Sample records for ideal fermi gas

  1. Perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases.

    PubMed

    Mohammadzadeh, Hosein; Adli, Fereshteh; Nouri, Sahereh

    2016-12-01

    We investigate perturbative thermodynamic geometry of nonextensive ideal classical, Bose, and Fermi gases. We show that the intrinsic statistical interaction of nonextensive Bose (Fermi) gas is attractive (repulsive) similar to the extensive case but the value of thermodynamic curvature is changed by a nonextensive parameter. In contrary to the extensive ideal classical gas, the nonextensive one may be divided to two different regimes. According to the deviation parameter of the system to the nonextensive case, one can find a special value of fugacity, z^{*}, where the sign of thermodynamic curvature is changed. Therefore, we argue that the nonextensive parameter induces an attractive (repulsive) statistical interaction for zz^{*}) for an ideal classical gas. Also, according to the singular point of thermodynamic curvature, we consider the condensation of nonextensive Boson gas.

  2. Self-energy of an impurity in an ideal Fermi gas to second order in the interaction strength

    NASA Astrophysics Data System (ADS)

    Trefzger, Christian; Castin, Yvan

    2014-09-01

    We study in three dimensions the problem of a spatially homogeneous zero-temperature ideal Fermi gas of spin-polarized particles of mass m perturbed by the presence of a single distinguishable impurity of mass M. The interaction between the impurity and the fermions involves only the partial s wave through the scattering length a and has negligible range b compared to the inverse Fermi wave number 1/kF of the gas. Through the interactions with the Fermi gas the impurity gives birth to a quasiparticle, which will be here a Fermi polaron (or more precisely a monomeron). We consider the general case of an impurity moving with wave vector K ≠0: Then the quasiparticle acquires a finite lifetime in its initial momentum channel because it can radiate particle-hole pairs in the Fermi sea. A description of the system using a variational approach, based on a finite number of particle-hole excitations of the Fermi sea, then becomes inappropriate around K =0. We rely thus upon perturbation theory, where the small and negative parameter kFa→0- excludes any branches other than the monomeronic one in the ground state (as, e.g., the dimeronic one), and allows us a systematic study of the system. We calculate the impurity self-energy Σ(2)(K,ω) up to second order included in a. Remarkably, we obtain an analytical explicit expression for Σ(2)(K,ω), allowing us to study its derivatives in the plane (K,ω). These present interesting singularities, which in general appear in the third-order derivatives ∂3Σ(2)(K,ω). In the special case of equal masses, M =m, singularities appear already in the physically more accessible second-order derivatives ∂2Σ(2)(K,ω); using a self-consistent heuristic approach based on Σ(2) we then regularize the divergence of the second-order derivative ∂K2ΔE(K) of the complex energy of the quasiparticle found in Trefzger and Castin [Europhys. Lett. 104, 50005 (2013), 10.1209/0295-5075/104/50005] at K =kF, and we predict an interesting scaling

  3. Energy Fluctuation of Ideal Fermi Gas Trapped under Generic Power Law Potential U=\\sum_{i=1}^{d} c_i\\vert x_{i}/a_{i}\\vert^{n_{i} } in d Dimensions

    NASA Astrophysics Data System (ADS)

    Mir, Mehedi Faruk; Muktadir Rahman, Md.; Dwaipayan, Debnath; Sakhawat Hossain Himel, Md.

    2016-04-01

    Energy fluctuation of ideal Fermi gas trapped under generic power law potential U=\\sumi=1d ci \\vertxi/ai \\vert n_i has been calculated in arbitrary dimensions. Energy fluctuation is scrutinized further in the degenerate limit μ ≫ KBT with the help of Sommerfeld expansion. The dependence of energy fluctuation on dimensionality and power law potential is studied in detail. Most importantly our general result can not only exactly reproduce the recently published result regarding free and harmonically trapped ideal Fermi gas in d = 3 but also can describe the outcome for any power law potential in arbitrary dimension.

  4. Renyi Entropy of the Ideal Gas in Finite Momentum Intervals

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Czyz, W.

    2003-06-01

    Coincidence probabilities of multiparticle events, as measured in finite momentum intervals for Bose and Fermi ideal gas, are calculated and compared with the exact expressions given in statistical physics.

  5. Massive Fermi gas in the expanding universe

    NASA Astrophysics Data System (ADS)

    Trautner, Andreas

    2017-03-01

    The behavior of a decoupled ideal Fermi gas in a homogeneously expanding three-dimensional volume is investigated, starting from an equilibrium spectrum. In case the gas is massless and/or completely degenerate, the spectrum of the gas can be described by an effective temperature and/or an effective chemical potential, both of which scale down with the volume expansion. In contrast, the spectrum of a decoupled massive and non-degenerate gas can only be described by an effective temperature if there are strong enough self-interactions such as to maintain an equilibrium distribution. Assuming perpetual equilibration, we study a decoupled gas which is relativistic at decoupling and then is red-shifted until it becomes non-relativistic. We find expressions for the effective temperature and effective chemical potential which allow us to calculate the final spectrum for arbitrary initial conditions. This calculation is enabled by a new expansion of the Fermi-Dirac integral, which is for our purpose superior to the well-known Sommerfeld expansion. We also compute the behavior of the phase space density under expansion and compare it to the case of real temperature and real chemical potential. Using our results for the degenerate case, we also obtain the mean relic velocity of the recently proposed non-thermal cosmic neutrino background.

  6. Massive Fermi gas in the expanding universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trautner, Andreas, E-mail: atrautner@uni-bonn.de

    The behavior of a decoupled ideal Fermi gas in a homogeneously expanding three-dimensional volume is investigated, starting from an equilibrium spectrum. In case the gas is massless and/or completely degenerate, the spectrum of the gas can be described by an effective temperature and/or an effective chemical potential, both of which scale down with the volume expansion. In contrast, the spectrum of a decoupled massive and non-degenerate gas can only be described by an effective temperature if there are strong enough self-interactions such as to maintain an equilibrium distribution. Assuming perpetual equilibration, we study a decoupled gas which is relativistic atmore » decoupling and then is red-shifted until it becomes non-relativistic. We find expressions for the effective temperature and effective chemical potential which allow us to calculate the final spectrum for arbitrary initial conditions. This calculation is enabled by a new expansion of the Fermi-Dirac integral, which is for our purpose superior to the well-known Sommerfeld expansion. We also compute the behavior of the phase space density under expansion and compare it to the case of real temperature and real chemical potential. Using our results for the degenerate case, we also obtain the mean relic velocity of the recently proposed non-thermal cosmic neutrino background.« less

  7. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron

  8. Extended Thomas-Fermi density functional for the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Salasnich, Luca; Toigo, Flavio

    2008-11-01

    We determine the energy density ξ(3/5)nɛF and the gradient correction λℏ2(∇n)2/(8mn) of the extended Thomas-Fermi (ETF) density functional, where n is the number density and ɛF is the Fermi energy, for a trapped two-component Fermi gas with infinite scattering length (unitary Fermi gas) on the basis of recent diffusion Monte Carlo (DMC) calculations [Phys. Rev. Lett. 99, 233201 (2007)]. In particular we find that ξ=0.455 and λ=0.13 give the best fit of the DMC data with an even number N of particles. We also study the odd-even splitting γN1/9ℏω of the ground-state energy for the unitary gas in a harmonic trap of frequency ω determining the constant γ . Finally we investigate the effect of the gradient term in the time-dependent ETF model by introducing generalized Galilei-invariant hydrodynamics equations.

  9. Trapped one-dimensional ideal Fermi gas with a single impurity

    NASA Astrophysics Data System (ADS)

    Astrakharchik, G. E.; Brouzos, I.

    2013-08-01

    Ground-state properties of a single impurity in a one-dimensional Fermi gas are investigated in uniform and trapped geometries. The energy of a trapped system is obtained (i) by generalizing the McGuire expression from a uniform to trapped system (ii) within the local density approximation (iii) using the perturbative approach in the case of a weakly interacting impurity and (iv) diffusion Monte Carlo method. We demonstrate that there is a closed formula based on the exact solution of the homogeneous case which provides a precise estimation for the energy of a trapped system even for a small number of fermions and arbitrary coupling constant of the impurity. Using this expression, we analyze energy contributions from kinetic, interaction, and potential components, as well as spatial properties such as the system size and the pair-correlation function. Finally, we calculate the frequency of the breathing mode. Our analysis is directly connected and applicable to the recent experiments in microtraps.

  10. Surface effects in the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Salasnich, L.; Ancilotto, F.; Toigo, F.

    2010-01-01

    We study the extended Thomas-Fermi (ETF) density functional of the superfluid unitary Fermi gas. This functional includes a gradient term which is essential to describe accurately the surface effects of the system, in particular with a small number of atoms, where the Thomas-Fermi (local density) approximation fails. We find that our ETF functional gives density profiles which are in good agreement with recent Monte Carlo results and also with a more sophisticated superfluid density functional based on Bogoliubov-de Gennes equations. In addition, by using extended hydrodynamics equations of superfluids, we calculate the frequencies of collective surface oscillations of the unitary Fermi gas, showing that quadrupole and octupole modes strongly depend on the number of trapped atoms.

  11. Acoustics of tachyon Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trojan, Ernst; Vlasov, George V.

    2011-06-15

    We consider a Fermi gas of free tachyons as a continuous medium and find whether it satisfies the causality condition. There is no stable tachyon matter with the particle density below critical value n{sub T} and the Fermi momentum k{sub F}<{radical}((3/2))m that depends on the tachyon mass m. The pressure P and energy density E cannot be arbitrary small, but the situation P>E is not forbidden. Existence of shock waves in tachyon gas is also discussed. At low density n{sub T}

  12. Momentum-resolved radio-frequency spectroscopy of a spin-orbit-coupled atomic Fermi gas near a Feshbach resonance in harmonic traps

    NASA Astrophysics Data System (ADS)

    Peng, Shi-Guo; Liu, Xia-Ji; Hu, Hui; Jiang, Kaijun

    2012-12-01

    We theoretically investigate the momentum-resolved radio-frequency spectroscopy of a harmonically trapped atomic Fermi gas near a Feshbach resonance in the presence of equal Rashba and Dresselhaus spin-orbit coupling. The system is qualitatively modeled as an ideal gas mixture of atoms and molecules, in which the properties of molecules, such as the wave function, binding energy, and effective mass, are determined from the two-particle solution of two interacting atoms. We calculate separately the radio-frequency response from atoms and molecules at finite temperatures by using the standard Fermi golden rule and take into account the effect of harmonic traps within local density approximation. The total radio-frequency spectroscopy is discussed as functions of temperature and spin-orbit coupling strength. Our results give a qualitative picture of radio-frequency spectroscopy of a resonantly interacting spin-orbit-coupled Fermi gas and can be directly tested in atomic Fermi gases of 40K atoms at Shanxi University and 6Li atoms at the Massachusetts Institute of Technology.

  13. The contact of a homogeneous unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Patel, Parth; Yan, Zhenjie; Fletcher, Richard; Struck, Julian; Zwierlein, Martin

    2017-04-01

    The contact is a fundamental quantity that measures the strength of short-range correlations in quantum gases. As one of its most important implications, it provides a link between the microscopic two-particle correlation function at small distance and the macroscopic thermodynamic properties of the gas. In particular, pairing and superfluidity in a unitary Fermi gas can be expected to leave its mark in behavior of the contact. Here we present measurements on the temperature dependence of the contact of a unitary Fermi gas across the superfluid transition. By trapping ultracold 6Li atoms in a potential that is homogeneous in two directions and harmonic in the third, we obtain radiofrequency spectra of the homogeneous gas at a high signal-to-noise ratio. We compare our data to existing, but often mutually excluding theoretical calculations for the strongly interacting Fermi gas.

  14. Chemical potentials and thermodynamic characteristics of ideal Bose- and Fermi-gases in the region of quantum degeneracy

    NASA Astrophysics Data System (ADS)

    Sotnikov, A. G.; Sereda, K. V.; Slyusarenko, Yu. V.

    2017-01-01

    Calculations of chemical potentials for ideal monatomic gases with Bose-Einstein and Fermi-Dirac statistics as functions of temperature, across the temperature region that is typical for the collective quantum degeneracy effect, are presented. Numerical calculations are performed without any additional approximations, and explicit dependences of the chemical potentials on temperature are constructed at a fixed density of gas particles. Approximate polynomial dependences of chemical potentials on temperature are obtained that allow for the results to be used in further studies without re-applying the involved numerical methods. The ease of using the obtained representations is demonstrated on examples of deformation of distribution for a population of energy states at low temperatures, and on the impact of quantum statistics (exchange interaction) on the equations of state for ideal gases and some of the thermodynamic properties thereof. The results of this study essentially unify two opposite limiting cases in an intermediate region that are used to describe the equilibrium states of ideal gases, which are well known from university courses on statistical physics, thus adding value from an educational point of view.

  15. Renormalization Group Theory for the Imbalanced Fermi Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbels, K. B.; Stoof, H. T. C.

    2008-04-11

    We formulate a Wilsonian renormalization group theory for the imbalanced Fermi gas. The theory is able to recover quantitatively well-established results in both the weak-coupling and the strong-coupling (unitarity) limits. We determine for the latter case the line of second-order phase transitions of the imbalanced Fermi gas and, in particular, the location of the tricritical point. We obtain good agreement with the recent experiments of Y. Shin et al. [Nature (London) 451, 689 (2008)].

  16. Hydrodynamics in a Degenerate, Strongly Attractive Fermi Gas

    NASA Technical Reports Server (NTRS)

    Thomas, John E.; Kinast, Joseph; Hemmer, Staci; Turlapov, Andrey; O'Hara, Ken; Gehm, Mike; Granade, Stephen

    2004-01-01

    In summary, we use all-optical methods with evaporative cooling near a Feshbach resonance to produce a strongly interacting degenerate Fermi gas. We observe hydrodynamic behavior in the expansion dynamics. At low temperatures, collisions may not explain the expansion dynamics. We observe hydrodynamics in the trapped gas. Our observations include collisionally-damped excitation spectra at high temperature which were not discussed above. In addition, we observe weakly damped breathing modes at low temperature. The observed temperature dependence of the damping time and hydrodynamic frequency are not consistent with collisional dynamics nor with collisionless mean field interactions. These observations constitute the first evidence for superfluid hydrodynamics in a Fermi gas.

  17. Gap Solitons of Superfluid Fermi Gas in FS Optical Lattices

    NASA Astrophysics Data System (ADS)

    Chen, Yan; Zhang, Ke-Zhi; He, Yong-Lin; Liu, Zhen-Lai; Zhu, Liao

    2018-01-01

    By employing the mean-field theory and hydrodynamic scheme, we study the gap solitons of superfluid Fermi gas in Fourier-Synthesized(FS) optical lattices. By means of numerical methods and variational approximation, the atomic interaction, the chemical potential, the potential depth of the lattice and relative phase of the Fermi system are derived along the Bose-Enstein condensation(BEC)side to the Bardeen-Cooper-Schrieffer (BCS)side. It means that the condition exciting gap solitons is obtained. Moreover, we analyze the fundamental gap soltions of the superfluid Fermi gas. It is found that the relative phase α impacts greatly on the properties of fundamental gap solitons for superfluid Fermi gas. Especially, the nonlinearity interaction term g decreases with α. Add, due to Fermi pressure, curvature changes of g in the BEC limit( γ = 1, here, γ is a function of an interaction parameter) is larger than that at unitary ( γ = 2/3). Spatial distribution of gap solitons exhibit very obvious different when the system transit from the BEC side to BCS side.

  18. Observation of the Leggett-Rice Effect in a Unitary Fermi Gas

    NASA Astrophysics Data System (ADS)

    Trotzky, S.; Beattie, S.; Luciuk, C.; Smale, S.; Bardon, A. B.; Enss, T.; Taylor, E.; Zhang, S.; Thywissen, J. H.

    2015-01-01

    We observe that the diffusive spin current in a strongly interacting degenerate Fermi gas of 40K precesses about the local magnetization. As predicted by Leggett and Rice, precession is observed both in the Ramsey phase of a spin-echo sequence, and in the nonlinearity of the magnetization decay. At unitarity, we measure a Leggett-Rice parameter γ =1.08 (9 ) and a bare transverse spin diffusivity D0⊥=2.3 (4 )ℏ/m for a normal-state gas initialized with full polarization and at one-fifth of the Fermi temperature, where m is the atomic mass. One might expect γ =0 at unitarity, where two-body scattering is purely dissipative. We observe γ →0 as temperature is increased towards the Fermi temperature, consistent with calculations that show the degenerate Fermi sea restores a nonzero γ . Tuning the scattering length a , we find that a sign change in γ occurs in the range 0 <(kFa )-1≲1.3 , where kF is the Fermi momentum. We discuss how γ reveals the effective interaction strength of the gas, such that the sign change in γ indicates a switching of branch between a repulsive and an attractive Fermi gas.

  19. Monopole excitations of a harmonically trapped one-dimensional Bose gas from the ideal gas to the Tonks-Girardeau regime.

    PubMed

    Choi, S; Dunjko, V; Zhang, Z D; Olshanii, M

    2015-09-11

    Using a time-dependent modified nonlinear Schrödinger equation (MNLSE)-where the conventional chemical potential proportional to the density is replaced by the one inferred from Lieb-Liniger's exact solution-we study frequencies of the collective monopole excitations of a one-dimensional Bose gas. We find that our method accurately reproduces the results of a recent experimental study [E. Haller et al., Science 325, 1224 (2009)] in the full spectrum of interaction regimes from the ideal gas, through the mean-field regime, through the mean-field Thomas-Fermi regime, all the way to the Tonks-Giradeau gas. While the former two are accessible by the standard time-dependent NLSE and inaccessible by the time-dependent local density approximation, the situation reverses in the latter case. However, the MNLSE is shown to treat all these regimes within a single numerical method.

  20. Collective modes of an imbalanced unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Hofmann, Johannes; Chevy, Frédéric; Goulko, Olga; Lobo, Carlos

    2018-03-01

    We study theoretically the collective mode spectrum of a strongly imbalanced two-component unitary Fermi gas in a cigar-shaped trap, where the minority species forms a gas of polarons. We describe the collective breathing mode of the gas in terms of the Fermi-liquid kinetic equation taking collisions into account using the method of moments. Our results for the frequency and damping of the longitudinal in-phase breathing mode are in good quantitative agreement with an experiment by Nascimbène et al. [Phys. Rev. Lett. 103, 170402 (2009), 10.1103/PhysRevLett.103.170402] and interpolate between a hydrodynamic and a collisionless regime as the polarization is increased. A separate out-of phase breathing mode, which for a collisionless gas is sensitive to the effective mass of the polaron, however, is strongly damped at finite temperature, whereas the experiment observes a well-defined oscillation.

  1. Orientifolding of the ABJ Fermi gas

    NASA Astrophysics Data System (ADS)

    Okuyama, Kazumi

    2016-03-01

    The grand partition functions of ABJ theory can be factorized into even and odd parts under the reflection of fermion coordinate in the Fermi gas approach. In some cases, the even/odd part of ABJ grand partition function is equal to that of {N}=5O(n)× USp({n}^') theory, hence it is natural to think of the even/odd projection of grand partition function as an orientifolding of ABJ Fermi gas system. By a systematic WKB analysis, we determine the coefficients in the perturbative part of grand potential of such orientifold ABJ theory. We also find the exact form of the first few "half-instanton" corrections coming from the twisted sector of the reflection of fermion coordinate. For the Chern-Simons level k = 2 ,4 ,8 we find closed form expressions of the grand partition functions of orientifold ABJ theory, and for k = 2 , 4 we prove the functional relations among the grand partition functions conjectured in arXiv:1410.7658.

  2. Large-scale behaviour of local and entanglement entropy of the free Fermi gas at any temperature

    NASA Astrophysics Data System (ADS)

    Leschke, Hajo; Sobolev, Alexander V.; Spitzer, Wolfgang

    2016-07-01

    The leading asymptotic large-scale behaviour of the spatially bipartite entanglement entropy (EE) of the free Fermi gas infinitely extended in multidimensional Euclidean space at zero absolute temperature, T = 0, is by now well understood. Here, we present and discuss the first rigorous results for the corresponding EE of thermal equilibrium states at T> 0. The leading large-scale term of this thermal EE turns out to be twice the first-order finite-size correction to the infinite-volume thermal entropy (density). Not surprisingly, this correction is just the thermal entropy on the interface of the bipartition. However, it is given by a rather complicated integral derived from a semiclassical trace formula for a certain operator on the underlying one-particle Hilbert space. But in the zero-temperature limit T\\downarrow 0, the leading large-scale term of the thermal EE considerably simplifies and displays a {ln}(1/T)-singularity which one may identify with the known logarithmic enhancement at T = 0 of the so-called area-law scaling. birthday of the ideal Fermi gas.

  3. Two-Dimensional Homogeneous Fermi Gases

    NASA Astrophysics Data System (ADS)

    Hueck, Klaus; Luick, Niclas; Sobirey, Lennart; Siegl, Jonas; Lompe, Thomas; Moritz, Henning

    2018-02-01

    We report on the experimental realization of homogeneous two-dimensional (2D) Fermi gases trapped in a box potential. In contrast to harmonically trapped gases, these homogeneous 2D systems are ideally suited to probe local as well as nonlocal properties of strongly interacting many-body systems. As a first benchmark experiment, we use a local probe to measure the density of a noninteracting 2D Fermi gas as a function of the chemical potential and find excellent agreement with the corresponding equation of state. We then perform matter wave focusing to extract the momentum distribution of the system and directly observe Pauli blocking in a near unity occupation of momentum states. Finally, we measure the momentum distribution of an interacting homogeneous 2D gas in the crossover between attractively interacting fermions and bosonic dimers.

  4. Entanglement classification in the noninteracting Fermi gas

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Eghbalifam, F.; Nami, S.; Yahyavi, M.

    In this paper, entanglement classification shared among the spins of localized fermions in the noninteracting Fermi gas is studied. It is proven that the Fermi gas density matrix is block diagonal on the basis of the projection operators to the irreducible representations of symmetric group Sn. Every block of density matrix is in the form of the direct product of a matrix and identity matrix. Then it is useful to study entanglement in every block of density matrix separately. The basis of corresponding Hilbert space are identified from the Schur-Weyl duality theorem. Also, it can be shown that the symmetric part of the density matrix is fully separable. Then it has been shown that the entanglement measure which is introduced in Eltschka et al. [New J. Phys. 10, 043104 (2008)] and Guhne et al. [New J. Phys. 7, 229 (2005)], is zero for the even n qubit Fermi gas density matrix. Then by focusing on three spin reduced density matrix, the entanglement classes have been investigated. In three qubit states there is an entanglement measure which is called 3-tangle. It can be shown that 3-tangle is zero for three qubit density matrix, but the density matrix is not biseparable for all possible values of its parameters and its eigenvectors are in the form of W-states. Then an entanglement witness for detecting non-separable state and an entanglement witness for detecting nonbiseparable states, have been introduced for three qubit density matrix by using convex optimization problem. Finally, the four spin reduced density matrix has been investigated by restricting the density matrix to the irreducible representations of Sn. The restricted density matrix to the subspaces of the irreducible representations: Ssym, S3,1 and S2,2 are denoted by ρsym, ρ3,1 and ρ2,2, respectively. It has been shown that some highly entangled classes (by using the results of Miyake [Phys. Rev. A 67, 012108 (2003)] for entanglement classification) do not exist in the blocks of density matrix ρ3

  5. Multiparticle instability in a spin-imbalanced Fermi gas

    NASA Astrophysics Data System (ADS)

    Whitehead, T. M.; Conduit, G. J.

    2018-01-01

    Weak attractive interactions in a spin-imbalanced Fermi gas induce a multiparticle instability, binding multiple fermions together. The maximum binding energy per particle is achieved when the ratio of the number of up- and down-spin particles in the instability is equal to the ratio of the up- and down-spin densities of states in momentum at the Fermi surfaces, to utilize the variational freedom of all available momentum states. We derive this result using an analytical approach, and verify it using exact diagonalization. The multiparticle instability extends the Cooper pairing instability of balanced Fermi gases to the imbalanced case, and could form the basis of a many-body state, analogously to the construction of the Bardeen-Cooper-Schrieffer theory of superconductivity out of Cooper pairs.

  6. Thermodynamics of the relativistic Fermi gas in D dimensions

    NASA Astrophysics Data System (ADS)

    Sevilla, Francisco J.; Piña, Omar

    2017-09-01

    The influence of spatial dimensionality and particle-antiparticle pair production on the thermodynamic properties of the relativistic Fermi gas, at finite chemical potential, is studied. Resembling a "phase transition", qualitatively different behaviors of the thermodynamic susceptibilities, namely the isothermal compressibility and the specific heat, are markedly observed at different temperature regimes as function of the system dimensionality and of the rest mass of the particles. A minimum in the temperature dependence of the isothermal compressibility marks a characteristic temperature, in the range of tenths of the Fermi temperature, at which the system transit from a "normal" phase, to a phase where the gas compressibility grows as a power law of the temperature.

