soil moisture measurements were carried out during the airborne overpasses and then compared with SM from the hydrological model. An improvement of this well known inverse relationship between soil moisture and land surface temperature is obtained when the thermodynamic approach is used. The analysis of the scale effects of the different

  12. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides

    PubMed Central

    2015-01-01

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs. PMID:26407233

  13. Latent Ice Recrystallization Inhibition Activity in Nonantifreeze Proteins: Ca2+-Activated Plant Lectins and Cation-Activated Antimicrobial Peptides.

    PubMed

    Mitchell, Daniel E; Gibson, Matthew I

    2015-10-12

    Organisms living in polar regions have evolved a series of antifreeze (glyco) proteins (AFGPs) to enable them to survive by modulating the structure of ice. These proteins have huge potential for use in cellular cryopreservation, ice-resistant surfaces, frozen food, and cryosurgery, but they are limited by their relatively low availability and questions regarding their mode of action. This has triggered the search for biomimetic materials capable of reproducing this function. The identification of new structures and sequences capable of inhibiting ice growth is crucial to aid our understanding of these proteins. Here, we show that plant c-type lectins, which have similar biological function to human c-type lectins (glycan recognition) but no sequence homology to AFPs, display calcium-dependent ice recrystallization inhibition (IRI) activity. This IRI activity can be switched on/off by changing the Ca2+ concentration. To show that more (nonantifreeze) proteins may exist with the potential to display IRI, a second motif was considered, amphipathicity. All known AFPs have defined hydrophobic/hydrophilic domains, rationalizing this choice. The cheap, and widely used, antimicrobial Nisin was found to have cation-dependent IRI activity, controlled by either acid or addition of histidine-binding ions such as zinc or nickel, which promote its amphipathic structure. These results demonstrate a new approach in the identification of antifreeze protein mimetic macromolecules and may help in the development of synthetic mimics of AFPs. PMID:26407233

  14. A 3-year dataset of sensible and latent heat fluxes from the Tibetan Plateau, derived using eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Li, Maoshan; Babel, Wolfgang; Chen, Xuelong; Zhang, Lang; Sun, Fanglin; Wang, Binbin; Ma, Yaoming; Hu, Zeyong; Foken, Thomas

    2015-11-01

    The Tibetan Plateau (TP) has become a focus of strong scientific interest due to its role in the global water cycle and its reaction to climate change. Regional flux estimates of sensible and latent heat are important variables for linking the energy and hydrological cycles at the TP's surface. Within this framework, a 3-year dataset (2008-2010) of eddy covariance measured turbulent fluxes was compiled from four stations on the TP into a standardised workflow: corrections and quality tests were applied using an internationally comparable software package. Second, the energy balance closure ( C EB) was determined and two different closure corrections applied. The four stations (Qomolangma, Linzhi, NamCo and Nagqu) represent different locations and typical land surface types on the TP (high altitude alpine steppe with sparse vegetation, a densely vegetated alpine meadow, and bare soil/gravel, respectively). We show that the C EB differs between each surface and undergoes seasonal changes. Typical differences in the turbulent energy fluxes occur between the stations at Qomolangma, Linzhi and NamCo, while Nagqu is quite similar to NamCo. Specific investigation of the pre-monsoon, the Tibetan Plateau summer monsoon, post-monsoon and winter periods within the annual cycle reinforces these findings. The energy flux of the four sites is clearly influenced by the Tibetan Plateau monsoon. In the pre-monsoon period, sensible heat flux is the major energy source delivering heat to the atmosphere, whereas latent heat flux is greater than sensible heat flux during the monsoon season. Other factors affecting surface energy flux are topography and location. Land cover type also affects surface energy flux. The energy balance residuum indicates a typically observed overall non-closure in winter, while closure (or `turbulent over-closure') is achieved during the Tibetan Plateau summer monsoon at the Nagqu site. The latter seems to depend on ground heat flux, which is higher in the

  15. High geothermal heat flux measured below the West Antarctic Ice Sheet.

    PubMed

    Fisher, Andrew T; Mankoff, Kenneth D; Tulaczyk, Slawek M; Tyler, Scott W; Foley, Neil

    2015-07-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m(2), significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m(2). The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  16. High geothermal heat flux measured below the West Antarctic Ice Sheet

    PubMed Central

    Fisher, Andrew T.; Mankoff, Kenneth D.; Tulaczyk, Slawek M.; Tyler, Scott W.; Foley, Neil

