Science.gov

Sample records for ice storm damage

  1. Fertilization increases the risk of loblolly pine to ice storm damage.

    SciTech Connect

    Aubrey, D.P.; Coleman, M.D.; Coyle D.R.

    2005-08-01

    Winter storms resulting in substantial ice accumulation occur with periodic frequency in the southeastern United States and they have potential to severely damage softwood plantations. Loblolly pine is one of the most important crop tree species in this region and a combined understanding of initial damage and subsequent growth and recovery may allow for more productive utilization of these stands following severe ice storms. In January 2004 a severe ice storm deposited approximately 2 cm of ice on an intensively managed four-year old loblolly pine plantation in South Carolina . The existing treatments within this plantation presented an opportunity to examine the effects of irrigation and fertilization on ice damage and recovery.

  2. Historic and Future Ice Storms

    NASA Astrophysics Data System (ADS)

    Klima, K.; Morgan, M. G.

    2014-12-01

    Ice storm losses from business interruption as well as transportation and health damages can range into billions of dollars. For instance, the December 2008 New England and Upstate New York ice storm caused four deaths and monetary damages between 2.5 and 3.7 billion, and the 2008 Chinese winter storms resulted in over 130 deaths and over 20 billion in damages. Informal discussions with ice storm experts indicate that due to competing temperature and precipitation effects as well as local topographic effects, it is unclear how exactly climate change will affect ice storms. Here we ask how incident frequencies might change in a future climate at four weather stations prone to ice storms. Using historical atmospheric soundings, we conduct a thought experiment where we perturb the temperatures as might be expected in a future climate. We then discuss changes in monthly frequency of ice storms.

  3. Ice storm damage and early recovery in an old-growth forest.

    PubMed

    Duguay, S M; Arii, K; Hooper, M; Lechowicz, M J

    2001-01-01

    We quantified the damage caused by a major ice storm to individual trees in two 1-ha permanent plots located at Mont St. Hilaire in southwestern Québec, Canada. The storm, which occurred in January 1998, is the worst on record in eastern North America; glaze ice on the order of 80-100 mm accumulated at our study site. All but 3% of the trees (DBH > or = 10 cm) lost at least some crown branches, and 35% lost more than half their crown. Damage to trees increased in the order: Tsuga canadensis, Betula alleghaniensis, Ostrya virginiana, Acer saccharum, Fagus grandifolia, Quercus rubra, Betula papyrifera, Acer rubrum, Tilia americana, and Fraxinus americana. Only 22% of the saplings and small trees (4 cm < DBH < 10 cm) escaped being broken or pinned to the ground by falling material. Levels of damage generally were greater in an exposed ridge top forest than in a cove protected from wind. By August 1999 only 53% of the trees had new shoots developing from the trunk or broken branches; among the more dominant canopy trees, Fagus grandifolia had the least sprouting and Acer saccharum and Quercus rubra the most. We anticipate and will monitor both significant turnover in the tree community and some shift in composition of the canopy dominants. PMID:11339708

  4. Ice Storm Supercomputer

    SciTech Connect

    2009-01-01

    "A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed 'Ice Storm,' this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen." For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  5. Ice Storm Supercomputer

    ScienceCinema

    None

    2013-05-28

    "A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed 'Ice Storm,' this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen." For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  6. Synoptic Patterns Associated with Northeast and Southeast Ice Storms

    NASA Astrophysics Data System (ADS)

    Vargas, R., Jr.; Booth, J. F.

    2014-12-01

    Wintertime storms that produce precipitation events such as snow, freezing rain, and ice pellets cause significant damage to utility services and disrupt travel. These synoptic systems involve deep isothermal regions where warm, moist air over-runs surface sub-freezing air. However, little else is known about the synoptic evolution of the storms. Therefore this study analyzes the dynamic and thermodynamic conditions of ice events along the east coast. The National Climatic Data Center (NCDC) Storm Events Database is used to pull the dates of ice events from the Northeast and Southeast climate regions for 1996-2013. We find that Southeast ice storms often cover a large geographical region, while Northeast ice storms tend to be much smaller but more frequent. We utilize Geographic Information Systems (GIS) to relate the spatial coverage of our ice events to population density in order to compare the impacts of the events in the two regions. Next, we analyze the synoptic control of ice storms from both regions in an effort to explain what causes the size differences. For the ice storms gathered from the Storm Events Database, composites are generated for sea level pressure, 2-meter temperatures, 850-hPa temperature and 850-500 hPa thickness, and vorticity parameters, from reanalysis data. A comparison of the composites for the Southeast and Northeast storms suggests that the size differences relate in part to the thermal structure produced by cold air damming. The ice events are also associated with objectively identified cyclone tracks, and we find that cyclone forward speed is inversely proportional to the size of the ice storm produced.

  7. Predicting severe winter coastal storm damage

    NASA Astrophysics Data System (ADS)

    Hondula, David M.; Dolan, Robert

    2010-07-01

    Over the past 40 years residents of, and visitors to, the North Carolina coastal barrier islands have experienced the destructive forces of several 'named' extratropical storms. These storms have caused large-scale redistributions of sand and loss of coastal structures and infrastructure. While most of the population living on the islands are familiar with the wintertime storms, the damage and scars of the 'super northeasters'—such as the Ash Wednesday storm of 7 March 1962, and the Halloween storm of 1989—are slipping away from the public's memory. In this research we compared the damage zones of the 1962 Ash Wednesday storm, as depicted on aerial photographs taken after the storm, with photos taken of the same areas in 2003. With these high-resolution aerial photos we were able to estimate the extent of new development which has taken place along the Outer Banks of North Carolina since 1962. Three damage zones were defined that extend across the islands from the ocean landward on the 1962 aerial photos: (1) the zone of almost total destruction on the seaward edge of the islands where the storm waves break; (2) the zone immediately inland where moderate structural damage occurs during severe storms; and (3) the zone of flood damage at the landward margin of the storm surge and overwash. We considered the rate of coastal erosion, the rate of development, and increases in property values as factors which may contribute to changing the financial risk for coastal communities. In comparing the values of these four factors with the 1962 damage data, we produced a predicted dollar value for storm damage should another storm of the magnitude of the 1962 Ash Wednesday storm occur in the present decade. This model also provides an opportunity to estimate the rate of increase in the potential losses through time as shoreline erosion continues to progressively reduce the buffer between the development and the edge of the sea. Our data suggest that the losses along the North Carolina coast would rank amongst the all-time most costly natural disasters to have occurred in the United States, with up to 1 billion in losses in North Carolina alone.

  8. Monitoring a Deciduous Forest Regeneration Following a Severe Ice Storm

    NASA Astrophysics Data System (ADS)

    Leblanc, S. G.

    2008-12-01

    Leaf Area Index (LAI) has been used to estimate the carbon budget in several studies and is now mapped routinely from satellite imagery. In this study, overstory forest damage and its regeneration are assessed using in-situ LAI measurements taken from 1997 to 2007 with three optical systems (LAI-2000, TRAC, and different digital hemispherical photography camera systems) following an intense freezing rain that occurred in January 1998. The study site is composed of two deciduous stands in Larose Forest, Ontario that were damaged during an intense freezing rain event in January 1998. Time series of the variables required to estimate LAI, are assessed separately to better understand the complex architectural changes over time resulting from the impact of the ice storm. Results show that the season maximum effective plant area index (PAIe) decreased by almost 50% for both sites the summer following the ice storm (1998), but had a substantial recovery the following year (1999), and did not show any significant increase from 1998 to 2007. The 1997 to 1998 decrease was more notable for site 1, with a change of three PAIe units; while a decrease of only one PAIe unit occurred for site 2. Both site 1 and site 2 regained significant PAIe in 1999. LAI follows a similar decrease from 1997-1998 with an increase in 1999. However, LAI increased yearly by 0.06 and 0.07 units from 1999 to 2007 for site 1 and site 2, respectively. Study results also show that foliage clumping was the main driver of the LAI increase from 1999 to 2007. Site 1-the older of the two sites- regained its pre- storm LAI within six years, while the younger site 2 had not regained its original LAI nine years after the ice storm.

  9. The effects of ice storm on seed rain and seed limitation in an evergreen broad-leaved forest in east China

    NASA Astrophysics Data System (ADS)

    Du, Yanjun; Mi, Xiangcheng; Liu, Xiaojuan; Ma, Keping

    2012-02-01

    Extreme climatic events almost universally play a major role in influencing the composition and structure of plant and animal communities, and thus could influence seed production, seed dispersal and seedling recruitment. We explored the effects of ice storm damage on seed rain and seed limitation in a 24-ha permanent forest plot in an evergreen broad-leaved forest in east China. We compared seed production before and after the storm in 2008. We evaluated the following hypotheses: 1) seed production after the ice storm was less than that before the storm; 2) seed limitation after the storm was more severe than before the storm. The results showed that seeds from one species, Eurya muricata, dominated the seed rain after the storm, accounting for more than half of the total seeds. Post-ice storm seed production of species other than E. muricata was only one fifth of that before the storm. Seed production in the second year after the ice storm recovered to pre-storm levels. The results indicate large inter-specific variation in response to the ice storm. Disturbance caused by the ice storm greatly increased seed diversity. The Jaccard similarity of species before and after the ice storm was 58%. There was no significant difference in seed limitation or dispersal limitation before and after the storm, but there was a significant difference in source limitation. Neither seed limitation nor dispersal limitation was correlated with dispersal modes. Only source limitation for rodent dispersed species increased after the ice storm.

  10. Integration of geospatial techniques in the assessment of vulnerability of trees to ice storms in Norman, Oklahoma

    NASA Astrophysics Data System (ADS)

    Rahman, Muhammad Tauhidur

    Every year, natural hazards such as hurricanes, floods, wild fires, droughts, earthquakes, volcanic eruptions, and ice storms destroy millions of trees across the World and cause extensive damage to their species composition, structure, and dynamics. Recently within the last decade, ice storms has caused catastrophic damage to trees, infrastructures, power lines in Oklahoma, and has taken over several dozen human lives. However, studies pertaining to the vulnerability and assessment of tree damage from ice storms in Oklahoma are almost non-existent. This study aims to fulfill that gap by first integrating remote sensing (RS) and geographic information systems (GIS) to assess and estimate tree damage caused by the December 8-11, 2007 ice storm that struck the north-central part of Oklahoma. It also explores the factors that contributed to the tree damage and created multiple regression models based on the factors. Finally, it examines the vulnerability of trees to ice storms by creating an ice storm tree damage vulnerability index for the City of Norman, Oklahoma. The integrated RS and GIS method assessed tree height and crown damage with high degree of accuracy. The thickness of ice accumulation has emerged as the most important predictor, followed by tree branch angle and pre-storm crown, wind, stem, and branch diameters for tree damage from ice storms. Results indicate that the vulnerability index accurately predicted several areas that are highly vulnerable. Results from this study are significant from both theoretical, and methodological and implication perspectives. The present study contributes significantly by identifying the geographic conditions of the City of Norman that make its urban forestry vulnerable to ice storm damage. In doing so, it initiates steps for future tree vulnerability research. Methodologically, the study contributes significantly to geospatial technology paradigm in geography by integrating RS and GIS to assess tree damage not only on a change/no change basis, but also by quantifying the damage. Finally, the methods and techniques developed in this study can not only assess damage from future ice storms, but can also quantify damage from other natural disasters in other parts of the world as well.

  11. Synoptic and Mesoscale Aspects of Ice Storms in the Northeastern United States

    NASA Astrophysics Data System (ADS)

    Castellano, C.; Bosart, L. F.; Keyser, D.; Quinlan, J.; Lipton, K.

    2012-12-01

    Ice storms are among the most hazardous, disruptive, and costly meteorological phenomena in the United States. The accretion of freezing rain during ice storms endangers human lives, undermines public infrastructure, and adversely impacts local and regional economies. Previous studies have demonstrated that the northeastern U.S. is especially susceptible to damaging ice storms. Furthermore, ice storms present a major operational forecast challenge due to the combined influence of synoptic, mesoscale, and microphysical processes on precipitation type. In consideration of these societal impacts and forecast issues, we have constructed a 17-cool-season climatology (Oct 1993-April 2010) of ice storms in the northeastern U.S., and performed composite and case study analyses to: 1) determine antecedent environments conducive to ice storms, and 2) identify dynamical mechanisms responsible for freezing rain. Using the National Climatic Data Center's Storm Events Database, we established a history of ice storms affecting 14 National Weather Service (NWS) county warning areas (CWAs) within the domain of the Northeast Regional Climate Center. First, we evaluated the temporal and spatial variability of ice storms during the 1993-2010 period. Next, we generated synoptic composites from NCEP/NCAR reanalysis data and examined how large-scale circulation patterns and associated quasi-geostrophic (QG) forcing, thermal boundaries, and moisture transport establish environments favorable for freezing rain in each NWS CWA. For the purpose of this presentation, we have only included the composite analysis of events impacting the Albany, NY, CWA. Although freezing rain typically occurs under preferred synoptic conditions, mesoscale processes determine the persistence of freezing rain events by modifying synoptic-scale circulations and associated QG forcing on regional and local scales. Therefore, a multiscale analysis is necessary to diagnose important synoptic-mesoscale circulation linkages and differentiate among physical mechanisms that influence freezing rain. Specifically, we applied this multiscale approach toward a case study of the 11-12 Dec 2008 ice storm. Upper-air maps and cross sections were created with Climate Forecast System Reanalysis data, while surface meteograms and sounding plots were produced using the Integrated Surface Database and Integrated Global Radiosonde Archive. Our results suggest that ice storms in the northeastern U.S. commonly occur near the equatorward entrance region of an upper-level jet, and on the poleward side of a surface warm front. Moreover, low- to midlevel geostrophic warm advection and moisture transport, in conjunction with near-surface ageostrophic cold advection, helps prolong freezing rain events by maintaining a thermodynamic profile conducive to freezing rain.

  12. Sea ice near-inertial response to atmospheric storms

    NASA Astrophysics Data System (ADS)

    Stoudt, Chase A.

    A moored oceanographic array was deployed on the Beaufort Sea continental slope from August 2008-August 2009 to measure Arctic sea ice near-inertial motion in response to rapidly changing wind stress. Upward looking Acoustic Doppler Current Profilers detected sea ice and measured ice drift using a combination of bottom track and error velocity. An analysis of in-situ mooring data in conjunction with data from National Center for Environmental Prediction (NCEP) reanalysis suggest that many high and low pressure systems cross the Beaufort in winter, but not all of these create a near-inertial ice response. Two unusually strong low pressure systems that passed near the array in December 2008 and February/March 2009 were accompanied by elevated levels of near-inertial kinetic energy in the ice. The analysis suggests pressure systems which have a diameter to ground track velocity ratio close to 3/4 of the local inertial period can excite a large near-inertial response in the sea ice. It is conjectured that this results from the combined effect of resonance arising from similar intrinsic timescales of the storm and the local inertial period and from stresses that are able to overcome the damping of sea ice arising from ice-mechanics and damping in the ice-ocean boundary layer. Those systems whose intrinsic times scales do not approach resonance with the local inertial period did not excite a large near- inertial response in the sea ice. From an analysis of two storms in February 2009, and two in December 2008, it appears that wind stresses associated with previous low pressure systems preconditioned the ice pack, allowing for larger near-inertial response during subsequent events.

  13. 98. DETAIL VIEW OF STORM DAMAGE AND EXPOSED SUBSTRUCTURE, NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    98. DETAIL VIEW OF STORM DAMAGE AND EXPOSED SUBSTRUCTURE, NORTHWEST SIDE OF 4TH TEE, LOOKING WEST - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  14. Impact of the 2008 Ice Storm on Moso Bamboo plantations in southeast China

    SciTech Connect

    Zhou, Dr. Benzhi; Li, Zhengcai; Cao, Yonghui; An, Yanfei; Deng, Dr. Zongfu; Wang, Gang; Gu, Lianhong

    2011-01-01

    A massive ice and snow storm occurred in early 2008 in South China and caused extensive damage to forests. Thirty-six plots of moso bamboo (Phyllostachys pubescens) plantation were established following the ice storm in the central growth area of moso bamboo, Fenyi, Jiangxi province, China. The topographical condition and stand attributes, and the ice storm impact on moso bamboo plantations were investigated. We found that an average of 54.48% ( 17.58%) bamboo culms was damaged. The damage patterns included bending, snapping and uprooting, which accounted for 17.01% ( 7.28%), 22.37% ( 11.58%) and 15.11% ( 11.54%) of the total respectively. An average of 16.42 ( 7.09) tons per hectare dead dry biomass was produced, accounting for 37.73% ( 14.41%) of total aboveground biomass. A mean value of 8.21 ( 3.55) Mg C per hectare was shifted from living biomass to dead. Stand level analysis showed a significant increase in damage level and dead biomass production at north-oriented slopes, and with high stand density (between 3000 and 4500 culm/ha). High altitude caused a higher proportion of snapped culms but a lower proportion of uprooted. Analysis at individual culm level suggested that the susceptibility for a culm to break or uproot due to ice storm would rise as its diameter increased, while the susceptibility to bend would decline. The young (one year old) culm was more susceptible to snapping or bending while over-mature (>5 years old) culm was more susceptible to uprooting, implying it is a good managing practice to harvest mature culm timely.

  15. Coastal Storm Events and Property Damages Associated with Winter Storms in the Tri-State Area

    NASA Astrophysics Data System (ADS)

    Shimkus, C.; Ting, M.; Adamo, S. B.; Madajewicz, M.; Kushnir, Y.; Booth, J. F.

    2014-12-01

    Winter storms pose a number of hazards to coastal communities in the U.S. Northeast including heavy rain and/or snow, strong wind, cold temperatures, as well as coastal and fresh water flooding. In combination and as separate "events", these hazards threaten infrastructure and can cause millions of dollars of property damage in one state from one storm alone. A study of the impacts of several recent winter storms from 2005-2012 on 4 coastal counties in Connecticut, 15 in New Jersey, and 13 in New York underscores the significant economic consequences the climate can have on private and public property. Data on events and associated property damage from the National Climatic Data Center Storm Events Database indicates that flood and wind events were documented most frequently for these winter storms and were responsible for the highest damages overall. Although New Jersey experienced the most events and property damage, there is no discernable connection between the number of events that afflict a county or state and the level of damage they face. For example, the data shows that a low number of flood events, both coastal and freshwater, accounted for the largest losses. Furthermore, the study reveals that winter storms may affect suburban property more than urban infrastructure since suburban New Jersey suffered the most property damage while urban counties in New York sustained little to no costs in comparison. An examination of the relationship between property damage from the recent storms and each county's coastal land area and population below 3 meters suggests that the amount of damage reported is related to the land area at lower elevations but there is no direct link between losses and the population density below 3 meters.

  16. Comparison of storm damage functions and their performance

    NASA Astrophysics Data System (ADS)

    Prahl, B. F.; Rybski, D.; Burghoff, O.; Kropp, J. P.

    2015-04-01

    Winter storms are the most costly natural hazard for European residential property. We compare four distinct storm damage functions with respect to their forecast accuracy and variability, with particular regard to the most severe winter storms. The analysis focuses on daily loss estimates under differing spatial aggregation, ranging from district to country level. We discuss the broad and heavily skewed distribution of insured losses posing difficulties for both the calibration and the evaluation of damage functions. From theoretical considerations, we provide a synthesis between the frequently discussed cubic wind-damage relationship and recent studies that report much steeper damage functions for European winter storms. The performance of the storm loss models is evaluated for two sources of wind gust data, direct observations by the German Weather Service and ERA-Interim reanalysis data. While the choice of gust data has little impact on the evaluation of German storm loss, spatially resolved coefficients of variation reveal dependence between model and data choice. The comparison shows that the probabilistic models by Heneka et al. (2006) and Prahl et al. (2012) both provide accurate loss predictions for moderate to extreme losses, with generally small coefficients of variation. We favour the latter model in terms of model applicability. Application of the versatile deterministic model by Klawa and Ulbrich (2003) should be restricted to extreme loss, for which it shows the least bias and errors comparable to the probabilistic model by Prahl et al. (2012).

  17. Storm-induced sea-ice breakup and the implications for ice extent.

    PubMed

    Kohout, A L; Williams, M J M; Dean, S M; Meylan, M H

    2014-05-29

    The propagation of large, storm-generated waves through sea ice has so far not been measured, limiting our understanding of how ocean waves break sea ice. Without improved knowledge of ice breakup, we are unable to understand recent changes, or predict future changes, in Arctic and Antarctic sea ice. Here we show that storm-generated ocean waves propagating through Antarctic sea ice are able to transport enough energy to break sea ice hundreds of kilometres from the ice edge. Our results, which are based on concurrent observations at multiple locations, establish that large waves break sea ice much farther from the ice edge than would be predicted by the commonly assumed exponential decay. We observed the wave height decay to be almost linear for large waves--those with a significant wave height greater than three metres--and to be exponential only for small waves. This implies a more prominent role for large ocean waves in sea-ice breakup and retreat than previously thought. We examine the wider relevance of this by comparing observed Antarctic sea-ice edge positions with changes in modelled significant wave heights for the Southern Ocean between 1997 and 2009, and find that the retreat and expansion of the sea-ice edge correlate with mean significant wave height increases and decreases, respectively. This includes capturing the spatial variability in sea-ice trends found in the Ross and Amundsen-Bellingshausen seas. Climate models fail to capture recent changes in sea ice in both polar regions. Our results suggest that the incorporation of explicit or parameterized interactions between ocean waves and sea ice may resolve this problem. PMID:24870546

  18. Mangroves can provide protection against wind damage during storms

    NASA Astrophysics Data System (ADS)

    Das, Saudamini; Crépin, Anne-Sophie

    2013-12-01

    Research has established that mangroves can protect lives and property from storms by buffering the impacts of storm surges. However, their effects in attenuating wind velocity and providing protection from wind damage during storms are not known. This study examined whether mangroves attenuate damage from cyclonic winds and found that they provide substantial protection to properties, even relatively far away from mangroves and the coast. We devised a theoretical model of wind protection by mangroves and calibrated and applied this model using data from the 1999 cyclone in the Odisha region of India. The model predicted and quantified the actual level of damage reasonably accurately and showed that mangroves reduced wind damage to houses. The wind protection value of mangroves in reducing house damage amounted to approximately US$177 per hectare at 1999 prices. This provides additional evidence of the storm protection ecosystem services that mangroves supply in the region and an additional reason to invest in mangrove ecosystems to provide better adaptability to coastal disasters such as storms.

  19. ICE DAMAGE IN A CHRONOSEQUENCE OF AGROFORESTRY PINE PLANTATIONS IN ARKANSAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acute (broken and leaning) and transient (bending) damage to loblolly pine (Pinus taeda L.) were assessed in a case study of experimental agroforestry plantations following a December 2000 ice storm. Stand ages were 7-, 9-, and 17-years-old and tree density ranged from 150 to 3,360 trees ha-1 in re...

  20. The impact of ice microphysical processes on the life span of a midlatitude supercell storm

    NASA Astrophysics Data System (ADS)

    Wang, Pao K.; Lin, Hsin-Mu; Su, Shih-Hao

    2010-09-01

    The impact of ice microphysical processes on the life span of a US Midwest supercell thunderstorm is studied using a cloud resolving model equipped with explicit cloud microphysical processes. The 2 August 1981 CCOPE supercell is chosen as the model storm to be tested. Three different runs are performed: a control run FPR with full physics (including ice physics), a normal liquid-only run NLR with all ice processes suppressed, and another liquid-only run ELR with artificially enhanced latent heat release to test the impact of thermodynamics versus ice microphysics on the storm's life cycle. The results show that the FPR storm evolves into a quasi-steady supercell whereas both NLR and ELR storms dissipate after ˜ 100 min. The ELR storm dissipates even earlier than the NLR storm, demonstrating that the enhanced latent heat release does not help lengthening the storm's life span. Analysis confirms our previous finding that the presence of lower density ice particles enables the storm to develop a circulation that can sustain the quasi-steady storm structure. Implications of the findings are discussed.

  1. Tree species traits but not diversity mitigate stem breakage in a subtropical forest following a rare and extreme ice storm.

    PubMed

    Nadrowski, Karin; Pietsch, Katherina; Baruffol, Martin; Both, Sabine; Gutknecht, Jessica; Bruelheide, Helge; Heklau, Heike; Kahl, Anja; Kahl, Tiemo; Niklaus, Pascal; Kröber, Wenzel; Liu, Xiaojuan; Mi, Xiangcheng; Michalski, Stefan; von Oheimb, Goddert; Purschke, Oliver; Schmid, Bernhard; Fang, Teng; Welk, Erik; Wirth, Christian

    2014-01-01

    Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA) were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level. PMID:24879434

  2. Tree Species Traits but Not Diversity Mitigate Stem Breakage in a Subtropical Forest following a Rare and Extreme Ice Storm

    PubMed Central

    Nadrowski, Karin; Pietsch, Katherina; Baruffol, Martin; Both, Sabine; Gutknecht, Jessica; Bruelheide, Helge; Heklau, Heike; Kahl, Anja; Kahl, Tiemo; Niklaus, Pascal; Kröber, Wenzel; Liu, Xiaojuan; Mi, Xiangcheng; Michalski, Stefan; von Oheimb, Goddert; Purschke, Oliver; Schmid, Bernhard; Fang, Teng; Welk, Erik; Wirth, Christian

    2014-01-01

    Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA) were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level. PMID:24879434

  3. Monitoring Forest Change and Ice Storm Disturbance to Forest Structure Using Echidna° Ground-Based Lidar

    NASA Astrophysics Data System (ADS)

    Yao, T.; Strahler, A. H.; Schaaf, C.; Yang, X.; zhao, F.; Woodcock, C. E.; Jupp, D. L.; Culvenor, D.; Lovell, J.; Newnham, G.; Li, X.; Wang, J.

    2011-12-01

    The ground-based, upward-scanning, near-infrared (1064 nm), full-waveform lidar, the Echidna° Validation Instrument (EVI), built by CSIRO Australia, is used to monitor forest change over a 2- or 3-year time period through changes in retrievals of mean stem diameter, stem density, basal area, above-ground standing biomass, leaf area index, foliage profile, and canopy height. The changes were validated by comparison with direct field measurements, or in the case of canopy height, with data from the Laser Vegetation Imaging Sensor (LVIS). Site-level EVI-retrieved values of mean DBH, stem count density, basal area and above-ground biomass matched the field measurements well, with R2 values of 0.84, 0.97, 0.96 and 0.98 respectively. Furthermore, the changes in EVI retrievals had the same trend as the change in field measurements over these 2-3 year periods. Based on five scans within each 1-ha plot, we focused on detecting forest change over a 2- or 3-year period at three New England forest stands: a second-growth conifer stand thinned as a shelterwood, an aging hemlock plantation, and a young second-growth hardwood stand. The first stand provided the opportunity to look for change in a stand containing many co-dominant and intermediate trees recently released by removal of selected over-story trees, while the other two stands suffered significant damage in an ice storm during the change period. At the shelterwood conifer site at Howland Experimental Forest, mean DBH, aboveground biomass, and leaf area index (LAI) all increased between 2007 and 2009. An ice storm struck the Harvard Forest in December, 2008, providing the opportunity to detect damage between 2007 and 2009 or 2010 with EVI scans at two sites : hemlock and hardwood. Retrieved leaf area index (LAI) was 13 percent lower in the hemlock site in 2009 and 10 percent lower in the hardwood site in 2010 as compared to 2007. The decrease of LAI quantifies a loss of biomass from the canopy, and broken tops were both recorded by the field teams and visible in the Echidna scans in the 2010 data. Stem density decreased and mean DBH increased at both sites, as smaller and weaker trees were felled by the ice. Canopy heights derived from the EVI-retrieved foliage profile closely matched those derived from the airborne Laser Vegetation Imaging Sensor (LVIS).

  4. Use of Remote Sensing Data to Enhance NWS Storm Damage Toolkit

    NASA Astrophysics Data System (ADS)

    Jedlovec, G.; Molthan, A.; White, K.; Burks, J.; Stellman, K.; Smith, M. R.

    2012-12-01

    In the wake of a natural disaster such as a tornado, the National Weather Service (NWS) is required to provide a very detailed and timely storm damage assessment to local, state and federal homeland security officials. The Post-Storm Data Acquisition (PSDA) procedure involves the acquisition and assembly of highly perishable data necessary for accurate post-event analysis and potential integration into a geographic information system (GIS) available to its end users and associated decision makers. Information gained from the process also enables the NWS to increase its knowledge of extreme events, learn how to better use existing equipment, improve NWS warning programs, and provide accurate storm intensity and damage information to the news media and academia. To help collect and manage all of this information, forecasters in NWS Southern Region are currently developing a Storm Damage Assessment Toolkit (SDAT), which incorporates GIS-capable phones and laptops into the PSDA process by tagging damage photography, location, and storm damage details with GPS coordinates for aggregation within the GIS database. However, this tool alone does not fully integrate radar and ground based storm damage reports nor does it help to identify undetected storm damage regions. In many cases, information on storm damage location (beginning and ending points, swath width, etc.) from ground surveys is incomplete or difficult to obtain. Geographic factors (terrain and limited roads in rural areas), manpower limitations, and other logistical constraints often prevent the gathering of a comprehensive picture of tornado or hail damage, and may allow damage regions to go undetected. Molthan et al. (2011) have shown that high resolution satellite data can provide additional valuable information on storm damage tracks to augment this database. This paper presents initial development to integrate satellite-derived damage track information into the SDAT for near real-time use by forecasters and decision makers.

  5. Use of Remote Sensing Data to Enhance NWS Storm Damage Toolkit

    NASA Technical Reports Server (NTRS)

    Jedlove, Gary J.; Molthan, Andrew L.; White, Kris; Burks, Jason; Stellman, Keith; Smith, Mathew

    2012-01-01

    In the wake of a natural disaster such as a tornado, the National Weather Service (NWS) is required to provide a very detailed and timely storm damage assessment to local, state and federal homeland security officials. The Post ]Storm Data Acquisition (PSDA) procedure involves the acquisition and assembly of highly perishable data necessary for accurate post ]event analysis and potential integration into a geographic information system (GIS) available to its end users and associated decision makers. Information gained from the process also enables the NWS to increase its knowledge of extreme events, learn how to better use existing equipment, improve NWS warning programs, and provide accurate storm intensity and damage information to the news media and academia. To help collect and manage all of this information, forecasters in NWS Southern Region are currently developing a Storm Damage Assessment Toolkit (SDAT), which incorporates GIS ]capable phones and laptops into the PSDA process by tagging damage photography, location, and storm damage details with GPS coordinates for aggregation within the GIS database. However, this tool alone does not fully integrate radar and ground based storm damage reports nor does it help to identify undetected storm damage regions. In many cases, information on storm damage location (beginning and ending points, swath width, etc.) from ground surveys is incomplete or difficult to obtain. Geographic factors (terrain and limited roads in rural areas), manpower limitations, and other logistical constraints often prevent the gathering of a comprehensive picture of tornado or hail damage, and may allow damage regions to go undetected. Molthan et al. (2011) have shown that high resolution satellite data can provide additional valuable information on storm damage tracks to augment this database. This paper presents initial development to integrate satellitederived damage track information into the SDAT for near real ]time use by forecasters and decision makers.

  6. The effect of severe storms on the ice cover of the northern Tatarskiy Strait

    NASA Technical Reports Server (NTRS)

    Martin, Seelye; Munoz, Esther; Drucker, Robert

    1992-01-01

    Passive microwave images from the Special Sensor Microwave Imager are used to study the volume of ice and sea-bottom water in the Japan Sea as affected by winds and severe storms. The data set comprises brightness temperatures gridded on a polar stereographic projection, and the processing is accomplished with a linear algorithm by Cavalieri et al. (1983) based on the vertically polarized 37-GHz channel. The expressions for calculating heat fluxes and downwelling radiation are given, and ice-cover fluctuations are correlated with severe storm events. The storms generate large transient polynya that occur simultaneously with the strongest heat fluxes, and severe storms are found to contribute about 25 percent of the annual introduction of 25 cu km of ice in the region. The ice production could lead to the renewal of enough sea-bottom water to account for the C-14 data provided, and the generation of Japan Sea bottom water is found to vary directly with storm activity.

  7. Automatic Detection of Storm Damages Using High-Altitude Photogrammetric Imaging

    NASA Astrophysics Data System (ADS)

    Litkey, P.; Nurminen, K.; Honkavaara, E.

    2013-05-01

    The risks of storms that cause damage in forests are increasing due to climate change. Quickly detecting fallen trees, assessing the amount of fallen trees and efficiently collecting them are of great importance for economic and environmental reasons. Visually detecting and delineating storm damage is a laborious and error-prone process; thus, it is important to develop cost-efficient and highly automated methods. Objective of our research project is to investigate and develop a reliable and efficient method for automatic storm damage detection, which is based on airborne imagery that is collected after a storm. The requirements for the method are the before-storm and after-storm surface models. A difference surface is calculated using two DSMs and the locations where significant changes have appeared are automatically detected. In our previous research we used four-year old airborne laser scanning surface model as the before-storm surface. The after-storm DSM was provided from the photogrammetric images using the Next Generation Automatic Terrain Extraction (NGATE) algorithm of Socet Set software. We obtained 100% accuracy in detection of major storm damages. In this investigation we will further evaluate the sensitivity of the storm-damage detection process. We will investigate the potential of national airborne photography, that is collected at no-leaf season, to automatically produce a before-storm DSM using image matching. We will also compare impact of the terrain extraction algorithm to the results. Our results will also promote the potential of national open source data sets in the management of natural disasters.

  8. Living with a Chronic Disabling Illness and Then Some: Data from the 1998 Ice Storm

    ERIC Educational Resources Information Center

    Gignac, Monique A. M.; Cott, Cheryl A.; Badley, Elizabeth M.

    2003-01-01

    This study examined the impact of the 1998 Canadian ice storm on the physical and psychological health of older adults (age greater than 55 years) living with a chronic physical illness, namely osteoarthritis and/or osteoporosis. Although disasters are relatively rare, they are a useful means of examining the impact of a single stressor on a group…

  9. Living with a Chronic Disabling Illness and Then Some: Data from the 1998 Ice Storm

    ERIC Educational Resources Information Center

    Gignac, Monique A. M.; Cott, Cheryl A.; Badley, Elizabeth M.

    2003-01-01

    This study examined the impact of the 1998 Canadian ice storm on the physical and psychological health of older adults (age greater than 55 years) living with a chronic physical illness, namely osteoarthritis and/or osteoporosis. Although disasters are relatively rare, they are a useful means of examining the impact of a single stressor on a group…

  10. Observations of ice nuclei and heterogeneous freezing in a Western Pacific extratropical storm

    NASA Astrophysics Data System (ADS)

    Stith, J. L.; Twohy, C. H.; Demott, P. J.; Baumgardner, D.; Campos, T.; Gao, R.; Anderson, J.

    2011-07-01

    In situ airborne sampling of refractory black carbon (rBC) particles and Ice Nuclei (IN) was conducted in and near an extratropical cyclonic storm in the western Pacific Ocean during the Pacific Dust Experiment, PACDEX, in the spring of 2007. Airmass origins were from Eastern Asia. Clouds associated primarily with the warm sector of the storm were sampled at various locations and altitudes. Cloud hydrometeors were evaporated by a counterflow virtual impactor (CVI) and the residuals were sampled by a single particle soot photometer (SP2) instrument, a continuous flow diffusion chamber ice nucleus detector (CFDC) and collected for electron microscope analysis. In clouds containing large ice particles, multiple residual particles were observed downstream of the CVI for each ice particle sampled on average. The fraction of rBC compared to total particles in the residual particles increased with decreasing condensed water content, while the fraction of IN compared to total particles did not, suggesting that the scavenging process for rBC is different than for IN. In the warm sector storm midlevels at temperatures where heterogeneous freezing is expected to be significant (here -24 to -29 °C), IN concentrations from ice particle residuals generally agreed with simultaneous measurements of total ice concentrations or were higher in regions where aggregates of crystals were found, suggesting heterogeneous freezing as the dominant ice formation process in the mid levels of these warm sector clouds. Lower in the storm, at warmer temperatures, ice concentrations were affected by aggregation and were somewhat less than measured IN concentrations at colder temperatures. The results are consistent with ice particles forming at storm mid-levels by heterogeneous freezing on IN, followed by aggregation and sedimentation to lower altitudes. Compositional analysis of the aerosol and back trajectories of the air in the warm sector suggested a possible biomass burning source for much of the aerosol. Comparison of the particles from the CFDC with the other aerosol in the residuals of ice particles suggested that the largest portion of IN had similar inferred origins (from biomass burning with minor amounts of rBC) as the other aerosol, but contained slightly elevated amounts of calcium and less influence from sea salt.

  11. Review Article: Storm Britta in 2006: offshore damage and large waves in the North Sea

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2015-09-01

    The Britta storm of 31 October-1 November 2006 was a severe autumn storm that was particularly damaging for shipping and coastal flooding from storm surge effects along the southern North Sea. The main low pressure of the storm propagated from Scotland to southern Norway on 31 October, leading to a system of strong north winds that moved southward across North Sea over an 18 h period. A progression of ship and offshore platform difficulties were registered from the northern part of the North Sea from late on 31 October and culminated near the coasts of Germany and the Netherlands early on 1 November with a series of ship emergencies linked with large waves. In two separate incidents, unusually high waves broke the bridge windows of ships and necessitated emergency rescues, and a Dutch motor lifeboat experienced a triple capsize. In the southern North Sea, several gas production and research platforms experienced wave impact damage. The FINO1 offshore research platform, near the Dutch-German border, experienced some of the worst storm conditions with some structural damage. Its meteorological and oceanographic instrumentation give a unique profile of the severe met-ocean conditions during the storm. Two Waverider buoys at FINO1 and the nearby Dutch coastal site of Schiermonnikoog recorded groups of large waves at different times during the storm. These reports give insight into a little-reported rogue wave phenomenon that sometimes accompanies the "ground sea" conditions of the worst storms of the area.

  12. Storm-induced damages along the Catalan coast (NW Mediterranean) during the period 1958-2008

    NASA Astrophysics Data System (ADS)

    Jiménez, José A.; Sancho-García, Amanda; Bosom, Eva; Valdemoro, Herminia I.; Guillén, Jorge

    2012-03-01

    The temporal and spatial patterns of storm-induced damage along the Catalan coast (NW Mediterranean) during the last 50 years have been analyzed to identify main climatic and non-climatic forcings. In the absence of systematic data, a storm-induced damage database compiled from press news has been built, which together with an intensity scale has allowed us to characterize the frequency and intensity of damage. Although no temporal trend has been detected in storm-induced hazards, coastal damage has increased at a rate of about 40% per decade during the last 50 years along the Catalan coast. The main non-climatic factors identified controlling this trend were the urban growth along the coastal fringe and the generalized erosive behavior of beaches. The first one increased values at risk and the second one increased their exposure to storm-induced hazards. In spite of the importance of non-climatic factors to modulate coastal damage, an exponential dependence of damages on storm-induced inundation and erosion was detected. In addition to this, storm-induced geomorphic changes along the Ebro delta coast have also been analyzed. During the period analyzed, "harmful" storms seem to be clustered, with most of the events being present in the late 1990s and especially from 2001 to 2004, resulting in frequent events of intense beach/barrier breaching, massive overwash and flooding. They are mainly expressed in sensitive areas which are subject to long-term erosional processes and comprise a low-lying profile and a narrow beach. This reflects the role of coastal morphology in controlling the intensity of storm-induced hazards along the deltaic coast. Shoreline evolution rates calculated during this period were significantly larger than the previously recorded ones, reflecting a pulsating erosion behavior where large pulses occur during stormy periods and are reduced during post-storm periods. Under the present scenario of maximum coastal development, storm-induced damage has been reported almost every year which could indicate that the present overall beach configuration status along the Catalan coast has reached its limit for protecting the hinterland against storms.

  13. Applying stochastic small-scale damage functions to German winter storms

    NASA Astrophysics Data System (ADS)

    Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.

    2012-03-01

    Analyzing insurance-loss data we derive stochastic storm-damage functions for residential buildings. On district level we fit power-law relations between daily loss and maximum wind speed, typically spanning more than 4 orders of magnitude. The estimated exponents for 439 German districts roughly range from 8 to 12. In addition, we find correlations among the parameters and socio-demographic data, which we employ in a simplified parametrization of the damage function with just 3 independent parameters for each district. A Monte Carlo method is used to generate loss estimates and confidence bounds of daily and annual storm damages in Germany. Our approach reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitudes.

  14. Case-based damage assessment of storm events in near real-time

    NASA Astrophysics Data System (ADS)

    Möhrle, Stella; Mühr, Bernhard

    2015-04-01

    Damage assessment in times of crisis is complex due to a highly dynamic environment and uncertainty in respect of available information. In order to assess the extent of a disaster in near real-time, historic events and their consequences may facilitate first estimations. Events of the past, which are in the same category or which have similar frame conditions like imminent or just occurring storms, might give preliminary information about possible damages. The challenge here is to identify useful historic events based on little information regarding the current event. This work investigates the potential of drawing conclusions about a current event based on similar historic disasters, exemplarily for storm events in Germany. Predicted wind speed and area affected can be used for roughly classifying a storm event. For this purpose, a grid of equidistant points can be used to split up the area of Germany. In combination with predicted wind speed at these points and the predicted number of points affected, respectively, a storm can be categorized in a fast manner. In contrast to investigate only data taken by the observation network, the grid approach is more objective, since stations are not equally distributed. Based on model data, the determined storm class provides one key factor for identifying similar historic events. Further aspects, such as region or specific event characteristics, complete knowledge about the potential storm scale and result in a similarity function, which automatically identifies useful events from the past. This work presents a case-based approach to estimate damages in the event of an extreme storm event in Germany. The focus in on the similarity function, which is based on model storm classes, particularly wind speed and area affected. In order to determine possible damages more precisely, event specific characteristics and region will be included. In the frame of determining similar storm events, neighboring storm classes will be considered as well. The aim is to estimate upper and lower limits for damaged buildings and direct loss. The research activities are part of CEDIM's Forensic Disaster Analysis (FDA), which is concerned with near real-time analyses of disasters and their impacts.

  15. 112. Photocopied August 1978. DAMAGED ICE RACK, SEPTEMBER 27, 1917. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    112. Photocopied August 1978. DAMAGED ICE RACK, SEPTEMBER 27, 1917. THIS RACK, INSTALLED TO INTERCEPT FLOTAGE BEFORE IT COULD REACH THE TURBINES, WAS A CONSTANT HEADACHE. ITS RESISTANCE TO THE FLOW OF WATER COST THE COMPANY AROUND 0.2 FEET OF HEAD, AND WHEN LARGE AMOUNTS OF FLOTAGE DID ENTER THE CANAL, THE RACK WAS OFTEN SERIOUSLY DAMAGED. THE DAMAGE ILLUSTRATED HERE OCCURRED WHEN LARGE AMOUNTS OF PULP WOOD ENTERED THE CANAL IN 1916. THE PLANT WAS SHUT DOWN BRIEFLY IN 1917 TO REPAIR THE DAMAGE. (862) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  16. Numerical simulations of the 2 August 1981 CCOPE supercell storm with and without ice microphysics

    SciTech Connect

    Johnson, D.E.; Wang, P.K. ); Straka, J.M. )

    1993-04-01

    The Wisconsin Dynamical-Microphysical Model is used in two simulations of the 2 August 1981 supercell that passed through the Cooperative Convective Precipitation Experiment in southeastern Montana. The first simulation uses liquid water-only microphysics and is denoted as the liquid water model (LWM). The second includes liquid water and ice microphysics and is designated as the hail category model (HCM). Results from the simulations show that the inclusion of ice significantly alters the dynamics, kinematics, thermodynamics, and distributions of water in the storm, especially at the lower levels. Supercell features such as a rotating intense updraft, bounded weak-echo region, large forward overhanging anvil, and hooklike structure in the low-level rainwater field are present in both simulations. These features are generally more pronounced and have a longer lifetime in the HCM. Hail embryo and graupel particles make up more than 85% of the total hail mass during the steady-state phase in the HCM. Many of these panicles are advected into the anvil regions away from the updraft and sublimate slowly. Distributions of graupel and hail in the HCM cover a more extensive, less concentrated region than do the distributions of rainwater in the LWM. Heavier more localized precipitation in the LWM results in a stronger low-level downdraft and a faster-moving gust front than in the HCM. The LWM gust front propagates ahead of the low-level updraft, cutting off the warm, moist, low-level easterly flow into the storm that leads to complete dissipation of the cloud by the end of the 150-min simulation period. The gust front propagates with the low-level updraft, allowing the storm to remain in a quasi-steady state for the final 80 min of the simulation. There is slightly more total surface precipitation in the HCM due to the larger area coverage of precipitation and slower movement of the storm. 36 refs., 19 figs.

  17. The benefits of emergency rescue and reanalysis data in decadal storm damage assessment studies

    NASA Astrophysics Data System (ADS)

    Jokinen, P.; Vajda, A.; Gregow, H.

    2015-06-01

    Studying changes in storm-induced forest damage in Finland has not been possible previously due to the lack of continuous, long series of impact data. We overcome this by combining emergency rescue data from the Finnish rescue services "PRONTO" (2011-) with ERA-Interim reanalysis data of wind gusts and soil temperatures to define exceedance thresholds for potential forest damage days. These thresholds were applied as a proxy for the period 1979-2013 in order to study the spatial and decadal characteristics of forest damage in Finland due to windstorms. The results indicated that the area most impacted by potential forest damage was the south-western part of Finland along the coast, with 1-10 damaging storm cases per year. A decadal examination highlighted a lull period in the number of potential forest damage days during the 1990s compared to the 1980s and 2000s, albeit no trend was evident. The inclusion of emergency rescue data allowed us for the first time to estimate the spatial distribution and decadal variations of potential forest damage days due to windstorms in Finland. The results achieved will encourage further development of thresholds for potential forest damage by including additional data sources and applying them to future climate scenarios.

  18. DNA Methylation Signatures Triggered by Prenatal Maternal Stress Exposure to a Natural Disaster: Project Ice Storm

    PubMed Central

    Cao-Lei, Lei; Massart, Renaud; Suderman, Matthew J.; Machnes, Ziv; Elgbeili, Guillaume; Laplante, David P.; Szyf, Moshe; King, Suzanne

    2014-01-01

    Background Prenatal maternal stress (PNMS) predicts a wide variety of behavioral and physical outcomes in the offspring. Although epigenetic processes may be responsible for PNMS effects, human research is hampered by the lack of experimental methods that parallel controlled animal studies. Disasters, however, provide natural experiments that can provide models of prenatal stress. Methods Five months after the 1998 Quebec ice storm we recruited women who had been pregnant during the disaster and assessed their degrees of objective hardship and subjective distress. Thirteen years later, we investigated DNA methylation profiling in T cells obtained from 36 of the children, and compared selected results with those from saliva samples obtained from the same children at age 8. Results Prenatal maternal objective hardship was correlated with DNA methylation levels in 1675 CGs affiliated with 957 genes predominantly related to immune function; maternal subjective distress was uncorrelated. DNA methylation changes in SCG5 and LTA, both highly correlated with maternal objective stress, were comparable in T cells, peripheral blood mononuclear cells (PBMCs) and saliva cells. Conclusions These data provide first evidence in humans supporting the conclusion that PNMS results in a lasting, broad, and functionally organized DNA methylation signature in several tissues in offspring. By using a natural disaster model, we can infer that the epigenetic effects found in Project Ice Storm are due to objective levels of hardship experienced by the pregnant woman rather than to her level of sustained distress. PMID:25238154

  19. Alaskan Ice Core Shows Relationship Between Asian Dust Storm And The Stratosphere Troposphere Exchange

    NASA Astrophysics Data System (ADS)

    Yasunari, T. J.; Shiraiwa, T.; Kanamori, S.; Fujii, Y.; Igarashi, M.; Yamazaki, K.; Benson, C. S.; Hondoh, T.

    2005-12-01

    Atmospheric dust absorbs and scatters solar radiation, and affects global radiative balance. Dust storm in arid and semi-arid regions in East Asia is main dust source in the northern hemisphere. Asian dust has large effect on radiative balance in the northern hemisphere and its long range transport to Alaskan region frequently occurs in springtime. On the other hand, the stratosphere-troposphere exchange (STE) is a important phenomenon for material exchange among the spheres. Some parameters such as tritium, ozone and beryllium can be transferred from the stratosphere into the troposphere under some conditions such as tropopause folding outbreaks, cut-off low developing and cyclonic activities. STE has a seasonal exchange with maximum in springtime. In June 2003, a 50m ice core was drilled at the summit of Mount Wrangell volcano (60N, 144W, 4100 m), Alaska. Dust particle concentration, tritium content and ratio of stable hydrogen isotope were analyzed. Tritium is the stratospheric tracer recently because the effect of nuclear tests in 1960s has faded these days, and its concentration is highest north of 30th parallel. Therefore, the ice core drilled here is ideal to assess both the Asian dust transport and STE. The core covers 1992-2002 with divided four seasons (winter, spring, late-spring and summer). Fine dust less than one micro meter generally represents long range transport increased in springtime every year. The drastic fine and coarse dust flux increases after 2000 correspond to recent increase of Asian Dust outbreaks. These indicate that Asian dust storm largely affects Mount Wrangell every year. Here we show the fact that highest positive correlation between tritium and fine dust fluxes was seen in the term from late-spring to summer (also high correlation between tritium and coarse dust fluxes in this term), suggesting that the stratosphere-troposphere exchange was most intensified by Asian dust storms in this transient season from spring to summer. Asian dust and STE are dominant in springtime. However, our results showed that these activities related each other the most from late-spring to summer. Asian dust storm and STE are not active in summer. Hence, our results are assumed to mainly reflect late-spring relationship between Asian dust storm and STE. Asian dust outbreaks with severe weather would impact on vertical and horizontal material circulation from the stratosphere to the troposphere. Further studies for Asian dust and STE especially focused on late-spring may lead to elucidate the mechanism of material circulation and assess the radiative forcing of Asian dust in springtime.

  20. Propagation of continuum damage in a viscoelastic ice bar

    SciTech Connect

    Shin, J.G. . Dept. of Naval Architecture and Ocean Engineering); Karr, D.G. . Dept. of Naval Architecture and Marine Engineering)

    1994-05-01

    An initial value problem of a semi-infinite nonlinear viscoelastic bar is solved with continuum damage evolution. The evolution law of the continuum damage for a viscoelastic material is used in order to explore the propagation of two crushing mechanisms: grain boundary cracking and transgranular cracking. Using the method of characteristics, the speed of propagation is found to be dependent on the continuum damage. On the wave front, the delayed elastic strain is zero, and only the continuum damage due to the transgranular cracking evolves. A finite difference method is developed to solve the governing equations on the obtained characteristic lines, and gives a stable solution for the propagation of the stress, strain, and damage. Numerical results are obtained and discussed using the material properties of polycrystalline ice.

  1. Devices prevent ice damage to trusses of semi

    SciTech Connect

    Marthinsen, A.

    1985-04-01

    Much exploration drilling is done in subarctic waters around the world, and this will be important in the future. Special demands will be made on the drilling structures to enable them to withstand collisions with drifting ice. A Newfoundland Certificate of Fitness, for example, says a vessel must be able to tolerate collision with the largest iceberg that can be undetectable by radar, with out the danger of platform collapse. The iceberg in this case is defined as having a weight of 5000 tons and a drifting velocity of 2 meters/second. Devices to prevent ice damage to the trusses of semisubmersibles are discussed.

  2. Saturn's Great Storm of 2010-2011: Cloud particles containing ammonia and water ices indicate a deep convective origin. (Invited)

    NASA Astrophysics Data System (ADS)

    Sromovsky, L. A.; Baines, K. H.; Fry, P.

    2013-12-01

    Saturn's Great Storm of 2010-2011 was first detected by amateur astronomers in early December 2010 and later found in Cassini Imaging Science Subsystem (ISS) images taken on 5 December, when it took the form of a 1000 km wide bright spot. Within a week the head of the storm grew by a factor of ten in width and within a few months created a wake that encircled the planet. This is the sixth Great Saturn Storm in recorded history, all having appeared in the northern hemisphere, and most near northern summer solstice at intervals of roughly 30 years (Sanchez-Lavega et al. 1991, Nature 353, 397-401). That the most recent storm appeared 10 years early proved fortunate because Cassini was still operating in orbit around Saturn and was able to provide unique observations from which we could learn much more about these rare and enormous events. Besides the dramatic dynamical effects displayed at the visible cloud level by high-resolution imaging observations (Sayanagi et al. 2013, Icarus 223, 460-478), dramatic thermal changes also occurred in the stratosphere above the storm (Fletcher et al. 2011, Science 332, 1413), and radio measurements of lightning (Fischer et al., 2011, Nature 475, 75-77) indicated strong convective activity at deeper levels. Numerical models of Saturn's Giant storms (Hueso and Sanchez-Lavega 2004, Icarus 172, 255-271) suggest that they are fueled by water vapor condensation beginning at the 10-12 bar level, some 250 km below the visible cloud tops. That idea is also supported by our detection of water ice near the cloud tops (Sromovsky et al. 2013, Icarus 226, 402-418). From Cassini VIMS spectral imaging taken in February 2011, we learned that the storm's cloud particles are strong absorbers of sunlight at wavelengths from 2.8 to 3.1 microns. Such absorption is not seen on Saturn outside of storm regions, implying a different kind of cloud formation process as well as different cloud composition inside the storm region. We found compelling evidence that the storm cloud contains a multi-component aerosol population. We needed at least three different materials to obtain good spectral fits. The most obvious contributor is ammonia ice, with water ice the best-defined secondary component. The most likely third component is ammonium hydrosulfide or some weakly absorbing material similar to what dominates visible clouds outside the storm region. Horizontally heterogeneous cloud models favor ammonium hydrosulfide as the third component, while horizontally uniform models favor the weak absorber. Both models rely on water ice absorption to compensate for residual spectral gradients produced by ammonia ice from 3.0 microns to 3.1 microns and need the relatively conservative third component to fill in the sharp ammonia ice absorption peak near 2.96 microns. The best heterogeneous model has spatial coverage fractions of 55% ammonia ice, 22% water ice, and 23% ammonium hydrosulfide. The best homogeneous model has an optically thin layer of weakly absorbing particles above an optically thick layer of water ice particles coated by ammonia ice. These Cassini data provide the first spectroscopic evidence of water ice in Saturn's atmosphere. This research was supported by NASA's Outer Planets Research Program under grant NNX11AM58G.

  3. Project Ice Storm: Prenatal Maternal Stress Affects Cognitive and Linguistic Functioning in 5 1/2-Year-Old Children

    ERIC Educational Resources Information Center

    Laplante, David P.; Brunet, Alain; Schmitz, Norbert; Ciampi, Antonio; King, Suzanne

    2008-01-01

    The study used data from Project Ice Storm to determine the extent to which exposure to prenatal maternal stress due to a natural disaster can explain variance in the intellectual and language performance of offspring at age 5 1/2.

  4. Modelling the wind damage probability in forests in Southwestern Germany for the 1999 winter storm 'Lothar'.

    PubMed

    Schindler, Dirk; Grebhan, Karin; Albrecht, Axel; Schönborn, Jochen

    2009-11-01

    The wind damage probability (P (DAM)) in the forests in the federal state of Baden-Wuerttemberg (Southwestern Germany) was calculated using weights of evidence (WofE) methodology and a logistic regression model (LRM) after the winter storm 'Lothar' in December 1999. A geographic information system (GIS) was used for the area-wide spatial prediction and mapping of P (DAM). The combination of the six evidential themes forest type, soil type, geology, soil moisture, soil acidification, and the 'Lothar' maximum gust field predicted wind damage best and was used to map P (DAM) in a 50 x 50 m resolution grid. GIS software was utilised to produce probability maps, which allowed the identification of areas of low, moderate, and high P (DAM) across the study area. The highest P (DAM) values were calculated for coniferous forest growing on acidic, fresh to moist soils on bunter sandstone formations-provided that 'Lothar' maximum gust speed exceeded 35 m s(-1) in the areas in question. One of the most significant benefits associated with the results of this study is that, for the first time, there is a GIS-based area-wide quantification of P (DAM) in the forests in Southwestern Germany. In combination with the experience and expert knowledge of local foresters, the probability maps produced can be used as an important tool for decision support with respect to future silvicultural activities aimed at reducing wind damage. One limitation of the P (DAM)-predictions is that they are based on only one major storm event. At the moment it is not possible to relate storm event intensity to the amount of wind damage in forests due to the lack of comprehensive long-term tree and stand damage data across the study area. PMID:19562383

  5. Investigation of Stinson Beach Park storm damage and evaluation of alternative shore protection measures

    SciTech Connect

    Ecker, R.M.; Whelan, G.

    1984-07-01

    An investigation was made of storm damage during the winter of 1982-83 to the National Park Service's Stinson Beach Park. The investigation included an assessment of the storm damage, evaluation of physical processes contributing to the damage, subsequent beach recovery, and the feasibility of implementing shoreline protection measure to reduce future risk. During the winter of 1982-83, the beach was almost completely denuded of sand, wave overwash damaged the foredune, vegetation on the foredune was destroyed, and backshore flooding occurred. Two structures and a parking lot were endangered as the shoreline receded. Subsequent recovery of the park beach was rapid. By January 1982 sand had moved back onshore and a beach berm was beginning to reform. The foredune and dune vegetation received the only permanent damage. Four shoreline protection alternatives were evaluated. These include no action, dune development/enhancement, construction of a rock riprap revetment, and offshore installation of artificial seaweed. The first costs (estimated costs, excluding maintenance) range from about $90,000 to $475,000. The least-cost protection measure is riprap revetment, which protects the two structures and parking lot endangered during the 1982-83 winter storms. Construction of a foredune along the entire park beach is the highest cost protection measure. If no shore protection action measures are implemented, wave overwash of the foredune can be expected to occur on the average of every 2 to 3 years, and beach degradation, similar to that during the 1982-83 winter, can be expected to occur on the average of every 10 to 12 years. 12 references, 19 figures, 18 tables.

  6. Modelling the wind damage probability in forests in Southwestern Germany for the 1999 winter storm `Lothar'

    NASA Astrophysics Data System (ADS)

    Schindler, Dirk; Grebhan, Karin; Albrecht, Axel; Schönborn, Jochen

    2009-11-01

    The wind damage probability ( P DAM) in the forests in the federal state of Baden-Wuerttemberg (Southwestern Germany) was calculated using weights of evidence (WofE) methodology and a logistic regression model (LRM) after the winter storm ‘Lothar’ in December 1999. A geographic information system (GIS) was used for the area-wide spatial prediction and mapping of P DAM. The combination of the six evidential themes forest type, soil type, geology, soil moisture, soil acidification, and the ‘Lothar’ maximum gust field predicted wind damage best and was used to map P DAM in a 50 × 50 m resolution grid. GIS software was utilised to produce probability maps, which allowed the identification of areas of low, moderate, and high P DAM across the study area. The highest P DAM values were calculated for coniferous forest growing on acidic, fresh to moist soils on bunter sandstone formations—provided that ‘Lothar’ maximum gust speed exceeded 35 m s-1 in the areas in question. One of the most significant benefits associated with the results of this study is that, for the first time, there is a GIS-based area-wide quantification of P DAM in the forests in Southwestern Germany. In combination with the experience and expert knowledge of local foresters, the probability maps produced can be used as an important tool for decision support with respect to future silvicultural activities aimed at reducing wind damage. One limitation of the P DAM-predictions is that they are based on only one major storm event. At the moment it is not possible to relate storm event intensity to the amount of wind damage in forests due to the lack of comprehensive long-term tree and stand damage data across the study area.

  7. The Great 2008 Chinese ice storm, its socioeconomic-ecological impact, and sustainability lessons learned

    SciTech Connect

    Zhou, Dr. Benzhi; Gu, Lianhong; Ding, Yihui; Wu, Zhongmin; Shao, Lan; An, Yanfei; Cao, Yonghui; Duan, Aiguo; Kong, Weijian; Li, Changzhu; Li, Zhengcai; Sun, Honggang; Wang, Shengkun; Wang, Xiaoming; Wang, Xu; Yang, Xiaosheng; Yu, Mukui; Zeng, Bingshan

    2011-01-01

    . Extreme events often expose vulnerabilities of socioeconomic infrastructures and point to directions of much-needed policy change. Integrated impact assessment of such events can lead to finding of sustainability principles. Southern and central China has for decades been undergoing a breakneck pace of socioeconomic development. In early 2008, a massive ice storm struck this region, immobilizing millions of people. The storm was a consequence of sustained convergence between tropical maritime and continental polar air masses, caused by an anomalously stable atmospheric general circulation pattern in both low and high latitudes. Successive waves of freezing rain occurred during a month period, coating southern and central China with a layer of ice 50 to 160mm in thickness. We conducted an integrated impact assessment of this event to determine whether and how the context of socioeconomic and human-disturbed natural systems may affect the transition of natural events into human disasters. We found: 1) without contingency plans, advanced technologies dependent on interrelated energy supplies can create worse problems during extreme events, 2) the weakest link in disaster response lies between science and decision making, 3) biodiversity is a form of long-term insurance for sustainable forestry against extreme events, 4) sustainable extraction of non-timber goods and services is essential to risk planning for extreme events in forest resources use, 5) extreme events can cause food shortage directly by destroying crops and indirectly by disrupting food distribution channels, 6) concentrated economic development increases societal vulnerability to extreme events, and 7) formalized institutional mechanisms are needed to ensure that unexpected opportunities to learn lessons from weather disasters are not lost in distracting circumstances.

  8. Prenatal maternal stress predicts autism traits in 6½ year-old children: Project Ice Storm.

    PubMed

    Walder, Deborah J; Laplante, David P; Sousa-Pires, Alexandra; Veru, Franz; Brunet, Alain; King, Suzanne

    2014-10-30

    Research implicates prenatal maternal stress (PNMS) as a risk factor for neurodevelopmental disorders; however few studies report PNMS effects on autism risk in offspring. We examined, prospectively, the degree to which objective and subjective elements of PNMS explained variance in autism-like traits among offspring, and tested moderating effects of sex and PNMS timing in utero. Subjects were 89 (46F/43M) children who were in utero during the 1998 Quebec Ice Storm. Soon after the storm, mothers completed questionnaires on objective exposure and subjective distress, and completed the Autism Spectrum Screening Questionnaire (ASSQ) for their children at age 6½. ASSQ scores were higher among boys than girls. Greater objective and subjective PNMS predicted higher ASSQ independent of potential confounds. An objective-by-subjective interaction suggested that when subjective PNMS was high, objective PNMS had little effect; whereas when subjective PNMS was low, objective PNMS strongly affected ASSQ scores. A timing-by-objective stress interaction suggested objective stress significantly affected ASSQ in first-trimester exposed children, though less so with later exposure. The final regression explained 43% of variance in ASSQ scores; the main effect of sex and the sex-by-PNMS interactions were not significant. Findings may help elucidate neurodevelopmental origins of non-clinical autism-like traits from a dimensional perspective. PMID:24907222

  9. Agricultural damages and losses from ARkStorm scenario flooding in California

    USGS Publications Warehouse

    Wein, Anne; David Mitchell; Peters, Jeff; John Rowden; Johnny Tran; Alessandra Corsi; Dinitz, Laura B.

    2015-01-01

    Scientists designed the ARkStorm scenario to challenge the preparedness of California communities for widespread flooding with a historical precedence and increased likelihood under climate change. California is an important provider of vegetables, fruits, nuts, and other agricultural products to the nation. This study analyzes the agricultural damages and losses pertaining to annual crops, perennial crops, and livestock in California exposed to ARkStorm flooding. Statewide, flood damage is incurred on approximately 23% of annual crop acreage, 5% of perennial crop acreage, and 5% of livestock, e.g., dairy, feedlot, and poultry, acreage. The sum of field repair costs, forgone income, and product replacement costs span $3.7 and $7.1 billion (2009) for a range of inundation durations. Perennial crop loss estimates dominate, and the vulnerability of orchards and vineyards has likely increased with recent expansion. Crop reestablishment delays from levee repair and dewatering more than double annual crop losses in the delta islands, assuming the fragile system does not remain permanently flooded. The exposure of almost 200,000 dairy cows to ARkStorm flooding poses livestock evacuation challenges. Read More: http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29NH.1527-6996.0000174

  10. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode

    PubMed Central

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-01-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations. PMID:25897387

  11. Study in use and management of de/anti-icing constituents with regard to new storm water legislation. Master's thesis

    SciTech Connect

    Gibbs, D.P.; Willing, B.L.

    1992-09-01

    This research identified management practices of airfield and aircraft de/anti-icing constituents which may be implemented to deal with new storm water legislation. Storm water regulations require that deicing operations obtain a NPDES permit for discharges into storm water runoff which may mandate the use of Best Management Practices. An FAA civilian airport survey and a USAF survey were used, with a literature search, to identify practices of de/anti-icing constituents. Four major constituents are used-glycol, urea, calcium magnesium acetate, and sodium formate. Concerns of uncontrolled release of the constituents include high BOD rates, nitrate and nitrite enrichment, impaired aesthetic water quality, ammonia formation from the degradation of urea, and the toxicity of such chemicals to aquatic life. Several options that exist for managing the runoff of de/anti-icing constituents include alternative constituents such as potassium acetate; alternative application procedures such as centralized facilities and greater use of anti-icing operations; collection alternatives using porous surface materials, drainage systems, and holding tanks; and treatment alternatives such as a mobile recovery unit to recycle deicing fluids for re-use.... Aircraft, Runways, Deicing systems, Deicing materials, Runoff, Water pollution, Urea, Glycols, Biochemical oxygen demand.