  7. Superfluid-ferromagnet-superfluid junction and the {pi} phase in a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashimura, Takashi; Tsuchiya, Shunji; CREST

    2010-09-15

    We investigate the possibility of a superfluid-ferromagnet-superfluid (SFS) junction in a superfluid Fermi gas. To examine this possibility in a simple manner, we consider an attractive Hubbard model at T=0 within the mean-field theory. When a potential barrier is embedded in a superfluid Fermi gas with population imbalance (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms with pseudospin {sigma}= {up_arrow}, {down_arrow}), this barrier is shown to be magnetized in the sense that excess {up_arrow}-spin atoms are localized around it. The resulting superfluid Fermi gas is spatially divided into two by this ferromagnet, so that one obtains amore » junction similar to the superconductor-ferromagnet-superconductor junction discussed in superconductivity. Indeed, we show that the so-called {pi} phase, which is a typical phenomenon in the SFS junction, is realized, where the superfluid order parameter changes its sign across the junction. Our results would be useful for the study of magnetic effects on fermion superfluidity using an ultracold Fermi gas.« less

  8. Pseudogap Regime of a Two-dimensional Uniform Fermi Gas

    NASA Astrophysics Data System (ADS)

    Matsumoto, Morio; Hanai, Ryo; Inotani, Daisuke; Ohashi, Yoji

    2018-01-01

    We investigate pseudogap phenomena in a two-dimensional Fermi gas. Including pairing fluctuations within a self-consistent T-matrix approximation, we determine the pseudogap temperature T* below which a dip appears in the density of states ρ(ω) around the Fermi level. Evaluating T*, we identify the pseudogap region in the phase diagram of this system. We find that, while the observed Berezinskii-Kosterlitz-Thouless (BKT) transition temperature TBKTexp in a 6Li Fermi gas is in the pseudogap regime, the detailed pseudogap structure in ρ(ω) at TBKTexp still differs from a fully-gapped one, indicating the importance of amplitude fluctuations in the Cooper channel there. Since the observed TBKTexp in the weak-coupling regime cannot be explained by the recent BKT theory which only includes phase fluctuations, our results may provide a hint about how to improve this BKT theory. Although ρ(ω) has not been measured in this system, we show that the assessment of our results is still possible by using the observable Tan's contact.

  9. Collective modes of a two-dimensional Fermi gas at finite temperature

    NASA Astrophysics Data System (ADS)

    Mulkerin, Brendan C.; Liu, Xia-Ji; Hu, Hui

    2018-05-01

    We examine the breathing mode of a strongly interacting two-dimensional Fermi gas and the role of temperature on the anomalous breaking of scale invariance. By calculating the equation of state with different many-body T -matrix theories and the virial expansion, we obtain a hydrodynamic equation of the harmonically trapped Fermi gas (with trapping frequency ω0) through the local density approximation. By solving the hydrodynamic equations, we determine the breathing mode frequencies as a function of interaction strength and temperature. We find that the breathing mode anomaly depends sensitively on both interaction strength and temperature. In particular, in the strongly interacting regime, we predict a significant downshift of the breathing mode frequency, below the scale invariant value of 2 ω0 , for temperatures of the order of the Fermi temperature.

  10. Homogeneous Atomic Fermi Gases

    NASA Astrophysics Data System (ADS)

    Mukherjee, Biswaroop; Yan, Zhenjie; Patel, Parth B.; Hadzibabic, Zoran; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin W.

    2017-03-01

    We report on the creation of homogeneous Fermi gases of ultracold atoms in a uniform potential. In the momentum distribution of a spin-polarized gas, we observe the emergence of the Fermi surface and the saturated occupation of one particle per momentum state: the striking consequence of Pauli blocking in momentum space for a degenerate gas. Cooling a spin-balanced Fermi gas at unitarity, we create homogeneous superfluids and observe spatially uniform pair condensates. For thermodynamic measurements, we introduce a hybrid potential that is harmonic in one dimension and uniform in the other two. The spatially resolved compressibility reveals the superfluid transition in a spin-balanced Fermi gas, saturation in a fully polarized Fermi gas, and strong attraction in the polaronic regime of a partially polarized Fermi gas.

  11. Cooling an Optically Trapped Ultracold Fermi Gas by Periodical Driving.

    PubMed

    Li, Jiaming; de Melo, Leonardo F; Luo, Le

    2017-03-30

    We present a cooling method for a cold Fermi gas by parametrically driving atomic motions in a crossed-beam optical dipole trap (ODT). Our method employs the anharmonicity of the ODT, in which the hotter atoms at the edge of the trap feel the anharmonic components of the trapping potential, while the colder atoms in the center of the trap feel the harmonic one. By modulating the trap depth with frequencies that are resonant with the anharmonic components, we selectively excite the hotter atoms out of the trap while keeping the colder atoms in the trap, generating parametric cooling. This experimental protocol starts with a magneto-optical trap (MOT) that is loaded by a Zeeman slower. The precooled atoms in the MOT are then transferred to an ODT, and a bias magnetic field is applied to create an interacting Fermi gas. We then lower the trapping potential to prepare a cold Fermi gas near the degenerate temperature. After that, we sweep the magnetic field to the noninteracting regime of the Fermi gas, in which the parametric cooling can be manifested by modulating the intensity of the optical trapping beams. We find that the parametric cooling effect strongly depends on the modulation frequencies and amplitudes. With the optimized frequency and amplitude, we measure the dependence of the cloud energy on the modulation time. We observe that the cloud energy is changed in an anisotropic way, where the energy of the axial direction is significantly reduced by parametric driving. The cooling effect is limited to the axial direction because the dominant anharmonicity of the crossed-beam ODT is along the axial direction. Finally, we propose to extend this protocol for the trapping potentials of large anharmonicity in all directions, which provides a promising scheme for cooling quantum gases using external driving.

  12. Universal Fermi Gas with Two- and Three-Body Resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Yusuke; Son, Dam Thanh; Tan, Shina

    2008-03-07

    We consider a Fermi gas with two components of different masses, with the s-wave two-body interaction tuned to unitarity. In the range of mass ratio 8.62gas with the same number densities. Wemore » derive exact relationships between the pressures of the unitary Fermi gases with and without three-body resonance when the mass ratio is close to the critical values of 8.62 and 13.6.« less

  13. Derivation of the Ideal Gas Law

    ERIC Educational Resources Information Center

    Laugier, Alexander; Garai, Jozsef

    2007-01-01

    Undergraduate and graduate physics and chemistry books usually state that combining the gas laws results in the ideal gas law. Leaving the derivation to the students implies that this should be a simple task, most likely a substitution. Boyle's law, Charles's law, and the Avogadro's principle are given under certain conditions; therefore, direct…

  14. Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses

    NASA Astrophysics Data System (ADS)

    Açıkkalp, Emin; Caner, Necmettin

    2015-09-01

    In this study, a nano-scale irreversible Brayton cycle operating with quantum gasses including Bose and Fermi gasses is researched. Developments in the nano-technology cause searching the nano-scale machines including thermal systems to be unavoidable. Thermodynamic analysis of a nano-scale irreversible Brayton cycle operating with Bose and Fermi gasses was performed (especially using exergetic sustainability index). In addition, thermodynamic analysis involving classical evaluation parameters such as work output, exergy output, entropy generation, energy and exergy efficiencies were conducted. Results are submitted numerically and finally some useful recommendations were conducted. Some important results are: entropy generation and exergetic sustainability index are affected mostly for Bose gas and power output and exergy output are affected mostly for the Fermi gas by x. At the high temperature conditions, work output and entropy generation have high values comparing with other degeneracy conditions.

  15. Temperature and the Ideal Gas

    ERIC Educational Resources Information Center

    Daisley, R. E.

    1973-01-01

    Presents some organized ideas in thermodynamics which are suitable for use with high school (GCE A level or ONC) students. Emphases are placed upon macroscopic observations and intimate connection of the modern definition of temperature with the concept of ideal gas. (CC)

  16. Shear viscosity in an anisotropic unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Samanta, Rickmoy; Sharma, Rishi; Trivedi, Sandip P.

    2017-11-01

    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a dual gravitational description. Results using the AdS/CFT (anti-de Sitter/conformal field theory correspondence) in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the bound proposed by Kovtun, Son, and Starinets (KSS). This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential which may be approximated to be linear in a suitable range of parameters. We give a concrete proposal for an experimental setup where an anisotropic shear viscosity tensor may arise. In such situations, it may also be possible to observe a reduction in the spin-1 component of the shear viscosity from its lowest value observed so far in ultracold Fermi gases. In extreme anisotropic situations, the reduction may be enough to reduce the shear viscosity to entropy ratio below the proposed KSS bound, although this regime is difficult to analyze in a theoretically controlled manner.

  17. Laser cooling of a trapped two-component Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Z.; Centrum Fizyki Teoretycznej, Polska Akademia Nauk, 02-668 Warsaw; Santos, L.

    2003-04-01

    We study the collective Raman cooling of a trapped two-component Fermi gas using quantum master equation in the festina lente regime, where the heating due to photon reabsorption can be neglected. The Monte Carlo simulations show that three-dimensional temperatures of the order of 0.008T{sub F} can be achieved. We analyze the heating related to background losses, and show that our laser-cooling scheme can maintain the temperature of the gas without significant additional losses.

  18. Validating simple dynamical simulations of the unitary Fermi gas

    NASA Astrophysics Data System (ADS)

    Forbes, Michael McNeil; Sharma, Rishi

    2014-10-01

    We present a comparison between simulated dynamics of the unitary fermion gas using the superfluid local density approximation (SLDA) and a simplified bosonic model, the extended Thomas-Fermi (ETF) with a unitary equation of state. Small-amplitude fluctuations have similar dynamics in both theories for frequencies far below the pair-breaking threshold and wave vectors much smaller than the Fermi momentum. The low-frequency linear responses in both match well for surprisingly large wave vectors, even up to the Fermi momentum. For nonlinear dynamics such as vortex generation, the ETF provides a semiquantitative description of SLDA dynamics as long as the fluctuations do not have significant power near the pair-breaking threshold; otherwise the dynamics of the ETF cannot be trusted. Nonlinearities in the ETF tend to generate high-frequency fluctuations, and with no normal component to remove this energy from the superfluid, features such as vortex lattices cannot relax and crystallize as they do in the SLDA.

  19. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    NASA Technical Reports Server (NTRS)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  20. Superfluid transition temperature in a trapped gas of Fermi atoms with a Feshbach resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Y.; Institute of Physics, University of Tsukuba, Ibaraki 305; Griffin, A.

    2003-03-01

    We investigate strong-coupling effects on the superfluid phase transition in a gas of Fermi atoms with a Feshbach resonance. The Feshbach resonance describes a composite quasiboson that can give rise to an additional pairing interaction between the Fermi atoms. This attractive interaction becomes stronger as the threshold energy 2{nu} of the Feshbach resonance two-particle bound state is lowered. In a recent paper, we showed that in the uniform Fermi gas, this tunable pairing interaction naturally leads to a crossover from a BCS state to a Bose-Einstein condensate (BEC) of the Nozieres and Schmitt-Rink kind, in which the BCS-type superfluid phasemore » transition continuously changes into the BEC type as the threshold energy is decreased. In this paper, we extend our previous work by including the effect of a harmonic trap potential, treated within the local-density approximation. We also give results for both weak and strong coupling to the Feshbach resonance. We show that the BCS-BEC crossover phenomenon strongly modifies the shape of the atomic density profile at the superfluid phase-transition temperature T{sub c}, reflecting the change of the dominant particles going from Fermi atoms to composite bosons. In the BEC regime, these composite bosons are shown to first appear well above T{sub c}. We also discuss the 'phase diagram' above T{sub c} as a function of the tunable threshold energy 2{nu}. We introduce a characteristic temperature T*(2{nu}) describing the effective crossover in the normal phase from a Fermi gas of atoms to a gas of stable molecules.« less

  1. Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution.

    PubMed

    Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin

    2014-01-08

    The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al . 2012 Proc. R. Soc. A 468 , 1799-1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi-Dirac or Bose-Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas.

  2. Implementing the correlated fermi gas nuclear model for quasielastic neutrino-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Tockstein, Jameson

    2017-09-01

    When studying neutrino oscillations an understanding of charged current quasielastic (CCQE) neutrino-nucleus scattering is imperative. This interaction depends on a nuclear model as well as knowledge of form factors. Neutrino experiments, such as MiniBooNE, often use the Relativistic Fermi Gas (RFG) nuclear model. Recently, the Correlated Fermi Gas (CFG) nuclear model was suggested in, based on inclusive and exclusive scattering experiments at JLab. We implement the CFG model for CCQE scattering. In particular, we provide analytic expressions for this implementation that can be used to analyze current and future neutrino CCQE data. This project was supported through the Wayne State University REU program under NSF Grant PHY-1460853 and by the DOE Grant DE-SC0007983.

  3. Thermodynamics of an ideal generalized gas: I. Thermodynamic laws.

    PubMed

    Lavenda, B H

    2005-11-01

    The equations of state for an ideal relativistic, or generalized, gas, like an ideal quantum gas, are expressed in terms of power laws of the temperature. In contrast to an ideal classical gas, the internal energy is a function of volume at constant temperature, implying that the ideal generalized gas will show either attractive or repulsive interactions. This is a necessary condition in order that the third law be obeyed and for matter to have an electromagnetic origin. The transition from an ideal generalized to a classical gas occurs when the two independent solutions of the subsidiary equation to Lagrange's equation coalesce. The equation of state relating the pressure to the internal energy encompasses the full range of cosmological scenarios, from the radiation to the matter dominated universes and finally to the vacuum energy, enabling the coefficient of proportionality, analogous to the Grüeisen ratio, to be interpreted in terms of the degrees of freedom related to the temperature exponents of the internal energy and the absolute temperature expressed in terms of a power of the empirical temperature. The limit where these exponents merge is shown to be the ideal classical gas limit. A corollary to Carnot's theorem is proved, asserting that the ratio of the work done over a cycle to the heat absorbed to increase the temperature at constant volume is the same for all bodies at the same volume. As power means, the energy and entropy are incomparable, and a new adiabatic potential is introduced by showing that the volume raised to a characteristic exponent is also the integrating factor for the quantity of heat so that the second law can be based on the property that power means are monotonically increasing functions of their order. The vanishing of the chemical potential in extensive systems implies that energy cannot be transported without matter and is equivalent to the condition that Clapeyron's equation be satisfied.

  4. Structural arrest in an ideal gas.

    PubMed

    van Ketel, Willem; Das, Chinmay; Frenkel, Daan

    2005-04-08

    We report a molecular dynamics study of a simple model system that has the static properties of an ideal gas, yet exhibits nontrivial "glassy" dynamics behavior at high densities. The constituent molecules of this system are constructs of three infinitely thin hard rods of length L, rigidly joined at their midpoints. The crosses have random but fixed orientation. The static properties of this system are those of an ideal gas, and its collision frequency can be computed analytically. For number densities NL(3)/V>1, the single-particle diffusivity goes to zero. As the system is completely structureless, standard mode-coupling theory cannot describe the observed structural arrest. Nevertheless, the system exhibits many dynamical features that appear to be mode-coupling-like. All high-density incoherent intermediate scattering functions collapse onto master curves that depend only on the wave vector.

  5. Energetics of a strongly correlated Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina

    2008-12-15

    The energy of the two-component Fermi gas with the s-wave contact interaction is a simple linear functional of its momentum distribution: E{sub internal}=h{sup 2}{omega}C/4{pi}am+{sigma}{sub k{sigma}}(h{sup 2}k{sup 2}/2m)(n{sub k{sigma}}= -C/k{sup 4}) where the external potential energy is not included, a is the scattering length, {omega} is the volume, n{sub k{sigma}} is the average number of fermions with wave vector k and spin {sigma}, and C{identical_to}lim{sub k{yields}}{sub {infinity}}k{sup 4}n{sub k{up_arrow}}=lim{sub k{yields}}{sub {infinity}}k{sup 4}n{sub k{down_arrow}}. This result is a universal identity. Its proof is facilitated by a novel mathematical idea, which might be of utility in dealing with ultraviolet divergences in quantum fieldmore » theories. Other properties of this Fermi system, including pair correlations and the dimer-fermion scattering length, are also studied.« less

  6. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    PubMed

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  7. Observation of Dynamical Super-Efimovian Expansion in a Unitary Fermi Gas

    NASA Astrophysics Data System (ADS)

    Deng, Shujin; Diao, Pengpeng; Li, Fang; Yu, Qianli; Yu, Shi; Wu, Haibin

    2018-03-01

    We report an observation of a dynamical super Efimovian expansion in a strongly interacting Fermi gas by engineering time dependent external harmonic trap frequencies. When the trap frequency is tailored as [1 /4 t2+1 /t2λ log2(t /t*)]1/2, where t* and λ are two controllable parameters, and the change is faster than a critical value, the expansion of such a quantum gas shows novel dynamics that share the same characteristics as the super Efimov effect. A clear double-log periodicity with discrete geometric scaling emerges for the cloud size in the expansion. The universality of such scaling dynamics is verified both in the noninteracting and in the unitarity limit of Fermi gas. Moreover, the measured energy scaling reveals that the potential and internal energy also show double-log periodicity with a π /2 phase difference, but the total energy is monotonically decreased. Observing super Efimovian evolution represents a paradigm in probing universal properties and allows us in a new way to study many-body nonequilibrium dynamics with experiments.

  8. Wide-range ideal 2D Rashba electron gas with large spin splitting in Bi2Se3/MoTe2 heterostructure

    NASA Astrophysics Data System (ADS)

    Wang, Te-Hsien; Jeng, Horng-Tay

    2017-02-01

    An application-expected ideal two-dimensional Rashba electron gas, i.e., nearly all the conduction electrons occupy the Rashba bands, is crucial for semiconductor spintronic applications. We demonstrate that such an ideal two-dimensional Rashba electron gas with a large Rashba splitting can be realized in a topological insulator Bi2Se3 ultrathin film grown on a transition metal dichalcogenides MoTe2 substrate through first-principle calculations. Our results show the Rashba bands exclusively over a very large energy interval of about 0.6 eV around the Fermi level within the MoTe2 semiconducting gap. Such a wide-range ideal two-dimensional Rashba electron gas with a large spin splitting, which is desirable for real devices utilizing the Rashba effect, has never been found before. Due to the strong spin-orbit coupling, the strength of the Rashba splitting is comparable with that of the heavy-metal surfaces such as Au and Bi surfaces, giving rise to a spin precession length as small as 10 nm. The maximum in-plane spin polarization of the inner (outer) Rashba band near the Γ point is about 70% (60%). The room-temperature coherence length is at least several times longer than the spin precession length, providing good coherency through the spin processing devices. The wide energy window for ideal Rashba bands, small spin precession length, as well as long spin coherence length in this two-dimensional topological insulator/transition metal dichalcogenides heterostructure pave the way for realizing an ultrathin nano-scale spintronic device such as the Datta-Das spin transistor at room-temperature.

  9. Performance of a multilevel quantum heat engine of an ideal N-particle Fermi system.

    PubMed

    Wang, Rui; Wang, Jianhui; He, Jizhou; Ma, Yongli

    2012-08-01

    We generalize the quantum heat engine (QHE) model which was first proposed by Bender et al. [J. Phys. A 33, 4427 (2000)] to the case in which an ideal Fermi gas with an arbitrary number N of particles in a box trap is used as the working substance. Besides two quantum adiabatic processes, the engine model contains two isoenergetic processes, during which the particles are coupled to energy baths at a high constant energy E(h) and a low constant energy E(c), respectively. Directly employing the finite-time thermodynamics, we find that the power output is enhanced by increasing particle number N (or decreasing minimum trap size L(A)) for given L(A) (or N), without reduction in the efficiency. By use of global optimization, the efficiency at possible maximum power output (EPMP) is found to be universal and independent of any parameter contained in the engine model. For an engine model with any particle-number N, the efficiency at maximum power output (EMP) can be determined under the condition that it should be closest to the EPMP. Moreover, we extend the heat engine to a more general multilevel engine model with an arbitrary 1D power-law potential. Comparison between our engine model and the Carnot cycle shows that, under the same conditions, the efficiency η = 1 - E(c)/E(h) of the engine cycle is bounded from above the Carnot value η(c) =1 - T(c)/T(h).

  10. Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes.

    PubMed

    Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I

    2006-04-07

    We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.

  11. Exotic superfluidity and pairing phenomena in atomic Fermi gases in mixed dimensions.

    PubMed

    Zhang, Leifeng; Che, Yanming; Wang, Jibiao; Chen, Qijin

    2017-10-11

    Atomic Fermi gases have been an ideal platform for simulating conventional and engineering exotic physical systems owing to their multiple tunable control parameters. Here we investigate the effects of mixed dimensionality on the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas with a short-range pairing interaction, while one component is confined on a one-dimensional (1D) optical lattice whereas the other is in a homogeneous 3D continuum. We study the phase diagram and the pseudogap phenomena throughout the entire BCS-BEC crossover, using a pairing fluctuation theory. We find that the effective dimensionality of the non-interacting lattice component can evolve from quasi-3D to quasi-1D, leading to strong Fermi surface mismatch. Upon pairing, the system becomes effectively quasi-two dimensional in the BEC regime. The behavior of T c bears similarity to that of a regular 3D population imbalanced Fermi gas, but with a more drastic departure from the regular 3D balanced case, featuring both intermediate temperature superfluidity and possible pair density wave ground state. Unlike a simple 1D optical lattice case, T c in the mixed dimensions has a constant BEC asymptote.

  12. Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas

    NASA Astrophysics Data System (ADS)

    Zhu, Ding Yu; Shen, Jian Qi

    2016-03-01

    The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth’s gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.

  13. Improving Students' Understanding of the Connections between the Concepts of Real-Gas Mixtures, Gas Ideal-Solutions, and Perfect-Gas Mixtures

    ERIC Educational Resources Information Center

    Privat, Romain; Jaubert, Jean-Noël; Moine, Edouard

    2016-01-01

    In many textbooks of chemical-engineering thermodynamics, a gas mixture obeying the fundamental law pV[subscript m] = RT is most often called ideal-gas mixture (in some rare cases, the term perfect-gas mixture can be found). These textbooks also define the fundamental concept of ideal solution which in theory, can be applied indifferently to…

  14. Weyl Superfluidity in a Three-dimensional Dipolar Fermi Gas

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Li, Xiaopeng; Yin, Lan; Liu, W. Vincent

    2015-03-01

    Weyl superconductivity or superfluidity, a fascinating topological state of matter, features novel phenomena such as emergent Weyl fermionic excitations and anomalies. Here we report that an anisotropic Weyl superfluid state can arise as a low temperature stable phase in a 3D dipolar Fermi gas. A crucial ingredient of our model is a direction-dependent two-body effective attraction generated by a rotating external field. Experimental signatures are predicted for cold gases in radio-frequency spectroscopy. The finite temperature phase diagram of this system is studied and the transition temperature of the Weyl superfluidity is found to be within the experimental scope for atomic dipolar Fermi gases. Work supported in part by U.S. ARO, AFOSR, DARPA-OLE-ARO, Charles E. Kaufman Foundation and The Pittsburgh Foundation, JQI-NSF-PFC, ARO-Atomtronics-MURI, and NSF of China.

  15. Unitary Fermi gas in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Chang, S. Y.; Bertsch, G. F.

    2007-08-01

    We present an ab initio calculation of small numbers of trapped, strongly interacting fermions using the Green’s function Monte Carlo method. The ground-state energy, density profile, and pairing gap are calculated for particle numbers N=2 22 using the parameter-free “unitary” interaction. Trial wave functions are taken in the form of correlated pairs in a harmonic oscillator basis. We find that the lowest energies are obtained with a minimum explicit pair correlation beyond that needed to exploit the degeneracy of oscillator states. We find that the energies can be well fitted by the expression aTFETF+Δmod(N,2) where ETF is the Thomas-Fermi energy of a noninteracting gas in the trap and Δ is the pairing gap. There is no evidence of a shell correction energy in the systematics, but the density distributions show pronounced shell effects. We find the value Δ=0.7±0.2ω for the pairing gap. This is smaller than the value found for the uniform gas at a density corresponding to the central density of the trapped gas.

  16. Observation of a Degenerate Fermi Gas Trapped by a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    DeSalvo, B. J.; Patel, Krutik; Johansen, Jacob; Chin, Cheng

    2017-12-01

    We report on the formation of a stable quantum degenerate mixture of fermionic 6Li and bosonic 133Cs in an optical trap by sympathetic cooling near an interspecies Feshbach resonance. New regimes of quantum degenerate Bose-Fermi mixtures are identified. With moderate attractive interspecies interactions, we show that a degenerate Fermi gas of Li can be fully confined in a Cs Bose-Einstein condensate without external potentials. For stronger attraction where mean-field collapse is expected, no such instability is observed. Potential mechanisms to explain this phenomenon are discussed.

  17. Progress towards a rapidly rotating ultracold Fermi gas

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Guang; van de Graaff, Michael; Cornell, Eric; Jin, Deborah

    2015-05-01

    We are designing an experiment with the goal of creating a rapidly rotating ultracold Fermi gas, which is promising system in which to study quantum Hall physics. We propose to use selective evaporation of a gas that has been initialized with a modest rotation rate to increase the angular momentum per particle in order to reach rapid rotation. We have performed simulations of this evaporation process for a model optical trap potential. Achieving rapid rotation will require a very smooth, very harmonic, and dynamically variable optical trap. We plan to use a setup consisting of two acousto-optical modulators to ``paint'' an optical dipole trapping potential that can be made smooth, radially symmetric, and harmonic. This project is supported by NSF, NIST, NASA.

  18. Fermi-edge superfluorescence from a quantum-degenerate electron-hole gas

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Hee; , G. Timothy Noe, II; McGill, Stephen A.; Wang, Yongrui; Wójcik, Aleksander K.; Belyanin, Alexey A.; Kono, Junichiro

    2013-11-01

    Nonequilibrium can be a source of order. This rather counterintuitive statement has been proven to be true through a variety of fluctuation-driven, self-organization behaviors exhibited by out-of-equilibrium, many-body systems in nature (physical, chemical, and biological), resulting in the spontaneous appearance of macroscopic coherence. Here, we report on the observation of spontaneous bursts of coherent radiation from a quantum-degenerate gas of nonequilibrium electron-hole pairs in semiconductor quantum wells. Unlike typical spontaneous emission from semiconductors, which occurs at the band edge, the observed emission occurs at the quasi-Fermi edge of the carrier distribution. As the carriers are consumed by recombination, the quasi-Fermi energy goes down toward the band edge, and we observe a continuously red-shifting streak. We interpret this emission as cooperative spontaneous recombination of electron-hole pairs, or superfluorescence (SF), which is enhanced by Coulomb interactions near the Fermi edge. This novel many-body enhancement allows the magnitude of the spontaneously developed macroscopic polarization to exceed the maximum value for ordinary SF, making electron-hole SF even more ``super'' than atomic SF.

  19. Ideal Gas Laws: Experiments for General Chemistry

    ERIC Educational Resources Information Center

    Deal, Walter J.