    2015-01-01

    The geothermal heat flux is a critical thermal boundary condition that influences the melting, flow, and mass balance of ice sheets, but measurements of this parameter are difficult to make in ice-covered regions. We report the first direct measurement of geothermal heat flux into the base of the West Antarctic Ice Sheet (WAIS), below Subglacial Lake Whillans, determined from the thermal gradient and the thermal conductivity of sediment under the lake. The heat flux at this site is 285 ± 80 mW/m2, significantly higher than the continental and regional averages estimated for this site using regional geophysical and glaciological models. Independent temperature measurements in the ice indicate an upward heat flux through the WAIS of 105 ± 13 mW/m2. The difference between these heat flux values could contribute to basal melting and/or be advected from Subglacial Lake Whillans by flowing water. The high geothermal heat flux may help to explain why ice streams and subglacial lakes are so abundant and dynamic in this region. PMID:26601210

  17. Comparisons of sensible and latent heat fluxes using surface and aircraft data over adjacent wet and dry surfaces

    SciTech Connect

    Doran, J.C.; Hubbe, J.M.; Shaw, W.J. ); Baldocchi, D.D.; Crawford, T.L.; Dobosy, R.J.; Meyers, T.J. . Air Resources Lab. Atmospheric Turbulence and Diffusion Div.)

    1992-01-01

    In June 1991, a field study of surface fluxes of latent and sensible heat over heterogeneous surfaces was carried out near Boardman, Oregon (Doran et al., 1992). The object of the study was to develop improved methods of extrapolating from local measurements of fluxes to area-averaged values suitable for use in general circulation models (GCMs) applied to climate studies. A grid element in a GCM is likely to encompass regions whose fluxes vary significantly from one surface type to another. The problem of integrating these fluxes into a single, representative value for the whole element is not simple, and describing such a flux in terms of flux-gradient relationships, as is often done, presents additional difficulties.

  18. Interlayer-interaction dependence of latent heat in the Heisenberg model on a stacked triangular lattice with competing interactions

    NASA Astrophysics Data System (ADS)

    Tamura, Ryo; Tanaka, Shu

    2013-11-01

    We study the phase transition behavior of a frustrated Heisenberg model on a stacked triangular lattice by Monte Carlo simulations. The model has three types of interactions: the ferromagnetic nearest-neighbor interaction J1 and antiferromagnetic third nearest-neighbor interaction J3 in each triangular layer and the ferromagnetic interlayer interaction J⊥. Frustration comes from the intralayer interactions J1 and J3. We focus on the case that the order parameter space is SO(3)×C3. We find that the model exhibits a first-order phase transition with breaking of the SO(3) and C3 symmetries at finite temperature. We also discover that the transition temperature increases but the latent heat decreases as J⊥/J1 increases, which is opposite to the behavior observed in typical unfrustrated three-dimensional systems.

  19. Applying a simple three-dimensional eddy correlation system for latent and sensible heat flux to contrasting forest canopies

    NASA Astrophysics Data System (ADS)

    Bernhofer, Ch.

    1992-06-01

    A simple eddy correlation system is presented that allows on-line calculation of latent and sensible heat fluxes. The system is composed of a three dimensional propeller anemometer, a thermocouple and a capacitance relative humidity sensor. Results from two contrasting sites demonstrate the capability of the system to measure turbulent fluxes under varying conditions. A dry mixed (dominantly coniferous) forest in hilly terrain in Austria is compared to a well irrigated, heavily transpiring, deciduous pecan orchard in the Southwest of the US. The US site shows insufficient closure of the energy balance that is attributed to non-turbulent fluxes under advective conditions in a stable boundary layer (Blanford et al., 1991) while the Austrian site exhibits almost perfect closure with the use of the very same instruments when the boundary layer is convective and advection is negligible.

  20. Complementary-relationship-based 30 year normals (1981-2010) of monthly latent heat fluxes across the contiguous United States

    NASA Astrophysics Data System (ADS)

    Szilagyi, Jozsef

    2015-11-01

    Thirty year normal (1981-2010) monthly latent heat fluxes (ET) over the conterminous United States were estimated by a modified Advection-Aridity model from North American Regional Reanalysis (NARR) radiation and wind as well as Parameter-Elevation Regressions on Independent Slopes Model (PRISM) air and dew-point temperature data. Mean annual ET values were calibrated with PRISM precipitation (P) and validated against United States Geological Survey runoff (Q) data. At the six-digit Hydrologic Unit Code level (sample size of 334) the estimated 30 year normal runoff (P - ET) had a bias of 18 mm yr-1, a root-mean-square error of 96 mm yr-1, and a linear correlation coefficient value of 0.95, making the estimates on par with the latest Land Surface Model results but without the need for soil and vegetation information or any soil moisture budgeting.