  12. Storm Forest Damage Mapping Based On VHR InSAR Data

    NASA Astrophysics Data System (ADS)

    Maire, C.; Yesou, H.

    2004-06-01

    Remote sensing can be a good, effective and economic method to realise damage mapping consecutive to an extreme storm such as the one in December 1999 which severely hit Western Europe forests. Many recent studies tend to highlight this geomatic solution through high resolution optical and radar data. Here, the question asked is if higher resolution data give more efficient results. The French National Space Agency, CNES, has contracted SERTIT to evaluate both simulated data of the SPOT 5 satellite and VHR InSAR data, which are considered as a prototype for the future SAR sensor generation (2006-2010). Simulated data have been taken during airborne imaging campaigns in 2000 winter and spring periods, over the area of study covering the Haguenau Forest test site. This paper focuses on the assessment of Very High Resolution images (VHR), INSAR data. The results obtained confirm the interest of such data for damage detection in forestry areas.

  13. Modeling fresh water lens damage and recovery on atolls after storm-wave washover.

    PubMed

    Chui, Ting Fong May; Terry, James P

    2012-01-01

    The principal natural source of fresh water on scattered coral atolls throughout the tropical Pacific Ocean is thin unconfined groundwater lenses within islet substrates. Although there are many threats to the viability of atoll fresh water lenses, salinization caused by large storm waves washing over individual atoll islets is poorly understood. In this study, a mathematical modeling approach is used to examine the immediate responses, longer-term behavior, and subsequent (partial) recovery of a Pacific atoll fresh water lens after saline damage caused by cyclone-generated wave washover under different scenarios. Important findings include: (1) the saline plume formed by a washover event mostly migrates downward first through the top coral sand and gravel substrate, but then exits the aquifer to the ocean laterally through the more permeable basement limestone; (2) a lower water table position before the washover event, rather than a longer duration of storm washover, causes more severe damage to the fresh water lens; (3) relatively fresher water can possibly be found as a preserved horizon in the deeper part of an aquifer after disturbance, especially if the fresh water lens extends into the limestone under normal conditions; (4) post-cyclone accumulation of sea water in the central depression (swamp) of an atoll islet prolongs the later stage of fresh water lens recovery. PMID:21883195

  14. Prenatal Maternal Stress Predicts Childhood Asthma in Girls: Project Ice Storm

    PubMed Central

    Laplante, David P.; Brunet, Alain

    2014-01-01

    Little is known about how prenatal maternal stress (PNMS) influences risks of asthma in humans. In this small study, we sought to determine whether disaster-related PNMS would predict asthma risk in children. In June 1998, we assessed severity of objective hardship and subjective distress in women pregnant during the January 1998 Quebec Ice Storm. Lifetime asthma symptoms, diagnoses, and corticosteroid utilization were assessed when the children were 12 years old (N = 68). No effects of objective hardship or timing of the exposure were found. However, we found that, in girls only, higher levels of prenatal maternal subjective distress predicted greater lifetime risk of wheezing (OR = 1.11; 90% CI = 1.01–1.23), doctor-diagnosed asthma (OR = 1.09; 90% CI = 1.00–1.19), and lifetime utilization of corticosteroids (OR = 1.12; 90% CI = 1.01–1.25). Other perinatal and current maternal life events were also associated with asthma outcomes. Findings suggest that stress during pregnancy opens a window for fetal programming of immune functioning. A sex-based approach may be useful to examine how prenatal and postnatal environments combine to program the immune system. This small study needs to be replicated with a larger, more representative sample. PMID:24895550

  15. Critical storm thresholds for significant morphological changes and damage along the Emilia-Romagna coastline, Italy

    NASA Astrophysics Data System (ADS)

    Armaroli, Clara; Ciavola, Paolo; Perini, Luisa; Calabrese, Lorenzo; Lorito, Samantha; Valentini, Andrea; Masina, Marinella

    2012-03-01

    The definition of storm morphological thresholds along the coast of the Emilia-Romagna Region strictly depends on its configuration and variability. The region is located in northern Italy, facing the Adriatic Sea. The coastline is characterised by very different levels of economic development, ranging from natural zones with dunes to highly developed stretches protected by breakwaters and groynes. The Integrated Coastal Zone Management effort is mainly concentrated on preserving urban areas that generate significant income for the regional economy. Natural areas, while small in comparison to the urbanised zone, are important for environment preservation. Because of such a multiplicity of issues at stake, it was decided to produce two different thresholds: one for the morphological impact on natural sectors and another for inundation and damage to structures along urbanised zones. The "forcing" component of the threshold definition for natural areas was calculated by summing the effects of surge + tide + waves (run-up elevation) to find the Maximum Water Level (MWL) reached by the sea during one, ten and one-hundred year storm return periods. For urbanised zones, historical storm information was collected starting from the 1960s in order to identify the forcing conditions causing real damages. Each storm was classified in terms of wave height, period, direction and surge level. Morphological information were obtained from Lidar flights performed in 2003 and 2004 and from direct surveys undertaken in September 2008 and February 2009 as part of the monitoring programme for the MICORE Project. The computed MWL for each return period was then compared to beach elevations along natural areas in order to calculate the Dune Stability Factor (DSF), an index that accounts for the eroded sediment volume above the MWL during a storm. Based on analysis along 41 profile lines at a 500 m spacing, it was found that the 1-in-1 year return period wave height + 1-in-1 year return period surge are able to erode and/or overwash 2/3 of the dunes. The historical storm hydrodynamic information was used to estimate which wave and surge conditions are able to inundate at least 2/3 of the beach profiles. The MWL was again compared to beach elevations, this time along 63 anthropogenic profiles spaced 500 m apart (or 1/3 of the urbanised coastline). It was found that a wave heights >= 2 m and surge + tide levels >= 0.7 m are able to flood between 18% and 36% of the built-up coast. The defined thresholds are related to the present coastal characteristics and are not "static", meaning that they are likely to change according to future evolution of the coastline. They are very important because they can be used as thresholds to issue warnings and alert the Civil Protection. Moreover they are the first thresholds defined for the Emilia-Romagna coastline and will be used as starting values to generate "dynamic" thresholds based on numerical model predictions of morphological change for a given wave and surge level.

  16. A Storm-by-Storm Analysis of Alpine and Regional Precipitation Dynamics at the Mount Hunter Ice Core Site, Denali National Park, Central Alaska Range

    NASA Astrophysics Data System (ADS)

    Saylor, P. L.; Osterberg, E. C.; Kreutz, K. J.; Wake, C. P.; Winski, D.

    2014-12-01

    In May-June 2013, an NSF-funded team from Dartmouth College and the Universities of Maine and New Hampshire collected two 1000-year ice cores to bedrock from the summit plateau of Mount Hunter in Denali National Park, Alaska (62.940291, -151.087616, 3912 m). The snow accumulation record from these ice cores will provide key insight into late Holocene precipitation variability in central Alaska, and compliment existing precipitation paleorecords from the Mt. Logan and Eclipse ice cores in coastal SE Alaska. However, correct interpretation of the Mt. Hunter accumulation record requires an understanding of the relationships between regional meteorological events and micrometeorological conditions at the Mt. Hunter ice core collection site. Here we analyze a three-month window of snow accumulation and meteorological conditions recorded by an Automatic Weather Station (AWS) at the Mt. Hunter site during the summer of 2013. Snow accumulation events are identified in the Mt. Hunter AWS dataset, and compared on a storm-by-storm basis to AWS data collected from the adjacent Kahiltna glacier 2000 m lower in elevation, and to regional National Weather Service (NWS) station data. We also evaluate the synoptic conditions associated with each Mt. Hunter accumulation event using NWS surface maps, NCEP-NCAR Reanalysis data, and the NOAA HYSPLIT back trajectory model. We categorize each Mt. Hunter accumulation event as pure snow accumulation, drifting, or blowing snow events based on snow accumulation, wind speed and temperature data using the method of Knuth et al (2009). We analyze the frequency and duration of events within each accumulation regime, in addition to the overall contribution of each event to the snowpack. Preliminary findings indicate that a majority of Mt. Hunter accumulation events are of pure accumulation nature (55.5%) whereas drifting (28.6%) and blowing (15.4%) snow events play a secondary role. Our results will characterize the local accumulation dynamics on Mt. Hunter and quantify the relationship between alpine micrometeorological and regional precipitation dynamics, providing key insights into the interpretation of the Mt. Hunter paleoprecipitation record.

  17. Variation of Ice Crystal Size, Shape and Asymmetry Parameter in Tops of Convective Storm Systems Observed during SEAC4RS

    NASA Astrophysics Data System (ADS)

    van Diedenhoven, B.; Cairns, B.; Fridlind, A. M.; Ackerman, A. S.

    2014-12-01

    The sizes and shapes of ice particles in tops of convective storms have a significant impact on their radiative properties. Ice crystal sizes and shapes likely vary with altitude, environmental conditions and convective strength, but these relationships are not well characterized. The rich dataset of the NASA SEAC4RS field campaign offers unique perspectives to further identify variations of ice crystal sizes and shapes and their relations to environmental and dynamical conditions. Here we focus on data acquired with the Research Scanning Polarimeter (RSP), which was mounted on the high-altitude ER-2 aircraft during SEAC4RS. RSP's unique multi-angular, multi-wavelength total and polarized reflectance measurements allow retrieval of ice effective radius, the aspect ratio of components of ice crystals, the crystal distortion level and ice asymmetry parameter, as well as cloud optical thickness and cloud top height. Using RSP data, as well as data from the eMAS and CPL sensors and in situ probes, we explore the statistical variation of ice properties retrieved during SEAC4RS in tops of convective systems. The data indicates that, in general, ice crystal populations consistent with plate-like components with aspect ratios near 0.4 are prevalent at cloud tops. The asymmetry parameter is around 0.76-0.8 and generally decreases with increasing cloud top height, mainly because the ice crystal distortion increases with height. Below about 12 km height, the effective radius decreases with increasing altitude, as previously shown for convective clouds using satellite data, but at higher levels the SEAC4RS data indicate a transition to effective radii increasing with cloud top height. Here we explore some possible explanations for this transition, related to its approximate coincidence with the level of minimum stability and the homogeneous freezing level, either of which could affect ice crystal formation and evolution. Additionally, we will demonstrate some of the variability in ice crystal size, shape and asymmetry parameter at different locations and atmospheric conditions observed during SEAC4RS.

  18. Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications.

    PubMed

    Zhang, Qiang; Hong, Yongmi; Zou, Fasheng; Zhang, Min; Lee, Tien Ming; Song, Xiangjin; Rao, Jiteng

    2016-01-01

    The extent to which species' traits, behavior and habitat synergistically determine their response to extreme weather events (EWE) remains poorly understood. By quantifying bird and vegetation assemblages before and after the 2008 ice storm in China, combined with interspecific interactions and foraging behaviours, we disentangled whether storm influences avian reassembly directly via functional traits (i.e. behavioral adaptations), or indirectly via habitat variations. We found that overall species richness decreased, with 20 species detected exclusively before the storm, and eight species detected exclusively after. These shifts in bird relative abundance were linked to habitat preferences, dietary guild and flocking behaviours. For instance, forest specialists at higher trophic levels (e.g. understory-insectivores, woodpeckers and kingfishers) were especially vulnerable, whereas open-habitat generalists (e.g. bulbuls) were set to benefit from potential habitat homogenization. Alongside population fluctuations, we found that community reassembly can be rapidly adjusted via foraging plasticity (i.e. increased flocking propensity and reduced perching height). And changes in preferred habitat corresponded to a variation in bird assemblages and traits, as represented by intact canopy cover and high density of large trees. Accurate predictions of community responses to EWE are crucial to understanding ecosystem disturbances, thus linking species-oriented traits to a coherent analytical framework. PMID:26929387

  19. Avian responses to an extreme ice storm are determined by a combination of functional traits, behavioural adaptations and habitat modifications

    PubMed Central

    Zhang, Qiang; Hong, Yongmi; Zou, Fasheng; Zhang, Min; Lee, Tien Ming; Song, Xiangjin; Rao, Jiteng

    2016-01-01

    The extent to which species’ traits, behavior and habitat synergistically determine their response to extreme weather events (EWE) remains poorly understood. By quantifying bird and vegetation assemblages before and after the 2008 ice storm in China, combined with interspecific interactions and foraging behaviours, we disentangled whether storm influences avian reassembly directly via functional traits (i.e. behavioral adaptations), or indirectly via habitat variations. We found that overall species richness decreased, with 20 species detected exclusively before the storm, and eight species detected exclusively after. These shifts in bird relative abundance were linked to habitat preferences, dietary guild and flocking behaviours. For instance, forest specialists at higher trophic levels (e.g. understory-insectivores, woodpeckers and kingfishers) were especially vulnerable, whereas open-habitat generalists (e.g. bulbuls) were set to benefit from potential habitat homogenization. Alongside population fluctuations, we found that community reassembly can be rapidly adjusted via foraging plasticity (i.e. increased flocking propensity and reduced perching height). And changes in preferred habitat corresponded to a variation in bird assemblages and traits, as represented by intact canopy cover and high density of large trees. Accurate predictions of community responses to EWE are crucial to understanding ecosystem disturbances, thus linking species-oriented traits to a coherent analytical framework. PMID:26929387

  20. A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets

    NASA Astrophysics Data System (ADS)

    Duddu, Ravindra; Waisman, Haim

    2013-06-01

    We present a Lagrangian finite element formulation aimed at modeling creep fracture in ice-sheets using nonlocal continuum damage mechanics. The proposed formulation is based on a thermo-viscoelastic constitutive model and a creep damage model for polycrystalline ice with different behavior in tension and compression. In this paper, mainly, we detail the nonlocal numerical implementation of the constitutive damage model into commercial finite element codes (e.g. Abaqus), wherein a procedure to handle the abrupt failure (rupture) of ice under tension is proposed. Then, we present numerical examples of creep fracture under four-point bending, uniaxial tension, and biaxial tension in order to illustrate the viability of the current approach. Finally, we present simulations of creep crack propagation in idealized rectangular ice slabs so as to estimate calving rates at low deformation rates. The examples presented demonstrate the mesh size and mesh directionality independence of the proposed nonlocal implementation.

  1. Studies of images of short-lived events using ERTS data. [forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods

    NASA Technical Reports Server (NTRS)

    Deutschman, W. A. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Detection of short-lived events has continued. Forest fires, oil spills, vegetation damage, volcanoes, storm ridges, earthquakes, and floods have been detected and analyzed.

  2. Root damage analysis of aircraft engine blade subject to ice impact

    NASA Technical Reports Server (NTRS)

    Reddy, E. S.; Abumeri, G. H.; Chamis, C. C.; Murthy, P. L. N.

    1992-01-01

    The blade root response due to ice impact on an engine blade is simulated using the NASA in-house code BLASIM. The ice piece is modeled as an equivalent spherical object impacting on the leading edge of the blade and has the velocity opposite to that of the aircraft with direction parallel to the engine axis. The effect of ice impact is considered to be an impulse load on the blade with its amplitude computed based on the momentum transfer principle. The blade response due to the impact is carried out by modal superposition using the first three modes. The maximum dynamic stresses at the blade root are computed at the quarter cycle of the first natural frequency. A combined stress failure function based on modified distortion energy is used to study the spanwise bending damage response at the blade root. That damage function reaches maximum value for very low ice speeds and increases steeply with increases in engine speed.

  3. A continuum damage mechanics approach to simulation of creep and fracture in ice sheets

    NASA Astrophysics Data System (ADS)

    Duddu, R.; Bassis, J. N.; Waisman, H.; Tuminaro, R.

    2011-12-01

    We investigate iceberg calving from grounded tidewater and outlet glaciers using a novel creep continuum damage model for polycrystalline ice, which is valid for low stresses or strain rates. The proposed three-dimensional model is based on a thermo-viscoelastic constitutive law for ice creep and a local damage accumulation law for tension, compression and shear loadings. The model has been validated by published experimental data and is implemented in the commercially available finite element code ABAQUS by adopting a strain-based algorithm in a Lagrangian description. The model is then used to investigate conditions that enable surface, englacial and basal crevasse formation resulting from different boundary conditions applied to an idealized rectangular slab of ice in contact with the ocean. Preliminary simulations, based on imposed stress fields, suggest that a low tensile stress is required for crevasse (crack) opening and propagation to the bottom of the ice slab. In all the subsequent simulations the internal stress field is explicitly calculated. Basal boundary condition of the ice slab is varied from free slip to Newtonian frictional slip to study its effect on crack growth. The simulation results suggest that in the case of deeper (thicker) ice sheets compression failure of ice at the bottom is a possible mode of failure and that the height of the sea water level influences the depth of the crevasses.

  4. Blasim: A computational tool to assess ice impact damage on engine blades

    NASA Technical Reports Server (NTRS)

    Reddy, E. S.; Abumeri, G. H.; Chamis, C. C.

    1993-01-01

    A portable computer called BLASIM was developed at NASA LeRC to assess ice impact damage on aircraft engine blades. In addition to ice impact analyses, the code also contains static, dynamic, resonance margin, and supersonic flutter analysis capabilities. Solid, hollow, superhybrid, and composite blades are supported. An optional preprocessor (input generator) was also developed to interactively generate input for BLASIM. The blade geometry can be defined using a series of airfoils at discrete input stations or by a finite element grid. The code employs a coarse, fixed finite element mesh containing triangular plate finite elements to minimize program execution time. Ice piece is modeled using an equivalent spherical objective that has a high velocity opposite that of the aircraft and parallel to the engine axis. For local impact damage assessment, the impact load is considered as a distributed force acting over a region around the impact point. The average radial strain of the finite elements along the leading edge is used as a measure of the local damage. To estimate damage at the blade root, the impact is treated as an impulse and a combined stress failure criteria is employed. Parametric studies of local and root ice impact damage, and post-impact dynamics are discussed for solid and composite blades.

  5. Comparisons Between Total Lightning Data, Mesocyclone Strength, and Storm Damage Associated with the Florida Tornado Outbreak of February 23, 1998

    NASA Technical Reports Server (NTRS)

    Hodanish, S; Sharp, D.; Williams, E.; Boldi, B.; Goodman, Steven J.; Raghavan, R.; Matlin, A.; Weber, M.

    1998-01-01

    During the early morning hours of February 23 1998, the worst tornado outbreak ever recorded occurred over the central Florida peninsula. At least 7 confirmed tornadoes, associated with 4 supercells, developed, with 3 of the tornadoes reaching F3 intensity. Many of the tornadoes where on the ground for tens of miles, uncommon for the state of Florida. A total of 42 people were killed, with over 250 people injured. During the outbreak, National Weather Service Melbourne, in collaboration with the National Aeronautics and Space Administration and the Massachusetts Institute of Technology was collecting data from a unique lightning observing system called Lightning Imaging Sensor Data Applications Display (LISDAD, Boldi et.al., this conference). This system marries radar data collected from the KMLB WSR-88D, cloud to ground data collected from the National Lightning Detection Network, and total lightning data collected from NASKs Lightning Detection And Ranging system. This poster will display, concurrently, total lightning data (displayed in 1 minute increments), time/height storm relative velocity products from the KMLB WSR-88D, and damage information (tornado/hail/wind) from each of the supercell thunderstorms. The primary objective of this poster presentation is to observe how total lightning activity changes as the convective storm intensifies, and how the lightning activity changes with respect to mesocyclone strength (vortex stretching) and damaging weather on the ground.

  6. Calcification, Storm Damage and Population Resilience of Tabular Corals under Climate Change

    PubMed Central

    Madin, Joshua S.; Hughes, Terry P.; Connolly, Sean R.

    2012-01-01

    Two facets of climate change–increased tropical storm intensity and ocean acidification–are expected to detrimentally affect reef-building organisms by increasing their mortality rates and decreasing their calcification rates. Our current understanding of these effects is largely based on individual organisms’ short-term responses to experimental manipulations. However, predicting the ecologically-relevant effects of climate change requires understanding the long-term demographic implications of these organism-level responses. In this study, we investigate how storm intensity and calcification rate interact to affect population dynamics of the table coral Acropora hyacinthus, a dominant and geographically widespread ecosystem engineer on wave-exposed Indo-Pacific reefs. We develop a mechanistic framework based on the responses of individual-level demographic rates to changes in the physical and chemical environment, using a size-structured population model that enables us to rigorously incorporate uncertainty. We find that table coral populations are vulnerable to future collapse, placing in jeopardy many other reef organisms that are dependent upon them for shelter and food. Resistance to collapse is largely insensitive to predicted changes in storm intensity, but is highly dependent on the extent to which calcification influences both the mechanical properties of reef substrate and the colony-level trade-off between growth rate and skeletal strength. This study provides the first rigorous quantitative accounting of the demographic implications of the effects of ocean acidification and changes in storm intensity, and provides a template for further studies of climate-induced shifts in ecosystems, including coral reefs. PMID:23056379

  7. Calcification, storm damage and population resilience of tabular corals under climate change.

    PubMed

    Madin, Joshua S; Hughes, Terry P; Connolly, Sean R

    2012-01-01

    Two facets of climate change--increased tropical storm intensity and ocean acidification--are expected to detrimentally affect reef-building organisms by increasing their mortality rates and decreasing their calcification rates. Our current understanding of these effects is largely based on individual organisms' short-term responses to experimental manipulations. However, predicting the ecologically-relevant effects of climate change requires understanding the long-term demographic implications of these organism-level responses. In this study, we investigate how storm intensity and calcification rate interact to affect population dynamics of the table coral Acropora hyacinthus, a dominant and geographically widespread ecosystem engineer on wave-exposed Indo-Pacific reefs. We develop a mechanistic framework based on the responses of individual-level demographic rates to changes in the physical and chemical environment, using a size-structured population model that enables us to rigorously incorporate uncertainty. We find that table coral populations are vulnerable to future collapse, placing in jeopardy many other reef organisms that are dependent upon them for shelter and food. Resistance to collapse is largely insensitive to predicted changes in storm intensity, but is highly dependent on the extent to which calcification influences both the mechanical properties of reef substrate and the colony-level trade-off between growth rate and skeletal strength. This study provides the first rigorous quantitative accounting of the demographic implications of the effects of ocean acidification and changes in storm intensity, and provides a template for further studies of climate-induced shifts in ecosystems, including coral reefs. PMID:23056379

  8. Pregnant women's cognitive appraisal of a natural disaster affects DNA methylation in their children 13 years later: Project Ice Storm.

    PubMed

    Cao-Lei, L; Elgbeili, G; Massart, R; Laplante, D P; Szyf, M; King, S

    2015-01-01

    Prenatal maternal stress (PNMS) can impact a variety of outcomes in the offspring throughout childhood and persisting into adulthood as shown in human and animal studies. Many of the effects of PNMS on offspring outcomes likely reflect the effects of epigenetic changes, such as DNA methylation, to the fetal genome. However, no animal or human research can determine the extent to which the effects of PNMS on DNA methylation in human offspring is the result of the objective severity of the stressor to the pregnant mother, or her negative appraisal of the stressor or her resulting degree of negative stress. We examined the genome-wide DNA methylation profile in T cells from 34 adolescents whose mothers had rated the 1998 Québec ice storm's consequences as positive or negative (that is, cognitive appraisal). The methylation levels of 2872 CGs differed significantly between adolescents in the positive and negative maternal cognitive appraisal groups. These CGs are affiliated with 1564 different genes and with 408 different biological pathways, which are prominently featured in immune function. Importantly, there was a significant overlap in the differentially methylated CGs or genes and biological pathways that are associated with cognitive appraisal and those associated with objective PNMS as we reported previously. Our study suggests that pregnant women's cognitive appraisals of an independent stressor may have widespread effects on DNA methylation across the entire genome of their unborn children, detectable during adolescence. Therefore, cognitive appraisals could be an important predictor variable to explore in PNMS research. PMID:25710121

  9. Pregnant women's cognitive appraisal of a natural disaster affects DNA methylation in their children 13 years later: Project Ice Storm

    PubMed Central

    Cao-Lei, L; Elgbeili, G; Massart, R; Laplante, D P; Szyf, M; King, S

    2015-01-01

    Prenatal maternal stress (PNMS) can impact a variety of outcomes in the offspring throughout childhood and persisting into adulthood as shown in human and animal studies. Many of the effects of PNMS on offspring outcomes likely reflect the effects of epigenetic changes, such as DNA methylation, to the fetal genome. However, no animal or human research can determine the extent to which the effects of PNMS on DNA methylation in human offspring is the result of the objective severity of the stressor to the pregnant mother, or her negative appraisal of the stressor or her resulting degree of negative stress. We examined the genome-wide DNA methylation profile in T cells from 34 adolescents whose mothers had rated the 1998 Québec ice storm's consequences as positive or negative (that is, cognitive appraisal). The methylation levels of 2872 CGs differed significantly between adolescents in the positive and negative maternal cognitive appraisal groups. These CGs are affiliated with 1564 different genes and with 408 different biological pathways, which are prominently featured in immune function. Importantly, there was a significant overlap in the differentially methylated CGs or genes and biological pathways that are associated with cognitive appraisal and those associated with objective PNMS as we reported previously. Our study suggests that pregnant women's cognitive appraisals of an independent stressor may have widespread effects on DNA methylation across the entire genome of their unborn children, detectable during adolescence. Therefore, cognitive appraisals could be an important predictor variable to explore in PNMS research. PMID:25710121

  10. Storm damage assessment support service in the U.S. corn belt using RapidEye satellite imagery

    NASA Astrophysics Data System (ADS)

    Capellades, Maria A.; Reigber, Sandra; Kunze, Marika

    2009-09-01

    The systematic use of satellite images to support crop damage assessment has been hampered by two reasons: lack of satellite systems with high revisit frequency have made it difficult to image affected areas within the necessary time windows, and second, the high cost of satellite images with appropriate resolution have made their integration into existing processes too costly to be valuable. RapidEye has developed an operational service to produce damage assessment maps on insured fields in the U.S. corn belt that overcomes these problems. The service will be capable of delivering the maps in a suitable time frame by taking advantage of the RapidEye constellation. The production of these maps is based on analysis of after-storm images only, thus reducing the cost of the service. The processing is based on a six step process that includes: pre-processing of the images; estimation of agricultural land vegetation parameters from the imagery; separation of corn from soybean fields; estimation of the statistical descriptors for corn and soybean fields separately; inner-field classification into damage classes; and integration of the results in maps with road and land cover data. Results from the 2008 and 2009 crop seasons are presented.

  11. Use of Remote Sensing Data to Enhance the National Weather Service (NWS) Storm Damage Toolkit

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary; Molthan, Andrew; White, Kris; Burks, Jason; Stellman, Keith; Smith, Matthew

    2012-01-01

    SPoRT is improving the use of near real-time satellite data in response to severe weather events and other diasters. Supported through NASA s Applied Sciences Program. Planned interagency collaboration to support NOAA s Damage Assessment Toolkit, with spinoff opportunities to support other entities such as USGS and FEMA.

  12. Building resilient power grids from integrated risk governance perspective: A lesson learned from china's 2008 Ice-Snow Storm disaster

    NASA Astrophysics Data System (ADS)

    Ye, Qian

    2014-10-01

    In the past three decades, the electric energy industry made great contribution to support rapid social and economic development in China, and meanwhile has been grown at the highest rate in the human history owing to the economic reform. In its new national development plan, more investment has been put into installation of both electricity generating capacity and transmitting capacity in order to meet fast growing demand of electric energy. However, energy resources, both fossil fuel and renewable types, and energy consumption and load centers in China are not evenly distributed in both spatial and temporal dimensions. Moreover, dominated by coal as its primary energy source, the whole eastern China is now entering an environmental crisis in which pollutants emitted by coal power plants contribute a large part. To balance the regional differences in energy sources and energy consumption while meeting the steadily increasing demands for electric energy for the whole country, in addition to increase electric generating capacity, building large-scale, long-distance ultra high voltage power grids is the top priority for next five years. China is a country prone to almost all kinds of natural disasters due to its vast, complex geographical and climatic conditions. In recent years, frequent natural disasters, especially extreme weather and climate events, have threatened the safety, reliability and stability of electric energy system in China. Unfortunately, with fast growth rate but lacking of risk assessing and prevention mechanism, many infrastructure constructions, including national power grids, are facing integrated and complex economic, social, institutional and ecological risks. In this paper, based on a case analysis of the Great Ice Storm in southern China in January 2008, risks of building a resilient power grid to deal with increasing threats from extreme weathers are discussed. The paper recommends that a systematic approach based on the social-ecological system framework should be applied to assess the risk factors associated with the power grid, and the tools to deal with complex dynamic systems need to be applied to deal with constant changes in the whole social-ecological system.

  13. SHELTER FROM THE STORM: How periodic irregularities in ice cover may influence the break-up of ice shelves and calving of outlet glaciers

    NASA Astrophysics Data System (ADS)

    Zhang, W. W.; Freed-Brown, J.; Nowbahar, A.; Amundson, J. M.; MacAyeal, D. R.

    2011-12-01

    In recent years we have seen rapid retreat and evolution in the glaciers in Greenland and Antarctica. Often these are accompanied by unanticipated and qualitatively different phenomena, such as the sudden, large-scale fragmentation of an ice shelf. For example, the disintegration of Antarctica's Larson B Ice Shelf in 2002 took only a few days and resulted in significant speeding up of the glaciers that were previously buttressed by it. While climate warming is widely considered the ultimate cause of this behavior, the physical mechanisms making possible such a transition from regular calving to large-scale collapse remains unclear. Here we outline a physical mechanism capable of producing a switch between two dynamical regimes. We begin with the observation that the ice layer that covers the ocean in ice-shelf and fjord environments almost universally exhibits spatially periodic, or nearly periodic, variations in its material properties along its length. These periodic variations can take the form of discrete ice blocks such as for the ice-melange filled fjords into which Greenland outlet glaciers discharge, or as crevasses (both basal and surface) in the otherwise integrated cover provided by an ice shelf. When the wavelength of the disturbance induced by the ocean forcing is comparable with the period of this spatial variation, the propagation of the disturbance is significantly altered. Instead of penetrating into the interior of the ice-melange covered area or the ice shelf, the disturbance is "blocked", i.e., largely reflected back into the ocean. Reducing the size of the ice blocks in a melange, or increasing the density of large crevasses on an ice shelf, will change the frequency where this "blocking effect" is expressed, thereby bringing about a qualitative change in the mechanical response. Ocean wave forcing at frequencies that previously were blocked from reaching the interior of the ice shelf or fjord can now penetrate throughout the region--thereby causing a qualitatively different behavior of the system. We illustrate the scenario described above by conducting simple idealized model calculations with 1- and 2-dimensional ice shelves and fjords. In the ice-shelf example, we assess how the propagation of high-frequency elastic-flexural waves is modified by the presence of spatially periodic crevasses. In computations of the eigenmodes using lengthscales and parameters typical of the Ross Ice Shelf, we find that a band gap (frequency window for which no modes occur) stretches from 0.3 to 0.5 Hz, a range relevant for ocean wave/ice-shelf interactions. When the outermost edge of the crevassed ice shelf is oscillated at a frequency within this band gap, the ice shelf responds very differently from a crevasse-free ice shelf. The flexural motion of the crevassed ice shelf is confined to a small region near the outermost edge of the ice shelf and effectively ``blocked' from reaching the interior. A second calculation of how an idealized ice-melange cover influences seiches in a fjord shows the same qualitative behavior.

  14. Numerical Simulation on the Damage Characteristics of Ice Targets by Projectile Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Wei, Zhang; Gang, Wei; Zhong-Cheng, Mu; Chang, Liu

    2009-12-01

    Interpretation of cratering records on planetary surfaces including the Earth has primarily been concerned with rocky surfaces, most notably the lunar surface and more recently Mars and Venus. Recently, the survey of craters on icy surfaces in the Solar System has been augmented by data from spacecraft close encounters, such as the Galileo mission to the Jovian system. To fully understand these cratering records, the physics of hypervelocity impacts needs to be understood. The numerical simulation on the damage characteristics of ice targets by projectile normal hypervelocity impact has been performed using the hydro-code AUTODYN. The 1 mm spherical projectile is aluminum 2017 alloy. The targets are water ice. The simulation velocities were in the range of 1 km/s-10 km/s. The damage characteristics include peak ejection angle, maximum crater depth and diameter etc. The simulation results are given and compared with the experimental results of Shrine et al. 2002. The simulation results are consistent with the experimental results.

  15. Numerical Simulation on the Damage Characteristics of Ice Targets by Projectile Hypervelocity Impact

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Wei, Gang; Mu, Zhong-Cheng

    2009-06-01

    Interpretation of cratering records on planetary surfaces including the Earth has primarily been concerned with rocky surfaces, most notably the lunar surface and more recently Mars and Venus. Recently, the survey of craters on icy surfaces in the Solar System has been augmented by data from spacecraft close encounters, such as the Galileo mission to the jovian system. To fully understand these cratering records, the physics of hypervelocity impacts needs to be understood. The numerical simulation on the damage characteristics of ice targets by projectile normally hypervelocity impact has been performed using the hydro-code AUTODYN. The 1mm spherical projectile is aluminum 2017 alloy. The targets are water ice. The simulation velocities were in the range of 1km/s-10km/s. The material models are consisted of Tillotson and Polynomial equation of state, Mohr-Coulomb and Johnson-Holmqiust strength model and Johnson-Holmqiust and principle stress failure model. The damage characteristics include peak ejection angle, peak temperature and pressure, maximum crater depth and diameter etc. The simulation results are given and compared with the experimental results of Burchell 2002. The simulation results are consistent very well with the experimental results.

  16. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events

    NASA Astrophysics Data System (ADS)

    André, C.; Monfort, D.; Bouzit, M.; Vinchon, C.

    2013-03-01

    There are a number of methodological issues involved in assessing damage caused by natural hazards. The first is the lack of data, due to the rarity of events and the widely different circumstances in which they occur. Thus, historical data, albeit scarce, should not be neglected when seeking to build ex-ante risk management models. This article analyses the input of insurance data for two recent severe coastal storm events, to examine what causal relationships may exist between hazard characteristics and the level of damage incurred by residential buildings. To do so, data was collected at two levels: from lists of about 4000 damage records, 358 loss adjustment reports were consulted, constituting a detailed damage database. The results show that for flooded residential buildings, over 75% of reconstruction costs are associated with interior elements, damage to structural components remaining very localised and negligible. Further analysis revealed a high scatter between costs and water depth, suggesting that uncertainty remains high in drawing up damage functions with insurance data alone. Due to the paper format of the loss adjustment reports and the lack of harmonisation between their contents, the collection stage called for a considerable amount of work. For future events, establishing a standardised process for archiving damage information could significantly contribute to the production of such empirical damage functions. Nevertheless, complementary sources of data on hazards and asset vulnerability parameters, will definitely still be necessary for damage modelling and multivariate approaches, crossing insurance data with external material, should also be deeper investigated.

  17. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events

    NASA Astrophysics Data System (ADS)

    André, C.; Monfort, D.; Bouzit, M.; Vinchon, C.

    2013-08-01

    There are a number of methodological issues involved in assessing damage caused by natural hazards. The first is the lack of data, due to the rarity of events and the widely different circumstances in which they occur. Thus, historical data, albeit scarce, should not be neglected when seeking to build ex-ante risk management models. This article analyses the input of insurance data for two recent severe coastal storm events, to examine what causal relationships may exist between hazard characteristics and the level of damage incurred by residential buildings. To do so, data was collected at two levels: from lists of about 4000 damage records, 358 loss adjustment reports were consulted, constituting a detailed damage database. The results show that for flooded residential buildings, over 75% of reconstruction costs are associated with interior elements, with damage to structural components remaining very localised and negligible. Further analysis revealed a high scatter between costs and water depth, suggesting that uncertainty remains high in drawing up damage functions with insurance data alone. Due to the paper format of the loss adjustment reports, and the lack of harmonisation between their contents, the collection stage called for a considerable amount of work. For future events, establishing a standardised process for archiving damage information could significantly contribute to the production of such empirical damage functions. Nevertheless, complementary sources of data on hazards and asset vulnerability parameters will definitely still be necessary for damage modelling; multivariate approaches, crossing insurance data with external material, should also be investigated more deeply.

  18. Thyroid storm

    MedlinePLUS

    Thyrotoxic storm; Hyperthyroid storm; Accelerated hyperthyroidism ... Thyroid storm occurs in people with untreated hyperthyroidism. It is usually brought on by a major stress such as trauma, heart attack, or infection. Thyroid storm is very rare.

  19. Effect of the better representation of the cloud ice-nucleation in WRF microphysics schemes: A case study of a severe storm in India

    NASA Astrophysics Data System (ADS)

    Halder, Madhuparna; Hazra, Anupam; Mukhopadhyay, P.; Siingh, Devendraa

    2015-03-01

    In the present study, the Weather Research and Forecasting (WRF) model was used to simulate the features associated with a severe thunderstorm over India while examining the sensitivity of the simulation to three microphysical (MP) schemes (WDM6, Thompson and Morrison). The model simulated results (e.g., surface temperature, relative humidity, pressure, reflectivity and rainfall) for all sensitivity experiments are compared with observations (e.g., AWS, TRMM and DWR). There are major differences in the simulations of the thunderstorm among the MP schemes. The Morrison scheme simulates CAPE, surface properties, wind speed, vertical velocity, reflectivity and precipitation reasonably well, compared to other MP schemes, though there are some uncertainties. Therefore, an attempt is made to improve the simulation through modifications in the Morrison scheme. Different heterogeneous ice nucleation formulations have been tested into the Morrison double-moment bulk cloud MP scheme. We hypothesize that the improvement in cloud ice generation and its subsequent influence in cloud microphysics and dynamics through latent heat release may eventually lead to an improvement in thunderstorm simulation. The results demonstrate that the modification in the microphysical scheme better reproduces CAPE, wind speed, maximum reflectivity, vertical velocity and cloud hydrometeors (ice and mixed-phase processes) than the default Morrison and other schemes and compared to observations. The modified MP-scheme produces greater latent heating due to deposition in the upper troposphere and gives rise to increased updraft. This seems to be one of the most responsible processes that enhance the intensity of the storm compared to existing microphysical schemes. This study therefore provides a framework for the improvement of thunderstorm simulation through the modification of the cloud ice parameterization of the model.

  20. Contribution of insurance data to cost assessment of coastal flood damage to residential buildings: insights gained from Johanna (2008) and Xynthia (2010) storm events

    NASA Astrophysics Data System (ADS)

    André, Camille; Monfort, Daniel; Bouzit, Madjid; Vinchon, Charlotte

    2013-04-01

    There are a number of methodological issues involved in assessing damage caused by natural hazards. The first is the lack of data, due to the rarity of events and the widely different circumstances in which they occur. Thus, historical data, albeit scarce, should not be neglected when seeking to build ex-ante risk management models. We analysed the input of insurance data for two recent severe coastal storm events, Johanna and Xynthia, which struck the French coasts in 2008 and 2010, respectively, to examine what causal relationships may exist between hazard characteristics and the level of damage incurred by residential buildings. To do so, data was collected at two levels: from lists of about 4,000 damage records, 358 loss adjustment reports were consulted, constituting a detailed damage database. A damage typology was developed, and linked to the different damage processes at the building scale (i.e. water depth, duration and speed, waves shocks and scour). The results show that over 75% of reconstruction costs in residential buildings are associated with interior elements, damage to structural components remaining very localised and negligible. Further analysis revealed no clear trend between costs and water depth, suggesting that uncertainty remains high in drawing up damage functions with insurance data alone. Due to the paper format of the loss adjustment reports and the lack of harmonisation between their contents, the collection stage called for a considerable amount of work. For future events, establishing a standardised process for archiving damage information could significantly contribute to the production of such empirical damage functions. In all events, complementary sources of data on hazards and asset vulnerability parameters, including field data, will definitely still be necessary for risk analysis and damage modelling at a micro-scale.

  1. Intracellular ice formation in confluent monolayers of human dental stem cells and membrane damage.

    PubMed

    Zhurova, Mariia; Woods, Erik J; Acker, Jason P

    2010-08-01

    Dental pulp stem cells (DPSCs) are of interest to researchers and clinicians due to their ability to differentiate into various tissue types and potential uses in cell-mediated therapies and tissue engineering. Currently DPSCs are cryopreserved in suspension using Me(2)SO. However, preservation as two and three dimensional constructs, along with the elimination of toxic Me(2)SO, may be required. It was shown that intracellular ice formation (IIF), lethal to cells in suspensions, may be innocuous in cell monolayers due to ice propagation between cells through gap junctions that results in improved post-thaw recovery. We hypothesized that innocuous IIF protects confluent DPSC monolayers against injury during cryopreservation. The objective was to examine the effects of IIF on post-thaw viability of both confluent monolayers and suspensions of DPSCs. Confluent DPSC monolayers were assessed for the expression of gap junction protein Connexin-43. IIF was induced on the cryostage and in the methanol bath at different subzero temperatures. Membrane integrity and colony-forming ability were assessed post-thaw. Confluent DPSC monolayers expressed Connexin-43. In cell suspensions, 85.9+/-1.7% of cells were damaged after 100% IIF. In cell monolayers, after 100% IIF, only 25.5+/-5.5% and 14.8+/-3.3% of cells were damaged on the cryostage and in the methanol bath respectively. However, DPSC monolayers exposed to 100% IIF showed no colony-forming ability. We conclude that confluent monolayers of DPSCs express the gap junction-forming protein Connexin-43 and upon IIF retain membrane integrity, however lose the ability to proliferate. PMID:20599884

  2. Evolution of Martian polar landscapes - Interplay of long-term variations in perennial ice cover and dust storm intensity

    NASA Technical Reports Server (NTRS)

    Cutts, J. A.; Blasius, K. R.; Roberts, W. J.

    1979-01-01

    The discovery of a new type of Martian polar terrain, called undulating plain, is reported and the evolution of the plains and other areas of the Martian polar region is discussed in terms of the trapping of dust by the perennial ice cover. High-resolution Viking Orbiter 2 observations of the north polar terrain reveal perennially ice-covered surfaces with low relief, wavelike, regularly spaced, parallel ridges and troughs (undulating plains) occupying areas of the polar terrain previously thought to be flat, and associated with troughs of considerable local relief which exhibit at least partial annual melting. It is proposed that the wavelike topography of the undulating plains originates from long-term periodic variations in cyclical dust precipitation at the margin of a growing or receding perennial polar cap in response to changes in insolation. The troughs are proposed to originate from areas of steep slope in the undulating terrain which have lost their perennial ice cover and have become incapable of trapping dust. The polar landscape thus appears to record the migrations, expansions and contractions of the Martian polar cap.

  3. Prenatal maternal stress predicts reductions in CD4+ lymphocytes, increases in innate-derived cytokines, and a Th2 shift in adolescents: Project Ice Storm.

    PubMed

    Veru, Franz; Dancause, Kelsey; Laplante, David P; King, Suzanne; Luheshi, Giamal

    2015-05-15

    The relationship between psychological stress and immunity is well established, but it is not clear if prenatal maternal stress (PNMS) affects the development of the immune system in humans. Our objective was to determine the extent of this influence in a sample of teenagers whose mothers were pregnant during the 1998 Quebec ice storm. As part of a longitudinal study of PNMS, we measured the objective stress exposure and subjective distress of the women soon after the disaster. We obtained blood samples from 37 of their children when they were 13years old to measure cell population percentages and mitogen-induced cytokine production. We found that the mothers' objective degree of PNMS exposure significantly predicted reductions in total and CD4+ lymphocyte proportions, increases in TNF-?, IL-1?, and IL-6 levels, and an enhancement of the Th2 cytokines IL-4 and IL-13. Sex and timing of PNMS exposure during gestation were also associated with some outcomes. These results show that PNMS is a programming factor that can produce long-lasting consequences on immunity, potentially explaining non-genetic variability in immune-related disorders. This information contributes to the understanding of the mechanisms underlying the influence of PNMS on immune-mediated disorders in humans. PMID:25777498

  4. DNA methylation mediates the impact of exposure to prenatal maternal stress on BMI and central adiposity in children at age 13½ years: Project Ice Storm

    PubMed Central

    Cao-Lei, Lei; Dancause, Kelsey N; Elgbeili, Guillaume; Massart, Renaud; Szyf, Moshe; Liu, Aihua; Laplante, David P; King, Suzanne

    2015-01-01

    Prenatal maternal stress (PNMS) in animals and humans predicts obesity and metabolic dysfunction in the offspring. Epigenetic modification of gene function is considered one possible mechanism by which PNMS results in poor outcomes in offspring. Our goal was to determine the role of maternal objective exposure and subjective distress on child BMI and central adiposity at 13½ years of age, and to test the hypothesis that DNA methylation mediates the effect of PNMS on growth. Mothers were pregnant during the January 1998 Quebec ice storm. We assessed their objective exposure and subjective distress in June 1998. At age 13½ their children were weighed and measured (n = 66); a subsample provided blood samples for epigenetic studies (n = 31). Objective and subjective PNMS correlated with central adiposity (waist-to-height ratio); only objective PNMS predicted body mass index (BMI). Bootstrapping analyses showed that the methylation level of genes from established Type-1 and -2 diabetes mellitus pathways showed significant mediation of the effect of objective PNMS on both central adiposity and BMI. However, the negative mediating effects indicate that, although greater objective PNMS predicts greater BMI and adiposity, this effect is dampened by the effects of objective PNMS on DNA methylation, suggesting a protective role of the selected genes from Type-1 and -2 diabetes mellitus pathways. We provide data supporting that DNA methylation is a potential mechanism involved in the long-term adaptation and programming of the genome in response to early adverse environmental factors. PMID:26098974

  5. Short-Term Responses of Ground-Dwelling Beetles to Ice Storm-Induced Treefall Gaps in a Subtropical Broad-Leaved Forest in Southeastern China.

    PubMed

    Yu, Xiao-Dong; Liu, Chong-Ling; Lü, Liang; Luo, Tian-Hong; Zhou, Hong-Zhang

    2016-02-01

    Periodic natural disturbances shape the mosaic character of many landscapes and influence the distribution and abundance of organisms. In this study, we tested the effect of ice storm-induced treefall gaps on ground-dwelling beetle assemblages in different-aged successional stands of subtropical broad-leaved forest in southeastern China. We evaluated the relative importance of gap-phase microhabitat type (within gap, gap edge, and interior shaded) within different stand ages (regenerating stands and mature stands) as determinants of changes in beetle diversity and community structure. At 18 replicate sites sampled during 2009-2010, no significant differences were found in species richness and the abundances of the most common beetle species captured in pitfall traps among the three gap-phase microhabitat types, but the abundances of total beetles, as well as fungivorous and phytophagous species groups, were significantly lower in gap microhabitats than in interior shaded microhabitats in mature stands. Beetle assemblage composition showed no significant differences among the three microhabitat types, and only the fauna of gap plots slightly diverged from those of edge and shaded plots in mature stands. Cover of shrubs and stand age significantly affected beetle assemblage structure. Our results suggest that beetle responses to gap-phase dynamics in early successional forests are generally weak, and that effects are more discernible in the mature stands, perhaps due to the abundance responses of forest-specialist species. PMID:26377249

  6. Deuterium in North Atlantic storm tops

    NASA Technical Reports Server (NTRS)

    Smith, Ronald B.

    1992-01-01

    During the ERICA project in 1989, ice crystals were collected from the tops of two winter storms and one broad cirrus cloud. Deuterium concentration in the storm ice samples, together with a model of isotope fractionation, are used to determine the temperature where the ice was formed. Knowledge of the ice formation temperature allows us to determine whether the ice has fallen or been lofted to the altitude of collection. In both storms, the estimated fall distance decreases upward. In the 21 January storm, the fall distance decreases to zero at the cloud top. In the 23 January storm, the fall distance decreases to zero at a point 2 km below the cloud top and appears to become negative above, indicating lofted ice. Cloud particle data from the cloud tops show an ice-to-vapor ratio greater than one and indicate the presence of particles with small terminal velocities; both observations support the idea of ice lofting. The satellite-derived cloud tops lie well below the actual cloud top (e.g., 2.5 km below on 23 January), indicating that the lofted ice in winter storms may not be detectable from space using IR radiance techniques. A comparison of deuterium in cloud-top ice and clear-air vapor suggests that even in winter, when vertical air motions are relatively weak, lofted ice crystals are the dominant source of water vapor in the upper troposphere.

  7. Meteorology, Macrophysics, Microphysics, Microwaves, and Mesoscale Modeling of Mediterranean Mountain Storms: The M8 Laboratory

    NASA Technical Reports Server (NTRS)

    Starr, David O. (Technical Monitor); Smith, Eric A.

    2002-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.

  8. Predicting lightning storms

    NASA Astrophysics Data System (ADS)

    Wainger, Lisa A.

    Lightning is the second most deadly weather phenomenon after flash floods. It kills more people a year than tornadoes and damages utilities, curtails recreational activities, and affects flight paths. Roughly half of all aviation accidents are weather related according to Delain Edman, of the National Weather Service's National Severe Storms Forecast Center, Kansas City, Mo. That's why meteorologists are testing a new lightning detection network to help predict storms and pinpoint “hot spots” of lightning activity.

  9. North Polar Dust Storm

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-334, 18 April 2003

    This composite of Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle daily global images shows a north polar dust storm on March 7, 2003. Similar late summer storms occurred nearly every day from late February well into April 2003; these were also seen in late summer in 1999 and 2001. The white features at the top of the image are the water ice surfaces of the north polar residual cap. Sunlight illuminates the scene from the lower left.

  10. Radiation damage and associated phase change effect on photodesorption rates from ices—Lyα studies of the surface behavior of CO{sub 2}(ice)

    SciTech Connect

    Yuan, Chunqing; Yates, John T. Jr.

    2014-01-01

    Photodesorption from a crystalline film of CO{sub 2}(ice) at 75 K has been studied using Lyα (10.2 eV) radiation. We combine quantitative mass spectrometric studies of gases evolved and transmission IR studies of species trapped in the ice. Direct CO desorption is observed from the primary CO{sub 2} photodissociation process, which occurs promptly for CO{sub 2} molecules located on the outermost surface of the ice (Process I). As the fluence of Lyα radiation increases to ∼5.5 × 10{sup 17} photons cm{sup –2}, extensive damage to the crystalline ice occurs and photo-produced CO molecules from deeper regions (Process II) are found to desorb at a rapidly increasing rate, which becomes two orders of magnitude greater than Process I. It is postulated that deep radiation damage to produce an extensive amorphous phase of CO{sub 2} occurs in the 50 nm ice film and that CO (and CO{sub 2}) diffusive transport is strongly enhanced in the amorphous phase. Photodesorption in Process II is a combination of electronic and thermally activated processes. Radiation damage in crystalline CO{sub 2} ice has been monitored by its effects on the vibrational line shapes of CO{sub 2}(ice). Here the crystalline-to-amorphous phase transition has been correlated with the occurrence of efficient molecular transport over long distances through the amorphous phase of CO{sub 2}(ice). Future studies of the composition of the interstellar region, generated by photodesorption from ice layers on grains, will have to consider the significant effects of radiation damage on photodesorption rates.

  11. A Double-Moment Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations.

    NASA Astrophysics Data System (ADS)

    Schoenberg Ferrier, Brad; Tao, Wei-Kuo; Simpson, Joanne

    1995-04-01

    Part I of this study described a detailed four-class bulk ice scheme (4ICE) developed to simulate the hydro-meteor profiles of convective and stratiform precipitation associated with mesoscale convective systems. In Part II, the 4ICE scheme is incorporated into the Goddard Cumulus Ensemble (GCE) model and applied without any `tuning' to two squall lines occurring in widely different environments, namely, one over the `Pica) ocean in the Global Atmospheric Research Program's (GARP) Atlantic Tropical Experiment (GATE) and the other over a midlatitude continent in the Cooperative Huntsville Meteorological Experiment (COHMEX). Comparisons were made both with earlier three-class ice formulations and with observations. In both cases, the 4ICE scheme interacted with the dynamics so as to resemble the observations much more closely than did the model runs with either of the three-class ice parameterizations. The following features were well simulated in the COHMEX case: a lack of stratiform rain at the surface ahead of the storm, reflectivity maxima near 60 dBZ in the vicinity of the melting level, and intense radar echoes up to near the tropopause. These features were in strong contrast with the GATE simulation, which showed extensive trailing stratiform precipitation containing a horizontally oriented radar bright band. Peak reflectivities were below the melting level, rarely exceeding 50 dBz, with a steady decrease in reflectivity with height above. With the other bulk formulations, the large stratiform rain areas were not reproduced in the GATE conditions.The microphysical structure of the model clouds in both environments were more realistic than that of earlier modeling efforts. Number concentrations of ice of O(100 L1) occurred above 6 km in the GATE model clouds as a result of ice enhancement and rime splintering in the 4ICE runs. These processes were more effective in the GATE simulation, because near the freezing level the weaker updrafts were comparable in magnitude to the fall speeds of newly frozen drops. Many of the ice crystals initiated at relatively warm temperatures (above 15°C) grew rapidly by deposition into sizes large enough to be converted to snow. In contrast, in the more intense COHMEX updrafts, very large numbers of small ice crystals were initiated at colder temperatures (below 15°C) by nucleation and stochastic freezing of droplets, such that relatively few ice crystals grew by deposition to sizes large enough to be converted to snow. In addition, the large number of frozen drops of O(5 L1) in the 4ICE run am consistent with airborne microphysical data in intense COHMEX updrafts.Numerous sensitivity experiments were made with the four-class and three-class ice schemes, varying fall speed relationships, particle characteristics, and ice collection efficiencies. These tests provide strong support to the conclusion that the 4ICE scheme gives improved resemblance to observations despite present uncertainties in a number of important microphysical parameters.

  12. Nearshore Circulation and Storm Surge Along the Mackenzie Delta Coast

    NASA Astrophysics Data System (ADS)

    Perrie, W.; Mulligan, R. P.; Solomon, S. M.; Hoque, A.; Zhang, L.

    2008-12-01

    The Mackenzie Delta is a 150 km long section of coastline characterized by muddy sediments where the Mackenzie River outflow, dispersed over 20 distributary channels, discharges into the southern Beaufort Sea. The marine environment in this region is an important and integral part of the lives of Canadian Northerners. The area is also undergoing hydrocarbon exploration with potential development within the next decade. Changes to Arctic climate, such as increasing ice-free western Arctic Ocean and intensifying storm activity, may endanger the coastal settlements and marine environment in the Mackenzie Delta region. The low gradient of the delta and the adjacent inner shelf makes it very susceptible to flooding during storms. Field observations in the nearshore zone collected in August of 2007 and 2008 indicate strong gradients in temperature and salinity in shallow water of 2-6 m. The fluctuations are associated with the movements of warm and fresh river plumes and wind-driven upwelling of cold and saline water below the thermocline. The observations are in agreement with 3D model simulations of the nearshore delta region using Delft3D, which includes wind, tidal, storm surge, buoyancy and river forcing. The results validate the model and indicate that it can be used to hindcast the nearshore oceanographic conditions during severe Arctic storms. As a case study we present preliminary model results for an Arctic storm from late 1999 that caused extensive vegetation die-off in the outer delta. This cyclone was a mesoscale Arctic storm that developed over the NE Pacific and western Bering Sea, intensified explosively in the Gulf of Alaska and developed into a meteorological bomb. The storm made landfall at Cape Newenham, Alaska, crossed the Rocky Mountains to the Yukon and Northwest Territories and re-intensified over a zone of high sea surface temperature gradients in the southern Beaufort Sea. Using the Canadian Mesoscale Compressible Community (MC2) atmospheric model, simulations of the storm pattern, track and intensity are in very good agreement with the NCEP re-analysis. This is model coupled to the Princeton Ocean Model (POM) and Hibler Ice Model, which are used to provide basin-scale driver fields and define the boundary conditions of the nearshore Delft3D model for the Mackenzie Delta region. Coastal damage was predominately caused by storm surge, and the high salinity flood waters that flowed over the surface of the outer delta.

  13. Defining Coastal Storm and Quantifying Storms Applying Coastal Storm Impulse Parameter

    NASA Astrophysics Data System (ADS)

    Mahmoudpour, Nader

    2014-05-01

    What defines a storm condition and what would initiate a "storm" has not been uniquely defined among scientists and engineers. Parameters that have been used to define a storm condition can be mentioned as wind speed, beach erosion and storm hydrodynamics parameters such as wave height and water levels. Some of the parameters are storm consequential such as beach erosion and some are not directly related to the storm hydrodynamics such as wind speed. For the purpose of the presentation, the different storm conditions based on wave height, water levels, wind speed and beach erosion will be discussed and assessed. However, it sounds more scientifically to have the storm definition based on the hydrodynamic parameters such as wave height, water level and storm duration. Once the storm condition is defined and storm has initiated, the severity of the storm would be a question to forecast and evaluate the hazard and analyze the risk in order to determine the appropriate responses. The correlation of storm damages to the meteorological and hydrodynamics parameters can be defined as a storm scale, storm index or storm parameter and it is needed to simplify the complexity of variation involved developing the scale for risk analysis and response management. A newly introduced Coastal Storm Impulse (COSI) parameter quantifies storms into one number for a specific location and storm event. The COSI parameter is based on the conservation of linear, horizontal momentum to combine storm surge, wave dynamics, and currents over the storm duration. The COSI parameter applies the principle of conservation of momentum to physically combine the hydrodynamic variables per unit width of shoreline. This total momentum is then integrated over the duration of the storm to determine the storm's impulse to the coast. The COSI parameter employs the mean, time-averaged nonlinear (Fourier) wave momentum flux, over the wave period added to the horizontal storm surge momentum above the Mean High Water (MHW) integrated over the storm duration. The COSI parameter methodology has been applied to a 10-year data set from 1994 to 2003 at US Army Corps of Engineers, Field Research Facility (FRF) located on the Atlantic Ocean in Duck, North Carolina. The storm duration was taken as the length of time (hours) that the spectral significant wave heights were equal or greater than 1.6 meters for at least a 12 hour, continuous period. Wave heights were measured in 8 meters water depth and water levels measured at the NOAA/NOS tide gauge at the end of the FRF pier. The 10-year data set were analyzed applying the aforementioned storm criteria and produced 148 coastal events including Hurricanes and Northeasters. The results of this analysis and application of the COSI parameter to determine "Extra Ordinary" storms in Federal Projects for the Gulf of Mexico, 2012 hurricane season will be discussed at the time of presentation.

  14. Managing storm water at airports

    SciTech Connect

    Halm, M.J.

    1996-09-01

    Airports are active facilities with numerous on-going operations at their sites. The following operations may adversely affect the water quality of nearby aquatic environments: De-icing runways; de-icing taxiways; de-icing and anti-icing aircraft; aircraft maintenance; and salt de-icer application. Until the amendments to the Clean Water Act of 1972, referred to as the Water Quality Act of 1987, were passed by Congress, the majority of storm water discharges in the US were unregulated. The Water Quality Act of 1987 was promulgated as an effort to manage the pollution resulting from storm water runoff. Many industrial facilities, especially airports, were faced with complex problems in attempting to comply with these new federal regulations. National Pollution Discharge Elimination System (NPDES) permits for airports with more than 50,000 flight operations per year require periodic monitoring of receiving waters and storm sewer outfalls. The federal government has given states jurisdiction in issuing NPDES permits for storm water discharges. States may require composite or grab samples.

  15. On extreme geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Cid, Consuelo; Palacios, Judith; Saiz, Elena; Guerrero, Antonio; Cerrato, Yolanda

    2014-10-01

    Extreme geomagnetic storms are considered as one of the major natural hazards for technology-dependent society. Geomagnetic field disturbances can disrupt the operation of critical infrastructures relying on space-based assets, and can also result in terrestrial effects, such as the Quebec electrical disruption in 1989. Forecasting potential hazards is a matter of high priority, but considering large flares as the only criterion for early-warning systems has demonstrated to release a large amount of false alarms and misses. Moreover, the quantification of the severity of the geomagnetic disturbance at the terrestrial surface using indices as Dst cannot be considered as the best approach to give account of the damage in utilities. High temporal resolution local indices come out as a possible solution to this issue, as disturbances recorded at the terrestrial surface differ largely both in latitude and longitude. The recovery phase of extreme storms presents also some peculiar features which make it different from other less intense storms. This paper goes through all these issues related to extreme storms by analysing a few events, highlighting the March 1989 storm, related to the Quebec blackout, and the October 2003 event, when several transformers burnt out in South Africa.

  16. Magnetic Storms

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Gonzalez, Walter D.

    1998-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. The 11-year cycles of both the numbers of sunspots and Earth geomagnetic storms were first noted by Sabine. A few years later, speculation on a causal relationship between flares and storms arose when Carrington reported that a large magnetic storm followed the great September 1859 solar flare. However, it was not until this century that a well-accepted statistical survey on large solar flares and geomagnetic storms was performed, and a significant correlation between flares and geomagnetic storms was noted. Although the two phenomena, one on the Sun and the other on the Earth, were statistically correlated, the exact physical linkage was still an unknown at this time. Various hypotheses were proposed, but it was not until interplanetary spacecraft measurements were available that a high-speed plasma stream rich in helium was associated with an intense solar flare. The velocity of the solar wind increased just prior to and during the helium passage, identifying the solar ejecta for the first time. Space plasma measurements and Skylab's coronagraph images of coronal mass elections (CMES) from the Sun firmly established the plasma link between the Sun and the Earth. One phenomenon associated with magnetic storms is brilliant "blood" red auroras, as shown.

  17. Dust Storm in Syria

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-366, 20 May 2003

    A dust storm rages in Syria Planum, south of the Labyrinthus Noctis troughs (at lower center) in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) composite of daily global images taken during the recent southern winter. In this view, water ice clouds are present over each of the five largest Tharsis volcanoes, Olympus Mons (right center), Alba Patera (upper center), Ascraeus Mons (near center), Pavonis Mons (toward lower left), and Arsia Mons (lower left). The summertime north polar residual water ice cap can be seen at the top of this picture. Sunlight illuminates the planet from the left.

  18. Effects of ice storm on forest ecosystem of southern China in 2008 Shaoqiang Wang1, Lei Zhou1, Weimin Ju2, Kun Huang1 1Key Lab of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Beijing, 10010

    NASA Astrophysics Data System (ADS)

    Wang, Shaoqiang

    2014-05-01

    Evidence is mounting that an increase in extreme climate events has begun to occur worldwide during the recent decades, which affect biosphere function and biodiversity. Ecosystems returned to its original structures and functions to maintain its sustainability, which was closely dependent on ecosystem resilience. Understanding the resilience and recovery capacity of ecosystem to extreme climate events is essential to predicting future ecosystem responses to climate change. Given the overwhelming importance of this region in the overall carbon cycle of forest ecosystems in China, south China suffered a destructive ice storm in 2008. In this study, we used the number of freezing day and a process-based model (Boreal Ecosystem Productivity Simulator, BEPS) to characterize the spatial distribution of ice storm region in southeastern China and explore the impacts on carbon cycle of forest ecosystem over the past decade. The ecosystem variables, i.e. Net primary productivity (NPP), Evapotranspiration (ET), and Water use efficiency (WUE, the ratio of NPP to ET) from the outputs of BEPS models were used to detect the resistance and resilience of forest ecosystem in southern China. The pattern of ice storm-induced forest productivity widespread decline was closely related to the number of freezing day during the ice storm period. The NPP of forest area suffered heavy ice storm returned to normal status after five months with high temperature and ample moisture, indicated a high resilience of subtropical forest in China. The long-term changes of forest WUE remain stable, behaving an inherent sensitivity of ecosystem to extreme climate events. In addition, ground visits suggested that the recovery of forest productivity was attributed to rapid growth of understory. Understanding the variability and recovery threshold of ecosystem following extreme climate events help us to better simulate and predict the variability of ecosystem structure and function under current and future climate change.

  19. Research on Historical Records of Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Lakhina, G. S.; Alex, S.; Tsurutani, B. T.; Gonzalez, W. D.

    In recent times, there has been keen interest in understanding Sun-Earth connection events, such as solar flares, CMEs and concomitant magnetic storms. Magnetic storms are the most dramatic and perhaps important component of space weather effects on Earth. Super-intense magnetic storms (defined here as those with Dst < -500 nT, where Dst stands for the disturbance storm time index that measures the strength of the magnetic storm) although relatively rare, have the largest societal and technological relevance. Such storms can cause life-threatening power outages, satellite damage, communication failures and navigational problems. However, the data for such magnetic storms is rather scarce. For example, only one super-intense magnetic storm has been recorded (Dst=-640 nT, March 13, 1989) during the space-age (since 1958), although such storms may have occurred many times in the last 160 years or so when the regular observatory network came into existence. Thus, research on historical geomagnetic storms can help to create a good data base for intense and super-intense magnetic storms. From the application of knowledge of interplanetary and solar causes of storms gained from the spaceage observations applied to the super-intense storm of September 1-2, 1859, it has been possible to deduce that an exceptionally fast (and intense) magnetic cloud was the interplanetary cause of this geomagnetic storm with a Dst -1760 nT, nearly 3 times as large as that of March 13, 1989 super-intense storm. The talk will focus on super-intense storms of September 1-2, 1859, and also discuss the results in the context of some recent intense storms.

  20. Magnetic Storms in Brazil

    NASA Astrophysics Data System (ADS)

    Pinheiro, K.; Siqueira, F.