    1975-01-01

    Describes a series of experiments designed to verify the various relationships implicit in the ideal gas equation and shows that the success of the Graham's law effusion experiments can be explained by elementary hydrodynamics. (GS)

  20. Thermodynamics of an Attractive 2D Fermi Gas

    NASA Astrophysics Data System (ADS)

    Fenech, K.; Dyke, P.; Peppler, T.; Lingham, M. G.; Hoinka, S.; Hu, H.; Vale, C. J.

    2016-01-01

    Thermodynamic properties of matter are conveniently expressed as functional relations between variables known as equations of state. Here we experimentally determine the compressibility, density, and pressure equations of state for an attractive 2D Fermi gas in the normal phase as a function of temperature and interaction strength. In 2D, interacting gases exhibit qualitatively different features to those found in 3D. This is evident in the normalized density equation of state, which peaks at intermediate densities corresponding to the crossover from classical to quantum behavior.

  1. 40 CFR 1065.645 - Amount of water in an ideal gas.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Amount of water in an ideal gas. 1065.645 Section 1065.645 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.645 Amount of water in an ideal gas. This section describes how to...

  2. 40 CFR 1065.645 - Amount of water in an ideal gas.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Amount of water in an ideal gas. 1065.645 Section 1065.645 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.645 Amount of water in an ideal gas. This section describes how to...

  3. 40 CFR 1065.645 - Amount of water in an ideal gas.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Amount of water in an ideal gas. 1065.645 Section 1065.645 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.645 Amount of water in an ideal gas. This section describes how to...

  4. Superfluid quenching of the moment of inertia in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Riedl, S.; Sánchez Guajardo, E. R.; Kohstall, C.; Hecker Denschlag, J.; Grimm, R.

    2011-03-01

    We report on the observation of a quenched moment of inertia resulting from superfluidity in a strongly interacting Fermi gas. Our method is based on setting the hydrodynamic gas in slow rotation and determining its angular momentum by detecting the precession of a radial quadrupole excitation. The measurements distinguish between the superfluid and collisional origins of hydrodynamic behavior, and show the phase transition.

  5. Ideal gas thermodynamic properties for the phenyl, phenoxy, and o-biphenyl radicals

    NASA Technical Reports Server (NTRS)

    Burcat, A.; Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    Ideal gas thermodynamic properties of the phenyl and o-biphenyl radicals, their deuterated analogs and the phenoxy radical were calculated to 5000 K using estimated vibrational frequencies and structures. The ideal gas thermodynamic properties of benzene, biphenyl, their deuterated analogs and phenyl were also calculated.

  6. Response Functions for the Two-Dimensional Ultracold Fermi Gas: Dynamical BCS Theory and Beyond

    NASA Astrophysics Data System (ADS)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-12-01

    Response functions are central objects in physics. They provide crucial information about the behavior of physical systems, and they can be directly compared with scattering experiments involving particles such as neutrons or photons. Calculations of such functions starting from the many-body Hamiltonian of a physical system are challenging and extremely valuable. In this paper, we focus on the two-dimensional (2D) ultracold Fermi atomic gas which has been realized experimentally. We present an application of the dynamical BCS theory to obtain response functions for different regimes of interaction strengths in the 2D gas with zero-range attractive interaction. We also discuss auxiliary-field quantum Monte Carlo (AFQMC) methods for the calculation of imaginary time correlations in these dilute Fermi gas systems. Illustrative results are given and comparisons are made between AFQMC and dynamical BCS theory results to assess the accuracy of the latter.

  7. Do the Particles of an Ideal Gas Collide?

    ERIC Educational Resources Information Center

    Lesk, Arthur M.

    1974-01-01

    Describes the collisional properties as a logically essential component of the ideal gas model since an actual intraparticle process cannot support observable anisotropic velocity distributions without collisions taken into account. (CC)

  8. On the ground state energy of the delta-function Fermi gas

    NASA Astrophysics Data System (ADS)

    Tracy, Craig A.; Widom, Harold

    2016-10-01

    The weak coupling asymptotics to order γ of the ground state energy of the delta-function Fermi gas, derived heuristically in the literature, is here made rigorous. Further asymptotics are in principle computable. The analysis applies to the Gaudin integral equation, a method previously used by one of the authors for the asymptotics of large Toeplitz matrices.

  9. How Is the Ideal Gas Law Explanatory?

    ERIC Educational Resources Information Center

    Woody, Andrea I.

    2013-01-01

    Using the ideal gas law as a comparative example, this essay reviews contemporary research in philosophy of science concerning scientific explanation. It outlines the inferential, causal, unification, and erotetic conceptions of explanation and discusses an alternative project, the functional perspective. In each case, the aim is to highlight…

  10. Stability of the two-dimensional Fermi polaron

    NASA Astrophysics Data System (ADS)

    Griesemer, Marcel; Linden, Ulrich

    2018-02-01

    A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.

  11. Propagation of second sound in a superfluid Fermi gas in the unitary limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arahata, Emiko; Nikuni, Tetsuro

    2009-10-15

    We study sound propagation in a uniform superfluid gas of Fermi atoms in the unitary limit. The existence of normal and superfluid components leads to appearance of two sound modes in the collisional regime, referred to as first and second sounds. The second sound is of particular interest as it is a clear signal of a superfluid component. Using Landau's two-fluid hydrodynamic theory, we calculate hydrodynamic sound velocities and these weights in the density response function. The latter is used to calculate the response to a sudden modification of the external potential generating pulse propagation. The amplitude of a pulsemore » which is proportional to the weight in the response function is calculated, the basis of the approach of Nozieres and Schmitt-Rink for the BCS-BEC. We show that, in a superfluid Fermi gas at unitarity, the second-sound pulse is excited with an appreciate amplitude by density perturbations.« less

  12. Condensation and critical exponents of an ideal non-Abelian gas

    NASA Astrophysics Data System (ADS)

    Talaei, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein

    2017-11-01

    We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as \\vert T-Tc\\vert^{-ρ} in which Tc denotes the condensation temperature and ρ is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.

  13. Polaron-to-Polaron Transitions in the Radio-Frequency Spectrum of a Quasi-Two-Dimensional Fermi Gas

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ong, W.; Arakelyan, I.; Thomas, J. E.

    2012-06-01

    We measure radio-frequency spectra for a two-component mixture of a Li6 atomic Fermi gas in a quasi-two-dimensional regime with the Fermi energy comparable to the energy level spacing in the tightly confining potential. Near the Feshbach resonance, we find that the observed resonances do not correspond to transitions between confinement-induced dimers. The spectral shifts can be fit by assuming transitions between noninteracting polaron states in two dimensions.

  14. High School Forum. The Solution: "Derivation of the Ideal Gas Law."

    ERIC Educational Resources Information Center

    Herron, J. Dudley, Ed.

    1980-01-01

    Presents responses to an earlier report concerning a procedure for the derivation of the Ideal Gas Law from Charles', Boyle's, and other gas laws. Logic errors and solutions that work are discussed. (CS)

  15. {pi} junction and spontaneous current state in a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashimura, Takashi; Tsuchiya, Shunji; CREST

    2011-07-15

    We discuss an idea to realize a spontaneous current in a superfluid Fermi gas. When a polarized Fermi superfluid (N{sub {up_arrow}}>N{sub {down_arrow}}, where N{sub {sigma}} is the number of atoms in the hyperfine state described by pseudospin {sigma}={up_arrow},{down_arrow}) is loaded onto a ring-shaped trap with a weak potential barrier, some excess atoms ({Delta}N=N{sub {up_arrow}}-N{sub {down_arrow}}) are localized around the barrier. As shown in our previous paper [T. Kashimura, S. Tsuchiya, and Y. Ohashi, Phys. Rev. A 82, 033617 (2010)], this polarized potential barrier works as a {pi} junction in the sense that the superfluid order parameter changes its sign acrossmore » the barrier. Because of this, the phase of the superfluid order parameter outside the junction is shown to be twisted by {pi} along the ring, which naturally leads to a circulating supercurrent. While the ordinary supercurrent state is obtained as a metastable state, this spontaneous current state is shown to be more stable than the case with no current. Our results indicate that localized excess atoms would be useful for the manipulation of the superfluid order parameter in cold Fermi gases.« less

  16. A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models

    NASA Technical Reports Server (NTRS)

    Luo, Li-Shi

    1998-01-01

    A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.

  17. Effect of pairwise additivity on finite-temperature behavior of classical ideal gas

    NASA Astrophysics Data System (ADS)

    Shekaari, Ashkan; Jafari, Mahmoud

    2018-05-01

    Finite-temperature molecular dynamics simulations have been applied to inquire into the effect of pairwise additivity on the behavior of classical ideal gas within the temperature range of T = 250-4000 K via applying a variety of pair potentials and then examining the temperature dependence of a number of thermodynamical properties. Examining the compressibility factor reveals the most deviation from ideal-gas behavior for the Lennard-Jones system mainly due to the presence of both the attractive and repulsive terms. The systems with either attractive or repulsive intermolecular potentials are found to present no resemblance to real gases, but the most similarity to the ideal one as temperature rises.

  18. Fluctuation theorem for the effusion of an ideal gas.

    PubMed

    Cleuren, B; Van den Broeck, C; Kawai, R

    2006-08-01

    The probability distribution of the entropy production for the effusion of an ideal gas between two compartments is calculated explicitly. The fluctuation theorem is verified. The analytic results are in good agreement with numerical data from hard disk molecular dynamics simulations.

  19. Computer program for calculation of ideal gas thermodynamic data

    NASA Technical Reports Server (NTRS)

    Gordon, S.; Mc Bride, B. J.

    1968-01-01

    Computer program calculates ideal gas thermodynamic properties for any species for which molecular constant data is available. Partial functions and derivatives from formulas based on statistical mechanics are provided by the program which is written in FORTRAN 4 and MAP.

  20. Closed-channel contribution in the BCS-BEC crossover regime of an ultracold Fermi gas with an orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Mondal, S.; Inotani, D.; Ohashi, Y.

    2018-03-01

    We theoretically investigate strong-coupling properties of an ultracold Fermi gas with an orbital Feshbach resonance (OFR). Including tunable pairing interaction associated with an OFR within the framework of the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR), we examine the occupation of the closed channel. We show that, although the importance of the closed channel is characteristic of the system with an OFR, the occupation number of the closed channel is found to actually be very small at the superfluid phase transition temperature T c, in the whole BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover region, when we use the scattering parameters for an ultracold 173Yb Fermi gas. The occupation of the closed channel increases with increasing the temperature above T c, which is more remarkable for a stronger pairing interaction. We also present a prescription to remove effects of an experimentally inaccessible deep bound state from the NSR formalism, which we meet when we theoretically deal with a 173Yb Fermi gas with an OFR.

  1. Low-momentum dynamic structure factor of a strongly interacting Fermi gas at finite temperature: A two-fluid hydrodynamic description

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Zou, Peng; Liu, Xia-Ji

    2018-02-01

    We provide a description of the dynamic structure factor of a homogeneous unitary Fermi gas at low momentum and low frequency, based on the dissipative two-fluid hydrodynamic theory. The viscous relaxation time is estimated and is used to determine the regime where the hydrodynamic theory is applicable and to understand the nature of sound waves in the density response near the superfluid phase transition. By collecting the best knowledge on the shear viscosity and thermal conductivity known so far, we calculate the various diffusion coefficients and obtain the damping width of the (first and second) sounds. We find that the damping width of the first sound is greatly enhanced across the superfluid transition and very close to the transition the second sound might be resolved in the density response for the transferred momentum up to half of Fermi momentum. Our work is motivated by the recent measurement of the local dynamic structure factor at low momentum at Swinburne University of Technology and the ongoing experiment on sound attenuation of a homogeneous unitary Fermi gas at Massachusetts Institute of Technology. We discuss how the measurement of the velocity and damping width of the sound modes in low-momentum dynamic structure factor may lead to an improved determination of the universal superfluid density, shear viscosity, and thermal conductivity of a unitary Fermi gas.

  2. Use, misuse and extensions of "ideal gas" models of animal encounter.

    PubMed

    Hutchinson, John M C; Waser, Peter M

    2007-08-01

    Biologists have repeatedly rediscovered classical models from physics predicting collision rates in an ideal gas. These models, and their two-dimensional analogues, have been used to predict rates and durations of encounters among animals or social groups that move randomly and independently, given population density, velocity, and distance at which an encounter occurs. They have helped to separate cases of mixed-species association based on behavioural attraction from those that simply reflect high population densities, and to detect cases of attraction or avoidance among conspecifics. They have been used to estimate the impact of population density, speeds of movement and size on rates of encounter between members of the opposite sex, between gametes, between predators and prey, and between observers and the individuals that they are counting. One limitation of published models has been that they predict rates of encounter, but give no means of determining whether observations differ significantly from predictions. Another uncertainty is the robustness of the predictions when animal movements deviate from the model's assumptions in specific, biologically relevant ways. Here, we review applications of the ideal gas model, derive extensions of the model to cover some more realistic movement patterns, correct several errors that have arisen in the literature, and show how to generate confidence limits for expected rates of encounter among independently moving individuals. We illustrate these results using data from mangabey monkeys originally used along with the ideal gas model to argue that groups avoid each other. Although agent-based simulations provide a more flexible alternative approach, the ideal gas model remains both a valuable null model and a useful, less onerous, approximation to biological reality.

  3. A Demonstration of Ideal Gas Principles Using a Football.

    ERIC Educational Resources Information Center

    Bare, William D.; Andrews, Lester

    1999-01-01

    Uses a true-to-life story of accusations made against a college football team to illustrate ideal gas laws. Students are asked to decide whether helium-filled footballs would increase punt distances and how to determine whether a football contained air or helium. (WRM)

  4. First and second sound in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Taylor, E.; Hu, H.; Liu, X.-J.; Pitaevskii, L. P.; Griffin, A.; Stringari, S.

    2009-11-01

    Using a variational approach, we solve the equations of two-fluid hydrodynamics for a uniform and trapped Fermi gas at unitarity. In the uniform case, we find that the first and second sound modes are remarkably similar to those in superfluid helium, a consequence of strong interactions. In the presence of harmonic trapping, first and second sound become degenerate at certain temperatures. At these points, second sound hybridizes with first sound and is strongly coupled with density fluctuations, giving a promising way of observing second sound. We also discuss the possibility of exciting second sound by generating local heat perturbations.

  5. Quantum criticality of one-dimensional multicomponent Fermi gas with strongly attractive interaction

    NASA Astrophysics Data System (ADS)

    He, Peng; Jiang, Yuzhu; Guan, Xiwen; He, Jinyu

    2015-01-01

    Quantum criticality of strongly attractive Fermi gas with SU(3) symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations. The phase transitions driven by the chemical potential μ , effective magnetic field H1, H2 (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the TBA equations in the zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent z=2 and correlation length exponent ν =1/2 read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multicomponent Fermi gases with SU(N) symmetry.

  6. Shock wave structure in an ideal dissociating gas

    NASA Technical Reports Server (NTRS)

    Liu, K. H.

    1975-01-01

    Composition changes within the shock layer due to chemical reactions are considered. The Lighthill ideal dissociating gas model was used in an effort to describe the oxygen type molecule. First, the two limiting cases, when the chemical reaction rates are very slow and very fast in comparison to local convective rates, are investigated. Then, the problem is solved for arbitrary chemical reaction rates.

  7. Kohn's theorem in a superfluid Fermi gas with a Feshbach resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Y.

    2004-12-01

    We investigate the dipole mode in a superfluid gas of Fermi atoms trapped in a harmonic potential. According to Kohn's theorem, the frequency of this collective mode is not affected by an interaction between the atoms and is always equal to the trap frequency. This remarkable property, however, does not necessarily hold in an approximate theory. We explicitly prove that the Hartree-Fock-Bogoliubov generalized random phase approximation (HFB-GRPA), including a coupling between fluctuations in the density and Cooper channels, is consistent with both Kohn's theorem as well as Goldstone's theorem. This proof can be immediately extended to the strong-coupling superfluid theorymore » developed by Nozieres and Schmitt-Rink (NSR), where the effect of superfluid fluctuations is included within the Gaussian level. As a result, the NSR-GRPA formalism can be used to study collective modes in the BCS-BEC crossover region in a manner which is consistent with Kohn's theorem. We also include the effect of a Feshbach resonance and a condensate of the associated molecular bound states. A detailed discussion is given of the unusual nature of the Kohn mode eigenfunctions in a Fermi superfluid, in the presence and absence of a Feshbach resonance. When the molecular bosons feel a different trap frequency from the Fermi atoms, the dipole frequency is shown to depend on the strength of effective interaction associated with the Feshbach resonance.« less

  8. Contact interaction in an unitary ultracold Fermi gas

    DOE PAGES

    Pessoa, Renato; Gandolfi, Stefano; Vitiello, S. A.; ...

    2015-12-16

    An ultracold Fermi atomic gas at unitarity presents universal properties that in the dilute limit can be well described by a contact interaction. By employing a guiding function with correct boundary conditions and making simple modifications to the sampling procedure we are able to calculate the properties of a true contact interaction with the diffusion Monte Carlo method. The results are obtained with small variances. Our calculations for the Bertsch and contact parameters are in excellent agreement with published experiments. The possibility of using a more faithful description of ultracold atomic gases can help uncover additional features of ultracold atomicmore » gases. In addition, this work paves the way to perform quantum Monte Carlo calculations for other systems interacting with contact interactions, where the description using potentials with finite effective range might not be accurate.« less

  9. Measurement of optical Feshbach resonances in an ideal gas.

    PubMed

    Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J

    2011-08-12

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  10. Pseudogap temperature and effects of a harmonic trap in the BCS-BEC crossover regime of an ultracold Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Shunji; Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kanagawa 223-8521; CREST

    2011-10-15

    We theoretically investigate excitation properties in the pseudogap regime of a trapped Fermi gas. Using a combined T-matrix theory with the local density approximation, we calculate strong-coupling corrections to single-particle local density of states (LDOS), as well as the single-particle local spectral weight (LSW). Starting from the superfluid phase transition temperature T{sub c}, we clarify how the pseudogap structures in these quantities disappear with increasing the temperature. As in the case of a uniform Fermi gas, LDOS and LSW give different pseudogap temperatures T{sup *} and T{sup **} at which the pseudogap structures in these quantities completely disappear. Determining T{supmore » *} and T{sup **} over the entire BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover region, we identify the pseudogap regime in the phase diagram with respect to the temperature and the interaction strength. We also show that the so-called back-bending peak recently observed in the photoemission spectra by the JILA group may be explained as an effect of pseudogap phenomenon in the trap center. Since strong pairing fluctuations, spatial inhomogeneity, and finite temperatures are important keys in considering real cold Fermi gases, our results would be useful for clarifying normal-state properties of this strongly interacting Fermi system.« less

  11. Generalized virial theorem and pressure relation for a strongly correlated Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina

    2008-12-15

    For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations.

  12. The energy density distribution of an ideal gas and Bernoulli’s equations

    NASA Astrophysics Data System (ADS)

    Santos, Leonardo S. F.

    2018-05-01

    This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the

  13. High-temperature behavior of a deformed Fermi gas obeying interpolating statistics.

    PubMed

    Algin, Abdullah; Senay, Mustafa

    2012-04-01

    An outstanding idea originally introduced by Greenberg is to investigate whether there is equivalence between intermediate statistics, which may be different from anyonic statistics, and q-deformed particle algebra. Also, a model to be studied for addressing such an idea could possibly provide us some new consequences about the interactions of particles as well as their internal structures. Motivated mainly by this idea, in this work, we consider a q-deformed Fermi gas model whose statistical properties enable us to effectively study interpolating statistics. Starting with a generalized Fermi-Dirac distribution function, we derive several thermostatistical functions of a gas of these deformed fermions in the thermodynamical limit. We study the high-temperature behavior of the system by analyzing the effects of q deformation on the most important thermostatistical characteristics of the system such as the entropy, specific heat, and equation of state. It is shown that such a deformed fermion model in two and three spatial dimensions exhibits the interpolating statistics in a specific interval of the model deformation parameter 0 < q < 1. In particular, for two and three spatial dimensions, it is found from the behavior of the third virial coefficient of the model that the deformation parameter q interpolates completely between attractive and repulsive systems, including the free boson and fermion cases. From the results obtained in this work, we conclude that such a model could provide much physical insight into some interacting theories of fermions, and could be useful to further study the particle systems with intermediate statistics.

  14. Precursor of superfluidity in a strongly interacting Fermi gas with negative effective range

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki

    2018-04-01

    We investigate theoretically the effects of pairing fluctuations in an ultracold Fermi gas near a Feshbach resonance with a negative effective range. By employing a many-body T -matrix theory with a coupled fermion-boson model, we show that the single-particle density of states exhibits the so-called pseudogap phenomenon, which is a precursor of superfluidity induced by strong pairing fluctuations. We clarify the region where strong pairing fluctuations play a crucial role in single-particle properties, from the broad-resonance region to the narrow-resonance limit at the divergent two-body scattering length. We also extrapolate the effects of pairing fluctuations to the positive-effective-range region from our results near the narrow Feshbach resonance. Results shown in this paper are relevant to the connection between ultracold Fermi gases and low-density neutron matter from the viewpoint of finite-effective-range corrections.

  15. A notable difference between ideal gas and infinite molar volume limit of van der Waals gas

    NASA Astrophysics Data System (ADS)

    Liu, Q. H.; Shen, Y.; Bai, R. L.; Wang, X.

    2010-05-01

    The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.

  16. Large momentum part of a strongly correlated Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina

    2008-12-15

    It is well known that the momentum distribution of the two-component Fermi gas with large scattering length has a tail proportional to 1/k{sup 4} at large k. We show that the magnitude of this tail is equal to the adiabatic derivative of the energy with respect to the reciprocal of the scattering length, multiplied by a simple constant. This result holds at any temperature (as long as the effective interaction radius is negligible) and any large scattering length; it also applies to few-body cases. We then show some more connections between the 1/k{sup 4} tail and various physical quantities, includingmore » the pressure at thermal equilibrium and the rate of change of energy in a dynamic sweep of the inverse scattering length.« less

  17. Path integral Monte Carlo determination of the fourth-order virial coefficient for unitary two-component Fermi gas with zero-range interactions

    NASA Astrophysics Data System (ADS)

    Yan, Yangqian; Blume, D.

    2016-05-01

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astro physics. This work determines the fourth-order virial coefficient b4 of such a strongly-interacting Fermi gas using a customized ab inito path integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4, our b4 agrees with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly anti-symmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions. We gratefully acknowledge support by the NSF.

  18. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part I: Equations of State.

    ERIC Educational Resources Information Center

    Smith, Brent

    2002-01-01

    Describes equations of state as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of an ideal gas and explains the molar basis of REM. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (Contains 22 references.)…

  19. Condensation of an ideal gas obeying non-Abelian statistics.

    PubMed

    Mirza, Behrouz; Mohammadzadeh, Hosein

    2011-09-01

    We consider the thermodynamic geometry of an ideal non-Abelian gas. We show that, for a certain value of the fractional parameter and at the relevant maximum value of fugacity, the thermodynamic curvature has a singular point. This indicates a condensation such as Bose-Einstein condensation for non-Abelian statistics and we work out the phase transition temperature in various dimensions.

  20. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics.

    ERIC Educational Resources Information Center

    Smith, Brent

    2002-01-01

    Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)

  1. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.

    PubMed

    Zhou, Changjie; Yang, Weihuang; Zhu, Huili

    2015-06-07

    Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS2 upon adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS2 with a low degree of charge transfer and accept charge from the monolayer, except for NH3, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS2 are not significantly altered upon adsorption of H2, H2O, NH3, and CO, whereas the lowest unoccupied molecular orbitals of O2, NO, and NO2 are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS2. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS2. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.

  2. Two-dimensional Fermi gas in spin-dependent magnetic fields

    NASA Astrophysics Data System (ADS)

    Anzai, Takaaki; Nishida, Yusuke

    Experimental techniques in ultracold atoms allow us to tune parameters of the system at will. In particular, synthetic magnetic fields have been created by using the atom-light coupling and, therefore, it is interesting to study what kinds of quantum phenomena appear in correlated ultracold atoms subjected to synthetic magnetic fields. In this work, we consider a two-dimensional Fermi gas with two spin states in spin-dependent magnetic fields which are assumed to be antiparallel for different spin states. By studying the ground-state phase diagram within the mean-field approximation, we find quantum spin Hall and superfluid phases separated by a second-order phase transition. We also show that there are regions where the superfluid gap parameter is proportional to the attractive coupling, which is in marked contrast to the usual exponential dependence. Moreover, we elucidate that the universality class of the phase transition belongs to that of the XY model at special points of the phase boundary, while it belongs to that of a dilute Bose gas anywhere else. International Research Center for Nanoscience and Quantum Physics, Tokyo Institute of Technology.

  3. Potential Engineering of Fermi-Hubbard Systems using a Quantum Gas Microscope

    NASA Astrophysics Data System (ADS)

    Ji, Geoffrey; Mazurenko, Anton; Chiu, Christie; Parsons, Maxwell; Kanász-Nagy, Márton; Schmidt, Richard; Grusdt, Fabian; Demler, Eugene; Greif, Daniel; Greiner, Markus

    2017-04-01

    Arbitrary control of optical potentials has emerged as an important tool in manipulating ultracold atomic systems, especially when combined with the single-site addressing afforded by quantum gas microscopy. Already, experiments have used digital micromirror devices (DMDs) to initialize and control ultracold atomic systems in the context of studying quantum walks, quantum thermalization, and many-body localization. Here, we report on progress in using a DMD located in the image plane of a quantum gas microscope to explore static and dynamic properties of a 2D Fermi-Hubbard system. By projecting a large, ring-shaped anti-confining potential, we demonstrate entropy redistribution and controlled doping of the system. Moreover, we use the DMD to prepare localized holes, which upon release interact with and disrupt the surrounding spin environment. These techniques pave the way for controlled investigations of dynamics in the low-temperature phases of the Hubbard model.

  4. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions

    NASA Astrophysics Data System (ADS)

    Yan, Yangqian; Blume, D.