  1. Measurement of local connective heat transfer coefficients of four ice accretion shapes

    NASA Technical Reports Server (NTRS)

    Smith, M. E.; Armilli, R. V.; Keshock, E. G.

    1984-01-01

    In the analytical study of ice accretions that form on aerodynamic surfaces (airfoils, engine inlets, etc.) it is often necessary to be able to calculate convective heat transfer rates. In order to do this, local convective heat transfer coefficients for the ice accretion shapes must be known. In the past, coefficients obtained for circular cylinders were used as an approximation to the actual coefficients since no better information existed. The purpose of this experimental study was to provide local convective heat transfer coefficients for four shapes that represent ice accretions. The shapes were tested with smooth and rough surfaces. The experimental method chosen was the thin-skin heat rate technique. Using this method local Nusselt numbers were determined for the ice shapes. In general it was found that the convective heat transfer was higher in regions where the model's surfaces were convex and lower in regions where the model's surfaces were concave. The effect of roughness was to increase the heat transfer in the high heat transfer regions by approximately 100% while little change was apparent in the low heat transfer regions.

  2. Spectral Retrieval of Latent Heating Profiles from TRMM PR data. Part 3; Moistening Estimates over Tropical Ocean Regions

    NASA Technical Reports Server (NTRS)

    Shige, S.; Takayabu, Y.; Tao, W.-K.

    2007-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of precipitation formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the tropics with the associated latent heating (LH) accounting for threefourths of the total heat energy available to the Earth's atmosphere. In the last decade, it has been established that standard products of LH from satellite measurements, particularly TRMM measurements, would be a valuable resource for scientific research and applications. Such products would enable new insights and investigations concerning the complexities of convection system life cycles, the diabatic heating controls and feedbacks related to rne-sosynoptic circulations and their forecasting, the relationship of tropical patterns of LH to the global circulation and climate, and strategies for improving cloud parameterizations In environmental prediction models. However, the LH and water vapor profile or budget (called the apparent moisture sink, or Q2) is closely related. This paper presented the development of an algorithm for retrieving Q2 using 'TRMM precipitation radar. Since there is no direct measurement of LH and Q2, the validation of algorithm usually applies a method called consistency check. Consistency checking involving Cloud Resolving Model (CRM)-generated LH and 42 profiles and algorithm-reconstructed is a useful step in evaluating the performance of a given algorithm. In this process, the CRM simulation of a time-dependent precipitation process (multiple-day time series) is used to obtain the required input parameters for a given algorithm. The algorithm is then used to "econsti-LKth"e heating and moisture profiles that the CRM simulation originally produced, and finally both sets of conformal estimates (model and algorithm) are compared each other. The results indicate that discrepancies between the reconstructed and CM-simulated profiles for Q2, especially at low levels

  3. Estimating seasonal changes of land cover, surface wetness and latent heat flux of wet polygonal tundra (Samoylov Island, Lena-Delta, Siberia) with high-resolution aerial and hyperspectral CHRIS Proba satellite imagery

    NASA Astrophysics Data System (ADS)

    Muster, S.; Langer, M.; Boike, J.

    2009-12-01

    Vegetation cover, land cover and surface wetness are few of the many factors exerting control on the partitioning of energy to latent, sensible and ground heat flux. Spatial estimates of these factors can be inferred from remote sensing data. The fractionated polygonal tundra landscape of Samoylov Island of wet and dry surfaces induces strong spatial variations of resistance to evapotranspiration. The development of low-centered ice-wedge polygons results in a prominent microrelief that is the most important factor for small-scale differences in vegetation type and near surface soil moisture. Depressed polygon centers alternate with elevated polygon rims with elevation differences of up to 0.5 m over a few meters distance. In the depressed polygon centers, drainage is strongly impeded due to the underlying permafrost resulting in water-saturated soils or small ponds. A process-based understanding of the surface energy balance, however, needs to consider both the temporal and the spatial variations of the surface. In the course of the summer season, the surface wetness changes significantly since the water table falls about 5 cm below the surface. This change in surface wetness is likely to be associated with changing evapotranspiration rates. We consider the effect of seasonal changes in land cover, vegetation cover and surface wetness on latent heat flux by investigating a time-series of high-resolution aerial and hyperspectral satellite imagery and comparing them to ground-based measurements of near-surface soil moisture and latent heat flux. Two sets of aerial images from August 15 and September 11, 2008 in the VNIR provide detailed information of the polygonal landscape with a resolution of 0.3m. CHRIS Proba imagery provides hyperspectral data with 18 spectral bands in the VNIR range (400 - 1050 nm) and a resolution of 17 m. Acquisition dates are June 21, July 23 and September 10, 2008. Daily point-based measurements of near-surface soil moisture and latent