    2013-05-01

    Magnetic storms result from atypical processes generated in the Sun, the interaction between the solar wind and the Earth's magnetosphere and the energization of particles in the magnetosphere. As consequence, magnetic storms may cause problems on radio communication, in satellites, GPS imprecision and induce geomagnetic induced currents that my cause saturation and damage of transformers. Magnetic storms are measured in magnetic observatories, where it is possible to observe large variations in the horizontal magnetic field. These variations are most visible in equatorial or low-latitude magnetograms. In this work, we use low latitude dataset from three magnetic observatories in Brazil: Vassouras (Rio de Janeiro) that presents data since 1915, Tatuoca (Pará) since 1957 and data from a new magnetic observatory that was installed in Pantanal (Brazil) on the 22nd October 2012. Vassouras and Pantanal observatories are in the region of the South Atlantic Magnetic Anomaly. External magnetic field interactions in this region are poorly known due to the lack of magnetic data. Tatuoca observatory is located in another important geomagnetic region: the equatorial electrojet. In this work we present the data processing of the recent geomagnetic time series in Pantanal Observatory and its comparison with Vassouras and Tatuoca observatories in Brazil. We analyse the main characteristics of magnetic storms in these observatories, as the sudden commencement and their duration.

  1. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    article title:  Massive Dust Storm over Australia     View ... winds and dry conditions caused a massive blanket of dust from Australia's Outback to spread eastward across Queensland and New ... data were obtained from the NASA Langley Research Center Atmospheric Science Data Center in Hampton, VA. Image credit: ...

  2. Hubble Tracks Jupiter Storms

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Hubble Space Telescope is following dramatic and rapid changes in Jupiter's turbulent atmosphere that will be critical for targeting observations made by the Galileo space probe when it arrives at the giant planet later this year.

    This Hubble image provides a detailed look at a unique cluster of three white oval-shaped storms that lie southwest (below and to the left) of Jupiter's Great Red Spot. The appearance of the clouds, as imaged on February 13, 1995 is considerably different from their appearance only seven months earlier. Hubble shows these features moving closer together as the Great Red Spot is carried westward by the prevailing winds while the white ovals are swept eastward. (This change in appearance is not an effect of last July's comet Shoemaker-Levy 9 collisions with Jupiter.)

    The outer two of the white storms formed in the late 1930s. In the centers of these cloud systems the air is rising, carrying fresh ammonia gas upward. New, white ice crystals form when the upwelling gas freezes as it reaches the chilly cloud top level where temperatures are -200 degrees Fahrenheit (- 130 degrees Centigrade).

    The intervening white storm center, the ropy structure to the left of the ovals, and the small brown spot have formed in low pressure cells. The white clouds sit above locations where gas is descending to lower, warmer regions. The extent of melting of the white ice exposes varied amounts of Jupiter's ubiquitous brown haze. The stronger the down flow, the less ice, and the browner the region.

    A scheduled series of Hubble observations will help target regions of interest for detailed scrutiny by the Galileo spacecraft, which will arrive at Jupiter in early December 1995. Hubble will provide a global view of Jupiter while Galileo will obtain close-up images of structure of the clouds that make up the large storm systems such as the Great Red Spot and white ovals that are seen in this picture.

    This color picture is assembled from a series of images taken by the Wide Field Planetary Camera 2, in planetary camera mode, when Jupiter was at a distance of 519 million miles (961 million kilometers) from Earth. These images are part of a set of data obtained by a Hubble Space Telescope (HST) team headed by Reta Beebe of New Mexico State University.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  3. Tropical Storm Erin

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Location: The Atlantic Ocean 210 miles south of Galveston, Texas Categorization: Tropical Storm Sustained Winds: 40 mph (60 km/hr)

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Infrared ImageMicrowave Image

    Infrared Images Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red).

    Microwave Images In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity.

    Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity.

    Visible/Near-Infrared Images The AIRS instrument suite contains a sensor that captures radiation in four bands of the visible/near-infrared portion of the electromagetic spectrum. Data from three of these bands are combined to create 'visible' images similar to a snapshot taken with your camera.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  4. Storm Surge Sensor During Hurricane Irene

    USGS Multimedia Gallery

    During hurricanes the USGS deploys storm-surge monitoring instruments along the coasts, sounds, and bays in impacted areas to gauge how high hurricanes push water in rivers, bays and other areas. The sensors are crucial for forecasting future storms and assessing hurricane damage. They are strapped ...

  5. The effects of multiple daily applications of ice to the hamstrings on biochemical measures, signs, and symptoms associated with exercise-induced muscle damage.

    PubMed

    Oakley, Elizabeth T; Pardeiro, Rafael B; Powell, Joseph W; Millar, Audrey L

    2013-10-01

    There is inconclusive evidence for the effectiveness of cryotherapy for the treatment of exercised-induced muscle damage (EIMD). Small sample sizes and treatment applications that did not correspond to evidence-based practice are limitations in previous studies that may have contributed to these equivocal findings. The purpose of this study was to examine the effectiveness of daily multiple applications of ice on EIMD throughout the 72-hour recovery period, an icing protocol that more closely resembles current clinical practice. Thirty-three subjects were assigned to either the cryotherapy group (n = 23) or control group (n = 10). The EIMD was induced through repeated isokinetic eccentric contractions of the right hamstring muscle group. The experimental group received ice immediately after induction of EIMD and continued to ice thrice a day for 20 minutes throughout the 72 hours; the control group received no intervention. Isometric torque, hamstring length, pain, and biochemical markers (creatine kinase [CK], alanine aminotransferase, and aspartate aminotransferase [AST]) were assessed at baseline, 24, 48, and 72 hours. Both groups demonstrated a significant change (p < 0.05) in all dependent variables compared with that at baseline, but there was no difference between groups except for pain. The cryotherapy group had significantly (p = 0.048) less pain (3.0 ± 2.1 cm) compared with the control (5.35 ± 2.5 cm) at 48 hours. Although not statistically significant, the cryotherapy group had a greater range of motion and lower CK and AST means at 72 hours compared with that of the control group. Repeated applications of ice can decrease the pain associated with EIMD significantly at 48 hours post EIMD. Although the results may not be unique, the methodology in this study was distinctive in that we used a larger sample size and an icing protocol similar to current recommended treatment practice. PMID:23364294

  6. Severe storm identification with satellite microwave radiometry: An initial investigation with Nimbus-7 SMMR data

    NASA Technical Reports Server (NTRS)

    Spencer, R. W.; Howland, M. R.

    1984-01-01

    The severe weather characteristics of convective storms as observed by the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) are investigated. Low 37 GHz brightness temperatures (due to scattering of upwelling radiation by precipitation size ice) are related to the occurrence of severe weather (large hail, strong winds or wind damage, tornadoes and funnel clouds) within one hour of the satellite observation time. During 1979 and 1980 over the United States there were 263 storms which had very cold 37 GHz signatures. Of these storms 15% were severe. The SMMR detected hail, wind, and tornadic storms equally well. Critical Success Indices (CSI's) of 0.32, 0.48, and 0.38 are achieved for the thresholding of severe vs. nonsevere low brightness temperature events during 1979, 1980, and the two years combined, respectively. Such scores are comparable to skill scores for early radar detection methods. These results suggest that a future geostationary passive microwave imaging capability at 37 GHz, with sufficient spatial and temporal resolution, would allow the detection of severe convective storms. This capability would provide a useful complement to radar, especially in areas not covered by radar.

  7. Lightning and precipitation history of a microburst-producing storm

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Buechler, Dennis E.; Wright, Patrick D.; Rust, W. David

    1988-01-01

    Quantitative measurements of the lightning and precipitation life cycle of a microburst-producing storm are discussed. The storm, which occurred on July 20, 1986 at Huntsville, Alabama, was studied using Doppler radar data. The storm produced 116 flashes, 6 of which were discharges to the ground. It is suggested that an abrupt decrease in the total flash rates is associated with storm collapse, and serves as a precursor to the arrival of the maximum microburst outflows at the surface. Ice-phase precipitation is shown to be an important factor in both the formation of the strong downdraft and the electrification of the storm.

  8. Development and Evaluation of Storm Surge Ensemble Forecasting for the Philippines Using JMA Storm Surge Model

    NASA Astrophysics Data System (ADS)

    Lapidez, J. P. B.; Tablazon, J. P.; Lagmay, A. M. F. A.; Suarez, J. K. B.; Santiago, J. T.

    2014-12-01

    The Philippines is one of the countries most vulnerable to storm surge. It is located in the North-western Pacific basin which is the most active basin in the planet. An average of 20 tropical cyclones enters the Philippine area of responsibility (PAR) every year. The archipelagic nature of the country with regions having gently sloping coasts and shallow bays also contribute to the formation of extreme surges. Last November 2013, storm surge brought by super typhoon Haiyan severely damaged several coastal regions in the Visayan Islands. Haiyan left more than 6 300 casualties and damages amounting to more than $ 2 billion. Extreme storm surge events such as this highlight the need to establish a storm surge early warning system for the country. This study explores the development and evaluation of storm surge ensemble forecasting for the Philippines using the Japan Meteorological Agency (JMA) storm surge model. 36-hour, 24-hour, and 12-hour tropical cyclone forecasts are used to generate an ensemble storm surge forecast to give the most probable storm surge height at a specific point brought by an incoming tropical cyclone. The result of the storm surge forecast is compared to tide gauge record to evaluate the accuracy. The total time of computation and dissemination of forecast result is also examined to assess the feasibility of using the JMA storm surge model for operational purposes.

  9. Clouds and Dust Storms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. East Coast storm surges provide unique climate record

    NASA Astrophysics Data System (ADS)

    Zhang, Keqi; Douglas, Bruce C.; Leatherman, Stephen P.

    Coastal storms repeatedly hit the U.S. East Coast, costing many billions of dollars in losses. In 1992 Hurricane Andrew alone caused about $35-40 billion in damage. In addition to property damage, coastal storms are the major contributors to beach and dune erosion, overwash processes, and the opening of tidal inlets on barrier islands. What changes, if any, can we expect in coastal storm activity and intensity as global temperatures rise?

  11. Sea ice protects the embryos of the Antarctic sea urchin Sterechinus neumayeri from oxidative damage due to naturally enhanced levels of UV-B radiation.

    PubMed

    Lister, Kathryn N; Lamare, Miles D; Burritt, David J

    2010-06-01

    The 'ozone hole' has caused an increase in ultraviolet B radiation (UV-B, 280-320 nm) penetrating Antarctic coastal marine ecosystems, however the direct effect of this enhanced UV-B on pelagic organisms remains unclear. Oxidative stress, the in vivo production of reactive oxygen species to levels high enough to overcome anti-oxidant defences, is a key outcome of exposure to solar radiation, yet to date few studies have examined this physiological response in Antarctic marine species in situ or in direct relation to the ozone hole. To assess the biological effects of UV-B, in situ experiments were conducted at Cape Armitage in McMurdo Sound, Antarctica (77.06 degrees S, 164.42 degrees E) on the common Antarctic sea urchin Sterechinus neumayeri Meissner (Echinoidea) over two consecutive 4-day periods in the spring of 2008 (26-30 October and 1-5 November). The presence of the ozone hole, and a corresponding increase in UV-B exposure, resulted in unequivocal increases in oxidative damage to lipids and proteins, and developmental abnormality in embryos of S. neumayeri growing in open waters. Results also indicate that embryos have only a limited capacity to increase the activities of protective antioxidant enzymes, but not to levels sufficient to prevent severe oxidative damage from occurring. Importantly, results show that the effect of the ozone hole is largely mitigated by sea ice coverage. The present findings suggest that the coincidence of reduced stratospheric ozone and a reduction in sea ice coverage may produce a situation in which significant damage to Antarctic marine ecosystems may occur. PMID:20472784

  12. Major coastal impact induced by a 1000-year storm event

    PubMed Central

    Fruergaard, Mikkel; Andersen, Thorbjørn J.; Johannessen, Peter N.; Nielsen, Lars H.; Pejrup, Morten

    2013-01-01

    Extreme storms and storm surges may induce major changes along sandy barrier coastlines, potentially causing substantial environmental and economic damage. We show that the most destructive storm (the 1634 AD storm) documented for the northern Wadden Sea within the last thousand years both caused permanent barrier breaching and initiated accumulation of up to several metres of marine sand. An aggradational storm shoal and a prograding shoreface sand unit having thicknesses of up to 8?m and 5?m respectively were deposited as a result of the storm and during the subsequent 30 to 40 years long healing phase, on the eroded shoreface. Our results demonstrate that millennial-scale storms can induce large-scale and long-term changes on barrier coastlines and shorefaces, and that coastal changes assumed to take place over centuries or even millennia may occur in association with and be triggered by a single extreme storm event.

  13. Arctic Cyclone Breaks Up Sea Ice - Duration: 33 seconds.

    NASA Video Gallery

    A powerful storm wreaked havoc on the Arctic sea ice cover in August 2012. This visualization shows the strength and direction of the winds and their impact on the ice: the red vectors represent th...

  14. Aerial rapid assessment of hurricane damages to northern Gulf coastal habitats: Chapter 5A in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Michot, Thomas C.; Wells, Christopher J.; Chadwick, Paul C.

    2007-01-01

    Hurricane Katrina made landfall in southeast Louisiana on August 29, 2005, and Hurricane Rita made landfall in southwest Louisiana on September 24, 2005. Scientists from the U.S. Geological Survey (USGS) flew aerial surveys to assess damages to natural resources and to lands owned and managed by the U.S. Department of the Interior and other agencies. Flights were made on eight dates from August 27 through October 4, including one pre-Katrina, three post-Katrina, and four post-Rita surveys. The geographic area surveyed extended from Galveston, Tex., to Gulf Shores, Ala., and from the Gulf of Mexico shoreline inland 5-75 mi (8-121 km). Impacts to barrier island habitats were severe, especially at the Chandeleur Islands, which were reduced in land area by roughly 50 percent. Marsh impacts varied but were greatest in St. Bernard and Cameron Parishes, where much emergent vegetation was scoured or killed. Forested wetlands were impacted heavily, especially in the Pearl River basin and on the cheniers of southwest Louisiana.

  15. Bacterial Ice Crystal Controlling Proteins

    PubMed Central

    Lorv, Janet S. H.; Rose, David R.; Glick, Bernard R.

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  16. Storms in Space

    NASA Astrophysics Data System (ADS)

    Freeman, John W.

    2012-11-01

    Introduction; The cast of characters; Vignettes of the storm; 1. Two kinds of weather; 2. The saga of the storm; 3. Weather stations in space; 4. Lights in the night: the signature of the storm; 5. A walking tour of the magnetosphere; 6. The sun: where it all begins; 7. Nowcasting and forecasting storms in space; 8. Technology and the risks from storms in space; 9. A conversation with Joe Allen; 10. Manned exploration and space weather hazards; 11. The present and future of space weather forecasting; Mathematical appendix. A closer look; Glossary; Figure captions.

  17. Dust storm off Western Africa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The impacts of Saharan dust storms reach far beyond Africa. Wind-swept deserts spill airborne dust particles out over the Atlantic Ocean where they can enter trade winds bound for Central and North America and the Caribbean. This Moderate Resolution Imaging Spectroradiometer (MODIS) image shows a dust storm casting an opaque cloud of cloud across the Canary Islands and the Atlantic Ocean west of Africa on June 30, 2002. In general it takes between 5 and 7 days for such an event to cross the Atlantic. The dust has been shown to introduce foreign bacteria and fungi that have damaged reef ecosystems and have even been hypothesized as a cause of increasing occurrences of respiratory complaints in places like Florida, where the amount of Saharan dust reaching the state has been increasing over the past 25 years.

  18. Components of the ice age circulation

    NASA Technical Reports Server (NTRS)

    Rind, D.

    1987-01-01

    The effects of ice age boundary conditions on atmospheric dynamics and regional climate patterns are investigated using four GCM simulations. Particular consideration is given to sea surface temperature-sea ice distribution, the appearance of land ice, and the increased elevation of land ice. It is observed that the ice-age sea surface temperature stabilizes the atmosphere over the oceans, increases the frequency of storm tracking through central North America, and amplifies transient eddy energy without increasing baroclinic generation. It is detected that low-elevation ice generates low pressure over eastern North America and southern Europe in winter, while increasing cloud cover and cooling the land in summer. Elevation of the ice sheets cools the land in winter, further intensifies storms off northeastern North America, induces subsidence warming downstream of the European ice sheets in summer, and increases the transient and stationary eddy energy through increased baroclinicity.

  19. Pacific Northwest Storms Situation Report # 1

    SciTech Connect

    2006-12-15

    Severe wind and snow storms hit the Pacific Northwest region on December 14 – 15, 2006, following severe flooding during the past few days. The severe weather resulted in major power outages through the region. At peak there were 1.8 million customers without power which included BC Hydro in Canada. Currently, there are over 1.5 million outages in the region as a result of the Pacific Northwest Storms. This represents about 42 percent of customers in affected utility service areas in Oregon and Washington. See table below. Because the current wind and snow storms are coming on the heels of extensive flooding in the region, electric utilities are experiencing damage. Wind gusts reached close to 100 mph in some areas of the region. The storm is expected to bring its strong winds and heavy snow into Idaho, Montana and Wyoming Friday and into the weekend. There are currently no reported major impacts to the petroleum and natural gas infrastructure.

  20. Tropical Storm Ernesto over Cuba

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Microwave Image

    These infrared, microwave, and visible images were created with data retrieved by the Atmospheric Infrared Sounder (AIRS) on NASA's Aqua satellite.

    Infrared Image Because infrared radiation does not penetrate through clouds, AIRS infrared images show either the temperature of the cloud tops or the surface of the Earth in cloud-free regions. The lowest temperatures (in purple) are associated with high, cold cloud tops that make up the top of the storm. In cloud-free areas the AIRS instrument will receive the infrared radiation from the surface of the Earth, resulting in the warmest temperatures (orange/red).

    Microwave Image In the AIRS microwave imagery, deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. On the other hand, land appears much warmer due to its high radiation emissivity.

    Microwave radiation from Earth's surface and lower atmosphere penetrates most clouds to a greater or lesser extent depending upon their water vapor, liquid water and ice content. Precipitation, and ice crystals found at the cloud tops where strong convection is taking place, act as barriers to microwave radiation. Because of this barrier effect, the AIRS microwave sensor detects only the radiation arising at or above their location in the atmospheric column. Where these barriers are not present, the microwave sensor detects radiation arising throughout the air column and down to the surface. Liquid surfaces (oceans, lakes and rivers) have 'low emissivity' (the signal isn't as strong) and their radiation brightness temperature is therefore low. Thus the ocean also appears 'low temperature' in the AIRS microwave images and is assigned the color blue. Therefore deep blue areas in storms show where the most precipitation occurs, or where ice crystals are present in the convective cloud tops. Outside of these storm regions, deep blue areas may also occur over the sea surface due to its low radiation emissivity. Land appears much warmer due to its high radiation emissivity.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft and is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., under contract to NASA. JPL is a division of the California Institute of Technology in Pasadena.

  1. Subtropical Storm Andrea

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The circling clouds of an intense low-pressure system sat off the southeast coast of the United States on May 8, 2007, when the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image. By the following morning, the storm developed enough to be classified as a subtropical storm, a storm that forms outside of the tropics, but has many of the characteristics--hurricane-force winds, driving rains, low pressure, and sometimes an eye--of a tropical storm. Although it arrived several weeks shy of the official start of the hurricane season (June 1), Subtropical Storm Andrea became the first named storm of the 2007 Atlantic hurricane season. The storm has the circular shape of a tropical cyclone in this image, but lacks the tight organization seen in more powerful storms. By May 9, the storm's winds reached 75 kilometers per hour (45 miles per hour), and the storm was not predicted to get any stronger, said the National Hurricane Center. Though Subtropical Storm Andrea was expected to remain offshore, its strong winds and high waves pummeled coastal states, prompting a tropical storm watch. The winds fueled wild fires (marked with red boxes) in Georgia and Florida. The wind-driven flames generated thick plumes of smoke that concentrated in a gray-brown mass over Tampa Bay, Florida. Unfortunately for Georgia and Florida, which are experiencing moderate to severe drought, Subtropical Storm Andrea was not predicted to bring significant rain to the region right away, according to reports on the Washington Post Website.

  2. Freezing without Ice Crystal Damage: Semithin and Ultrathin Frozen Sections of Ethanol-Infiltrated Tissue for Microscopy, with Applications to Immunocytochemistry

    NASA Astrophysics Data System (ADS)

    Christensen, A. Kent; Lowry, Terry B.

    1995-10-01

    Ethanol (ethyl alcohol) has long been a standard reagent used in preparing tissues for light and electron microscopy. After fixation, tissues are usually dehydrated with ethanol before being embedded in paraffin or plastic. In this study we show that the ethanol-infiltrated tissue can be frozen and sectioned directly without embedding. When tissue impregnated with ethanol is cooled below about [minus sign]117°C with liquid nitrogen, the ethanol solidifies without appreciable crystallization. The frozen tissue can then be sectioned in a commercial cryoultramicrotome that is set at [minus sign]155 to [minus sign]170°C to produce semithin frozen sections (0.5 to 3 [mu]m thick) for light microscopy or ultrathin frozen sections (50 to 100 nm thick) for electron microscopy. Sections are picked up and mounted on glass slides or EM grids by means that are in current use for ice ultrathin frozen sectioning. Because there is no apparent freezing damage, the morphology in these ethanol frozen sections of unembedded tissue appears generally quite good, often resembling that obtained by conventional EM techniques. Examples are provided that illustrate the use of this material for immunocytochemistry at the light and electron microscope levels.

  3. Mechanisms of ice gouging

    SciTech Connect

    Kioka, Shinji; Saeki, Hiroshi

    1995-12-31

    Sea ice is carried to the cost of Hokkaido by wind and water currents every year. In low pressure systems or when there is much sea ice, it drifts out toward the Pacific Ocean. When sea ice moves in shallow water areas, the sandy subgrade on the sea bottom is gouged by the sea ice. This phenomenon is generally called ``ice gouging``. Substantial damage to sea food i.e. (shellfish) and to structures embedded in the seabed is reported every year. However, the mechanisms and behavior of ice gouging is not known sufficiently enough for discussion. Therefore, the authors have conducted a suitable experiment to clarify this phenomenon and have suggested formulas to measure ice gouging.

  4. STORM WATER MANAGEMENT MODEL

    EPA Science Inventory

    Storm Water Management Model (SWMM) is a comprehensive model for analysis of quantity and quality problems associated with urban runoff. Both single-event and continuous simulation may be performed on catchments having storm sewers, combined sewers, and natural drainage, for pred...

  5. Arctic Summer Ice Processes

    NASA Technical Reports Server (NTRS)

    Holt, Benjamin

    1999-01-01

    The primary objective of this study is to estimate the flux of heat and freshwater resulting from sea ice melt in the polar seas. The approach taken is to examine the decay of sea ice in the summer months primarily through the use of spaceborne Synthetic Aperture Radar (SAR) imagery. The improved understanding of the dynamics of the melt process can be usefully combined with ice thermodynamic and upper ocean models to form more complete models of ice melt. Models indicate that more heat is absorbed in the upper ocean when the ice cover is composed of smaller rather than larger floes and when there is more open water. Over the course of the summer, floes disintegrate by physical forcing and heating, melting into smaller and smaller sizes. By measuring the change in distribution of floes together with open water over a summer period, we can make estimates of the amount of heating by region and time. In a climatic sense, these studies are intended to improve the understanding of the Arctic heat budget which can then be eventually incorporated into improved global climate models. This work has two focus areas. The first is examining the detailed effect of storms on floe size and open water. A strong Arctic low pressure storm has been shown to loosen up the pack ice, increase the open water concentration well into the pack ice, and change the distribution of floes toward fewer and smaller floes. This suggests episodic melting and the increased importance of horizontal (lateral) melt during storms. The second focus area is related to an extensive ship-based experiment that recently took place in the Arctic called Surface Heat Budget of the Arctic (SHEBA). An icebreaker was placed purposely into the older pack ice north of Alaska in September 1997. The ship served as the base for experimenters who deployed extensive instrumentation to measure the atmosphere, ocean, and ice during a one-year period. My experiment will be to derive similar measurements (floe size, open water, temporal change) using spaceborne SAR data obtained during the summer of 1998, and compare these results with an ocean and ice model of summer melt. Additional information is contained in the original.

  6. Influence of resolution on storm studies

    NASA Astrophysics Data System (ADS)

    Jokinen, Pauli; Gregow, Hilppa; Venäläinen, Ari; Laaksonen, Ari

    2014-05-01

    The risk of wind-induced damage to infrastructure as well as forests is projected to increase in western, central, and northern Europe due to anthropogenic warming of climate and concurrent increase in the frequency of strong storms. Recent studies have highlighted the importance of resolution in capturing small scale features such as tropical storms and hurricanes as well as mesoscale features embedded in larger extratropical storms. Because reanalyses are good homogeneous datasets of the current climate, they are of help when studying storms and extreme winds as well as the influence of resolution. To know more about the resolution impact on modelled storms and extreme wind speeds we have in our work concentrated on two European reanalyses: ERA-40 (1957-2002) and ERA-Interim (1979-current). We have analyzed parameterized surface wind gusts and geostrophic and ageostrophic isallobaric wind speeds to see how storm intensity and movement are captured depending on the dataset used. We have also done up-scaling of the datasets to daily resolution to find out how much information is lost when the temporal resolution given to the end-user is low. This is important, because daily temporal resolution is often used in climate research for example in ensemble studies when the focus is on defining uncertainties due to the choice of model. Our preliminary results show that with high spatial and temporal resolution, the reanalysis datasets placed the rapidly moving storms spatially more correctly than with lower resolutions. In the storm cases, the wind speeds in ERA-40 and its lower spatial resolution were, for instance, 15% smaller than those from ERA-Interims higher spatial resolution. Using a 1.125° grid instead of a 0.7° grid shifted the location of storm Anatol's maximum winds by several hundred kilometers. Additionally decreasing the temporal resolution from three hours to 24 hours reduced the estimate of the maximum storm wind speeds by 40-70% and also placed the area of maximum winds in a different location along the track. Due to such examples, we presume that projections of storms under climate change may have large uncertainties. This is due to the varying spatial resolution employed and also the temporal resolution available for the end-users. Focusing on the effects of different resolutions may help to minimize the uncertainties in the results.

  7. De-Icing Salts and the Environment.

    ERIC Educational Resources Information Center

    Massachusetts Audubon Society, Lincoln.

    Reported is an examination of the use and effects of chlorides as de-icing products for removal of snow and ice from roads immediately following storms. Increasing evidence of detrimental side effects led to a closer look and more careful evaluation of the overall significance of the so-called "bare pavement maintenance." The side effects include…

  8. De-Icing Salts and the Environment.

    ERIC Educational Resources Information Center

    Massachusetts Audubon Society, Lincoln.

    Reported is an examination of the use and effects of chlorides as de-icing products for removal of snow and ice from roads immediately following storms. Increasing evidence of detrimental side effects led to a closer look and more careful evaluation of the overall significance of the so-called "bare pavement maintenance." The side effects include…

  9. Dust storms: recent developments.

    PubMed

    Goudie, Andrew S

    2009-01-01

    Dust storms have a number of impacts upon the environment including radiative forcing, and biogeochemical cycling. They transport material over many thousands of kilometres. They also have a range of impacts on humans, not least on human health. In recent years the identification of source areas for dust storms has been an important area or research, with the Sahara (especially Bodélé) and western China being recognised as the strongest sources globally. Another major development has been the recognition of the degree to which dust storm activity has varied at a range of time scales, millennial, century, decadal, annual and seasonal. PMID:18783869

  10. Interaction of ice binding proteins with ice, water and ions.

    PubMed

    Oude Vrielink, Anneloes S; Aloi, Antonio; Olijve, Luuk L C; Voets, Ilja K

    2016-01-01

    Ice binding proteins (IBPs) are produced by various cold-adapted organisms to protect their body tissues against freeze damage. First discovered in Antarctic fish living in shallow waters, IBPs were later found in insects, microorganisms, and plants. Despite great structural diversity, all IBPs adhere to growing ice crystals, which is essential for their extensive repertoire of biological functions. Some IBPs maintain liquid inclusions within ice or inhibit recrystallization of ice, while other types suppress freezing by blocking further ice growth. In contrast, ice nucleating proteins stimulate ice nucleation just below 0 °C. Despite huge commercial interest and major scientific breakthroughs, the precise working mechanism of IBPs has not yet been unraveled. In this review, the authors outline the state-of-the-art in experimental and theoretical IBP research and discuss future scientific challenges. The interaction of IBPs with ice, water and ions is examined, focusing in particular on ice growth inhibition mechanisms. PMID:26787386

  11. Nowcasting of a supercell storm with VERA

    NASA Astrophysics Data System (ADS)

    Schneider, Stefan; Chimani, Barbara; Kaufmann, Hildegard; Bica, Benedikt; Lotteraner, Christoph; Tschannett, Simon; Steinacker, Reinhold

    2008-11-01

    On 13th May 2003, a severe weather event took place in Vienna, located in the eastern part of Austria at the foothills of the Alps. A supercell storm was reported by storm chasers, including a tornado, large hail and flash floods due to heavy precipitation, causing damage to both people and to goods in parts of Vienna downtown, which is a rather rare event in this region. For this reason, the development of the thunderstorm has been analysed from the synoptic scale down to the storm scale using different data sources, including, e.g. ground measurements, radio soundings and remote sensing data, for a better understanding of the onset and evolution of such a severe weather event. Furthermore, VERA (Vienna Enhanced Resolution Analysis), a real-time analysis system for surface data, was tested on this case study. Measurements which were available during the event have been used to reanalyse the pre-storm situation, testing the possibility of nowcasting such a storm.

  12. Winter 1994 Weather and Ice Conditions for the Laurentian Great Lakes.

    NASA Astrophysics Data System (ADS)

    Assel, Raymond A.; Janowiak, John E.; Young, Sharolyn; Boyce, Daron

    1996-01-01

    The Laurentian Great Lakes developed their most extensive ice cover in over a decade during winter 1994 [December-February 1993/94 (DJF 94)]. Extensive midlake ice formation started the second half of January, about 2 weeks earlier than normal. Seasonal maximal ice extent occurred in early February, again about 2 weeks earlier than normal. Winter 1994 maximum (normal) ice coverages on the Great Lakes are Lake Superior 96% (75%), Lake Michigan 78% (45%), Lake Huron 95% (68%), Lake Erie 97% (90%), and Lake Ontario 67% (24%). Relative to the prior 31 winters (1963-93), the extent of seasonal maximal ice cover for winter 1994 for the Great Lakes taken as a unit is exceeded by only one other winter (1979); however, other winters for individual Great Lakes had similar maximal ice covers.Anomalously strong anticyclonic circulation over the central North Pacific (extending to the North Pole) and an abnormally strong polar vortex centered over northern Hudson Bay combined to produce a circulation pattern that brought frequent air masses of Arctic and polar origin to the eastern third of North America. New records were set for minimum temperatures on 19 January 1994 at many locations in the Great Lakes region. A winter severity index consisting of the average November-February air temperatures averaged over four sites on the perimeter of the Great Lakes (Duluth, Minnesota; Sault Ste. Marie, Michigan; Detroit, Michigan; and Buffalo, New York) indicates that winter 1994 was the 21st coldest since 1779. The unseasonably cold air temperatures produced much-above-normal ice cover over the Great Lakes and created problems for lake shipping. Numerous fatalities and injuries were attributed to the winter weather, which included several ice and snow storms. The much-below-normal air temperatures resulted in enhanced lake-effect snowfall along downwind lake shores, particularly during early to midwinter, prior to extensive ice formation in deeper lake areas. The low air temperatures were also responsible for record 1-day electrical usage and multimillion dollar costs associated with snow removal, U.S. and Canadian Coast Guard operational assistance to ships beset in ice, damage to ships by ice, damage to public and private property by river ice jams and associated flooding, frozen underground water pipes, and damage to fruit trees.

  13. Storm Surge Simulation and Ensemble Forecast for Hurricane Irene (2011)

    NASA Astrophysics Data System (ADS)

    Lin, N.; Emanuel, K.

    2012-12-01

    Hurricane Irene, raking the U.S. East Coast during the period of 26-30 August 2011, caused widespread damage estimated at $15.8 billion and was responsible for 49 direct deaths (Avila and Cangialosi, 2011). Although the most severe impact in the northeastern U.S. was catastrophic inland flooding, with its unusually large size, Irene also generated high waves and storm surges and caused moderate to major coastal flooding. The most severe surge damage occurred between Oregon Inlet and Cape Hatteras in North Carolina (NC). Significant storm surge damage also occurred along southern Chesapeake Bay, and moderate and high surges were observed along the coast from New Jersey (NJ) northward. A storm surge of 0.9-1.8 m caused hundreds of millions of dollars in property damage in New York City (NYC) and Long Island, despite the fact that the storm made landfall to the west of NYC with peak winds of no more than tropical storm strength. Making three U.S. landfalls (in NC, NJ, and NY), Hurricane Irene provides a unique case for studying storm surge along the eastern U.S. coastline. We apply the hydrodynamic model ADCIRC (Luettich et al. 1992) to conduct surge simulations for Pamlico Sound, Chesapeake Bay, and NYC, using best track data and parametric wind and pressure models. The results agree well with tidal-gauge observations. Then we explore a new methodology for storm surge ensemble forecasting and apply it to Irene. This method applies a statistical/deterministic hurricane model (Emanuel et al. 2006) to generate large numbers of storm ensembles under the storm environment described by the 51 ECMWF ensemble members. The associated surge ensembles are then generated with the ADCIRC model. The numerical simulation is computationally efficient, making the method applicable to real-time storm surge ensemble forecasting. We report the results for NYC in this presentation. The ADCIRC simulation using the best track data generates a storm surge of 1.3 m and a storm tide of 2.1 m at the Battery, NYC, which agree well with the observed storm surge of 1.33 m and storm tide of 2.12 m, although the simulated surge arrives about 2 hours earlier than the observed. Based on the surge climatology estimated by Lin et al. (2012), Hurricane Irene's storm surge is approximately a 60-year event for NYC, but its storm tide, with the surge happening right at the high astronomical tide, is a 100-year event. Lin et al. (2012) also projected that such 100-year storm tide events might occur on average every 3-20 years by the end of the century, under the IPCC A1B emission scenario and a 1-m sea level rise. The ensemble forecasting, starting from two and one days (each with 1000 ensembles) before Irene's first landfall in NC, shows that Irene's actual storm surge at the Battery had a chance of about 9% and 10% to be exceeded, respectively. The largest surges among the two ensemble sets are 2.28 m and 2.05 m, respectively. If happening at the high tide, as with Hurricane Irene, the worst-case storm tides would be about 3-3.2 m, similar to the highest historical water level at the Battery due to a hurricane in 1821. Lin et al. (2012) estimated that such a storm tide of about 3.1 m had a return period of about 500 years under current climate conditions, but the return period might become 25-240 years by the end of the century, under the IPCC A1B emission scenario and a 1-m sea level rise.

  14. Storm morphology and electrification from CHUVA-GLM Vale do Paraiba field campaign

    NASA Astrophysics Data System (ADS)

    Albrecht, R. I.; Morales, C.; Lima, W. F.; Biscaro, T. S.; Mello, I. B.

    2013-12-01

    CHUVA [Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)] Project is a series of itinerant field campaigns with the objective of characterizing the main precipitating systems observed in Brazil as a support for Global Precipitation Measurement (GPM) mission. The fourth field campaign was conducted at Vale do Paraiba in São Paulo, Brazil, from 1 November 2011 to 31 March 2012. For this specific field experiment, several lightning location systems (LLS) were deployed as part of GOES-R Geostationary Lightning Mapper (GLM) and MTG Lightning Imager (LI) pre-launch activities, resulting in a joint effort between INPE, USP, NOAA, NASA, EUMETSAT and several vendors of operational LLS for network intercomparison and GLM and LI proxy data generation. Among these networks, 4 of them detect total (intra-cloud and cloud-to-ground) lightning, including a Lightning Mapping Array (LMA), allowing a detailed description of the cloud electrification. To depict precipitating weather systems, CHUVA uses a mobile XPOL Doppler Radar, micro-rain radars, disdrometers, rain gauges, microwave radiometer, Lidar, and a GPS network for water vapor retrievals. Also, Vale do Paraíba and São Paulo are covered by 3 operational S-band radars. The precipitation data collected by these radars and the lightning detected by the LLS were grouped in a structure of storm features built by tracking the precipitating systems and its associated lightning. This storm feature database makes it easier to group similar convective systems and compare them in terms of area, lifetime, rainfall and convection intensity, lightning activity, and more. During this field experiment a large variety of cloud systems were sampled: cold fronts, squall lines, the South Atlantic Convergence Zone (SACZ) and local convective systems. Microphysical characteristics (such as hydrometeor identification and ice/water mass) of these summer 2011-2012 precipitating systems can be inferred from the X-Pol and 3 operational S-band radars, and the LLS provide detailed information about the storms electrical activity (such as charge centers and lighting propagation processes). We will summarize the results from this experiment providing an in-depth study of the relationship between the storm type and its microphysical-electrical characteristics by presenting the role of storm morphology on cloud electrification, rainfall and severe weather (hail and damaging winds) production. Also, this storm feature database will provide an easy access to CHUVA data for case studies and GLM and LI activities.

  15. Severe Local Storms Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Gladich, I.; Gallai, I.; Giaiotti, D. B.; Morgan, G. M.; Stel, F.

    2009-09-01

    Local storms always had a deep impact on people communities, mainly because of the severe damage caused, because of their unpredictability and, up to a few years ago, even because of the lack of knowledge and awareness on their physical origin. Because of this large impact on real life and on imagination, people needed and wanted to describe and report the occurrence of these events, giving them suited names. Often, these nouns are related to the myth developed to explain the cause of the events. In this work, a short presentation and description of the popular nouns used to describe severe local storm events in different areas of the World is given. Countries taken into account span from Italy, moving toward Africa and reaching a few communities of Native Americans. The etymology of the names gives interesting information, useful even under the anthropological point of view, on the Culture and Believes of the peoples who adopted them. This research work is the result of an underground activity carried out in the last ten years by the authors, during their contacts with students and researchers coming from different Countries and mainly met at the International Center for Theoretical Physics in Trieste.

  16. Reducing uncertainty - responses for electricity utilities to severe solar storms

    NASA Astrophysics Data System (ADS)

    Gaunt, Charles Trevor

    2014-01-01

    Until recently, electricity utilities in mid- and low-latitude regions believed that solar storms had no (or only insignificant) effect on their power systems. Then it was noticed that the onset of damage in several large transformers, leading to their failure, correlated very closely with the Halloween storm of 2003. Since then engineers have started to appreciate that a very severe storm could have serious consequences outside the high-latitude regions. There are many uncertainties in predicting the effects of solar storms on electrical systems. The severity and time of arrival of a storm are difficult to model; so are the geomagnetically induced currents (GICs) expected to flow in the power networks. Published information about the responses of different types of transformers to GICs is contradictory. Measurements of the abnormal power flows in networks during solar storms generally do not take into account the effects of the current distortion and unbalance, potentially giving misleading signals to the operators. The normal requirement for optimum system management, while allowing for the possibility of faults caused by lightning, birds and other causes, limits the capacity of system operators to respond to the threats of GICs, which are not assessed easily by the N - 1 reliability criterion. A utility's response to the threat of damage by GICs depends on the expected frequency and magnitude of solar storms. Approaches to formulating a response are located in a system model incorporating space physics, network analysis, transformer engineering, network reliability and decision support and the benefits are identified. Approaches adopted in high-latitude regions might not be appropriate where fewer storms are expected to reach damaging levels. The risks of an extreme storm cannot be ignored, and understanding the response mechanisms suitable for low-latitude regions has the capacity to inform and reduce the uncertainty for power systems planners and operators worldwide.

  17. European Winter Storms in the ECMWF Ensemble Prediction System

    NASA Astrophysics Data System (ADS)

    Osinski, Robert; Lorenz, Philip; Kruschke, Tim; Leckebusch, Gregor C.; Ulbrich, Uwe

    2013-04-01

    As European winter storms can provoke very large damages, estimations of the probability of occurrence are of economical and sociological importance. The estimations of return periods for the strongest events underlie large uncertainties, which arise from the limited available data, available from historical meteorological records or reanalysis data. A gain of information can be obtained from ensemble forecasts. In this work the Ensemble Prediction System (EPS) from the European Center of Medium-Range Weather Forecast (ECMWF) is analyzed for its suitability to improve the estimates of return periods of very rare and severe events. The EPS dataset contains up to 51 ensemble members, starting twice a day and each integrated over 10 days. The storm systems are identified and characterized using a wind field tracking algorithm developed by Leckebusch et al. (2008). Exceedances of the local 98th percentile of 10m wind speed are used, and calculating the cube of these exceedances, accumulated spatially and temporally, an objective storm severity measure (SSI) is determined. Taking the distribution of values into account, the measure of storm severity relates to storm damages. Using ERA-Interim as a reference dataset, it is shown that the general distributions of storm properties in the EPS are realistic. The EPS representations of a single ERA-Interim storm show a wide range of variability in terms of size, duration and severity. Hence better estimations of return periods of winter storms are possible using the EPS, as well as studies of general aspects of storms, like the correlation between intensification and storm duration. Nevertheless for an estimation of return periods, it must be taken into account, that the simulated events in the EPS are not independent of each other.

  18. Facilitating Adaptation to Changing Storm Surge Patterns in Western Alaska.

    NASA Astrophysics Data System (ADS)

    Murphy, K. A.; Holman, A.; Reynolds, J.

    2014-12-01

    Coastal regions of North America are already experiencing the effects of climate change and the consequences of new storm patterns and sea level rise. These climate change effects are even more pronounced in western Alaska where the loss of sea ice in early winter and spring are exposing the coast to powerful winter storms that are visibly altering the landscape, putting coastal communities at risk, and are likely impacting important coastal wildlife habitat in ways we don't yet understand. The Western Alaska Landscape Conservation Cooperative has funded a suite of projects to improve the information available to assist managers and communities to adapt changes in coastal storms and their impacts. Projects range from modeling tide, wave and storm surge patters, to ShoreZone and NHD mapping, to bathymetry mapping, community vulnerability assessments and risks to important wildlife habitat. This group of diverse projects has helped stimulate momentum among partners which will lead to better tools for communities to respond to dangerous storms. For example, the State of Alaska and NOAA are working together to compile a series of community-scale maps that utilize best-available datasets to streamline communication about forecasted storm surges, local elevations and potentially impacted infrastructure during storm events that may lead to coastal flooding.

  19. Ice, Ice, Baby!

    NASA Astrophysics Data System (ADS)

    Hamilton, C.

    2008-12-01

    The Center for Remote Sensing of Ice Sheets (CReSIS) has developed an outreach program based on hands-on activities called "Ice, Ice, Baby". These lessons are designed to teach the science principles of displacement, forces of motion, density, and states of matter. These properties are easily taught through the interesting topics of glaciers, icebergs, and sea level rise in K-8 classrooms. The activities are fun, engaging, and simple enough to be used at science fairs and family science nights. Students who have participated in "Ice, Ice, Baby" have successfully taught these to adults and students at informal events. The lessons are based on education standards which are available on our website www.cresis.ku.edu. This presentation will provide information on the activities, survey results from teachers who have used the material, and other suggested material that can be used before and after the activities.

  20. Total Lightning and Radar Storm Characteristics Associated with Severe Storms in Central Florida

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J; Raghavan, R.; Buechler, Dennis; Hodanish, S.; Sharp, D.; Williams, E.; Boldi, B.; Matlin, A.; Weber, M.

    1998-01-01

    This paper examines the three dimensional characteristics of lightning flashes and severe storms observed in Central Florida during 1997-1998. The lightning time history of severe and tornadic storms were captured during the on-going ground validation campaign supporting the Lightning Imaging Sensor (LIS) experiment on the Tropical Rainfall Measuring Mission (TRMM). The ground validation campaign is a collaborative experiment that began in 1997 and involves scientists at the Global Hydrology and Climate Center, MIT/Lincoln Laboratories, and the NWS Forecast Office at Melbourne, FL. Lightning signatures that may provide potential early warning of severe storms are being evaluated by the forecasters at the NWS/MLB office. Severe storms with extreme flash rates sometimes exceeding 300 per minute and accompanying rapid increases in flash rate prior to the onset of the severe weather (hall, damaging winds, tornadoes) have been reported by Hodanish et al. and Williams et al. (1998-this conference). We examine the co-evolving changes in storm structure (mass, echo top, shear, latent heat release) and kinematics associated with these extreme and rapid flash rate changes over time. The flash frequency and density are compared with the three dimensional radar reflectivity structure of the storm to help interpret the possible mechanisms producing the extreme and rapidly increasing flash rates. For two tornadic storms examined thus far, we find the burst of lightning is associated with the development of upper level rotation in the storm. In one case, the lightning burst follows the formation of a bounded weak echo region (BWER). The flash rates diminish with time as the rotation develops to the ground in conjunction with the decent of the reflectivity core. Our initial findings suggest the dramatic increase of flash rates is associated with a sudden and dramatic increase in storm updraft intensity which we hypothesize is stretching vertical vorticity as well as enhancing the development of the mixed phase region of the storm. We discuss the importance of these factors in producing both the observed extreme flash rates and the severe weather that follows in these storms and others to be presented.

  1. Overview of the ARkStorm scenario

    USGS Publications Warehouse

    Porter, Keith; Wein, Anne; Alpers, Charles; Baez, Allan; Barnard, Patrick L.; Carter, James; Corsi, Alessandra; Costner, James; Cox, Dale; Das, Tapash; Dettinger, Mike; Done, James; Eadie, Charles; Eymann, Marcia; Ferris, Justin; Gunturi, Prasad; Hughes, Mimi; Jarrett, Robert; Johnson, Laurie; Le-Griffin, Hanh Dam; Mitchell, David; Morman, Suzette; Neiman, Paul; Olsen, Anna; Perry, Suzanne; Plumlee, Geoffrey; Ralph, Martin; Reynolds, David; Rose, Adam; Schaefer, Kathleen; Serakos, Julie; Siembieda, William; Stock, Jonathan; Strong, David; Wing, Ian Sue; Tang, Alex; Thomas, Pete; Topping, Ken; Wills, Chris; Jones, Lucile

    2011-01-01

    The U.S. Geological Survey, Multi Hazards Demonstration Project (MHDP) uses hazards science to improve resiliency of communities to natural disasters including earthquakes, tsunamis, wildfires, landslides, floods and coastal erosion. The project engages emergency planners, businesses, universities, government agencies, and others in preparing for major natural disasters. The project also helps to set research goals and provides decision-making information for loss reduction and improved resiliency. The first public product of the MHDP was the ShakeOut Earthquake Scenario published in May 2008. This detailed depiction of a hypothetical magnitude 7.8 earthquake on the San Andreas Fault in southern California served as the centerpiece of the largest earthquake drill in United States history, involving over 5,000 emergency responders and the participation of over 5.5 million citizens. This document summarizes the next major public project for MHDP, a winter storm scenario called ARkStorm (for Atmospheric River 1,000). Experts have designed a large, scientifically realistic meteorological event followed by an examination of the secondary hazards (for example, landslides and flooding), physical damages to the built environment, and social and economic consequences. The hypothetical storm depicted here would strike the U.S. West Coast and be similar to the intense California winter storms of 1861 and 1862 that left the central valley of California impassible. The storm is estimated to produce precipitation that in many places exceeds levels only experienced on average once every 500 to 1,000 years. Extensive flooding results. In many cases flooding overwhelms the state's flood-protection system, which is typically designed to resist 100- to 200-year runoffs. The Central Valley experiences hypothetical flooding 300 miles long and 20 or more miles wide. Serious flooding also occurs in Orange County, Los Angeles County, San Diego, the San Francisco Bay area, and other coastal communities. Windspeeds in some places reach 125 miles per hour, hurricane-force winds. Across wider areas of the state, winds reach 60 miles per hour. Hundreds of landslides damage roads, highways, and homes. Property damage exceeds $300 billion, most from flooding. Demand surge (an increase in labor rates and other repair costs after major natural disasters) could increase property losses by 20 percent. Agricultural losses and other costs to repair lifelines, dewater (drain) flooded islands, and repair damage from landslides, brings the total direct property loss to nearly $400 billion, of which $20 to $30 billion would be recoverable through public and commercial insurance. Power, water, sewer, and other lifelines experience damage that takes weeks or months to restore. Flooding evacuation could involve 1.5 million residents in the inland region and delta counties. Business interruption costs reach $325 billion in addition to the $400 property repair costs, meaning that an ARkStorm could cost on the order of $725 billion, which is nearly 3 times the loss deemed to be realistic by the ShakeOut authors for a severe southern California earthquake, an event with roughly the same annual occurrence probability. The ARkStorm has several public policy implications: (1) An ARkStorm raises serious questions about the ability of existing federal, state, and local disaster planning to handle a disaster of this magnitude. (2) A core policy issue raised is whether to pay now to mitigate, or pay a lot more later for recovery. (3) Innovative financing solutions are likely to be needed to avoid fiscal crisis and adequately fund response and recovery costs from a similar, real, disaster. (4) Responders and government managers at all levels could be encouraged to conduct risk assessments, and devise the full spectrum of exercises, to exercise ability of their plans to address a similar event. (5) ARkStorm can be a reference point for application of Federal Emergency Ma

  2. Storms and Moons

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons Long Range Reconnaissance Imager (LORRI) took this 2-millisecond exposure of Jupiter at 04:41:04 UTC on January 24, 2007. The spacecraft was 57 million kilometers (35.3 million miles) from Jupiter, closing in on the giant planet at 41,500 miles (66,790 kilometers) per hour. At right are the moons Io (bottom) and Ganymede; Ganymede's shadow creeps toward the top of Jupiter's northern hemisphere.

    Two of Jupiter's largest storms are visible; the Great Red Spot on the western (left) limb of the planet, trailing the Little Red Spot on the eastern limb, at slightly lower latitude. The Great Red Spot is a 300-year old storm more than twice the size of Earth. The Little Red Spot, which formed over the past decade from the merging of three smaller storms, is about half the size of its older and 'greater' counterpart.

  3. TWINS Geomagnetic Storm Catalog

    NASA Astrophysics Data System (ADS)

    Perez, J. D.; Buzulukova, N.; Fok, M. C. H.; Goldstein, J.; McComas, D. J.; Valek, P. W.; Wood, K. D.

    2014-12-01

    Results from TWINS 1 & 2 observations and CIMI simulations have been cataloged for geomagnetic storms with Dst or SYM/H below -100 nT in the years 2008-2013. TWINS (Two Wide-angle Imaging Neutral-atom Spectrometers) provides ENA (Energetic Neutral Atom) images on a nearly continuous basis over a broad energy range (1-100 keV/amu). CIMI (Comprehensive Inner-Magnetosphere Ionosphere) model combines the ability to simulate ringcurrent dynamics solving for particle distributions and corresponding ENA fluxes with the ability to calculate radiation belt particle fluxes and inner plasma sheet electron precipitation. For each storm, the TWINS Storm Catalog provides 1-hour-samples ENA images, corresponding deconvolved 2D equatorial ion number flux and pitch angle anisotropy, and the energy spectrum and pitch angle distribution at the position of the peak of the number flux. Also included for direct comparison are results from CIMI simulations for the same quantities. The catalog is available to all interested parties. It will be shown how users of the Catalog will have the opportunity to perform a number of studies related to the dynamics of the ring current during geomagnetic storms. For example, the storms cataloged to date show trends in changes of the energy spectrum from high energy tails deficient in ions as compared to a Maxwellian, to a high energy tail and finally approaching a Maxwellian. Likewise, pitch angle distributions are shown to evolve from having more perpendicular than parallel ions to a nearly isotropic distribution. It is also possible to investigate differences in ring current behavior for CIR and ICME driven storms.It is to be noted that in this context, opportunities for results from the measurements and simulations on a finer time scale, for spectra as a function of equatorial position, and similarly for pitch angle distributions are available by request.

  4. Dust Storms: Why Are Dust Storms a Concern

    MedlinePLUS

    ... conditions are extremely dry. Powered by intense ground heating, thunderstorms can produce strong downdrafts. These downdrafts blow up loose sand on the desert floor, creating a dust storm. Dust storms can contain ...

  5. Storm Warning Service

    NASA Technical Reports Server (NTRS)

    1993-01-01

    A Huntsville meteorologist of Baron Services, Inc. has formed a commercial weather advisory service. Weather information is based on data from Marshall Space Flight Center (MSFC) collected from antennas in Alabama and Tennessee. Bob Baron refines and enhances MSFC's real time display software. Computer data is changed to audio data for radio transmission, received by clients through an antenna and decoded by computer for display. Using his service, clients can monitor the approach of significant storms and schedule operations accordingly. Utilities and emergency management officials are able to plot a storm's path. A recent agreement with two other companies will promote continued development and marketing.

  6. ICESat Estimates of Forest Canopy Height Loss for Post-Hurricane Timber Damage Detection and Assessment Decision Support

    NASA Astrophysics Data System (ADS)

    Jones, J. B.; Childs, L. M.; Matthews, C. T.; Spindel, D. L.

    2007-12-01

    Along the Gulf Coast and Atlantic Seaboard, tropical storms and hurricanes annually cause defoliation and deforestation amongst coastal forests. Following a severe storm, there is an urgent need to assess the impact on timber growth so resources can be targeted to assist in recovery. It is also important to identify these damaged areas due to their increased risk of fire and susceptibility to invasive species. Current methods of detection involve assessment through ground-based field surveys, aerial surveys, computer modeling, space- borne remote sensing, and Forest Inventory and Analysis field plots. This project focuses on a need for methods that are at once more synoptic than field surveys and more closely linked to the phenomenology of tree loss and damage than passive remote sensing methods. The primary concentration is on the utilization of Ice, Cloud, and land Elevation Satellite (ICESat) data products to detect changes in forest canopy height as an indicator of post- hurricane forest disturbances. ICESat is a NASA spaceborne lidar mission that utilizes green and infrared light to determine land surface vertical structure in 70m elliptical footprints. While created to primarily measure polar ice sheet mass and cloud property information, it has proven successful in measuring forest canopy height. By analyzing ICESat data over areas affected by Hurricane Katrina, this study demonstrates that ICESat may serve as a useful indicator of a storm's direct effects as well as its long term consequences.

  7. Principles of major geomagnetic storms forecasting

    NASA Astrophysics Data System (ADS)

    Zagnetko, Alexander; Applbaum, David; Dorman, Lev; Pustil'Nik, Lev; Sternlieb, Abraham; Zukerman, Igor

    According to NOAA Space Weather Scales, geomagnetic storms of scales G5 (3-hour index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) are dangerous for people technology and health (influence on power systems, on spacecraft operations, on HF radio-communications and others). To prevent these serious damages will be very important to forecast dangerous geomagnetic storms. In many papers it was shown that in principle for this forecasting can be used data on CR intensity and CR anisotropy changing before SC of major geomagnetic storms accompanied by sufficient Forbush-decreases (e.g., Dorman et al., 1995, 1999). In this paper we consider all types of observed precursor effects in CR what can be used for forecasting of great geomagnetic storms and possible mechanisms of these precursor effects origin. REFERENCES: Dorman L.I., et al. "Cosmic-ray forecasting features for big Forbush-decreases". Nuclear Physics B, 49A, 136-144 (1995). L.I.Dorman, et al, "Cosmic ray Forbush-decrease as indicators of space dangerous phenomenon and possible use of cosmic ray data for their pre-diction", Proc. of 26-th Intern. Cosmic Ray Conference, Salt Lake City, 6, 476-479 (1999).

  8. Winter Storms and Extreme Cold

    MedlinePLUS

    ... Flow Pandemic Severe Weather Thunderstorms & Lightning Tornadoes Tsunamis Volcanoes Wildfires Winter Storms & Extreme Cold Space Weather Prepare ... Flow Pandemic Severe Weather Thunderstorms & Lightning Tornadoes Tsunamis Volcanoes Wildfires Winter Storms & Extreme Cold Space Weather Main ...

  9. California's Perfect Storm

    ERIC Educational Resources Information Center

    Bacon, David

    2010-01-01

    The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…

  10. Recovery from major storms

    SciTech Connect

    Holeman, J.S.

    1980-01-01

    Public Service Company of Oklahoma's transmission and distribution system is in tornado alley, and it seems the number of tornados hitting some part of the system is increasing each year. In the past 30 years, Tulsa his been hit 7 times, and experienced 3 very wide and destructive tornado storm systems between 1971 and 1975.

  11. Stories from the Storm

    ERIC Educational Resources Information Center

    Smoczynski, Carol

    2007-01-01

    For four months, St. Paul's Episcopal School in the Lakeview neighborhood of New Orleans, Louisiana remained closed after Hurricane Katrina ravaged the entire city in August 2005. The storm left St. Paul's campus under nine feet of water for two weeks, destroying many buildings and the entire first floor of the campus. As the only remaining art…

  12. California's Perfect Storm

    ERIC Educational Resources Information Center

    Bacon, David

    2010-01-01

    The United States today faces an economic crisis worse than any since the Great Depression of the 1930s. Nowhere is it sharper than in the nation's schools. Last year, California saw a perfect storm of protest in virtually every part of its education system. K-12 teachers built coalitions with parents and students to fight for their jobs and their…

  13. STORM INLET FILTRATION DEVICE

    EPA Science Inventory

    Five field tests were conducted to evaluate the effectiveness of the Storm and Groundwater Enhancement Systems (SAGES) device for removing contaminants from stormwater. The SAGES device is a three-stage filtering system that could be used as a best management practices (BMP) retr...

  14. Weathering the storm

    SciTech Connect

    Burr, M.T.

    1993-02-01

    When Hurricane Andrew struck, thousands were displaced from their homes in Florida and Louisiana. Now, months after the winds ceased blowing, the storm is causing hardship once again. Insurance companies sustaining large losses in recent months from a number of natural disasters - including the hurricane - are now passing those losses on to their customers. Independent power companies are no exception.

  15. Desert Storm environmental effects

    NASA Astrophysics Data System (ADS)

    Kimball, E. W.

    It is noted that after more than six months of operation of the Patriot launch station in the Saudi Arabian desert no problems that were attributed to high temperature occurred. The environmental anomalies that did occur were cosmetic in nature and related to dust and salt fog. It was concluded that the Desert Storm environmental effects were typical of worldwide hot, dry climates.

  16. Wind damage and salinity effects of Hurricanes Katrina and Rita on coastal baldcypress forests of Louisiana: Chapter 6F in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Doyle, Thomas W.; Conner, William H.; Day, Richard H.; Krauss, Ken W.; Swarzenski, Christopher M.

    2007-01-01

    The frequency of hurricane landfall in a given coastal stretch may play a more important role in the ecology of coastal forests than previously thought because of direct and indirect impacts of fallen trees and the introduction of salt water that lingers long after the storm passes. Findings show that surge events can inundate interior freshwater forests many miles from the coast and elevate soil salinities twofold to threefold. These elevated salinities may contribute to delayed mortality of certain tree species and set the stage for eventual forest decline and dieback.

  17. Investigating the marginal ice zone on the Newfoundland Shelf

    NASA Astrophysics Data System (ADS)

    Smith, Peter C.; Tang, C. L.; MacPherson, J. Ian; McKenna, Richard F.

    From the ice and current data collected over the Newfoundland Shelf by the second Canadian Atlantic Storms Program (CASP II), it is evident that ice motion is affected by wind-generated ocean current. This points to the importance of coupled ice-ocean response to wind forcing in the study of shortterm ice motion and operational ice forecasting. The mutual influence of ice and the ocean can also be seen in the water properties.To study the mature stages of explosive cyclogenesis in east coast winter storms and to investigate their influence on the circulation and sea ice properties on the Newfoundland continental shelf and Grand Banks, CASP II was conducted by scientists from the Bedford Institute of Oceanography (BIO), the Atmospheric Environment Service (AES), the National Research Council (NRC), and many universities, private companies, and other government agencies.

  18. Flood early warning along the East Coast of Scotland and the Storm of December 2012

    NASA Astrophysics Data System (ADS)

    Cranston, Michael; Hu, Keming

    2013-04-01

    Flood warning is at the heart of improved approaches to flood risk management in Scotland. The Scottish Environment Protection Agency (SEPA) is committed to reducing the impact of coastal flooding through the provision of reliable and timely flood warnings. They have specifically set out a programme of enhancing coastal flood forecasting through modelling and improved understanding of coastal flooding processes and improved approaches to wind and wave forecasting in coastal and tidal waters. In 2011, SEPA commissioned a project to develop a flood forecasting and warning system for the Firths of Forth and Tay along Scotland's North East coast. The new approach to flood forecasting has just been implemented into the Flood Early Warning System (FEWS) (Cranston and Tavendale, 2012) to contribute to the real-time flood forecasting and warning service from November 2012. The new system enables the prediction of coastal and tidal flooding and allows SEPA to warn people about potential flooding, using the latest advances in coastal modelling. The approach to the forecasting system includes: the transformation of tidal surge forecasts from Leith to 28 flood warning sites along the coast and inside the Firths of Forth and Tay; the transformation of offshore wave forecasts to inshore locations including the Firths of Forth and Tay; and the transformation of inshore wave forecasts to mean wave overtopping forecasts at six key communities at risk. In December 2012, some communities along the east coast of Scotland experienced their most severe storm damage since the Great 1953 Storm. This paper will discuss how the flood forecasting system was developed and how the system was utilised in real time during the recent storm. References Cranston, M. D. and Tavendale, A. C. W. (2012) Advances in operational flood forecasting in Scotland. Proceedings of the ICE - Water Management, 165, 2, 79-87.

  19. Meteorology: dusty ice clouds over Alaska.

    PubMed

    Sassen, Kenneth

    2005-03-24

    Particles lofted into the atmosphere by desert dust storms can disperse widely and affect climate directly through aerosol scattering and absorption. They can also affect it indirectly by changing the scattering properties of clouds and, because desert dusts are particularly active ice-forming agents, by affecting the formation and thermodynamic phase of clouds. Here I show that dust storms that occurred in Asia early in 2004 created unusual ice clouds over Alaska at temperatures far warmer than those expected for normal cirrus-cloud formation. PMID:15791245

  20. The Value of Wetlands in Protecting Southeast Louisiana from Hurricane Storm Surges

    PubMed Central

    Barbier, Edward B.; Georgiou, Ioannis Y.; Enchelmeyer, Brian; Reed, Denise J.

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively. PMID:23536815

  1. The value of wetlands in protecting southeast louisiana from hurricane storm surges.

    PubMed

    Barbier, Edward B; Georgiou, Ioannis Y; Enchelmeyer, Brian; Reed, Denise J

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively. PMID:23536815

  2. Enhanced seasonality of storm track intensity under global warming

    NASA Astrophysics Data System (ADS)

    Lehmann, Jascha; Coumou, Dim; Frieler, Katja; Eliseev, Alexey; Levermann, Anders

    2013-04-01

    The seasonal cycle of extratropical storms is an important determinant of climatic conditions in regions along mid-latitude storm tracks. Severe storms during winter can cause severe damages over continents, whereas summer storms can actually bring relief to continents subject to prolonged hot and dry periods. It is thus of crucial importance to gain greater insight into the underlying mechanisms driving the seasonal cycle, as well as to assess future scenarios. Here we analyze the seasonality of extratropical storms in 20th and 21st century climates using CMIP5 model runs, based on different greenhouse gas emission scenarios. The synoptic-scale kinetic energy is derived for each individual month using a 2-6 day bandpass filter on daily wind fields. Intra-seasonal variations in storm track intensity are investigated using t-test analysis. The results indicate an enhanced seasonality in storm intensity under all future emission scenarios over both the Atlantic and Pacific region. Moreover, the amplification is significantly stronger for higher emissions. Differences in seasonality trends between the Northern and Southern Hemisphere as well as the underlying mechanisms will be discussed.

  3. Mapping Hurricane Inland-Storm Tides

    NASA Astrophysics Data System (ADS)

    Turco, M.; East, J. W.; Dorsey, M. E.; McGee, B. D.; McCallum, B. E.; Pearman, J. L.; Sallenger, A. H.; Holmes, R. R.; Berembrock, C. E.; Turnipseed, D. P.; Mason, R. R.

    2008-12-01

    Historically, hurricane-induced storm-tides were documented through analysis of structural or vegetative damage and high-water marks. However, these sources rarely provided quantitative information about the timing of the flooding, the sequencing of multiple paths by which the storm-surge waters arrived, or the magnitude of waves and wave run-up comprising floodwaters. In response to these deficiencies, the U.S. Geological Survey (USGS) developed and deployed an experimental mobile storm-surge network to provide detailed time-series data for selected hurricane landfalls. The USGS first deployed the network in September 2005 as Hurricane Rita approached the Texas and Louisiana coasts. The network for Rita consisted of 32 water-level and 14 barometric-pressure monitoring sites. Sensors were located at distances ranging from a few hundred feet to approximately 30 miles inland and sampled 4,000 square miles. Deployments have also occurred for Hurricanes Wilma, Gustav, and Ike. For Hurricane Gustav, more than 100 water level sensors were deployed. Analysis of the water-level data enable construction of maps depicting surge topography through time and space, essentially rendering elements of a 3-dimensional view of the storm-surge dome as it moves on- shore, as well as a map of maximum water-level elevations. The USGS also acquired LIDAR topographic data from coasts impacted by hurricanes. These data reveal extreme changes to the beaches and barrier islands that arise from hurricane storm surge and waves. By better understanding where extreme changes occur along our coasts, we will be able to position coastal structures away from hazards.

  4. Icing rate meter estimation of in-cloud cable icing

    SciTech Connect

    McComber, P.; Druez, J.; Laflamme, J.