    2016-06-01

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b4 of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b4 , our b4 agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

  5. Experimental Verification of Boyle's Law and the Ideal Gas Law

    ERIC Educational Resources Information Center

    Ivanov, Dragia Trifonov

    2007-01-01

    Two new experiments are offered concerning the experimental verification of Boyle's law and the ideal gas law. To carry out the experiments, glass tubes, water, a syringe and a metal manometer are used. The pressure of the saturated water vapour is taken into consideration. For educational purposes, the experiments are characterized by their…

  6. Computations of ideal and real gas high altitude plume flows

    NASA Technical Reports Server (NTRS)

    Feiereisen, William J.; Venkatapathy, Ethiraj

    1988-01-01

    In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.

  7. Oscillatory conductive heat transfer for a fiber in an ideal gas

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Perreira, N. D.

    1985-01-01

    A description of the thermal effects created by placing a cylindrical fiber in an inviscid, ideal gas, through which an acoustic wave propagates, is presented. The fibers and the gas have finite heat capacities and thermal conductivities. Expressions for the temperature distribution in the gas and in the material are determined. The temperature distribution is caused by pressure oscillations in the gas which, in turn, are caused by the passage of an acoustic wave. The relative value of a dimensionless parameter is found to be indicative of whether the exact or approximate equations should be used in the solution. This parameter is a function of the thermal conductivities and heat capacities of the fiber and gas, the acoustic frequency, and the fiber diameter.

  8. Relativistic quantum thermodynamics of ideal gases in two dimensions.

    PubMed

    Blas, H; Pimentel, B M; Tomazelli, J L

    1999-11-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  9. Microeconomics of the ideal gas like market models

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Anindya S.; Chakrabarti, Bikas K.

    2009-10-01

    We develop a framework based on microeconomic theory from which the ideal gas like market models can be addressed. A kinetic exchange model based on that framework is proposed and its distributional features have been studied by considering its moments. Next, we derive the moments of the CC model (Eur. Phys. J. B 17 (2000) 167) as well. Some precise solutions are obtained which conform with the solutions obtained earlier. Finally, an output market is introduced with global price determination in the model with some necessary modifications.

  10. Fluctuations in non-ideal pion gas with dynamically fixed particle number

    NASA Astrophysics Data System (ADS)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2018-05-01

    We consider a non-ideal hot pion gas with the dynamically fixed number of particles in the model with the λϕ4 interaction. The effective Lagrangian for the description of such a system is obtained after dropping the terms responsible for the change of the total particle number. Reactions π+π- ↔π0π0, which determine the isospin balance of the medium, are permitted. Within the self-consistent Hartree approximation we compute the effective pion mass, thermodynamic characteristics of the system and the variance of the particle number at temperatures above the critical point of the induced Bose-Einstein condensation when the pion chemical potential reaches the value of the effective pion mass. We analyze conditions for the condensate formation in the process of thermalization of an initially non-equilibrium pion gas. The normalized variance of the particle number increases with a temperature decrease but remains finite in the critical point of the Bose-Einstein condensation. This is due to the non-perturbative account of the interaction and is in contrast to the ideal-gas case. In the kinetic regime of the condensate formation the variance is shown to stay finite also.

  11. Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš

    2018-06-01

    The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.

  12. From Free Expansion to Abrupt Compression of an Ideal Gas

    ERIC Educational Resources Information Center

    Anacleto, Joaquim; Pereira, Mario G.

    2009-01-01

    Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 [less than or equal] r [less than or equal] 1 for expansions and r [greater than or equal] 1 for compressions.…

  13. Bose-Einstein condensation in the relativistic ideal Bose gas.

    PubMed

    Grether, M; de Llano, M; Baker, George A

    2007-11-16

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.

  14. The pressure and entropy of a unitary Fermi gas with particle-hole fluctuation

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Ruan, Xiao-Xia; Zong, Hong-Shi

    2018-01-01

    We calculate the pressure and entropy of a unitary Fermi gas based on universal relations combined with our previous prediction of energy which was calculated within the framework of the non-self-consistent T-matrix approximation with particle-hole fluctuation. The resulting entropy and pressure are compared with the experimental data and the theoretical results without induced interaction. For entropy, we find good agreement between our results with particle-hole fluctuation and the experimental measurements reported by ENS group and MIT experiment. For pressure, our results suffer from a systematic upshift compared to MIT data.

  15. Path-Integral Monte Carlo Determination of the Fourth-Order Virial Coefficient for a Unitary Two-Component Fermi Gas with Zero-Range Interactions.

    PubMed

    Yan, Yangqian; Blume, D

    2016-06-10

    The unitary equal-mass Fermi gas with zero-range interactions constitutes a paradigmatic model system that is relevant to atomic, condensed matter, nuclear, particle, and astrophysics. This work determines the fourth-order virial coefficient b_{4} of such a strongly interacting Fermi gas using a customized ab initio path-integral Monte Carlo (PIMC) algorithm. In contrast to earlier theoretical results, which disagreed on the sign and magnitude of b_{4}, our b_{4} agrees within error bars with the experimentally determined value, thereby resolving an ongoing literature debate. Utilizing a trap regulator, our PIMC approach determines the fourth-order virial coefficient by directly sampling the partition function. An on-the-fly antisymmetrization avoids the Thomas collapse and, combined with the use of the exact two-body zero-range propagator, establishes an efficient general means to treat small Fermi systems with zero-range interactions.

  16. Boltzmann equations for a binary one-dimensional ideal gas.

    PubMed

    Boozer, A D

    2011-09-01

    We consider a time-reversal invariant dynamical model of a binary ideal gas of N molecules in one spatial dimension. By making time-asymmetric assumptions about the behavior of the gas, we derive Boltzmann and anti-Boltzmann equations that describe the evolution of the single-molecule velocity distribution functions for an ensemble of such systems. We show that for a special class of initial states of the ensemble one can obtain an exact expression for the N-molecule velocity distribution function, and we use this expression to rigorously prove that the time-asymmetric assumptions needed to derive the Boltzmann and anti-Boltzmann equations hold in the limit of large N. Our results clarify some subtle issues regarding the origin of the time asymmetry of Boltzmann's H theorem.

  17. Testing the nonlocal kinetic energy functional of an inhomogeneous, two-dimensional degenerate Fermi gas within the average density approximation

    NASA Astrophysics Data System (ADS)

    Towers, J.; van Zyl, B. P.; Kirkby, W.

    2015-08-01

    In a recent paper [B. P. van Zyl et al., Phys. Rev. A 89, 022503 (2014), 10.1103/PhysRevA.89.022503], the average density approximation (ADA) was implemented to develop a parameter-free, nonlocal kinetic energy functional to be used in the orbital-free density functional theory of an inhomogeneous, two-dimensional (2D) Fermi gas. In this work, we provide a detailed comparison of self-consistent calculations within the ADA with the exact results of the Kohn-Sham density functional theory and the elementary Thomas-Fermi (TF) approximation. We demonstrate that the ADA for the 2D kinetic energy functional works very well under a wide variety of confinement potentials, even for relatively small particle numbers. Remarkably, the TF approximation for the kinetic energy functional, without any gradient corrections, also yields good agreement with the exact kinetic energy for all confining potentials considered, although at the expense of the spatial and kinetic energy densities exhibiting poor pointwise agreement, particularly near the TF radius. Our findings illustrate that the ADA kinetic energy functional yields accurate results for both the local and global equilibrium properties of an inhomogeneous 2D Fermi gas, without the need for any fitting parameters.

  18. How Incorrect Is the Classical Partition Function for the Ideal Gas?

    ERIC Educational Resources Information Center

    Kroemer, Herbert

    1980-01-01

    Discussed is the classical partition function for the ideal gas and how it differs from the exact value for bosons or fermions in the classical regime. The differences in the two values are negligible hence the classical treatment leads in the end to correct answers for all observables. (Author/DS)

  19. Fluctuation theorem for entropy production during effusion of a relativistic ideal gas.

    PubMed

    Cleuren, B; Willaert, K; Engel, A; Van den Broeck, C

    2008-02-01

    The probability distribution of the entropy production for the effusion of a relativistic ideal gas is calculated explicitly. This result is then extended to include particle and antiparticle pair production and annihilation. In both cases, the fluctuation theorem is verified.

  20. Single-particle spectral density of the unitary Fermi gas: Novel approach based on the operator product expansion, sum rules and the maximum entropy method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubler, Philipp, E-mail: pgubler@riken.jp; RIKEN Nishina Center, Wako, Saitama 351-0198; Yamamoto, Naoki

    2015-05-15

    Making use of the operator product expansion, we derive a general class of sum rules for the imaginary part of the single-particle self-energy of the unitary Fermi gas. The sum rules are analyzed numerically with the help of the maximum entropy method, which allows us to extract the single-particle spectral density as a function of both energy and momentum. These spectral densities contain basic information on the properties of the unitary Fermi gas, such as the dispersion relation and the superfluid pairing gap, for which we obtain reasonable agreement with the available results based on quantum Monte-Carlo simulations.

  1. Kinetic Models for Adiabatic Reversible Expansion of a Monatomic Ideal Gas.

    ERIC Educational Resources Information Center

    Chang, On-Kok

    1983-01-01

    A fixed amount of an ideal gas is confined in an adiabatic cylinder and piston device. The relation between temperature and volume in initial/final phases can be derived from the first law of thermodynamics. However, the relation can also be derived based on kinetic models. Several of these models are discussed. (JN)

  2. Induced interaction in a Fermi gas with a BEC-BCS crossover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Zengqiang; Huang Kun; Yin Lan

    2009-05-15

    We study the effect of the induced interaction on the superfluid transition temperature of a Fermi gas with a Bose-Einstein condensation-Bardeen-Cooper-Schrieffer (BEC-BCS) crossover. The Gorkov-Melik-Barkhudarov theory about the induced interaction is extended from the BCS side to the entire crossover and the pairing fluctuation is treated in the approach by Nozieres and Schmitt-Rink. At unitarity, the induced interaction reduces the transition temperature by about 20%. In the BCS limit, the transition temperature is reduced by a factor of about 2.22, as found by Gorkov and Melik-Barkhudarov. Our result shows that the effect of the induced interaction is important both onmore » the BCS side and in the unitary region.« less

  3. Specific heat and effects of strong pairing fluctuations in a superfluid Fermi atom gas in the BCS-BEC crossover region

    NASA Astrophysics Data System (ADS)

    van Wyk, Pieter; Inotani, Daisuke; Ohashi, Yoji

    2018-03-01

    We theoretically investigate the specific heat at constant volume C V in the BCS(Bardeen-Cooper-Schrieffer)-BEC(Bose-Einstein-condensation)-crossover regime of an ultracold Fermi gas, below the superfluid phase transition temperature T c. Within the strong-coupling framework developed by Nozières and Schmitt-Rink, we show that the temperature dependence of C V drastically changes as one passes through the crossover region, and is sensitive to strong fluctuations in the Cooper channel near the unitarity limit. We also compare our results to a recent experiment on a 6Li unitary Fermi gas. Since fluctuation effects are a crucial key in the BCS-BEC-crossover phenomenon, our results would be helpful in considering how the fermionic BCS superfluid changes into BEC with increasing the interaction strength, from the viewpoint of specific heat.

  4. Cooking under Pressure: Applying the Ideal Gas Law in the Kitchen

    ERIC Educational Resources Information Center

    Chen, Ling; Anderson, Jennifer Y.; Wang, Diane R.

    2010-01-01

    This case study uses a daily cooking scenario to demonstrate how the boiling point of water is directly related to the external pressures in order to reinforce the concepts of boiling and boiling point, apply ideal gas law, and relate chemical reaction rates with temperatures. It also extends its teaching to autoclaves used to destroy…

  5. Collective modes of a two-dimensional spin-1/2 Fermi gas in a harmonic trap

    NASA Astrophysics Data System (ADS)

    Baur, Stefan K.; Vogt, Enrico; Köhl, Michael; Bruun, Georg M.

    2013-04-01

    We derive analytical expressions for the frequency and damping of the lowest collective modes of a two-dimensional Fermi gas using kinetic theory. For strong coupling, we furthermore show that pairing correlations overcompensate the effects of Pauli blocking on the collision rate for a large range of temperatures, resulting in a rate which is larger than that of a classical gas. Our results agree well with experimental data, and they recover the observed crossover from collisionless to hydrodynamic behavior with increasing coupling for the quadruple mode. Finally, we show that a trap anisotropy within the experimental bounds results in a damping of the breathing mode which is comparable to what is observed, even for a scale-invariant system.

  6. Critical behavior of the ideal-gas Bose-Einstein condensation in the Apollonian network.

    PubMed

    de Oliveira, I N; dos Santos, T B; de Moura, F A B F; Lyra, M L; Serva, M

    2013-08-01

    We show that the ideal Boson gas displays a finite-temperature Bose-Einstein condensation transition in the complex Apollonian network exhibiting scale-free, small-world, and hierarchical properties. The single-particle tight-binding Hamiltonian with properly rescaled hopping amplitudes has a fractal-like energy spectrum. The energy spectrum is analytically demonstrated to be generated by a nonlinear mapping transformation. A finite-size scaling analysis over several orders of magnitudes of network sizes is shown to provide precise estimates for the exponents characterizing the condensed fraction, correlation size, and specific heat. The critical exponents, as well as the power-law behavior of the density of states at the bottom of the band, are similar to those of the ideal Boson gas in lattices with spectral dimension d(s)=2ln(3)/ln(9/5)~/=3.74.

  7. Solitonic Excitations in Fermionic Superfluids and Progress towards Fermi Gas in Uniform Potential

    NASA Astrophysics Data System (ADS)

    Ku, Mark; Mukherjee, Biswaroop; Guardado-Sanchez, Elmer; Yan, Zhenjie; Patel, Parth; Yefsah, Tarik; Struck, Julian; Zwierlein, Martin

    2015-05-01

    We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions. We also report on the trapping of fermionic atoms of 6Li in a quasi-homogenous all-optical potential, and discuss progress towards directly observing the momentum distribution of the fermions in a box. This new tool offers the possibility to quantitatively study Fermi gases at finite temperature and in the presence of spin-imbalance, with unprecedented accuracy.

  8. Equation of state of an ideal gas with nonergodic behavior in two connected vessels.

    PubMed

    Naplekov, D M; Semynozhenko, V P; Yanovsky, V V

    2014-01-01

    We consider a two-dimensional collisionless ideal gas in the two vessels connected through a small hole. One of them is a well-behaved chaotic billiard, another one is known to be nonergodic. A significant part of the second vessel's phase space is occupied by an island of stability. In the works of Zaslavsky and coauthors, distribution of Poincaré recurrence times in similar systems was considered. We study the gas pressure in the vessels; it is uniform in the first vessel and not uniform in second one. An equation of the gas state in the first vessel is obtained. Despite the very different phase-space structure, behavior of the second vessel is found to be very close to the behavior of a good ergodic billiard but of different volume. The equation of state differs from the ordinary equation of ideal gas state by an amendment to the vessel's volume. Correlation of this amendment with a share of the phase space under remaining intact islands of stability is shown.

  9. Superfluid density of states and pseudogap phenomenon in the BCS-BEC crossover regime of a superfluid Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Ryota; Tsuchiya, Shunji; CREST

    2010-10-15

    We investigate single-particle excitations and strong-coupling effects in the BCS-BEC crossover regime of a superfluid Fermi gas. Including phase and amplitude fluctuations of the superfluid order parameter within a T-matrix theory, we calculate the superfluid density of states (DOS), as well as single-particle spectral weight, over the entire BCS-BEC crossover region below the superfluid transition temperature T{sub c}. We clarify how the pseudogap in the normal state evolves into the superfluid gap, as one passes through T{sub c}. While the pseudogap in DOS continuously evolves into the superfluid gap in the weak-coupling BCS regime, the superfluid gap in the crossovermore » region is shown to appear in DOS after the pseudogap disappears below T{sub c}. In the phase diagram with respect to the temperature and interaction strength, we determine the region where strong pairing fluctuations dominate over single-particle properties of the system. Our results would be useful for the study of strong-coupling phenomena in the BCS-BEC crossover regime of a superfluid Fermi gas.« less

  10. Quantized vortices in the ideal bose gas: a physical realization of random polynomials.

    PubMed

    Castin, Yvan; Hadzibabic, Zoran; Stock, Sabine; Dalibard, Jean; Stringari, Sandro

    2006-02-03

    We propose a physical system allowing one to experimentally observe the distribution of the complex zeros of a random polynomial. We consider a degenerate, rotating, quasi-ideal atomic Bose gas prepared in the lowest Landau level. Thermal fluctuations provide the randomness of the bosonic field and of the locations of the vortex cores. These vortices can be mapped to zeros of random polynomials, and observed in the density profile of the gas.

  11. A Systematic Experimental Test of the Ideal Gas Equation for the General Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Blanco, Luis H.; Romero, Carmen M.

    1995-10-01

    A set of experiments that examines each one of the terms of the ideal gas equation is described. Boyle's Law, Charles-Gay Lussac's Law, Amonton's Law, the number of moles or Molecular Weight, and the Gas Constant are studied. The experiments use very simple, easy to obtain equipment and common gases, mainly air. The results gathered by General Chemistry College students are satisfactory.

  12. Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population

    NASA Astrophysics Data System (ADS)

    Darsheshdar, E.; Yavari, H.; Zangeneh, Z.

    2016-07-01

    By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.

  13. Thermodynamic geometry for a non-extensive ideal gas

    NASA Astrophysics Data System (ADS)

    López, J. L.; Obregón, O.; Torres-Arenas, J.

    2018-05-01

    A generalized entropy arising in the context of superstatistics is applied to an ideal gas. The curvature scalar associated to the thermodynamic space generated by this modified entropy is calculated using two formalisms of the geometric approach to thermodynamics. By means of the curvature/interaction hypothesis of the geometric approach to thermodynamic geometry it is found that as a consequence of considering a generalized statistics, an effective interaction arises but the interaction is not enough to generate a phase transition. This generalized entropy seems to be relevant in confinement or in systems with not so many degrees of freedom, so it could be interesting to use such entropies to characterize the thermodynamics of small systems.

  14. 2D massless Dirac Fermi gas model of superconductivity in the surface state of a topological insulator at high magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhuravlev, Vladimir; Duan, Wenye; Maniv, Tsofar

    2017-10-01

    The Nambu-Gorkov Green's function approach is applied to strongly type-II superconductivity in a 2D spin-momentum-locked (Weyl) Fermi gas model at high perpendicular magnetic fields. The resulting phase diagram can be mapped onto that derived for the standard, parabolic band-structure model, having the same Fermi surface parameters, E F and v, but with cyclotron effective mass m\\ast=EF/2v2 . Significant deviations from the predicted mapping are found only for very small E F , when the Landau-Level filling factors are smaller than unity, and E F shrinks below the cutoff energy.

  15. Density functional of a two-dimensional gas of dipolar atoms: Thomas-Fermi-Dirac treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Bess; Englert, Berthold-Georg

    We derive the density functional for the ground-state energy of a two-dimensional, spin-polarized gas of neutral fermionic atoms with magnetic-dipole interaction, in the Thomas-Fermi-Dirac approximation. For many atoms in a harmonic trap, we give analytical solutions for the single-particle spatial density and the ground-state energy, in dependence on the interaction strength, and we discuss the weak-interaction limit that is relevant for experiments. We then lift the restriction of full spin polarization and account for a time-independent inhomogeneous external magnetic field. The field strength necessary to ensure full spin polarization is derived.

  16. Thermodynamic functions of Fermi gas with quadruple BCS-type binding potential

    NASA Astrophysics Data System (ADS)

    Tarasewicz, P.; Maćkowiak, J.

    2000-01-01

    A gas of spin 1/2 fermions with an interaction V+ W=-2 γ∑ kχ( k) bk* bk+-| Λ| -1g∑ k, k‧ χ( k) χ( k‧) bk* bk* bk‧ b- k‧ , where bk= ak+ ak- and akσ , ak‧ σ‧ satisfy Fermi anticommutation relations, is investigated by the method of Mühlschlegel. W+ V is nonzero only within a thin layer of single-fermion energies around the chemical potential μ and χ( k) denotes the characteristic function of the corresponding range of momenta. Two cases are studied: 1 0γ=0, 2 0γ=0.10025 eV. In the first case, the system exhibits a first-order transition, in the second the transition is second order. The temperature dependence of the system's thermodynamic functions is examined and compared with that of the BCS model.

  17. Probing and Manipulating Ultracold Fermi Superfluids

    NASA Astrophysics Data System (ADS)

    Jiang, Lei

    Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi

  18. Convection in an ideal gas at high Rayleigh numbers.

    PubMed

    Tilgner, A

    2011-08-01

    Numerical simulations of convection in a layer filled with ideal gas are presented. The control parameters are chosen such that there is a significant variation of density of the gas in going from the bottom to the top of the layer. The relations between the Rayleigh, Peclet, and Nusselt numbers depend on the density stratification. It is proposed to use a data reduction which accounts for the variable density by introducing into the scaling laws an effective density. The relevant density is the geometric mean of the maximum and minimum densities in the layer. A good fit to the data is then obtained with power laws with the same exponent as for fluids in the Boussinesq limit. Two relations connect the top and bottom boundary layers: The kinetic energy densities computed from free fall velocities are equal at the top and bottom, and the products of free fall velocities and maximum horizontal velocities are equal for both boundaries.

  19. Quantum Monte Carlo studies of superfluid Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.Y.; Pandharipande, V.R.; Carlson, J.

    2004-10-01

    We report results of quantum Monte Carlo calculations of the ground state of dilute Fermi gases with attractive short-range two-body interactions. The strength of the interaction is varied to study different pairing regimes which are characterized by the product of the s-wave scattering length and the Fermi wave vector, ak{sub F}. We report results for the ground-state energy, the pairing gap {delta}, and the quasiparticle spectrum. In the weak-coupling regime, 1/ak{sub F}<-1, we obtain Bardeen-Cooper-Schrieffer (BCS) superfluid and the energy gap {delta} is much smaller than the Fermi gas energy E{sub FG}. When a>0, the interaction is strong enough tomore » form bound molecules with energy E{sub mol}. For 1/ak{sub F} > or approx. 0.5, we find that weakly interacting composite bosons are formed in the superfluid gas with {delta} and gas energy per particle approaching E{sub mol}/2. In this region, we seem to have Bose-Einstein condensation (BEC) of molecules. The behavior of the energy and the gap in the BCS-to-BEC transition region, -0.5<1/ak{sub F}<0.5, is discussed.« less

  20. Statistical mechanics of light elements at high pressure. V Three-dimensional Thomas-Fermi-Dirac theory. [relevant to Jovian planetary interiors

    NASA Technical Reports Server (NTRS)

    Macfarlane, J. J.; Hubbard, W. B.

    1983-01-01

    A numerical technique for solving the Thomas-Fermi-Dirac (TED) equation in three dimensions, for an array of ions obeying periodic boundary conditions, is presented. The technique is then used to calculate deviations from ideal mixing for an alloy of hydrogen and helium at zero temperature and high presures. Results are compared with alternative models which apply perturbation theory to calculation of the electron distribution, based upon the assumption of weak response of the electron gas to the ions. The TFD theory, which permits strong electron response, always predicts smaller deviations from ideal mixing than would be predicted by perturbation theory. The results indicate that predicted phase separation curves for hydrogen-helium alloys under conditions prevailing in the metallic zones of Jupiter and Saturn are very model dependent.

  1. Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures. [transonic flow in cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Hall, R. M.; Adcock, J. B.

    1981-01-01

    The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas.

  2. How is the Ideal Gas Law Explanatory?

    NASA Astrophysics Data System (ADS)

    Woody, Andrea I.

    2013-07-01

    Using the ideal gas law as a comparative example, this essay reviews contemporary research in philosophy of science concerning scientific explanation. It outlines the inferential, causal, unification, and erotetic conceptions of explanation and discusses an alternative project, the functional perspective. In each case, the aim is to highlight insights from these investigations that are salient for pedagogical concerns. Perhaps most importantly, this essay argues that science teachers should be mindful of the normative and prescriptive components of explanatory discourse both in the classroom and in science more generally. Giving attention to this dimension of explanation not only will do justice to the nature of explanatory activity in science but also will support the development of robust reasoning skills in science students while helping them understand an important respect in which science is more than a straightforward collection of empirical facts, and consequently, science education involves more than simply learning them.

  3. Hyperfine structure of the MnH X 7Sigma + state: A large gas-to-matrix shift in the Fermi contact interaction

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1990-06-01

    Sub-Doppler spectra of the A 7Π-X 7Σ+ (0,0) band of gas phase MnH near 5680 Å were recorded by intermodulated fluorescence spectroscopy. The spectra reveal hyperfine splittings arising from both the 55Mn and 1H nuclear spins. Internal hyperfine perturbations have been observed between the different spin components of the ground state at low N`. From a preliminary analysis of several rotational lines originating from the isolated and unperturbed F1(J`=3) spin component of the X 7Σ+(N`=0) level, the 55Mn Fermi contact interaction in the ground state has been measured as bF=Aiso =276(1) MHz. This value is 11% smaller than the value obtained by Weltner et al. from an electron-nuclear double resonance (ENDOR) study of MnH in an argon matrix at 4 K. This unprecedented gas-to-matrix shift in the Fermi contact parameter is discussed.

  4. Theoretical test of Jarzynski's equality for reversible volume-switching processes of an ideal gas system.

    PubMed

    Sung, Jaeyoung

    2007-07-01

    We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.

  5. Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.

    PubMed

    Chevallier, Maguelonne; Krauth, Werner

    2007-11-01

    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.

  6. Conical flow near singular rays. [shock generation in ideal gas

    NASA Technical Reports Server (NTRS)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is investigated by the method of matched asymptotic expansions, with particular emphasis on the flow near the singular ray occurring in linearized theory. The first-order problem governing the flow in this region is formulated, leading to the equation of Kuo, and an approximate solution is obtained in the case of compressive flow behind the main front. This solution is compared with the results of previous investigations with a view to assessing the applicability of the Lighthill-Whitham theories.