  4. Quantification of unsteady heat transfer and phase changing process inside small icing water droplets.

    PubMed

    Jin, Zheyan; Hu, Hui

    2009-05-01

    We report progress made in our recent effort to develop and implement a novel, lifetime-based molecular tagging thermometry (MTT) technique to quantify unsteady heat transfer and phase changing process inside small icing water droplets pertinent to wind turbine icing phenomena. The lifetime-based MTT technique was used to achieve temporally and spatially resolved temperature distribution measurements within small, convectively cooled water droplets to quantify unsteady heat transfer within the small water droplets in the course of convective cooling process. The transient behavior of phase changing process within small icing water droplets was also revealed clearly by using the MTT technique. Such measurements are highly desirable to elucidate underlying physics to improve our understanding about important microphysical phenomena pertinent to ice formation and accreting process as water droplets impinging onto wind turbine blades. PMID:19485525

  5. Passive infrared ice detection for helicopter applications

    NASA Technical Reports Server (NTRS)

    Dershowitz, Adam L.; Hansman, R. John, Jr.

    1990-01-01

    A technique is proposed to remotely detect rotor icing on helicopters by using passive IR thermometry to detect the warming caused by latent heat release as supercooled water freezes. During icing, the ice accretion region will be warmer than the uniced trailing edge, resulting in a characteristic chordwise temperature profile. Preliminary tests were conducted on a static model in the NASA Icing Research Tunnel for a variety of wet (glaze) and dry (rime) ice conditions. The chordwise temperature profiles were confirmed by observation with an IR thermal video system and thermocouple observations. The IR observations were consistent with predictions of the LEWICE ice accretion code, which was used to extrapolate the observations to rotor icing conditions. Based on the static observations, the passive IR ice detection technique appears promising; however, further testing or rotating blades is required.

  6. Convective heat transfer and experimental icing aerodynamics of wind turbine blades

    NASA Astrophysics Data System (ADS)

    Wang, Xin

    The total worldwide base of installed wind energy peak capacity reached 94 GW by the end of 2007, including 1846 MW in Canada. Wind turbine systems are being installed throughout Canada and often in mountains and cold weather regions, due to their high wind energy potential. Harsh cold weather climates, involving turbulence, gusts, icing and lightning strikes in these regions, affect wind turbine performance. Ice accretion and irregular shedding during turbine operation lead to load imbalances, often causing the turbine to shut off. They create excessive turbine vibration and may change the natural frequency of blades as well as promote higher fatigue loads and increase the bending moment of blades. Icing also affects the tower structure by increasing stresses, due to increased loads from ice accretion. This can lead to structural failures, especially when coupled to strong wind loads. Icing also affects the reliability of anemometers, thereby leading to inaccurate wind speed measurements and resulting in resource estimation errors. Icing issues can directly impact personnel safety, due to falling and projected ice. It is therefore important to expand research on wind turbines operating in cold climate areas. This study presents an experimental investigation including three important fundamental aspects: (1) heat transfer characteristics of the airfoil with and without liquid water content (LWC) at varying angles of attack; (2) energy losses of wind energy while a wind turbine is operating under icing conditions; and (3) aerodynamic characteristics of an airfoil during a simulated icing event. A turbine scale model with curved 3-D blades and a DC generator is tested in a large refrigerated wind tunnel, where ice formation is simulated by spraying water droplets. A NACA 63421 airfoil is used to study the characteristics of aerodynamics and convective heat transfer. The current, voltage, rotation of the DC generator and temperature distribution along the airfoil

  7. The effect of latent heat release on synoptic-to-planetary wave interactions and its implication for satellite observations: Theoretical modeling

    NASA Technical Reports Server (NTRS)

    Branscome, Lee E.; Bleck, Rainer

    1989-01-01

    Simple models are being developed to simulate interaction of planetary and synoptic-scale waves incorporating the effects of large-scale topography; eddy heat and momentum fluxes (or nonlinear dynamics); radiative heating/cooling; and latent heat release (precipitation) in synoptic-scale waves. The importance of latent heat release is determined in oceanic storm tracks for temporal variability and time-mean behavior of planetary waves. The model results were compared with available observations of planetary and synoptic-scale wave variability and time-mean circulation. The usefulness of monitoring precipitation in oceanic storm tracks by satellite observing systems was ascertained. The modeling effort includes two different low-order quasi-geostrophic models-time-dependent version and climatological mean version. The modeling also includes a low-order primitive equation model. A time-dependent, multi-level version will be used to validate the two-level Q-G models and examine effects of spherical geometry.