    1994-12-31

    In many northern countries, the design and reliability of power transmission lines are closely related to atmospheric icing overloads. It is becoming increasingly important to have reliable instrument systems to warn of icing conditions before icing loads become sufficient to damage the power transmission network. Various instruments are presently being developed to provide better monitoring of icing conditions. One such instrument is the icing rate meter (IRM) which counts icing and de-icing cycles per unit time on a standard probe and can be used to estimate the icing rate on nearby cables. The calibration presently used was originally based on experiments conducted in a cold room. Even though this calibration has shown that the IRM estimation already offers an improvement over model prediction based on standard meteorological parameters, it can certainly be improved further with appropriate field data. For this purpose, the instrument was tested on an icing test site at Mt. Valin (altitude 902 m) Quebec, Canada. In this paper measurements from twelve in-cloud icing events during the 1991--92 winter are divided into one hour periods of icing to provide the experimental icing rate data. The icing rates measured on a 12.5 mm and a 35 mm cables are then compared with the number of IRM signals, also for one hour periods, in relation to initial ice load, temperature, wind velocity and direction. From this analysis, a better calibration for the IRM instrument is suggested. The improvement of the IRM estimation is illustrated by making a comparison with measurements, of the icing load estimation with the old and new calibrations for two complete icing events.

  5. Observed and Simulated Radiative and Microphysical Properties of Tropical Convective Storms

    NASA Technical Reports Server (NTRS)

    DelGenio, Anthony D.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Increases in the ice content, albedo and cloud cover of tropical convective storms in a warmer climate produce a large negative contribution to cloud feedback in the GISS GCM. Unfortunately, the physics of convective upward water transport, detrainment, and ice sedimentation, and the relationship of microphysical to radiative properties, are all quite uncertain. We apply a clustering algorithm to TRMM satellite microwave rainfall retrievals to identify contiguous deep precipitating storms throughout the tropics. Each storm is characterized according to its size, albedo, OLR, rain rate, microphysical structure, and presence/absence of lightning. A similar analysis is applied to ISCCP data during the TOGA/COARE experiment to identify optically thick deep cloud systems and relate them to large-scale environmental conditions just before storm onset. We examine the statistics of these storms to understand the relative climatic roles of small and large storms and the factors that regulate convective storm size and albedo. The results are compared to GISS GCM simulated statistics of tropical convective storms to identify areas of agreement and disagreement.

  6. Layered Ice

    USGS Multimedia Gallery

    An ice jam on the East Branch Wesserunsett Stream in Athens, Maine in January 2014 left 3-5 ft ice walls on the riverbanks. On a January 21, 2014 site visit Nick Stasulis and Charlie Culbertson chisled away some of the ice wall so a discharge measurement could be made. The ice walls showed the ...

  7. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Macgorman, D. R.

    1985-01-01

    During FY-85, Researchers conducted a field program and analyzed data. The field program incorporated coordinated measurements made with a NASA U2. Results include the following: (1) ground truth measurements of lightning for comparison with those obtained by the U2; (2) analysis of dual-Doppler radar and dual-VHF lightning mapping data from a supercell storm; (3) analysis of synoptic conditions during three simultaneous storm systems on 13 May 1983 when unusually large numbers of positive cloud-to-ground (+CG) flashes occurred; (4) analysis of extremely low frequency (ELF) wave forms; and (5) an assessment of a cloud -ground strike location system using a combination of mobile laboratory and fixed-base TV video data.

  8. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Arnold, R. T.; Rust, W. D.

    1984-01-01

    Successful ground truth support of U-2 overflights was been accomplished. Data have been reduced for 4 June 1984 and some of the results have been integrated into some of MSFC's efforts. Staccato lightning (multiply branched, single stroke flash with no continuing current) is prevalent within the rainfree region around the main storm updraft and this is believed to be important, i.e., staccato flashes might be an important indicator of severe storm electrification. Results from data analysis from two stations appear to indicate that charge center heights can be estimated from a combination of intercept data with data from the fixed laboratory at NSSL. An excellent data base has been provided for determining the sight errors and efficiency of NSSL's LLP system. Cloud structures, observable in a low radar reflectivity region and on a scale smaller than is currently resolved by radar, which appear to be related to electrical activity are studied.

  9. Dust Storm, Aral Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Aral Sea has shrunk to less than half its size since 1985. The Aral Sea receives little water (sometimes no water) from the two major rivers that empty into it-the Syr Darya and Amu Darya. Instead, the river water is diverted to support irrigation for the region's extensive cotton fields. Recently, water scarcity has increased due to a prolonged drought in Central Asia. As the Aral Sea recedes, its former sea bed is exposed. The Aral's sea bed is composed of fine sediments-including fertilizers and other agricultural chemicals-that are easily picked up by the region's strong winds, creating thick dust storms. The International Space Station crew observed and recorded a large dust storm blowing eastward from the Aral Sea in late June 2001. This image illustrates the strong coupling between human activities (water diversions and irrigation), and rapidly changing land, sea and atmospheric processes-the winds blow across the

  10. Storm Surge Flood Hazards of Hurricane Katrina 2005

    NASA Astrophysics Data System (ADS)

    Li, L.; Daneshvaran, S.; Jakubowski, S.

    2008-05-01

    . Flooding due to hurricane storm surge is one of the most damaging natural disasters in tropical and sub-tropical coastal regions. Storm surge peril can cause catastrophic loss to coastal properties and loss of life. Estimated hurricane flood risk is often statistically-based and relies on historical data. It provides catastrophic loss and risk information for the event as a whole, but lacks geographical detail. The purpose of this study is to analyze hurricane-induced storm surge flood damage using a grid-based numerical model. Storm surge flood damage due to Hurricane Katrina 2005 is presented as a case study. In order to analyze the resulting hazard from Hurricane Katrina, the United States National Weather Service's operational storm surge model, SLOSH (Sea, Lake and Overland Surges from Hurricanes) was used to predict the maximum storm surge surface using track data from meteorological observations. Local inundation is computed using the flood water depth with the ground elevation above the mean sea level. Residential exposure is estimated using total number of housing units damaged by flood water in each US census block in a grid of 0.01 by 0.01 degrees for hurricane Katrina in 2005. The modeled results for the storm surge inundation and the estimated number of housing units damaged by hurricane Katrina are compared with the extensive field observations by US Geological Survey and FEMA in the counties along the Gulf Coast in the three impacted states of Alabama, Mississippi and Louisiana. The modeled surge results are compared and contrasted with high water mark observations, where available. Storm surge losses in residential construction are highly sensitive to location and are best evaluated at a fine spatial resolution. This paper presents the analysis of the catastrophic flood risk based on the magnitude of hurricane storm surge flood depth on a local scale of US census blocks. The framework presented here is analytically-derived and can be used to provide future hurricane flood information with geographic details for other regions along the US Gulf and Atlantic coastal line.

  11. Development in the STORM

    PubMed Central

    Kamiyama, Daichi; Huang, Bo

    2012-01-01

    The recent invention of super-resolution microscopy has brought up much excitement in the biological research community. Here, we will focus on Stochastic Optical Reconstruction Microscopy/Photoactivated Localization Microscopy (STORM/PALM) to discuss the challenges in applying super-resolution microscopy to the study of developmental biology, including tissue imaging, sample preparation artifacts, and image interpretation. We will also summarize new opportunities that super-resolution microscopy could bring to the field of developmental biology. PMID:23237944

  12. Watershed Evaluation and Habitat Response to Recent Storms : Annual Report for 1998.

    SciTech Connect

    Rhodes, Jonathan J.; Huntington, Charles W.

    1999-01-01

    Large and powerful storm systems moved through the Pacific Northwest during the wet season of 1995-96, triggering widespread flooding, mass erosion, and, possibly altering salmon habitats in affected watersheds. This project study was initiated to assess whether watershed conditions are causing damage, triggered by storm events, to salmon habitat on public lands in the Snake River basin.

  13. September 2013 Storm and Flood Assessment Report

    SciTech Connect

    Walterscheid, J. C.

    2015-12-21

    Between September 10 and 17, 2013, New Mexico and Colorado received a historically large amount of precipitation (Figure 1). This report assesses the damage caused by flooding along with estimated costs to repair the damage at Los Alamos National Laboratory (the Laboratory) on the Pajarito Plateau. Los Alamos County, New Mexico, received between 200% and 600% of the normal precipitation for this time period (Figure 2), and the Laboratory received approximately 450% percent of its average precipitation for September (Figure 3). As a result, the Laboratory was inundated with rain, including the extremely large, greater-than-1000-yr return period event that occurred between September 12 and 13 (Table 1). With saturated antecedent soil conditions from the September 10 storm, when the September 12 to September 13 storm hit, the flooding was disastrous to the Laboratory’s environmental infrastructure, including access roads, gage stations, watershed controls, control measures installed under the National Pollutant Discharge Elimination System Permit (hereafter, the Individual Permit), and groundwater monitoring wells (Figures 4 through 21). From September 16 to October 1, 2013, the Laboratory completed field assessments of environmental infrastructure and generated descriptions and estimates of the damage, which are presented in spreadsheets in Attachments 1 to 4 of this report. Section 2 of this report contains damage assessments by watershed, including access roads, gage stations, watershed controls, and control measures installed under the Individual Permit. Section 3 contains damage assessments of monitoring wells by the groundwater monitoring groups as established in the Interim Facility-Wide Groundwater Monitoring Plan for Monitoring Year 2014. Section 4 addresses damage and loss of automated samplers. Section 5 addresses sediment sampling needs, and Section 6 is the summary of estimated recovery costs from the significant rain and flooding during September 2013.

  14. Severe Coastal Erosion During an El Niño Storm

    USGS Multimedia Gallery

    Severe coastal bluff erosion, along the southern end of Ocean Beach, San Francisco, California. This storm damage occurred during the 2009-2010 El Niño, which, on average, eroded the shoreline 55 meters that winter....

  15. Lightning location relative to storm structure in a supercell storm and a multicell storm

    NASA Technical Reports Server (NTRS)

    Ray, Peter S.; Macgorman, Donald R.; Rust, W. David; Taylor, William L.; Rasmussen, Lisa Walters

    1987-01-01

    Relationships between lightning location and storm structure are examined for one radar volume scan in each of two mature, severe storms. One of these storms had characteristics of a supercell storm, and the other was a multicell storm. Data were analyzed from dual-Doppler radar and dual-VHF lightning-mapping systems. The distributions of VHF impulse sources were compared with radar reflectivity, vertical air velocity, and their respective gradients. In the supercell storm, lightning tended to occur along streamlines above and down-shear of the updraft and reflectivity cores; VHF impulse sources were most concentrated in reflectivities between 30 and 40 dBZ and were distributed uniformly with respect to updraft speed. In the multicell storm, on the other hand, lightning tended to coincide with the vertical reflectivity and updraft core and with the diverging streamlines near the top of the storm. The results suggest that the location of lightning in these severe storms were most directly associated with the wind field structure relative to updraft and reflectivity cores. Since the magnitude and vertical shear of the environmental wind are fundamental in determining the reflectivity and wind field structure of a storm, it is suggested that these environmental parameters are also fundamental in determining lightning location.

  16. Storm surges in Danish waters: tide gauge data as proxy for storm winds

    NASA Astrophysics Data System (ADS)

    Thejll, Peter

    2014-05-01

    Storms in the North Sea can cause extremely high water along the Danish coastline leading to flooding and damage. Several sectors of society are interested in understanding the evolution of the occurrence rate of such events, and the historic record for storm surges is used to evaluate climatological rates. In the face of expected future climate change it is of interest to know how to detect that a significant change in storm surge rate has occurred. Tide gauge data are typically used to estimate surge rates. The storm surges occur as a combination of water being pressed against the coastline by the winds, and high tides, and in this work we will try to separate the two factors to see if the surge rate based on gauge data is consistent with surge rates based on gauge data with the tidal component removed. For the period where winds are well observed over Denmark a comparison will be made to evaluate whether extremes in selected directional winds can be detected via gauge data, with a view towards generating a historical surge rate for interior Danish waters, for use in assessment of climate change modelling scenarios. Conventional percentile regression, skewness analysis, and Monte Carlo bootstrapping methods are applied.

  17. Empirical STORM-E model: I. Theoretical and observational basis

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M.

    2013-02-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 μm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 μm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 μm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 μm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented.

  18. Empirical STORM-E Model. [I. Theoretical and Observational Basis

    NASA Technical Reports Server (NTRS)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M., III

    2013-01-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region peak electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 lm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 lm VER is sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 lm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part II of this series describes the explicit development of the empirical storm-time correction factor for E-region peak electron densities, and shows comparisons of E-region electron densities between STORM-E predictions and incoherent scatter radar measurements. In this paper, Part I of the series, the efficacy of using SABER-derived NO+(v) VER as a proxy for the E-region response to solar-geomagnetic disturbances is presented. Furthermore, a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 lm limb emission measurements is given. Finally, an assessment of key uncertainties in retrieving NO+(v) VER is presented

  19. Storm Tracks Across Eastern Canada

    NASA Astrophysics Data System (ADS)

    Plante, Mathieu; Son, Seok-Woo; Gyakum, John; Kevin, Grise

    2013-04-01

    The global storm tracks patterns across the Northern Hemisphere are well documented, but their regional impact on populations has yet to be characterized, as very few studies took a local perspective on storm tracks. In this study, a Lagrangian tracking algorithm is applied to the 850 hPa relative vorticity field to characterize extratropical storm tracks that pass through major cities in Canada. Storm tracks are first classified in reference to the metropolitan cities that they impact, such as Toronto, Montreal, Halifax and St-John's. They are then subjected to several analyses, including but not limited to the identification of main development regions, typical tracks, mean growth rate, intensity and typical regions of decay. We found that the preferential development regions are the lee of the Rockies, the Great Lakes and the Western Atlantic. The collection of storm tracks across each city is composed of storms developing not from a single development region, but from several. Results show that the storm track variability at a city is dominated by the storm track variability of its predominant development region. Among others, we found that the ensembles of storms crossing East coast cities (Halifax, St-John's) are dominated by Atlantic storms that are most frequent during the winter. Storms passing through Montreal and Toronto travel primarily from the Great Lakes and the mid-latitude Rockies. In eastern Canada, storms from the southernmost part of the Rockies are much less frequent, but this development region is the main source of extreme storms, and is thus important in terms of impacts on metropolitan areas. The relationship between storm tracks and modes of atmospheric variability are also examined with an emphasis on the El Nino Southern Oscillation (ENSO) and Northern Annular Mode (NAM). We found that teleconnection shifts storm tracks differently in different development regions. The anomalous storm track densities are presented, as well as their direct impact on specific metropolitan areas. Results show that the combination of these shifts impact cities differently according to their geographic location.

  20. Storm impact for barrier islands

    USGS Publications Warehouse

    Sallenger,, Asbury H., Jr.

    2000-01-01

    A new scale is proposed that categorizes impacts to natural barrier islands resulting from tropical and extra-tropical storms. The proposed scale is fundamentally different than existing storm-related scales in that the coupling between forcing processes and the geometry of the coast is explicitly included. Four regimes, representing different levels of impact, are defined. Within each regime, patterns and relative magnitudes of net erosion and accretion are argued to be unique. The borders between regimes represent thresholds defining where processes and magnitudes of impacts change dramatically. Impact level 1 is the 'swash' regime describing a storm where runup is confined to the foreshore. The foreshore typically erodes during the storm and recovers following the storm; hence, there is no net change. Impact level 2 is the 'collision' regime describing a storm where the wave runup exceeds the threshold of the base of the foredune ridge. Swash impacts the dune forcing net erosion. Impact level 3 is the 'overwash' regime describing a storm where wave runup overtops the berm or, if present, the foredune ridge. The associated net landward sand transport contributes to net migration of the barrier landward. Impact level 4 is the 'inundation' regime describing a storm where the storm surge is sufficient to completely and continuously submerge the barrier island. Sand undergoes net landward transport over the barrier island; limited evidence suggests the quantities and distance of transport are much greater than what occurs during the 'overwash' regime.

  1. Global dust storms and highly polarizing clouds on Mars.

    NASA Astrophysics Data System (ADS)

    Lupishko, D.; Kaydash, V.; Shkuratov, Yu

    The paper reviews our results about photometric ground-based observations of Mars during its great opposition of 1971 and near-perihelion oppositions of 1973 and 1975, as well as polarimetric observations of Mars with the Hubble Space Telescope (HST) at the time ofthe great opposition of 2003. The photometric observations cover long-term (1-3 months) disk-integrated and disk-resolved photometry of Mars during three global dust storms in 1971, 1973 and 1975, including the stages of development, maximum, and attenuation of the dust storms. Using data which showed anomalous changes of Martian brightness, the parameters of dust particles and dust storm as a whole were determined. These include the mean radius and single-scattering albedo of particles, the optical thickness of atmosphere in the maximum of a dust storm and the total mass of dust lifted up in atmosphere, and the temperature pulldown of Martian surface caused by dust storm. Polarimetric observations of Mars with HST revealed for the first time optically thin clouds made of highly polarizing scatterers in UV (330 nm). Analysis of HST data and their comparison with theoretical models allowed us to conclude that the Martian highly polarizing clouds can be formed in the very beginning of the nucleation of H2O ice crystals on submicron dust. Measurements of cloud dynamics has suggested the clouds to be located at 30-40 km above the Martian surface and migrate with velocity of 40-100 m/s.

  2. A Perfect Storm

    ERIC Educational Resources Information Center

    Jones, Bill

    2009-01-01

    The present state of adult education is perilous, as all readers of "Adults Learning" will know well. All sectors are damagingly affected by funding decisions, as witnessed by the large numbers of organisations and providers represented at the recent Parliamentary lobby by the Campaigning Alliance for Lifelong Learning (CALL). The damage to adult…

  3. Sea Ice

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.

    2005-01-01

    Sea ice covers vast areas of the polar oceans, with ice extent in the Northern Hemisphere ranging from approximately 7 x 10(exp 6) sq km in September to approximately 15 x 10(exp 6) sq km in March and ice extent in the Southern Hemisphere ranging from approximately 3 x 10(exp 6) sq km in February to approximately 18 x 10(exp 6) sq km in September. These ice covers have major impacts on the atmosphere, oceans, and ecosystems of the polar regions, and so as changes occur in them there are potential widespread consequences. Satellite data reveal considerable interannual variability in both polar sea ice covers, and many studies suggest possible connections between the ice and various oscillations within the climate system, such as the Arctic Oscillation, North Atlantic Oscillation, and Antarctic Oscillation, or Southern Annular Mode. Nonetheless, statistically significant long-term trends are also apparent, including overall trends of decreased ice coverage in the Arctic and increased ice coverage in the Antarctic from late 1978 through the end of 2003, with the Antarctic ice increases following marked decreases in the Antarctic ice during the 1970s. For a detailed picture of the seasonally varying ice cover at the start of the 21st century, this chapter includes ice concentration maps for each month of 2001 for both the Arctic and the Antarctic, as well as an overview of what the satellite record has revealed about the two polar ice covers from the 1970s through 2003.

  4. Polarization radar and electrical observations of microburst producing storms during Cohmex. [COoperative Huntsville Meteorological EXperiment

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Buechler, Dennis E.; Wright, Patrick D.; Rust, W. David; Nielsen, Kurt E.

    1989-01-01

    The life cycles of two electrified, microburst-producing storms that occurred on July 19 and 20, 1986 near Huntsville, Alabama are described and compared. The kinematic and microphysical development of the storm clouds is examined. Lightning activity prior to the onset of the microburst is studied. It is observed that ice phase precipitation particles are important in the electrification of the storm and in the formation of the strong downdraft, and the vertical distribution and movement of mass have a role in determining the total lightning activity and type of flashes.

  5. Intercomparison of mid latitude storm diagnostics (IMILAST)

    NASA Astrophysics Data System (ADS)

    Neu, U.

    2009-04-01

    Diagnostics of the observed and projection of the future changes of extratropical storms are a key issue e.g. for insurance companies, risk management and adaptation planning. Storm-associated damages are amongst the highest losses due to natural disasters in the mid-latitudes. Therefore the knowledge of the future variability and change in extratropical cyclone frequency, intensity and track locations is crucial for the strategic planning and minimization of the disaster impacts. Future changes in the total number of storms might be small but major signals could occur in the characteristics of cyclone life cycle such as intensity, life time, track locations. The quantification of such trends is not independent from the methodologies for storm track detection applied to observational data and models. Comparison of differences in cyclone characteristics obtained using different methods from a single data set may be as large as or even exceed the differences between the results derived from different data sets using a single methodology. Even more, the metrics used become particularly sensitive, resulting in the fact that scientific studies may find seemingly contradictory results based on the same datasets. For users of storm track analyses and projections the results are very difficult to interprete. Thus, it would be very helpful if the research community would provide information in a kind of "handbook" which contains definitions and a description of the available different identification and tracking schemes as well as of the parameters used for the quantification of cyclone activity. It cannot be expected that there is an optimum or standard scheme that fulfills all needs. Rather, a proper knowledge about advantages and restrictions of different schemes must be obtained to be able to provide a synthesis of results rather than puzzling the scientific and the general public with apparently contradicing statements. The project IMILAST aims at providing a systematic intercomparison of different methodologies and a comprehensive assessment of all types of uncertainties inherent in the mid-latitudinal storm tracking by comparing different methodologies with respect to data of different resolution (time and space) and limited areas, for both cyclone identification and cyclone tracking respectively.

  6. Anticipating Future Sea Level Rise and Coastal Storms in New York City (Invited)

    NASA Astrophysics Data System (ADS)

    Horton, R. M.; Gornitz, V.; Bader, D.; Little, C. M.; Oppenheimer, M.; Patrick, L.; Orton, P. M.; Rosenzweig, C.; Solecki, W.

    2013-12-01

    Hurricane Sandy caused 43 fatalities in New York City and 19 billion in damages. Mayor Michael Bloomberg responded by convening the second New York City Panel on Climate Change (NPCC2), to provide up-to-date climate information for the City's Special Initiative for Rebuilding and Resiliency (SIRR). The Mayor's proposed 20 billion plan aims to strengthen the City's resilience to coastal inundation. Accordingly, the NPCC2 scientific and technical support team generated a suite of temperature, precipitation, and sea level rise and extreme event projections through the 2050s. The NPCC2 sea level rise projections include contributions from ocean thermal expansion, dynamic changes in sea surface height, mass changes in glaciers, ice caps, and ice sheets, and land water storage. Local sea level changes induced by changes in ice mass include isostatic, gravitational, and rotational effects. Results are derived from CMIP5 model-based outputs, expert judgment, and literature surveys. Sea level at the Battery, lower Manhattan, is projected to rise by 7-31 in (17.8-78.7cm) by the 2050s relative to 2000-2004 (10 to 90 percentile). As a result, flood heights above NAVD88 for the 100-year storm (stillwater plus waves) would rise from 15.0 ft (0.71 m) in the 2000s to 15.6-17.6 ft (4.8-5.4 m) by the 2050s (10-90 percentile). The annual chance of today's 100-year flood would increase from 1 to 1.4-5.0 percent by the 2050s.

  7. Impacts on coralligenous outcrop biodiversity of a dramatic coastal storm.

    PubMed

    Teixidó, Núria; Casas, Edgar; Cebrián, Emma; Linares, Cristina; Garrabou, Joaquim

    2013-01-01

    Extreme events are rare, stochastic perturbations that can cause abrupt and dramatic ecological change within a short period of time relative to the lifespan of organisms. Studies over time provide exceptional opportunities to detect the effects of extreme climatic events and to measure their impacts by quantifying rates of change at population and community levels. In this study, we show how an extreme storm event affected the dynamics of benthic coralligenous outcrops in the NW Mediterranean Sea using data acquired before (2006-2008) and after the impact (2009-2010) at four different sites. Storms of comparable severity have been documented to occur occasionally within periods of 50 years in the Mediterranean Sea. We assessed the effects derived from the storm comparing changes in benthic community composition at sites exposed to and sheltered from this extreme event. The sites analyzed showed different damage from severe to negligible. The most exposed and impacted site experienced a major shift immediately after the storm, represented by changes in the species richness and beta diversity of benthic species. This site also showed higher compositional variability immediately after the storm and over the following year. The loss of cover of benthic species resulted between 22% and 58%. The damage across these species (e.g. calcareous algae, sponges, anthozoans, bryozoans, tunicates) was uneven, and those with fragile forms were the most impacted, showing cover losses up to 50 to 100%. Interestingly, small patches survived after the storm and began to grow slightly during the following year. In contrast, sheltered sites showed no significant changes in all the studied parameters, indicating no variations due to the storm. This study provides new insights into the responses to large and rare extreme events of Mediterranean communities with low dynamics and long-lived species, which are among the most threatened by the effects of global change. PMID:23326496

  8. Impacts on Coralligenous Outcrop Biodiversity of a Dramatic Coastal Storm

    PubMed Central

    Teixidó, Núria; Casas, Edgar; Cebrián, Emma; Linares, Cristina; Garrabou, Joaquim

    2013-01-01

    Extreme events are rare, stochastic perturbations that can cause abrupt and dramatic ecological change within a short period of time relative to the lifespan of organisms. Studies over time provide exceptional opportunities to detect the effects of extreme climatic events and to measure their impacts by quantifying rates of change at population and community levels. In this study, we show how an extreme storm event affected the dynamics of benthic coralligenous outcrops in the NW Mediterranean Sea using data acquired before (2006–2008) and after the impact (2009–2010) at four different sites. Storms of comparable severity have been documented to occur occasionally within periods of 50 years in the Mediterranean Sea. We assessed the effects derived from the storm comparing changes in benthic community composition at sites exposed to and sheltered from this extreme event. The sites analyzed showed different damage from severe to negligible. The most exposed and impacted site experienced a major shift immediately after the storm, represented by changes in the species richness and beta diversity of benthic species. This site also showed higher compositional variability immediately after the storm and over the following year. The loss of cover of benthic species resulted between 22% and 58%. The damage across these species (e.g. calcareous algae, sponges, anthozoans, bryozoans, tunicates) was uneven, and those with fragile forms were the most impacted, showing cover losses up to 50 to 100%. Interestingly, small patches survived after the storm and began to grow slightly during the following year. In contrast, sheltered sites showed no significant changes in all the studied parameters, indicating no variations due to the storm. This study provides new insights into the responses to large and rare extreme events of Mediterranean communities with low dynamics and long-lived species, which are among the most threatened by the effects of global change. PMID:23326496

  9. In situ quantification of experimental ice accretion on tree crowns using terrestrial laser scanning.

    PubMed

    Nock, Charles A; Greene, David; Delagrange, Sylvain; Follett, Matt; Fournier, Richard; Messier, Christian

    2013-01-01

    In the eastern hardwood forests of North America ice storms are an important disturbance event. Ice storms strongly influence community dynamics as well as urban infrastructure via catastrophic branch failure; further, the severity and frequency of ice storms are likely to increase with climate change. However, despite a long-standing interest into the effects of freezing rain on forests, the process of ice accretion and thus ice loading on branches remains poorly understood. This is because a number of challenges have prevented in situ measurements of ice on branches, including: 1) accessing and measuring branches in tall canopies, 2) limitations to travel during and immediately after events, and 3) the unpredictability of ice storms. Here, utilizing a novel combination of outdoor experimental icing, manual measurements and terrestrial laser scanning (TLS), we perform the first in situ measurements of ice accretion on branches at differing heights in a tree crown and with increasing duration of exposure. We found that TLS can reproduce both branch and iced branch diameters with high fidelity, but some TLS instruments do not detect ice. Contrary to the expectations of ice accretion models, radial accretion varied sharply within tree crowns. Initially, radial ice accretion was similar throughout the crown, but after 6.5 hours of irrigation (second scanning) radial ice accretion was much greater on upper branches than on lower (∼factor of 3). The slope of the change in radial ice accretion along branches increased with duration of exposure and was significantly greater at the second scanning compared to the first. We conclude that outdoor icing experiments coupled with the use of TLS provide a robust basis for evaluation of models of ice accretion and breakage in tree crowns, facilitating estimation of the limiting breaking stress of branches by accurate measurements of ice loads. PMID:23741409

  10. In Situ Quantification of Experimental Ice Accretion on Tree Crowns Using Terrestrial Laser Scanning

    PubMed Central

    Nock, Charles A.; Greene, David; Delagrange, Sylvain; Follett, Matt; Fournier, Richard; Messier, Christian

    2013-01-01

    In the eastern hardwood forests of North America ice storms are an important disturbance event. Ice storms strongly influence community dynamics as well as urban infrastructure via catastrophic branch failure; further, the severity and frequency of ice storms are likely to increase with climate change. However, despite a long-standing interest into the effects of freezing rain on forests, the process of ice accretion and thus ice loading on branches remains poorly understood. This is because a number of challenges have prevented in situ measurements of ice on branches, including: 1) accessing and measuring branches in tall canopies, 2) limitations to travel during and immediately after events, and 3) the unpredictability of ice storms. Here, utilizing a novel combination of outdoor experimental icing, manual measurements and terrestrial laser scanning (TLS), we perform the first in situ measurements of ice accretion on branches at differing heights in a tree crown and with increasing duration of exposure. We found that TLS can reproduce both branch and iced branch diameters with high fidelity, but some TLS instruments do not detect ice. Contrary to the expectations of ice accretion models, radial accretion varied sharply within tree crowns. Initially, radial ice accretion was similar throughout the crown, but after 6.5 hours of irrigation (second scanning) radial ice accretion was much greater on upper branches than on lower (∼factor of 3). The slope of the change in radial ice accretion along branches increased with duration of exposure and was significantly greater at the second scanning compared to the first. We conclude that outdoor icing experiments coupled with the use of TLS provide a robust basis for evaluation of models of ice accretion and breakage in tree crowns, facilitating estimation of the limiting breaking stress of branches by accurate measurements of ice loads. PMID:23741409

  11. Solar radio continuum storms

    NASA Technical Reports Server (NTRS)

    Sakurai, K.

    1976-01-01

    The paper reviews the current status of research on solar radio continuum emissions from metric to hectometric wave frequencies, emphasizing the role of energetic electrons in the 10-100 keV range in these emissions. It is seen that keV-energy electrons generated in active sunspot groups must be the sources of radio continuum storm emissions for wide frequency bands. These electrons excite plasma oscillations in the medium, which in turn are converted to electromagnetic radiation. The radio noise continuum sources are usually associated with type III burst activity observed above these sources. Although the mechanism for the release of the energetic electrons is not known, it seems they are ejected from storm source regions in association with rapid variation of associated sunspot magnetic fields due to their growth into complex types. To explain some of the observed characteristics, the importance of two-stream instability and the scattering of ambient plasma ions on energetic electron streams is pointed out.

  12. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Macgorman, D. R.; Taylor, W.; Arnold, R. T.

    1984-01-01

    Severe storms and lightning were measured with a NASA U2 and ground based facilities, both fixed base and mobile. Aspects of this program are reported. The following results are presented: (1) ground truth measurements of lightning for comparison with those obtained by the U2. These measurements include flash type identification, electric field changes, optical waveforms, and ground strike location; (2) simultaneous extremely low frequency (ELF) waveforms for cloud to ground (CG) flashes; (3) the CG strike location system (LLP) using a combination of mobile laboratory and television video data are assessed; (4) continued development of analog-to-digital conversion techniques for processing lightning data from the U2, mobile laboratory, and NSSL sensors; (5) completion of an all azimuth TV system for CG ground truth; (6) a preliminary analysis of both IC and CG lightning in a mesocyclone; and (7) the finding of a bimodal peak in altitude lightning activity in some storms in the Great Plains and on the east coast. In the forms on the Great Plains, there was a distinct class of flash what forms the upper mode of the distribution. These flashes are smaller horizontal extent, but occur more frequently than flashes in the lower mode of the distribution.

  13. A study of severe storm electricity via storm intercept

    NASA Technical Reports Server (NTRS)

    Arnold, Roy T.; Horsburgh, Steven D.; Rust, W. David; Burgess, Don

    1985-01-01

    Storm electricity data, radar data, and visual observations were used both to present a case study for a supercell thunderstorm that occurred in the Texas Panhandle on 19 June 1980 and to search for insight into how lightning to ground might be related to storm dynamics in the updraft/downdraft couplet in supercell storms. It was observed that two-thirds of the lightning ground-strike points in the developing and maturing stages of a supercell thunderstorm occurred within the region surrounding the wall cloud (a cloud feature often characteristic of a supercell updraft) and on the southern flank of the precipitation. Electrical activity in the 19 June 1980 storm was atypical in that it was a right-mover. Lightning to ground reached a peak rate of 18/min and intracloud flashes were as frequent as 176/min in the final stages of the storm's life.

  14. Extreme European winter storms - a new event set approach

    NASA Astrophysics Data System (ADS)

    Lorenz, Philip; Osinski, Robert; Leckebusch, Gregor C.; Ulbrich, Uwe; Bedacht, Ernst; Faust, Eberhard; Miesen, Peter; Frank, Helmut; Schulz, Jan-Peter

    2010-05-01

    Due to their severe impacts and damages, including the loss of life, the robust assessment of European winter storms is a major scientific and socio-economic task. A basic concept of this research effort presented here is to incorporate besides observed (real) storms additionally potential (not necessarily real) storms, which could have hit Europe, in an European storm event catalogue. From this event set realistic extreme value statistic parameters could be estimated. In a first step relevant storm events are identified from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis datasets ERA40 (1958-2002) and ERA-INTERIM (1989-2009). Furthermore the identified events are classified using an adequate storm severity index (SSI). For the enlargement of the sample size for statistical analyses, additional potential storm events simulated by the Ensemble Prediction System (EPS) of ECMWF will be identified and classified. This allows to estimate SSI return periods up to several hundred years. From the identified and classified storm events in ERA40, ERA-INTERIM and EPS a specific sub-sample will be selected. For the selected events a dynamical atmospheric modeling chain consisting of the operational global and regional numerical weather prediction models (GME and COSMO-EU) of the German Weather Service (DWD) will be applied. In COSMO-EU different dynamical cores as well as different diagnostic schemes for wind gusts will be used to further increase the sample size. The resulting high resolution wind and gust fields form the basis for statistical extreme value analyses, and additionally for the development of a statistical transfer function for wind fields generated by relatively coarse resolution models into high resolution wind and gust fields. An outline of the project objectives and methods as well as first results will be presented.

  15. Dust storm in Burkina Faso

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A massive dust storm in Burkina, Africa (bottom center), has created an opaque, sandy shroud for the land locked West African country. The storm seems to be extending north into Mali and east into southwestern Niger. This image was acquired by MODIS on April 10, 2002. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  16. Ionospheric redistribution during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Immel, T. J.; Mannucci, A. J.

    2013-12-01

    The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dst<-100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3-6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow.

  17. Automated dust storm detection using satellite images. Development of a computer system for the detection of dust storms from MODIS satellite images and the creation of a new dust storm database

    NASA Astrophysics Data System (ADS)

    El-Ossta, Esam Elmehde Amar

    Dust storms are one of the natural hazards, which have increased in frequency in the recent years over Sahara desert, Australia, the Arabian Desert, Turkmenistan and northern China, which have worsened during the last decade. Dust storms increase air pollution, impact on urban areas and farms as well as affecting ground and air traffic. They cause damage to human health, reduce the temperature, cause damage to communication facilities, reduce visibility which delays both road and air traffic and impact on both urban and rural areas. Thus, it is important to know the causation, movement and radiation effects of dust storms. The monitoring and forecasting of dust storms is increasing in order to help governments reduce the negative impact of these storms. Satellite remote sensing is the most common method but its use over sandy ground is still limited as the two share similar characteristics. However, satellite remote sensing using true-colour images or estimates of aerosol optical thickness (AOT) and algorithms such as the deep blue algorithm have limitations for identifying dust storms. Many researchers have studied the detection of dust storms during daytime in a number of different regions of the world including China, Australia, America, and North Africa using a variety of satellite data but fewer studies have focused on detecting dust storms at night. The key elements of this present study are to use data from the Moderate Resolution Imaging Spectroradiometers on the Terra and Aqua satellites to develop more effective automated method for detecting dust storms during both day and night and generate a MODIS dust storm database..

  18. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    NASA Astrophysics Data System (ADS)

    Lapidez, J. P.; Tablazon, J.; Dasallas, L.; Gonzalo, L. A.; Cabacaba, K. M.; Ramos, M. M. A.; Suarez, J. K.; Santiago, J.; Lagmay, A. M. F.; Malano, V.

    2015-07-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) on 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH) which is the flagship disaster mitigation program of the Department of Science and Technology (DOST) of the Philippine government to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as a basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  19. Identification of storm surge vulnerable areas in the Philippines through the simulation of Typhoon Haiyan-induced storm surge levels over historical storm tracks

    NASA Astrophysics Data System (ADS)

    Lapidez, J. P.; Tablazon, J.; Dasallas, L.; Gonzalo, L. A.; Cabacaba, K. M.; Ramos, M. M. A.; Suarez, J. K.; Santiago, J.; Lagmay, A. M. F.; Malano, V.

    2015-02-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) 7 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the storm surge and strong winds. Storm surges up to a height of 7 m were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards (Project NOAH), the flagship disaster mitigation program of the Department of Science and Technology (DOST), Government of the Philippines, to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. One product of this study is a list of the 30 most vulnerable coastal areas that can be used as basis for choosing priority sites for further studies to implement appropriate site-specific solutions for flood risk management. Another product is the storm tide inundation maps that the local government units can use to develop a risk-sensitive land use plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  20. Stochastic Modeling of Empirical Storm Loss in Germany

    NASA Astrophysics Data System (ADS)

    Prahl, B. F.; Rybski, D.; Kropp, J. P.; Burghoff, O.; Held, H.

    2012-04-01

    Based on German insurance loss data for residential property we derive storm damage functions that relate daily loss with maximum gust wind speed. Over a wide range of loss, steep power law relationships are found with spatially varying exponents ranging between approximately 8 and 12. Global correlations between parameters and socio-demographic data are employed to reduce the number of local parameters to 3. We apply a Monte Carlo approach to calculate German loss estimates including confidence bounds in daily and annual resolution. Our model reproduces the annual progression of winter storm losses and enables to estimate daily losses over a wide range of magnitude.

  1. Aerodynamic investigations to determine possible ice flight paths

    NASA Technical Reports Server (NTRS)

    Burgsmueller, W.; Frenz, H.; May, P.; Anders, G.

    1982-01-01

    After flights with the VFW 614 under severe icing conditions, damage to the engine was found. In wind tunnel tests a determination of the origin of this ice was made; it is supposed that the damage was caused by this ice. On the modified flight test model of the VFW 614 on a 1:15 scale, measurements were conducted in the VFW-Fokker wind tunnel with exposed particles which represented the free ice. The results of this testing are presented.

  2. Gulf Coast Disaster Management: Forest Damage Detection and Carbon Flux Estimation

    NASA Astrophysics Data System (ADS)

    Maki, A. E.; Childs, L. M.; Jones, J.; Matthews, C.; Spindel, D.; Batina, M.; Malik, S.; Allain, M.; Brooks, A. O.; Brozen, M.; Chappell, C.; Frey, J. W.

    2008-12-01

    Along the Gulf Coast and Eastern Seaboard, tropical storms and hurricanes annually cause defoliation and deforestation amongst coastal forests. After a severe storm clears, there is an urgent need to assess impacts on timber resources for targeting state and national resources to assist in recovery. It is important to identify damaged areas following the storm, due to their increased probability of fire risk, as well as the effect upon the carbon budget. Better understanding and management of the immediate and future effects on the carbon cycle in the coastal forest ecosystem is especially important. Current methods of detection involve assessment through ground-based field surveys, aerial surveys, computer modeling of meteorological data, space-borne remote sensing, and Forest Inventory and Analysis field plots. Introducing remotely-sensed data from NASA and NASA-partnered Earth Observation Systems (EOS), this project seeks to improve the current methodology and focuses on a need for methods that are more synoptic than field surveys and more closely linked to the phenomenology of tree loss and damage than passive remote sensing methods. The primary concentration is on the utilization of Ice, Cloud, and land Elevation Satellite (ICESat) Geoscience Laser Altimeter System (GLAS) data products to detect changes in forest canopy height as an indicator of post-hurricane forest disturbances. By analyzing ICESat data over areas affected by Hurricane Katrina, this study shows that ICESsat is a useful method of detecting canopy height change, though further research is needed in mixed forest areas. Other EOS utilized in this study include Landsat, Moderate Resolution Imaging Spectroradiometer (MODIS), and the NASA verified and validated international Advanced Wide Field Sensor (AWiFS) sensor. This study addresses how NASA could apply ICESat data to contribute to an improved method of detecting hurricane-caused forest damage in coastal areas; thus to pinpoint areas more susceptible to fire damage and subsequent loss of carbon sequestration.

  3. Dust storm in Chad

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Lake Chad (lower left) and the surrounding wetlands are under increasing pressure from desertification. The encroachment of the Sahara occurs with creeping sand dunes and major dust storms, such as the one pictured in this MODIS image from October 28, 2001. The amount of open water (lighter green patch within the darker one) has declined markedly over the last decades and the invasion of dunes is creating a rippled effect through the wetlands that is all too clear in the high-resolution images. Growing population and increasing demands on the lake give it an uncertain future. The loss of such an important natural resource will have profound effects on the people who depend on the rapidly diminishing source of fresh water. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  4. Sea ice in the northern Alaskan coastal system

    NASA Astrophysics Data System (ADS)

    Perovich, D. K.

    2006-12-01

    Sea ice is an integral part of the northern Alaskan coastal system. It serves as a barrier to energy and moisture exchange between the ocean and atmosphere, protects shorelines from storm induced coastal erosion, influences atmospheric chemistry, provides a habitat for an ice-ocean ecosystem, and supports human activities from transportation to hunting. The ice cover of the northern Alaskan coastal system is a mixture of shorefast ice and moving pack ice. It is predominantly first year ice with an occasional multiyear floe. The extent of the shorefast ice varies spatially along the coast and temporally over the course of the ice season and depends primarily on seafloor topography, ice conditions, and wind forcing. Shore leads appear episodically throughout the winter, greatly influencing the heat, moisture, and chemistry of the local atmosphere. By spring, undeformed first year ice is between one and two meters thick, while the thickness of deformed ice in ridges can exceed ten meters. The snow cover on level ice is relatively thin, typically typically averaging less than 20 cm. The snow pack often has a salty basal layer resulting from the highly saline surface skim formed during initial ice growth. During the melt season extensive ponding of the surfaceoccurs, with pond fractions exceeding 50%. The albedo of the ice cover sharply decreases in response to the extensive ponding. Surface melting on shorefast ice is accelerated by the close proximity to land, where air temperatures are warmer than the freezing point.

  5. Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California

    USGS Publications Warehouse

    Dettinger, M.D.; Martin, Ralph F.; Hughes, M.; Das, T.; Neiman, P.; Cox, D.; Estes, G.; Reynolds, D.; Hartman, R.; Cayan, D.; Jones, L.

    2012-01-01

    The USGS Multihazards Project is working with numerous agencies to evaluate and plan for hazards and damages that could be caused by extreme winter storms impacting California. Atmospheric and hydrological aspects of a hypothetical storm scenario have been quantified as a basis for estimation of human, infrastructure, economic, and environmental impacts for emergency-preparedness and flood-planning exercises. In order to ensure scientific defensibility and necessary levels of detail in the scenario description, selected historical storm episodes were concatentated to describe a rapid arrival of several major storms over the state, yielding precipitation totals and runoff rates beyond those occurring during the individual historical storms. This concatenation allowed the scenario designers to avoid arbitrary scalings and is based on historical occasions from the 19th and 20th Centuries when storms have stalled over the state and when extreme storms have arrived in rapid succession. Dynamically consistent, hourly precipitation, temperatures, barometric pressures (for consideration of storm surges and coastal erosion), and winds over California were developed for the so-called ARkStorm scenario by downscaling the concatenated global records of the historical storm sequences onto 6- and 2-km grids using a regional weather model of January 1969 and February 1986 storm conditions. The weather model outputs were then used to force a hydrologic model to simulate ARkStorm runoff, to better understand resulting flooding risks. Methods used to build this scenario can be applied to other emergency, nonemergency and non-California applications. ?? 2011 The Author(s).

  6. Meteoroids and Meteor Storms: A Threat to Spacecraft

    NASA Technical Reports Server (NTRS)

    Anderson, B. Jeffrey

    1999-01-01

    Robust system design is the best protection against meteoroid damage. Impacts by small meteoroids are common on satellite surfaces, but impacts by meteoroids large enough to damage well designed systems are very rare. Estimating the threat from the normal meteoroid environment is difficult. Estimates for the occasional "storm" are even more uncertain. Common sense precautions are in order for the 1999 Leonids, but wide-spread catastrophic damage is highly unlikely. Strong Leonid showers are also expected in 2000 and 2001, but these pose much less threat than 1999.

  7. Decay of a Martian Dust Storm

    NASA Technical Reports Server (NTRS)

    1997-01-01

    NASA Hubble Space Telescope images of Mars, taken on June 27, 1997 (left) and July 9, 1997 (right), document the dissipation of a large dust storm during the 12 days separating the two observations.

    The images were taken to monitor the weather conditions near Ares Vallis, the site where NASA's Pathfinder spacecraft landed on July 4. Maps of the equatorial region were constructed from the images and are shown at the bottom of the figure; a green cross marks the Pathfinder landing site. (All images are oriented with North to the top).

    These two sets of observations show a number of dramatic changes in the planet's atmosphere. At about the 7 o'clock position on the June 27 image, the eastern end of the Valles Marineris canyon system is just coming into daylight and can be seen to be filled with yellowish dust. The dust appears to be confined to the canyons, which can be as much as 8 km deep and hundreds of km wide. Estimates of the quantity of dust involved in this storm indicate that 96% of the incoming sunlight is being blocked from reaching the surface by the dust clouds. Note that on the July 9 image, the dust storm appears to be subsiding; it is estimated that the dust quantity in most of the visible canyon system has dropped to only 10% to 20% of that seen on June 27.

    However, on July 9 a streamer of dust is visible in the North polar region, extending about 1200 km southward from the dark sand dunes surrounding the polar ice cap; diffuse dust is visible over much of Acidalia, the dark region to the north of the Pathfinder landing site. The extent of clouds visible across the planet has also changed considerably between the two dates. Just to the west (left) of the July 9 dust streamer, a very bright area of water-ice clouds is seen; this area was considerably cloudier on June 27.

    These images dramatically show that atmospheric conditions can change rapidly on Mars. Observations such as these will continue to be made over the next several months, allowing the detailed surface observations made by Pathfinder to be placed into the broader context of the global images available from HST.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http://oposite.stsci.edu/pubinfo/

  8. Revisiting ice nucleation from precipitation samples

    NASA Astrophysics Data System (ADS)

    Petters, M. D.; Wright, T. P.

    2015-10-01

    An emerging and unsolved question is the sensitivity of cloud processes, precipitation, and climate to the atmospheric ice nucleus spectrum. This work revisits estimation of atmospheric ice-nucleating particle concentration derived from cloud water and precipitation samples representing a wide range of geographical locations, seasons, storm systems, precipitation types, instruments, concentrations, and temperatures. Concentrations of ice-nucleating particles are shown to vary over 10 orders of magnitude. High variability is observed in the -5°C to -12°C range which is suggested to be biologically derived nuclei whose life cycle is associated with intermittent source and efficient sink processes. The highest ever observed nucleus concentrations at -8°C are 3 orders of magnitude lower than observed ice crystal concentrations in tropical cumuli at the same temperature. The observed upper and lower limits of the nucleus spectrum provide a possible constraint on minimum enhancement factors for secondary ice formation processes.

  9. Onset of frequent dust storms in northern China at ~AD 1100

    NASA Astrophysics Data System (ADS)

    He, Yuxin; Zhao, Cheng; Song, Mu; Liu, Weiguo; Chen, Fahu; Zhang, Dian; Liu, Zhonghui

    2015-11-01

    Dust storms in northern China strongly affect the living and health of people there and the dusts could travel a full circle of the globe in a short time. Historically, more frequent dust storms occurred during cool periods, particularly the Little Ice Age (LIA), generally attributed to the strengthened Siberian High. However, limited by chronological uncertainties in proxy records, this mechanism may not fully reveal the causes of dust storm frequency changes. Here we present a late Holocene dust record from the Qaidam Basin, where hydrological changes were previously reconstructed, and examine dust records from northern China, including the ones from historical documents. The records, being broadly consistent, indicate the onset of frequent dust storms at ~AD 1100. Further, peaked dust storm events occurred at episodes of high total solar irradiance or warm-dry conditions in source regions, superimposed on the high background of frequent dust storms within the cool LIA period. We thus suggest that besides strong wind activities, the centennial-scale dust storm events over the last 1000 years appear to be linked to the increased availability of dust source. With the anticipated global warming and deteriorating vegetation coverage, frequent occurrence of dust storms in northern China would be expected to persist.

  10. Deconstructing the climate change response of the Northern Hemisphere wintertime storm tracks

    NASA Astrophysics Data System (ADS)

    Harvey, B. J.; Shaffrey, L. C.; Woollings, T. J.

    2015-11-01

    There are large uncertainties in the circulation response of the atmosphere to climate change. One manifestation of this is the substantial spread in projections for the extratropical storm tracks made by different state-of-the-art climate models. In this study we perform a series of sensitivity experiments, with the atmosphere component of a single climate model, in order to identify the causes of the differences between storm track responses in different models. In particular, the Northern Hemisphere wintertime storm tracks in the CMIP3 multi-model ensemble are considered. A number of potential physical drivers of storm track change are identified and their influence on the storm tracks is assessed. The experimental design aims to perturb the different physical drivers independently, by magnitudes representative of the range of values present in the CMIP3 model runs, and this is achieved via perturbations to the sea surface temperature and the sea-ice concentration forcing fields. We ask the question: can the spread of projections for the extratropical storm tracks present in the CMIP3 models be accounted for in a simple way by any of the identified drivers? The results suggest that, whilst the changes in the upper-tropospheric equator-to-pole temperature difference have an influence on the storm track response to climate change, the large spread of projections for the extratropical storm track present in the northern North Atlantic in particular is more strongly associated with changes in the lower-tropospheric equator-to-pole temperature difference.

  11. Increase of intense storm activity during Late Holocene cold events, on the French Mediterranean Coast

    NASA Astrophysics Data System (ADS)

    Sabatier, P.; Dezileau, L.

    2008-12-01

    Storms are one of the most alarming natural hazard due to the recent concentration of resources and population in coastal areas. Understanding the past decadal- to millennial-scale frequency of the most extreme events is important for assessing whether changes are controlled by climate evolution. Understanding this intense storm variability is also important for predicting present and future community vulnerability and economic loss. Our ability to make these assessments has been limited by the short (less than 100 years) instrument record of storm activity. Storm-induced deposits preserved in the sediments of coastal lagoons offer the opportunity to study the links between climatic conditions and storm activity on longer timescales. Here we present a record of these extreme climatic events in the NW Mediterranean coast over the Late Holocene based on sediment cores from Gulf of Lion lagoons that contain a specific sedimentary and geochemical signature associated with intense storms. Overwash deposits show an increase in intense storms during the latter half of the Little Ice Age and the Holocene Rapid Climate Change events. Comparison of the sediment record with palaeoclimate records indicates that this variability was probably modulated by atmospheric dynamics associated with variations in the North Atlantic Oscillation. A complete understanding of the relationship between climate fluctuations, storm activity, and the coastal response will be crucial to predicting the impacts of future climate change.

  12. Onset of frequent dust storms in northern China at ~AD 1100.

    PubMed

    He, Yuxin; Zhao, Cheng; Song, Mu; Liu, Weiguo; Chen, Fahu; Zhang, Dian; Liu, Zhonghui

    2015-01-01

    Dust storms in northern China strongly affect the living and health of people there and the dusts could travel a full circle of the globe in a short time. Historically, more frequent dust storms occurred during cool periods, particularly the Little Ice Age (LIA), generally attributed to the strengthened Siberian High. However, limited by chronological uncertainties in proxy records, this mechanism may not fully reveal the causes of dust storm frequency changes. Here we present a late Holocene dust record from the Qaidam Basin, where hydrological changes were previously reconstructed, and examine dust records from northern China, including the ones from historical documents. The records, being broadly consistent, indicate the onset of frequent dust storms at ~AD 1100. Further, peaked dust storm events occurred at episodes of high total solar irradiance or warm-dry conditions in source regions, superimposed on the high background of frequent dust storms within the cool LIA period. We thus suggest that besides strong wind activities, the centennial-scale dust storm events over the last 1000 years appear to be linked to the increased availability of dust source. With the anticipated global warming and deteriorating vegetation coverage, frequent occurrence of dust storms in northern China would be expected to persist. PMID:26607033

  13. Onset of frequent dust storms in northern China at ~AD 1100

    PubMed Central

    He, Yuxin; Zhao, Cheng; Song, Mu; Liu, Weiguo; Chen, Fahu; Zhang, Dian; Liu, Zhonghui

    2015-01-01

    Dust storms in northern China strongly affect the living and health of people there and the dusts could travel a full circle of the globe in a short time. Historically, more frequent dust storms occurred during cool periods, particularly the Little Ice Age (LIA), generally attributed to the strengthened Siberian High. However, limited by chronological uncertainties in proxy records, this mechanism may not fully reveal the causes of dust storm frequency changes. Here we present a late Holocene dust record from the Qaidam Basin, where hydrological changes were previously reconstructed, and examine dust records from northern China, including the ones from historical documents. The records, being broadly consistent, indicate the onset of frequent dust storms at ~AD 1100. Further, peaked dust storm events occurred at episodes of high total solar irradiance or warm-dry conditions in source regions, superimposed on the high background of frequent dust storms within the cool LIA period. We thus suggest that besides strong wind activities, the centennial-scale dust storm events over the last 1000 years appear to be linked to the increased availability of dust source. With the anticipated global warming and deteriorating vegetation coverage, frequent occurrence of dust storms in northern China would be expected to persist. PMID:26607033

  14. Conference explores relationship between geomagnetic storms and substorms

    NASA Astrophysics Data System (ADS)

    Sharma, A. Surjalal; Lakhina, Gurbax S.; Kamide, Yohsuke

    The terrestrial magnetosphere is strongly disturbed by solar plasma, especially during periods of increased solar activity These disturbances constitute geomagnetic storms and substorms and may damage many technological systems, depending on the intensity of the geomagnetic activity Substorms have long been considered to be essential components of geomagnetic storms, but recent studies of the solar windmagnetosphere system are leading to a rethinking of their relationship.About 100 scientists from around the world gathered near Mumbai, India, last March for the AGU Chapman Conference on Storm-Substorm Relationships, to assess current understanding of the relationship between these two major components of geomagnetic activity. The recent data from space missions and ground-based observations and developments in theory and modeling were extensively reviewed and critically examined to assess the advances and to identify key future directions.

  15. Waterway Ice Thickness Measurements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The ship on the opposite page is a U. S. Steel Corporation tanker cruising through the ice-covered waters of the Great Lakes in the dead of winter. The ship's crew is able to navigate safely by plotting courses through open water or thin ice, a technique made possible by a multi-agency technology demonstration program in which NASA is a leading participant. Traditionally, the Great Lakes-St. Lawrence Seaway System is closed to shipping for more than three months of winter season because of ice blockage, particularly fluctuations in the thickness and location of ice cover due to storms, wind, currents and variable temperatures. Shippers have long sought a system of navigation that would allow year-round operation on the Lakes and produce enormous economic and fuel conservation benefits. Interrupted operations require that industrial firms stockpile materials to carry them through the impassable months, which is costly. Alternatively, they must haul cargos by more expensive overland transportation. Studies estimate the economic benefits of year-round Great Lakes shipping in the hundreds of millions of dollars annually and fuel consumption savings in the tens of millions of gallons. Under Project Icewarn, NASA, the U.S. Coast Guard and the National Oceanic Atmospheric Administration collaborated in development and demonstration of a system that permits safe year-round operations. It employs airborne radars, satellite communications relay and facsimile transmission to provide shippers and ships' masters up-to-date ice charts. Lewis Research Center contributed an accurate methods of measuring ice thickness by means of a special "short-pulse" type of radar. In a three-year demonstration program, Coast Guard aircraft equipped with Side-Looking Airborne Radar (SLAR) flew over the Great Lakes three or four times a week. The SLAR, which can penetrate clouds, provided large area readings of the type and distribution of ice cover. The information was supplemented by short-pulse radar measurements of ice thickness. The radar data was relayed by a NOAA satellite to a ground station where NOAA analyzed it and created picture maps, such as the one shown at lower left, showing where icebreakers can cut paths easily or where shipping can move through thin ice without the aid of icebreakers. The ice charts were then relayed directly to the wheelhouses of ships operating on the Lakes. Following up the success of the Great Lakes program, the icewarn team applied its system in another demonstration, this one a similarly successful application designed to aid Arctic coast shipping along the Alaskan North Slope. Further improvement of the ice-monitoring system is planned. Although aircraft-mounted radar is effective, satellites could provide more frequent data. After the launch this year of Seasat, an ocean-monitoring satellite, NASA will conduct tests to determine the ice-mapping capability and accuracy of satellite radar images.

  16. Centralized Storm Information System (CSIS)

    NASA Technical Reports Server (NTRS)

    Norton, C. C.

    1985-01-01

    A final progress report is presented on the Centralized Storm Information System (CSIS). The primary purpose of the CSIS is to demonstrate and evaluate real time interactive computerized data collection, interpretation and display techniques as applied to severe weather forecasting. CSIS objectives pertaining to improved severe storm forecasting and warning systems are outlined. The positive impact that CSIS has had on the National Severe Storms Forecast Center (NSSFC) is discussed. The benefits of interactive processing systems on the forecasting ability of the NSSFC are described.

  17. Anchor ice, seabed freezing, and sediment dynamics in shallow arctic seas

    USGS Publications Warehouse

    Reimnitz, E.; Kempema, E.W.; Barnes, P.W.

    1987-01-01

    Diving investigations confirm previous circumstantial evidence of seafloor freezing and anchor ice accretion during freeze-up storms in the Alaskan Beaufort Sea. These related bottom types were found to be continuous from shore to 2 m depth and spotty to 4.5 m depth. The concretelike nature of frozen bottom, where present, should prohibit sediment transport by any conceivable wave or current regime during the freezing storm. But elsewhere, anchor ice lifts coarse material off the bottom and incorporates it into the ice canopy, thereby leading to significant ice rafting of shallow shelf sediment and likely sediment loss to the deep sea. -from Authors

  18. Dynamic Crush Characterization of Ice

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Boitnott, Richard L.; Kellas, Sotiris

    2006-01-01

    During the space shuttle return-to-flight preparations following the Columbia accident, finite element models were needed that could predict the threshold of critical damage to the orbiter's wing leading edge from ice debris impacts. Hence, an experimental program was initiated to provide crushing data from impacted ice for use in dynamic finite element material models. A high-speed drop tower was configured to capture force time histories of ice cylinders for impacts up to approximately 100 ft/s. At low velocity, the force-time history depended heavily on the internal crystalline structure of the ice. However, for velocities of 100 ft/s and above, the ice fractured on impact, behaved more like a fluid, and the subsequent force-time history curves were much less dependent on the internal crystalline structure.

  19. Shelter from the Storm.

    ERIC Educational Resources Information Center

    Schultz, Corey; Metz, John

    2001-01-01

    Discusses why most schools need to upgrade the spaces they use to protect students and staff from tornadoes. School building areas commonly used as safe havens during tornadoes are assessed, followed by information on disaster damage reimbursements and Federal Emergency Management Agency guidelines (FEMA 361) for building tornado and hurricane…

  20. Shelter from the Storm.

    ERIC Educational Resources Information Center

    Schultz, Corey; Metz, John

    2001-01-01

    Discusses why most schools need to upgrade the spaces they use to protect students and staff from tornadoes. School building areas commonly used as safe havens during tornadoes are assessed, followed by information on disaster damage reimbursements and Federal Emergency Management Agency guidelines (FEMA 361) for building tornado and hurricane…

  1. Sea Ice

    NASA Technical Reports Server (NTRS)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  2. Record-breaking storm activity on Uranus in 2014

    NASA Astrophysics Data System (ADS)

    de Pater, Imke; Sromovsky, L. A.; Fry, P. M.; Hammel, Heidi B.; Baranec, Christoph; Sayanagi, Kunio M.

    2015-05-01

    In spite of an expected decline in convective activity following the 2007 equinox of Uranus, eight sizable storms were detected on the planet with the near-infrared camera NIRC2, coupled to the adaptive optics system, on the 10-m W.M. Keck telescope on UT 5 and 6 August 2014. All storms were on Uranus' northern hemisphere, including the brightest storm ever seen in this planet at 2.2 μm, reflecting 30% as much light as the rest of the planet at this wavelength. The storm was at a planetocentric latitude of ∼15°N and reached altitudes of ∼330 mbar, well above the regular uppermost cloud layer (methane-ice) in the atmosphere. A cloud feature at a latitude of 32°N, that was deeper in the atmosphere (near ∼2 bar), was later seen by amateur astronomers. We also present images returned from our HST ToO program, that shows both of these cloud features. We further report the first detection of a long-awaited haze over the north polar region.

  3. Cocaine Intoxication and Thyroid Storm

    PubMed Central

    Lacy, Mary E.

    2014-01-01

    Introduction. Cocaine, a widely used sympathomimetic drug, causes thermoregulatory and cardiac manifestations that can mimic a life-threatening thyroid storm. Case. A man presented to the emergency department requesting only cocaine detoxification. He reported symptoms over the last few years including weight loss and diarrhea, which he attributed to ongoing cocaine use. On presentation he had an elevated temperature of 39.4°C and a heart rate up to 130 beats per minute. Examination revealed the presence of an enlarged, nontender goiter with bilateral continuous bruits. He was found to have thyrotoxicosis by labs and was treated for thyroid storm and cocaine intoxication concurrently. The patient was ultimately diagnosed with Graves’ disease and treated with iodine-131 therapy. Conclusion. Cocaine use should be considered a possible trigger for thyroid storm. Recognition of thyroid storm is critical because of the necessity for targeted therapy and the significant mortality associated with the condition if left untreated. PMID:26425625

  4. A Coastal Storms Intensity Scale for the Catalan Sea

    NASA Astrophysics Data System (ADS)

    Mendoza, E. T.; Jimenez, J. A.

    2009-09-01

    The impact of storms on the coastal zone produces a series of high-intensity processes such as beach erosion, overwash and inundation, usually considered as coastal hazards. When these coastal hazards verify along developed/urbanized areas, could produce large damages in existing infrastructures, affect coastal uses and disturb coastal ecosystem services. The importance of these storms and induced hazards is explicit in the Protocol on ICZM in the Mediterranean signed in 2008 by the EU and the Mediterranean countries. This Protocol includes a specific chapter on natural hazards, where the parties are advised to undertake vulnerability and hazard assessments of coastal zones and take prevention, mitigation and adaptation measures to address the effects of natural disasters. Within this context, the main aim of this work is to present an intensity scale for coastal storms developed for typical conditions of the Catalan Shelf. This follows the classic works of the hurricane (Saffir-Simpson, 1971) and the Atlantic Northeast storms (Dolan-Davis, 1992) scales although adapting them to the characteristics of Mediterranean coastal wave storms. To develop such scale, wave data recorded along the Catalan coast in 5 locations covering a coastline of about 400 km have been used. Recorded wave time series cover a total time frame of about 25 years (1984-2008). The first task was to identify storms in time series, which here were defined as those events during which the significant wave height exceeded a minimum value (threshold) of 2 m during a minimum period of 6 hours. Because our interest is to use this information to help managers to deal with coastal hazards, this definition was based not just in statistical properties of time series but on physical ones, i.e. this is the minimum event producing a significant coastal response in terms of beach erosion (estimated by means of numerical modelling of beach response to storm impacts). With this, a complete storm data set for the Catalan coast was built by identifying all events in recorded time series. Each one is defined in terms of wave height -Hs-, period -Tp-, direction -? -, duration -D- and wave power -P- (integrated along the storm duration). This storm data set is then analysed by means of a clustering technique resulting in a 5-categories scale using the wave power as classification parameter. This 5-level scale was selected to maintain the capacity to compare it to original ones developed for the Atlantic. Once all the storms were associated to a given class, the next step was to assign them the order of magnitude of the expected induced coastal hazards along the Catalan coast. This was done by obtaining for each storm a measure of the intensity of the main induced hazards (beach profile erosion, sediment transport and inundation). Thus, each storm category is finally defined in terms of wave properties (Hs, Tp, ? , D,P) and, in terms of the magnitude of expected coastal hazards (which are defined by a mean, maximum and standard deviation of estimated values). The final paper will show the obtained values and proposed classification and it will compare with storm classification developed for the Atlantic coast. References Saffir, H.S. and R.H. Simpson. 1971. A proposed scale for ranking hurricanes by intensity, Minutes of the eight NOAA, NWS Hurricane Conference, Miami, Florida. Dolan, R. and Davis, R.E., 1992. An intensity scale for Atlantic coast Northeast Storms. Journal of Coastal Research, 8(4): 840-853.

  5. Biological ice nucleation initiates hailstone formation

    NASA Astrophysics Data System (ADS)

    Michaud, Alexander B.; Dore, John E.; Leslie, Deborah; Lyons, W. Berry; Sands, David C.; Priscu, John C.