  7. Exciting Quantized Vortex Rings in a Superfluid Unitary Fermi Gas

    NASA Astrophysics Data System (ADS)

    Bulgac, Aurel

    2014-03-01

    In a recent article, Yefsah et al., Nature 499, 426 (2013) report the observation of an unusual quantum excitation mode in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe collective oscillations of the superfluid atomic cloud with a period almost an order of magnitude larger than that predicted by any theory of domain walls, which they interpret as a possible new quantum phenomenon dubbed ``a heavy soliton'' with an inertial mass some 50 times larger than one expected for a domain wall. We present compelling evidence that this ``heavy soliton'' is instead a quantized vortex ring by showing that the main aspects of the experiment can be naturally explained within an extension of the time-dependent density functional theory (TDDFT) to superfluid systems. The numerical simulations required the solution of some 260,000 nonlinear coupled time-dependent 3-dimensional partial differential equations and was implemented on 2048 GPUs on the Cray XK7 supercomputer Titan of the Oak Ridge Leadership Computing Facility.

  8. Strong-Coupling Effects and Shear Viscosity in an Ultracold Fermi Gas

    NASA Astrophysics Data System (ADS)

    Kagamihara, D.; Ohashi, Y.

    2017-06-01

    We theoretically investigate the shear viscosity η , as well as the entropy density s, in the normal state of an ultracold Fermi gas. Including pairing fluctuations within the framework of a T-matrix approximation, we calculate these quantities in the Bardeen-Cooper-Schrieffer (BCS)-Bose-Einstein condensation (BEC) crossover region. We also evaluate η / s, to compare it with the lower bound of this ratio, conjectured by Kovtun, Son, and Starinets (KSS bound). In the weak-coupling BCS side, we show that the shear viscosity η is remarkably suppressed near the superfluid phase transition temperature Tc, due to the so-called pseudogap phenomenon. In the strong-coupling BEC side, we find that, within the neglect of the vertex corrections, one cannot correctly describe η . We also show that η / s decreases with increasing the interaction strength, to become very close to the KSS bound, \\hbar /4π kB, on the BEC side.

  9. Finite-Momentum Dimer Bound State in Spin-Orbit Coupled Fermi Gas

    NASA Astrophysics Data System (ADS)

    Dong, Lin; Jiang, Lei; Hu, Hui; Pu, Han

    2013-03-01

    We investigate the two-body properties of a spin-1/2 Fermi gas subject to a spin-orbit coupling induced by laser fields. When attractive s-wave interaction between unlike spins is present, the system may form a dimer bound state. Surprisingly, under proper conditions, the bound state obtains finite center-of-mass momentum, whereas under the same condition but in the absence of the two-body interaction, the system has zero total momentum. This unusual result can be regarded as a consequence of the broken Galilean invariance by the spin-orbit coupling. Such a finite-momentum bound state will have profound effects on the many-body properties of the system. HP is supported by the NSF, the Welch Foundation (Grant No. C-1669), and DARPA. HH is supported by the ARC Discovery Projects (Grant No. DP0984522) and the National Basic Research Program of China (NFRP-China, Grant No. 2011CB921502).

  10. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    NASA Astrophysics Data System (ADS)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  11. Validation of the Jarzynski relation for a system with strong thermal coupling: an isothermal ideal gas model.

    PubMed

    Baule, A; Evans, R M L; Olmsted, P D

    2006-12-01

    We revisit the paradigm of an ideal gas under isothermal conditions. A moving piston performs work on an ideal gas in a container that is strongly coupled to a heat reservoir. The thermal coupling is modeled by stochastic scattering at the boundaries. In contrast to recent studies of an adiabatic ideal gas with a piston [R.C. Lua and A.Y. Grosberg, J. Phys. Chem. B 109, 6805 (2005); I. Bena, Europhys. Lett. 71, 879 (2005)], the container and piston stay in contact with the heat bath during the work process. Under this condition the heat reservoir as well as the system depend on the work parameter lambda and microscopic reversibility is broken for a moving piston. Our model is thus not included in the class of systems for which the nonequilibrium work theorem has been derived rigorously either by Hamiltonian [C. Jarzynski, J. Stat. Mech. (2004) P09005] or stochastic methods [G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)]. Nevertheless the validity of the nonequilibrium work theorem is confirmed both numerically for a wide range of parameter values and analytically in the limit of a very fast moving piston, i.e., in the far nonequilibrium regime.

  12. Superfluid Fermi atomic gas as a quantum simulator for the study of the neutron-star equation of state in the low-density region

    NASA Astrophysics Data System (ADS)

    van Wyk, Pieter; Tajima, Hiroyuki; Inotani, Daisuke; Ohnishi, Akira; Ohashi, Yoji

    2018-01-01

    We propose a theoretical idea to use an ultracold Fermi gas as a quantum simulator for the study of the low-density region of a neutron-star interior. Our idea is different from the standard quantum simulator that heads for perfect replication of another system, such as the Hubbard model discussed in high-Tc cuprates. Instead, we use the similarity between two systems and theoretically make up for the difference between them. That is, (1) we first show that the strong-coupling theory developed by Nozières and Schmitt-Rink (NSR) can quantitatively explain the recent experiment on the equation of state (EoS) in a 6Li superfluid Fermi gas in the BCS (Bardeen-Cooper-Schrieffer) unitary limit far below the superfluid phase-transition temperature Tc. This region is considered to be very similar to the low-density region (crust regime) of a neutron star (where a nearly unitary s -wave neutron superfluid is expected). (2) We then theoretically compensate the difference that, while the effective range reff is negligibly small in a superfluid 6Li Fermi gas, it cannot be ignored (reff=2.7 fm) in a neutron star, by extending the NSR theory to include effects of reff. The calculated EoS when reff=2.7 fm is shown to agree well with the previous neutron-star EoS in the low-density region predicted in nuclear physics. Our idea indicates that an ultracold atomic gas may more flexibly be used as a quantum simulator for the study of other complicated quantum many-body systems, when we use not only the experimental high tunability, but also the recent theoretical development in this field. Since it is difficult to directly observe a neutron-star interior, our idea would provide a useful approach to the exploration for this mysterious astronomical object.

  13. Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Xu, Kun

    1998-01-01

    A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.

  14. Magnetogasdynamic spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes

    NASA Astrophysics Data System (ADS)

    Nath, G.; Vishwakarma, J. P.

    2016-11-01

    Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  15. Ballistic and diffusive dynamics in a two-dimensional ideal gas of macroscopic chaotic Faraday waves.

    PubMed

    Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I

    2014-04-01

    We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.

  16. NASA's Fermi Telescope Resolves Radio Galaxy Centaurus A

    NASA Image and Video Library

    2017-12-08

    NASA release April 1, 2010 Fermi's Large Area Telescope resolved high-energy gamma rays from an extended region around the active galaxy Centaurus A. The emission corresponds to million-light-year-wide radio-emitting gas thrown out by the galaxy's supersized black hole. This inset shows an optical/gamma-ray composite of the galaxy and its location on the Fermi one-year sky map. Credit: NASA/DOE/Fermi LAT Collaboration, Capella Observatory To learn more about these images go to: www.nasa.gov/mission_pages/GLAST/news/smokestack-plumes.html NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  17. Prediction of Ideal Topological Semimetals with Triply Degenerate Points in the NaCu3 Te2 Family

    NASA Astrophysics Data System (ADS)

    Wang, Jianfeng; Sui, Xuelei; Shi, Wujun; Pan, Jinbo; Zhang, Shengbai; Liu, Feng; Wei, Su-Huai; Yan, Qimin; Huang, Bing

    2017-12-01

    Triply degenerate points (TDPs) in band structure of a crystal can generate novel TDP fermions without high-energy counterparts. Although identifying ideal TDP semimetals, which host clean TDP fermions around the Fermi level (EF) without coexisting with other quasiparticles, is critical to explore the intrinsic properties of this new fermion, it is still a big challenge and has not been achieved up to now. Here, we disclose an effective approach to search for ideal TDP semimetals via selective band crossing between antibonding s and bonding p orbitals along a line in the momentum space with C3 v symmetry. Applying this approach, we have successfully identified the NaCu3 Te2 family of compounds to be ideal TDP semimetals, where two, and only two, pairs of TDPs are located around the EF. Moreover, we demonstrate a fundamental mechanism to modulate energy splitting between a pair of TDPs, and we illustrate the intrinsic features of TDP Fermi arcs in these ideal TDP semimetals.

  18. Ideal Gas with a Varying (Negative Absolute) Temperature: an Alternative to Dark Energy?

    NASA Astrophysics Data System (ADS)

    Saha, Subhajit; Mondal, Anindita; Corda, Christian

    2018-02-01

    The present work is an attempt to investigate whether the evolutionary history of the Universe from the offset of inflation can be described by assuming the cosmic fluid to be an ideal gas with a specific gas constant but a varying negative absolute temperature (NAT). The motivation of this work is to search for an alternative to the "exotic" and "supernatural" dark energy (DE). In fact, the NAT works as an "effective quintessence" and there is need to deal neither with exotic matter like DE nor with modified gravity theories. For the sake of completeness, we release some clarifications on NATs in Section 3 of the paper.

  19. Supersonic beams at high particle densities: model description beyond the ideal gas approximation.

    PubMed

    Christen, Wolfgang; Rademann, Klaus; Even, Uzi

    2010-10-28

    Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.

  20. Non-Fermi liquids in oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Stemmer, Susanne; Allen, S. James

    2018-06-01

    Understanding the anomalous transport properties of strongly correlated materials is one of the most formidable challenges in condensed matter physics. For example, one encounters metal-insulator transitions, deviations from Landau Fermi liquid behavior, longitudinal and Hall scattering rate separation, a pseudogap phase, and bad metal behavior. These properties have been studied extensively in bulk materials, such as the unconventional superconductors and heavy fermion systems. Oxide heterostructures have recently emerged as new platforms to probe, control, and understand strong correlation phenomena. This article focuses on unconventional transport phenomena in oxide thin film systems. We use specific systems as examples, namely charge carriers in SrTiO3 layers and interfaces with SrTiO3, and strained rare earth nickelate thin films. While doped SrTiO3 layers appear to be a well behaved, though complex, electron gas or Fermi liquid, the rare earth nickelates are a highly correlated electron system that may be classified as a non-Fermi liquid. We discuss insights into the underlying physics that can be gained from studying the emergence of non-Fermi liquid behavior as a function of the heterostructure parameters. We also discuss the role of lattice symmetry and disorder in phenomena such as metal-insulator transitions in strongly correlated heterostructures.

  1. Identifying and addressing student difficulties with the ideal gas law

    NASA Astrophysics Data System (ADS)

    Kautz, Christian Hans

    This dissertation reports on an in-depth investigation of student understanding of the ideal gas law. The research and curriculum development were mostly conducted in the context of algebra- and calculus-based introductory physics courses and a sophomore-level thermal physics course. Research methods included individual demonstration interviews and written questions. Student difficulties with the quantities: pressure, volume, temperature, and the number of moles were identified. Data suggest that students' incorrect and incomplete microscopic models about gases contribute to the difficulties they have in answering questions posed in macroscopic terms. In addition, evidence for general reasoning difficulties is presented. These research results have guided the development of curriculum to address the student difficulties that have been identified.

  2. Fermi edge singularity in a tunnel junction

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Sherkunov, Yury; D'Ambrumenil, Nicholas; Muzykantskii, Boris

    2010-03-01

    We present results on the non-equilibrium Fermi edge singularity (FES) problem in tunnel junctions. The FES, which is present in a Fermi gas subject to any sudden change of potential, manifests itself in the final state many body interaction between the electrons in the leads [1]. We establish a connection between the FES problem in a tunnel junction and the Full Counting Statistics (FCS) for the device [2]. We find that the exact profile of the changing potential (or the profile for the barrier opening and closing in the tunnel junction case) strongly affects the overlap between the initial and final state of the Fermi gas. We factorize the contribution to the FES into two approximately independent terms: one is connected with the short time opening process while the other is concerned with the long time asymptotic effect, namely the Anderson orthogonality catastrophe. We consider applications to a localized level coupled through a tunnel barrier to a 1D lead driven out of equilibrium [3]. References: [1] G. Mahan, Phys. Rev. 163, 1612 (1967); P. Nozieres and C. T. De Dominicis, Phys. Rev. 178, 1079 (1969); P. Anderson, Phys. Rev. Lett. 18, 1049 (1967) [2] J. Zhang, Y. Sherkunov, N. d'Ambrumenil, and B. Muzykantskii, ArXiv:0909.3427 [3] D. Abanin and L. Levitov, Phys. Rev. Lett. 94, 186803 (2005)

  3. Similarity solutions for unsteady flow behind an exponential shock in a self-gravitating non-ideal gas with azimuthal magnetic field

    NASA Astrophysics Data System (ADS)

    Nath, G.; Pathak, R. P.; Dutta, Mrityunjoy

    2018-01-01

    Similarity solutions for the flow of a non-ideal gas behind a strong exponential shock driven out by a piston (cylindrical or spherical) moving with time according to an exponential law is obtained. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The effects of variation of ambient magnetic field, non-idealness of the gas, adiabatic exponent and gravitational parameter are worked out in detail. It is shown that the increase in the non-idealness of the gas or the adiabatic exponent of the gas or presence of magnetic field have decaying effect on the shock wave. Consideration of the isothermal flow and the self-gravitational field increase the shock strength. Also, the consideration of isothermal flow or the presence of magnetic field removes the singularity in the density distribution, which arises in the case of adiabatic flow. The result of our study may be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  4. Fluctuation theorem for entropy production during effusion of an ideal gas with momentum transfer.

    PubMed

    Wood, Kevin; Van den Broeck, C; Kawai, R; Lindenberg, Katja

    2007-06-01

    We derive an exact expression for entropy production during effusion of an ideal gas driven by momentum transfer in addition to energy and particle flux. Following the treatment in Cleuren [Phys. Rev. E 74, 021117 (2006)], we construct a master equation formulation of the process and explicitly verify the thermodynamic fluctuation theorem, thereby directly exhibiting its extended applicability to particle flows and hence to hydrodynamic systems.

  5. Probability theory for 3-layer remote sensing in ideal gas law environment.

    PubMed

    Ben-David, Avishai; Davidson, Charles E

    2013-08-26

    We extend the probability model for 3-layer radiative transfer [Opt. Express 20, 10004 (2012)] to ideal gas conditions where a correlation exists between transmission and temperature of each of the 3 layers. The effect on the probability density function for the at-sensor radiances is surprisingly small, and thus the added complexity of addressing the correlation can be avoided. The small overall effect is due to (a) small perturbations by the correlation on variance population parameters and (b) cancellation of perturbation terms that appear with opposite signs in the model moment expressions.

  6. Determination of some pure compound ideal-gas enthalpies of formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, W. V.; Chirico, R. D.; Nguyen, A.

    1989-06-01

    The results of a study aimed at improvement of group-additivity methodology for estimation of thermodynamic properties of organic substances are reported. Specific weaknesses where ring corrections were unknown or next-nearest-neighbor interactions were only estimated because of lack of experimental data are addressed by experimental studies of enthalpies of combustion in the condensed- phase and vapor pressure measurements. Ideal-gas enthalpies of formation are reported for acrylamide, succinimide, ..gamma..-butyrolactone, 2-pyrrolidone, 2,3-dihydrofuran, 3,4-dihydro-2H-pyran, 1,3-cyclohexadiene, 1,4-cyclohexadiene, and 1-methyl-1-phenylhydrazine. Ring corrections, group terms, and next-nearest-neighbor interaction terms useful in the application of group additivity correlations are derived. 44 refs., 2 figs., 59 tabs.

  7. Heat-flow equation motivated by the ideal-gas shock wave.

    PubMed

    Holian, Brad Lee; Mareschal, Michel

    2010-08-01

    We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.

  8. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases

    NASA Astrophysics Data System (ADS)

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013), 10.1103/PhysRevLett.111.240405]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  9. Nonequilibrium steady states of ideal bosonic and fermionic quantum gases.

    PubMed

    Vorberg, Daniel; Wustmann, Waltraut; Schomerus, Henning; Ketzmerick, Roland; Eckardt, André

    2015-12-01

    We investigate nonequilibrium steady states of driven-dissipative ideal quantum gases of both bosons and fermions. We focus on systems of sharp particle number that are driven out of equilibrium either by the coupling to several heat baths of different temperature or by time-periodic driving in combination with the coupling to a heat bath. Within the framework of (Floquet-)Born-Markov theory, several analytical and numerical methods are described in detail. This includes a mean-field theory in terms of occupation numbers, an augmented mean-field theory taking into account also nontrivial two-particle correlations, and quantum-jump-type Monte Carlo simulations. For the case of the ideal Fermi gas, these methods are applied to simple lattice models and the possibility of achieving exotic states via bath engineering is pointed out. The largest part of this work is devoted to bosonic quantum gases and the phenomenon of Bose selection, a nonequilibrium generalization of Bose condensation, where multiple single-particle states are selected to acquire a large occupation [Phys. Rev. Lett. 111, 240405 (2013)]. In this context, among others, we provide a theory for transitions where the set of selected states changes, describe an efficient algorithm for finding the set of selected states, investigate beyond-mean-field effects, and identify the dominant mechanisms for heat transport in the Bose-selected state.

  10. University Students Explaining Adiabatic Compression of an Ideal Gas--A New Phenomenon in Introductory Thermal Physics

    ERIC Educational Resources Information Center

    Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2012-01-01

    This study focuses on second-year university students' explanations and reasoning related to adiabatic compression of an ideal gas. The phenomenon was new to the students, but it was one which they should have been capable of explaining using their previous upper secondary school knowledge. The students' explanations and reasoning were…

  11. Impurity coupled to an artificial magnetic field in a Fermi gas in a ring trap

    NASA Astrophysics Data System (ADS)

    Ünal, F. Nur; Hetényi, B.; Oktel, M. Ã.-.

    2015-05-01

    The dynamics of a single impurity interacting with a many-particle background is one of the central problems of condensed-matter physics. Recent progress in ultracold-atom experiments makes it possible to control this dynamics by coupling an artificial gauge field specifically to the impurity. In this paper, we consider a narrow toroidal trap in which a Fermi gas is interacting with a single atom. We show that an external magnetic field coupled to the impurity is a versatile tool to probe the impurity dynamics. Using a Bethe ansatz, we calculate the eigenstates and corresponding energies exactly as a function of the flux through the trap. Adiabatic change of flux connects the ground state to excited states due to flux quantization. For repulsive interactions, the impurity disturbs the Fermi sea by dragging the fermions whose momentum matches the flux. This drag transfers momentum from the impurity to the background and increases the effective mass. The effective mass saturates to the total mass of the system for infinitely repulsive interactions. For attractive interactions, the drag again increases the effective mass which quickly saturates to twice the mass of a single particle as a dimer of the impurity and one fermion is formed. For excited states with momentum comparable to number of particles, effective mass shows a resonant behavior. We argue that standard tools in cold-atom experiments can be used to test these predictions.

  12. Definitive Ideal-Gas Thermochemical Functions of the H216O Molecule

    NASA Astrophysics Data System (ADS)

    Furtenbacher, Tibor; Szidarovszky, Tamás; Hrubý, Jan; Kyuberis, Aleksandra A.; Zobov, Nikolai F.; Polyansky, Oleg L.; Tennyson, Jonathan; Császár, Attila G.

    2016-12-01

    A much improved temperature-dependent ideal-gas internal partition function, Qint(T), of the H216O molecule is reported for temperatures between 0 and 6000 K. Determination of Qint(T) is principally based on the direct summation technique involving all accurate experimental energy levels known for H216O (almost 20 000 rovibrational energies including an almost complete list up to a relative energy of 7500 cm-1), augmented with a less accurate but complete list of first-principles computed rovibrational energy levels up to the first dissociation limit, about 41 000 cm-1 (the latter list includes close to one million bound rovibrational energy levels up to J = 69, where J is the rotational quantum number). Partition functions are developed for ortho- and para-H216O as well as for their equilibrium mixture. Unbound rovibrational states of H216O above the first dissociation limit are considered using an approximate model treatment. The effect of the excited electronic states on the thermochemical functions is neglected, as their contribution to the thermochemical functions is negligible even at the highest temperatures considered. Based on the high-accuracy Qint(T) and its first two moments, definitive results, in 1 K increments, are obtained for the following thermochemical functions: Gibbs energy, enthalpy, entropy, and isobaric heat capacity. Reliable uncertainties (approximately two standard deviations) are estimated as a function of temperature for each quantity determined. These uncertainties emphasize that the present results are the most accurate ideal-gas thermochemical functions ever produced for H216O. It is recommended that the new value determined for the standard molar enthalpy increment at 298.15 K, 9.904 04 ± 0.000 01 kJ mol-1, should replace the old CODATA datum, 9.905 ± 0.005 kJ mol-1.

  13. Single-shot imaging of trapped Fermi gas

    NASA Astrophysics Data System (ADS)

    Gajda, Mariusz; Mostowski, Jan; Sowiński, Tomasz; Załuska-Kotur, Magdalena

    2016-07-01

    Recently developed techniques allow for simultaneous measurements of the positions of all ultra-cold atoms in a trap with high resolution. Each such single-shot experiment detects one element of the quantum ensemble formed by the cloud of atoms. Repeated single-shot measurements can be used to determine all correlations between particle positions as opposed to standard measurements that determine particle density or two-particle correlations only. In this paper we discuss the possible outcomes of such single-shot measurements in the case of cloud of ultra-cold noninteracting Fermi atoms. We show that the Pauli exclusion principle alone leads to correlations between particle positions that originate from unexpected spatial structures formed by the atoms.

  14. Non-Equilibrium Dynamics of Fermi Gases Near A Scattering Resonance

    NASA Astrophysics Data System (ADS)

    Trotzky, S.; Luciuk, C.; Smale, S.; Beattie, S.; Taylor, E.; Enss, T.; Zhang, Shizhong; Thywissen, J. H.

    2015-05-01

    We present recent dynamic measurements of fermionic potassium (40K) near Fano-Feshbach scattering resonances. In our experiments, we start with a weakly or non-interacting Fermi gas and initiate strong interactions on a timescale that is fast compared to the equilibration mechanisms in the system quasi-instantaneous quench. Equally fast measurements allow us to follow the non-equilibrium many-body dynamics. First, we discuss time-resolved radio-frequency (rf) spectroscopy, and its use to probe the evolution of the short-range part of the many-body wave function - i.e., the contact. Second, we discuss spin-echo measurements that reveal the nature of transverse spin transport. Most recently, we have studied a Fermi gas with repulsive interactions in the metastable upper branch of the energy spectrum near a s-wave scattering resonance.

  15. Generic features of the wealth distribution in ideal-gas-like markets.

    PubMed

    Mohanty, P K

    2006-07-01

    We provide an exact solution to the ideal-gas-like models studied in econophysics to understand the microscopic origin of Pareto law. In these classes of models the key ingredient necessary for having a self-organized scale-free steady-state distribution is the trading or collision rule where agents or particles save a definite fraction of their wealth or energy and invest the rest for trading. Using a Gibbs ensemble approach we could obtain the exact distribution of wealth in this model. Moreover we show that in this model (a) good savers are always rich and (b) every agent poor or rich invests the same amount for trading. Nonlinear trading rules could alter the generic scenario observed here.

  16. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics Talk: Equation of State of the Dilute Fermi Gases

    NASA Astrophysics Data System (ADS)

    Chang, Soon Yong

    2008-04-01

    In the recent years, dilute Fermi gases have played the center stage role in the many-body physics. The gas of neutral alkali atoms such as Lithium-6 and Potassium-40 can be trapped at temperatures below the Fermi degeneracy. The most relevant feature of these gases is that the interaction is tunable and strongly interacting superfluid can be artificially created. I will discuss the recent progress in understanding the ground state properties of the dilute Fermi gases at different interaction regimes. First, I will present the case of the spin symmetric systems where the Fermi gas can smoothly crossover from the BCS regime to the BEC regime. Then, I will discuss the case of the spin polarized systems, where different quantum phases can occur as a function of the polarization. In the laboratory, the trapped Fermi gas shows spatial dependence of the different quantum phases. This can be understood in the context of the local variation of the chemical potential. I will present the most accurate quantum ab initio results and the relevant experiments.

  17. Bragg spectroscopy of strongly interacting Fermi gases

    NASA Astrophysics Data System (ADS)

    Lingham, M. G.; Fenech, K.; Peppler, T.; Hoinka, S.; Dyke, P.; Hannaford, P.; Vale, C. J.

    2016-10-01

    This article provides an overview of recent developments and emerging topics in the study of two-component Fermi gases using Bragg spectroscopy. Bragg scattering is achieved by exposing a gas to two intersecting laser beams with a slight frequency difference and measuring the momentum transferred to the atoms. By varying the Bragg laser detuning, it is possible to measure either the density or spin response functions which characterize the basic excitations present in the gas. Specifically, one can measure properties such as the dynamic and static structure factors, Tan's universal contact parameter and observe signatures for the onset of pair condensation locally within a gas.

  18. Propagation of exponential shock wave in an axisymmetric rotating non-ideal dusty gas

    NASA Astrophysics Data System (ADS)

    Nath, G.

    2016-09-01

    One-dimensional unsteady isothermal and adiabatic flow behind a strong exponential shock wave propagating in a rotational axisymmetric mixture of non-ideal gas and small solid particles, which has variable azimuthal and axial fluid velocities, is analyzed. The shock wave is driven out by a piston moving with time according to exponential law. The azimuthal and axial components of the fluid velocity in the ambient medium are assumed to be varying and obeying exponential laws. In the present work, small solid particles are considered as pseudo-fluid with the assumption that the equilibrium flow-conditions are maintained in the flow-field, and the viscous-stress and heat conduction of the mixture are negligible. Solutions are obtained in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector and compressibility. It is found that the assumption of zero temperature gradient brings a profound change in the density, axial component of vorticity vector and compressibility distributions as compared to that of the adiabatic case. To investigate the behavior of the flow variables and the influence on the shock wave propagation by the parameter of non-idealness of the gas overline{b} in the mixture as well as by the mass concentration of solid particles in the mixture Kp and by the ratio of the density of solid particles to the initial density of the gas G1 are worked out in detail. It is interesting to note that the shock strength increases with an increase in G1 ; whereas it decreases with an increase in overline{b} . Also, a comparison between the solutions in the cases of isothermal and adiabatic flows is made.