  8. Icebase: A suborbital survey to map geothermal heat flux under an ice sheet

    NASA Astrophysics Data System (ADS)

    Purucker, Michael E.; Connerney, John E. P.; Blakely, Richard J.; Bracken, Robert E.; Nowicki, Sophie; Le, Guan; Sabaka, Terence J.; Bonalsky, Todd M.; Kuang, Weijia; Ravat, Dhananjay; Ritz, Catherine; Vaughan, Alan P. M.; Gaina, Carmen; McEnroe, Suzanne; Lesur, Vincent

    2013-04-01

    NASA will solicit suborbital missions as part of its Earth Venture program element in the coming year. These missions are designed as complete PI-led investigations to conduct innovative hypothesis or scientific question-driven approaches to pressing questions in Earth System science. We propose to carry out a suborbital magnetic survey of Greenland using NASA's Global Hawk unmanned aerial vehicle to produce the first-ever map of the geothermal heat flux under an ice sheet. Better constraints on geothermal heat flux will reduce the uncertainty in future sea level rise, in turn allowing a more informed assessment of its impact on society. The geothermal heat flux depends on conditions such as mantle heat flux, and the tectonic history and heat production of the crust, all of which vary spatially. Underneath ice sheets, the geothermal heat flux influences the basal ice. Therefore heat flux is an important boundary condition in ice sheet modeling. Using magnetic data to constrain heat flux is possible because the magnetic properties of rocks are temperature dependent until they reach the Curie temperature. The technique has applications to understanding the response of Greenland ice sheet to climate forcing because the basal heat flux provides one of the boundary conditions. The technique also helps to locate the oldest ice. The oldest ice in Greenland should be found in areas of very low heat flux, and the identification of those areas is provided by this technique. Ice cores from the areas of oldest ice help to decipher past temperatures and CO2 contents. Our latest model of the geothermal heat flux under the Greenland ice sheet (http://websrv.cs.umt.edu/isis/index.php/Greenland_Basal_Heat_Flux) is based on low- resolution satellite observations collected by the CHAMP satellite between 2000 and 2010. Those observations will be enhanced by the upcoming Swarm gradient satellite mission, but the resolution will improve by less than a factor of two, from 400 km

  9. Extracellular heat shock protein HSP90{beta} secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-{beta}1

    SciTech Connect

    Suzuki, Shigeki; Kulkarni, Ashok B.

    2010-07-30

    Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex, which consists of latency-associated peptide (LAP) and the mature ligand. The release of the mature ligand from LAP usually occurs through conformational change of the latent complex and is therefore considered to be the first step in the activation of the TGF-{beta} signaling pathway. So far, factors such as heat, pH changes, and proteolytic cleavage are reportedly involved in this activation process, but the precise molecular mechanism is still far from clear. Identification and characterization of the cell surface proteins that bind to LAP are important to our understanding of the latent TGF-{beta} activation process. In this study, we have identified heat shock protein 90 {beta} (HSP90{beta}) from the cell surface of the MG63 osteosarcoma cell line as a LAP binding protein. We have also found that MG63 cells secrete HSP90{beta} into extracellular space which inhibits the activation of latent TGF-{beta}1, and that there is a subsequent decrease in cell proliferation. TGF-{beta}1-mediated stimulation of MG63 cells resulted in the increased cell surface expression of HSP90{beta}. Thus, extracellular HSP90{beta} is a negative regulator for the activation of latent TGF-{beta}1 modulating TGF-{beta} signaling in the extracellular domain. -- Research highlights: {yields} Transforming growth factor-beta 1 (TGF-{beta}1) is secreted as a latent complex. {yields} This complex consists of latency-associated peptide (LAP) and the mature ligand. {yields} The release of the mature ligand from LAP is the first step in TGF-{beta} activation. {yields} We identified for the first time a novel mechanism for this activation process. {yields} Heat shock protein 90 {beta} is discovered as a negative regulator for this process.

  10. Development of media for dynamic latent heat storage for the low-temperature range. Part 1: Thermal analyses of selected salt hydrate systems

    NASA Technical Reports Server (NTRS)

    Kanwischer, H.; Tamme, R.

    1985-01-01

    Phase change temperatures and phase change enthalpies of seventeen salt hydrates, three double salts, and four eutectics were measured thermodynamically and the results reported herein. Good results were obtained, especially for congruently melting salt hydrates. Incongruently melting salt hydrates appear less suitable for heat storage applications. The influence of the second phase - water, acid and hydroxide - to the latent heat is described. From these results, basic values of the working temperatures and storage capabilities of various storage media compositions may be derived.