    2014-11-01

    Cloud condensation and ice nuclei in the troposphere are required precursors to cloud and precipitation formation, both of which influence the radiative balance of Earth. The initial stage of hailstone formation (i.e., the embryo) and the subsequent layered growth allow hail to be used as a model for the study of nucleation processes in precipitation. By virtue of the preserved particle and isotopic record captured by hailstones, they represent a unique form of precipitation that allows direct characterization of the particles present during atmospheric ice nucleation. Despite the ecological and economic consequences of hail storms, the dynamics of hailstone nucleation, and thus their formation, are not well understood. Our experiments show that hailstone embryos from three Rocky Mountain storms contained biological ice nuclei capable of freezing water at warm, subzero (°C) temperatures, indicating that biological particles can act as nucleation sites for hailstone formation. These results are corroborated by analysis of ?D and ?18O from melted hailstone embryos, which show that the hailstones formed at similarly warm temperatures in situ. Low densities of ice nucleation active abiotic particles were also present in hailstone embryos, but their low concentration indicates they were not likely to have catalyzed ice formation at the warm temperatures determined from water stable isotope analysis. Our study provides new data on ice nucleation occurring at the bottom of clouds, an atmospheric region whose processes are critical to global climate models but which has challenged instrument-based measurements.

  6. Toward an integrated storm surge application: ESA Storm Surge project

    NASA Astrophysics Data System (ADS)

    Lee, Boram; Donlon, Craig; Arino, Olivier

    2010-05-01

    Storm surges and their associated coastal inundation are major coastal marine hazards, both in tropical and extra-tropical areas. As sea level rises due to climate change, the impact of storm surges and associated extreme flooding may increase in low-lying countries and harbour cities. Of the 33 world cities predicted to have at least 8 million people by 2015, at least 21 of them are coastal including 8 of the 10 largest. They are highly vulnerable to coastal hazards including storm surges. Coastal inundation forecasting and warning systems depend on the crosscutting cooperation of different scientific disciplines and user communities. An integrated approach to storm surge, wave, sea-level and flood forecasting offers an optimal strategy for building improved operational forecasts and warnings capability for coastal inundation. The Earth Observation (EO) information from satellites has demonstrated high potential to enhanced coastal hazard monitoring, analysis, and forecasting; the GOCE geoid data can help calculating accurate positions of tide gauge stations within the GLOSS network. ASAR images has demonstrated usefulness in analysing hydrological situation in coastal zones with timely manner, when hazardous events occur. Wind speed and direction, which is the key parameters for storm surge forecasting and hindcasting, can be derived by using scatterometer data. The current issue is, although great deal of useful EO information and application tools exist, that sufficient user information on EO data availability is missing and that easy access supported by user applications and documentation is highly required. Clear documentation on the user requirements in support of improved storm surge forecasting and risk assessment is also needed at the present. The paper primarily addresses the requirements for data, models/technologies, and operational skills, based on the results from the recent Scientific and Technical Symposium on Storm Surges (www.surgesymposium.org, organized by the WMO-IOC Joint technical Commission for Oceanography and Marine Meteorology, JCOMM) and following activities, that have been supported by the Intergovernmental Oceanographic Commission (IOC) of UNESCO through JCOMM. The paper also reviews the capabilities of storm surge models, and current status in using Earth Observation (EO) information for advancing storm surge application tools, and further, for improving operational forecasts and warning capability for coastal inundation. In this context, the plans and expected results of the ESA Storm Surge Project (2010-2011) will be introduced.

  7. Ionospheric redistribution during geomagnetic storms

    PubMed Central

    Immel, T J; Mannucci, A J

    2013-01-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dst<−100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3–6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow. PMID:26167429

  8. Magnetic Storms and Induction Hazards

    NASA Astrophysics Data System (ADS)

    Love, Jeffrey J.; Joshua Rigler, E.; Pulkkinen, Antti; Balch, Christopher C.

    2014-12-01

    Magnetic storms are potentially hazardous to the activities and technological infrastructure of modern civilization. This reality was dramatically demonstrated during the great magnetic storm of March 1989, when surface geoelectric fields, produced by the interaction of the time-varying geomagnetic field with the Earth's electrically conducting interior, coupled onto the overlying Hydro-Québec electric power grid in Canada. Protective relays were tripped, the grid collapsed, and about 9 million people were temporarily left without electricity [Bolduc, 2002].

  9. Repairing damaged platforms

    SciTech Connect

    Moore, R.E.; Kwok, P.H.; Wang, S.S.

    1995-10-01

    This paper introduces a unique method for strengthening of platforms and replacing damaged members. Extending the life of existing infrastructure is approved means of decreasing cash expenditures for new platforms and facilities. Platforms can be affected by corrosion, overloading and fatigue. The renovation and repair of existing offshore installations is an important part of offshore engineering. The basis behind this paper is an April, 1993 incident in the Arabian Gulf. A vessel broke loose from its moorings in a severe storm and collided with a wellhead platform. The collision severely damaged the platform buckling seven major support members and cracking joints throughout the structure. In view of the significant damage, there was an urgent need to repair the structure to avoid any further damage from potentially sever winter storm conditions. Various means of repair and their associated costs were evaluated: traditional dry hyperbaric welding, adjacent platforms, grouted clamped connections, and mechanical pipe connectors. The repair was completed using an innovative combination of clamps and wet welding to attach external braces to the structure.

  10. The relationship between lightning activity and ice fluxes in thunderstorms

    NASA Astrophysics Data System (ADS)

    Deierling, Wiebke; Petersen, Walter A.; Latham, John; Ellis, Scott; Christian, Hugh J.

    2008-08-01

    It is generally believed that a strong updraft in the mixed-phase region of thunderstorms is required to produce lightning. This is the region where the noninductive charging process is thought to generate most of the storm electrification. Analytic calculations and model results predict that the total lightning frequency is roughly proportional to the product of the downward mass flux of solid precipitation (graupel) and the upward mass flux of ice crystals. Thus far this flux hypothesis has only been tested in a very limited way. Herein we use dual-polarimetric and dual-Doppler radar observations in conjunction with total lightning data collected in Northern Alabama and also Colorado/Kansas during two field campaigns. These data are utilized to investigate total lightning activity as a function of precipitation and nonprecipitation ice masses and estimates of their fluxes for different storm types in different climate regions. A total of 11 storms, including single cell, multicell, and supercell storms, was analyzed in the two climatologically different regions. Time series of both precipitation and nonprecipitation ice mass estimates above the melting level show a good relationship with total lightning activity for the 11 storms analyzed (correlation coefficients exceed 0.9 and 0.8, respectively). Furthermore, the relationships are relatively invariant between the two climate regions. The correlations between total lightning and the associated product of ice mass fluxes are even higher. These observations provide strong support for the flux hypothesis.

  11. New Method for Estimating Landslide Losses for Major Winter Storms in California.

    NASA Astrophysics Data System (ADS)

    Wills, C. J.; Perez, F. G.; Branum, D.

    2014-12-01

    We have developed a prototype system for estimating the economic costs of landslides due to winter storms in California. This system uses some of the basic concepts and estimates of the value of structures from the HAZUS program developed for FEMA. Using the only relatively complete landslide loss data set that we could obtain, data gathered by the City of Los Angeles in 1978, we have developed relations between landslide susceptibility and loss ratio for private property (represented as the value of wood frame structures from HAZUS). The landslide loss ratios estimated from the Los Angeles data are calibrated using more generalized data from the 1982 storms in the San Francisco Bay area to develop relationships that can be used to estimate loss for any value of 2-day or 30-day rainfall averaged over a county. The current estimates for major storms are long projections from very small data sets, subject to very large uncertainties, so provide a very rough estimate of the landslide damage to structures and infrastructure on hill slopes. More importantly, the system can be extended and improved with additional data and used to project landslide losses in future major winter storms. The key features of this system—the landslide susceptibility map, the relationship between susceptibility and loss ratio, and the calibration of estimates against losses in past storms—can all be improved with additional data. Most importantly, this study highlights the importance of comprehensive studies of landslide damage. Detailed surveys of landslide damage following future storms that include locations and amounts of damage for all landslides within an area are critical for building a well-calibrated system to project future landslide losses. Without an investment in post-storm landslide damage surveys, it will not be possible to improve estimates of the magnitude or distribution of landslide damage, which can range up to billions of dollars.

  12. Ice911 Research: Preserving and Rebuilding Multi-Year Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.

    2013-12-01

    A localized surface albedo modification technique is being developed that shows promise as a method to increase multi-year ice using reflective floating materials, chosen so as to have low subsidiary environmental impact. Multi-year ice has diminished rapidly in the Arctic over the past 3 decades (Riihela et al, Nature Climate Change, August 4, 2013) and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time ice disappears, the Arctic is losing its ability to act as the earth's refrigeration system, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat, and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over five Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. Climate modeling is underway to analyze the effects of this method of surface albedo modification in key areas on the rate of oceanic and atmospheric temperature rise. We are also evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization. This paper will also discuss a possible reduction of sea level rise with an eye to quantification of cost/benefit. The most recent season's experimentation on a man-made private lake in Minnesota saw further evolution in the material and deployment approach. The materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. Localized albedo modification options such as the one being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method could be deployed on a large enough scale, it could conceivably bring about a reduction in the Ice-Albedo Feedback Effect, possibly slowing one of the key effects and factors in climate change. Test site at man-made lake in Minnesota 2013

  13. ICE911 Research: Preserving and Rebuilding Reflective Ice

    NASA Astrophysics Data System (ADS)

    Field, L. A.; Chetty, S.; Manzara, A.; Venkatesh, S.

    2014-12-01

    We have developed a localized surface albedo modification technique that shows promise as a method to increase reflective multi-year ice using floating materials, chosen so as to have low subsidiary environmental impact. It is now well-known that multi-year reflective ice has diminished rapidly in the Arctic over the past 3 decades and this plays a part in the continuing rapid decrease of summer-time ice. As summer-time bright ice disappears, the Arctic is losing its ability to reflect summer insolation, and this has widespread climatic effects, as well as a direct effect on sea level rise, as oceans heat and once-land-based ice melts into the sea. We have tested the albedo modification technique on a small scale over six Winter/Spring seasons at sites including California's Sierra Nevada Mountains, a Canadian lake, and a small man-made lake in Minnesota, using various materials and an evolving array of instrumentation. The materials can float and can be made to minimize effects on marine habitat and species. The instrumentation is designed to be deployed in harsh and remote locations. Localized snow and ice preservation, and reductions in water heating, have been quantified in small-scale testing. We have continued to refine our material and deployment approaches, and we have had laboratory confirmation by NASA. In the field, the materials were successfully deployed to shield underlying snow and ice from melting; applications of granular materials remained stable in the face of local wind and storms. We are evaluating the effects of snow and ice preservation for protection of infrastructure and habitat stabilization, and we are concurrently developing our techniques to aid in water conservation. Localized albedo modification options such as those being studied in this work may act to preserve ice, glaciers, permafrost and seasonal snow areas, and perhaps aid natural ice formation processes. If this method is deployed on a large enough scale, it could conceivably bring about a reduction in the Ice-Albedo Feedback Effect, possibly slowing one of the key effects and factors in climate change.

  14. Microphysics, Meteorology, Microwave and Modeling of Mediterranean Storms: The M(sup 5) Problem

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Fiorino, Steven; Mugnai, Alberto; Panegrossi, Giulia; Tripoli, Gregory; Starr, David (Technical Monitor)

    2001-01-01

    Comprehensive understanding of the microphysical nature of Mediterranean storms requires a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, particularly from synoptic scale down to mesoscale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. Insofar as hazardous Mediterranean storms, highlighted by the September 25-28/1992 Genova flood event, the October 5-7/1998 Friuli flood event, and the October 13-15/2000 Piemonte flood event (all taking place in northern Italy), developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within the storm domains. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting proc esses. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size distributions, and fall rates of the various modes of hydrometeors found within the storm environments. This paper presents detailed 4-dimensional analyses of the microphysical elements of the three severe Mediterranean storms identified above, investigated with the aid of SSM/I and TRMM satellite measurements (and other remote sensing measurements). The analyses are guided by nonhydrostatic mesoscale model simulations at high resolution of the intense rain producing portions of the storm environments. The results emphasize how meteorological controls taking place at the large scale, coupled with localized terrain controls, ultimately determine the most salient features of the bulk microphysical properties of the storms. These results have bearing on precipitation remote sensing from space, and the role of modeling in designing precipitation retrieval algorithms.

  15. Discontinuous Galerkin methods for modeling Hurricane storm surge

    NASA Astrophysics Data System (ADS)

    Dawson, Clint; Kubatko, Ethan J.; Westerink, Joannes J.; Trahan, Corey; Mirabito, Christopher; Michoski, Craig; Panda, Nishant

    2011-09-01

    Storm surge due to hurricanes and tropical storms can result in significant loss of life, property damage, and long-term damage to coastal ecosystems and landscapes. Computer modeling of storm surge can be used for two primary purposes: forecasting of surge as storms approach land for emergency planning and evacuation of coastal populations, and hindcasting of storms for determining risk, development of mitigation strategies, coastal restoration and sustainability. Storm surge is modeled using the shallow water equations, coupled with wind forcing and in some events, models of wave energy. In this paper, we will describe a depth-averaged (2D) model of circulation in spherical coordinates. Tides, riverine forcing, atmospheric pressure, bottom friction, the Coriolis effect and wind stress are all important for characterizing the inundation due to surge. The problem is inherently multi-scale, both in space and time. To model these problems accurately requires significant investments in acquiring high-fidelity input (bathymetry, bottom friction characteristics, land cover data, river flow rates, levees, raised roads and railways, etc.), accurate discretization of the computational domain using unstructured finite element meshes, and numerical methods capable of capturing highly advective flows, wetting and drying, and multi-scale features of the solution. The discontinuous Galerkin (DG) method appears to allow for many of the features necessary to accurately capture storm surge physics. The DG method was developed for modeling shocks and advection-dominated flows on unstructured finite element meshes. It easily allows for adaptivity in both mesh ( h) and polynomial order ( p) for capturing multi-scale spatial events. Mass conservative wetting and drying algorithms can be formulated within the DG method. In this paper, we will describe the application of the DG method to hurricane storm surge. We discuss the general formulation, and new features which have been added to the model to better capture surge in complex coastal environments. These features include modifications to the method to handle spherical coordinates and maintain still flows, improvements in the stability post-processing (i.e. slope-limiting), and the modeling of internal barriers for capturing overtopping of levees and other structures. We will focus on applications of the model to recent events in the Gulf of Mexico, including Hurricane Ike.

  16. Prediction of Total Lightning Behavior in Colorado Thunderstorms from Storm Dynamical and Microphysical Variables

    NASA Astrophysics Data System (ADS)

    Basarab, B.; Rutledge, S. A.; Fuchs, B.

    2014-12-01

    Accurate prediction of lightning flash rate is essential to successfully parameterize the production of nitrogen oxides by lightning (LNOx). In this study, new flash rate parameterization schemes are developed using observations of 10 Colorado thunderstorms from the Deep Convective Clouds and Chemistry (DC3) and the CHILL Microphysical Investigation of Electrification (CHILL-MIE) field projects. Storm total flash rates were determined by automated clustering of lightning mapping array (LMA)-detected radiation sources. Storm parameters, including hydrometeor and reflectivity echo volumes, ice masses, and measurements of updraft strength were obtained from polarimetric radar retrievals and dual-Doppler derived wind fields. Echo volumes exhibited a particularly strong correlation to flash rate (R2 = 0.78 for 30-dBZ echo volume). It is shown that existing flash rate schemes tend to underestimate flash rate for the storms in this study. New parameterizations developed based on the graupel echo volume, the precipitating ice mass (graupel and hail), and the 30-dBZ echo volume within the mixed-phase region of storms predicted flash rate trends reasonably well. However, there were sometimes large errors in the prediction of flash rate magnitudes, possibly due to fluctuations in storm updraft intensity. Updraft-based flash schemes were developed but significantly underestimated flash rate for the storms studied. It is shown that very high flash rates correlate differently to updraft strength than low flash rates. We hypothesize why this behavior is observed. The use of multiple storm parameters to predict flash rate was also investigated, and the results are improved somewhat compared to single-parameter schemes. New flash schemes were tested for storms outside of Colorado to examine their potential regional dependence. Finally, observations of the relationship between flash rate and flash size are discussed, with implications for the improved prediction of LNOx.

  17. Morphological response and coastal dynamics associated with major storm events along the Gulf of Lions Coastline, France

    NASA Astrophysics Data System (ADS)

    Gervais, M.; Balouin, Y.; Belon, R.

    2012-03-01

    Along the coast, anticipating the different morphological responses induced by storm events is crucial for managers to evaluate coastal risks and to develop the best measures to mitigate them. In this paper, a methodology is developed to determine the best storm intensity parameter to derive storm thresholds for different morphological responses. The methodology is applied to the northern part of the Gulf of Lions coastline where storm events can induce important morphological changes. These include shoreline retreat, beach and dune erosion, significant migration of nearshore bars, overwashes and even breaches of coastal barriers, as well as damage to coastal defences and coastal infrastructure. In order to evaluate historical storm characteristics and impact, an extensive review was undertaken to obtain quantitative datasets (beach profiles, wave records), aerial photographs and more qualitative information on morphological evolution and coastal damage. Re-analysis of hydrodynamic and morphology data was undertaken, and hindcast wave modelling results were used to characterised storm intensities. The methodology developed to evaluate storm thresholds consists of obtaining morphological evolution indicators (evidence of breaching, overwash processes, volume variations and migration of morphological patterns) that can be directly linked to a storm event and its characteristics. Results demonstrate that in such a quasi-non-tidal wave-dominated environment, with intermediate double-barred beach shoreface morphology, major coastal changes occur following the maximum significant wave height reached during the storm, or else according to maximum wave run-up elevation regarding upper beach impact, a wave height dependant parameter. Inversely storm surge (and water level) alone, as well as total storm energy, do not explain any storm impact scale. Storm-specific datasets indicate that important morphological evolution is observed during moderate storm events (significant wave heights over 2.7 m). Above this threshold, the morphological behaviour changes radically. The main characteristics are a rapid offshore migration of the nearshore bars and large deposition of sand on the upper beach. However, the major morphological changes are associated with even more energetic events. When the significant wave height reaches 5 m, important impacts are observed: breaching and overtopping of natural coastal barriers, and severe dune erosion and impacts to coastal infrastructure on urbanised beaches. Qualitative observations show an important increase in damage when the storm waves reach 5 m. The methods employed can be applied easily to any coastal segment and provide coastal managers with tools to evaluate different coastal evolution and coastal damage induced by storm events.

  18. USGS Multi-Hazards Winter Storm Scenario

    NASA Astrophysics Data System (ADS)

    Cox, D. A.; Jones, L. M.; Perry, S. C.

    2008-12-01

    The USGS began an inter-disciplinary effort, the Multi Hazards Demonstration Project (MHDP), in 2007 to demonstrate how hazards science can improve a community's resiliency to natural disasters including earthquakes, tsunamis, wildfires, landslides, floods and coastal erosion. The project engages the user community in setting research goals and directs efforts towards research products that can be applied to loss reduction and improved resiliency. The first public product of the MHDP was the ShakeOut Earthquake Scenario published in May 2008. It detailed the realistic outcomes of a hypothetical, but plausible, magnitude 7.8 earthquake on the San Andreas Fault in southern California. Over 300 scientist and experts contributed to designing the earthquake and understanding the impacts of such a disaster, including the geotechnical, engineering, social, cultural, environmental, and economic consequences. The scenario advanced scientific understanding and exposed numerous vulnerabilities related to emergency response and lifeline continuity management. The ShakeOut Scenario was the centerpiece of the Nation's largest-ever emergency response exercise in November 2008, dubbed "The Great Southern California ShakeOut" (www.shakeout.org). USGS Multi-Hazards is now preparing for its next major public project, a Winter Storm Scenario. Like the earthquake scenario, experts will be brought together to examine in detail the possibility, cost and consequences of a winter storm disaster including floods, landslides, coastal erosion and inundation; debris flows; biologic consequences like extirpation of endangered species; physical damages like bridge scour, road closures, dam failure, property loss, and water system collapse. Consideration will be given to the vulnerabilities associated with a catastrophic disruption to the water supply to southern California; the resulting impacts on ground water pumping, seawater intrusion, water supply degradation, and land subsidence; and a detailed examination on climatic change forces that could exacerbate the problems. Similar to the ShakeOut Scenario, the Winter Storm Scenario is designing a large but scientifically plausible physical event followed by an expert analysis of the secondary hazards, and the physical, social, and economic consequences. Unlike the earthquake scenario, the winter storm event may occur over days, weeks, and possibly months, and the stakeholder community is broadening to include resource managers as well as local governments and the emergency and lifeline management communities. Developing plans for this Scenario will be presented at this session, and feedback will be welcomed.

  19. Ice rafting of fine-grained sediment, a sorting and transport mechanism, Beaufort Sea, Alaska.

    USGS Publications Warehouse

    Barnes, P.W.; Reimnitz, E.; Fox, D.

    1982-01-01

    The presence of turbid, sediment-rich fast ice in the Arctic is a major factor affecting transport of fine-grained sediment. Observers have documented the widespread, sporadic occurrence of sediment- rich fast ice in both the Beaufort and Bering Seas. The occurrence of sediment in only the upper part of the seasonal fast ice indicates that sediment-rich ice forms early during ice growth. The most likely mechanism requires resuspension of nearshore bottom sediment during storms, accompanied by formation of frazil ice and subsequent lateral advection before the fast ice is stabilized. We estimate that the sediment incorporated in the Beaufort ice canopy formed a significant proportion of the seasonal influx of terrigenous fine-grained sediment. The dominance of fine-grained sediment suggests that in the Arctic and sub-Arctic these size fractions may be ice rafted in greater volumes than the coarse fraction of traditionally recognized ice-rafted sediment. -from Authors

  20. Using Satellite Observation for Early Warning of Convective Storm in Tehran

    NASA Astrophysics Data System (ADS)

    Owlad, E.

    2015-12-01

    Severe convective storms are responsible for large amount of damage each year around the world. They form an important part of the climate system by redistributing heat, moisture, and trace gases, as well as producing large quantities of precipitation. As these extreme and rare events are in mesoscale there is many uncertainty in predicting them and we can't rely on just models. On the other hand, remote sensing has a large application in Meteorology and near real time weather forecasting, especially in rare and extreme events like convective storms that might be difficult to predict with atmospheric models. On second of June 2014, near 12UTC a sudden and strong convective storm occurred in Tehran province that was not predicted, and caused economic and human losses. In This research we used satellite observations along with synoptic station measurements to predict and monitor this storm. Results from MODIS data show an increase in the amount of cloudiness and also aerosol optical depth and sudden decrease in cloud top temperature few hours before the storm occurs. EUMETSAT images show the governing of convection before the storm occurs. With combining the observation data that shows Lake of humidity and high temperature in low levels with satellite data that reveals instability in high levels that together caused this convective, we could track the storm and decrease the large amount of damage.

  1. Satellite remote sensing and cloud modeling of St. Anthony, Minnesota storm clouds and dew point depression

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.

    1988-01-01

    Rawinsonde data and geosynchronous satellite imagery were used to investigate the life cycles of St. Anthony, Minnesota's severe convective storms. It is found that the fully developed storm clouds, with overshooting cloud tops penetrating above the tropopause, collapsed about three minutes before the touchdown of the tornadoes. Results indicate that the probability of producing an outbreak of tornadoes causing greater damage increases when there are higher values of potential energy storage per unit area for overshooting cloud tops penetrating the tropopause. It is also found that there is less chance for clouds with a lower moisture content to be outgrown as a storm cloud than clouds with a higher moisture content.

  2. Interstellar Ices

    NASA Astrophysics Data System (ADS)

    Boogert, A. C. A.; Ehrenfreund, P.

    2004-05-01

    Currently ˜36 different absorption bands have been detected in the infrared spectra of cold, dense interstellar and circumstellar environments. These are attributed to the vibrational transitions of ˜17 different molecules frozen on dust grains. We review identification issues and summarize the techniques required to extract information on the physical and chemical evolution of these ices. Both laboratory simulations and line of sight studies are essential. Examples are given for ice bands observed toward high mass protostars, field stars and recent work on ices in disks surrounding low mass protostars. A number of clear trends have emerged in recent years. One prominent ice component consists of an intimate mixture between H2O, CH3OH and CO2 molecules. Apparently a stable balance exists between low temperature hydrogenation and oxidation reactions on grain surfaces. In contrast, an equally prominent ice component, consisting almost entirely of CO, must have accreted directly from the gas phase. Thermal processing, i.e. evaporation and crystallization, proves to be readily traceable in both these ice components. The spectroscopic signatures of energetic processing by cosmic rays and high energy photons from nearby protostars are weaker and not as well understood. A fundamental limitation in detecting complex, energetically produced (and also some simple) species is blending of weak features in the spectra of protostars. Sophisticated techniques are required to extract information from blended features. We conclude with a summary of key goals for future research and prospects for observations of ices using future instrumentation, including SIRTF/IRS.

  3. Mapping and Visualization of Storm-Surge Dynamics for Hurricane Katrina and Hurricane Rita

    USGS Publications Warehouse

    Gesch, Dean B.

    2009-01-01

    The damages caused by the storm surges from Hurricane Katrina and Hurricane Rita were significant and occurred over broad areas. Storm-surge maps are among the most useful geospatial datasets for hurricane recovery, impact assessments, and mitigation planning for future storms. Surveyed high-water marks were used to generate a maximum storm-surge surface for Hurricane Katrina extending from eastern Louisiana to Mobile Bay, Alabama. The interpolated surface was intersected with high-resolution lidar elevation data covering the study area to produce a highly detailed digital storm-surge inundation map. The storm-surge dataset and related data are available for display and query in a Web-based viewer application. A unique water-level dataset from a network of portable pressure sensors deployed in the days just prior to Hurricane Rita's landfall captured the hurricane's storm surge. The recorded sensor data provided water-level measurements with a very high temporal resolution at surveyed point locations. The resulting dataset was used to generate a time series of storm-surge surfaces that documents the surge dynamics in a new, spatially explicit way. The temporal information contained in the multiple storm-surge surfaces can be visualized in a number of ways to portray how the surge interacted with and was affected by land surface features. Spatially explicit storm-surge products can be useful for a variety of hurricane impact assessments, especially studies of wetland and land changes where knowledge of the extent and magnitude of storm-surge flooding is critical.

  4. A High Density Storm Surge Monitoring Network: Evaluating the Ability of Wetland Vegetation to Reduce Storm Surge

    NASA Astrophysics Data System (ADS)

    Lawler, S.; Denton, M.; Ferreira, C.

    2013-12-01

    Recent tropical storm activity in the Chesapeake Bay and a potential increase in the predicted frequency and magnitude of weather systems have drawn increased attention to the need for improved tools for monitoring, modeling and predicting the magnitude of storm surge, coastal flooding and the respective damage to infrastructure and wetland ecosystems. Among other forms of flood protection, it is believed that coastal wetlands and vegetation can act as a natural barrier that slows hurricane flooding, helping to reduce the impact of storm surge. However, quantifying the relationship between the physical process of storm surge and its attenuation by wetland vegetation is an active area of research and the deployment of in-situ measuring devices is crucial to data collection efforts in this field. The United States Geological Survey (USGS) mobile storm-surge network has already successfully provided a framework for evaluating hurricane induced storm surge water levels on a regional scale through the use of in-situ devices installed in areas affected by storm surge during extreme events. Based on the success of the USGS efforts, in this study we adapted the monitoring network to cover relatively small areas of wetlands and coastal vegetation with an increased density of sensors. Groups of 6 to 10 water level sensors were installed in sites strategically selected in three locations on the Virginia coast of the lower Chesapeake Bay area to monitor different types of vegetation and the resulting hydrodynamic patterns (open coast and inland waters). Each group of sensors recorded time series data of water levels for both astronomical tide circulation and meteorological induced surge. Field campaigns were carried out to survey characteristics of vegetation contributing to flow resistance (i.e. height, diameter and stem density) and mapped using high precision GPS. A geodatabase containing data from field campaigns will support the development and calibration of computational models to simulate storm surge flow over wetlands specifically designed to represent Virginia's aquatic vegetation and to improve our fundamental knowledge of tide and storm surge hydrodynamics in estuarine wetlands. This poster will present the results of the field measurements for events during the 2013 Hurricane Season, tidal flows within the study areas, and surge attenuation rates according to vegetation characteristics.

  5. Economic costs of extratropical storms under climate change: An application of FUND

    NASA Astrophysics Data System (ADS)

    Narita, D.; Tol, R.; Anthoff, D.

    2009-12-01

    Extratropical cyclones have attracted some attention in climate policy circles as a possible significant damage factor of climate change. This study conducts an assessment of economic impacts of increased storm activities under climate change with the integrated assessment model FUND 3.5. FUND is a model that calculates damages of climate change for 16 regions by making use of exogenous scenarios of socioeconomic variables (for details of our estimation approach, see our working paper whose URL is indicated below). Our estimation shows that in the base case, the direct economic damage of enhanced storms due to climate change amounts to $2.8 billion globally (approximately 38% of the total economic loss of storms at present) at the year 2100, while the ratio to the world GDP is 0.0009%. The regional results (Figure 1) indicate that the economic effect of extratropical storms with climate change would have relatively minor importance for the US (USA): The enhanced extratropical storm damage (less than 0.001% of GDP for the base case) is one order of magnitude lower than the tropical cyclone damage (roughly 0.01% GDP) calculated by the same version of FUND. In the regions without strong tropical cyclone influence, such as Western Europe (WEU) and Australia and New Zealand (ANZ), the extratropical storms might have some more significance as a possible damage factor of climate change. Especially for the latter, the direct economic damage could amount to more than 0.006% of GDP. Still, the impact is small relative to the income growth expected in these regions. Figure 1. Increased direct economic loss at the year 2100 for selected regions (results are shown for the three different baselines: the years 1986-2005, 1976-2005, and 1996-2005). US - USA; Canada - CAN; Western Europe - WEU; Australia and New Zealand - ANZ.

  6. Observations of Florida Convective Storms Using Dual Wavelength Airborne Radar

    NASA Technical Reports Server (NTRS)

    Heymsfield, G. M.; Heymsfield, A. J.; Belcher, L.

    2004-01-01

    NASA conducted the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) during July 2002 for improved understanding of tropical cirrus. One of the goals was to improve the understanding of cirrus generation by convective updrafts. The reasons why some convective storms produce extensive cirrus anvils is only partially related to convective instability and the vertical transport ice mass by updrafts. Convective microphysics must also have an important role on cirrus generation, for example, there are hypotheses that homogeneous nucleation in convective updrafts is a major source of anvil ice particles. In this paper, we report on one intense CRYSTAL- FACE convective case on 16 July 2002 that produced extensive anvil.

  7. [Biological effects of planetary magnetic storms].

    PubMed

    Chibisov, S M; Breus, T K; Levitin, A E; Drogova, G M

    1995-01-01

    Six physiological parameters of cardio-vascular system of rabbits and ultrastructure of cardiomyocytes were investigated during two planetary geomagnetic storms. At the initial and main phase of the storm the normal circadian structure in each cardiovascular parameter was lost. The asynchronicity was growing together with the storm and abrupt drop of cardia activity was observed during the main phase of storm. The main phase of storm followed by the destruction and degradation of cardiomyocytes. Parameters of cardia activity became substantially synchronized and characterised by circadian rhythm structure while the amplitude of deviations was still significant at the recovery stage of geomagnetic storm. PMID:8555294

  8. Intense geomagnetic storms: A study

    NASA Astrophysics Data System (ADS)

    Silbergleit, Virginia

    In the pipes and the lines of the transmission of the electrical energy, the route of the currents through them, causes a diminution of the life utility of the same one. The intense storms are studied, because these are induced quickly to the ionospheric systems that they change, obtaining great induced telluric currents (or GICs). Also the Akasofús parameter based on the time for periods of strong and moderate magnetic storms during the last 10 years is calculated. The method also standardizes the parameters of the storm: electron flow between 30-300 KeV, z component of the magnetic field (Bz), the solar Wind velocity (v), indices AE and AL. Also, the decay time of the ring current (which is different during the main and the recovery phase from of the geomagnetic disturbances) are calculated.

  9. Research Opportunities at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  10. Klaus, an exceptional winter storm over Northern Iberia and Southern France - a comparison between storm diagnostics

    NASA Astrophysics Data System (ADS)

    Liberato, M. L. R.; Pinto, J. G.; Trigo, I. F.; Trigo, R. M.

    2010-05-01

    The synoptic evolution and dynamical characteristics of storm "Klaus" (23 and 24 January 2009) are analysed. "Klaus" was an extratropical cyclone which developed over the subtropical North Atlantic Ocean on the 21st January 2009, then moved eastward embedded in the strong westerly flow and experienced a notorious strengthening on the 23rd January. The storm moved into the Bay of Biscay and deepened further before hitting Northern Spain and Southwestern France with gusts of up to 198 km/h. Afterwards, it steered southeastwards across Southern France into Northern Italy and the Adriatic. "Klaus" was the most intense and damaging wind storm in the region in a decade, provoked more than 20 casualties and insured losses of several billion Euros. The evolution of "Klaus" is analysed using two standard cyclone detecting and tracking schemes: a) the vorticity maxima based algorithm originally developed by Murray and Simmonds [1991], adapted for Northern Hemisphere cyclone characteristics [Pinto et al. 2005]; and b) the pressure minima based algorithm first developed for the Mediterranean region [Trigo et al. 1999; 2002] and later extended to a larger Euro-Atlantic region [Trigo 2006]. Additionally, the synoptic and mesoscale features of the storm are analysed. The vorticity based method detects the storm earlier than the pressure minima one. Results show that both tracks exhibited similar features and positions throughout almost all of their lifecycles, with minor discrepancies being probably related to different ways of both methods handling the spatio-temporal evolution of multiple candidates for cyclonic centres. In its strengthening phase, "Klaus" presents deepening rates above 37 hPa/24h, a value that after geostrophically adjusted to the reference latitude of 60°N increases to 44 hPa/24h, implying an exceptional event with bomb characteristics. During maximum intensity change within 24 hours was 1.165hPa/(deglat)2. References: Murray RJ, Simmonds I (1991) Aust. Meteorol. Mag., 39, 155-166. Pinto JG et al (2005) Meteorol. Z., 14, 823-838. Trigo IF et al (1999) J. Climate, 12, 1685-1696. Trigo IF et al (2002) Mon. Weather Rev. 130, 549-569. Trigo IF (2006) Clim. Dyn., 26, 127-143.

  11. Mesoscale aspects of convective storms

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1981-01-01

    The structure, evolution and mechanisms of mesoscale convective disturbances are reviewed and observation techniques for "nowcasting" their nature are discussed. A generalized mesometeorological scale is given, classifying both low and high pressure systems. Mesoscale storms are shown often to induce strong winds, but their wind speeds are significantly less than those accompanied by submesoscale disturbances, such as tornadoes, downbursts, and microbursts. Mesoscale convective complexes, severe storm wakes, and flash floods are considered. The understanding of the evolution of supercells is essential for improving nowcasting capabilities and a very accurate combination of radar and satellite measurements is required.

  12. Space storms as natural hazards

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Ptitsyna, N. G.; Villoresi, G.; Kasinsky, V. V.; Lyakhov, N. N.; Tyasto, M. I.

    2008-04-01

    Eruptive activity of the Sun produces a chain of extreme geophysical events: high-speed solar wind, magnetic field disturbances in the interplanetary space and in the geomagnetic field and also intense fluxes of energetic particles. Space storms can potentially destroy spacecrafts, adversely affect astronauts and airline crew and human health on the Earth, lead to pipeline breaking, melt electricity transformers, and discontinue transmission. In this paper we deal with two consequences of space storms: (i) rise in failures in the operation of railway devices and (ii) rise in myocardial infarction and stroke incidences.

  13. Bracing for the geomagnetic storms

    SciTech Connect

    Kappenman, J.G. ); Albertson, V.D. )

    1990-03-01

    The authors discuss the impact of geomagnetic storms on utility transmission networks. The effects of a recent storm on the Hydro-Quebec transmission system are described in detail. Research into geomagnetic disturbance prediction is discussed. In coming months, geomagnetic field activity will be high as it builds toward a peak, the 22nd since reliable records of the phenomenon began in the mid-1700s. The peaks come in roughly 11-year cycles, and the next is expected later this year or early in 1991. The solar activity has so far risen at one of the fastest rates ever recorded, and solar forecasters expect cycle 22 to have unusually high activity levels.

  14. National Severe Storms Forecast Center

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The principal mission of the National Severe Storms Forecast Center (NSSFC) is to maintain a continuous watch of weather developments that are capable of producing severe local storms, including tornadoes, and to prepare and issue messages designated as either Weather Outlooks or Tornado or Severe Thunderstorm Watches for dissemination to the public and aviation services. In addition to its assigned responsibility at the national level, the NSSFC is involved in a number of programs at the regional and local levels. Subsequent subsections and paragraphs describe the NSSFC, its users, inputs, outputs, interfaces, capabilities, workload, problem areas, and future plans in more detail.

  15. Prediction and Identification of Flash Flood Storms in Colorado. Part I: Attributes of Environment and Storm Evolution

    NASA Astrophysics Data System (ADS)

    Roberts, Rita; Wilson, James

    2013-04-01

    Heavy rainfall and hail frequently occur in association with intense, summertime convective storms that form along the foothills and eastern plains of the Colorado Rocky Mountains. Heavy rainfall amounts over localized regions can result in flash flooding in mountain communities and in the dense urban areas along the Front Range, disrupting traffic, causing damage to property and in extreme events, resulting in loss of life. Various approaches have been taken over the years to provide the best possible estimations of quantitative precipitation (QPE) and nowcasts and short-term forecasts of heavy precipitation (QPN and QPF, respectively) in order to assess the potential for flash floods over the 0-6 hr time period and to accurately model and predict streamflow increases and runoff. Ten Colorado flash flood and hailstorm events that occurred during the period from 2008-2012 are examined in detail in Parts I and II of this study to benchmark our current understanding of the attributes and evolution of flash flood events and determine how to improve our prediction and identification of those storms that are likely to produce heavy rainfall of short duration over very specific regions and basins sensitive to flooding. In Part I of this study, we utilize instrumentation available from the Front Range Observational Network Testbed (FRONT) located along the Colorado Front Range. This testbed includes 5 dual-polarimetric Doppler S-band radars and a variety of operational and experimental surface, upper air, and satellite observing systems. These detailed observations provide high resolution observations of wind, temperature, moisture, stability, precipitation rate and accumulation. The events are characterized by environments with relatively high moisture content for the area, both in the boundary layer and at mid-levels and conditionally unstable atmospheres either over the plains or over the mountains, or both. Boundary layer and steering level winds were generally between 2.5 - 15 m/s (5-30 kts), so storms were either semi-stationary or not moving particularly fast. Numerous storms formed on these days, but the heaviest rainfall and flash flood resulted from merging storms, back-building storms, and the continual re-initiation of new storms over the same elevated terrain locations during the afternoon period. The collision of convergence boundaries over the plains and the enhancement of existing storms by convergence boundary passage resulted in the formation of large, semi-stationary storms that proceeded to rain heavily over the Denver urban area, and caused one fatality on one of the days. On another day, the storms that formed all seemed rather similar in character, but the rainfall associated with storms that passed over a recent fire burn area caused flooding in that sensitive land area. Identifying and improving the prediction of those specific storms that will produce the heaviest rainfall or case substantial flooding is challenging. Use of basic extrapolation techniques are not sufficient for prediction of heavy rainfall and flooding events (see Part II). Planned efforts include using the documented attributes of the ten heavy precipitation events to develop improved, location-specific, detection and prediction of heavy precipitation storms.

  16. Storm-driven Mixing and Potential Impact on the Arctic Ocean

    NASA Technical Reports Server (NTRS)

    Yang, Jiayan; Comiso, Josefino; Walsh, David; Krishfield, Richard; Honjo, Susumu; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observations of the ocean, atmosphere, and ice made by Ice-Ocean Environmental Buoys (IOEBs) indicate that mixing events reaching the depth of the halocline have occurred in various regions in the Arctic Ocean. Our analysis suggests that these mixing events were mechanically forced by intense storms moving across the buoy sites. In this study, we analyzed these mixing events in the context of storm developments that occurred in the Beaufort Sea and in the general area just north of Fram Strait, two areas with quite different hydrographic structures. The Beaufort Sea is strongly influenced by inflow of Pacific water through Bering Strait, while the area north of Fram Strait is directly affected by the inflow of warm and salty North Atlantic water. Our analyses of the basin-wide evolution of the surface pressure and geostrophic wind fields indicate that the characteristics of the storms could be very different. The buoy-observed mixing occurred only in the spring and winter seasons when the stratification was relatively weak. This indicates the importance of stratification, although the mixing itself was mechanically driven. We also analyze the distribution of storms, both the long-term climatology as well as the patterns for each year in the last two decades. The frequency of storms is also shown to be correlated- (but not strongly) to Arctic Oscillation indices. This study indicates that the formation of new ice that leads to brine rejection is unlikely the mechanism that results in the type of mixing that could overturn the halocline. On the other hand, synoptic-scale storms can force mixing deep enough to the halocline and thermocline layer. Despite a very stable stratification associated with the Arctic halocline, the warm subsurface thermocline water is not always insulated from the mixed layer.

  17. Cumulative impacts of hurricanes on Florida mangrove ecosystems: Sediment deposition, storm surges and vegetation

    USGS Publications Warehouse

    Smith, T. J., III; Anderson, G.H.; Balentine, K.; Tiling, G.; Ward, G.A.; Whelan, K.R.T.

    2009-01-01

    Hurricanes have shaped the structure of mangrove forests in the Everglades via wind damage, storm surges and sediment deposition. Immediate effects include changes to stem size-frequency distributions and to species relative abundance and density. Long-term impacts to mangroves are poorly understood at present. We examine impacts of Hurricane Wilma on mangroves and compare the results to findings from three previous storms (Labor Day, Donna, Andrew). Surges during Wilma destroyed ??? 1,250 ha of mangroves and set back recovery that started following Andrew. Data from permanent plots affected by Andrew and Wilma showed no differences among species or between hurricanes for stem mortality or basal area lost. Hurricane damage was related to hydro-geomorphic type of forest. Basin mangroves suffered significantly more damage than riverine or island mangroves. The hurricane by forest type interaction was highly significant. Andrew did slightly more damage to island mangroves. Wilma did significantly more damage to basin forests. This is most likely a result of the larger and more spatially extensive storm surge produced by Wilma. Forest damage was not related to amount of sediment deposited. Analyses of reports from Donna and the Labor Day storm indicate that some sites have recovered following catastrophic disturbance. Other sites have been permanently converted into a different ecosystem, namely intertidal mudflats. Our results indicate that mangroves are not in a steady state as has been recently claimed. ?? 2009 The Society of Wetland Scientists.

  18. New insights on geomagnetic storms from observations and modeling

    SciTech Connect

    Jordanova, Vania K

    2009-01-01

    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bzstorms representative of each interplanetary condition with our kinetic ring current atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.

  19. Spatial characteristics of severe storms in Hong Kong

    NASA Astrophysics Data System (ADS)

    Gao, L.; Zhang, L. M.

    2015-07-01

    A storm may cause serious damage to infrastructures and public safety. The storm spatial distribution is an important piece of information in drainage system design and landslide hazard analysis. The primary objective of this paper is to quantify the spatial characteristics of three severe storms in Hong Kong. The maximum rolling 4, 24 and 36 h rainfall amounts of these storms are introduced firstly. Then the spatial structure of precipitation represented by semivariograms is analysed in both isotropic and anisotropic cases. Afterwards, the distribution of rainfall in spatial domain is assessed via surface trend fitting. Finally the spatial correlation of detrended residuals is determined through studying the scales of fluctuation along eight directions. The spatial distribution of the maximum rolling rainfall can be represented by a rotated ellipsoid trend surface and a random field of residuals. The principal directions of the surface trend are between 25 and 45°. The scales of fluctuation of the detrended residuals are found between 5 and 25 km according to the semivariograms and autocorrelation functions. The spatial correlations of the maximum rolling rainfall are affected by the rainfall duration. The scale of fluctuation becomes smaller as the rainfall duration increases. Such spatial characteristics are related to the local terrain and meteorology factors.

  20. A sensitivity study of storm cyclones with a mesoscale model

    NASA Astrophysics Data System (ADS)

    Radtke, K. S.; Tetzlaff, G.

    2003-04-01

    Extra tropical storms caused noticeable damages in the last decades. The evolution of strong cyclones is investigated by simulations with the nonhydrostatic limited area model 'Lokal Modell' (LM) of the German Weather Service (DWD). Which Conditions become important to distinguish an common cyclone from an storm-cyclone? Intense cyclones are mostly characterised by two typical large-scale features: high baroclinicity along the track of the low pressure system and a region of high equivalent potential temperature. For this purpose the observed values of the horizontal temperature gradient and the distribution of air moisture are varied and were used as forcing data, in such a way the development of storms was modified. The forcing data for the LM were generated by the global model of the DWD. Therefore data of real cyclones, such as the low Ginger, which occurred in 2000, were used. As the LM simulates only a limited area, the lateral bounds become problematic because of the manipulated forcing data. A procedure is tested, in order to prevent these problems. In this manner ensembles of storm scenarios were produced. The effects of various conditions were studied. Here in particular the changes in the surface velocity field were of interest. In the case of Ginger, an increase of the temperature gradient about 10 K causes an increasing of the maximum velocity about 3 m/s.

  1. ESTIMATING PARAMETERS FOR CHARACTERIZING TIMES BETWEEN STORMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization and estimation of times between storms are needed for stochastic storm simulation, drought studies, etc. An exploratory investigation into practical estimation of two characterization parameters was conducted using regression equations - critical duration (CD, minimum dry time betw...

  2. Auroral Zone E-Region Electron Density Geomagnetic Storm Enhancements Predicted by the Empirical STORM-E Model

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Bilitza, Dieter; Xu, Xiaojing

    2012-07-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region electron densities. The empirical model is called STORM-E. The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) volume emission rates (VER) derived from the TIMED/SABER 4.3 um channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 um VER is most sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 um VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. In this paper, the development of the E-region electron density storm-time correction factor is described. The STORM-E storm-time correction factor is fit to a single geomagnetic index. There are four versions of the STORM-E model. Each version is fit to one of the following indices: HP-, AE-, Ap-, or Dst. High-latitude incoherent scatter radar (ISR) E-region electron density measurements are compared to STORM-E predictions for various geomagnetic storm periods during solar cycle 23. These comparisons show that STORM-E significantly improves the prediction of E-region electron density enhancements due to auroral particle precipitation, in comparison to the nominal International Reference Ionosphere (IRI) model or to the quiet-time baseline electron density concentrations measured by ISR. The version of the STORM-E model based on the fit to the Ap-index is now incorporated into the 2012 release of the IRI.

  3. Impacts of land cover changes on hurricane storm surge in the lower Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Denton, M.; Lawler, S.; Ferreira, C.

    2013-12-01

    The Chesapeake Bay is the largest estuary in the United States with more than 150 rivers draining into the bay's tidal wetlands. Coastal wetlands and vegetation play an important role in shaping the hydrodynamics of storm surge events by retaining water and slowing the propagation of storm surge. In this way coastal wetlands act as a natural barrier to inland flooding, particularly against less intense storms. Threats to wetlands come from both land development (residential or commercial/industrial) and sea level rise. The lower region of the Chesapeake Bay near its outlet is especially vulnerable to flooding from Atlantic storm surge brought in by hurricanes, tropical storms and nor'easters (e.g., hurricanes Isabel [2003] and Sandy [2012]). This region is also intensely developed with nearly 1.7 million residents within the greater Hampton Roads metropolitan area. Anthropogenic changes to land cover in the lower bay can directly impact basin drainage and storm surge propagation with impacts reaching beyond the immediate coastal zone to affect flooding in inland areas. While construction of seawall barriers around population centers may provide storm surge protection to a specifically defined area, these barriers deflect storm surge rather than attenuate it, underscoring the importance of wetlands. To analyze these impacts a framework was developed combining numerical simulations with a detailed hydrodynamic characterization of flow through coastal wetland areas. Storm surges were calculated using a hydrodynamic model (ADCIRC) coupled to a wave model (SWAN) forced by an asymmetric hurricane vortex model using the FEMA region 3 unstructured mesh (2.3 million nodes) under a High Performance Computing (HPC) environment. Multiple model simulations were performed using historical hurricanes data and hypothetical storms to compare the predicted storm surge inundation with various levels of wetland reduction and/or beach hardening. These data were combined and overlaid with a geospatial inventory of critical infrastructure assets to evaluate the potential for storm damage associated with each level of wetland reduction. This poster will present quantitative analyses of the benefits and losses regarding storm surge inundation and damage from land cover changes in the study region.

  4. On the Impact of Extratropical Systems and Tropical Storms in the Characterization of Flood Risk for the Eastern United States

    NASA Astrophysics Data System (ADS)

    Villarini, Gabriele; Smith, James; Vecchi, Gabriel; Baeck, Mary Lynn

    2010-05-01

    Flooding in the eastern US reflects a mixture of flood generating mechanisms, with landfalling tropical cyclones and extratropical systems playing central roles. These precipitation systems represent a major risk for insured property and can lead to extensive damage through storm surge flooding, inland flooding and heavy rainfall, or extreme windspeeds. The focus of this work revolves around two main issues: 1) For a given extratropical system or landfalling tropical storm, what is the extent of the inland flooding? 2) What is the rainfall distribution and storm evolution for flood events in the eastern US? Results are presented using case studies of both extratropical systems and landfalling tropical storms in the eastern US. The results of this study could be used to feed into the next generation of cat-models and assist in the calculation of damages from inland flood damage and heavy rainfall.

  5. Cement Creek Following Storm Event

    USGS Multimedia Gallery

    Cement Creek following storm event in July, 2004. Note the orange discoloration of the stream derived from weathering of bedrocks and from mined areas. This type of event happens frequently in the Animas Watershed near Silverton, Colorado. View is to the south, with Kendall Mountain in the distance....

  6. Rain from Tropical Storm Noel

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Though not the most powerful storm of the 2007 Atlantic Hurricane season, Tropical Storm Noel was among the most deadly. Only Category 5 Hurricane Felix and its associated flooding had a higher toll. The slow-moving Tropical Storm Noel inundated the Dominican Republic, Haiti, Jamaica, Cuba, and the Bahamas with heavy rain between October 28 and November 1, 2007. The resulting floods and mudslides left at least 115 dead and thousands homeless throughout the Caribbean, reported the Associated Press on November 2, 2007. This image shows the distribution of the rainfall that made Noel a deadly storm. The image shows rainfall totals as measured by the Multi-satellite Precipitation Analysis (MPA) at NASA Goddard Space Flight Center from October 26 through November 1, 2007. The analysis is based on measurements taken by the Tropical Rainfall Measuring Mission (TRMM) satellite. The heaviest rainfall fell in the Dominican Republic and the Bahamas, northeast of Noel's center. Areas of dark red show that rainfall totals over the south-central Dominican Republic and parts of the Bahamas were over 551 millimeters (21 inches). Much of eastern Hispaniola, including both the Dominican Republic and Haiti received at least 200 mm (about 8 inches) of rain, shown in yellow. Rainfall totals over Haiti and Cuba were less, with a range of at least 50 mm (2 inches) to over 200 mm (8 inches).

  7. ENSO and winter storms in California

    USGS Publications Warehouse

    Cayan, D.R.; Bromirski, Peter

    2003-01-01

    The frequency and intensity of North Pacific winter storms that penetrate the California coast drives the winds, sea level, precipitation and streamflow that are crucial influences on coastal processes. There is considerable variability of these storm characteristics, in large part owing to the El Nino/Southern Oscillation (ENSO} phenomenon. There is a great contrast of the storm characteristics during the El Nino phase vs. the La Nina phase, with the largest scale, southerly extensive winter storms generated during El Nino.

  8. A-Train Observations of Deep Convective Storm Tops

    NASA Technical Reports Server (NTRS)

    Setvak, Martin; Bedka, Kristopher; Lindsey, Daniel T.; Sokol, Alois; Charvat, Zdenek; Stastka, Jindrich; Wang, Pao K.

    2013-01-01

    The paper highlights simultaneous observations of tops of deep convective clouds from several space-borne instruments including the Moderate Resolution Imaging Spectroradiometer (MODIS) of the Aqua satellite, Cloud Profiling Radar (CPR) of the CloudSat satellite, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) flown on the CALIPSO satellite. These satellites share very close orbits, thus together with several other satellites they are referred to as the "A-Train" constellation. Though the primary responsibility of these satellites and their instrumentation is much broader than observations of fine-scale processes atop convective storms, in this study we document how data from the A-Train can contribute to a better understanding and interpretation of various storm-top features, such as overshooting tops, cold-U/V and cold ring features with their coupled embedded warm areas, above anvil ice plumes and jumping cirrus. The relationships between MODIS multi-spectral brightness temperature difference (BTD) fields and cloud top signatures observed by the CPR and CALIOP are also examined in detail to highlight the variability in BTD signals across convective storm events.

  9. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  10. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  11. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  12. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  13. 46 CFR 169.329 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Storm rails. 169.329 Section 169.329 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Construction and Arrangement Rails and Guards § 169.329 Storm rails. Suitable storm rails or hand grabs must...

  14. 46 CFR 177.920 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must...

  15. 46 CFR 127.320 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and...

  16. 46 CFR 177.920 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must...

  17. 46 CFR 108.221 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the...

  18. 46 CFR 116.920 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where...

  19. 46 CFR 177.920 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must...

  20. 46 CFR 108.221 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the...

  1. 46 CFR 127.320 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and...

  2. 46 CFR 127.320 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and...

  3. 46 CFR 108.221 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the...

  4. 46 CFR 127.320 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and...

  5. 46 CFR 116.920 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where...

  6. 46 CFR 177.920 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must...

  7. 46 CFR 116.920 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where...

  8. 46 CFR 116.920 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where...

  9. 46 CFR 127.320 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 127.320 Section 127.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS CONSTRUCTION AND ARRANGEMENTS Rails and Guards § 127.320 Storm rails. Suitable storm rails must be installed in each passageway and...

  10. 46 CFR 116.920 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 116.920 Section 116.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS CARRYING MORE THAN 150... and Guards § 116.920 Storm rails. Suitable storm rails or hand grabs must be installed where...

  11. 46 CFR 177.920 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Storm rails. 177.920 Section 177.920 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) SMALL PASSENGER VESSELS (UNDER 100 GROSS TONS) CONSTRUCTION AND ARRANGEMENT Rails and Guards § 177.920 Storm rails. Suitable storm rails or hand grabs must...

  12. 46 CFR 108.221 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the...

  13. Characterizing Times Between Storms in Mountainous Areas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An exploratory investigation was conducted on how two parameters that characterize dry times between storms (average time between storms, ATBS, and minimum dry time between storms, MTBS) vary with elevation, and how these two parameters may be estimated for areas without data. 16 rain gauges with h...

  14. 46 CFR 108.221 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Storm rails. 108.221 Section 108.221 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Rails § 108.221 Storm rails. Each unit must have a storm rail in the following locations: (a) On each deckhouse...

  15. Interactive modeling of storm impact

    NASA Astrophysics Data System (ADS)

    van Rooijen, A.; Baart, F.; Roelvink, J. A.; Donchyts, G.; Scheel, F.; de Boer, W.

    2014-12-01

    In the past decades the impact of storms on the coastal zone has increasingly drawn the attention of policy makers and coastal planners, engineers and researchers. The mean reason for this interest is the high density of the world's population living near the ocean, in combination with climate change. Due to sea level rise and extremer weather conditions, many of the world's coastlines are becoming more vulnerable to the potential of flooding. Currently it is common practice to predict storm impact using physics-based numerical models. The numerical model utilizes several inputs (e.g. bathymetry, waves, surge) to calculate the impact on the coastline. Traditionally, the numerical modeller takes the following three steps: schematization/model setup, running and post-processing. This process generally has a total feedback time in the order of hours to days, and is suitable for so-called confirmatory modelling.However, often models are applied as an exploratory tool, in which the effect of e.g. different hydraulic conditions, or measures is investigated. The above described traditional work flow is not the most efficient method for exploratory modelling. Interactive modelling lets users adjust a simulation while running. For models typically used for storm impact studies (e.g. XBeach, Delft3D, D-Flow FM), the user can for instance change the storm surge level, wave conditions, or add a measure such as a nourishment or a seawall. The model will take the adjustments into account immediately, and will directly compute the effect. Using this method, tools can be developed in which stakeholders (e.g. coastal planners, policy makers) are in control and together evaluate ideas by interacting with the model. Here we will show initial results for interactive modelling with a storm impact model.

  16. Springtime Dust Storm Swirls at Martian North Pole

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Two Hubble Space Telescope images of Mars, taken about a month apart on September 18 and October 15, 1996, reveal a state-sized dust storm churning near the edge of the Martian north polar cap. The polar storm is probably a consequence of large temperature differences between the polar ice and the dark regions to the south, which are heated by the springtime sun. The increased sunlight also causes the dry ice in the polar cap to sublime and shrink.

    Mars is famous for large, planet-wide dust storms. Smaller storms resembling the one seen here were observed in other regions by Viking orbiters in the late 1970s. However, this is the first time that such an event has been caught near the receding north polar cap. The Hubble images provide valuable new insights into the behavior of localized dust storms on Mars, which are typically below the resolution of ground-based telescopes. This kind of advanced planetary 'weather report' will be invaluable for aiding preparation for the landing of NASA's Pathfinder spacecraft in July 1997 and the arrival of Mars Global Surveyor orbiter in September 1997.

    Top (September 18, 1996) - The salmon colored notch in the white north polar cap is a 600-mile (1,000 kilometer) long storm -- nearly the width of Texas. The bright dust can also be seen over the dark surface surrounding the cap, where it is caught up in the Martian jet stream and blown easterly. The white clouds at lower latitudes are mostly associated with major Martian volcanos such as Olympus Mons. This image was taken when Mars was more than 186 million miles (300 million kilometers) from Earth, and the planet was smaller in angular size than Jupiter's Great Red Spot!

    Bottom (October 15, 1996) - Though the storm has dissipated by October, a distinctive dust-colored comma-shaped feature can be seen curving across the ice cap. The shape is similar to cold fronts on Earth, which are associated with low pressure systems. Nothing quite like this feature has been seen previously either in ground-based or spacecraft observation. The snow line marking the edge of the cap receded northward by approximately 120 miles (200 kilometers), while the distance to the Red Planet narrowed to 170 million miles (275 million kilometers).

    Technical notes: To help compare locations and sizes of features, map projections (right of each disk) are centered on the geographic north pole. Maps are oriented with 0 degrees longitude at the top and show meridians every 45 degrees of longitude (longitude increases clockwise); latitude circles are also shown for 40, 60, and 80 degrees north latitude. The color images were assembled from separate exposures taken with the Wide Field Planetary Camera 2.

    This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space Telescope Science Institute home page at URL http:// oposite.stsci.edu/pubinfo/

  17. A New Perspective on Southern Hemisphere Storm Tracks.

    NASA Astrophysics Data System (ADS)

    Hoskins, B. J.; Hodges, K. I.

    2005-10-01

    A detailed view of Southern Hemisphere storm tracks is obtained based on the application of filtered variance and modern feature-tracking techniques to a wide range of 45-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data. It has been checked that the conclusions drawn in this study are valid even if data from only the satellite era are used. The emphasis of the paper is on the winter season, but results for the four seasons are also discussed. Both upper- and lower-tropospheric fields are used. The tracking analysis focuses on systems that last longer than 2 days and are mobile (move more than 1000 km). Many of the results support previous ideas about the storm tracks, but some new insights are also obtained. In the summer there is a rather circular, strong, deep high-latitude storm track. In winter the high-latitude storm track is more asymmetric with a spiral from the Atlantic and Indian Oceans in toward Antarctica and a subtropical jet related lower-latitude storm track over the Pacific, again tending to spiral poleward. At all times of the year, maximum storm activity in the higher-latitude storm track is in the Atlantic and Indian Ocean regions. In the winter upper troposphere, the relative importance of, and interplay between, the subtropical and subpolar storm tracks is discussed. The genesis, lysis, and growth rate of lower-tropospheric winter cyclones together lead to a vivid picture of their behavior that is summarized as a set of overlapping plates, each composed of cyclone life cycles. Systems in each plate appear to feed the genesis in the next plate through downstream development in the upper-troposphere spiral storm track. In the lee of the Andes in South America, there is cyclogenesis associated with the subtropical jet and also, poleward of this, cyclogenesis largely associated with system decay on the upslope and regeneration on the downslope. The genesis and lysis of cyclones and anticyclones have a definite spatial relationship with each other and with the Andes. At 500 hPa, their relative longitudinal positions are consistent with vortex-stretching ideas for simple flow over a large-scale mountain. Cyclonic systems near Antarctica have generally spiraled in from lower latitudes. However, cyclogenesis associated with mobile cyclones occurs around the Antarctic coast with an interesting genesis maximum over the sea ice near 150°E. The South Pacific storm track emerges clearly from the tracking as a coherent deep feature spiraling from Australia to southern South America. A feature of the summer season is the genesis of eastward-moving cyclonic systems near the tropic of Capricorn off Brazil, in the central Pacific and, to a lesser extent, off Madagascar, followed by movement along the southwest flanks of the subtropical anticyclones and contribution to the “convergence zone” cloud bands seen in these regions.

  18. Breakup of Pack Ice, Antarctic Ice Shelf

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Breakup of Pack Ice along the periphery of the Antarctic Ice Shelf (53.5S, 3.0E) produced this mosaic of ice floes off the Antarctic Ice Shelf. Strong offshore winds, probably associated with strong katabatic downdrafts from the interior of the continent, are seen peeling off the edges of the ice shelf into long filamets of sea ice, icebergs, bergy bits and growlers to flow northward into the South Atlantic Ocean. 53.5S, 3.0E

  19. Large Geomagnetic Storms: Introduction to Special Section

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2010-01-01

    Solar cycle 23 witnessed the accumulation of rich data sets that reveal various aspects of geomagnetic storms in unprecedented detail both at the Sun where the storm causing disturbances originate and in geospace where the effects of the storms are directly felt. During two recent coordinated data analysis workshops (CDAWs) the large geomagnetic storms (Dst < or = -100 nT) of solar cycle 23 were studied in order to understand their solar, interplanetary, and geospace connections. This special section grew out of these CDAWs with additional contributions relevant to these storms. Here I provide a brief summary of the results presented in the special section.

  20. Identification of Storm Surge Vulnerable Areas in the Philippines Through Simulations of Typhoon Haiyan-Induced Storm Surge Using Tracks of Historical Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Lapidez, John Phillip; Suarez, John Kenneth; Tablazon, Judd; Dasallas, Lea; Gonzalo, Lia Anne; Santiago, Joy; Cabacaba, Krichi May; Ramos, Michael Marie Angelo; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    Super Typhoon Haiyan entered the Philippine Area of Responsibility (PAR) 07 November 2013, causing tremendous damage to infrastructure and loss of lives mainly due to the typhoon's storm surge and strong winds. Storm surges up to a height of 7 meters were reported in the hardest hit areas. The threat imposed by this kind of natural calamity compelled researchers of the Nationwide Operational Assessment of Hazards, the flagship disaster mitigation program of the Department of Science and Technology, Government of the Philippines, to undertake a study to determine the vulnerability of all Philippine coastal communities to storm surges of the same magnitude as those generated by Haiyan. This study calculates the maximum probable storm surge height for every coastal locality by running simulations of Haiyan-type conditions but with tracks of tropical cyclones that entered PAR from 1948-2013. DOST-Project NOAH used the Japan Meteorological Agency (JMA) Storm Surge Model, a numerical code that simulates and predicts storm surges spawned by tropical cyclones. Input parameters for the storm surge model include bathymetric data, storm track, central atmospheric pressure, and maximum wind speed. The simulations were made using Haiyan's pressure and wind speed as the forcing parameters. The simulated storm surge height values were added to the maximum tide level obtained from WXTide, software that contains a catalogue of worldwide astronomical tides, to come up with storm tide levels. The resulting water level was used as input to FLO-2D to generate the storm tide inundation maps. One product of this study is a list of the most vulnerable coastal areas that can be used as basis for choosing priority sites for further studies to implement appropriate site-specific solutions. Another product is the storm tide inundation maps that the local government units can use to develop a Risk-Sensitive Land Use Plan for identifying appropriate areas to build residential buildings, evacuation sites, and other critical facilities and lifelines. The maps can also be used to develop a disaster response plan and evacuation scheme.

  1. Maine coastal storm and flood of February 2, 1976

    USGS Publications Warehouse

    Morrill, Richard Arthur; Chin, Edwin H.; Richardson, W.S.

    1979-01-01

    A business section of Bangor, Maine, was flooded with 12 feet (3.7 m) of water on February 2, 1976. The water surface elevation reached 17.46 feet (5.32 m) above national geodetic vertical datum of 1929 (NGVD), approximately 10.5 feet (3.2 m) above the predicted astronomical tide at Bangor. The unusually high water resulted from a tidal storm surge caused by prolonged strong, south-southeasterly winds which occurred near the time of astronomical high tide. Winds exceeded 64 knots off the New England coast. The resulting flood was the third highest since 1846 and is the first documented tidal flood at Bangor. This report documents the meteorological and hydrologic conditions associated with the flooding and also contains a brief description of storm damage from Eastport to Brunswick, Maine. Included are flood elevations in the city of Bangor and along the coast of Maine east of the Kennebec River. (Kosco-USGS)

  2. Impact of hurricanes storm surges on the groundwater resources

    USGS Publications Warehouse

    Van Biersel, T. P.; Carlson, D.A.; Milner, L.R.