  19. Magnetogasdynamics shock waves in a rotational axisymmetric non-ideal gas with increasing energy and conductive and radiative heat-fluxes

    NASA Astrophysics Data System (ADS)

    Nath, Gorakh

    2016-07-01

    Self-similar solutions are obtained for one-dimensional adiabatic flow behind a magnetogasdynamics cylindrical shock wave propagating in a rotational axisymmetric non ideal gas with increasing energy and conductive and radiative heat fluxes in presence of an azimuthal magnetic field. The fluid velocities and the azimuthal magnetic field in the ambient medium are assume to be varying and obeying power laws. In order to find the similarity solutions the angular velocity of the ambient medium is taken to be decreasing as the distance from the axis increases. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The effects of the presence of radiation and conduction, the non-idealness of the gas and the magnetic field on the shock propagation and the flow behind the shock are investigated.

  20. Probing the critical exponent of the superfluid fraction in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Liu, Xia-Ji

    2013-11-01

    We theoretically investigate the critical behavior of a second-sound mode in a harmonically trapped ultracold atomic Fermi gas with resonant interactions. Near the superfluid phase transition with critical temperature Tc, the frequency or the sound velocity of the second-sound mode crucially depends on the critical exponent β of the superfluid fraction. In an isotropic harmonic trap, we predict that the mode frequency diverges like (1-T/Tc)β-1/2 when β<1/2. In a highly elongated trap, the speed of the second sound reduces by a factor of 1/2β+1 from that in a homogeneous three-dimensional superfluid. Our prediction could readily be tested by measurements of second-sound wave propagation in a setup, such as that exploited by Sidorenkov [Nature (London)NATUAS0028-083610.1038/nature12136 498, 78 (2013)] for resonantly interacting lithium-6 atoms, once the experimental precision is improved.

  1. Momentum-resolved spectroscopy of a Fermi liquid

    PubMed Central

    Doggen, Elmer V. H.; Kinnunen, Jami J.

    2015-01-01

    We consider a recent momentum-resolved radio-frequency spectroscopy experiment, in which Fermi liquid properties of a strongly interacting atomic Fermi gas were studied. Here we show that by extending the Brueckner-Goldstone model, we can formulate a theory that goes beyond basic mean-field theories and that can be used for studying spectroscopies of dilute atomic gases in the strongly interacting regime. The model hosts well-defined quasiparticles and works across a wide range of temperatures and interaction strengths. The theory provides excellent qualitative agreement with the experiment. Comparing the predictions of the present theory with the mean-field Bardeen-Cooper-Schrieffer theory yields insights into the role of pair correlations, Tan's contact, and the Hartree mean-field energy shift. PMID:25941948

  2. Multi-gas interaction modeling on decorated semiconductor interfaces: A novel Fermi distribution-based response isotherm and the inverse hard/soft acid/base concept

    NASA Astrophysics Data System (ADS)

    Laminack, William; Gole, James

    2015-12-01

    A unique MEMS/NEMS approach is presented for the modeling of a detection platform for mixed gas interactions. Mixed gas analytes interact with nanostructured decorating metal oxide island sites supported on a microporous silicon substrate. The Inverse Hard/Soft acid/base (IHSAB) concept is used to assess a diversity of conductometric responses for mixed gas interactions as a function of these nanostructured metal oxides. The analyte conductometric responses are well represented using a combination diffusion/absorption-based model for multi-gas interactions where a newly developed response absorption isotherm, based on the Fermi distribution function is applied. A further coupling of this model with the IHSAB concept describes the considerations in modeling of multi-gas mixed analyte-interface, and analyte-analyte interactions. Taking into account the molecular electronic interaction of both the analytes with each other and an extrinsic semiconductor interface we demonstrate how the presence of one gas can enhance or diminish the reversible interaction of a second gas with the extrinsic semiconductor interface. These concepts demonstrate important considerations in the array-based formats for multi-gas sensing and its applications.

  3. Dynamical heterogeneity in a glass-forming ideal gas.

    PubMed

    Charbonneau, Patrick; Das, Chinmay; Frenkel, Daan

    2008-07-01

    We conduct a numerical study of the dynamical behavior of a system of three-dimensional "crosses," particles that consist of three mutually perpendicular line segments of length sigma rigidly joined at their midpoints. In an earlier study [W. van Ketel, Phys. Rev. Lett. 94, 135703 (2005)] we showed that this model has the structural properties of an ideal gas, yet the dynamical properties of a strong glass former. In the present paper we report an extensive study of the dynamical heterogeneities that appear in this system in the regime where glassy behavior sets in. On the one hand, we find that the propensity of a particle to diffuse is determined by the structure of its local environment. The local density around mobile particles is significantly less than the average density, but there is little clustering of mobile particles, and the clusters observed tend to be small. On the other hand, dynamical susceptibility results indicate that a large dynamical length scale develops even at moderate densities. This suggests that propensity and other mobility measures are an incomplete measure of the dynamical length scales in this system.

  4. Speed of sound and ideal-gas heat capacity of freon R-236ea

    NASA Astrophysics Data System (ADS)

    Komarov, S. G.; Gruzdev, V. A.; Stankus, S. V.

    2008-09-01

    Speed of sound in the gaseous freon R-236ea with the purity of 99.68 mol. % has been measured by the method of ultrasonic interferometer in the range from 263 to 423 K and at pressures from 17 kPA to 4.2 MPa. Errors of temperature, pressure, and speed of sound measurement were estimated to be within +/- 20 mK, ± 1.5 kPa, and ±(0.1+0.2) % respectively. Temperature dependence of ideal-gas heat capacity of R-236ea has been calculated on the basis of the obtained data.

  5. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.

    PubMed

    He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang

    2008-07-01

    We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.

  6. The ‘ideal selectivity’ vs ‘true selectivity’ for permeation of gas mixture in nanoporous membranes

    NASA Astrophysics Data System (ADS)

    He, Zhou; Wang, Kean

    2018-03-01

    In this study, we proposed and validated a novel and non-destructive experimental technology for measuring the permeation of binary gas mixture in nanoporous membranes. The traditional time lag rig was modified to examine the permeation characteristics of each gas component as well as that of the binary gas mixtures. The difference in boiling points of each species were explored. Binary gas mixtures of CO2/He were permeated through the nanoporous carbon molecular sieve membrane (CMSM). The results showed that, due to the strong interaction among different molecules and with the porous network of the membrane, the measured perm-selectivity or ‘true selectivity’ of a binary mixture can significantly deviate from the ‘ideal selectivity’ calculated form the permeation flux of each pure species, and this deviation is a complicated function of the molecular properties and operation conditions.

  7. A combustion model for studying the effects of ideal gas properties on jet noise

    NASA Astrophysics Data System (ADS)

    Jacobs, Jerin; Tinney, Charles

    2016-11-01

    A theoretical combustion model is developed to simulate the influence of ideal gas effects on various aeroacoustic parameters over a range of equivalence ratios. The motivation is to narrow the gap between laboratory and full-scale jet noise testing. The combustion model is used to model propane combustion in air and kerosene combustion in air. Gas properties from the combustion model are compared to real lab data acquired at the National Center for Physical Acoustics at the University of Mississippi as well as outputs from NASA's Chemical Equilibrium Analysis code. Different jet properties are then studied over a range of equivalence ratios and pressure ratios for propane combustion in air, kerosene combustion in air and heated air. The findings reveal negligible differences between the three constituents where the density and sound speed ratios are concerned. Albeit, the area ratio required for perfectly expanded flow is shown to be more sensitive to gas properties, relative to changes in the temperature ratio.

  8. Universal relations for spin-orbit-coupled Fermi gas near an s -wave resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Sun, Ning

    2018-04-01

    Synthetic spin-orbit-coupled quantum gases have been widely studied both experimentally and theoretically in the past decade. As shown in previous studies, this modification of single-body dispersion will in general couple different partial waves of the two-body scattering and thus distort the wave function of few-body bound states which determines the short-distance behavior of many-body wave function. In this work, we focus on the two-component Fermi gas with one-dimensional or three-dimensional spin-orbit coupling (SOC) near an s -wave resonance. Using the method of effective field theory and the operator product expansion, we derive universal relations for both systems, including the adiabatic theorem, viral theorem, and pressure relation, and obtain the momentum distribution matrix 〈ψa†(q ) ψb(q ) 〉 at large q (a ,b are spin indices). The momentum distribution matrix shows both spin-dependent and spatial anisotropic features. And the large momentum tail is modified at the subleading order thanks to the SOC. We also discuss the experimental implication of these results depending on the realization of the SOC.

  9. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.

    PubMed

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-01-01

    Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. The fermi paradox is neither Fermi's nor a paradox.

    PubMed

    Gray, Robert H

    2015-03-01

    The so-called Fermi paradox claims that if technological life existed anywhere else, we would see evidence of its visits to Earth--and since we do not, such life does not exist, or some special explanation is needed. Enrico Fermi, however, never published anything on this topic. On the one occasion he is known to have mentioned it, he asked "Where is everybody?"--apparently suggesting that we do not see extraterrestrials on Earth because interstellar travel may not be feasible, but not suggesting that intelligent extraterrestrial life does not exist or suggesting its absence is paradoxical. The claim "they are not here; therefore they do not exist" was first published by Michael Hart, claiming that interstellar travel and colonization of the Galaxy would be inevitable if intelligent extraterrestrial life existed, and taking its absence here as proof that it does not exist anywhere. The Fermi paradox appears to originate in Hart's argument, not Fermi's question. Clarifying the origin of these ideas is important, because the Fermi paradox is seen by some as an authoritative objection to searching for evidence of extraterrestrial intelligence--cited in the U.S. Congress as a reason for killing NASA's SETI program on one occasion. But evidence indicates that it misrepresents Fermi's views, misappropriates his authority, deprives the actual authors of credit, and is not a valid paradox.

  11. Rigorous investigation of the reduced density matrix for the ideal Bose gas in harmonic traps by a loop-gas-like approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beau, Mathieu, E-mail: mbeau@stp.dias.ie; Savoie, Baptiste, E-mail: baptiste.savoie@gmail.com

    2014-05-15

    In this paper, we rigorously investigate the reduced density matrix (RDM) associated to the ideal Bose gas in harmonic traps. We present a method based on a sum-decomposition of the RDM allowing to treat not only the isotropic trap, but also general anisotropic traps. When focusing on the isotropic trap, the method is analogous to the loop-gas approach developed by Mullin [“The loop-gas approach to Bose-Einstein condensation for trapped particles,” Am. J. Phys. 68(2), 120 (2000)]. Turning to the case of anisotropic traps, we examine the RDM for some anisotropic trap models corresponding to some quasi-1D and quasi-2D regimes. Formore » such models, we bring out an additional contribution in the local density of particles which arises from the mesoscopic loops. The close connection with the occurrence of generalized-Bose-Einstein condensation is discussed. Our loop-gas-like approach provides relevant information which can help guide numerical investigations on highly anisotropic systems based on the Path Integral Monte Carlo method.« less

  12. Photoemission spectrum and effect of inhomogeneous pairing fluctuations in the BCS-BEC crossover regime of an ultracold Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Shunji; Ohashi, Yoji; CREST

    2010-09-15

    We investigate the photoemission-type spectrum in a cold Fermi gas which was recently measured by the JILA group [Stewart et al., Nature (London) 454, 744 (2008)]. This quantity gives us very useful information about single-particle properties in the BCS-BEC crossover. In this paper, including pairing fluctuations within a T-matrix theory, as well as effects of a harmonic trap within the local density approximation, we show that spatially inhomogeneous pairing fluctuations due to the trap potential are an important key to understanding the observed spectrum. In the crossover region, while strong pairing fluctuations lead to the so-called pseudogap phenomenon in themore » trap center, such strong-coupling effects are found to be weak around the edge of the gas. Our results including this effect are shown to agree well with the recent photoemission data of the JILA group.« less

  13. VizieR Online Data Catalog: Fermi/non-Fermi blazars jet power and accretion (Chen+, 2015)

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Zhang, X.; Zhang, H. J.; Yu, X. L.

    2017-11-01

    We selected the sample using radio catalogues to get the widest possible sample of blazars based on their radio properties. We split them into Fermi-detected sources and non-Fermi detections. Massaro et al. (2009, J/A+A/495/691) created the "Multifrequency Catalogue of Blazars" (Roma-BZCAT), which classifies blazars into three main groups based on their spectral properties. In total, we have a sample containing 177 clean Fermi blazars (96 Fermi FSRQs and 81 Fermi BL Lacs) and 133 non-Fermi blazars (105 non-Fermi FSRQs and 28 non-Fermi BL Lacs). (2 data files).

  14. Cascade of Solitonic Excitations in a Superfluid Fermi Gas: From Solitons and Vortex Rings to Solitonic Vortices

    NASA Astrophysics Data System (ADS)

    Ku, Mark; Mukherjee, Biswaroop; Yefsah, Tarik; Zwierlein, Martin

    2015-05-01

    We follow the evolution of a superfluid Fermi gas of 6Li atoms following a one-sided π phase imprint. Via tomographic imaging, we observe the formation of a planar dark soliton, and its subsequent snaking and decay into a vortex ring. The latter eventually breaks at the boundary of the superfluid, finally leaving behind a single, remnant solitonic vortex. The nodal surface is directly imaged and reveals its decay into a vortex ring via a puncture of the initial soliton plane. At intermediate stages we find evidence for more exotic structures resembling Φ-solitons. The observed evolution of the nodal surface represents dynamics that occurs at the length scale of the interparticle spacing, thus providing new experimental input for microscopic theories of strongly correlated fermions.

  15. Ideal thermodynamic processes of oscillatory-flow regenerative engines will go to ideal stirling cycle?

    NASA Astrophysics Data System (ADS)

    Luo, Ercang

    2012-06-01

    This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.

  16. Ultrafast and Ultrasensitive Gas Sensors Derived from a Large Fermi-Level Shift in the Schottky Junction with Sieve-Layer Modulation.

    PubMed

    Cheng, Ching-Cheng; Wu, Chia-Lin; Liao, Yu-Ming; Chen, Yang-Fang

    2016-07-13

    Gas sensors play an important role in numerous fields, covering a wide range of applications, including intelligent systems and detection of harmful and toxic gases. Even though they have attracted much attention, the response time on the order of seconds to minutes is still very slow. To circumvent the existing problems, here, we provide a seminal attempt with the integration of graphene, semiconductor, and an addition sieve layer forming a nanocomposite gas sensor with ultrahigh sensitivity and ultrafast response. The designed sieve layer has a suitable band structure that can serve as a blocking layer to prevent transfer of the charges induced by adsorbed gas molecules into the underlying semiconductor layer. We found that the sensitivity can be reduced to the parts per million level, and the ultrafast response of around 60 ms is unprecedented compared with published graphene-based gas sensors. The achieved high performance can be interpreted well by the large change of the Fermi level of graphene due to its inherent nature of the low density of states and blocking of the sieve layer to prevent charge transfer from graphene to the underlying semiconductor layer. Accordingly, our work is very useful and timely for the development of gas sensors with high performance for practical applications.

  17. Configuration-specific kinetic theory applied to an ideal binary gas mixture.

    PubMed

    Wiseman, Floyd L

    2006-10-05

    This paper is the second in a two-part series dealing with the configuration-specific analyses for molecular collision events of hard, spherical molecules at thermal equilibrium. The first paper analyzed a single-component system, and the reader is referred to it for the fundamental concepts. In this paper, the expressions for the configuration-specific collision frequencies and the average line-of-centers collision angles and speeds are derived for an ideal binary gas mixture. The analyses show that the average line-of-centers quantities are all dependent upon the ratio of the masses of the two components, but not upon molecular size. Of course, the configuration-specific collision frequencies do depend on molecular size. The expression for the overall binary collision frequency is a simple sum of the configuration-specific collision frequencies and is identical to the conventional expression.

  18. On the accuracy of Whitham's method. [for steady ideal gas flow past cones

    NASA Technical Reports Server (NTRS)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is studied by the method of matched asymptotic expansions and by Whitham's method in order to assess the accuracy of the latter. It is found that while Whitham's method does not yield a correct asymptotic representation of the perturbation field to second order in regions where the flow ahead of the Mach cone of the apex is disturbed, it does correctly predict the changes of the second-order perturbation quantities across a shock (the first-order shock strength). The results of the analysis are illustrated by a special case of a flat, rectangular plate at incidence.

  19. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.

  20. Analytical theory of mesoscopic Bose-Einstein condensation in an ideal gas

    NASA Astrophysics Data System (ADS)

    Kocharovsky, Vitaly V.; Kocharovsky, Vladimir V.

    2010-03-01

    We find the universal structure and scaling of the Bose-Einstein condensation (BEC) statistics and thermodynamics (Gibbs free energy, average energy, heat capacity) for a mesoscopic canonical-ensemble ideal gas in a trap with an arbitrary number of atoms, any volume, and any temperature, including the whole critical region. We identify a universal constraint-cutoff mechanism that makes BEC fluctuations strongly non-Gaussian and is responsible for all unusual critical phenomena of the BEC phase transition in the ideal gas. The main result is an analytical solution to the problem of critical phenomena. It is derived by, first, calculating analytically the universal probability distribution of the noncondensate occupation, or a Landau function, and then using it for the analytical calculation of the universal functions for the particular physical quantities via the exact formulas which express the constraint-cutoff mechanism. We find asymptotics of that analytical solution as well as its simple analytical approximations which describe the universal structure of the critical region in terms of the parabolic cylinder or confluent hypergeometric functions. The obtained results for the order parameter, all higher-order moments of BEC fluctuations, and thermodynamic quantities perfectly match the known asymptotics outside the critical region for both low and high temperature limits. We suggest two- and three-level trap models of BEC and find their exact solutions in terms of the cutoff negative binomial distribution (which tends to the cutoff gamma distribution in the continuous limit) and the confluent hypergeometric distribution, respectively. Also, we present an exactly solvable cutoff Gaussian model of BEC in a degenerate interacting gas. All these exact solutions confirm the universality and constraint-cutoff origin of the strongly non-Gaussian BEC statistics. We introduce a regular refinement scheme for the condensate statistics approximations on the basis of the

  1. Numerical analysis of spin-orbit-coupled one-dimensional Fermi gas in a magnetic field

    NASA Astrophysics Data System (ADS)

    Chan, Y. H.

    2015-06-01

    Based on the density-matrix renormalization group and the infinite time-evolving block decimation methods we study the interacting spin-orbit-coupled 1D Fermi gas in a transverse magnetic field. We find that the system with an attractive interaction can have a polarized insulator phase, a superconducting (SC) phase, a Luther-Emery (LE) phase, and a band insulator phase as we vary the chemical potential and the strength of the magnetic field. Spin-orbit coupling (SOC) enhances the triplet pairing order at zero momentum in both the SC and the LE phase, which leads to an algebraically decaying correlation with the same exponent as that of the singlet pairing one. In contrast to the Fulde-Ferrell-Larkin-Ovchinnikov phase found in the spin imbalanced system without SOC, pairings at finite momentum in these two phases have larger exponents hence do not dictate the long-range behavior. We also test for the presence of Majorana fermions in this system. Unlike results from the mean-field study, we do not find positive evidence of Majorana fermions.

  2. Searching for γ-ray emission from Reticulum II by Fermi-LAT

    NASA Astrophysics Data System (ADS)

    Zhao, Yi; Bi, Xiao-Jun; Yin, Peng-Fei; Zhang, Xinmin

    2018-02-01

    Recently, many new dwarf spheroidal satellites (dSphs) have been discovered by the Dark Energy Survey (DES). These dSphs are ideal candidates for probing for gamma-ray emissions from dark matter (DM) annihilation. However, no significant signature has been found by the Fermi-LAT dSph observations. In this work, we reanalyze the Fermi-LAT Pass 8 data from the direction of Reticulum II, where a slight excess has been reported by some previous studies. We treat Reticulum II (DES J0335.6-5403) as a spatially extended source, and find that no significant gamma-ray signature is observed. Based on this result, we set upper-limits on the DM annihilation cross section. Supported by National Natural Science Foundation of China (11121092, 11033005, 11375202, 11475191, 11475189), the CAS pilot B program (XDB23020000) and the National Key Program for Research and Development (2016YFA0400200)

  3. Fermi Gas Microscope

    NASA Astrophysics Data System (ADS)

    Setiawan, Widagdo

    Recent advances in using microscopes in ultracold atom experiment have allowed experimenters for the first time to directly observe and manipulate individual atoms in individual lattice sites. This technique enhances our capability to simulate strongly correlated systems such as Mott insulator and high temperature superconductivity. Currently, all ultracold atom experiments with high resolution imaging capability use bosonic atoms. In this thesis, I present our progress towards creating the fermionic version of the microscope experiment which is more suitable for simulating real condensed matter systems. Lithium is ideal due to the existence of both fermionic and bosonic isotopes, its light mass, which means faster experiment time scales that suppresses many sources of technical noise, and also due to the existence of a broad Feshbach resonance, which can be used to tune the inter-particle interaction strength over a wide range from attractive, non-interacting, and repulsive interactions. A high numerical aperture objective will be used to image and manipulate the atoms with single lattice site resolution. This setup should allow us to implement the Hubbard hamiltonian which could describe interesting quantum phases such as antiferromagnetism, d-wave superfluidity, and high temperature superconductivity. I will also discuss the feasibility of the Raman sideband cooling method for cooling the atoms during the imaging process. We have also developed a new electronic control system to control the sequence of the experiment. This electronic system is very scalable in order to keep up with the increasing complexity of atomic physics experiments. Furthermore, the system is also designed to be more precise in order to keep up with the faster time scale of lithium experiment.

  4. Interaction energy and itinerant ferromagnetism in a strongly interacting Fermi gas in the absence of molecule formation

    DOE PAGES

    He, Lianyi

    2014-11-26

    In this study, we investigate the interaction energy and the possibility of itinerant ferromagnetism in a strongly interacting Fermi gas at zero temperature in the absence of molecule formation. The interaction energy is obtained by summing the perturbative contributions of Galitskii-Feynman type to all orders in the gas parameter. It can be expressed by a simple phase-space integral of an in-medium scattering phase shift. In both three and two dimensions (3D and 2D), the interaction energy shows a maximum before reaching the resonance from the Bose-Einstein condensate side, which provides a possible explanation of the experimental measurements of the interactionmore » energy. This phenomenon can be theoretically explained by the qualitative change of the nature of the binary interaction in the medium. The appearance of an energy maximum has significant effects on the itinerant ferromagnetism. In 3D, the ferromagnetic transition is reentrant and itinerant ferromagnetism exists in a narrow window around the energy maximum. In 2D, the present theoretical approach suggests that itinerant ferromagnetism does not exist, which reflects the fact that the energy maximum becomes much lower than the energy of the fully polarized state.« less

  5. Determination of ideal-gas enthalpies of formation for key compounds:

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, W.V.; Chirico, R.D.; Nguyen, A.

    1991-10-01

    The results of a study aimed at improvement of group-contribution methodology for estimation of thermodynamic properties of organic and organosilicon substances are reported. Specific weaknesses where particular group-contribution terms were unknown, or estimated because of lack of experimental data, are addressed by experimental studies of enthalpies of combustion in the condensed phase, vapor-pressure measurements, and differential scanning calorimetric (d.s.c.) heat-capacity measurements. Ideal-gas enthalpies of formation of ({plus minus})-butan-2-ol, tetradecan-1-ol, hexan-1,6-diol, methacrylamide, benzoyl formic acid, naphthalene-2,6-dicarboxylic acid dimethyl ester, and tetraethylsilane are reported. A crystalline-phase enthalpy of formation at 298.15 K was determined for naphthalene-2,6-dicarboxylic acid, which decomposed at 695 Kmore » before melting. The combustion calorimetry of tetraethylsilane used the proven fluorine-additivity methodology. Critical temperature and critical density were determined for tetraethylsilane with differential scanning calorimeter and the critical pressure was derived. Group-additivity parameters useful in the application of group- contribution correlations are derived. 112 refs., 13 figs., 19 tabs.« less

  6. Spin-Imbalanced Quasi-Two-Dimensional Fermi Gases

    NASA Astrophysics Data System (ADS)

    Ong, W.; Cheng, Chingyun; Arakelyan, I.; Thomas, J. E.

    2015-03-01

    We measure the density profiles for a Fermi gas of Li 6 containing N1 spin-up atoms and N2 spin-down atoms, confined in a quasi-two-dimensional geometry. The spatial profiles are measured as a function of spin imbalance N2/N1 and interaction strength, which is controlled by means of a collisional (Feshbach) resonance. The measured cloud radii and central densities are in disagreement with mean-field Bardeen-Cooper-Schrieffer theory for a true two-dimensional system. We find that the data for normal-fluid mixtures are reasonably well fit by a simple two-dimensional polaron model of the free energy. Not predicted by the model is a phase transition to a spin-balanced central core, which is observed above a critical value of N2/N1. Our observations provide important benchmarks for predictions of the phase structure of quasi-two-dimensional Fermi gases.

  7. Hyperpolarized (129) Xe imaging of the rat lung using spiral IDEAL.

    PubMed

    Doganay, Ozkan; Wade, Trevor; Hegarty, Elaine; McKenzie, Charles; Schulte, Rolf F; Santyr, Giles E

    2016-08-01

    To implement and optimize a single-shot spiral encoding strategy for rapid 2D IDEAL projection imaging of hyperpolarized (Hp) (129) Xe in the gas phase, and in the pulmonary tissue (PT) and red blood cells (RBCs) compartments of the rat lung, respectively. A theoretical and experimental point spread function analysis was used to optimize the spiral k-space read-out time in a phantom. Hp (129) Xe IDEAL images from five healthy rats were used to: (i) optimize flip angles by a Bloch equation analysis using measured kinetics of gas exchange and (ii) investigate the feasibility of the approach to characterize the exchange of Hp (129) Xe. A read-out time equal to approximately 1.8 × T2* was found to provide the best trade-off between spatial resolution and signal-to-noise ratio (SNR). Spiral IDEAL approaches that use the entire dissolved phase magnetization should give an SNR improvement of a factor of approximately three compared with Cartesian approaches with similar spatial resolution. The IDEAL strategy allowed imaging of gas, PT, and RBC compartments with sufficient SNR and temporal resolution to permit regional gas exchange measurements in healthy rats. Single-shot spiral IDEAL imaging of gas, PT and RBC compartments and gas exchange is feasible in rat lung using Hp (129) Xe. Magn Reson Med 76:566-576, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  8. Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Huaisong; Gao, Deheng; Feng, Shiping

    2017-03-01

    One of the most intriguing puzzle is why there is a coexistence of Fermi arcs and Fermi pockets in the pseudogap phase of cuprate superconductors? This puzzle is calling for an explanation. Based on the t - J model in the fermion-spin representation, the coexistence of the Fermi arcs and Fermi pockets in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the pseudogap induces an energy band splitting, and then the poles of the electron Green's function at zero energy form two contours in momentum space, however, the electron spectral weight on these two contours around the antinodal region is gapped out by the pseudogap, leaving behind the low-energy electron spectral weight only located at the disconnected segments around the nodal region. In particular, the tips of these disconnected segments converge on the hot spots to form the closed Fermi pockets, generating a coexistence of the Fermi arcs and Fermi pockets. Moreover, the single-particle coherent weight is directly related to the pseudogap, and grows linearly with doping. The calculated result of the overall dispersion of the electron excitations is in qualitative agreement with the experimental data. The theory also predicts that the pseudogap-induced peak-dip-hump structure in the electron spectrum is absent from the hot-spot directions.

  9. Fermi surfaces in Kondo insulators

    NASA Astrophysics Data System (ADS)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  10. An alternative expression to the Sackur-Tetrode entropy formula for an ideal gas

    NASA Astrophysics Data System (ADS)

    Nagata, Shoichi

    2018-03-01

    An expression for the entropy of a monoatomic classical ideal gas is known as the Sackur-Tetrode equation. This pioneering investigation about 100 years ago incorporates quantum considerations. The purpose of this paper is to provide an alternative expression for the entropy in terms of the Heisenberg uncertainty relation. The analysis is made on the basis of fluctuation theory, for a canonical system in thermal equilibrium at temperature T. This new formula indicates manifestly that the entropy of macroscopic world is recognized as a measure of uncertainty in microscopic quantum world. The entropy in the Sackur-Tetrode equation can be re-interpreted from a different perspective viewpoint. The emphasis is on the connection between the entropy and the uncertainty relation in quantum consideration.

  11. Twisted Fermi surface of a thin-film Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Bovenzi, N.; Breitkreiz, M.; O'Brien, T. E.; Tworzydło, J.; Beenakker, C. W. J.

    2018-02-01

    The Fermi surface of a conventional two-dimensional electron gas is equivalent to a circle, up to smooth deformations that preserve the orientation of the equi-energy contour. Here we show that a Weyl semimetal confined to a thin film with an in-plane magnetization and broken spatial inversion symmetry can have a topologically distinct Fermi surface that is twisted into a figure-8—opposite orientations are coupled at a crossing which is protected up to an exponentially small gap. The twisted spectral response to a perpendicular magnetic field B is distinct from that of a deformed Fermi circle, because the two lobes of a figure-8 cyclotron orbit give opposite contributions to the Aharonov-Bohm phase. The magnetic edge channels come in two counterpropagating types, a wide channel of width β {l}m2\\propto 1/B and a narrow channel of width {l}m\\propto 1/\\sqrt{B} (with {l}m=\\sqrt{{\\hslash }/{eB}} the magnetic length and β the momentum separation of the Weyl points). Only one of the two is transmitted into a metallic contact, providing unique magnetotransport signatures.

  12. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6

    NASA Astrophysics Data System (ADS)

    Hartstein, M.; Toews, W. H.; Hsu, Y.-T.; Zeng, B.; Chen, X.; Hatnean, M. Ciomaga; Zhang, Q. R.; Nakamura, S.; Padgett, A. S.; Rodway-Gant, G.; Berk, J.; Kingston, M. K.; Zhang, G. H.; Chan, M. K.; Yamashita, S.; Sakakibara, T.; Takano, Y.; Park, J.-H.; Balicas, L.; Harrison, N.; Shitsevalova, N.; Balakrishnan, G.; Lonzarich, G. G.; Hill, R. W.; Sutherland, M.; Sebastian, Suchitra E.

    2018-02-01

    The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator-metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. Here we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB6 positioned close to the insulator-metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including a sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.

  13. First light from the Vela pulsar with the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Razzano, M.

    2009-04-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an international space mission entirely devoted to the study of the high-energy gamma rays from the Universe. The main instrument aboard Fermi is the Large Area Telescope (LAT), a pair conversion telescope equipped with the state-of-the art in gamma-ray detectors technology. Thanks to its large field of view and effective area, combined with its excellent timing capability, Fermi-LAT is a perfect instrument for probing physics of gamma-ray emission in pulsars. LAT is expected to discover tens of new pulsars, both radio-loud and radio-quiet (Geminga-like). Moreover, LAT will observe with unprecedented statistics the brightest pulsars, investigating the details of magnetospheric emission. The first two months of the mission have been focused on the commissioning and first light, during which the LAT firmly detected the six previously known EGRET gamma-ray pulsars. One of the main sources of interest during our first light observations has been the Vela pulsar, the brightest persistent source in the whole gamma-ray sky. Thanks to its brightness, the Vela pulsar is an ideal candidate for calibrating the LAT and testing its performance. In addition, observations of Vela will help answer many questions related to the physics of pulsar emission processes. We present here some recent results obtained by the LAT on the Vela pulsar, using high-quality timing solutions provided by radio observations carried out within the Fermi pulsar radio timing campaign.

  14. Fermi-Edge Singularity of Spin-Polarized Electrons

    NASA Astrophysics Data System (ADS)

    Plochocka-Polack, P.; Groshaus, J. G.; Rappaport, M.; Umansky, V.; Gallais, Y.; Pinczuk, A.; Bar-Joseph, I.

    2007-05-01

    We study the absorption spectrum of a two-dimensional electron gas (2DEG) in a magnetic field. We find that at low temperatures, when the 2DEG is spin polarized, the absorption spectra, which correspond to the creation of spin up or spin down electrons, differ in magnitude, linewidth, and filling factor dependence. We show that these differences can be explained as resulting from the creation of a Mahan exciton in one case, and of a power law Fermi-edge singularity in the other.

  15. Slippage and boundary layer probed in an almost ideal gas by a nanomechanical oscillator.

    PubMed

    Defoort, M; Lulla, K J; Crozes, T; Maillet, O; Bourgeois, O; Collin, E

    2014-09-26

    We measure the interaction between ⁴He gas at 4.2 K and a high-quality nanoelectromechanical string device for its first three symmetric modes (resonating at 2.2, 6.7, and 11 MHz with quality factor Q>0.1×10⁶) over almost 6 orders of magnitude in pressure. This fluid can be viewed as the best experimental implementation of an almost ideal monoatomic and inert gas of which properties are tabulated. The experiment ranges from high pressure where the flow is of laminar Stokes-type presenting slippage down to very low pressures where the flow is molecular. In the molecular regime, when the mean-free path is of the order of the distance between the suspended nanomechanical probe and the bottom of the trench, we resolve for the first time the signature of the boundary (Knudsen) layer onto the measured dissipation. Our results are discussed in the framework of the most recent theories investigating boundary effects in fluids (both analytic approaches and direct simulation Monte Carlo methods).

  16. Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution

    PubMed Central

    Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin

    2014-01-01

    The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al. 2012 Proc. R. Soc. A 468, 1799–1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi–Dirac or Bose–Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas. PMID:24399919

  17. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB 6

    DOE PAGES

    Hartstein, M.; Toews, W. H.; Hsu, Y. -T.; ...

    2017-10-23

    The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator–metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. In this paper, we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB 6 positioned close to the insulator–metal transition. We present experimental signatures down to low temperatures (<<1 K) associated with a Fermi surface in the bulk, including amore » sizeable linear specific heat coefficient, and on the application of a finite magnetic field, bulk magnetic quantum oscillations, finite quantum oscillatory entropy, and substantial enhancement in thermal conductivity well below the charge gap energy scale. Finally, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB 6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.« less

  18. Fermi at Six Months

    NASA Technical Reports Server (NTRS)

    Hays, Elizabeth

    2009-01-01

    An overview of the Fermi Gamma-ray Space Telescope's first 6 months in operation is provided. The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy rage 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. It contains a Large Area Telescope capable of viewing the entire sky every 3 hours and a Gamma-ray Burst Monitor for viewing the entire unocculted sky. Since its launch on June 11, 2008 Fermi has provided information on pulsars, gamma ray bursts, relativistic jets, the active galactic nucleus, and a globular star cluster. This presentation describes Fermi's development, mission, instruments and recent findings.

  19. Quantum criticality and universal scaling of strongly attractive spin-imbalanced Fermi gases in a one-dimensional harmonic trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin Xiangguo; Chen Shu; Guan Xiwen

    2011-07-15

    We investigate quantum criticality and universal scaling of strongly attractive Fermi gases confined in a one-dimensional harmonic trap. We demonstrate from the power-law scaling of the thermodynamic properties that current experiments on this system are capable of measuring universal features at quantum criticality, such as universal scaling and Tomonaga-Luttinger liquid physics. The results also provide insights on recent measurements of key features of the phase diagram of a spin-imbalanced atomic Fermi gas [Y. Liao et al., Nature (London) 467, 567 (2010)] and point to further study of quantum critical phenomena in ultracold atomic Fermi gases.

  20. Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology.

    PubMed

    Shiraiwa, Manabu; Zuend, Andreas; Bertram, Allan K; Seinfeld, John H

    2013-07-21

    Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of α-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models.

  1. Seebeck effect on a weak link between Fermi and non-Fermi liquids

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. T.; Kiselev, M. N.

    2018-02-01

    We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526, 233 (2015), 10.1038/nature15384] designed for detection of macroscopic quantum charged states in multichannel Kondo systems. We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-dot-quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors. High controllability of the device allows to fine tune the system to different regimes described by multichannel and multi-impurity Kondo models.

  2. NASA's Fermi Proves Supernova Remnants Produce Cosmic Rays

    NASA Image and Video Library

    2017-12-08

    The W44 supernova remnant is nestled within and interacting with the molecular cloud that formed its parent star. Fermi's LAT detects GeV gamma rays (magenta) produced when the gas is bombarded by cosmic rays, primarily protons. Radio observations (yellow) from the Karl G. Jansky Very Large Array near Socorro, N.M., and infrared (red) data from NASA's Spitzer Space Telescope reveal filamentary structures in the remnant's shell. Blue shows X-ray emission mapped by the Germany-led ROSAT mission. To read more go to: 1.usa.gov/14V14qi NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram Credit: NASA/DOE/Fermi LAT Collaboration, NRAO/AUI, JPL-Caltech, ROSAT

  3. Spin-orbit-coupled Fermi gases of two-electron ytterbium atoms

    NASA Astrophysics Data System (ADS)

    He, Chengdong; Song, Bo; Haciyev, Elnur; Ren, Zejian; Seo, Bojeong; Zhang, Shanchao; Liu, Xiong-Jun; Jo, Gyu-Boong

    2017-04-01

    Spin-orbit coupling (SOC) has been realized in bosonic and fermionic atomic gases opening an avenue to novel physics associated with spin-momentum locking. In this talk, we will demonstrate all-optical method coupling two hyperfine ground states of 173Yb fermions through a narrow optical transition 1S0 -> 3P1. An optical AC Stark shift is applied to split the ground hyperfine levels and separate out an effective spin-1/2 subspace from other spin states for the realization of SOC. The spin dephasing dynamics and the asymmetric momentum distribution of the spin-orbit coupled Fermi gas are observed as a hallmark of SOC. The implementation of all-optical SOC for ytterbium fermions should offer a new route to a long-lived spin-orbit coupled Fermi gas and greatly expand our capability in studying novel spin-orbit physics with alkaline-earth-like atoms. Other ongoing experimental works related to SOC will be also discussed. Funded by Croucher Foundation and Research Grants Council (RGC) of Hong Kong (Project ECS26300014, GRF16300215, GRF16311516, and Croucher Innovation Grants); MOST (Grant No. 2016YFA0301604) and NSFC (No. 11574008).

  4. From ultracold Fermi Gases to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Salomon, Christophe

    2012-02-01

    Ultracold dilute atomic gases can be considered as model systems to address some pending problem in Many-Body physics that occur in condensed matter systems, nuclear physics, and astrophysics. We have developed a general method to probe with high precision the thermodynamics of locally homogeneous ultracold Bose and Fermi gases [1,2,3]. This method allows stringent tests of recent many-body theories. For attractive spin 1/2 fermions with tunable interaction (^6Li), we will show that the gas thermodynamic properties can continuously change from those of weakly interacting Cooper pairs described by Bardeen-Cooper-Schrieffer theory to those of strongly bound molecules undergoing Bose-Einstein condensation. First, we focus on the finite-temperature Equation of State (EoS) of the unpolarized unitary gas. Surprisingly, the low-temperature properties of the strongly interacting normal phase are well described by Fermi liquid theory [3] and we localize the superfluid phase transition. A detailed comparison with theories including recent Monte-Carlo calculations will be presented. Moving away from the unitary gas, the Lee-Huang-Yang and Lee-Yang beyond-mean-field corrections for low density bosonic and fermionic superfluids are quantitatively measured for the first time. Despite orders of magnitude difference in density and temperature, our equation of state can be used to describe low density neutron matter such as the outer shell of neutron stars. [4pt] [1] S. Nascimbène, N. Navon, K. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010) [0pt] [2] N. Navon, S. Nascimbène, F. Chevy, and C. Salomon, Science 328, 729 (2010) [0pt] [3] S. Nascimbène, N. Navon, S. Pilati, F. Chevy, S. Giorgini, A. Georges, and C. Salomon, Phys. Rev. Lett. 106, 215303 (2011)

  5. Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Jain, J. K.

    2017-12-01

    The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν <1 /2 but kF*=√{4 π ρh } for ν >1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .

  6. FermiGrid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yocum, D.R.; Berman, E.; Canal, P.

    2007-05-01

    As one of the founding members of the Open Science Grid Consortium (OSG), Fermilab enables coherent access to its production resources through the Grid infrastructure system called FermiGrid. This system successfully provides for centrally managed grid services, opportunistic resource access, development of OSG Interfaces for Fermilab, and an interface to the Fermilab dCache system. FermiGrid supports virtual organizations (VOs) including high energy physics experiments (USCMS, MINOS, D0, CDF, ILC), astrophysics experiments (SDSS, Auger, DES), biology experiments (GADU, Nanohub) and educational activities.

  7. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    NASA Astrophysics Data System (ADS)

    Debehets, J.; Homm, P.; Menghini, M.; Chambers, S. A.; Marchiori, C.; Heyns, M.; Locquet, J. P.; Seo, J. W.

    2018-05-01

    In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-level pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.

  8. Investigation of Bose Condensation in Ideal Bose Gas Trapped under Generic Power Law Potential in d Dimension

    NASA Astrophysics Data System (ADS)

    Mehedi Faruk, Mir; Sazzad Hossain, Md.; Muktadir Rahman, Md.

    2016-02-01

    The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.

  9. Fluctuating ideal-gas lattice Boltzmann method with fluctuation dissipation theorem for nonvanishing velocities.

    PubMed

    Kaehler, G; Wagner, A J

    2013-06-01

    Current implementations of fluctuating ideal-gas descriptions with the lattice Boltzmann methods are based on a fluctuation dissipation theorem, which, while greatly simplifying the implementation, strictly holds only for zero mean velocity and small fluctuations. We show how to derive the fluctuation dissipation theorem for all k, which was done only for k=0 in previous derivations. The consistent derivation requires, in principle, locally velocity-dependent multirelaxation time transforms. Such an implementation is computationally prohibitively expensive but, with a small computational trick, it is feasible to reproduce the correct FDT without overhead in computation time. It is then shown that the previous standard implementations perform poorly for non vanishing mean velocity as indicated by violations of Galilean invariance of measured structure factors. Results obtained with the method introduced here show a significant reduction of the Galilean invariance violations.

  10. Superfluidity and BCS-BEC crossover of ultracold atomic Fermi gases in mixed dimensions

    NASA Astrophysics Data System (ADS)

    Zhang, Leifeng; Chen, Qijin

    Atomic Fermi gases have been under active investigation in the past decade. Here we study the superfluid and pairing phenomena of a two-component ultracold atomic Fermi gas in the presence of mixed dimensionality, in which one component is confined on a 1D optical lattice whereas the other is free in the 3D continuum. We assume a short-range pairing interaction and determine the superfluid transition temperature Tc and the phase diagram for the entire BCS-BEC crossover, using a pairing fluctuation theory which includes self-consistently the contributions of finite momentum pairs. We find that, as the lattice depth increases and the lattice spacing decreases, the behavior of Tc becomes very similar to that of a population imbalance Fermi gas in a simple 3D continuum. There is no superfluidity even at T = 0 below certain threshold of pairing strength in the BCS regime. Nonmonotonic Tc behavior and intermediate temperature superfluidity emerge, and for deep enough lattice, the Tc curve will split into two parts. Implications for experiment will be discussed. References: 1. Q.J. Chen, Ioan Kosztin, B. Janko, and K. Levin, Phys. Rev. B 59, 7083 (1999). 2. Chih-Chun Chien, Qijin Chen, Yan He, and K. Levin, Phys. Rev. Lett. 97, 090402(2006). Work supported by NSF of China and the National Basic Research Program of China.

  11. Cellular Analysis of Boltzmann Most Probable Ideal Gas Statistics

    NASA Astrophysics Data System (ADS)

    Cahill, Michael E.

    2018-04-01

    Exact treatment of Boltzmann's Most Probable Statistics for an Ideal Gas of Identical Mass Particles having Translational Kinetic Energy gives a Distribution Law for Velocity Phase Space Cell j which relates the Particle Energy and the Particle Population according toB e(j) = A - Ψ(n(j) + 1)where A & B are the Lagrange Multipliers and Ψ is the Digamma Function defined byΨ(x + 1) = d/dx ln(x!)A useful sufficiently accurate approximation for Ψ is given byΨ(x +1) ≈ ln(e-γ + x)where γ is the Euler constant (≈.5772156649) & so the above distribution equation is approximatelyB e(j) = A - ln(e-γ + n(j))which can be inverted to solve for n(j) givingn(j) = (eB (eH - e(j)) - 1) e-γwhere B eH = A + γ& where B eH is a unitless particle energy which replaces the parameter A. The 2 approximate distribution equations imply that eH is the highest particle energy and the highest particle population isnH = (eB eH - 1) e-γwhich is due to the facts that population becomes negative if e(j) > eH and kinetic energy becomes negative if n(j) > nH.An explicit construction of Cells in Velocity Space which are equal in volume and homogeneous for almost all cells is shown to be useful in the analysis.Plots for sample distribution properties using e(j) as the independent variable are presented.

  12. Non-ideal magnetohydrodynamics on a moving mesh

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker

    2018-05-01

    In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.

  13. Polarized Fermi Condensates with Unequal Masses: Tuning the Tricritical Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parish, M. M.; Marchetti, F. M.; Simons, B. D.

    We consider a two-component atomic Fermi gas within a mean-field, single-channel model, where both the mass and population of each component are unequal. We show that the tricritical point at zero temperature evolves smoothly from the BEC to BCS side of the resonance as a function of mass ratio r. We find that the interior gap state proposed by Liu and Wilczek is always unstable to phase separation, while the breached pair state with one Fermi surface for the excess fermions exhibits differences in its density of states and pair correlation functions depending on which side of the resonance itmore » lies. Finally, we show that, when r > or appro. 3.95, the finite-temperature phase diagram of trapped gases at unitarity becomes topologically distinct from the equal mass system.« less

  14. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  15. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    DOE PAGES

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; ...

    2018-01-31

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  16. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    NASA Astrophysics Data System (ADS)

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold

    2018-02-01

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  17. Visualizing the BEC-BCS crossover in a two-dimensional Fermi gas: Pairing gaps and dynamical response functions from ab initio computations

    NASA Astrophysics Data System (ADS)

    Vitali, Ettore; Shi, Hao; Qin, Mingpu; Zhang, Shiwei

    2017-12-01

    Experiments with ultracold atoms provide a highly controllable laboratory setting with many unique opportunities for precision exploration of quantum many-body phenomena. The nature of such systems, with strong interaction and quantum entanglement, makes reliable theoretical calculations challenging. Especially difficult are excitation and dynamical properties, which are often the most directly relevant to experiment. We carry out exact numerical calculations, by Monte Carlo sampling of imaginary-time propagation of Slater determinants, to compute the pairing gap in the two-dimensional Fermi gas from first principles. Applying state-of-the-art analytic continuation techniques, we obtain the spectral function and the density and spin structure factors providing unique tools to visualize the BEC-BCS crossover. These quantities will allow for a direct comparison with experiments.

  18. Analytical pair correlations in ideal quantum gases: temperature-dependent bunching and antibunching.

    PubMed

    Bosse, J; Pathak, K N; Singh, G S

    2011-10-01

    The fluctuation-dissipation theorem together with the exact density response spectrum for ideal quantum gases has been utilized to yield a new expression for the static structure factor, which we use to derive exact analytical expressions for the temperature-dependent pair distribution function g(r) of the ideal gases. The plots of bosonic and fermionic g(r) display "Bose pile" and "Fermi hole" typically akin to bunching and antibunching as observed experimentally for ultracold atomic gases. The behavior of spin-scaled pair correlation for fermions is almost featureless, but bosons show a rich structure including long-range correlations near T(c). The coherent state at T=0 shows no correlation at all, just like single-mode lasers. The depicted decreasing trend in correlation with decrease in temperature for T

  19. Virial Coefficients from Unified Statistical Thermodynamics of Quantum Gases Trapped under Generic Power Law Potential in d Dimension and Equivalence of Quantum Gases

    NASA Astrophysics Data System (ADS)

    Bahauddin, Shah Mohammad; Mehedi Faruk, Mir

    2016-09-01

    From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d = 3 and d = 2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d = 1. This result suggests the equivalence between Bose and Fermi gases established in d = 1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.

  20. Cores in Dwarf Galaxies from Fermi Repulsion

    NASA Astrophysics Data System (ADS)

    Randall, Lisa; Scholtz, Jakub; Unwin, James

    2017-05-01

    We show that Fermi repulsion can lead to cored density profiles in dwarf galaxies for sub-keV fermionic dark matter. We treat the dark matter as a quasi-degenerate self-gravitating Fermi gas and calculate its density profile assuming hydrostatic equilibrium. We find that suitable dwarf galaxy cores of size ≳130 pc can be achieved for fermion dark matter with mass in the range of 70-400 eV. While in conventional dark matter scenarios such sub-keV thermal dark matter would be excluded by free streaming bounds, the constraints are ameliorated in models with dark matter at a lower temperature than conventional thermal scenarios, such as the Flooded Dark Matter model that we have previously considered. Modifying the arguments of Tremaine and Gunn, we derive a conservative lower bound on the mass of fermionic dark matter of 70 eV and a stronger lower bound from Lymanα clouds of about 470 eV, leading to slightly smaller cores than have been observed. We comment on this result and how the tension is relaxed in dark matter scenarios with non-thermal momentum distributions.

  1. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debehets, J.; Homm, P.; Menghini, M.

    In this study, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH 4) 2S-solutions in an inert atmosphere (N 2-gas). Although the (NH 4) 2S-cleaning in N 2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH 4) 2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.« less

  2. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    DOE PAGES

    Debehets, J.; Homm, P.; Menghini, M.; ...

    2018-01-12

    In this study, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate analyzer and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-levels. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH 4) 2S-solutions in an inert atmosphere (N 2-gas). Although the (NH 4) 2S-cleaning in N 2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH 4) 2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs.« less

  3. Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity.

    PubMed

    Xu, Li-Chun; Du, Aijun; Kou, Liangzhi

    2016-10-05

    The recent synthesis of monolayer borophene (triangular boron monolayer) on a substrate has opened the era of boron nanosheets (Science, 2015, 350, 1513), but the structural instability and a need to explore the novel physical properties are still open issues. Here we demonstrated that borophene can be stabilized by full surface hydrogenation (borophane), from first-principles calculations. Most interestingly, our calculations show that borophane has direction-dependent Dirac cones, which are mainly caused by the in-plane p x and p y orbitals of boron atoms. The Dirac fermions possess an ultrahigh Fermi velocity of up to 3.5 × 10 6 m s -1 under the HSE06 level, which is 4 times higher than that of graphene. The Young's moduli are calculated to be 190 and 120 GPa nm along two different directions, which are comparable to those of steel. The ultrahigh Fermi velocity and good mechanical features render borophane ideal for nanoelectronic applications.

  4. Computational-hydrodynamic studies of the Noh compressible flow problem using non-ideal equations of state

    NASA Astrophysics Data System (ADS)

    Honnell, Kevin; Burnett, Sarah; Yorke, Chloe'; Howard, April; Ramsey, Scott

    2017-06-01

    The Noh problem is classic verification problem in the field of compressible flows. Simple to conceptualize, it is nonetheless difficult for numerical codes to predict correctly, making it an ideal code-verification test bed. In its original incarnation, the fluid is a simple ideal gas; once validated, however, these codes are often used to study highly non-ideal fluids and solids. In this work the classic Noh problem is extended beyond the commonly-studied polytropic ideal gas to more realistic equations of state (EOS) including the stiff gas, the Nobel-Abel gas, and the Carnahan-Starling hard-sphere fluid, thus enabling verification studies to be performed on more physically-realistic fluids. Exact solutions are compared with numerical results obtained from the Lagrangian hydrocode FLAG, developed at Los Alamos. For these more realistic EOSs, the simulation errors decreased in magnitude both at the origin and at the shock, but also spread more broadly about these points compared to the ideal EOS. The overall spatial convergence rate remained first order.