    2007-01-01

    Ocean surges onto coastal lowlands caused by tropical and extra tropical storms, tsunamis, and sea level rise affect all coastal lowlands and present a threat to drinking water resources of many coastal residents. In 2005, two such storms, Hurricanes Katrina and Rita struck the Gulf Coast of the US. Since September 2005, water samples have been collected from water wells impacted by the hurricanes' storm surges along the north shore of Lake Pontchartrain in southeastern Louisiana. The private and public water wells tested were submerged by 0.6-4.5 m of surging saltwater for several hours. The wells' casing and/or the associated plumbing were severely damaged. Water samples were collected to determine if storm surge water inundated the well casing and, if so, its effect on water quality within the shallow aquifers of the Southern Hills Aquifer System. In addition, the samples were used to determine if the impact on water quality may have long-term implication for public health. Laboratory testing for several indicator parameters (Ca/Mg, Cl/Si, chloride, boron, specific conductance and bacteria) indicates that surge water entered water wells' casing and the screened aquifer. Analysis of the groundwater shows a decrease in the Ca/Mg ratio right after the storm and then a return toward pre-Katrina values. Chloride concentrations were elevated right after Katrina and Rita, and then decreased downward toward pre-Katrina values. From September 2005 to June 2006, the wells showed improvement in all the saltwater intrusion indicators. ?? 2007 Springer-Verlag.

  3. Thyroid Storm Precipitated by Duodenal Ulcer Perforation

    PubMed Central

    Natsuda, Shoko; Nakashima, Yomi; Horie, Ichiro; Kawakami, Atsushi

    2015-01-01

    Thyroid storm is a rare and life-threatening complication of thyrotoxicosis that requires prompt treatment. Thyroid storm is also known to be associated with precipitating events. The simultaneous treatment of thyroid storm and its precipitant, when they are recognized, in a patient is recommended; otherwise such disorders, including thyroid storm, can exacerbate each other. Here we report the case of a thyroid storm patient (a 55-year-old Japanese male) complicated with a perforated duodenal ulcer. The patient was successfully treated with intensive treatment for thyroid storm and a prompt operation. Although it is believed that peptic ulcer rarely coexists with hyperthyroidism, among patients with thyroid storm, perforation of a peptic ulcer has been reported as one of the causes of fatal outcome. We determined that surgical intervention was required in this patient, reported despite ongoing severe thyrotoxicosis, and reported herein a successful outcome. PMID:25838951

  4. Analysis of the recent storm record in the southwestern Spanish coast: implications for littoral management.

    PubMed

    Rodríguez-Ramírez, A; Ruiz, F; Cáceres, L M; Rodríguez Vidal, J; Pino, R; Muñoz, J M

    2003-03-01

    This work compares the geomorphologic evolution of the Huelva coast (SW Spain), some climatic-oceanographic data of the Cádiz Gulf and the recent storm record of this zone, covering the last 4 decades (1956-1996). An interesting correlation was found between the southwestern wind periodicity, the number of storm periods and the beach ridges observed in the main spits (El Rompido and Doñana). The spectral analysis of the wind time series permits to establish two most probable levels of periodicity: 6 and 9-10 years. Both periods coincide with the storm record and the creation of new beach ridges after a high-energy period. Beach damage, another storm-induced effect, was analysed by deducing different implications for the future management of tourist localities. PMID:12606159

  5. Extreme Lightning Flash Rates as an Early Indicator of Severe Storms

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Arnold, James E. (Technical Monitor)

    2002-01-01

    Extreme lightning flash rates are proving to be an early indicator of intensifying storms capable of producing tornadoes, damaging winds and hail. Most of this lightning is in the cloud, where the naked eye can not see it. Recent global observations of thunderstorms from space indicate that giant electrical storms (supercells and convective complexes) with flash rates on the order of 1 flash per second are most common over the land masses of the America sub-tropics and equatorial Congo Basin. Within the United States, the average tornado warning lead time on a national basis is about 11 min. The real-time observation of extreme flash rates and the rapid increase in the in-cloud flash rate, signalling the intensification of the storm updraft, may provide as much as a 50% increase in severe storm warning lead time.

  6. Repairing damaged structures

    SciTech Connect

    Perano, A.C.

    1980-08-01

    While Grace Platform was being installed, damage was sustained to jacket members, varying from metal rubbing to denting and puncturing by a falling section of pile follower. Because the 12-legged jacket is in a water depth in excess of 300 ft it was necessary to use a remote controlled vehicle in order to establish a preliminary damage report to determine whether the structural integrity of the jacket with the damaged braces required repair, reinforcing, removal, or just to be left as they were. From information gathered on videotapes, it was possible to direct the divers to all questionable areas and to study each in detail. From the sketches, photographs and accompanying report, there was sufficient information and data for the designers of the platform to conduct an investigation and analysis of the areas in question. The analysis was performed using storm and seismic loading conditions. The results obtained determined damaged members. All parties concerned with the damage investigation agreed upon which structures needed to be repaired and under what conditions the repairs would take place.

  7. Numerical simulation of the effects of cooling tower complexes on clouds and severe storms

    NASA Astrophysics Data System (ADS)

    Orville, Harold D.; Eckhoff, Peter A.; Peak, James E.; Hirsch, John H.; Kopp, Fred J.

    A two-dimensional, time-dependent model has been developed which gives realistic simulations of many severe storm processes—such as heavy rains, hail and strong winds. The model is a set of partial differential equations describing time changes of momentum, energy, and mass (air and various water substances such as water vapor, cloud liquid, cloud ice, rainwater and hail). In addition, appropriate boundary and initial conditions (taken from weather sounding data) are imposed on a domain approx. 20 km high by 20 km wide with 200 m grid intervals to complete the model. Modifications have been made to the model which allow additional water vapor and heat to be added at several lower grid points, simulating effluents from a power park. Cases have been run which depict realistic severe storm situations. One atmospheric sounding has a strong middle-level inversion which tends to inhibit the first convective clouds but gives rise later to a severe storm with hail and heavy rains. One other sounding, is taken from a day in which a severe storm occurred in the Miami area. A third sounding depicts atmospheric conditions in which severe storms formed in the vicinity of Huron, South Dakota. The results indicate that a power park emitting 80 % latent heat and 20 % sensible heat has little effect on the simulated storm. A case with 100 % sensible heat emission leads to a much different solution, with the simulated storm reduced in severity and the rain and hail redistributed. A case in which water vapor is accumulated in a region and released over a broad depth results in slightly more rain from a severe storm.

  8. Severe storms observing satellite study

    NASA Technical Reports Server (NTRS)

    Iwens, R. P.; Stern, D. A.

    1976-01-01

    Payload distribution and the attitude control system for the multi-mission modular spacecraft/StormSat configuration are discussed. The design of the advanced atmospheric sounder and imaging radiometer (AASIR) gimbal drive and its servomechanism is described. Onboard data handling, data downlink communications, and ground data handling systems are developed. Additional topics covered include: magnetic unloading at synchronous altitude, north-south stationkeeping, and the feasibility and impact of flying the microwave atmospheric sounding radiometer (MASR) as an additional payload.

  9. Dust Storm in Southern California

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Along historic Route 66, just southeast of the little town of Amboy, California, lies a dried-up lake. Dry lakebeds are good sources of two things: salt and dust. In this image, the now-parched Bristol Lake offers up both. On April 12, 2007, dust storms menaced the area around Amboy. To the northwest, near Newberry Springs, California, dust hampered visibility and led to a multi-car collision on Interstate 40, killing two people and injuring several others. The same day, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite captured this image of a dust storm in the dry remains of Bristol Lake. Many small dust clouds boil up from the ground surface, casting their shadows to the northwest. A bright white cloud floating over the dust also throws its shadow onto the ground below. East of the dust storm are salt works that stand out from the surrounding landscape thanks to their straight lines and sharp angles. Dark ground surfaces alternate with mined white salt in a network of stripes. When lakes evaporate, chemicals that had been dissolved in the water stay behind, making dry lake beds an ideal place to find heavy concentrations of minerals, including salt. Besides the salt works, something else appears in stark contrast to this arid place. Lush green fields of irrigated crops appear in the east. Besides their color, their orderly arrangement reveals their human-made origin.

  10. Flashover tests of artificially iced insulators

    SciTech Connect

    Charneski, M.D.; Gaibrois, G.L.; Whitney, B.F.

    1982-08-01

    Test apparatus and procedures were developed to test energized, non-contaminated, 120 kV system insulators under simulated freezing rain conditions. The flashover performances were compared between non-ceramic composite transmission line insulators and standard porcelain 5 3/4 x 10 inch suspension insulators. Standard and long leak Multicone porcelain insulators were also compared in the icing tests to standard porcelain station post insulators. Icing tests at several voltage stresses provided the full flashover range of the insulators from the minimum or zero flashovers in ten trials up to the maximum or 10 flashovers in 10 trials. Using the desired insulator voltage stress flashover curve for specific insulator types and the voltage stress applied to the insulator, the comparative probability of flashover due to ice storms on the system can be evaluated for 120 kV, 230 kV and 345 kV systems.

  11. Tropical and Extratropical Cyclone Damages under Climate Change

    NASA Astrophysics Data System (ADS)

    Ranson, M.; Kousky, C.; Ruth, M.; Jantarasami, L.; Crimmins, A.; Tarquinio, L.

    2014-12-01

    This paper provides the first quantitative synthesis of the rapidly growing literature on future tropical and extratropical cyclone losses under climate change. We estimate a probability distribution for the predicted impact of changes in global surface air temperatures on future storm damages, using an ensemble of 296 estimates of the temperature-damage relationship from twenty studies. Our analysis produces three main empirical results. First, we find strong but not conclusive support for the hypothesis that climate change will cause damages from tropical cyclones and wind storms to increase, with most models (84 and 92 percent, respectively) predicting higher future storm damages due to climate change. Second, there is substantial variation in projected changes in losses across regions. Potential changes in damages are greatest in the North Atlantic basin, where the multi-model average predicts that a 2.5°C increase in global surface air temperature would cause hurricane damages to increase by 62 percent. The ensemble predictions for Western North Pacific tropical cyclones and European wind storms (extratropical cyclones) are approximately one third of that magnitude. Finally, our analysis shows that existing models of storm damages under climate change generate a wide range of predictions, ranging from moderate decreases to very large increases in losses.

  12. Characterizing the variability in precipitation-bearing storms over Central Greenland during the last glacial period

    NASA Astrophysics Data System (ADS)

    Winstrup, Mai; Svensson, Anders M.; Rasmussen, Sune O.; Ditlevsen, Peter; Kipfstuhl, Sepp; Steig, Eric J.

    2013-04-01

    A few ice core records are of sufficiently high resolution that they are able to record individual weather events. In this study, we are looking into one of these, namely the visual stratigraphy of the NGRIP ice core record from Central Greenland. We consider the evidence these data contains on variability in past precipitation-bearing storm tracks over Central Greenland during the rapid climatic changes of the last glacial. This information has implications for the variability of past circulation patterns in the North Atlantic region and their governing climate mechanisms. From the NGRIP ice core, Central Greenland, very detailed images of the visual stratigraphy in the core has been obtained. For the ice deposited during the last glacial period, the images show a clear banding of small-scale layers with a range of thicknesses. These layers are believed to be the result of individual precipitation events, which can be distinguished due to differences in their impurity concentrations. This assumption is justified by a qualitative comparison of contemporary Central Greenland weather data to the layering in early Holocene visual stratigraphy data. In combination with an accurate layer-counted chronology for the NGRIP ice core, the data allows us to look into the variability of past storminess over Central Greenland. This variability is quantified in terms of the changes in frequency and intensity of precipitation-bearing storms over the warm and cold phases of the last glacial period. Preliminary investigations show that whereas the average amount of precipitation per storm event is relatively constant with climate, the frequency of storms is changing significantly: A considerably larger number of precipitating storms per year are reaching the NGRIP drill site, Central Greenland, during the interstadials. On the other hand, inter-annual variability in the frequency of major storm occurrences is observed to be largest during the cold periods. We hypothesize that the observed variation is caused by an average southward shift of the jet stream during cold periods, but with its trajectory displaying a higher degree of annual and interannual variability. This is consistent with modern evidence for a northward shift of the polar jet stream in response to global warming.

  13. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems

    NASA Astrophysics Data System (ADS)

    Luetscher, Marc; Boch, R.; Sodemann, H.; Spötl, C.; Cheng, H.; Edwards, R. L.; Frisia, S.; Hof, F.; Müller, W.

    2015-02-01

    The European Alps are an effective barrier for meridional moisture transport and are thus uniquely placed to record shifts in the North Atlantic storm track pattern associated with the waxing and waning of Late-Pleistocene Northern Hemisphere ice sheets. The lack of well-dated terrestrial proxy records spanning this time period, however, renders the reconstruction of past atmospheric patterns difficult. Here we present a precisely dated, continuous terrestrial record of meteoric precipitation in Europe between 30 and 14.7?ka. In contrast to present-day conditions, our speleothem data provide strong evidence for preferential advection of moisture from the South across the Alps supporting a southward shift of the storm track during the local Last Glacial Maximum (that is, 26.5-23.5?ka). Moreover, our age control indicates that this circulation pattern preceded the Northern Hemisphere precession maximum by ~3?ka, suggesting that obliquity may have played a considerable role in the Alpine ice aggradation.

  14. Towards Resolving the Paradox of Antarctic Sea Ice: A New Integrated Framework for Observing the Antarctic Marginal Ice Zone

    NASA Astrophysics Data System (ADS)

    Williams, G. D.

    2014-12-01

    Antarctic sea ice distribution, a canary in the coal mine for climate change in the Southern Hemisphere, is controlled by the marginal ice zone (MIZ). The MIZ is the dynamic outer part of the sea-ice zone, where it interacts with the high-energy open ocean and is strongly affected by waves and storms. As an interface between ocean and atmosphere with extreme vertical and horizontal temperature gradients and large variations in mechanical properties, the MIZ is a complex system that evolves with, and impacts upon, the advancing/receding ice edge. More than a zone, it is a migratory transition in 'phase space' that biannually passes across the entire Antarctic SIZ. During the advance phase of sea-ice seasonality, and under freezing conditions, wave-induced pancake-ice formation can lead to rapid ice-edge advance. During the retreat phase, the dynamic break-up and modification of sea ice by passing storms, winds and waves greatly modifies the floe-size distribution within the MIZ, to create smaller floes that melt more rapidly and accelerate sea-ice retreat as spring progresses. Inspired by the current Arctic MIZ efforts, new fieldwork is proposed to resolve the key characteristics of the Antarctic MIZ and the processes controlling its extent. Combining new autonomous observation technology with ship-based techniques, integrated experiments are being designed to advance our understanding of the MIZ and its role in driving seasonal sea ice advance and retreat around Antarctica. The proposed project provides a unique opportunity to develop an observational, analytical, and science-policy framework for coordinated monitoring of sea ice in both the northern and southern hemispheres, with implications for forecasting, monitoring, and prediction that are essential with increasingly dynamic and variable polar climate systems.

  15. Microwave radiometric observations near 19.35, 92 and 183 GHz of precipitation in tropical storm Cora

    NASA Technical Reports Server (NTRS)

    Wilheit, T. T.; Chang, A. T.; King, J. L.; Rodgers, E. B.; Nieman, R. A.; Krupp, B. M.; Milman, A. S.; Stratigos, J. S.; Siddalingaih, H.

    1982-01-01

    Observations of rain cells in the remains of a decaying tropical storm were made by Airborne Microwave Radiometers at 19.35,92 and three frequencies near 183 GHz. Extremely low brightness temperatures, as low as 140 K were noted in the 92 and 183 GHz observations. These can be accounted for by the ice often associated with raindrop formation. Further, 183 GHz observations can be interpreted in terms of the height of the ice. The brightness temperatures observed suggest the presence of precipitation sized ice as high as 9 km or more.

  16. Relating the current science of ion-defect behavior in ice to a plausible mechanism for directional charge transfer during ice particle collisions.

    PubMed

    Devlin, J Paul

    2011-11-28

    A melding of modern experimental results descriptive of fundamental ion defect properties of ice is presented as a logical basis of a mechanism for the preferential transfer of positive charge from large to small colliding ice particles. The result may relate to the electrification of storm clouds. It is broadly agreed that such localized charge transfer during collision of small upwardly mobile ice particles with falling ice granules (i.e., graupel/hail) can lead to macroscopic charge separation capable of initiating lightning strikes during the expansion stage of a storm cell. Though the larger particles are thought to become negatively charged during the collisions neither a generally favored charge-exchange agent nor a preferred mechanism for the directional particle-to-particle charge transfer exists. Nevertheless, should ionic point defects of ice play a key role, the fundamental properties of ice defects considered here must apply. They include: (1) above 140 K protons move readily within and on the surface of ice while hydroxide ions are orders-of-magnitude less mobile, (2) whether generated by dissociation of HCl buried in ice, during neat ice particle growth, or at platinum-ice interfaces, interior protons move to and apparently collect at the ice-vacuum interface, and (3) proton activity and populations are orders-of-magnitude greater at the surface of ice films and free-standing ice particles than in the interior. From these fundamentals an untested argument is developed that within an ensemble of free floating ice particles the proton density at the surface is greater for larger particles. This implies a plausible proton-based mechanism that is consistent with current concepts of ice particle charging through collisions. PMID:21850310

  17. A Qualitative Model of Meteor Storms

    NASA Astrophysics Data System (ADS)

    Matney, M. J.

    1996-03-01

    This work addresses the behavior of rare outbursts of meteor activity colloquially known as meteor storms. During such meteor storms, the observed rate of meteors can jump several orders of magnitude over normal rates. Historically, the largest meteor outbursts have been associated with the return to the inner Solar System of the parent comet of the meteor stream. For example, the Leonid shower tends to show storming behavior every 33 years, coinciding with the approximate time of the perihelion passage of its parent comet P/Tempel-Tuttle. This paper presents a model that describes why and when meteor storms can be expected to occur. The model predicts that the Earth must pass near the meteoroid stream within a computed time window in order for observers on the Earth to observe such a storm; the width and location of the time window being a function primarily of the parent comet's orbit. Using this method, a series of potential storm-producing comets were examined for possible meteor storms in coming years. The model predicts that the Leonid shower should be expected to storm in 1999, and possibly the Giacobinid (October Draconid) shower in 1998. In addition, the model predicts that the Perseid shower should show enhanced activity for the next few years, but the meteor rates should not increase significantly over normal levels. The model predicts that the meteor streams from other potential storm-producing comets should not produce any storms before the year 2000, but may do so early in the next century.

  18. The acute whole effluent toxicity of storm water from an international airport

    SciTech Connect

    Fisher, D.J.; Turley, S.D.; Turley, B.S.; Yonkos, L.T.; Ziegler, G.P.; Knott, M.H.

    1995-06-01

    In October 1990, the US Environmental Protection Agency promulgated application requirements with deadlines for storm-water discharges associated with industrial activity and certain municipal systems. Major airports have a number of hydrocarbon-based contaminants that could appear in storm-water runoff. In addition, ethylene, diethylene, and propylene glycol deicing and anti-icing mixtures are used during freezing and near-freezing weather. The objective of this study was to characterize the potential acute impact on aquatic life from industrial storm-water discharges from an international airport. Samples from winter storm events caused acute toxicity to both the fathead minnow (Pimephales promelas) and the daphnid (Daphnia magna), with LC50 values for both species as low as 1.0 and 2.0% effluent. The toxicity of the samples was due to the various glycol-based deicer/anti-icer mixtures used during these events. High oxygen demands and elevated total nitrogen levels are other potential problems during anti-icing/deicing activities. Samples from rain events during the nonwinter months at the airport did not cause acute toxicity unless associated with fuel spills. As a result of this study, a new discharge permit has been issued for this airport, requiring the implementation of plans for the collection and recycling and/or disposal of the deicer/anti-icer mixtures.

  19. Assessing Tropical Cyclone Damage

    NASA Astrophysics Data System (ADS)

    Done, J.; Czajkowski, J.

    2012-12-01

    Landfalling tropical cyclones impact large coastal and inland areas causing direct damage due to winds, storm-surge flooding, tornadoes, and precipitation; as well as causing substantial indirect damage such as electrical outages and business interruption. The likely climate change impact of increased tropical cyclone intensity, combined with increases in exposure, bring the possibility of increased damage in the future. A considerable amount of research has focused on modeling economic damage due to tropical cyclones, and a series of indices have been developed to assess damages under climate change. We highlight a number of ways this research can be improved through a series of case study analyses. First, historical loss estimates are revisited to properly account for; time, impacted regions, the source of damage by type, and whether the damage was direct/indirect and insured/uninsured. Second, the drivers of loss from both the socio-economic and physical side are examined. A case is made to move beyond the use of maximum wind speed to more stable metrics and the use of other characteristics of the wind field such as direction, degree of gustiness, and duration is explored. A novel approach presented here is the potential to model losses directly as a function of climate variables such as sea surface temperature, greenhouse gases, and aerosols. This work is the first stage in the development of a tropical cyclone loss model to enable projections of losses under scenarios of both socio-economic change (such as population migration or altered policy) and physical change (such as shifts in tropical cyclone activity one from basin to another or within the same basin).

  20. Sea ice - Multiyear cycles and white ice

    NASA Technical Reports Server (NTRS)

    Ledley, T. S.

    1985-01-01

    The multiyear thickness cycles represent one of the interesting features of the sea ice studies performed by Semtner (1976) and Washington et al. (1976) with simple thermodynamic models of sea ice. In the present article, a description is given of results which show that the insulating effect of snow on the surface of the sea ice is important in producing these multiyear cycles given the physics included in the model. However, when the formation of white ice is included, the cycles almost disappear. White ice is the ice which forms at the snow-ice interface when the snow layer becomes thick enough to depress the ice below the water level. Water infiltrates the snow by coming through the ice at leads and generally freezes there, forming white ice.

  1. Numerical Experiments for Storm Surge Inundation in Korean Coastal Area

    NASA Astrophysics Data System (ADS)

    Yoon, J.; Shim, J.; Jun, K.

    2012-12-01

    Sea-level rising due to climate change following the global warming and the increased intensity of typhoon are magnifying inundation hazards up to the unpredictable level, resulting from the typhoon surge in Korea and other coastal states around the world. Typhoon is the most serious natural disaster in Korean coastal area. Many people died by storm surge inundation every year. And typhoon caused a lot of damage to property. Climate changes due to global warming are producing a stronger natural disaster. Coastal zones have been damaged by typhoons and accompanying storm surge. Especially, the most serious loss of life and terrible property damage caused by typhoon Maemi in 2003. The typhoon Maemi invaded Korean Peninsula leaving property loss of $ 4 Billion and killing 131 people. After then, there has been an increased interest in these coastal zone problems. If storm surges coincide with high tides, the loss of life and property damage due to high waters arc even worse. Therefore it is desirable to accurately forecast the amount water level increase. In this study, using a numerical model FVCOM(finite volume coastal circulation model, Chen et al.,2004), storm surge was simulated to examine its fluctuation characteristics for the coastal area behind Masan, Yeosu and Busan city in Korea. In the numerical model, a moving boundary condition(wet-dry treatment) was incorporated to explain wave inundation. To simulate the inundation scenario, the model grids were extended up to the area inside the lowland in application of the digital elevation data(DEM) made by precisely combining the aero-LiDAR survey data and bathymetry data for the 3 demonstration regions of Busan, Masan and Yeosu. Minimum grid of 300 m unstructured triangular mesh applied to calculate the storm surge was adopted as a grid system. And the minimum grid size of 30 m was built near Busan, Masan and Yeosu area which are the fine coastal regions and where the inundation is simulated. Numerically predicted inundation regimes and depths were compared with measurements from a tidal gage each area and inundation map by field measurements after the event. Comparisons of the numerical results and measured data show a good correlation. The numerical model adopted in this study is expected to be a useful tool for analysis of storm surges, and for predicting inundation regimes due to coastal flooding. Many coastal cities including low-lying areas were flooded during strong typhoon. So it is necessary to consider detailed evacuation planning, including hazard map, preparation of evacuation site, and sustainable city planning against storm surge inundation problems. For this study, we used 201 typhoons passing through Korea during the past 55 years since 1950. Typhoon wind model was used to estimate wind forcing and air pressure data for each typhoon. We estimated the spatial statistical analysis for inundation level as each return period. And finally we suggested the example of coastal hazard map in the Korean coast(Masan, yeosu and Busan city).

  2. Calving of large tabular icebergs from ice shelf rift systems

    NASA Astrophysics Data System (ADS)

    Joughin, Ian; MacAyeal, Douglas R.

    2005-01-01

    We used Interferometric Synthetic Aperture Radar to study the detachment process that allowed two large icebergs to calve from the Ross Ice Shelf, Antarctica. Time series of rift geometries indicate that rift widths increased steadily, whereas rift lengths increased episodically through several discrete rift-tip propagation events. We also conducted modeling experiments constrained by the observed rift geometry. Both the observations and model suggest that rift opening, and, thus, tabular-iceberg calving, are largely driven by ``glaciological'' stresses-stress introduced by the effect of gravity on the ice shelf-rather than by stress introduced by the ocean and atmosphere, e.g., tides and storms. This style of rift propagation is expected to determine the steady, background calving rate of ice shelves and, thus, differs significantly from styles that led to the recent disintegration of ice shelves in response to climate warming, e.g., the Larsen B Ice Shelf on the Antarctic Peninsula.

  3. An overview of shed ice impact in the NASA Lewis Icing Research Tunnel

    NASA Technical Reports Server (NTRS)

    Bond, Thomas H.; Britton, Randall K.

    1993-01-01

    One of the areas of active research in commercial and military rotorcraft is directed toward developing the capability of sustained flight in icing conditions. The emphasis to date has been on the accretion and subsequent shedding of ice in an icing environment, where the shedding may be natural or induced. Historically, shed-ice particles have been a problem for aircraft, particularly rotorcraft. Because of the high particle velocities involved, damage to a fuselage or other airframe component from a shed-ice impact can be significant. Design rules for damage tolerance from shed-ice impact are not well developed because of a lack of experimental data. Thus, NASA Lewis (LeRC) has begun an effort to develop a database of impact force and energy resulting from shed ice. This effort consisted of a test of NASA LeRC's Model Rotor Test Rig (MRTR) in the Icing Research Tunnel (IRT). Both natural shedding and forced shedding were investigated. Forced shedding was achieved by fitting the rotor blades with Small Tube Pneumatic (STP) deicer boots manufactured by BF Goodrich. A detailed description of the test is given as well as the design of a new impact sensor which measures the force-time history of an impacting ice fragment. A brief discussion of the procedure to infer impact energy from a force-time trace are required for the impact-energy calculations. Recommendations and future plans for this research area are also provided.

  4. Understanding Storm Time Poynting Flux Variability

    NASA Astrophysics Data System (ADS)

    Garner, H. M.; Ober, D. M.; Wilson, G. R.

    2012-12-01

    It is known that energy deposited by dayside Earth-directed Poynting flux (S||) is greater during geomagnetic storms; however, S|| spatial and temporal variability are less well understood. Eight years (2000-2008) of data from the WDC for Geomagnetism, Kyoto, were collected to identify thirteen large and five super storms according to specific criteria: "classic" storm structure in which the time interval between sudden storm commencement (SSC) and minimum Dst (Dstmin) was ≤ 24 hours; the main and recovery phases did not experience secondary or tertiary disturbances; large storms where Dst ≤ -93 nT; and, super storms where Dst ≤ -184 nT. Solar wind and magnetospheric data for the 18 storms were collected from the Defense Meteorological Satellite Program (DMSP F-15) and NASA OMNI. For all storms, the data were averaged and plotted to identify S|| variability for the mantle, cusp, polar rain, and central and boundary layer plasma sheet regions during geomagnetic storm time. As known for all storms, while Dst decreased, average S|| peaked, as did Kp. The energy deposited per square-meter by precipitating energetic particles (electrons) did not increase, though average hemispheric power increased by nearly a factor of two for the large and super storms between SSC and Dstmin. For the large storms, average S|| from the central and boundary layer plasma sheet regions (on closed field lines) was enhanced by nearly a factor of two between SSC and Dstmin; for the super storms, enhancement was over a factor of three. Average large storm S|| enhancement from the mantle, cusp, and polar rain regions (on open field lines) was significantly more enhanced by a factor of three between SSC and Dstmin. It was enhanced by a factor of over five for the super storms. For the open field line regions, a large, prolonged secondary peak in S|| was observed for large and super storms during the recovery phase. As suggested by this and prior studies, research is needed to better understand the observed secondary peak in S|| and causes for the observed larger S|| on open field line regions. It is desired to develop an empirical model of S|| (i.e., an index) to be used as input for ionospheric modeling. To that end, mapping S|| spatial variability will validate orbit-to-orbit variability and will provide a basis for empirical modeling. In addition, study of smaller, more frequent storms will provide better statistics. A comprehensive understanding of auroral heating processes will therefore require more sampling and further research.

  5. Statistics of geomagnetic storms and ionospheric storms at low and mid latitudes in two solar cycles

    NASA Astrophysics Data System (ADS)

    Vijaya Lekshmi, D.; Balan, N.; Tulasi Ram, S.; Liu, J. Y.

    2011-11-01

    The statistics of occurrence of the geomagnetic storms, and ionospheric storms at Kokubunji (35.7°N, 139.5°E 26.8°N magnetic latitude) in Japan and Boulder (40.0°N, 254.7°E 47.4°N) in America are presented using the Dst and peak electron density (Nmax) data in 1985-2005 covering two solar cycles (22-23) when 584 geomagnetic storms (Dst ? -50 nT) occurred. In addition to the known solar cycle and seasonal dependence of the storms, the statistics reveal some new aspects. (1) The geomagnetic storms show a preference for main phase (MP) onset at around UT midnight especially for major storms (Dst ? -100 nT), over 100% excess MP onsets at UT midnight compared to a uniform distribution. (2) The number of positive ionospheric storms at Kokubunji (about 250) is more than double that at Boulder, and (3) the occurrence of the positive storms at both stations shows a preference for the morning-noon onset of the geomagnetic storms as expected from a physical mechanism of the positive storms. (4) The occurrence of negative ionospheric storms at both stations follows the solar cycle phases (most frequent at solar maximum) better than the occurrence of positive storms, which agrees with the mechanism of the negative storms.

  6. PATTERNS OF ICE ACCUMULATION AND FOREST DISTURBANCE DURING TWO ICE STORMS IN SOUTHWESTERN VIRGINIA. (R825157)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Effects of Hurricane Katrina’s storm surge on the quality of shallow aquifers near the northern shoreline of Lake Pontchartrain, southeastern Louisiana: Chapter 7D in Science and the storms-the USGS response to the hurricanes of 2005

    USGS Publications Warehouse

    Tomaszewski, Dan J.; Lovelace, John K.

    2007-01-01

    The U.S. Geological Survey (USGS) sampled 13 wells on the northern shoreline of Lake Pontchartrain to determine the effect of Hurricane Katrina-induced storm surge water on the shallow groundwater resources. Surge water entering damaged wells did not contaminate the entire aquifer; however, contamination did occur locally at well sites. Because the storm surge from Katrina lasted only a few hours, surge water entering the aquifer will probably have only a short-term effect.

  8. Impact of early and late winter icing events on sub-arctic dwarf shrubs.

    PubMed

    Preece, C; Phoenix, G K

    2014-01-01

    Polar regions are predicted to undergo large increases in winter temperature and an increased frequency of freeze-thaw cycles, which can cause ice layers in the snow pack and ice encasement of vegetation. Early or late winter timing of ice encasement could, however, modify the extent of damage caused to plants. To determine impacts of the date of ice encasement, a novel field experiment was established in sub-arctic Sweden, with icing events simulated in January and March 2008 and 2009. In the subsequent summers, reproduction, phenology, growth and mortality, as well as physiological indicators of leaf damage were measured in the three dominant dwarf shrubs: Vaccinium uliginosum, Vaccinium vitis-idaea and Empetrum nigrum. It was hypothesised that January icing would be more damaging compared to March icing due to the longer duration of ice encasement. Following 2 years of icing, E. nigrum berry production was 83% lower in January-iced plots compared to controls, and V. vitis-idaea electrolyte leakage was increased by 69%. Conversely, electrolyte leakage of E. nigrum was 25% lower and leaf emergence of V. vitis-idaea commenced 11 days earlier in March-iced plots compared to control plots in 2009. There was no effect of icing on any of the other parameters measured, indicating that overall these study species have moderate to high tolerance to ice encasement. Even much longer exposure under the January icing treatment does not clearly increase damage. PMID:23574610

  9. At Launch Pad 39B, the external tank mated to Space Shuttle Discovery shows damage from hail

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A hole, created by recent hail storms, is identified as number two on the surface of the external tank (ET) mated to Space Shuttle Discovery at Launch Pad 39B. Workers are investigating the damage and potential problems for launch posed by ice forming in the holes, which may number as many as 150 over the entire tank. The average size of the holes is one-half inch in diameter and one-tenth inch deep. The external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines in the orbiter during liftoff and ascent. The ET thermal protection system consists of sprayed-on foam insulation. The Shuttle Discovery is targeted for launch of mission STS-96 on May 20 at 9:32 a.m.

  10. At Launch Pad 39B, the external tank mated to Space Shuttle Discovery shows damage from hail

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At Launch Pad 39B, the top of the external tank (ET) mated to Space Shuttle Discovery is dotted with nearly a dozen visible dings from recent hail storms. Workers are investigating the damage and potential problems for launch posed by ice forming in the holes, which may number as many as 150 over the entire tank. The average size of the dings is one-half inch in diameter and one-tenth inch deep. The external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines in the orbiter during liftoff and ascent. The ET thermal protection system consists of sprayed-on foam insulation. The Shuttle Discovery is targeted for launch of mission STS-96 on May 20 at 9:32 a.m.

  11. At Launch Pad 39B, the external tank mated to Space Shuttle Discovery shows damage from hail

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A hole, created by recent hail storms, is identified as number one on the surface of the external tank (ET) mated to Space Shuttle Discovery at Launch Pad 39B. Workers are investigating the damage and potential problems for launch posed by ice forming in the holes, which may number as many as 150 over the entire tank. The average size of the holes is one-half inch in diameter and one-tenth inch deep. The external tank contains the liquid hydrogen fuel and liquid oxygen oxidizer and supplies them under pressure to the three space shuttle main engines in the orbiter during liftoff and ascent. The ET thermal protection system consists of sprayed-on foam insulation. The Shuttle Discovery is targeted for launch of mission STS-96 on May 20 at 9:32 a.m.

  12. The storm-time equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Burrows, K.; Sastry, T. S. G.; Sampath, S.; Stolarik, J. D.; Usher, M. J.

    1976-01-01

    A Petrel rocket carrying a double cell rubidium magnetometer was launched from the Thumba Equatorial Rocket Launching Station during the early main phase of a magnetic storm. No ionospheric currents associated with the storm were observed and the large field depression, at the flight time, must therefore be attributed to currents at higher altitudes. The equatorial enhancement of ionospheric magnetic storm currents, predicted on the basis of theory and earlier ground data, was not observed.

  13. The storm-time equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Burrows, K.; Sastry, T. S. G.; Sampath, S.; Stolarik, J. D.; Usher, M. J.

    1977-01-01

    A Petrel rocket carrying a double cell rubidium magnetometer was launched from the Thumba Equatorial Rocket Launching Station during the early main phase of a magnetic storm. No ionospheric currents associated with the storm were observed, and the large field depression at the flight time must therefore be attributed to currents at higher altitudes. The equatorial enhancement of ionospheric magnetic storm currents, predicted on the basis of theory and earlier ground data, was not observed.

  14. Upper-Level Structure of Oklahoma Tornadic Storms on 2 May 1979. I: Radar and Satellite Observations.

    NASA Astrophysics Data System (ADS)

    Heymsfield, Gerald M.; Blackmer, Roy H., Jr.; Schotz, Steven

    1983-07-01

    This paper discusses the observational characteristics of the upper level structure of severe tornadic storms in Oklahoma on 2 May 1979 during SESAME. The data analyzed consist of limited-scan GOES-East and West visible, infrared (11 m), and stereo satellite data, dual-Doppler radar observations, and special storm scale soundings. The time-histories of stereo cloud top height, minimum equivalent blackbody temperature (TBB) and radar reflectivity are followed for three severe storms over a several hour period; two of the storms are tornadic. Cloud top IR growth rates and vertical velocities of the storms are computed and found to have maxima which fall into Adler and Fenn's severe storm classification. For one of the storms there is an interesting coupling between cloud top parameters and low-level radar echoes; the other tornadic storm showed no unique relationship. Hail damage began shortly after tropopause penetration by thee storms. Two major IR cold areas associated with the leading downwind storm (i.e., Lahoma storm), are both about 10°C lower than the minimum (tropopause) temperature in an upwind sounding. One is displaced upwind about 15 km from the visible cloud top and the inferred updraft position from radar; the other is located about 15 km to the south of the visible cloud top. A `V' pattern of lower TBB with embedded higher temperature (warm areas) developed after tropopause penetration by the Lahoma storm. Composites of stereo height contours on IR images indicated that TBB is not uniquely related to height.The warm areas are deduced to be of two types: one called the `close-in' warm am is located about 10-20 km downwind of the cloud top of the Lahoma storm, and the other called the `distant' warm area is about 50-75 km downwind. The close-in warm area has a motion similar to that of the storms and appears to be dynamically linked to the leading storm. A model is proposed to explain this warm area based on mixing processes and subsidence near cloud top. The distant warm area advects with a direction similar to the 9-14 km upper level winds but with a speed 10-20 m s1 lower. This appears to be anvil cirrus material. However, the TBB in this area are several degrees warmer the stratospheric environmental temperatures at the anvil top. Stratospheric above-anvil cirrus (Fujita) explains neither the `V' shape nor the internal warm areas. Doppler radar derived winds are presented to add insight into the development of the upper level structure of the storms.

  15. Accounting for damage to model the influence of a pinning point on the grounding line dynamics

    NASA Astrophysics Data System (ADS)

    Brondex, Julien; Gagliardini, Olivier; Gillet-Chaulet, Fabien; Krug, Jean; Durand, Gaël

    2015-04-01

    The ice released from Greenland and Antarctic ice sheets into the ocean is the main cause of the current observed sea-level rise. Using the open-source finite-element code Elmer/Ice, a previous study (Favier et al., 2012) investigated the impact of a localised contact point between a floating ice shelf and the bedrock and showed its stabilizing effect on ice discharge. The large amount of friction introduced locally by a pinning point induces a rapid decrease of ice velocities upstream the contact leading to an advance of the grounding line seaward until the grounded ice-sheet and the ice rise merge together. This causes a slow down of ice discharge which is consistent with observations on real ice-shelves. However, highly crevassed zones surrounding those pinning points are commonly observed, highlighting strong damage patterns which were not taken into account in Favier et al. (2012). Damage has a strong influence on ice rheology as ice gets softer when damaged, therefore accelerating the ice flow. Recently, a damage model has been implemented within Elmer/Ice (Krug et al., 2014). In this model, damage is created in areas where the maximum principal Cauchy stress is higher than a stress threshold. Damage is then advected with ice flow and its impact on viscosity is taken into account by modifying the enhancement factor of Glen's flow law. Since high shear stresses predominate in the vicinity of pinning points, damage is likely to appear in those areas, making ice more fluid and thus lessening the stabilizing effect previously observed. To check the validity of this hypothesis, the pinning point experiment is repeated taking damage into account. The impact of basal crevasses filled with sea water, which tend to counteract the compressive stresses due to cryostatic pressure and thus to promote damage formation under the shelf, is investigated as well.

  16. Signatures of cosmic-ray increase attributed to exceptional solar storms inferred from multiple cosmogenic radionuclide records

    NASA Astrophysics Data System (ADS)

    Mekhaldi, Florian; Muscheler, Raimund; Adolphi, Florian; Svensson, Anders; Aldahan, Ala; Possnert, Göran; McConnell, Joseph R.; Sigl, Michael; Welten, Kees C.; Woodruff, Thomas E.

    2014-05-01

    Miyake et al. (2012, 2013) discovered rapid increases of 14C content in tree rings dated to AD 774-5 and AD 993-4 which they have attributed to cosmic-ray events. These extreme particle events have no counterparts in the instrumental record and have been tentatively associated with solar proton events, supernovae and short gamma-ray bursts, which have very different energy spectra. Cosmogenic radionuclides such as 14C, 10Be and 36Cl arise from the interaction of cosmic rays with atmospheric nitrogen, oxygen and argon. These radio-isotopes are produced through different reaction pathways and vary with different energy dependencies of the production rate cross section. Owing to this, yield functions can be used to determine the energy level of incident particles. However, only 14C has been measured at high resolution to quantify the energy and thus the origin of the outbursts. We present an annually resolved record of 10Be from the NGRIP ice core for the two events. In addition, we also utilized the GRIP ice core 36Cl record in our analysis. Our results show that the differential production of cosmogenic 14C, 10Be and 36Cl is consistent with a solar energy spectrum. Considering the notable increase in radionuclides, the solar storms would have had to be substantially greater than the largest recorded geomagnetic storm, the so-called Carrington event. This challenges our understanding of the sun's dynamics. Furthermore, the events could possibly be of interest for the investigation of potential cosmic ray-cloud linkages (Svensmark & Friis-Christensen, 1997). Alternatively, such outbursts of energetic particles have the potential to deplete atmospheric ozone and alter atmospheric circulation. Ultimately, the magnitude of such particle events draws attention to the perhaps underestimated potential of the sun to cause great damage to modern technologies. References Miyake, F., Masuda, K. & Nakamura, T. Another rapid event in the carbon-14 content of tree rings. Nature Communications 4:1748, DOI: 10.1038/ncomms2783 (2013). Miyake, F., Nagaya, K., Masuda, K. & Nakamura, T. A signature of cosmic-ray increase in AD 774-775 from tree rings in Japan. Nature 486, 240-242, DOI: 210.1038/nature11123 (2012). Svensmark, H., & Friis-Christensen, E. Variation of cosmic ray flux and global cloud coverage - A missing link in solar-climate relationships. J. Atmos. Sol., Terr. Phys., 59, 225-1232, DOI: 10.1029/1998JD200091 (1997).

  17. Empirical STORM-E model: II. Geomagnetic corrections to nighttime ionospheric E-region electron densities

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher J.; Xu, Xiaojing; Bilitza, Dieter; Mlynczak, Martin G.; Russell, James M.

    2013-02-01

    Auroral nighttime infrared emission observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument onboard the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite is used to develop an empirical model of geomagnetic storm enhancements to E-region electron densities. The empirical model is called STORM-E and will be incorporated into the 2012 release of the International Reference Ionosphere (IRI). The proxy for characterizing the E-region response to geomagnetic forcing is NO+(v) Volume Emission Rates (VER) derived from the TIMED/SABER 4.3 μm channel limb radiance measurements. The storm-time response of the NO+(v) 4.3 μm VER is most sensitive to auroral particle precipitation. A statistical database of storm-time to climatological quiet-time ratios of SABER-observed NO+(v) 4.3 μm VER are fit to widely available geomagnetic indices using the theoretical framework of linear impulse-response theory. The STORM-E model provides a dynamic storm-time correction factor to adjust a known nighttime quiescent E-region electron density peak concentration for geomagnetic enhancements due to auroral particle precipitation. Part I of this series gives a detailed description of the algorithms and methodologies used to derive NO+(v) VER from SABER 4.3 μm limb emission measurements. In this paper, Part II of the series, the development of the E-region electron density storm-time correction factor is described. The STORM-E storm-time correction factor is fit to a single geomagnetic index. There are four versions of the STORM-E model, which are currently independent of magnetic local time. Each version is fit to one of the following indices: HP, AE, Ap, or Dst. High-latitude Incoherent Scatter Radar (ISR) E-region electron density measurements are compared to STORM-E predictions for various geomagnetic storm periods during solar cycle 23. These comparisons show that STORM-E significantly improves the prediction of E-region electron density enhancements due to auroral particle precipitation, in comparison to the nominal IRI model or to the quiet-time baseline electron density concentrations measured by ISR. The STORM-E/ISR comparisons indicate that the STORM-E fits to the Ap-, AE-, and HP-indices are comparable in both absolute accuracy and relative dynamical response. Contrarily, the Dst-index does not appear to be a suitable input driver to parameterize the E-region electron density response to geomagnetic activity.

  18. A Personal Storm Warning Service

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Although lightning detection systems operated by government agencies, utilities and other businesses provide storm warnings, this information often does not reach the public until some time after the observations have been made. A low-cost personal lightning detector offers a significant safety advantage to private flyers, boaters, golfers and others. Developed by Airborne Research Associates, the detectors originated in Space Shuttle tests of an optical lightning detection technique. The commercial device is pointed toward a cloud to detect invisible intracloud lightning by sensing subtle changes in light presence. The majority of the sales have been to golf courses. Additional products and more advanced applications are in progress.

  19. On the watch for geomagnetic storms

    USGS Publications Warehouse

    Green, Arthur W.; Brown, William M., III

    1997-01-01

    Geomagnetic storms, induced by solar activity, pose significant hazards to satellites, electrical power distribution systems, radio communications, navigation, and geophysical surveys. Strong storms can expose astronauts and crews of high-flying aircraft to dangerous levels of radiation. Economic losses from recent geomagnetic storms have run into hundreds of millions of dollars. With the U.S. Geological Survey (USGS) as the lead agency, an international network of geomagnetic observatories monitors the onset of solar-induced storms and gives warnings that help diminish losses to military and commercial operations and facilities.

  20. Storm impact scale for barrier islands

    USGS Publications Warehouse

    Sallenger, A.H., Jr.

    2000-01-01

    A new scale is proposed that categorizes impacts to natural barrier islands resulting from tropical and extra-tropical storms. The proposed scale is fundamentally different than existing storm-related scales in that the coupling between forcing processes and the geometry of the coast is explicitly included. Four regimes, representing different levels of impact, are defined. Within each regime, patterns and relative magnitudes of net erosion and accretion are argued to be unique. The borders between regimes represent thresholds defining where processes and magnitudes of impacts change dramatically. Impact level 1 is the 'swash' regime describing a storm where runup is confined to the foreshore. The foreshore typically erodes during the storm and recovers following the storm; hence, there is no net change. Impact level 2 is the 'collision' regime describing a storm where the wave runup exceeds the threshold of the base of the foredune ridge. Swash impacts the dune forcing net erosion. Impact level 3 is the 'overwash' regime describing a storm where wave runup overtops the berm or, if present, the foredune ridge. The associated net landward sand transport contributes to net migration of the barrier landward. Impact level 4 is the 'inundation' regime describing a storm where the storm surge is sufficient to completely and continuously submerge the barrier island. Sand undergoes net landward transport over the barrier island; limited evidence suggests the quantities and distance of transport are much greater than what occurs during the 'overwash' regime.

  1. Plasmaspheric hiss intensity variations during magnetic storms

    NASA Technical Reports Server (NTRS)

    Smith, E. J.; Frandsen, A. M. A.; Tsurutani, B. T.; Thorne, R. M.; Chan, K. W.

    1974-01-01

    The storm time intensity variations of ELF electromagnetic emissions have been studied by using the Ogo 6 search coil magnetometer. Low-latitude signals exhibit a sharp low-frequency cutoff and are identified as plasmaspheric hiss. Such waves show pronounced intensification during the recovery phase of magnetic storms but remain close to background levels during the storm main phase. This behavior is consistent with cyclotron resonant generation within the plasmasphere as the latter expands into the intensified belt of outer zone electrons during the storm recovery.

  2. Calculation of the size of ice hummocks

    SciTech Connect

    Kozitskii, I.E.

    1985-03-01

    Ice hummocks are often seen during the breakup of water bodies and are the result of shifting of the ice cover during spring movements and are confined both to the shore slope, or exposed stretches of the bottom, and to shallow waters. At the same time, the shore is often used for needs of construction, transportation, power engineering and economic purposes, and cases of damage to structures and disruption of operations by ice hummocks are known. The authors therefore study here the character and extent of the phenomenon as it affects the design of shore engineering structures. They add that existing standards do not fully reflect the composition of ice loads on structures, in connection with which it is expedient to theorize as regards the expected size of ice hummocks.

  3. Evidence for the sensitivity of a Great Basin terminal lake to storm track position

    NASA Astrophysics Data System (ADS)

    Hatchett, B.; Boyle, D. P.; Garner, C.; Kaplan, M. L.; Bassett, S.

    2014-12-01

    Arid, closed basin watersheds can serve as indicators of regional climate change. In this work we test the hypothesis that surface elevations of Walker Lake, a Great Basin terminal lake, are sensitive to storm track positions. To do so, we use historical climate records, numerically dated paleolakeshore elevations, global reanalysis products and a semi-distributed water balance model. Precipitation and temperature values from calculated wet and dry periods between 1920-2011 were used as input to the model. Storm track climatologies were developed using reanalysis products. Our results demonstrate that a strong relationship exists between historic wet and dry periods and storm track positions. Under the assumption of a stationary climate using these historic wet and dry climates with the model, we simulated lake levels that are consistent with recorded high and lowstands occurring during Heinrich Stadial 1, the Younger Dryas, the Medieval Climate Anomaly and the Little Ice Age. These findings provide direct support for the storm track migration hypothesis. The nonlinear relationship between changes in precipitation and runoff appears to play a critical role in determining why terminal lakes are particularly responsive to changes in storm track positions.

  4. Space Transportation System (STS)-117 External Tank (ET)-124 Hail Damage Repair Assessment

    NASA Technical Reports Server (NTRS)

    Wilson, Timmy R.; Gentz, Steven J.; Barth, Timothy S.; Minute, Stephen A.; Flowers, Cody P.; Hamilton, David A.; Null, Cynthia H.; Schafer, Charles F.

    2009-01-01

    Severe thunderstorms with associated hail and high winds struck the STS-117 stack on February 26, 2007. Peak winds were recorded at 62 knots with hail sizes ranging from 0.3 inch to 0.8 inch in diameter. As a result of the storm, the North Carolina Foam Institute (NCFI) type 24-124 Thermal Protection System (TPS) foam on the liquid oxygen (LO2) ogive acreage incurred significant impact damage. The NCFI on the ET intertank and the liquid hydrogen (LH2) acreage sustained hail damage. The Polymer Development Laboratory (PDL)-1034 foam of the LO2 ice frost ramps (IFRs) and the Super-Lightweight Ablator (SLA) of the LO2 cable tray also suffered minor damage. NASA Engineering and Safety Center (NESC) was asked to assess the technical feasibility of repairing the ET TPS, the reasonableness of conducting those repairs with the vehicle in a vertical, integrated configuration at the Kennedy Space Center (KSC) Vehicle Assemble Building (VAB), and to address attendant human factors considerations including worker fatigue and the potential for error. The outcome of the assessment is recorded in this document.

  5. Observed Anomalous Atmospheric Circulation in Summers of Unusual Arctic Sea Ice Reduction

    NASA Astrophysics Data System (ADS)

    Knudsen, Erlend; Orsolini, Yvan; Furevik, Tore; Hodges, Kevin

    2014-05-01

    This study presents the atmospheric patterns (circulation, precipitation and temperature) associated with changes in Arctic sea ice extent (SIE) in summertime. Significant features and dynamical linkages of the parameter fields are presented. Sea ice extent and concentration are from the National Snow & Ice Data Center (NSIDC), while sea level pressure, winds, temperature, radiation, precipitation and snowfall - used to characterize storms, cloud cover, warming/cooling effects, large-scale wave trains and jet streams - come from the European Re-Analysis Interim (ERA-Interim) re-analysis. The storm track characteristic is analyzed using the Kevin Hodges TRACK algorithm, based on zonal and meridional winds at 850 hPa. Significant patterns result from compositing anomalous high (+1 STD, 23 months) and low (-1 STD, 17 months) standardized SIE reduction months in summer (May-August, MJJA) over 1979-2013. For high SIE reduction months, a relative anticyclonic circulation over the Arctic Ocean emerges. Resulting is a tendency for storms to shun the Arctic Ocean, following a more zonal path, and hence contributing to a weakening of the climatological Arctic Ocean Cyclone Maximum. For the Arctic Ocean, a reduced cloud cover results in less precipitation, where the particular decrease in snowfall over sea ice in August lowers the albedo and hence increases the ice reduction. The warming over the continents increases the land-sea temperature contrast, resulting in increased cyclogenesis especially along the Siberian coast. In mid-latitudes, the shift in storm tracks results in an increase in storms and rainfall over northwestern Europe and southern Scandinavia. The presentation adds to the ongoing discussion on Arctic sea ice and mid-latitude extreme weather, and also contributes to the understanding of feedback mechanisms in the region. With the current declining trend in sea ice expected to continue in the coming decades, the understanding of anomalous circulation patterns associated to sea-ice loss is important for assessing changes in the Arctic climate system and their impacts.

  6. Fracturing of rocks by ice

    NASA Astrophysics Data System (ADS)

    Vlahou, Ioanna; Grae Worster, M.

    2009-11-01

    Frost damage, caused by the freezing of water-saturated media, affects plant roots, pavements and the foundations of buildings, and is a major erosional force in rocks. The process has been studied extensively in the case of soils, and mechanisms such as the formation of ice lenses have been identified. Here, we consider the freezing of water in a three-dimensional cavity in a water-saturated, porous, elastic rock. Initially, the expansion of water as it freezes causes flow away from the solidification front, into the porous rock. The Darcy flow in the porous medium controls the pressure field and therefore the freezing temperature. At later times, disjoining thermomolecular forces create a pre-melted film of water between the ice and the rock and cause flow of pore water from the surrounding rock into the cavity. We find that the disjoining forces between the ice and the rock have the dominant effect, so we focus on those later times when the cavity is ice-filled. We solve the coupled set of integro-differential equations governing the elastic stress in the rock and the flow through its pores to determine the evolution of the shape and extent of the ice-filled cavity.

  7. In the Eye of the Storm: A Participatory Course on Coastal Storms

    ERIC Educational Resources Information Center

    Curtis, Scott

    2013-01-01

    Storm disasters are amplified in the coastal environment due to population pressures and the power of the sea. The upper-division/graduate university course "Coastal Storms" was designed to equip future practitioners with the skills necessary to understand, respond to, and mitigate for these natural disasters. To accomplish this, "Coastal Storms"…

  8. High resolution dynamical downscaling of historical and potential extreme European winter storms

    NASA Astrophysics Data System (ADS)

    Lorenz, P.; Kruschke, T.; Osinski, R.; Voigt, M.; Ulbrich, U.; Leckebusch, G. C.; Frank, H.; Schulz, J.-P.; Zängl, G.

    2012-04-01

    Extreme European winter storms can cause severe impacts and damages, including the loss of life. A reliable prediction as well as occurrence assessment of European winter storms on high temporal and spatial resolutions is therefore an important task. Using an objective storm severity index (SSI; Leckebusch et al., 2008) a specific sub-set of the most extreme recent historical European winter storms has been identified from the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis datasets ERA40 (1958-2002) and ERA-INTERIM (1989-2010). Furthermore, the most extreme potential winter storm events as predicted by the ECMWF Ensemble prediction System (EPS) have been identified with the SSI method. For the selected events a dynamical atmospheric modeling chain consisting of the operational global and regional numerical weather prediction models (GME and COSMO-EU) of the German Weather Service (DWD) is applied using several lead times to the storm event. In COSMO-EU (7km horizontal resolution) different diagnostic schemes for the estimation of wind gusts are applied. The resulting high resolution wind and gust fields are validated against station observations where possible. The analysis shows the dependence of the simulated wind and gust fields on lead time. Furthermore, clear systematic differences in the different diagnostic schemes used for gust estimation are investigated. Finally, systematic differences in the simulation results between historical and potential events are explored.

  9. Impacts on the deep-sea ecosystem by a severe coastal storm.

    PubMed

    Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26(th) of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem. PMID:22295084

  10. Atmospheric circulation and storm events in the Black Sea and Caspian Sea

    NASA Astrophysics Data System (ADS)

    Surkova, Galina; Arkhipkin, Victor; Kislov, Alexander

    2013-12-01

    Extreme sea storms are dangerous and a potential source of damage. In this study, we examine storm events in the Black Sea and Caspian Sea, the atmosphere circulation patterns associated with the sea storm events, and their changes in the present (1961-2000) and future (2046-2065) climates. A calendar of storms for the present climate is derived from results of wave model SWAN (Simulating WAves Nearshore) experiments. On the basis of this calendar, a catalog of atmospheric sea level pressure (SLP) fields was prepared from the NCEP/NCAR reanalysis dataset for 1961-2000. The SLP fields were subjected to a pattern recognition algorithm which employed empirical orthogonal decomposition followed by cluster analysis. The NCEP/NCAR reanalysis data is used to evaluate the occurring circulation types (CTs) within the ECHAM5-MPI/OM Atmosphere and Ocean Global Circulation Model (AOGCM) for the period 1961-2000. Our analysis shows that the ECHAM5-MPI/OM model is capable of reproducing circulation patterns for the storm events. The occurrence of present and future ECHAM5-MPI/OM CTs is investigated. It is shown that storm CTs are expected to occur noticeably less frequently in the middle of the 21st century.

  11. Understanding the Variations in Flood Responses to Tropical-Storms and Hurricanes

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Chen, X.; McGlynn, B. L.

    2014-12-01

    Hurricanes and tropical storms are major geophysical disaster-causing agents, which are responsible for tremendous economic and property losses in the U.S. A large percentage of these losses have been due to flooding from intense storms. In order to minimize flood damages associated with large hurricane-season storms, it is important to be able to predict streamflow amount in response to storms for a range of hydroclimatological conditions. However, this is challenging considering that streamflow response exhibits appreciable variability even for storms that deliver similar precipitation amounts. In order to better understand the sources of this expressed streamflow variability, we use a physics-based, distributed hydrologic model and supporting hydrologic data sets to identify and evaluate dominant hydrologic controls on streamflow amount variability in a southeastern US watershed. Our analyses suggest that the dominant controls on the variability of streamflow amount are antecedent soil moisture condition near the ground surface, and evapotranspirative losses during post-event streamflow recession periods, which are in turn influenced by precipitation history and prevailing vegetation and meteorological conditions. Information regarding dominant controls could help prioritize measurements during observation campaigns and could aid in risk management to quickly evaluate flood responses given prior information about hurricane storm size.

  12. Risk assessment of tropical storm surges for coastal regions of China

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Wang, H.; Liu, G. M.; Sun, X. Y.; Fei, X. Y.; Wang, P. T.; Lv, T. T.; Xue, Z. S.; He, Y. W.

    2014-05-01

    Storm surges are responsible for much of the damage and loss of life associated with landfalling tropical cyclones (TCs). Thus, understanding the characteristics of risk associated with TC storm surges for the coastal regions of China is of great interest. Based on a comprehensive assessment of hazard indices for TC storm surges and vulnerability indices for coastal counties, we obtained a risk assessment for coastal regions of China as a county-level unit. The hazard index was calculated using a model based on the parameters of a TC landfall frequency index (f) and maximum storm surge elevation (MSSE). The MSSE was calculated from the TC maximum sustained wind and tide gauge records using a regression function. Vulnerability indices were obtained from indices on socioeconomics, land use, the ecological environment, and resilience. From this study, it can be concluded that the hazard level of TC storm surges increases from north to south along the Chinese coast, the vulnerabilities have significant spatial heterogeneity, and coastal regions of China can be divided into four zones of risk level. The results of this study can provide scientific support for marine disaster mitigation and decision making. Additionally, the risk assessment methodology used here for storm surges could be extended and applied to other coastal areas.

  13. Impacts on the Deep-Sea Ecosystem by a Severe Coastal Storm

    PubMed Central

    Sanchez-Vidal, Anna; Canals, Miquel; Calafat, Antoni M.; Lastras, Galderic; Pedrosa-Pàmies, Rut; Menéndez, Melisa; Medina, Raúl; Company, Joan B.; Hereu, Bernat; Romero, Javier; Alcoverro, Teresa

    2012-01-01

    Major coastal storms, associated with strong winds, high waves and intensified currents, and occasionally with heavy rains and flash floods, are mostly known because of the serious damage they can cause along the shoreline and the threats they pose to navigation. However, there is a profound lack of knowledge on the deep-sea impacts of severe coastal storms. Concurrent measurements of key parameters along the coast and in the deep-sea are extremely rare. Here we present a unique data set showing how one of the most extreme coastal storms of the last decades lashing the Western Mediterranean Sea rapidly impacted the deep-sea ecosystem. The storm peaked the 26th of December 2008 leading to the remobilization of a shallow-water reservoir of marine organic carbon associated with fine particles and resulting in its redistribution across the deep basin. The storm also initiated the movement of large amounts of coarse shelf sediment, which abraded and buried benthic communities. Our findings demonstrate, first, that severe coastal storms are highly efficient in transporting organic carbon from shallow water to deep water, thus contributing to its sequestration and, second, that natural, intermittent atmospheric drivers sensitive to global climate change have the potential to tremendously impact the largest and least known ecosystem on Earth, the deep-sea ecosystem. PMID:22295084

  14. Rapid Response Measurements of Hurricane Waves and Storm Surge

    NASA Astrophysics Data System (ADS)

    Gravois, U.

    2010-12-01

    Andrew (1992), Katrina (2005), and Ike (2008) are recent examples of extensive damage that resulted from direct hurricane landfall. Some of the worst damages from these hurricanes are caused by wind driven waves and storm surge flooding. The potential for more hurricane disasters like these continues to increase as a result of population growth and real estate development in low elevation coastal regions. Observational measurements of hurricane waves and storm surge play an important role in future mitigation efforts, yet permanent wave buoy moorings and tide stations are more sparse than desired. This research has developed a rapid response method using helicopters to install temporary wave and surge gauges ahead of hurricane landfall. These temporary installations, with target depths from 10-15 m and 1-7 km offshore depending on the local shelf slope, increase the density of measurement points where the worst conditions are expected. The method has progressed to an operational state and has successfully responded to storms Ernesto (2006), Noel (2007), Fay (2008), Gustav (2008), Hanna (2008) and Ike (2008). The temporary gauges are pressure data loggers that measure at 1 Hz continuously for 12 days and are post-processed to extract surge and wave information. For the six storms studied, 45 out of 49 sensors were recovered by boat led scuba diver search teams, with 43 providing useful data for an 88 percent success rate. As part of the 20 sensor Hurricane Gustav response, sensors were also deployed in lakes and bays inLouisiana, east of the Mississippi river delta. Gustav was the largest deployment to date. Generally efforts were scaled back for storms that were not anticipated to be highly destructive. For example, the cumulative total of sensors deployed for Ernesto, Noel, Fay and Hanna was only 20. Measurement locations for Gustav spanned over 800 km of exposed coastline from Louisiana to Florida with sensors in close proximity to landfall near Cocodrie, Louisiana. Surge measurements between landfall and the Mississippi delta show 1.5 - 2 m of surge and values exceeding 2 m further from landfall north of the Mississippi delta. These observations demonstrate the importance of coastal geography on storm surge vulnerability. Waves measurements from Gustav show large waves of 5 m at all exposed locations from landfall to western Florida. Some smaller values were also recorded, likely to be due to depth limited breaking or sheltering from the Mississippi delta. Two weeks after Hurricane Gustav, major Hurricane Ike entered the Gulf of Mexico threatening Texas. Unfortunately the sensors already deployed for Gustav reached the 12 day memory limit and did not catch the most extreme conditions of Ike. However, 9 additional sensors were deployed for Ike spanning 360 km of the Texas coast. These measurements show surge east of the Galveston, Texas landfall exceeding 4.5 m and wave heights greater than 5 m. Hurricane Ike was by far the most destructive of the 6 storms measured and has spawned separate work relating the extent of building damage to these measurements.

  15. Severe Extra-tropical Storms Under Climate Change And Related Impacts

    NASA Astrophysics Data System (ADS)

    Leckebusch, G. C.; Ulbrich, U.; Pinto, J. G.; Donat, M.

    2007-12-01

    Winter storms caused by extra-tropical cyclones over the Northeast Pacific and the Northeast Atlantic basins are important factors for property losses caused by natural hazards over Europe and North-America. The European storm series in early 1990 and late 1999 led to enormous economic damages (US-14.2 bn and 18.5 bn, respectively) and insured claims (US-9.8 bn and 10.75 bn, respectively). Although significant trends in North Atlantic / European storm activity have not been identified for the last decades, this study provide evidence that under anthropogenic climate change the number of extreme storms could increase, whereas the total number of northern hemispheric extra-tropical cyclones may be slightly reduced. This holds true for the Northeast Pacific as well as the Northeast Atlantic basin. The results from global climate models are well recognised in wind speed analyses from regional climate models. For parts of western Central Europe an increase in frequency and intensity of extreme wind speeds are identified. In this context, the analysis of climate models from the ENSEMBLES initiative offers the unique opportunity to investigate model to model variability for GCM and RCM simulation in more horizontal detail, leading thus to measures of uncertainty. Additionally, loss potentials derived from an ensemble of global and regional climate models using a simple storm damage regression model under climate change conditions are presented. For the two European regions (United Kingdom and Germany) ensemble-mean storm-related losses are investigated. Based on GCMs the ensemble mean is found to possibly increase by up to 37%. Furthermore, the interannual variability of extreme events will increase leading to a higher risk of extreme storm activity and related losses. In order to gain more regional information, RCMs have been forced with ECMWF-ERA40 for validation, and with several GCMs under IPCC SRES scenarios for future conditions.

  16. Spring Dust Storm Smothers Beijing

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A few days earlier than usual, a large, dense plume of dust blew southward and eastward from the desert plains of Mongolia-quite smothering to the residents of Beijing. Citizens of northeastern China call this annual event the 'shachenbao,' or 'dust cloud tempest.' However, the tempest normally occurs during the spring time. The dust storm hit Beijing on Friday night, March 15, and began coating everything with a fine, pale brown layer of grit. The region is quite dry; a problem some believe has been exacerbated by decades of deforestation. According to Chinese government estimates, roughly 1 million tons of desert dust and sand blow into Beijing each year. This true-color image was made using two adjacent swaths (click to see the full image) of data from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), flying aboard the OrbView-2 satellite, on March 17, 2002. The massive dust storm (brownish pixels) can easily be distinguished from clouds (bright white pixels) as it blows across northern Japan and eastward toward the open Pacific Ocean. The black regions are gaps between SeaWiFS' viewing swaths and represent areas where no data were collected. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  17. Coastal storm monitoring in Virginia

    USGS Publications Warehouse

    Wicklein, Shaun M.; Bennett, Mark

    2014-01-01

    Coastal communities in Virginia are prone to flooding, particularly during hurricanes, nor’easters, and other coastal low-pressure systems. These weather systems affect public safety, personal and public property, and valuable infrastructure, such as transportation, water and sewer, and electric-supply networks. Local emergency managers, utility operators, and the public are tasked with making difficult decisions regarding evacuations, road closures, and post-storm recovery efforts as a result of coastal flooding. In coastal Virginia these decisions often are made on the basis of anecdotal knowledge from past events or predictions based on data from monitoring sites located far away from the affected area that may not reflect local conditions. Preventing flood hazards, such as hurricane-induced storm surge, from becoming human disasters requires an understanding of the relative risks that flooding poses to specific communities. The risk to life and property can be very high if decisions about evacuations and road closures are made too late or not at all.

  18. Tropical storms and the flood hydrology of the central Appalachians

    NASA Astrophysics Data System (ADS)

    Sturdevant-Rees, Paula; Smith, James A.; Morrison, Julia; Baeck, Mary Lynn

    2001-08-01

    Flooding from Hurricane Fran is examined as a prototype for central Appalachian flood events that dominate the upper tail of flood peak distributions at basin scales between 100 and 10,000 km2. Hurricane Fran, which resulted in 34 deaths and more than $3.2 billion in damages, made land fall on the North Carolina coast at 0000 UTC, September 6, 1996. By 1200 UTC on September 6, Fran had weakened to a tropical storm, and the center of circulation was located at the North Carolina-Virginia border. Rain bands surrounding the tropical depression produced extreme rainfall and flooding in Virginia and West Virginia, with the most intense rainfall concentrated near ridge tops in the Blue Ridge and Valley and Ridge physiographic provinces. The most severe flooding occurred in the Shenandoah River watershed of Virginia, where peak discharges exceeded the 100-year magnitude at 11 of 19 U.S. Geological Survey stream-gaging stations. The availability of high-resolution discharge and rainfall data sets provides the opportunity to study the hydrologic and hydrometeorological mechanisms associated with extreme floods produced by tropical storms. Analyses indicate that orographie enhancement of tropical storm precipitation plays a central role in the hydrology of extreme floods in the central Appalachian region. The relationships between drainage network structure and storm motion also play a major role in Appalachian flood hydrology. Runoff processes for Hurricane Fran reflected a mixture of saturation excess and infiltration excess mechanisms. Antecedent soil moisture played a significant role in the hydrology of extreme flooding from Hurricane Fran. Land use, in particular, the presence of forest cover, was of secondary importance to the terrain-based distribution of precipitation in determining extreme flood response.

  19. Sea ice trends and cyclone activity in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Coggins, Jack; McDonald, Adrian; Rack, Wolfgang; Dale, Ethan

    2015-04-01

    Significant trends in the extent of Southern Hemisphere sea ice have been noted over the course of the satellite record, with highly variable trends between different seasons and regions. In this presentation, we describe efforts to assess the impact of cyclones on these trends. Employing a maximum cross-correlation method, we derive Southern Ocean ice-motion vectors from daily gridded SSMI 85.5 GHz brightness temperatures. We then derive a sea ice budget from the NASA-Team 25 km square daily sea ice concentrations. The budget quantifies the total daily change in sea ice area, and includes terms representing the effects of ice advection and divergence. A residual term represents the processes of rafting, ridging, freezing and thawing. We employ a cyclone tracking algorithm developed at the University of Canterbury to determine the timing, location, size and strength of Southern Hemisphere cyclones from mean sea-level pressure fields of the ERA-Interim reanalysis. We then form composites of the of sea ice budget below the location of cyclones. Unsurprisingly, we find that clockwise atmospheric flow around Southern Hemisphere cyclones exerts a strong influence on the movement of sea ice, an effect which is visible in the advection and divergence terms. Further, we assess the climatological importance of cyclones by comparing seasons of sea ice advance for periods with varying numbers of cyclones. This analysis is performed independently for each sea ice concentration pixel, thus affording us insight into the geographical importance of storm systems. We find that Southern Hemisphere sea ice extent is highly sensitive to the presence of cyclones in the periphery of the pack in the advance season. Notably, the sensitivity is particularly high in the northern Ross Sea, an area with a marked positive trend in sea ice extent. We discuss whether trends in cyclone activity in the Southern Ocean may have contributed to sea ice extent trends in this region.

  20. The observed clustering of damaging extra-tropical cyclones in Europe

    NASA Astrophysics Data System (ADS)

    Cusack, S.

    2015-12-01

    The clustering of severe European windstorms on annual timescales has substantial impacts on the re/insurance industry. Management of the risk is impaired by large uncertainties in estimates of clustering from historical storm datasets typically covering the past few decades. The uncertainties are unusually large because clustering depends on the variance of storm counts. Eight storm datasets are gathered for analysis in this study in order to reduce these uncertainties. Six of the datasets contain more than 100~years of severe storm information to reduce sampling errors, and the diversity of information sources and analysis methods between datasets sample observational errors. All storm severity measures used in this study reflect damage, to suit re/insurance applications. It is found that the shortest storm dataset of 42 years in length provides estimates of clustering with very large sampling and observational errors. The dataset does provide some useful information: indications of stronger clustering for more severe storms, particularly for southern countries off the main storm track. However, substantially different results are produced by removal of one stormy season, 1989/1990, which illustrates the large uncertainties from a 42-year dataset. The extended storm records place 1989/1990 into a much longer historical context to produce more robust estimates of clustering. All the extended storm datasets show a greater degree of clustering with increasing storm severity and suggest clustering of severe storms is much more material than weaker storms. Further, they contain signs of stronger clustering in areas off the main storm track, and weaker clustering for smaller-sized areas, though these signals are smaller than uncertainties in actual values. Both the improvement of existing storm records and development of new historical storm datasets would help to improve management of this risk.

  1. Ice Observatory

    NASA Astrophysics Data System (ADS)

    blugerman, n.

    2015-10-01

    My project is to make ice observatories to perceive astral movements as well as light phenomena in the shape of cosmic rays and heat, for example.I find the idea of creating an observation point in space, that in time will change shape and eventually disappear, in consonance with the way we humans have been approaching the exploration of the universe since we started doing it. The transformation in the elements we use to understand big and small transformations, within the universe elements.

  2. Meth (Crank, Ice) Facts

    MedlinePLUS

    ... Crank, Ice) Facts Meth (Crank, Ice) Facts Listen Methamphetamine—meth for short—is a white, bitter powder. ... names for meth are: Crank Ice Crystal Glass Chalk In This Section Signs of Meth Use and ...

  3. Charging regions, regions of charge, and storm structure in a partially inverted polarity supercell thunderstorm

    NASA Astrophysics Data System (ADS)

    Bruning, Eric

    2008-10-01

    Dipoles, tripoles and other stacked charge arrangements are a temptingly convenient explanation of the electrical structure of entire storms and may have merit when storms can be considered a point phenomenon. However, the internal charge structure of storms with three-dimensional kinematic and microphysical structure (e.g., supercells) is not well-represented by single stack of pancake-shaped charge regions. In this study, lightning mapping and radar data from the 26 May 2004 supercell in central Oklahoma are used to examine successive arcs of lightning that developed in response to pulses in the storm's updraft. The evolution of lightning in updraft pulses was found to match with the established model of the formation and fallout of precipitation in supercells. Initial lightning in an arc was contained within precipitation lofted above the storm's weak echo region. Lower positive charge was centered at 7 km, negative charge at 10 km, and positive charge at 12 km, which is considered an elevated normal polarity tripole formed by the non-inductive charging collisions between ice crystals and riming graupel. Later and simultaneously, two different charge regions were associated with precipitation that reached the ground. To the left of the weak echo region, six charge regions were inferred to form a normal polarity arrangement, with positive charge carried on hail at the bottom of the stack. Further forward in the storm's precipitation region, four charge regions were inferred, with negative charge at the bottom of the stack, which is an inverted polarity structure. Flashes occasionally lowered positive charge to ground from this charge region. The charge structures in the precipitating region of the storm were due to charge advection from the elevated initial tripole formed in large inferred supercooled liquid water concentrations and additional non-inductive charging in lower supercooled water concentration about 5 km to the side of the storm's strongest updraft. The data suggest that the normal vs. inverted polarity nomenclature is applicable to neither the whole storm nor the charging process itself. Any given normal or inverted region may be significantly influenced by charging processes operating outside of it. It is recommended that future studies of charge structure in storms utilize an interpretive framework which distinguishes between charging regions and regions of charge and ties them to conventional supercellular structural features and their microphysical history as observed in radar fields.

  4. Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Baatsen, Michiel; Haarsma, Reindert J.; Van Delden, Aarnout J.; de Vries, Hylke

    2015-08-01

    Simulations with a very high resolution (~25 km) global climate model indicate that more severe Autumn storms will impact Europe in a warmer future climate. The observed increase is mainly attributed to storms with a tropical origin, especially in the later part of the twentyfirst century. As their genesis region expands, tropical cyclones become more intense and their chances of reaching Europe increase. This paper investigates the properties and evolution of such storms and clarifies the future changes. The studied tropical cyclones feature a typical evolution of tropical development, extratropical transition and a re-intensification. A reduction of the transit area between regions of tropical and extratropical cyclogenesis increases the probability of re-intensification. Many of the modelled storms exhibit hybrid properties in a considerable part of their life cycle during which they exhibit the hazards of both tropical and extratropical systems. In addition to tropical cyclones, other systems such as cold core extratropical storms mainly originating over the Gulf Stream region also increasingly impact Western Europe. Despite their different history, all of the studied storms have one striking similarity: they form a warm seclusion. The structure, intensity and frequency of storms in the present climate are compared to observations using the MERRA and IBTrACS datasets. Damaging winds associated with the occurrence of a sting jet are observed in a large fraction of the cyclones during their final stage. Baroclinic instability is of great importance for the (re-)intensification of the storms. Furthermore, so-called atmospheric rivers providing tropical air prove to be vital for the intensification through diabatic heating and will increase considerably in strength in the future, as will the associated flooding risks.

  5. Severe Autumn storms in future Western Europe with a warmer Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Baatsen, Michiel; Haarsma, Reindert J.; Van Delden, Aarnout J.; de Vries, Hylke

    2014-09-01

    Simulations with a very high resolution (~25 km) global climate model indicate that more severe Autumn storms will impact Europe in a warmer future climate. The observed increase is mainly attributed to storms with a tropical origin, especially in the later part of the twentyfirst century. As their genesis region expands, tropical cyclones become more intense and their chances of reaching Europe increase. This paper investigates the properties and evolution of such storms and clarifies the future changes. The studied tropical cyclones feature a typical evolution of tropical development, extratropical transition and a re-intensification. A reduction of the transit area between regions of tropical and extratropical cyclogenesis increases the probability of re-intensification. Many of the modelled storms exhibit hybrid properties in a considerable part of their life cycle during which they exhibit the hazards of both tropical and extratropical systems. In addition to tropical cyclones, other systems such as cold core extratropical storms mainly originating over the Gulf Stream region also increasingly impact Western Europe. Despite their different history, all of the studied storms have one striking similarity: they form a warm seclusion. The structure, intensity and frequency of storms in the present climate are compared to observations using the MERRA and IBTrACS datasets. Damaging winds associated with the occurrence of a sting jet are observed in a large fraction of the cyclones during their final stage. Baroclinic instability is of great importance for the (re-)intensification of the storms. Furthermore, so-called atmospheric rivers providing tropical air prove to be vital for the intensification through diabatic heating and will increase considerably in strength in the future, as will the associated flooding risks.

  6. Storm Surge Hazard in Oman Based on Cyclone Gonu and Historic Events

    NASA Astrophysics Data System (ADS)

    Blount, C.; Fritz, H. M.; Albusaidi, F. B.; Al-Harthy, A. H.

    2008-12-01

    Super Cyclone Gonu was the strongest tropical cyclone on record in the Arabian Sea. Gonu developed sustained winds reaching 240 km/h with gusts up to 315 km/h and an estimated central pressure of 920 mbar by late 4 June 2007 while centered east-southeast of Masirah Island on the coast of Oman. Gonu weakened after encountering dry air and cooler waters prior to the June 5 landfall on the eastern-most tip of Oman, becoming the strongest tropical cyclone to hit the Arabian Peninsula. Gonu dropped heavy rainfall near the eastern coastline, reaching up to 610 mm which caused wadi flooding and heavy damage. The shore parallel cyclone track resulted in coastal damage due to storm surge and storm wave impact along a 300km stretch of Omani coastline. Maximum high water marks, overland flow depths, and inundation distances were measured along the Gulf of Oman during the 1-4 August 2007 reconnaissance. The high water marks peaked at Ras al Hadd at the eastern tip of Oman exceeding 5 meters, surpassing 2004 Indian Ocean tsunami runup at every corresponding point. The cyclone caused $4 billion in damage and at least 49 deaths in the Sultanate of Oman. Prior to Gonu, only two similar cyclones struck the coast of Oman in the last 1200 years (in 865 and 1890). The 1890 storm, which remains the worst natural disaster in Oman's history, drenched the coast from Soor to Suwayq causing inland wadi flooding. Matrah and Muscat were the hardest hit areas with many ships being washed ashore and wrecked. The storm is known to have killed about 727 people and caused huge agricultural and shipping losses. Similarly, the 865 storm affected areas between Gobrah and Sohar. A high-resolution finite element ADCIRC mesh of the Arabian Sea is created to model storm surge and is coupled with STWAVE. Modeling results from Gonu are compared to measurements and used to determine the contribution from storm surge and waves. The 1890 and 865 storms are modeled with standard cyclone parameters and results are compared to historical records to estimate the storm tracks. These results can be used to assess the coastal vulnerability in the Gulf of Oman.

  7. Atmosphere-ice forcing in the transpolar drift stream: results from the DAMOCLES ice-buoy campaigns 2007-2009

    NASA Astrophysics Data System (ADS)

    Haller, M.; Brümmer, B.; Müller, G.

    2014-02-01

    During the EU research project Developing Arctic Modelling and Observing Capabilities for Long-term Environmental Studies (DAMOCLES), 18 ice buoys were deployed in the region of the Arctic transpolar drift (TPD). Sixteen of them formed a quadratic grid with 400 km side length. The measurements lasted from 2007 to 2009. The properties of the TPD and the impact of synoptic weather systems on the ice drift are analysed. Within the TPD, the speed increases by a factor of almost three from the North Pole to the Fram Strait region. The hourly buoy position fixes would show that the speed is underestimated by 10-20% if positions were taken at only 1-3 day intervals as it is usually done for satellite drift estimates. The geostrophic wind factor Ui / Ug (i.e. the ratio of ice speed Ui and geostrophic wind speed Ug), in the TPD amounts to 0.012 on average, but with regional and seasonal differences. The constant Ui / Ug relation breaks down for Ug < 5 m s-1. The impact of synoptic weather systems is studied applying a composite method. Cyclones (anticyclones) cause cyclonic (anticyclonic) vorticity and divergence (convergence) of the ice drift. The amplitudes are twice as large for cyclones as for anticyclones. The divergence caused by cyclones corresponds to a 0.1-0.5% per 6 h open water area increase based on the composite averages, but reached almost 4% within one day during a strong August 2007 storm. This storm also caused a long-lasting (over several weeks) rise of Ui and Ui / Ug and changed the ice conditions in a way which allowed large amplitudes of inertial ice motion. The consequences of an increasing Arctic storm activity for the ice cover are discussed.

  8. The NASA F-106B Storm Hazards Program

    NASA Technical Reports Server (NTRS)

    Neely, W. R., Jr.; Fisher, B. D.

    1983-01-01

    During the NASA LRC Storm Hazards Program, 698 thunderstorm precipitations were made from 1980 to 1983 with an F-106B aircraft in order to record direct lightning strike data and the associated flight conditions. It was found that each of the three composite fin caps tested experienced multiple lightning attachments with only minor cosmetic damage. The maximum current level was only 20 ka, which is well below the design standard of 200 ka; however, indications are that the current rate of rise standard has been approached and may be exceeded in a major strike. The peak lightning strike rate occurred at ambient temperatures between -40 and -45 C, while most previously reported strikes have occurred at or near the freezing level. No significant operational difficulties or major aircraft damage resulting from the thunderstorm penetrations have been found.

  9. The Evaluation and Management of Electrical Storm

    PubMed Central

    Eifling, Michael; Razavi, Mehdi; Massumi, Ali

    2011-01-01

    Electrical storm is an increasingly common and life-threatening syndrome that is defined by 3 or more sustained episodes of ventricular tachycardia, ventricular fibrillation, or appropriate shocks from an implantable cardioverter-defibrillator within 24 hours. The clinical presentation can be dramatic. Electrical storm can manifest itself during acute myocardial infarction and in patients who have structural heart disease, an implantable cardioverter-defibrillator, or an inherited arrhythmic syndrome. The presence or absence of structural heart disease and the electrocardiographic morphology of the presenting arrhythmia can provide important diagnostic clues into the mechanism of electrical storm. Electrical storm typically has a poor outcome. The effective management of electrical storm requires an understanding of arrhythmia mechanisms, therapeutic options, device programming, and indications for radiofrequency catheter ablation. Initial management involves determining and correcting the underlying ischemia, electrolyte imbalances, or other causative factors. Amiodarone and ?-blockers, especially propranolol, effectively resolve arrhythmias in most patients. Nonpharmacologic treatment, including radiofrequency ablation, can control electrical storm in drug-refractory patients. Patients who have implantable cardioverter-defibrillators can present with multiple shocks and may require drug therapy and device reprogramming. After the acute phase of electrical storm, the treatment focus should shift toward maximizing heart-failure therapy, performing revascularization, and preventing subsequent ventricular arrhythmias. Herein, we present an organized approach for effectively evaluating and managing electrical storm. PMID:21494516

  10. AUTOMATED STORM WATER SAMPLING ON SMALL WATERHSEDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Typical automated storm sampling involves setting a minimum threshold to initiate sampling and setting a time or flow interval on which to collect samples after the sampler is triggered. However, little guidance is currently available to assist in making these settings for storm sampling strategies...

  11. Evaluation of the STORM model storm-time corrections for middle latitude

    NASA Astrophysics Data System (ADS)

    Buresova, D.; McKinnell, L.-A.; Sindelarova, T.; De La Morena, B. A.

    2010-10-01

    This paper presents results from the Storm-Time Ionospheric Correction Model (STORM) validation for selected Northern and Southern Hemisphere middle latitude locations. The created database incorporated 65 strong-to-severe geomagnetic storms, which occurred within the period 1995-2007. This validation included data from some ionospheric stations (e.g., Pruhonice, El Arenosillo) that were not considered in the development or previous validations of the model. Hourly values of the F2 layer critical frequency, foF2, measured for 5-7 days during the main and recovery phases of each selected storm were compared with the predicted IRI 2007 foF2 with the STORM model option activated. To perform a detailed comparison between observed values, medians and predicted foF2 values the correlation coefficient, the root-mean-square error (RMSE), and the percentage improvement were calculated. Results of the comparative analysis show that the STORM model captures more effectively the negative phases of the summer ionospheric storms, while electron density enhancement during winter storms and the changeover of the different storm phases is reproduced with less accuracy. The STORM model corrections are less efficient for lower-middle latitudes and severe geomagnetic storms.

  12. Interactions Between Convective Storms and Their Environment

    NASA Technical Reports Server (NTRS)

    Maddox, R. A.; Hoxit, L. R.; Chappell, C. F.

    1979-01-01

    The ways in which intense convective storms interact with their environment are considered for a number of specific severe storm situations. A physical model of subcloud wind fields and vertical wind profiles was developed to explain the often observed intensification of convective storms that move along or across thermal boundaries. A number of special, unusually dense, data sets were used to substantiate features of the model. GOES imagery was used in conjunction with objectively analyzed surface wind data to develop a nowcast technique that might be used to identify specific storm cells likely to become tornadic. It was shown that circulations associated with organized meso-alpha and meso-beta scale storm complexes may, on occasion, strongly modify tropospheric thermodynamic patterns and flow fields.

  13. ESTIMATION OF URBAN STORM-RUNOFF LOADS.

    USGS Publications Warehouse

    Driver, Nancy E.; Lystrom, David J.

    1986-01-01

    The United States was divided into three regions, on the basis of mean annual rainfall, to decrease the variability in storm-runoff constituent loads and to improve regression relations with basin and climatic characteristics. Multiple-regression analyses, in progress, are being refined to determine the best regression models for each of the storm-runoff constituent loads in each of the three regions. These techniques, when finalized, can be used to estimate storm-runoff constituent loads for gaged and ungaged urban watersheds. The preliminary standard errors of estimate for five constituents examined to date ranged from 54 to 223 percent, and the coefficients of determination (r**2) ranged from 0. 39 to 0. 94. Total storm rainfall and total contributing drainage area appear to be the most significant independent variables in the regression models. This paper is a progress report on preliminary results of estimating storm-runoff constituent loads for ungaged watersheds.

  14. Development of Inundation Map for Bantayan Island, Cebu Using Delft3D-Flow Storm Surge Simulations of Typhoon Haiyan

    NASA Astrophysics Data System (ADS)

    Cuadra, Camille; Suarez, John Kenneth; Biton, Nophi Ian; Cabacaba, Krichi May; Lapidez, John Phillip; Santiago, Joy; Mahar Francisco Lagmay, Alfredo; Malano, Vicente

    2014-05-01

    On average, 20 typhoons enter the Philippine area of responsibility annually, making it vulnerable to different storm hazards. Apart from the frequency of tropical cyclones, the archipelagic nature of the country makes it particularly prone to storm surges. On 08 November 2013, Haiyan, a Category 5 Typhoon with maximum one-minute sustained wind speed of 315 kph, hit the central region of the Philippines. In its path, the howler devastated Bantayan Island, a popular tourist destination. The island is located north of Cebu City, the second largest metropolis of the Philippines in terms of populace. Having been directly hit by Typhoon Haiyan, Bantayan Island was severely damaged by strong winds and storm surges, with more than 11,000 houses totally destroyed while 5,000 more suffered minor damage. The adverse impacts of possible future storm surge events in the island can only be mitigated if hazard maps that depict inundation of the coastal areas of Bantayan are generated. To create such maps, Delft3D-Flow, a hydrodynamic model was used to simulate storm surges. These simulations were made over a 10-m per pixel resolution Digital Elevation Model (DEM) and the General Bathymetric Chart of the Oceans (GEBCO) bathymetry. The results of the coastal inundation model for Typhoon Haiyan's storm surges were validated using data collected from field work and local government reports. The hydrodynamic model of Bantayan was then calibrated using the field data and further simulations were made with varying typhoon tracks. This was done to generate scenarios on the farthest possible inland incursion of storm surges. The output of the study is a detailed storm surge inundation map that depicts safe zones for development of infrastructure near coastal areas and for construction of coastal protection structures. The storm surge inundation map can also be used as basis for disaster preparedness plans of coastal communities threatened by approaching typhoons.

  15. Determining the Return Period of Storm Surge Events in the Philippines

    NASA Astrophysics Data System (ADS)

    Santiago, Joy; Suarez, John Kenneth; Lapidez, John Phillip; Mendoza, Jerico; Caro, Carl Vincent; Tablazon, Judd; Ladiero, Christine; Mahar Francisco Lagmay, Alfredo

    2015-04-01

    The devastating damages generated by the Tropical Cyclone Haiyan storm surges in Eastern Samar, Philippines prompted the Department of Science and Technology-Project NOAH (Nationwide Operational Assessment of Hazards) to calculate the return period and storm surge exceedance probability of these events. The recurrence interval or the period of return of a storm surge event is the estimated likelihood that that event would occur again. Return periods are measured through historical data denoting the interval of recurrence in average over a period of time. The exceedance probability however, is a graphical representation that describes the probability that some various levels of loss will be exceeded over a future time period or will be surpassed over a given time. DOST-Project NOAH simulates storm surge height time series using JMA storm surge model which is a numerical model based on shallow water equations. To determine the period of recurrence of storm surges with this type of intensity, the agency intends to compute the estimation of storm surge heights generated by tropical cyclones for 2-year, 5-year, 10-year, 25-year, 50-year and 100-year return periods for the Philippine coast. The storm surge time series generated from JMA combined with WXTide simulation, a software containing archives/catalogues of world-wide astronomical tides, and 5-meter resolution DEM were used as input parameters for the inundation model, which shows probable extent of flooding at a specific storm surge return period. Flo-2D two-dimensional flood routing model, a GIS integrated software tool that facilitates the creation of the flood model grid system, was used for flood hazard model. It is a simple volume conservation model composed of processor program that facilitate graphical editing and mapping of flooding details which uses continuity equation and the dynamic wave momentum equations. The measurements of storm surge return period and probable extent of coastal flooding in the Philippine coasts would give us an approximation on affected areas when a tropical cyclone hit the country. This information would be beneficial to local government agencies that intends to develop evacuation planning for these types of calamities, as well as to assess the area's vulnerability are to storm surges.

  16. Dust Storm Hits Canary Islands

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A thick pall of sand and dust blew out from the Sahara Desert over the Atlantic Ocean yesterday (January 6, 2002), engulfing the Canary Islands in what has become one of the worst sand storms ever recorded there. In this scene, notice how the dust appears particularly thick in the downwind wake of Tenerife, the largest of the Canary Islands. Perhaps the turbulence generated by the air currents flowing past the island's volcanic peaks is churning the dust back up into the atmosphere, rather than allowing it to settle toward the surface. This true-color image was captured by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite, on January 7, 2002. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  17. Copper disinfection ban causes storm.

    PubMed

    Lester, Alan

    2013-05-01

    Since 1 February this year, under the EU's Biocidal Products Directive, it has been illegal to sell or use water treatment systems that use elemental copper, a practice employed historically by a significant number of UK healthcare facilities to combat Legionella. Alan Lester, managing director of specialist supplier of 'environmentally-friendly' water treatment systems, Advanced Hydro, says the ban has caused 'a storm of giant proportion,' with advocates of copper ion-based treatment systems arguing that this disinfection method dates back 3,000 years to Egyptian times, making it an 'undoubtedly proven' technology. Here he explains why the ban came into force, considers why the UK's Health and Safety Executive (HSE) is seeking a derogation, looks at the ban's likely impact, and gives a personal viewpoint on the 'pros and cons' of some of the alternative treatment technologies, including a titanium dioxide-based system marketed by Advanced Hydro itself in the UK. PMID:23763088

  18. Scrambled Ice

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This complex area on the side of Europa which faces away from Jupiter shows several types of features which are formed by disruptions of Europa's icy crust. North is to the top of the image, taken by NASA's Galileo spacecraft, and the Sun illuminates the surface from the left. The prominent wide, dark bands are up to 20 kilometers (12 miles) wide and over 50 kilometers (30 miles) long. They are believed to have formed when Europa's icy crust fractured, separated and filled in with darker, 'dirtier' ice or slush from below. A relatively rare type of feature on Europa is the 15-kilometer-diameter (9.3-mile) impact crater in the lower left corner. The small number of impact craters on Europa's surface is an indication of its relatively young age. A region of chaotic terrain south of this impact crater contains crustal plates which have broken apart and rafted into new positions. Some of these 'ice rafts' are nearly 1 kilometer (about half a mile) across. Other regions of chaotic terrain are visible and indicate heating and disruption of Europa's icy crust from below. The youngest features in this scene are the long, narrow cracks in the ice which cut across all other features. One of these cracks is about 30 kilometers (18 miles) to the right of the impact crater and extends for hundreds of miles from the top to the bottom of the image.

    The image, centered near 23 degrees south latitude and 179 degrees longitude, covers an area about 240 by 215 kilometers (150 by 130 miles) across. The finest details that can be discerned in this picture are about 460 meters (500 yards) across. The image was taken as Galileo flew by Europa on March 29, 1998. The image was taken by the onboard solid state imaging system camera from an altitude of 23,000 kilometers (14,000 miles).

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  19. Effects of storm paths on precipitation chemistry, and variations of within-storm chemistry during selected storms in central Massachusetts, 1986-87

    USGS Publications Warehouse

    Risley, J.C.; Shanley, J.B.

    1994-01-01

    Samples of precipitation from 31 storms were collected from October 1986 through December 1987 at a site near Quabbin Reservoir in central Massachusetts and were analyzed for pH, specific conductance, and concentrations of common chemical constituent. Twenty-four storms followed a conti- nental path west of the Appalachian Mountains. The remaining seven storms followed a coastal path east of the Appalachian Mountains along the Atlantic Coast. Precipitation from the continental storms was more acidic than precipitation from the coastal storms according to a nonparametric statistical com- parison. Because the continental storms had less volume, the loads of hydrogen ions and other common chemical constituents from both groups were not statistically different. The variability of within- storm precipitation chemistry was evaluated for 8 of the 31 storms. Seven of the storms showed evidence of suspended-particulate removal at levels between the cloud layer and the land surface during their early stages. The remaining storm, also the most acidic, showed evidence of suspended- particulate removal within the cloud layer as indicated by a relatively constant pH throughout the storm. Surface-air concentrations of sulfur dioxide and nitrogen dioxide before, during, and after each of the eight storms were compared to within-storm values of pH and precipitation. Seven of the storms were accompanied by decreased atmospheric concen- trations of both sulfur dioxide and nitrogen dioxide in the early stages of the storm. For three of the storms, atmospheric concentrations of sulfur dioxide and nitrogen dioxide were higher during the 24-hour period after the storm than the 24-hour period pre- ceding the storm. Particulates in precipitation samples were analyzed for three storms. Biotite was the predominant mineral in two of the storms. Other minerals detected were garnet, quartz, gypsum, hematite, epidote, ilmenite, eggonite, halite, rutile, and organic ash.

  20. Icing conditions over Northern Eurasia in changing climate

    NASA Astrophysics Data System (ADS)

    Bulygina, Olga N.; Arzhanova, Natalia M.; Groisman, Pavel Ya

    2015-02-01

    Icing conditions, particularly in combination with wind, affect greatly the operation of overhead communication and transmission lines causing serious failures, which result in tremendous economic damage. Icing formation is dangerous to agriculture, forestry, high seas fishery, for land and off coast man-made infrastructure. Quantitative icing characteristics such as weight, thickness, and duration are very important for the economy and human wellbeing when their maximum values exceed certain thresholds. Russian meteorological stations perform both visual and instrumental monitoring of icing deposits. Visual monitoring is ocular estimation of the type and intensity of icing and the date of ice appearance and disappearance. Instrumental monitoring is performed by ice accretion indicator that in addition to the type, intensity and duration of ice deposits reports also their weight and size. We used observations at 958 Russian stations for the period 1977-2013 to analyze changes in the ice formation frequency at individual meteorological stations and on the territory of quasi-homogeneous climatic regions in Russia. It was found that hoar frosts are observed in most parts of Russia, but icing only occurs in European Russia and the Far East. On the Arctic coast of Russia, this phenomenon can even be observed in summer months. Statistically significant decreasing trends in occurrence of icing and hoar frost events are found over most of Russia. An increasing trend in icing weights (IWs) was found in the Atlantic Arctic region in autumn. Statistically significant large negative trends in IWs were found in the Pacific Arctic in winter and spring.

  1. Stability of subsea pipelines during large storms.

    PubMed

    Draper, Scott; An, Hongwei; Cheng, Liang; White, David J; Griffiths, Terry

    2015-01-28

    On-bottom stability design of subsea pipelines transporting hydrocarbons is important to ensure safety and reliability but is challenging to achieve in the onerous metocean (meteorological and oceanographic) conditions typical of large storms (such as tropical cyclones, hurricanes or typhoons). This challenge is increased by the fact that industry design guidelines presently give no guidance on how to incorporate the potential benefits of seabed mobility, which can lead to lowering and self-burial of the pipeline on a sandy seabed. In this paper, we demonstrate recent advances in experimental modelling of pipeline scour and present results investigating how pipeline stability can change in a large storm. An emphasis is placed on the initial development of the storm, where scour is inevitable on an erodible bed as the storm velocities build up to peak conditions. During this initial development, we compare the rate at which peak near-bed velocities increase in a large storm (typically less than 10(-3) m s(-2)) to the rate at which a pipeline scours and subsequently lowers (which is dependent not only on the storm velocities, but also on the mechanism of lowering and the pipeline properties). We show that the relative magnitude of these rates influences pipeline embedment during a storm and the stability of the pipeline. PMID:25512592

  2. In Brief: Cassini images Saturn storm

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-11-01

    The Cassini spacecraft has spotted an 8000-kilometer-wide, hurricane-like storm around Saturn's South Pole, NASA announced on 9 November. The storm has a dark `eye' at the South Pole along with eye-wall clouds and spiral arms, but it is not known if moist convection-the driver of hurricanes on Earth-drives the Saturn storm. A movie taken by Cassini's camera indicates that the winds are blowing clockwise at about 560 kilometers per hour. Although large storms have been observed on other planets in the past-most notably, Jupiter's Great Red Spot-this is the first storm found to have eye-wall clouds and a relatively calm center. Andrew Ingersoll, a member of Cassini's imaging team at the California Institute of Technology, Pasadena, said the storm looks like a hurricane but is not behaving like one. ``Whatever it is, we are going to focus on the eye of this storm and find out why it is there.''

  3. Stability of subsea pipelines during large storms

    PubMed Central

    Draper, Scott; An, Hongwei; Cheng, Liang; White, David J.; Griffiths, Terry

    2015-01-01

    On-bottom stability design of subsea pipelines transporting hydrocarbons is important to ensure safety and reliability but is challenging to achieve in the onerous metocean (meteorological and oceanographic) conditions typical of large storms (such as tropical cyclones, hurricanes or typhoons). This challenge is increased by the fact that industry design guidelines presently give no guidance on how to incorporate the potential benefits of seabed mobility, which can lead to lowering and self-burial of the pipeline on a sandy seabed. In this paper, we demonstrate recent advances in experimental modelling of pipeline scour and present results investigating how pipeline stability can change in a large storm. An emphasis is placed on the initial development of the storm, where scour is inevitable on an erodible bed as the storm velocities build up to peak conditions. During this initial development, we compare the rate at which peak near-bed velocities increase in a large storm (typically less than 10−3 m s−2) to the rate at which a pipeline scours and subsequently lowers (which is dependent not only on the storm velocities, but also on the mechanism of lowering and the pipeline properties). We show that the relative magnitude of these rates influences pipeline embedment during a storm and the stability of the pipeline. PMID:25512592

  4. Prediction of magnetic storms by nonlinear models

    NASA Astrophysics Data System (ADS)

    Valdivia, J. A.; Sharma, A. S.; Papadopoulos, K.

    The strong correlation between magnetic storms and southward interplanetary magnetic field (IMF) is well known from linear prediction filter studies using the Dst and IMF data. However, the linear filters change significantly from one storm to another and thus are limited in their predicting ability. Previous studies have indicated nonlinearity in the magnetospheric response as the ring current decay rate varies with the Dst value during storms. We present in this letter nonlinear models for the evolution of the Dst based on the OMNI database for 1964-1990. When solar wind data are available in advance, the evolution of storms can be predicted from the Dst and IMF data. Solar wind data, however, are not available most of the time or are available typically an hour or less in advance. Therefore, we have developed nonlinear predictive models based on the Dst data alone. In the absence of solar wind data, these models cannot predict the storm onset, but can predict the storm evolution, and may identify intense storms from moderate ones. The input-output model based on IMF and Dst data, the autonomous model based on Dst alone, and a combination of the two can be used as forecasting tools for space weather.

  5. long duration dust storm sequences on Mars

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2012-12-01

    The Mars Global Surveyor (MGS) Mars Observer Camera (MOC) and Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) Mars daily global maps have revealed new characteristics for long duration dust storm sequences. These dust storm sequences have long histories of more than a week, travel long distances out of their origination region, and influence large areas in different regions of the planet. During the Ls = 180 - 360 season, except for global dust storms which involve multiple remote dust lifting centers and generally expand explosively from the southern hemisphere northward, other long-lived dust storm sequences usually travel southward through the Acidalia-Chryse, Utopia-Isidis or Arcadia-Amazonis channels with subsequent dust lifting along the way. Sometimes, they penetrate remarkably deep to the southern high latitudes, producing fantastic display of dust band. During the rest of the year, long duration dust storm sequences usually originate from the Argyre/Solis, Hellas/Noachis, or Cimmeria/Sirenum area and travel northward toward the southern low latitudes. Each route exhibits its own peculiar characteristics. We will present our results about these long duration dust storm sequences summarized from the complete archive of MGS MOC daily global maps and two years of MRO MARCI daily global maps. The systematic daily nearly global coverage of these maps makes it feasible to reconstruct the history of long duration dust storm sequences with detail.

  6. Storm Sudden Commencements Without Interplanetary Shocks

    NASA Astrophysics Data System (ADS)

    Park, Wooyeon; Lee, Jeongwoo; Yi, Yu; Ssessanga, Nicholas; Oh, Suyeon

    2015-09-01

    Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism ? Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than ?30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs.

  7. STORM-E Geomagnetic Correction to Auroral Zone E-Region Peak Electron Density

    NASA Astrophysics Data System (ADS)

    Mertens, Christopher; Xu, Xiaojing; Fernandez, Jose; Bilitza, Dieter; Russell, J. M., III; Mlynczak, M. G.

    An auroral zone empirical geomagnetic storm correction to ionospheric E-region peak electron density has been developed. The empirical storm model called STORM-E was produced from a database of storm-to-quiet correction factors derived from infrared radiance measurements taken by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. The storm-time correction factors were computed from storm-to-quiet ratios (SQR) of NO+(v) volume emission rates (VER) retrieved from TIMED/SABER observations of 4.3 um broadband limb emission measurements. Since NO+ is the terminal E-region ion, NO+(v) 4.3 um VER SQR accurately approximate the E-region electron density SQR. Thus, SABER-derived NO+(v) 4.3 um VER SQR enable the characterization of E-region electron density enhancements due to geomagnetic activity. A global database of SABER NO+(v) 4.3 um VER SQR was derived for the 2002-2006 period and was used to develop a parametric fit in geomagnetic indices such as HP, AE, kp/ap, and Dst. In this paper, we compare STORM-E predictions of the E-region electron density with incoherent scatter radar electron density measurements for representative levels of geomagnetic activity during solar cycle 23. We also discuss the implementation of STORM-E into the IRI model and the possibility of extending STORM-E to latitudes outside the auroral oval region.

  8. The cytokine storm of severe influenza and development of immunomodulatory therapy.

    PubMed

    Liu, Qiang; Zhou, Yuan-Hong; Yang, Zhan-Qiu

    2016-01-01

    Severe influenza remains unusual in its virulence for humans. Complications or ultimately death arising from these infections are often associated with hyperinduction of proinflammatory cytokine production, which is also known as 'cytokine storm'. For this disease, it has been proposed that immunomodulatory therapy may improve the outcome, with or without the combination of antiviral agents. Here, we review the current literature on how various effectors of the immune system initiate the cytokine storm and exacerbate pathological damage in hosts. We also review some of the current immunomodulatory strategies for the treatment of cytokine storms in severe influenza, including corticosteroids, peroxisome proliferator-activated receptor agonists, sphingosine-1-phosphate receptor 1 agonists, cyclooxygenase-2 inhibitors, antioxidants, anti-tumour-necrosis factor therapy, intravenous immunoglobulin therapy, statins, arbidol, herbs, and other potential therapeutic strategies. PMID:26189369

  9. The cytokine storm of severe influenza and development of immunomodulatory therapy

    PubMed Central

    Liu, Qiang; Zhou, Yuan-hong; Yang, Zhan-qiu

    2016-01-01

    Severe influenza remains unusual in its virulence for humans. Complications or ultimately death arising from these infections are often associated with hyperinduction of proinflammatory cytokine production, which is also known as ‘cytokine storm'. For this disease, it has been proposed that immunomodulatory therapy may improve the outcome, with or without the combination of antiviral agents. Here, we review the current literature on how various effectors of the immune system initiate the cytokine storm and exacerbate pathological damage in hosts. We also review some of the current immunomodulatory strategies for the treatment of cytokine storms in severe influenza, including corticosteroids, peroxisome proliferator-activated receptor agonists, sphingosine-1-phosphate receptor 1 agonists, cyclooxygenase-2 inhibitors, antioxidants, anti-tumour-necrosis factor therapy, intravenous immunoglobulin therapy, statins, arbidol, herbs, and other potential therapeutic strategies. PMID:26189369

  10. Storms in Ancient Egypt: the Examples of Historical Natural Disasters Impacts on the Society

    NASA Astrophysics Data System (ADS)

    Petrova, Anastasia

    2013-04-01

    Though rain storms are infrequent in Egypt, which is normally a rainless country, some Ancient Egyptian texts give accounts of violent storms and rains. Actually, even small amounts of rain in that area could cause huge impact, as none of the water was absorbed by soil, and, running off, it could create dangerous torrents. The Tempest stele, circa 1550 BC, recounts a highly destructive storm happened during the reign of Ahmose I, the king of Egypt's 18 dynasty. The catastrophy is described in details, including the specific noise, overall darkness, torrent so that no torch could be lit. Many houses were washed into the river, temples, tombs and pyramids damaged and collapsed. The stele commemorates the restoration works made by the king who was able to cope with this great disaster and "re-establish the Two Lands". Some egyptologists believe that this event is related to the Minoan eruption of Thera, but this is unlikely given the description in the stele.

  11. Ice sheet margins and ice shelves

    NASA Technical Reports Server (NTRS)

    Thomas, R. H.

    1984-01-01

    The effect of climate warming on the size of ice sheet margins in polar regions is considered. Particular attention is given to the possibility of a rapid response to warming on the order of tens to hundreds of years. It is found that the early response of the polar regions to climate warming would be an increase in the area of summer melt on the ice sheets and ice shelves. For sufficiently large warming (5-10C) the delayed effects would include the breakup of the ice shelves by an increase in ice drainage rates, particularly from the ice sheets. On the basis of published data for periodic changes in the thickness and melting rates of the marine ice sheets and fjord glaciers in Greenland and Antarctica, it is shown that the rate of retreat (or advance) of an ice sheet is primarily determined by: bedrock topography; the basal conditions of the grounded ice sheet; and the ice shelf condition downstream of the grounding line. A program of satellite and ground measurements to monitor the state of ice sheet equilibrium is recommended.

  12. Major storm periods and climate forcing in the Western Mediterranean during the Late Holocene

    NASA Astrophysics Data System (ADS)

    Degeai, Jean-Philippe; Devillers, Benoît; Dezileau, Laurent; Oueslati, Hamza; Bony, Guénaëlle

    2015-12-01

    Big storm events represent a major risk for populations and infrastructures settled on coastal lowlands. In the Western Mediterranean, where human societies colonized and occupied the coastal areas since the Ancient times, the variability of storm activity for the past three millennia was investigated with a multi-proxy sedimentological and geochemical study from a lagoonal sequence. Mappings of the geochemistry and magnetic susceptibility of detrital sources in the watershed of the lagoon and from the coastal barriers were undertaken in order to track the terrestrial or coastal/marine origin of sediments deposited into the lagoon. The multi-proxy analysis shows that coarser material, low magnetic susceptibility, and high strontium content characterize the sedimentological signature of the paleostorm levels identified in the lagoonal sequence. A comparison with North Atlantic and Western Mediterranean paleoclimate proxies shows that the phases of high storm activity occurred during cold periods, suggesting a climatically-controlled mechanism for the occurrence of these storm periods. Besides, an in-phase storm activity pattern is found between the Western Mediterranean and Northern Europe. Spectral analyses performed on the Sr content revealed a new 270-year solar-driven pattern of storm cyclicity. For the last 3000 years, this 270-year cycle defines a succession of ten major storm periods (SP) with a mean duration of 96 ± 54 yr. Periods of higher storm activity are recorded from >680 to 560 cal yr BC (SP10, end of the Iron Age Cold Period), from 140 to 820 cal yr AD (SP7 to SP5) with a climax of storminess between 400 and 800 cal yr AD (Dark Ages Cold Period), and from 1230 to >1800 cal yr AD (SP3 to SP1, Little Ice Age). Periods of low storm activity occurred from 560 cal yr BC to 140 cal yr AD (SP9 and SP8, Roman Warm Period) and from 820 to 1230 cal yr AD (SP4, Medieval Warm Period).

  13. Modern Airfoil Ice Accretions

    NASA Technical Reports Server (NTRS)

    Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.

    1997-01-01

    This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.

  14. Towards robust optimal design of storm water systems

    NASA Astrophysics Data System (ADS)

    Marquez Calvo, Oscar; Solomatine, Dimitri

    2015-04-01

    In this study the focus is on the design of a storm water or a combined sewer system. Such a system should be capable to handle properly most of the storm to minimize the damages caused by flooding due to the lack of capacity of the system to cope with rain water at peak times. This problem is a multi-objective optimization problem: we have to take into account the minimization of the construction costs, the minimization of damage costs due to flooding, and possibly other criteria. One of the most important factors influencing the design of storm water systems is the expected amount of water to deal with. It is common that this infrastructure is developed with the capacity to cope with events that occur once in, say 10 or 20 years - so-called design rainfall events. However, rainfall is a random variable and such uncertainty typically is not taken explicitly into account in optimization. Rainfall design data is based on historical information of rainfalls, but many times this data is based on unreliable measures; or in not enough historical information; or as we know, the patterns of rainfall are changing regardless of historical information. There are also other sources of uncertainty influencing design, for example, leakages in the pipes and accumulation of sediments in pipes. In the context of storm water or combined sewer systems design or rehabilitation, robust optimization technique should be able to find the best design (or rehabilitation plan) within the available budget but taking into account uncertainty in those variables that were used to design the system. In this work we consider various approaches to robust optimization proposed by various authors (Gabrel, Murat, Thiele 2013; Beyer, Sendhoff 2007) and test a novel method ROPAR (Solomatine 2012) to analyze robustness. References Beyer, H.G., & Sendhoff, B. (2007). Robust optimization - A comprehensive survey. Comput. Methods Appl. Mech. Engrg., 3190-3218. Gabrel, V.; Murat, C., Thiele, A. (2014). Recent advances in robust optimization: An overview. European Journal of Operational Research. 471-483. Solomatine, D.P. (2012). Robust Optimization and Probabilistic Analysis of Robustness (ROPAR). http://www.unesco-ihe.org/hi/sol/papers/ ROPAR.pdf.

  15. Icing: Accretion, Detection, Protection

    NASA Technical Reports Server (NTRS)

    Reinmann, John J.

    1994-01-01

    The global aircraft industry and its regulatory agencies are currently involved in three major icing efforts: ground icing; advanced technologies for in-flight icing; and tailplane icing. These three major icing topics correspondingly support the three major segments of any aircraft flight profile: takeoff; cruise and hold; and approach and land. This lecture addressess these three topics in the same sequence as they appear in flight, starting with ground deicing, followed by advanced technologies for in-flight ice protection, and ending with tailplane icing.

  16. Lightning activity and severe storm structure

    NASA Technical Reports Server (NTRS)

    Taylor, W. L.; Brandes, E. A.; Rust, W. D.; Macgorman, D. R.

    1984-01-01

    Space-time mapping of VHF sources from four severe storms on June 19, 1980 reveals that lightning processes for cloud-to-ground (CG) and large intracloud (IC) flashes are confined to an altitude below about 10 km and closely associated with the central regions of high reflectivity. Another class of IC flashes produces a splattering of sources within the storms' main electrically active volumes and also within the large divergent wind canopy aloft. There is no apparent temporal association between the small high altitude IC flashes that occur almost continuously and the large IC and CG flashes that occur sporadically in the lower portions of storms.

  17. Reduced Baroclinicity During Martian Global Dust Storms

    NASA Astrophysics Data System (ADS)

    Battalio, Joseph; Szunyogh, Istvan; Lemmon, Mark

    2015-11-01

    The eddy kinetic energy equation is applied to the Mars Analysis Correction Data Assimilation (MACDA) dataset during the pre-winter solstice period for the northern hemisphere of Mars. Traveling waves are triggered by geopotential flux convergence, grow baroclinically, and decay barotropically. Higher optical depth increases the static stability, which reduces vertical and meridional heat fluxes. Traveling waves during a global dust storm year develop a mixed baroclinic/barotropic growth phase before decaying barotropically. Baroclinic energy conversion is reduced during the global dust storm, but eddy intensity is undiminished. Instead, the frequency of storms is reduced due to a stabilized vertical profile.

  18. Magnetic storms had role in earthquake

    SciTech Connect

    Not Available

    1990-02-01

    Scientists from Stanford University say that prior to the San Francisco earthquake on Oct 17, university instruments recorded exceptional changes in Earth's magnetic field. They suggest that solar-triggered magnetic storms may have played a role in the quake. The Stanford University magnetometer, which is positioned near Corralitos, about four miles from the epicenter of the quake, monitors ultra-low-frequency (ULF) variations - between 0.01 and 10 Hz - in the Earth's magnetic field. Ordinarily, these variations result from, among other things, solar magnetic storms high in the atmosphere.Solar magnetic storms have also been proven to cause power system outages.

  19. Sea ice loss enhances wave action at the Arctic coast

    USGS Publications Warehouse

    Overeem, I.; Anderson, R. Scott; Wobus, C.W.; Clow, G.D.; Urban, F.E.; Matell, N.

    2011-01-01

    Erosion rates of permafrost coasts along the Beaufort Sea accelerated over the past 50 years synchronously with Arctic-wide declines in sea ice extent, suggesting a causal relationship between the two. A fetch-limited wave model driven by sea ice position and local wind data from northern Alaska indicates that the exposure of permafrost bluffs to seawater increased by a factor of 2.5 during 1979-2009. The duration of the open water season expanded from ???45 days to ???95 days. Open water expanded more rapidly toward the fall (???0.92 day yr-1), when sea surface temperatures are cooler, than into the mid-summer (???0.71 days yr-1).Time-lapse imagery demonstrates the relatively efficient erosive action of a single storm in August. Sea surface temperatures have already decreased significantly by fall, reducing the potential impact of thermal erosion due to fall season storm waves. Copyright 2011 by the American Geophysical Union.

  20. Storm Physics and Lightning Properties over Northern Alabama during DC3

    NASA Astrophysics Data System (ADS)

    Matthee, R.; Carey, L. D.; Bain, A. L.

    2013-12-01

    The Deep Convective Clouds and Chemistry (DC3) experiment seeks to examine the relationship between deep moist convection (DMC) and the production of nitrogen oxides (NOx) via lightning (LNOx). The focus of this study will be to examine integrated storm microphysics and lightning properties of DMC across northern Alabama (NA) during the DC3 campaign through use of polarimetric radar [UAHuntsville's Advanced Radar for Meteorological and Operational Radar (ARMOR)] and lightning mapping [National Aeronautical and Space Administration's (NASA) north Alabama Lightning Mapping Array (NA LMA)] platforms. Specifically, ARMOR and NA LMA are being used to explore the ability of radar inferred microphysical (e.g., ice mass, graupel volume) measurements to parameterize flash rates (F) and flash area for estimation of LNOX production in cloud resolving models. The flash area was calculated by using the 'convex hull' method. This method essentially draws a polygon around all the sources that comprise a flash. From this polygon, the convex hull area that describes the minimum polygon that circumscribes the flash extent is calculated. Two storms have been analyzed so far; one on 21 May 2012 (S1) and another on 11 June 2012 (S2), both of which were aircraft-penetrated during DC3. For S1 and S2, radar reflectivity (Z) estimates of precipitation ice mass (M) within the mixed-phase zone (-10°C to -40°C) were well correlated to the trend of lightning flash rate. However, a useful radar-based F parameterization must provide accurate quantification of rates in addition to proper trends. The difference reflectivity was used to estimate Z associated with ice and then a single Z-M relation was employed to calculate M in the mixed-phase zone. Using this approach it was estimated that S1 produced an order of magnitude greater M, but produced about a third of the total amount of flashes compared to S2. Expectations based on the non-inductive charging (NIC) theory suggest that the M-to-F ratio (M/F) should be stable from storm-to-storm, amongst other factors, all else being equal. Further investigation revealed that the mean mixed-phase Z was 11 dB higher in S1 compared to S2, suggesting larger diameters and lower concentrations of ice particles in S1. Reduction by an order of magnitude of the intercept parameter (N0) of an assumed exponential ice particle size distribution within the Z-M relation for S1 resulted in a proportional reduction in S1's inferred M and therefore a more comparable M/F ratio between the storms. Flash statistics between S1 and S2 revealed the following: S1 produced 1.92 flashes/minute and a total of 102 flashes, while S2 produced 3.45 flashes/minute and a total of 307 flashes. On average, S1 (S2) produced 212 (78) sources per flash and an average flash area of 89.53 km2 (53.85 km2). Thus, S1 produced fewer flashes, a lower F, but more sources per flash and larger flash areas as compared to S2. Ongoing analysis is exploring the tuning of N0 within the Z-M relation by the mean Z in the mixed-phase zone. The suitability of various M estimates and other radar properties (graupel volume, ice fluxes, anvil ice mass) for parameterizing F, flash area and LNOX will be investigated on different storm types across NA.

  1. Impact of large storms on runoff from leeward and windward watersheds, eastern Puerto Rico

    NASA Astrophysics Data System (ADS)

    Murphy, S. F.; Stallard, R. F.

    2012-12-01

    Water supplies of eastern Puerto Rico are vulnerable to extreme weather events, from severe droughts to powerful tropical storms that cause floods and landslides and damage vegetation and infrastructure. The severity of these events may increase in the future: climate models forecast that the trend of increasing dryness in Puerto Rico will continue, while storm strength may increase due to warmer ocean temperatures. In order to effectively manage water supplies of eastern Puerto Rico, the impact of various weather events needs to be assessed accurately. Precipitation and runoff data over a fifteen-year period were evaluated for four watersheds in eastern Puerto Rico. These watersheds vary in geology, land cover, and location relative to the Luquillo Mountains. Two watersheds windward of the Luquillo Mountains are much wetter, receiving about 4,000 mm precipitation annually, and precipitation is closely related to elevation. Two leeward watersheds receive about half as much precipitation, and precipitation is not well correlated with elevation. Interannual variation in precipitation and runoff is substantial in all four watersheds and is related to regional-scale weather patterns, which are partly explained by large-scale climate oscillations. Greatest precipitation and runoff (both totals and rates) are associated with major storms, such as hurricanes, tropical storms, and upper level troughs. Discharge caused by such storms can be several hundred times greater than average discharge and is a substantial fraction of annual discharge. Rainfall and runoff during the largest storms were similar among all four watersheds, suggesting that higher annual precipitation and runoff in the windward watersheds is probably controlled by the frequent, smaller rain events related to orographic precipitation. The windward/leeward effects dominate hydrologic regimes in these watersheds and overwhelm differences related to bedrock geology or land cover. The impact of reforestation or climate change over the study period cannot be distinguished from the large interannual variations in weather and the passage of occasional large storms.

  2. XBeach-G: a tool for predicting gravel barrier response to extreme storm conditions

    NASA Astrophysics Data System (ADS)

    Masselink, Gerd; Poate, Tim; McCall, Robert; Roelvink, Dano; Russell, Paul; Davidson, Mark

    2014-05-01

    Gravel beaches protect low-lying back-barrier regions from flooding during storm events and their importance to society is widely acknowledged. Unfortunately, breaching and extensive storm damage has occurred at many gravel sites and this is likely to increase as a result of sea-level rise and enhanced storminess due to climate change. Limited scientific guidance is currently available to provide beach managers with operational management tools to predict the response of gravel beaches to storms. The New Understanding and Prediction of Storm Impacts on Gravel beaches (NUPSIG) project aims to improve our understanding of storm impacts on gravel coastal environments and to develop a predictive capability by modelling these impacts. The NUPSIG project uses a 5-pronged approach to address its aim: (1) analyse hydrodynamic data collected during a proto-type laboratory experiment on a gravel beach; (2) collect hydrodynamic field data on a gravel beach under a range of conditions, including storm waves with wave heights up to 3 m; (3) measure swash dynamics and beach response on 10 gravel beaches during extreme wave conditions with wave heights in excess of 3 m; (4) use the data collected under 1-3 to develop and validate a numerical model to model hydrodynamics and morphological response of gravel beaches under storm conditions; and (5) develop a tool for end-users, based on the model formulated under (4), for predicting storm response of gravel beaches and barriers. The aim of this presentation is to present the key results of the NUPSIG project and introduce the end-user tool for predicting storm response on gravel beaches. The model is based on the numerical model XBeach, and different forcing scenarios (wave and tides), barrier configurations (dimensions) and sediment characteristics are easily uploaded for model simulations using a Graphics User Interface (GUI). The model can be used to determine the vulnerability of gravel barriers to storm events, but can also be used to help optimise design criteria for gravel barriers to reduce their vulnerability and enhance their coastal protection ability.

  3. Evaluation of the STORM model storm-time corrections for middle latitude

    NASA Astrophysics Data System (ADS)

    Buresova, Dalia; McKinnell, Lee-Anne; Sindelarova, Tereza; Blanco, Inés; de La Morena, Benito

    Estimation of the ionospheric response to a geomagnetic disturbance and forecasting of the main ionospheric parameters is very useful for different radio communication purposes. As long as variations in the ionosphere are related in regular patterns, empirical models, such as the IRI model, sufficiently estimate corrections for the ionospheric effects on radio wave propagation. During a geomagnetic storm the variability of the ionospheric parameters increases substantially and makes forecasting more complicated. Recently the IRI2001 model incorporated a geomagnetic activity dependence based on an empirical Storm-Time Ionospheric Correction Model (STORM). This paper will present results of the STORM model validation for Northern and Southern Hemisphere middle latitudes. The created database incorporates 65 strong-tosevere geomagnetic storms, which occurred within the period 1995-2007. In our analysis we used data from some ionospheric stations (e.g., Pruhonice, El Arenosillo, Athens), which were not included in the development or the previous validation of the model. Hourly values of the F2 layer critical frequency, foF2, measured for 5-7 days during the main and recovery phases of each selected storm where compared with those generated by the IRI model. To perform a detailed comparison between observed values, medians and model-generated foF2 values the correlation coefficient, the normalised root-mean-square error (NRMSE), and the percentage improvement are calculated. Results of the comparative analysis show that the STORM model captures more effectively the negative phases of the summer ionospheric storms, while electron density enhancement during winter storms and changeover of the different storm phases is reproduced with lower accuracy. The STORM model corrections are less efficient for lowermiddle latitudes and severe geomagnetic storms. Effectiveness of the IRI2001 updating with the near-real time digisonde data is also analysed.

  4. Health Effects of Coastal Storms and Flooding in Urban Areas: A Review and Vulnerability Assessment

    PubMed Central

    Charles-Guzman, Kizzy; Matte, Thomas

    2013-01-01

    Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC) may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events. PMID:23818911

  5. Health effects of coastal storms and flooding in urban areas: a review and vulnerability assessment.

    PubMed

    Lane, Kathryn; Charles-Guzman, Kizzy; Wheeler, Katherine; Abid, Zaynah; Graber, Nathan; Matte, Thomas

    2013-01-01

    Coastal storms can take a devastating toll on the public's health. Urban areas like New York City (NYC) may be particularly at risk, given their dense population, reliance on transportation, energy infrastructure that is vulnerable to flood damage, and high-rise residential housing, which may be hard-hit by power and utility outages. Climate change will exacerbate these risks in the coming decades. Sea levels are rising due to global warming, which will intensify storm surge. These projections make preparing for the health impacts of storms even more important. We conducted a broad review of the health impacts of US coastal storms to inform climate adaptation planning efforts, with a focus on outcomes relevant to NYC and urban coastal areas, and incorporated some lessons learned from recent experience with Superstorm Sandy. Based on the literature, indicators of health vulnerability were selected and mapped within NYC neighborhoods. Preparing for the broad range of anticipated effects of coastal storms and floods may help reduce the public health burden from these events. PMID:23818911

  6. Enhanced Polarimetric Radar Signatures above the Melting Level in a Supercell Storm.

    NASA Astrophysics Data System (ADS)

    Loney, Matthew L.; Zrni, Duan S.; Straka, Jerry M.; Ryzhkov, Alexander V.

    2002-12-01

    Compelling in situ and polarimetric radar observations from a severe Oklahoma supercell storm are presented. The in situ observations are from an aircraft that entered the storm above the main inflow region, sampling the embryo curtain, main updraft, its western fringe (very close to the center of mesocyclonic circulation), and the hail cascade region. At the same time, the Cimarron polarimetric radar observed enhanced signatures in specific differential phase Kdp and differential reflectivity Zdr straddling the main updraft and extending several kilometers above the melting layer. The distance of the storm from the radar balances the novelty of this dataset, however, which is on the order of 100 km. The authors therefore rely heavily on the in situ data, including calculation of polarimetric variables, on comparisons with other in situ datasets, and on accepted conceptual models of hail growth in supercell storms to clarify hydrometeor processes in light of the intriguing polarimetric signatures near the updraft. The relation of enhanced Kdp to the main updraft, to the Zdr `column,' and to precipitation is discussed. Strong evidence points to melting ice particles (>3 mm) below the aircraft height as the origin of the Kdp column in the region where an abundant number of small (<2 mm) drops are also observed. To support the notion that these drops are shed by melting and perhaps wet growth, results of calculations on aircraft data are discussed. Resolution issues are invoked, leading to possible reconciliation of radar measurements with in situ observations.

  7. Passive nutrient addition for the biodegradation of ethylene glycol in storm water.

    PubMed

    Safferman, Steven I; Azar, Roger A; Sigler, Stephanie

    2002-01-01

    This laboratory proof-of-concept research examined the feasibility of adding solid, slow-release macronutrients to a biofilm reactor system to achieve the effective biodegradation of a predominately organic polluted storm water. The target scenario was treating ethylene glycol in storm water, representing the runoff of airport deicing and anti-icing fluids. However, the results can also be generalized for any water polluted with a predominately carbonaceous material. The use of a solid, slow-release nutrient source, compared to amending with a soluble solution in proportion to influent flow, would be ideal for storm water applications and other specialized wastewater flows when maintenance requirements and operational support must be minimized. Several commercially available fertilizers were preliminarily examined to determine which had the best potential to provide the required amount of nutrients. A time-released, polymer-coated granular fertilizer was ultimately selected. Based on laboratory studies, it was found that this fertilizer could provide a controllable source of macronutrients that enabled treatment to a similar degree as if the macronutrients had been dissolved in the influent. The only major operational problem was reduced nutrient delivery from the fertilizer after it became coated with a thick biofilm. However, the inherent intermittent nature of storm water production resulting in wet/dry cycles may minimize the development of a thick biofilm. PMID:12049128

  8. Dual-Polarization Radar Observations of Upward Lightning-Producing Storms

    NASA Astrophysics Data System (ADS)

    Lueck, R.; Helsdon, J. H.; Warner, T.

    2013-12-01

    The Upward Lightning Triggering Study (UPLIGHTS) seeks to determine how upward lightning, which originates from the tips of tall objects, is triggered by nearby flash activity. As a component of this study we analyze standard and dual-polarization weather radar data. The Correlation Coefficient (CC) in particular can be used to identify and quantify the melting layer associated with storms that produce upward lightning. It has been proposed that positive charge generation due to aggregate shedding at the melting layer results in a positive charge region just above the cloud base. This positive charge region may serve as a positive potential well favorable for negative leader propagation, which initiate upward positive leaders from tall objects. We characterize the horizontal coverage, thickness and height of the melting layer in addition to cloud base heights when upward lightning occurs to determine trends and possible threshold criteria relating to upward lightning production. Furthermore, we characterize storm type and morphology using relevant schemes as well as precipitation type using the Hydrometer Classification Algorithm (HCA) for upward lightning-producing storms. Ice-phase hydrometeors have been shown to be a significant factor in thunderstorm electrification. Only a small fraction of storms produce upward lightning, so null cases will be examined and compared as well.

  9. Detection Of Tornado Damage Tracks With EOS Data

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Nair, Udaysankar; Haines, Stephanie L.

    2005-01-01

    The damage surveys conducted by the NWS in the aftermath of a reported tornadic event are used to document the location of the tornado ground damage track (path length and width) and an estimation of the tornado intensity. This study explored the possibility of using near real-time medium and high-resolution satellite imagery from the NASA EOS satellites to provide additional information for the surveys. MODIS and ASTER data were used to study the damage tracks from three tornadic storms; the La Plata, Maryland storm of 28 April 2002 and the Carter-Butler Counties and Madison County Missouri storms of 24 April 2002. These storms varied in intensity (from F0-F4) and occurred over regions with different land use. It was found that, depending on the nature of land use, tornado damage tracks from intense storms (F2 or greater) may be evident in both ASTER and MODIS satellite imagery. In areas of dense vegetation the scar patterns show up very clearly, while in areas of grassland and regions with few trees, scar patterns are not at all obvious in the satellite imagery. The detection of previously unidentified segments of a damage track caused by the 24 April 2004 Madison County, Missouri tornado demonstrates the utility of satellite imagery for damage surveys. However, the capability to detect tornado tracks in satellite imagery appears to be as much dependent on the nature of the underlying surface and land use as on the severity of the tornadic storm. The imaging sensors on the NPOESS operational satellites to be launched in 2006 will continue the unique observing capabilities of the EOS instruments.

  10. The use of weather radars to estimate hail damage to automobiles: an exploratory study in Switzerland

    NASA Astrophysics Data System (ADS)

    Hohl, Roman; Schiesser, Hans-Heinrich; Knepper, Ingeborg

    As the first of its kind, this study presents damage functions between two damage variables of hail-damaged automobiles and radar-derived hail kinetic energy for a total of 12 severe hailstorms that have occurred over the Swiss Mittelland (1992-1998). Hail kinetic energy is calculated from C-band Doppler radar CAPPIs at low storm level (1.5 km MSL) and is integrated per radar element ( EKINPIX) for entire hail cells. Hail damage claim data were available per Swiss community on a daily basis and transformed (Delaunay triangulation) along with EKINPIX to a regular 3×3 km grid, thereafter allowing cross-correlation between the variables. The results show nonlinear relationships between EKINPIX and both loss ratios and mean damages per hail-damaged car, differing between high hail season storms (15 June-15 August) and storms that occurred during the low season (before and after). A weighted logistic function provides correlation coefficients between EKINPIX and loss ratios of 0.71 (0.79) for high (low) season storms and 0.76 (0.40) for mean damages of high (low) season hailstorms. Maximally possible loss ratios reach 60% (40%) in high (low) season storms with maximum mean damages of CHF 6000 (CHF 3000) and average values around CHF 3100 (CHF 2100). Seasonal differences in hailfall intensities are discussed in terms of atmospheric conditions favoring convective activity and the likelihood of higher numbers of large hailstones (>20 mm in diameter) that induce more severe damage to cars during the high storm season. The results suggest that radar-derived hail kinetic energy could be used by insurance companies in the future to (1) assess hail damage to cars immediately after a storm has passed over a radar observation area and (2) to estimate potential maximal hail losses to car portfolios for parts of central Europe.

  11. A new way to study geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Hutchinson, J. A.; Wright, D. M.; Milan, S. E.; Grocott, A.; Boakes, P. D.

    2011-08-01

    James Hutchinson and colleagues describe a novel radar technique to study geomagnetic storms: superposed latitude-time-velocity plots. This is a summary of the poster winning a Rishbeth Prize at the NAM/UKSP/MIST meeting in April.

  12. Quantifying Power Grid Risk from Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Homeier, N.; Wei, L. H.; Gannon, J. L.

    2012-12-01

    We are creating a statistical model of the geophysical environment that can be used to quantify the geomagnetic storm hazard to power grid infrastructure. Our model is developed using a database of surface electric fields for the continental United States during a set of historical geomagnetic storms. These electric fields are derived from the SUPERMAG compilation of worldwide magnetometer data and surface impedances from the United States Geological Survey. This electric field data can be combined with a power grid model to determine GICs per node and reactive MVARs at each minute during a storm. Using publicly available substation locations, we derive relative risk maps by location by combining magnetic latitude and ground conductivity. We also estimate the surface electric fields during the August 1972 geomagnetic storm that caused a telephone cable outage across the middle of the United States. This event produced the largest surface electric fields in the continental U.S. in at least the past 40 years.

  13. Tropical Storm Don - Duration: 31 seconds.

    NASA Video Gallery

    GOES-13 data was compiled into an animation by the NASA GOES Project at NASA Goddard that shows the development of Tropical Storm Don in the southern Gulf of Mexico, west of Cuba. The animation run...

  14. Tropical Storm Faxai - Duration: 13 seconds.

    NASA Video Gallery

    NASA/JAXA's TRMM Satellite provided data of developing Tropical Storm Faxai to make this 3-D image that showed some towering thunderstorms in the area were reaching altitudes of up to 15.5km/~9.6 m...

  15. Nuclear magnetohydrodynamic EMP, solar storms, and substorms

    SciTech Connect

    Rabinowitz, M. ); Meliopoulous, A.P.S.; Glytsis, E.N. . School of Electrical Engineering); Cokkinides, G.J. )

    1992-10-20

    In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynamic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS-GIC). The MHD EMP electric field E [approx lt] 10[sup [minus] 1] V/m and lasts [approx lt] 10[sup 2] sec, whereas for solar storms E [approx gt] 10[sup [minus] 2] V/m and lasts [approx gt] 10[sup 3] sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS-GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects.

  16. CME Link to the Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat

    2009-01-01

    The coronal mass ejection (CME) link to geomagnetic storms stems from the southward component of the interplanetary magnetic field contained in the CME flux ropes and in the sheath between the flux rope and the CME-driven shock. A typical storm-causing CME is characterized by (i) high speed, (ii) large angular width (mostly halos and partial halos), and (iii)solar source location close to the central meridian. For CMEs originating at larger central meridian distances, the storms are mainly caused by the sheath field. Both the magnetic and energy contents of the storm-producing CMEs can be traced to the magnetic structure of active regions and the free energy stored in them.

  17. Statistical characterization of temporal structure of storms

    NASA Astrophysics Data System (ADS)

    Salvadori, G.; De Michele, C.

    2006-06-01

    The authors present a statistical procedure to estimate the probability distributions of storm characteristics. The approach uses recent advances in stochastic hydrological modeling. The temporal dynamics of rainfall are modeled via a reward alternating renewal process that describes wet and dry phases of storms. In particular, the wet phase is modeled as a rectangular pulse process with dependent random duration and intensity; the global dependence structure is described using multidimensional copulas. The marginal distributions are described by Generalized Pareto laws. The authors derive both the storm volume statistics and the rainfall volume distribution within a fixed temporal window preceding a storm. Based on these results, they calculate the antecedent moisture conditions. The paper includes a thorough discussion of the validity of the assumptions and approximations introduced, and an application to actual rainfall data. The models presented here have important implications for improved design procedures of water resources and hydrologic systems.

  18. Powerful Midwest Storm System - Duration: 24 seconds.

    NASA Video Gallery

    This animation of imagery from NOAA’s GOES-13 satellite shows themovement of storm systems in the south central United States on May 20,2013. Warm, moist gulf air flowing across Texas, Oklahoma...

  19. The Severe Storms Observation Satellite /SSOS/

    NASA Technical Reports Server (NTRS)

    Shenk, W. E.; Raskin, W. H.; Flatow, F. S.; Quann, J. J.

    1975-01-01

    The objective of the Severe Storms Observation Satellite (SSOS) is to continuously observe meteorological phenomena from geosynchronous altitude and to acquire data whose analysis will lead to a better understanding, early detection, and prediction of severe storms and other significant mesoscale events such as dust storms. Details are discussed as to the Advanced Atmospheric Sounding and Imaging Radiometer designed for SSOS, the use of a special spacecraft for an R&D mission, data acquisition, and data processing and analysis. The required accurate vertical temperature and moisture profiles as well as high temporal and spatial resolution images can best be obtained by a three-axis stabilized system, which offers approximately an order of magnitude sensing improvement over a comparable spinning system due to its capability to continuously view the earth. A block diagram of the severe storm analysis system is included.

  20. Tropical Storm Dolly Develops - Duration: 32 seconds.

    NASA Video Gallery

    This animation from NOAA's GOES-East satellite from Aug. 31-Sept. 2 shows the movement of a low pressure area from the western Caribbean Sea over the Yucatan Peninsula as it becomes Tropical Storm ...

  1. 46 CFR 72.40-10 - Storm rails.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Storm rails. 72.40-10 Section 72.40-10 Shipping COAST... and Guards § 72.40-10 Storm rails. (a) Suitable storm rails shall be installed in all passageways and at the deckhouse sides where passengers or crew might have normal access. Storm rails shall...

  2. 46 CFR 72.40-10 - Storm rails.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Storm rails. 72.40-10 Section 72.40-10 Shipping COAST... and Guards § 72.40-10 Storm rails. (a) Suitable storm rails shall be installed in all passageways and at the deckhouse sides where passengers or crew might have normal access. Storm rails shall...

  3. 46 CFR 72.40-10 - Storm rails.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 3 2011-10-01 2011-10-01 false Storm rails. 72.40-10 Section 72.40-10 Shipping COAST... and Guards § 72.40-10 Storm rails. (a) Suitable storm rails shall be installed in all passageways and at the deckhouse sides where passengers or crew might have normal access. Storm rails shall...

  4. 46 CFR 72.40-10 - Storm rails.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Storm rails. 72.40-10 Section 72.40-10 Shipping COAST... and Guards § 72.40-10 Storm rails. (a) Suitable storm rails shall be installed in all passageways and at the deckhouse sides where passengers or crew might have normal access. Storm rails shall...

  5. 46 CFR 72.40-10 - Storm rails.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Storm rails. 72.40-10 Section 72.40-10 Shipping COAST... and Guards § 72.40-10 Storm rails. (a) Suitable storm rails shall be installed in all passageways and at the deckhouse sides where passengers or crew might have normal access. Storm rails shall...

  6. The 1973 dust storm on Mars: Maps from hourly photographs

    NASA Technical Reports Server (NTRS)

    Martin, L. J.

    1975-01-01

    The hourly progress of the 1973 major Martian storm was mapped using photographic images from the International Planetary Patrol. Two series of 20 daily maps show the semi-hourly positions of the storm brightenings in red light and blue light. The maps indicate that the 1973 storm had many similarities to the 1971 storm.

  7. Arctic ice islands

    SciTech Connect

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  8. Storm Track Response to Perturbations in Climate

    NASA Astrophysics Data System (ADS)

    Mbengue, Cheikh Oumar

    This thesis advances our understanding of midlatitude storm tracks and how they respond to perturbations in the climate system. The midlatitude storm tracks are regions of maximal turbulent kinetic energy in the atmosphere. Through them, the bulk of the atmospheric transport of energy, water vapor, and angular momentum occurs in midlatitudes. Therefore, they are important regulators of climate, controlling basic features such as the distribution of surface temperatures, precipitation, and winds in midlatitudes. Storm tracks are robustly projected to shift poleward in global-warming simulations with current climate models. Yet the reasons for this shift have remained unclear. Here we show that this shift occurs even in extremely idealized (but still three-dimensional) simulations of dry atmospheres. We use these simulations to develop an understanding of the processes responsible for the shift and develop a conceptual model that accounts for it. We demonstrate that changes in the convective static stability in the deep tropics alone can drive remote shifts in the midlatitude storm tracks. Through simulations with a dry idealized general circulation model (GCM), midlatitude storm tracks are shown to be located where the mean available potential energy (MAPE, a measure of the potential energy available to be converted into kinetic energy) is maximal. As the climate varies, even if only driven by tropical static stability changes, the MAPE maximum shifts primarily because of shifts of the maximum of near-surface meridional temperature gradients. The temperature gradients shift in response to changes in the width of the tropical Hadley circulation, whose width is affected by the tropical static stability. Storm tracks generally shift in tandem with shifts of the subtropical terminus of the Hadley circulation. We develop a one-dimensional diffusive energy-balance model that links changes in the Hadley circulation to midlatitude temperature gradients and so to the storm tracks. It is the first conceptual model to incorporate a dynamical coupling between the tropical Hadley circulation and midlatitude turbulent energy transport. Numerical and analytical solutions of the model elucidate the circumstances of when and how the storm tracks shift in tandem with the terminus of the Hadley circulation. They illustrate how an increase of only the convective static stability in the deep tropics can lead to an expansion of the Hadley circulation and a poleward shift of storm tracks. The simulations with the idealized GCM and the conceptual energy-balance model demonstrate a clear link between Hadley circulation dynamics and midlatitude storm track position. With the help of the hierarchy of models presented in this thesis, we obtain a closed theory of storm track shifts in dry climates. The relevance of this theory for more realistic moist climates is discussed.

  9. Tropical Storm Alberto, Seen Through New 'Eyes'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Figure 1

    NASA's new CloudSat satellite captured its first tropical storm, Alberto, as it spun over the Gulf of Mexico the morning of June 12, 2006. This image comparison shows how CloudSat 'sees' such storms differently than conventional weather satellites. The CloudSat image (top of this page and bottom of figure 1) is compared with images obtained at nearly the same time from two National Oceanic and Atmospheric Administration National Weather Service tools that are mainstays for monitoring the development and movement of tropical cyclones: the NEXRAD storm detection radar, which maps out precipitation patterns for that portion of the storm that comes into its range, and the GOES-12 (Geostationary Operational Environmental Satellite) infrared imager, which is presented here to indicate the scale of the storm and the location where CloudSat overflies it. CloudSat sees the storm outside the range of NEXRAD and provides significantly greater vertical detail compared to the GOES satellite. NEXRAD, for example, can only see out to about 402 kilometers (250 nautical miles), and so could not see the portion of the storm that CloudSat was flying over at the time. GOES-12 only sees the very top of the clouds, and cannot provide any detail about what is being seen beneath the cloud tops.

    The CloudSat data show a storm that reaches about 16 kilometers (10 miles) in height and extends perhaps 1,000 kilometers (621 miles) in scale. The green line at the bottom of the CloudSat image is the radar echo of the Earth's surface. Where this line starts to disappear (change color) under the storm is where the rainfall is heaviest. Very heavy rainfall can be seen over about 400 kilometers (249 miles) of the satellite track. Cirrus clouds can also been seen out ahead of the storm (near letter A) -- this is also evident in the GOES-12 image. A smaller thunderstorm is visible in the CloudSat image under that cirrus cloud cover near the letter A. That storm is completely hidden from view in the GOES infrared image.

  10. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  11. Environmental and environmental-health impacts of the ARkStorm Scenario

    USGS Publications Warehouse

    Plumlee, Geoffrey S.; Alpers, Charles N.; Morman, Suzette A.; San Juan, Carma A.

    2016-01-01

    The ARkStorm Scenario predicts that a prolonged winter storm event across California would cause extreme precipitation, flooding, winds, physical damages, and economic impacts. This study uses a literature review and geographic information system-based analysis of national and state databases to infer how and where ARkStorm could cause environmental damages, release contamination from diverse natural and anthropogenic sources, affect ecosystem and human health, and cause economic impacts from environmental-remediation, liability, and health-care costs. Examples of plausible ARkStorm environmental and health concerns include complex mixtures of contaminants such as petroleum, mercury, asbestos, persistent organic pollutants, molds, and pathogens; adverse physical and contamination impacts on riverine and coastal marine ecosystems; and increased incidences of mold-related health concerns, some vector-borne diseases, and valley fever. Coastal cities, the San Francisco Bay area, the Sacramento-San Joaquin River Delta, parts of the Central Valley, and some mountainous areas would likely be most affected. This type of screening analysis, coupled with follow-up local assessments, can help stakeholders in California and disaster-prone areas elsewhere better plan for, mitigate, and respond to future environmental disasters.

  12. Dust Storm, Red Sea and Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Outlined against the dark blue water of the Red Sea, a prominent dust storm is making its way across the Red Sea into Saudi Arabia (22.0N, 39.0E) between the Islamic holy cities of Medinah and Mecca. Funneled through a gap in the coastal ranges of southern Sudan near the Ethiopian border, dust storms frequently will blow counter to the prevailing tropical easterly winds of the region.

  13. EVIDENCE FOR COMET STORMS IN METEORITE AGES

    SciTech Connect

    Perlmutter, S.; Muller, R.A.

    1987-10-01

    Clustering of cosmic-ray exposure ages of H chondritic meteorites occurs at 7 {+-} 3 and 30 {+-} 6 Myr ago. There is independent evidence that comet storms have occurred at the same times, based on the fossil record of family and genus extinctions, impact craters and glass, and geomagnetic reversals. We suggest that H chondrites were formed by the impact of shower comets on asteroids. The duration of the most recent comet shower was {le} 4 Myr, in agreement with storm theory.

  14. Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient

    PubMed Central

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  15. Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.

    PubMed

    Drews, Carl

    2013-01-01

    The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309

  16. Radar and microphysical characteristics of convective storms simulated from a numerical model using a new microphysical parameterization

    NASA Technical Reports Server (NTRS)

    Ferrier, Brad S.; Tao, Wei-Kuo; Simpson, Joanne

    1991-01-01

    The basic features of a new and improved bulk-microphysical parameterization capable of simulating the hydrometeor structure of convective systems in all types of large-scale environments (with minimal adjustment of coefficients) are studied. Reflectivities simulated from the model are compared with radar observations of an intense midlatitude convective system. Simulated reflectivities using the novel four-class ice scheme with a microphysical parameterization rain distribution at 105 min are illustrated. Preliminary results indicate that this new ice scheme works efficiently in simulating midlatitude continental storms.

  17. Use of historical information in extreme storm surges frequency analysis

    NASA Astrophysics Data System (ADS)

    Hamdi, Yasser; Duluc, Claire-Marie; Deville, Yves; Bardet, Lise; Rebour, Vincent

    2013-04-01

    The prevention of storm surge flood risks is critical for protection and design of coastal facilities to very low probabilities of failure. The effective protection requires the use of a statistical analysis approach having a solid theoretical motivation. Relating extreme storm surges to their frequency of occurrence using probability distributions has been a common issue since 1950s. The engineer needs to determine the storm surge of a given return period, i.e., the storm surge quantile or design storm surge. Traditional methods for determining such a quantile have been generally based on data from the systematic record alone. However, the statistical extrapolation, to estimate storm surges corresponding to high return periods, is seriously contaminated by sampling and model uncertainty if data are available for a relatively limited period. This has motivated the development of approaches to enlarge the sample extreme values beyond the systematic period. The nonsystematic data occurred before the systematic period is called historical information. During the last three decades, the value of using historical information as a nonsystematic data in frequency analysis has been recognized by several authors. The basic hypothesis in statistical modeling of historical information is that a perception threshold exists and that during a giving historical period preceding the period of tide gauging, all exceedances of this threshold have been recorded. Historical information prior to the systematic records may arise from high-sea water marks left by extreme surges on the coastal areas. It can also be retrieved from archives, old books, earliest newspapers, damage reports, unpublished written records and interviews with local residents. A plotting position formula, to compute empirical probabilities based on systematic and historical data, is used in this communication paper. The objective of the present work is to examine the potential gain in estimation accuracy with the use of historical information (to the Brest tide gauge located in the French Atlantic coast). In addition, the present work contributes to addressing the problem of the presence of outliers in data sets. Historical data are generally imprecise, and their inaccuracy should be properly accounted for in the analysis. However, as several authors believe, even with substantial uncertainty in the data, the use of historical information is a viable mean to improve estimates of rare events related to extreme environmental conditions. The preliminary results of this study suggest that the use of historical information increases the representativity of an outlier in the systematic data. It is also shown that the use of historical information, specifically the perception sea water level, can be considered as a reliable solution for the optimal planning and design of facilities to withstand extreme environmental conditions, which will occur during its lifetime, with an appropriate optimum of risk level. Findings are of practical relevance for applications in storm surge risk analysis and flood management.

  18. Mediterranean Storms: An Integrated Approach of Risk Management

    NASA Astrophysics Data System (ADS)

    Karageorgou, H.; Riza, E.; Linos, A.; Papanikolaou, D.

    2010-09-01

    Disaster by UN definition is "a serious disruption of the functioning of a community or a society, involving widespread human, material, economic, or environmental losses and impacts, which exceeds the ability of the affected community or society to cope using only its own resources". Mediterranean storms induce flash floods caused by excessive amounts of rainfall within a short lasting period of time. The intensity and duration of precipitation, region geomorphology, urbanization and different governmental emergency management structures trigger different consequences between Mediterranean countries. The integrated approach in management of storm risk represents a holistic perspective including interactions between government, science and technology institutions, developing agencies, private sector, NGOs and public. Local authorities and national government are responsible for the design, preparation and decision on storm risk management policies and strategies considering scientific risk identifying, assessing and understanding. Efficient governance management requires satisfied response to early warning systems, functionality of the affected systems upon which society depends and appropriate focus on variable interest, beliefs, values and ideologies between social groups. Also an appropriate balancing of benefits and costs in an efficient and equitable manner is important for the governance risk management. Natural sciences in corporation with the engineering science have developed effective early prediction, warning and monitoring systems on storm and flood risk. The health sciences use prediction systems for health related hazards and consequences and the social sciences research estimates the human resilience during disasters and the factors which affect and determine the human behavior. Also social sciences survey the response of public to early warning messages, the appropriate communicative methods to distributing messages and mechanisms to improve public response. The available and applied science and technology in prediction and early warning systems rely on the close collaboration between scientists and policy makers to achieve effective disaster prevention of human life and mitigation of damages. Developing agencies approach risk management as an integral part of development and encourage activities and measures to reduce the exposure and vulnerability to natural hazards through early warning systems, building codes, land use plans and disaster sensitive development plans. The human settlement and investment in high risk floodplains place greater numbers of people and economic assets in danger of being affected by storms and floods. Disasters and development are highly inter-related. Recurrent disasters and frequent localized disasters erode development and conversely the development processes can reduce disaster risk, or create new risks. The private sector participation in risk reduction efforts can help local communities mitigate disasters and increases the benefits of the businesses. The private insurance sector is highly involved in the prevention of disaster caused by natural hazards especially storms and floods. The collaboration between academic community and the insurance sector indicates the linkages between the mutual insurance actions and risk culture. Also tourism industry and private critical infrastructure sector get involved in prevention measures and activities against storm and flood risks to build sustainable functionality and keep public trust. NGOs focus on social, cultural, environmental, educational, or health issues in disaster management and their members are educated and experienced on their area of operations. The staff of local and national NGOs is familiar with culture, languages, governance structures, social networks, climate and geography of the affected area and holds a unique understanding of the specific problems of the affected population. Additionally, NGO’s operations do not suffer from bureaucracy and therefore are able to deploy on very short notice. The public awareness, behavior and response to disasters depend on the knowledge about the risk, the understanding of the information and the translation of what it means in their own particular circumstances. The majority of people judges the information to be credible and discusses the meaning of information with trusted family members, friends and colleagues to decide the next action. Well educated people, efficient management of previous experiences, successful communication methods and trust on government and authorities contribute towards efficient public response on disasters.

  19. Field Evaluation of Low-E Storm Windows

    SciTech Connect

    Drumheller, S. Craig; Kohler, Christian; Minen, Stefanie

    2007-07-11

    A field evaluation comparing the performance of low emittance (low-e) storm windows with both standard clear storm windows and no storm windows was performed in a cold climate. Six homes with single-pane windows were monitored over the period of one heating season. The homes were monitored with no storm windows and with new storm windows. The storm windows installed on four of the six homes included a hard coat, pyrolitic, low-e coating while the storm windows for the other two homeshad traditional clear glass. Overall heating load reduction due to the storm windows was 13percent with the clear glass and 21percent with the low-e windows. Simple paybacks for the addition of the storm windows were 10 years for the clear glass and 4.5 years forthe low-e storm windows.

  20. Into the Eye of the Cytokine Storm

    PubMed Central

    Tisoncik, Jennifer R.; Korth, Marcus J.; Simmons, Cameron P.; Farrar, Jeremy; Martin, Thomas R.

    2012-01-01

    Summary: The cytokine storm has captured the attention of the public and the scientific community alike, and while the general notion of an excessive or uncontrolled release of proinflammatory cytokines is well known, the concept of a cytokine storm and the biological consequences of cytokine overproduction are not clearly defined. Cytokine storms are associated with a wide variety of infectious and noninfectious diseases. The term was popularized largely in the context of avian H5N1 influenza virus infection, bringing the term into popular media. In this review, we focus on the cytokine storm in the context of virus infection, and we highlight how high-throughput genomic methods are revealing the importance of the kinetics of cytokine gene expression and the remarkable degree of redundancy and overlap in cytokine signaling. We also address evidence for and against the role of the cytokine storm in the pathology of clinical and infectious disease and discuss why it has been so difficult to use knowledge of the cytokine storm and immunomodulatory therapies to improve the clinical outcomes for patients with severe acute infections. PMID:22390970

  1. Storms and plankton: the forgotten link

    NASA Astrophysics Data System (ADS)

    Peters, F.

    2009-09-01

    The physico-chemical fields of the pelagic environment are constantly fluctuating at different spatial and temporal scales. Storms are extreme events of such fluctuations that cascade down to small scales to alter nutrient availability to microscopic algae or swimming and mating behaviour of motile plankton. In coastal ecosystems, storms represent dissolved nutrient injections via run-off and resuspension that trigger planktonic succession events. Storms may also have a role in the development and/or mitigation of harmful algal blooms, events with health consequences that are of growing societal concern. Mediterranean storms are also responsible for the transport of micro and macronutrients from Saharan origin. The effects of the deposition of such nutrients over the ocean may range from small to significant depending on the local conditions. Overall, albeit it is hard to envision catastrophic consequences, storms affect, directly or indirectly, the dynamics of plankton and hence ecosystem production. The full potential of such relationships will be evidenced once biological time series match the resolution and spatial coverage of meteorological and oceanic data. As the frequency and intensity of storms is subject to global change, future oceanic ecosystem production and diversity scenarios will be affected as well.

  2. Scientists Track 'Perfect Storm' on Mars

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Two dramatically different faces of our Red Planet neighbor appear in these comparison images showing how a global dust storm engulfed Mars with the onset of Martian spring in the Southern Hemisphere. When NASA's Hubble Space Telescope imaged Mars in June, the seeds of the storm were caught brewing in the giant Hellas Basin (oval at 4 o'clock position on disk) and in another storm at the northern polar cap.

    When Hubble photographed Mars in early September, the storm had already been raging across the planet for nearly two months obscuring all surface features. The fine airborne dust blocks a significant amount of sunlight from reaching the Martian surface. Because the airborne dust is absorbing this sunlight, it heats the upper atmosphere. Seasonal global Mars dust storms have been observed from telescopes for over a century, but this is the biggest storm ever seen in the past several decades.

    Mars looks gibbous in the right photograph because it is 26 million miles farther from Earth than in the left photo (though the pictures have been scaled to the same angular size), and our viewing angle has changed. The left picture was taken when Mars was near its closest approach to Earth for 2001 (an event called opposition); at that point the disk of Mars was fully illuminated as seen from Earth because Mars was exactly opposite the Sun.

    Both images are in natural color, taken with Hubble's Wide Field Planetary Camera 2.

  3. Mapping hurricane rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, C.; Mason, R.R., Jr.; Blanchard, S.F.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of affected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-h intervals from midnight (00:00 hours) through noon (12:00 hours) on 24 September 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared with the extent of flood inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks. ?? 2009 Blackwell Publishing Ltd.

  4. Mapping Hurricane Rita inland storm tide

    USGS Publications Warehouse

    Berenbrock, Charles; Mason, Robert R.; Blanchard, Stephen F.

    2009-01-01

    Flood-inundation data are most useful for decision makers when presented in the context of maps of effected communities and (or) areas. But because the data are scarce and rarely cover the full extent of the flooding, interpolation and extrapolation of the information are needed. Many geographic information systems (GIS) provide various interpolation tools, but these tools often ignore the effects of the topographic and hydraulic features that influence flooding. A barrier mapping method was developed to improve maps of storm tide produced by Hurricane Rita. Maps were developed for the maximum storm tide and at 3-hour intervals from midnight (0000 hour) through noon (1200 hour) on September 24, 2005. The improved maps depict storm-tide elevations and the extent of flooding. The extent of storm-tide inundation from the improved maximum storm-tide map was compared to the extent of flood-inundation from a map prepared by the Federal Emergency Management Agency (FEMA). The boundaries from these two maps generally compared quite well especially along the Calcasieu River. Also a cross-section profile that parallels the Louisiana coast was developed from the maximum storm-tide map and included FEMA high-water marks.

  5. Into the eye of the cytokine storm.

    PubMed

    Tisoncik, Jennifer R; Korth, Marcus J; Simmons, Cameron P; Farrar, Jeremy; Martin, Thomas R; Katze, Michael G

    2012-03-01

    The cytokine storm has captured the attention of the public and the scientific community alike, and while the general notion of an excessive or uncontrolled release of proinflammatory cytokines is well known, the concept of a cytokine storm and the biological consequences of cytokine overproduction are not clearly defined. Cytokine storms are associated with a wide variety of infectious and noninfectious diseases. The term was popularized largely in the context of avian H5N1 influenza virus infection, bringing the term into popular media. In this review, we focus on the cytokine storm in the context of virus infection, and we highlight how high-throughput genomic methods are revealing the importance of the kinetics of cytokine gene expression and the remarkable degree of redundancy and overlap in cytokine signaling. We also address evidence for and against the role of the cytokine storm in the pathology of clinical and infectious disease and discuss why it has been so difficult to use knowledge of the cytokine storm and immunomodulatory therapies to improve the clinical outcomes for patients with severe acute infections. PMID:22390970

  6. Non-storm water discharges technical report

    SciTech Connect

    Mathews, S.

    1994-07-01

    Lawrence Livermore National Laboratory (LLNL) submitted a Notice of Intent to the California State Water Resources Control Board (hereafter State Board) to discharge storm water associated with industrial activities under the California General Industrial Activity Storm Water National Pollutant Elimination System Discharge Permit (hereafter General Permit). As required by the General Permit, LLNL provided initial notification of non-storm water discharges to the Central Valley Regional Water Quality Control Board (hereafter Regional Board) on October 2, 1992. Additional findings and progress towards corrective actions were reported in subsequent annual monitoring reports. LLNL was granted until March 27, 1995, three years from the Notice of Intent submission date, to eliminate or permit the non-storm water discharges. On May 20, 1994, the Regional Board issued Waste Discharge Requirements (WDR Board Order No. 94-131, NPDES No. CA0081396) to LLNL for discharges of non-contact cooling tower wastewater and storm water related to industrial activities. As a result of the issuance of WDR 94-131, LLNL rescinded its coverage under the General Permit. WDR 94-131 allowed continued non-storm water discharges and requested a technical report describing the discharges LLNL seeks to permit. For the described discharges, LLNL anticipates the Regional Board will either waive Waste Discharge Requirements as allowed for in The Water Quality Control Plan for the California Regional Water Quality Control Board, Central Valley Region (hereafter Basin Plan) or amend Board Order 94-131 as appropriate.

  7. Hail Ice Impact of Lightweight Composite Sandwich Panels

    NASA Astrophysics Data System (ADS)

    Luong, Sean Dustin

    There is a growing demand for the usage of composite sandwich structures in the aircraft industry. Aircraft may suffer damage from a variety of impact sources such as ground service equipment, runway debris, bird strike, or hail ice. The damage response of hail ice impacts on composite sandwich structures is not well understood and they can often result in core damage without visually detectable surface damage. This seed damage may grow and lead to large-scale failure of the structure through repetitive operational loading, such as ground-air-ground cycles of aircraft (causes core internal pressurization). Therefore, it is necessary to understand the types of damage that can occur as a result of impacts. This study explores the effect of high velocity hail ice impact on damage formation in lightweight composite sandwich panels, particularly at a level that produces barely visible external damage. Panels consisting of two different facesheet thicknesses (1.19 and 1.87 mm) were impacted at angles of 25, 40, and 90 degrees at speeds of 25 and 50 m/s. The tests revealed three different core damage modes. Any level of measurable surface damage was an indicator of the presence of internal core damage, but internal damage could also be present without measurable surface damage. Thus, visual inspection alone was not a reliable method of damage detection. No clear relationship was found between impact energy levels and internal damage state since, for example, both 83 and 20.5 J tests produced core fracture, while a 16 J test did not produce any core damage. All core damage occurred at a depth of 3-5 mm from the impact-side facesheet.

  8. Physiological and ecological significance of biological ice nucleators.

    PubMed

    Lundheim, Rolv

    2002-07-29

    When a pure water sample is cooled it can remain in the liquid state at temperatures well below its melting point (0 degrees C). The initiation of the transition from the liquid state to ice is called nucleation. Substances that facilitate this transition so that it takes place at a relatively high sub-zero temperature are called ice nucleators. Many living organisms produce ice nucleators. In some cases, plausible reasons for their production have been suggested. In bacteria, they could induce frost damage to their hosts, giving the bacteria access to nutrients. In freeze-tolerant animals, it has been suggested that ice nucleators help to control the ice formation so that it is tolerable to the animal. Such ice nucleators can be called adaptive ice nucleators. There are, however, also examples of ice nucleators in living organisms where the adaptive value is difficult to understand. These ice nucleators might be structures with functions other than facilitating ice formation. These structures might be called incidental ice nucleators. PMID:12171657

  9. Sea Ice Ecosystems

    NASA Astrophysics Data System (ADS)

    Arrigo, Kevin R.

    2014-01-01

    Polar sea ice is one of the largest ecosystems on Earth. The liquid brine fraction of the ice matrix is home to a diverse array of organisms, ranging from tiny archaea to larger fish and invertebrates. These organisms can tolerate high brine salinity and low temperature but do best when conditions are milder. Thriving ice algal communities, generally dominated by diatoms, live at the ice/water interface and in recently flooded surface and interior layers, especially during spring, when temperatures begin to rise. Although protists dominate the sea ice biomass, heterotrophic bacteria are also abundant. The sea ice ecosystem provides food for a host of animals, with crustaceans being the most conspicuous. Uneaten organic matter from the ice sinks through the water column and feeds benthic ecosystems. As sea ice extent declines, ice algae likely contribute a shrinking fraction of the total amount of organic matter produced in polar waters.

  10. Iced-airfoil aerodynamics

    NASA Astrophysics Data System (ADS)

    Bragg, M. B.; Broeren, A. P.; Blumenthal, L. A.

    2005-07-01

    Past research on airfoil aerodynamics in icing are reviewed. This review emphasizes the time period after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This article identifies four classes of ice accretions: roughness, horn ice, streamwise ice, and spanwise-ridge ice. For each class, the key flowfield features such as flowfield separation and reattachment are discussed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are summarized.

  11. The Newfoundland ice extent and the solar cycle from 1860 to 1988

    SciTech Connect

    Hill, B.T.; Jones, S.J. )

    1990-04-15

    Sea ice conditions off the east coast of Newfoundland for the last 130 years are presented, forming what is believed to be the longest ice record for the northwestern Atlantic. Because of differenced in how these data were originally collected, the series is divided into two sets, before and after 1920. Time series for solar activity and air temperature at St. John's have also been compiled and correlation coefficients between the various data sets determined. The relationships between the sea ice extent and solar activity are discussed in the contest of the Iceland ice index and recent findings in the atmosphere-ocean-ice system in the northern hemisphere. The association with the quasi-biennial oscillation (QBO) and the similarity with the fluctuating trends of sea levels, sea surface temperatures, and storms in the North Atlantic are noted. Predictions for the sea ice extent are made for the next few years based on the relationship with solar activity.

  12. Top Sounder Ice Penetration

    NASA Astrophysics Data System (ADS)

    Porter, D. L.; Goemmer, S. A.; Sweeney, J. H.

    2014-12-01

    Ice draft measurements are made as part of normal operations for all US Navy submarines operating in the Arctic Ocean. The submarine ice draft data are unique in providing high resolution measurements over long transects of the ice covered ocean. The data has been used to document a multidecadal drop in ice thickness, and for validating and improving numerical sea-ice models. A submarine upward-looking sonar draft measurement is made by a sonar transducer mounted in the sail or deck of the submarine. An acoustic beam is transmitted upward through the water column, reflecting off the bottom of the sea ice and returning to the transducer. Ice thickness is estimated as the difference between the ship's depth (measured by pressure) and the acoustic range to the bottom of the ice estimated from the travel time of the sonar pulse. Digital recording systems can provide the return off the water-ice interface as well as returns that have penetrated the ice. Typically, only the first return from the ice hull is analyzed. Information regarding ice flow interstitial layers provides ice age information and may possibly be derived with the entire return signal. The approach being investigated is similar to that used in measuring bottom sediment layers and will involve measuring the echo level from the first interface, solving the reflection loss from that transmission, and employing reflection loss versus impedance mismatch to ascertain ice structure information.

  13. Estimation of non-inductive ice-ice collisional charging in anvils

    NASA Astrophysics Data System (ADS)

    Dye, J. E.; Bansemer, A.

    2012-12-01

    Recent observations in the anvils of storms in Florida and New Mexico (where strong electric fields have been found to persist for long periods of time) and in Oklahoma (where lightning has been found to initiate in the anvil far from the storm core) have suggested that charge separation could be occurring in some anvils. In this contribution we explore the non-inductive charge separation mechanism without riming as a possible explanation for this electrification. We use measurements of the ice particle size distribution made during the Airborne Field Mill project in the anvils of Florida thunderstorms with recent determinations of particle fall velocities to calculate ice particle collision rates for the observed particle spectra. The measurements showed a very broad size distribution ranging from small irregular ice particles to snowflake aggregates as large as 1 cm. Supercooled liquid water was not found in these anvils. The calculations show collision rates as large as 10**4 collisions/m*3/sec or more in the dense part of the anvils. We use the few reported laboratory results of charge separation between colliding ice particles in the absence of supercooled water to estimate charge separation between colliding particles for the observed ice spectra. From these we estimate that the total charge separated on particles in ten minutes in a 20 x 20 x 3 km volume of a dense anvil could be of the order of 10 to 100 C or more, depending upon assumptions made. This microscale charge separation must be followed by vertical separation of the colliding particles. With terminal velocity differences of <0.2 to 3 m/s for the small and large particles, vertical separations of small and large particles of a kilometer or more are easily possible in a ten minute period, but a model is needed to obtain proper estimates of charge density under these conditions. We conclude that while electrification of anvil clouds via the non-inductive ice-ice collision mechanism without riming is quite possible, additional laboratory studies and knowledge of the vertical air motion in anvils (which controls sub and super saturations over ice) are needed to further quantify this process. Major uncertainties are: the charge transfer per collision as a function of particle size and relative impact velocity; whether the particles are sublimating or growing by deposition which controls sign and magnitude of charge transfer; concentration uncertainty for the small and intermediate size particles; and the fraction of particles which separate after collision.

  14. An industrial sensor for reliable ice detection in gas turbines

    SciTech Connect

    Freestone, J.W.; Weber, M.

    1994-12-31

    Ice formation in the intake duct and compressor blading is a constant risk on gas turbines operating in regions where there are unfavorable ambient conditions. If allowed to continue there is a clear danger that pieces of ice will be ingested by the machine causing substantial damage. To protect the machine from possible damage, if ice is suspected by the operator the de-icing system is activated, injecting hot bleed air from the last compressor stages into the cold inlet air, naturally causing a decrease in power and efficiency. There exists a requirement for an ice detection system which will reliably detect the presence of ice and therefore optimize the use of bleed air for de-icing and reduce unnecessary power and efficiency losses. This paper discusses the necessary conditions for icing and describes a robust industrial sensor for reliable ice detection. The system, which is suitable for ground based gas turbines, has been installed on a 130MW gas turbine in Holland for the last three years and some of the results are presented here together with the economic advantages to be gained from installing such a system.

  15. Measurement of ice thickness (icing) in aeronautics

    NASA Technical Reports Server (NTRS)

    Hansman, R. John; Kirby, Mark S. JR.

    1988-01-01

    Pulsed ultrasonic techniques have been used to measure the formation of ice in flight in an icing wind tunnel with a precision of + or - 0.5 mm. Two icing regimes, humid and dry, are identified. Both natural and artificial conditions are considered. On the basis of ice formation rates obtained by the ultrasound technique and the observed surface conditions, it is found that the heat transfer coefficients are larger in the wind tunnel tests than in actual flight, presumably due to the higher level of turbulence in the wind tunnel tests. Profiles obtained during flight under natural conditions are compared with mechanical-type measurements and with the results of stereographic analysis.

  16. Physical and Dynamical Linkages between Lightning Jumps and Storm Conceptual Models

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2014-01-01

    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.

  17. Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models

    NASA Technical Reports Server (NTRS)

    Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.

    2014-01-01

    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.

  18. The role of conditional symmetric instability in Sting Jet storms

    NASA Astrophysics Data System (ADS)

    Baker, L. H.; Martinez-Alvarado, O.; Gray, S. L.; Clark, P. A.

    2009-04-01

    The aim of this project is to determine the mechanisms that lead to sting jets in extreme windstorms and develop diagnostics for predicting their formation and development. Extratropical cyclones often produce strong surface winds, mostly associated with low-level jets along the warm and cold fronts. Some severe extratropical cyclones have been found to produce an additional area of localised strong, and potentially very damaging, surface winds during a certain part of their development. These strong winds are associated with air that originates within the cloud head, exiting at the tip of the cloud head and descending rapidly from there to the surface. This rapidly descending air associated with the strong surface winds is known as a sting jet. One significant feature of sting jet storms is mesoscale slantwise circulations in the cloud head, which have been speculated to be due to the release of conditional symmetric instability (CSI). Analyses of two very different proposed sting jet storms will be presented. In both cases, a sting jet feature has been identified and examined using two diagnostics for CSI: SCAPE (slantwise convective available potential energy) and moist potential vorticity (MPV). SCAPE and negative MPV exist near the tip of the cloud heads and SCAPE decreases during the time of the descent of the sting jets, indicating that CSI may be being released.

  19. Evaluation of the Importance of Wet Scavenging for the may 29, 2012 DC3 Severe Storm Case Using Results from Wrf-Chem Simulations

    NASA Astrophysics Data System (ADS)

    Bela, M. M.; Barth, M. C.; Toon, O.; Fried, A.; Morrison, H.; Pickering, K. E.; Cummings, K.; Li, Y.; Allen, D. J.; Manning, K.

    2013-12-01

    Deep convective thunderstorms affect the vertical distribution of chemical species through vertical transport, lightning-production of NOx, wet scavenging of soluble species as well as aqueous and ice chemistry. This work focuses on the May 29 Oklahoma thunderstorm from the DC3 (Deep Convective Clouds and Chemistry) field campaign. WRF-Chem simulations at cloud parameterizing scales (dx=15km) and cloud resolving scales (dx=3 and 1km) are conducted to investigate wet scavenging of soluble trace gases. Two different wet scavenging schemes are coupled to the Morrison microphysics scheme and MOZART chemistry. The first, based on Neu and Prather (ACP, 2012), tracks dissolved species in cloud droplets and precipitation and releases species to the gas phase from evaporating precipitation. However, it does not distinguish between precipitating liquid and ice, and species are completely retained upon hydrometeor freezing. The second, described in Barth et al. (JGR, 2001), tracks solute in individual liquid and frozen hydrometeors, and a new capability to specify the fraction of each species that is retained in ice upon hydrometeor freezing is added. The simulated meteorology, evaluated with the NEXRAD radar reflectivity, is shown to represent the structure and evolution of the storm, although the simulated storm triggers about an hour early, has a larger area of high reflectivity and extends further north than observed in NEXRAD. Vertical distributions of trace gases with varying solubilities within the storm and immediately surrounding the storm are compared with observations from the GV and DC-8 aircraft in storm inflow and outflow regions. Using the Neu and Prather scheme or using the Barth scheme with zero or complete ice retention, observed mean vertical profiles of some soluble species in outflow are better represented in the model with scavenging, while others are overly scavenged. Finally, sensitivity studies are conducted to determine ice retention factors for each species and included in the Barth scavenging scheme to improve the model representation of convective cloud transport and processing of chemical species.

  20. Shoreline retreat and coastal storms in the southern Gulf of St. Lawrence

    NASA Astrophysics Data System (ADS)

    Forbes, D. L.; Parkes, G.; Manson, G. K.; Ketch, L.; Solomon, S. M.

    2001-05-01

    Submerged fluvial channels and estuarine facies seaward of the sandy North Shore of Prince Edward Island (Canada) attest to long-term mean relative sea-level rise >2.5 mm/a driving coastal retreat at mean rates >0.5 m/a over the past six thousand years. The shoreface, nearshore multiple bar complexes, and beaches are sand-limited and sand is transferred landward into multidecadal to century-scale storage in coastal dune and flood-tidal delta sinks. Stringent quality control of tide-gauge records for Charlottetown (PEI) indicates mean relative sea-level rise of 3.2 mm/a since 1911. When differenced from tidal predictions, this record provides a decadal sequence of storm surge occurrence for comparison with wind, wave hindcast, and sea-ice data for the southern Gulf over the past several decades. Soft photogrammetric digital rectification of vertical air photographs (1935, 1958, 1968, 1980/1981, 1990) and ground surveys (1989-2001) show large spatial and temporal variance in coastal recession rates, poorly correlated with the overall storm record, in part because of wave suppression by sea ice. Retreat of low sandstone-till cliffs at <1 m/a shows no statistically significant decadal variance. Other sites with shoreline retreat rates typically between 0.5 and 1.5 m/a show localized acceleration after 1980, reflecting a combination of storm impacts, morphodynamic change and sand loss to adjacent tidal inlets. Individual large storms cause localized rapid erosion, from which recovery depends in part on local sand supply. Some barrier shores with dunes show high longshore and interdecadal variance, and extensive multidecadal healing of former inlet and washover gaps. In some areas, at least, this reflects recovery from an episode of widespread washover predating the 1935 photography.

  1. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-Ching; Vargas, Mario; Wright, William B.; Currie, Tom; Knezevici, Danny; Fuleki, Dan

    2012-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 g/m3, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 mm in 3 min. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component such as a stator blade to degrade significantly, and could damage downstream components if shed.

  2. Fundamental Ice Crystal Accretion Physics Studies

    NASA Technical Reports Server (NTRS)

    Currie, Tom; Knezevici, Danny; Fuleki, Dan; Struk, Peter M.; Broeren, Andy P.; Tsao, Jen-ching; Vargas, Mario; Wright, William

    2011-01-01

    Due to numerous engine power-loss events associated with high-altitude convective weather, ice accretion within an engine due to ice-crystal ingestion is being investigated. The National Aeronautics and Space Administration (NASA) and the National Research Council (NRC) of Canada are starting to examine the physical mechanisms of ice accretion on surfaces exposed to ice-crystal and mixed-phase conditions. In November 2010, two weeks of testing occurred at the NRC Research Altitude Facility utilizing a single wedge-type airfoil designed to facilitate fundamental studies while retaining critical features of a compressor stator blade or guide vane. The airfoil was placed in the NRC cascade wind tunnel for both aerodynamic and icing tests. Aerodynamic testing showed excellent agreement compared with CFD data on the icing pressure surface and allowed calculation of heat transfer coefficients at various airfoil locations. Icing tests were performed at Mach numbers of 0.2 to 0.3, total pressures from 93 to 45 kPa, and total temperatures from 5 to 15 C. Ice and liquid water contents ranged up to 20 and 3 grams per cubic meter, respectively. The ice appeared well adhered to the surface in the lowest pressure tests (45 kPa) and, in a particular case, showed continuous leading-edge ice growth to a thickness greater than 15 millimeters in 3 minutes. Such widespread deposits were not observed in the highest pressure tests, where the accretions were limited to a small area around the leading edge. The suction surface was typically ice-free in the tests at high pressure, but not at low pressure. The icing behavior at high and low pressure appeared to be correlated with the wet-bulb temperature, which was estimated to be above 0 C in tests at 93 kPa and below 0 C in tests at lower pressure, the latter enhanced by more evaporative cooling of water. The authors believe that the large ice accretions observed in the low pressure tests would undoubtedly cause the aerodynamic performance of a compressor component such as a stator blade to degrade significantly, and could damage downstream components if shed.

  3. Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions

    PubMed Central

    Leisner, Thomas; Duft, Denis; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Henin, Stefano; Stelmaszczyk, Kamil; Petrarca, Massimo; Delagrange, Raphaëlle; Hao, Zuoqiang; Lüder, Johannes; Petit, Yannick; Rohwetter, Philipp; Kasparian, Jérôme; Wolf, Jean-Pierre; Wöste, Ludger

    2013-01-01

    Potential impacts of lightning-induced plasma on cloud ice formation and precipitation have been a subject of debate for decades. Here, we report on the interaction of laser-generated plasma channels with water and ice clouds observed in a large cloud simulation chamber. Under the conditions of a typical storm cloud, in which ice and supercooled water coexist, no direct influence of the plasma channels on ice formation or precipitation processes could be detected. Under conditions typical for thin cirrus ice clouds, however, the plasma channels induced a surprisingly strong effect of ice multiplication. Within a few minutes, the laser action led to a strong enhancement of the total ice particle number density in the chamber by up to a factor of 100, even though only a 10?9 fraction of the chamber volume was exposed to the plasma channels. The newly formed ice particles quickly reduced the water vapor pressure to ice saturation, thereby increasing the cloud optical thickness by up to three orders of magnitude. A model relying on the complete vaporization of ice particles in the laser filament and the condensation of the resulting water vapor on plasma ions reproduces our experimental findings. This surprising effect might open new perspectives for remote sensing of water vapor and ice in the upper troposphere. PMID:23733936

  4. Laser-induced plasma cloud interaction and ice multiplication under cirrus cloud conditions.

    PubMed

    Leisner, Thomas; Duft, Denis; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Henin, Stefano; Stelmaszczyk, Kamil; Petrarca, Massimo; Delagrange, Raphaëlle; Hao, Zuoqiang; Lüder, Johannes; Petit, Yannick; Rohwetter, Philipp; Kasparian, Jérôme; Wolf, Jean-Pierre; Wöste, Ludger

    2013-06-18

    Potential impacts of lightning-induced plasma on cloud ice formation and precipitation have been a subject of debate for decades. Here, we report on the interaction of laser-generated plasma channels with water and ice clouds observed in a large cloud simulation chamber. Under the conditions of a typical storm cloud, in which ice and supercooled water coexist, no direct influence of the plasma channels on ice formation or precipitation processes could be detected. Under conditions typical for thin cirrus ice clouds, however, the plasma channels induced a surprisingly strong effect of ice multiplication. Within a few minutes, the laser action led to a strong enhancement of the total ice particle number density in the chamber by up to a factor of 100, even though only a 10(-9) fraction of the chamber volume was exposed to the plasma channels. The newly formed ice particles quickly reduced the water vapor pressure to ice saturation, thereby increasing the cloud optical thickness by up to three orders of magnitude. A model relying on the complete vaporization of ice particles in the laser filament and the condensation of the resulting water vapor on plasma ions reproduces our experimental findings. This surprising effect might open new perspectives for remote sensing of water vapor and ice in the upper troposphere. PMID:23733936

  5. The StoRM Certification Process

    NASA Astrophysics Data System (ADS)

    Ronchieri, Elisabetta; Dibenedetto, Michele; Zappi, Riccardo; Dal Pra, Stefano; Aiftimiei, Cristina; Traldi, Sergio

    2011-12-01

    StoRM is an implementation of the SRM interface version 2.2 used by all Large Hadron Collider (LHC) experiments and non-LHC experiments as SRM endpoint at different Tiers of Worldwide LHC Computing Grid. The complexity of its services and the demand of experiments and users are increasing day by day. The growing needs in terms of service level by the StoRM users communities make it necessary to design and implement a more effective testing procedure to quickly and reliably validate new StoRM candidate releases both in code side (for example via test units, and schema valuator) and in final product software (for example via functionality tests, and stress tests). Testing software service is a very critical quality activity performed in a very ad-hoc informal manner by developers, testers and users of StoRM up to now. In this paper, we describe the certification mechanism used by StoRM team to increase the robustness and reliability of the StoRM services. Various typologies of tests, such as quality, installation, configuration, functionality, stress and performance, defined on the base of a set of use cases gathered as consequence of the collaboration among the StoRM team, experiments and users, are illustrated. Each typology of test is either increased or decreased easily from time to time. The proposed mechanism is based on a new configurable testsuite. This is executed by the certification team, who is responsible for validating the release candidate package as well as bug fix (or patch) package, given a certain testbed that considers all possible use cases. In correspondence of each failure, the package is given back to developers waiting for validating a new package.

  6. Global Storm Surge Forecasting and Information System

    NASA Astrophysics Data System (ADS)

    Buckman, Lorraine; Verlaan, Martin; Weerts, Albrecht

    2015-04-01

    The Global Storm Surge Forecasting and Information System is a first-of-its-kind operational forecasting system for storm surge prediction on a global scale, taking into account tidal and extra-tropical storm events in real time. The system, built and hosted by Deltares, provides predictions of water level and surge height up to 10 days in advance from numerical simulations and measurement data integrated within an operational IT environment. The Delft-FEWS software provides the operational environment in which wind forecasts and measurement data are collected and processed, and serves as a platform from which to run the numerical model. The global Delft3D model is built on a spherical, flexible mesh with a resolution around 5 km in near-shore coastal waters and an offshore resolution of 50 km to provide detailed information at the coast while limiting the computational time required. By using a spherical grid, the model requires no external boundary conditions. Numerical global wind forecasts are used as forcing for the model, with plans to incorporate regional meteorological forecasts to better capture smaller, tropical storms using the Wind Enhanced Scheme for generation of tropical winds (WES). The system will be automated to collect regional wind forecasts and storm warning bulletins which are incorporated directly into the model calculations. The forecasting system provides real-time water level and surge information in areas that currently lack local storm surge prediction capability. This information is critical for coastal communities in planning their flood strategy and during disaster response. The system is also designed to supply boundary conditions for coupling finer-scale regional models. The Global Storm Surge Forecasting and Information System is run within the Deltares iD-Lab initiative aiming at collaboration with universities, consultants and interested organizations. The results of the system will be made available via standards such as netCDF-CF, OpenDAP, WaterML2 and/or JSON REST as an interoperability experiment.

  7. Ionospheric Storms in Equatorial Region: Digisonde Observations

    NASA Astrophysics Data System (ADS)

    Paznukhov, V.; Altadill, D.; Blanch, E.

    2011-12-01

    We present a study of the ionospheric storms observed in the low-latitude and equatorial ionosphere at several digisonde stations: Jicamarca (Geomagnetic Coordinates: 2.0 S, 355.3 E), Kwajalein Island (3.8 N, 238.2 E), Ascension Island (2.5 S, 56.8 E), Fortaleza (4.8 N, 33.7 W), and Ramey (28.6 N, 5.2 E). The strongest geomagnetic storms from years 1995-2009 have been analyzed. The main ionospheric characteristics, hmF2 and foF2 were used in the study, making it possible to investigate the changes in the ionosphere peak density and height during the storms. All digisonde data were manually processed to assure the accuracy of the measurements. Solar wind data, geomagnetic field variations, and auroral activity indices have been used to characterize the geomagnetic environment during the events. It was found in our analysis that the major drivers for the ionospheric storms, electric field and neutral wind have approximately equal importance at the low-latitude and equatorial latitudes. This is noticeably different from the behavior of the ionsphere in the middle latitudes, where the neutral wind is usually a dominant factor. It was found that the auroral index, AE is the best precursor of the ionospheric effects observed during the storms in this region. We analyze the difference between time delays of the storm effects observed at the stations located in different local time sectors. The overall statistics of the time delays of the storms as a function of the local time at the stations is also presented. Several very interesting cases of sudden very strong ionospheric uplifting and their possible relation to the equatorial super fountain effect are investigated in greater details.

  8. Ionospheric data assimilation and forecasting during storms

    NASA Astrophysics Data System (ADS)

    Chartier, Alex T.; Matsuo, Tomoko; Anderson, Jeffrey L.; Collins, Nancy; Hoar, Timothy J.; Lu, Gang; Mitchell, Cathryn N.; Coster, Anthea J.; Paxton, Larry J.; Bust, Gary S.

    2016-01-01

    Ionospheric storms can have important effects on radio communications and navigation systems. Storm time ionospheric predictions have the potential to form part of effective mitigation strategies to these problems. Ionospheric storms are caused by strong forcing from the solar wind. Electron density enhancements are driven by penetration electric fields, as well as by thermosphere-ionosphere behavior including Traveling Atmospheric Disturbances and Traveling Ionospheric Disturbances and changes to the neutral composition. This study assesses the effect on 1 h predictions of specifying initial ionospheric and thermospheric conditions using total electron content (TEC) observations under a fixed set of solar and high-latitude drivers. Prediction performance is assessed against TEC observations, incoherent scatter radar, and in situ electron density observations. Corotated TEC data provide a benchmark of forecast accuracy. The primary case study is the storm of 10 September 2005, while the anomalous storm of 21 January 2005 provides a secondary comparison. The study uses an ensemble Kalman filter constructed with the Data Assimilation Research Testbed and the Thermosphere Ionosphere Electrodynamics General Circulation Model. Maps of preprocessed, verticalized GPS TEC are assimilated, while high-latitude specifications from the Assimilative Mapping of Ionospheric Electrodynamics and solar flux observations from the Solar Extreme Ultraviolet Experiment are used to drive the model. The filter adjusts ionospheric and thermospheric parameters, making use of time-evolving covariance estimates. The approach is effective in correcting model biases but does not capture all the behavior of the storms. In particular, a ridge-like enhancement over the continental USA is not predicted, indicating the importance of predicting storm time electric field behavior to the problem of ionospheric forecasting.

  9. Differences between CME-driven storms and CIR-driven storms

    NASA Astrophysics Data System (ADS)

    Borovsky, Joseph E.; Denton, Michael H.

    2006-07-01

    Twenty one differences between CME-driven geomagnetic storms and CIR-driven geomagnetic storms are tabulated. (CME-driven includes driving by CME sheaths, by magnetic clouds, and by ejecta; CIR-driven includes driving by the associated recurring high-speed streams.) These differences involve the bow shock, the magnetosheath, the radiation belts, the ring current, the aurora, the Earth's plasma sheet, magnetospheric convection, ULF pulsations, spacecraft charging in the magnetosphere, and the saturation of the polar cap potential. CME-driven storms are brief, have denser plasma sheets, have strong ring currents and Dst, have solar energetic particle events, and can produce great auroras and dangerous geomagnetically induced currents; CIR-driven storms are of longer duration, have hotter plasmas and stronger spacecraft charging, and produce high fluxes of relativistic electrons. Further, the magnetosphere is more likely to be preconditioned with dense plasmas prior to CIR-driven storms than it is prior to CME-driven storms. CME-driven storms pose more of a problem for Earth-based electrical systems; CIR-driven storms pose more of a problem for space-based assets.

  10. A Snowfall Impact Scale Derived from Northeast Storm Snowfall Distributions.

    NASA Astrophysics Data System (ADS)

    Kocin, Paul J.; Uccellini, Louis W.

    2004-02-01

    A Northeast snowfall impact scale (NESIS) is presented to convey a measure of the impact of heavy snowfall in the Northeast urban corridor, a region that extends from southern Virginia to New England. The scale is derived from a synoptic climatology of 30 major snowstorms in the Northeast urban corridor and applied to the snowfall distribution of 70 snowstorms east of the Rocky Mountains. NESIS is similar in concept to other meteorological scales that are designed to simplify complex phenomena into an easily understood range of values. The Fujita scale for tornadoes and the Saffir Simpson scale for hurricanes measure the potential for destruction to property and loss of life by wind-related damage (and storm surge for Saffir Simpson) through use of a categorical ranking (0 or 1 5).

  11. Comparison of Probabilistic Coastal Inundation Maps Based on Historical Storms and Statistically Modeled Storm Ensemble

    NASA Astrophysics Data System (ADS)

    Feng, X.; Sheng, Y.; Condon, A. J.; Paramygin, V. A.; Hall, T.

    2012-12-01

    A cost effective method, JPM-OS (Joint Probability Method with Optimal Sampling), for determining storm response and inundation return frequencies was developed and applied to quantify the hazard of hurricane storm surges and inundation along the Southwest FL,US coast (Condon and Sheng 2012). The JPM-OS uses piecewise multivariate regression splines coupled with dimension adaptive sparse grids to enable the generation of a base flood elevation (BFE) map. Storms are characterized by their landfall characteristics (pressure deficit, radius to maximum winds, forward speed, heading, and landfall location) and a sparse grid algorithm determines the optimal set of storm parameter combinations so that the inundation from any other storm parameter combination can be determined. The end result is a sample of a few hundred (197 for SW FL) optimal storms which are simulated using a dynamically coupled storm surge / wave modeling system CH3D-SSMS (Sheng et al. 2010). The limited historical climatology (1940 - 2009) is explored to develop probabilistic characterizations of the five storm parameters. The probability distributions are discretized and the inundation response of all parameter combinations is determined by the interpolation in five-dimensional space of the optimal storms. The surge response and the associated joint probability of the parameter combination is used to determine the flood elevation with a 1% annual probability of occurrence. The limited historical data constrains the accuracy of the PDFs of the hurricane characteristics, which in turn affect the accuracy of the BFE maps calculated. To offset the deficiency of limited historical dataset, this study presents a different method for producing coastal inundation maps. Instead of using the historical storm data, here we adopt 33,731 tracks that can represent the storm climatology in North Atlantic basin and SW Florida coasts. This large quantity of hurricane tracks is generated from a new statistical model which had been used for Western North Pacific (WNP) tropical cyclone (TC) genesis (Hall 2011) as well as North Atlantic tropical cyclone genesis (Hall and Jewson 2007). The introduction of these tracks complements the shortage of the historical samples and allows for more reliable PDFs required for implementation of JPM-OS. Using the 33,731 tracks and JPM-OS, an optimal storm ensemble is determined. This approach results in different storms/winds for storm surge and inundation modeling, and produces different Base Flood Elevation maps for coastal regions. Coastal inundation maps produced by the two different methods will be discussed in detail in the poster paper.

  12. Abnormal storm waves in the East/Japan Sea in winter: Generation process and hindcasting

    NASA Astrophysics Data System (ADS)

    Lee, Han Soo; Yamashita, Takao; Shim, Jae-Seol

    2010-05-01

    The surface winds over the East/Japan Sea (EJS) vary distinctively with the seasons, blowing mild or moderate and variable in summer and very strong due to the East Asian monsoon and storms in winter. In winter atmospheric low pressure (extra-tropical cyclones) reacting with and passing through the EJS can sometimes cause abnormal storm waves on the Korean and Japanese coasts of the EJS. In February 2008, abnormal storm waves due to a developed atmospheric low pressure system propagating from the west off Hokkaido, Japan, to the south and southwest throughout the EJS caused extensive damage along the central coast of Japan on the EJS side and along the east coast of Korea. The accompanying high waves were mainly swells that developed with sufficient fetch over the EJS and lasted more than a day. The observed maximum wave heights and periods along the central coast of Japan were 6.40 m and 10.2 sec at Naoetsu, 9.92 m and 16.2 sec at Toyama, 4.22 m and 14.2 sec at Fushiki Toyama, and 7.73 m and 13.2 sec at Wajima, while the observed maximum wave height and peak wave period at Anmok on the central east coast of Korea were 5.5 m and14.17 s at 11:00:00 UTC (20:00 KST) on 24 February 2008. During February of that year, the abnormal storm waves at Toyama Bay, which are called 'Yorimawari Waves' in Japan, caused some of the most severe coastal damage ever induced by such conditions. Since the abnormal storm waves are a key factor not only in coastal damage and disaster, but also in the design of coastal structures, it is critical to estimate these waves accurately, taking into account the meteorological conditions and topographical and bathymetric effects. Therefore, in this study we describe the study results of generation mechanisms and characteristics of abnormal storm waves in the EJS in terms of meteorological conditions and numerical simulations. The generation processes of these abnormal storm waves during rough sea states were studied and the formation of abnormal storm waves was hindcasted using an atmosphere-wave coupled modelling system. Wind waves and swell due to developed low pressures were found to be the main components of abnormal storm waves. The meteorological conditions that generate these waves are classified into three patterns based on past literature that describes historical events as well as on numerical modelling. The speed and track of a low-pressure system (an extra-tropical cyclone) and the interaction with another pressure system in the East Asia and north Pacific regions are the main factors in the classification. In hindcasting the abnormal storm waves, a bogussing scheme originally designed to simulate a tropical storm in a mesoscale meteorological model was introduced into the modelling system to enhance the resolution of developed low pressures. The modelling results with a bogussing scheme showed improvements in terms of resolved low pressure, surface wind field, and wave characteristics obtained with the wind field as an input.

  13. Tropical storm off Myanmar coast sweeps reefs in Ritchie's Archipelago, Andaman.

    PubMed

    Krishnan, P; Grinson-George; Vikas, N; Titus-Immanuel, Titus; Goutham-Bharathi, M P; Anand, A; Kumar, K Vinod; Kumar, S Senthil

    2013-06-01

    The reefs in some islands of Andaman and Nicobar suffered severe damage following a tropical storm in the Bay of Bengal off Myanmar coast during 13-17 March 2011. Surveys were conducted at eight sites in Andaman, of which five were located in the Ritchie's Archipelago where maximum wind speeds of 11 m s(-1) was observed; and three around Port Blair which lay on the leeward side of the storm and had not experienced wind speeds of more than 9 m s(-1). Corals in the shallow inshore reefs were broken and dislodged by the thrust of the waves. Significant damage in the deeper regions and offshore reefs were caused by the settlement of debris and sand brought down from the shallower regions. The fragile branching corals (Acropora sp.) were reduced to rubbles and the larger boulder corals (Porites sp.) were toppled over or scarred by falling debris. The reefs on the windward side and directly in the path of the storm winds were the worst affected. The investigation exposes the vulnerability of the reefs in Andaman to the oceanographic features which generally remain unnoticed unless the damage is caused to the coastal habitats. PMID:23135061

  14. The Kinematic and Microphysical Control of Storm Integrated Lightning Flash Extent

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence; Koshak, William; Petersen, Harold; Schultz, Elise; Schultz, Chris; Matthee, Retha; Bain, Lamont

    2012-01-01

    The objective of this preliminary study is to investigate the kinematic and microphysical control of lightning properties, particularly those that may govern the production of nitrogen oxides (NOx) in thunderstorms, such as flash rate, type and extent. The mixed-phase region is where the noninductive charging (NIC) process is thought to generate most storm electrification during rebounding collisions between ice