  5. Interferograms, schlieren, and shadowgraphs constructed from real- and ideal-gas, two- and three-dimensional computed flowfields

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1993-01-01

    The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solutions permits one-to-one comparisons of computed and experimental results. A method of constructing these images from both ideal- and real-gas, two and three-dimensional computed flowfields is described. The computational grids can be structured or unstructured, and multiple grids are an option. Constructed images are shown for several types of computed flows including nozzle, wake, and reacting flows; comparisons to experimental images are also shown. In addition, th sensitivity of these images to errors in the flowfield solution is demonstrated, and the constructed images can be used to identify problem areas in the computations.

  6. Interferograms, Schlieren, and Shadowgraphs Constructed from Real- and Ideal-Gas, Two- and Three-Dimensional Computed Flowfields

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1992-01-01

    The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solutions permits one-to-one comparisons of computed and experimental results. A method for constructing these images from both ideal- and real-gas, two- and three-dimensional computed flowfields is described. The computational grids can be structured or unstructured, and multiple grids are an option. Constructed images are shown for several types of computed flows including nozzle, wake, and reacting flows; comparisons to experimental images are also shown. In addition, the sensitivity of these images to errors in the flowfield solution is demonstrated, and the constructed images can be used to identify problem areas in the computations.

  7. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad

    2011-10-15

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces.more » As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.« less

  8. Detecting Friedel oscillations in ultracold Fermi gases

    NASA Astrophysics Data System (ADS)

    Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning

    2017-09-01

    Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.

  9. Reduction of furnace temperature in ultra long carbon nanotube growth by plasmonic excitation of electron Fermi gas of catalytic nanocluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saeidi, Mohammadreza, E-mail: Saeidi.mr@gmail.com, E-mail: m.saeidi@shahed.ac.ir

    2016-06-15

    In this paper, a novel physical method is presented to reduce the temperature of the furnace and prevent loss of thermal energy in ultra long carbon nanotube (CNT) growth process by catalytic chemical vapor deposition. This method is based on the plasmonic excitation of electron Fermi gas of catalytic nanocluster sitting at tip end of CNT by ultraviolet (UV) irradiation. Physical concepts of the method are explained in detail. The results of applying the presented method consequences to an appropriate tip-growth mechanism of the ultra long CNTs show that, in the presence of plasmonic excitation, the growth rate of themore » CNT is enhanced. Demonstration of temperature reduction and simultaneous increase in CNT length by UV irradiation with the proper frequency are the most important and practical result of the paper. All results are interpreted and discussed.« less

  10. Fermi arcs vs. fermi pockets in electron-doped perovskite iridates

    DOE PAGES

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; ...

    2015-02-23

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr 1-xLa x)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

  11. Thermal transitions, pseudogap behavior, and BCS-BEC crossover in Fermi-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Karmakar, Madhuparna

    2018-03-01

    We study the mass imbalanced Fermi-Fermi mixture within the framework of a two-dimensional lattice fermion model. Based on the thermodynamic and species-dependent quasiparticle behavior, we map out the finite-temperature phase diagram of this system and show that unlike the balanced Fermi superfluid, there are now two different pseudogap regimes as PG-I and PG-II. While within the PG-I regime both the fermionic species are pseudogapped, PG-II corresponds to the regime where pseudogap feature survives only in the light species. We believe that the single-particle spectral features that we discuss in this paper are observable through the species-resolved radio-frequency spectroscopy and momentum-resolved photoemission spectroscopy measurements on systems such as 6Li-40K mixture. We further investigate the interplay between the population and mass imbalances and report that at a fixed population imbalance, the BCS-BEC crossover in a Fermi-Fermi mixture would require a critical interaction (Uc) for the realization of the uniform superfluid state. The effect of imbalance in mass on the exotic Fulde-Ferrell-Larkin-Ovchinnikov superfluid phase has been probed in detail in terms of the thermodynamic and quasiparticle behavior of this phase. It has been observed that in spite of the s -wave symmetry of the pairing field, a nodal superfluid gap is realized in the Larkin-Ovchinnikov regime. Our results on the various thermal scales and regimes are expected to serve as benchmarks for the experimental observations on 6Li-40K mixture.

  12. Beyond the Fermi liquid paradigm: Hidden Fermi liquids

    PubMed Central

    Jain, J. K.; Anderson, P. W.

    2009-01-01

    An intense investigation of possible non-Fermi liquid states of matter has been inspired by two of the most intriguing phenomena discovered in the past quarter century, namely, high-temperature superconductivity and the fractional quantum Hall effect. Despite enormous conceptual strides, these two fields have developed largely along separate paths. Two widely employed theories are the resonating valence bond theory for high-temperature superconductivity and the composite fermion theory for the fractional quantum Hall effect. The goal of this perspective article is to note that they subscribe to a common underlying paradigm: They both connect these exotic quantum liquids to certain ordinary Fermi liquids residing in unphysical Hilbert spaces. Such a relation yields numerous nontrivial experimental consequences, exposing these theories to rigorous and definitive tests. PMID:19506260

  13. Exploring the Ideal Gas Law through a Quantitative Gasometric Analysis of Nitrogen Produced by the Reaction of Sodium Nitrite with Sulfamic Acid

    ERIC Educational Resources Information Center

    Yu, Anne

    2010-01-01

    The gasometric analysis of nitrogen produced in a reaction between sodium nitrite, NaNO[superscript 2], and sulfamic acid, H(NH[superscript 2])SO[superscript 3], provides an alternative to more common general chemistry experiments used to study the ideal gas law, such as the experiment in which magnesium is reacted with hydrochloric acid. This…

  14. Trial wave functions for a composite Fermi liquid on a torus

    NASA Astrophysics Data System (ADS)

    Fremling, M.; Moran, N.; Slingerland, J. K.; Simon, S. H.

    2018-01-01

    We study the two-dimensional electron gas in a magnetic field at filling fraction ν =1/2 . At this filling the system is in a gapless state which can be interpreted as a Fermi liquid of composite fermions. We construct trial wave functions for the system on a torus, based on this idea, and numerically compare these to exact wave functions for small systems found by exact diagonalization. We find that the trial wave functions give an excellent description of the ground state of the system, as well as its charged excitations, in all momentum sectors. We analyze the dispersion of the composite fermions and the Berry phase associated with dragging a single fermion around the Fermi surface and comment on the implications of our results for the current debate on whether composite fermions are Dirac fermions.

  15. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    NASA Technical Reports Server (NTRS)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  16. 7th International Fermi Symposium

    NASA Astrophysics Data System (ADS)

    2017-10-01

    The two Fermi instruments have been surveying the high-energy sky since August 2008. The Large Area Telescope (LAT) has discovered more than three thousand gamma-ray sources and many new source classes, bringing the importance of gamma-ray astrophysics to an ever-broadening community. The LAT catalog includes supernova remnants, pulsar wind nebulae, pulsars, binary systems, novae, several classes of active galaxies, starburst galaxies, normal galaxies, and a large number of unidentified sources. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from a wide range of transients. Fermi LAT's study of diffuse gamma-ray emission in our Galaxy revealed giant bubbles, as well as an excess of gamma-rays from the Galactic center region, both observations have become exciting puzzles for the astrophysics community. The direct measurement of a harder-than- expected cosmic-ray electron spectrum may imply the presence of nearby cosmic-ray accelerators. LAT data have provided stringent constraints on new phenomena such as supersymmetric dark-matter annihilations as well as tests of fundamental physics. The full reprocessing of the entire mission dataset with Pass 8 includes improved event reconstruction, a wider energy range, better energy measurements, and significantly increased effective area, all them boosting the discovery potential and the ability to do precision observations with LAT. The Gamma-ray Burst Monitor (GBM) continues to be a prolific detector of gamma-ray transients: magnetars, solar flares, terrestrial gamma-ray flashes and gamma-ray bursts at keV to MeV energies, complementing the higher energy LAT observations of those sources in addition to providing valuable science return in their own right. All gamma-ray data are made immediately available at the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc). These publicly available data and Fermi analysis tools have enabled a large number of important studies. We

  17. Physiological gas exchange mapping of hyperpolarized 129 Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury.

    PubMed

    Zanette, Brandon; Stirrat, Elaine; Jelveh, Salomeh; Hope, Andrew; Santyr, Giles

    2018-02-01

    To map physiological gas exchange parameters using dissolved hyperpolarized (HP) 129 Xe in a rat model of regional radiation-induced lung injury (RILI) with spiral-IDEAL and the model of xenon exchange (MOXE). Results are compared to quantitative histology of pulmonary tissue and red blood cell (RBC) distribution. Two cohorts (n = 6 each) of age-matched rats were used. One was irradiated in the right-medial lung, producing regional injury. Gas exchange was mapped 4 weeks postirradiation by imaging dissolved-phase HP 129 Xe using spiral-IDEAL at five gas exchange timepoints using a clinical 1.5 T scanner. Physiological lung parameters were extracted regionally on a voxel-wise basis using MOXE. Mean gas exchange parameters, specifically air-capillary barrier thickness (δ) and hematocrit (HCT) in the right-medial lung were compared to the contralateral lung as well as nonirradiated control animals. Whole-lung spectroscopic analysis of gas exchange was also performed. δ was significantly increased (1.43 ± 0.12 μm from 1.07 ± 0.09 μm) and HCT was significantly decreased (17.2 ± 1.2% from 23.6 ± 1.9%) in the right-medial lung (i.e., irradiated region) compared to the contralateral lung of the irradiated rats. These changes were not observed in healthy controls. δ and HCT correlated with histologically measured increases in pulmonary tissue heterogeneity (r = 0.77) and decreases in RBC distribution (r = 0.91), respectively. No changes were observed using whole-lung analysis. This work demonstrates the feasibility of mapping gas exchange using HP 129 Xe in an animal model of RILI 4 weeks postirradiation. Spatially resolved gas exchange mapping is sensitive to regional injury between cohorts that was undetected with whole-lung gas exchange analysis, in agreement with histology. Gas exchange mapping holds promise for assessing regional lung function in RILI and other pulmonary diseases. © 2017 The Authors. Medical Physics published by Wiley

  18. Thermodynamics of an ideal generalized gas: II. Means of order alpha.

    PubMed

    Lavenda, B H

    2005-11-01

    The property that power means are monotonically increasing functions of their order is shown to be the basis of the second laws not only for processes involving heat conduction, but also for processes involving deformations. This generalizes earlier work involving only pure heat conduction and underlines the incomparability of the internal energy and adiabatic potentials when expressed as powers of the adiabatic variable. In an L-potential equilibration, the final state will be one of maximum entropy, whereas in an entropy equilibration, the final state will be one of minimum L. Unlike classical equilibrium thermodynamic phase space, which lacks an intrinsic metric structure insofar as distances and other geometrical concepts do not have an intrinsic thermodynamic significance in such spaces, a metric space can be constructed for the power means: the distance between means of different order is related to the Carnot efficiency. In the ideal classical gas limit, the average change in the entropy is shown to be proportional to the difference between the Shannon and Rényi entropies for nonextensive systems that are multifractal in nature. The L potential, like the internal energy, is a Schur convex function of the empirical temperature, which satisfies Jensen's inequality, and serves as a measure of the tendency to uniformity in processes involving pure thermal conduction.

  19. Fermi arc plasmons in Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Song, Justin C. W.; Rudner, Mark S.

    2017-11-01

    In the recently discovered Weyl semimetals, the Fermi surface may feature disjoint, open segments—the so-called Fermi arcs—associated with topological states bound to exposed crystal surfaces. Here we show that the collective dynamics of electrons near such surfaces sharply departs from that of a conventional three-dimensional metal. In magnetic systems with broken time reversal symmetry, the resulting Fermi arc plasmons (FAPs) are chiral, with dispersion relations featuring open, hyperbolic constant frequency contours. As a result, a large range of surface plasmon wave vectors can be supported at a given frequency, with corresponding group velocity vectors directed along a few specific collimated directions. Fermi arc plasmons can be probed using near-field photonics techniques, which may be used to launch highly directional, focused surface plasmon beams. The unusual characteristics of FAPs arise from the interplay of bulk and surface Fermi arc carrier dynamics and give a window into the unusual fermiology of Weyl semimetals.

  20. Recent Developments in Non-Fermi Liquid Theory

    NASA Astrophysics Data System (ADS)

    Lee, Sung-Sik

    2018-03-01

    Non-Fermi liquids are unconventional metals whose physical properties deviate qualitatively from those of noninteracting fermions due to strong quantum fluctuations near Fermi surfaces. They arise when metals are subject to singular interactions mediated by soft collective modes. In the absence of well-defined quasiparticles, universal physics of non-Fermi liquids is captured by interacting field theories which replace Landau Fermi liquid theory. However, it has been difficult to understand their universal low-energy physics due to a lack of theoretical methods that take into account strong quantum fluctuations in the presence of abundant low-energy degrees of freedom. In this review, we discuss two approaches that have been recently developed for non-Fermi liquid theory with emphasis on two space dimensions. The first is a perturbative scheme based on a dimensional regularization, which achieves a controlled access to the low-energy physics by tuning the codimension of Fermi surface. The second is a nonperturbative approach which treats the interaction ahead of the kinetic term through a non-Gaussian scaling called interaction-driven scaling. Examples of strongly coupled non-Fermi liquids amenable to exact treatments through the interaction-driven scaling are discussed.

  1. Optical spectroscopy shows that the normal state of URu2Si2 is an anomalous Fermi liquid.

    PubMed

    Nagel, Urmas; Uleksin, Taaniel; Rõõm, Toomas; Lobo, Ricardo P S M; Lejay, Pascal; Homes, Christopher C; Hall, Jesse S; Kinross, Alison W; Purdy, Sarah K; Munsie, Tim; Williams, Travis J; Luke, Graeme M; Timusk, Thomas

    2012-11-20

    Fermi showed that, as a result of their quantum nature, electrons form a gas of particles whose temperature and density follow the so-called Fermi distribution. As shown by Landau, in a metal the electrons continue to act like free quantum mechanical particles with enhanced masses, despite their strong Coulomb interaction with each other and the positive background ions. This state of matter, the Landau-Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Calculations show that, if electron-electron scattering dominates the resistivity in a Landau-Fermi liquid, the ratio of the two terms, b, has the universal value of b = 4. We find that in the normal state of the heavy Fermion metal URu(2)Si(2), instead of the Fermi liquid value of 4, the coefficient b = 1 ± 0.1. This unexpected result implies that the electrons in this material are experiencing a unique scattering process. This scattering is intrinsic and we suggest that the uranium f electrons do not hybridize to form a coherent Fermi liquid but instead act like a dense array of elastic impurities, interacting incoherently with the charge carriers. This behavior is not restricted to URu(2)Si(2). Fermi liquid-like states with b ≠ 4 have been observed in a number of disparate systems, but the significance of this result has not been recognized.

  2. Optical spectroscopy shows that the normal state of URu2Si2 is an anomalous Fermi liquid

    PubMed Central

    Nagel, Urmas; Uleksin, Taaniel; Rõõm, Toomas; Lobo, Ricardo P. S. M.; Lejay, Pascal; Homes, Christopher C.; Hall, Jesse S.; Kinross, Alison W.; Purdy, Sarah K.; Munsie, Tim; Williams, Travis J.; Luke, Graeme M.; Timusk, Thomas

    2012-01-01

    Fermi showed that, as a result of their quantum nature, electrons form a gas of particles whose temperature and density follow the so-called Fermi distribution. As shown by Landau, in a metal the electrons continue to act like free quantum mechanical particles with enhanced masses, despite their strong Coulomb interaction with each other and the positive background ions. This state of matter, the Landau–Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Calculations show that, if electron-electron scattering dominates the resistivity in a Landau–Fermi liquid, the ratio of the two terms, b, has the universal value of b = 4. We find that in the normal state of the heavy Fermion metal URu2Si2, instead of the Fermi liquid value of 4, the coefficient b = 1 ± 0.1. This unexpected result implies that the electrons in this material are experiencing a unique scattering process. This scattering is intrinsic and we suggest that the uranium f electrons do not hybridize to form a coherent Fermi liquid but instead act like a dense array of elastic impurities, interacting incoherently with the charge carriers. This behavior is not restricted to URu2Si2. Fermi liquid-like states with b ≠ 4 have been observed in a number of disparate systems, but the significance of this result has not been recognized. PMID:23115333

  3. Momentum sharing in imbalanced Fermi systems

    NASA Astrophysics Data System (ADS)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. May-Tal; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D'Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. Munoz; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.; aff16

    2014-10-01

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using 12C, 27Al, 56Fe, and 208Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  4. Dynamical instability of a spin spiral in an interacting Fermi gas as a probe of the Stoner transition

    NASA Astrophysics Data System (ADS)

    Conduit, G. J.; Altman, E.

    2010-10-01

    We propose an experiment to probe ferromagnetic phenomena in an ultracold Fermi gas, while alleviating the sensitivity to three-body loss and competing many-body instabilities. The system is initialized in a small pitch spin spiral, which becomes unstable in the presence of repulsive interactions. To linear order the exponentially growing collective modes exhibit critical slowing down close to the Stoner transition point. Also, to this order, the dynamics are identical on the paramagnetic and ferromagnetic sides of the transition. However, we show that scattering off the exponentially growing modes qualitatively alters the collective mode structure. The critical slowing down is eliminated and in its place a new unstable branch develops at large wave vectors. Furthermore, long-wavelength instabilities are quenched on the paramagnetic side of the transition. We study the experimental observation of the instabilities, specifically addressing the trapping geometry and how phase-contrast imaging will reveal the emerging domain structure. These probes of the dynamical phenomena could allow experiments to detect the transition point and distinguish between the paramagnetic and ferromagnetic regimes.

  5. Observation of scale invariance and conformal symmetry breaking in expanding Fermi gases

    NASA Astrophysics Data System (ADS)

    Elliott, Ethan; Joseph, James; Thomas, John

    2014-05-01

    We precisely test scale invariance and examine local thermal equilibrium in the hydrodynamic expansion of a Fermi gas of atoms as a function of interaction strength. After release from an anisotropic optical trap, we observe that a resonantly interacting gas obeys scale-invariant hydrodynamics, where the mean square cloud size = expands ballistically (like a noninteracting gas) and the energy-averaged bulk viscosity is consistent with zero, 0 . 00 (0 . 04) ℏ n , with n the density. In contrast, the aspect ratios of the cloud exhibit anisotropic ``elliptic'' flow with an energy-dependent shear viscosity. Tuning away from resonance, we observe conformal symmetry breaking, where deviates from ballistic flow. NSF, DOE, ARO, AFO.

  6. Fermi-LAT observations of the diffuse γ-ray emission: Implications for cosmic rays and the interstellar medium

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2012-04-09

    The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Our observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. In ordermore » to assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. Here, we provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter

  7. FERMI-LAT OBSERVATIONS OF THE DIFFUSE {gamma}-RAY EMISSION: IMPLICATIONS FOR COSMIC RAYS AND THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Bechtol, K.

    The {gamma}-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse {gamma}-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertaintiesmore » associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X{sub CO} factor, the ratio between integrated CO-line intensity and H{sub 2} column density, the fluxes and spectra of the {gamma}-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as {gamma}-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a

  8. Fermi-LAT observations of the diffuse γ-ray emission: Implications for cosmic rays and the interstellar medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Atwood, W. B.

    The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Our observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. In ordermore » to assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. Here, we provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter

  9. Fermi-LAT Observations of the Diffuse γ-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gaggero, D.; Gargano, F.; Germani, S.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grove, J. E.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Horan, D.; Hou, X.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, R. P.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Sadrozinski, H. F.-W.; Sgrò, C.; Siskind, E. J.; Spandre, G.; Spinelli, P.; Strong, A. W.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Wood, M.; Yang, Z.; Ziegler, M.; Zimmer, S.

    2012-05-01

    The γ-ray sky >100 MeV is dominated by the diffuse emissions from interactions of cosmic rays with the interstellar gas and radiation fields of the Milky Way. Observations of these diffuse emissions provide a tool to study cosmic-ray origin and propagation, and the interstellar medium. We present measurements from the first 21 months of the Fermi Large Area Telescope (Fermi-LAT) mission and compare with models of the diffuse γ-ray emission generated using the GALPROP code. The models are fitted to cosmic-ray data and incorporate astrophysical input for the distribution of cosmic-ray sources, interstellar gas, and radiation fields. To assess uncertainties associated with the astrophysical input, a grid of models is created by varying within observational limits the distribution of cosmic-ray sources, the size of the cosmic-ray confinement volume (halo), and the distribution of interstellar gas. An all-sky maximum-likelihood fit is used to determine the X CO factor, the ratio between integrated CO-line intensity and H2 column density, the fluxes and spectra of the γ-ray point sources from the first Fermi-LAT catalog, and the intensity and spectrum of the isotropic background including residual cosmic rays that were misclassified as γ-rays, all of which have some dependency on the assumed diffuse emission model. The models are compared on the basis of their maximum-likelihood ratios as well as spectra, longitude, and latitude profiles. We also provide residual maps for the data following subtraction of the diffuse emission models. The models are consistent with the data at high and intermediate latitudes but underpredict the data in the inner Galaxy for energies above a few GeV. Possible explanations for this discrepancy are discussed, including the contribution by undetected point-source populations and spectral variations of cosmic rays throughout the Galaxy. In the outer Galaxy, we find that the data prefer models with a flatter distribution of cosmic

  10. Understanding and Using the Fermi Science Tools

    NASA Astrophysics Data System (ADS)

    Asercion, Joseph

    2018-01-01

    The Fermi Science Support Center (FSSC) provides information, documentation, and tools for the analysis of Fermi science data, including both the Large-Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM). Source and binary versions of the Fermi Science Tools can be downloaded from the FSSC website, and are supported on multiple platforms. An overview document, the Cicerone, provides details of the Fermi mission, the science instruments and their response functions, the science data preparation and analysis process, and interpretation of the results. Analysis Threads and a reference manual available on the FSSC website provide the user with step-by-step instructions for many different types of data analysis: point source analysis - generating maps, spectra, and light curves, pulsar timing analysis, source identification, and the use of python for scripting customized analysis chains. We present an overview of the structure of the Fermi science tools and documentation, and how to acquire them. We also provide examples of standard analyses, including tips and tricks for improving Fermi science analysis.

  11. Nonlocal Poisson-Fermi model for ionic solvent.

    PubMed

    Xie, Dexuan; Liu, Jinn-Liang; Eisenberg, Bob

    2016-07-01

    We propose a nonlocal Poisson-Fermi model for ionic solvent that includes ion size effects and polarization correlations among water molecules in the calculation of electrostatic potential. It includes the previous Poisson-Fermi models as special cases, and its solution is the convolution of a solution of the corresponding nonlocal Poisson dielectric model with a Yukawa-like kernel function. The Fermi distribution is shown to be a set of optimal ionic concentration functions in the sense of minimizing an electrostatic potential free energy. Numerical results are reported to show the difference between a Poisson-Fermi solution and a corresponding Poisson solution.

  12. The Heat Capacity of Ideal Gases

    ERIC Educational Resources Information Center

    Scott, Robert L.

    2006-01-01

    The heat capacity of an ideal gas has been shown to be calculable directly by statistical mechanics if the energies of the quantum states are known. However, unless one makes careful calculations, it is not easy for a student to understand the qualitative results. Why there are maxima (and occasionally minima) in heat capacity-temperature curves…

  13. Diffusion Monte Carlo study of strongly interacting two-dimensional Fermi gases

    DOE PAGES

    Galea, Alexander; Dawkins, Hillary; Gandolfi, Stefano; ...

    2016-02-01

    Ultracold atomic Fermi gases have been a popular topic of research, with attention being paid recently to two-dimensional (2D) gases. In this work, we perform T=0 ab initio diffusion Monte Carlo calculations for a strongly interacting two-component Fermi gas confined to two dimensions. We first go over finite-size systems and the connection to the thermodynamic limit. After that, we illustrate pertinent 2D scattering physics and properties of the wave function. We then show energy results for the strong-coupling crossover, in between the Bose-Einstein condensation (BEC) and Bardeen-Cooper-Schrieffer (BCS) regimes. Our energy results for the BEC-BCS crossover are parametrized to producemore » an equation of state, which is used to determine Tan's contact. We carry out a detailed comparison with other microscopic results. Lastly, we calculate the pairing gap for a range of interaction strengths in the strong coupling regime, following from variationally optimized many-body wave functions.« less

  14. The Fermiac or Fermi's Trolley

    NASA Astrophysics Data System (ADS)

    Coccetti, F.

    2016-03-01

    The Fermiac, known also as Fermi's trolley or Monte Carlo trolley, is an analog computer used to determine the change in time of the neutron population in a nuclear device, via the Monte Carlo method. It was invented by Enrico Fermi and constructed by Percy King at Los Alamos in 1947, and used for about two years. A replica of the Fermiac was built at INFN mechanical workshops of Bologna in 2015, on behalf of the Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", thanks to the original drawings made available by Los Alamos National Laboratory (LANL). This reproduction of the Fermiac was put in use, and a simulation was developed.

  15. Critical behavior in trapped strongly interacting Fermi gases

    NASA Astrophysics Data System (ADS)

    Taylor, E.

    2009-08-01

    We investigate the width of the Ginzburg critical region and experimental signatures of critical behavior in strongly interacting trapped Fermi gases close to unitarity, where the s -wave scattering length diverges. Despite the fact that the width of the critical region is of the order unity, evidence of critical behavior in the bulk thermodynamics of trapped gases is strongly suppressed by their inhomogeneity. The specific heat of a harmonically confined gas, for instance, is linear in the reduced temperature t=(T-Tc)/Tc above Tc . We also discuss the prospects of observing critical behavior in the local compressibility from measurements of the density profile.

  16. The many faces of Fermi

    NASA Astrophysics Data System (ADS)

    Delmastro, Marco

    2017-12-01

    When I settled down to read The Last Man Who Knew Everything by Davis Schwartz, I was asking myself whether there was any need for yet another Enrico Fermi biography. While navigating this ambitious book, I realized that maybe I knew less than I thought about Fermi, and that maybe there was still a lot I could learn.

  17. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, G.W.; Dye, D.H.; Karim, D.P.

    1987-02-01

    The detailed angular dependence of the Fermi radius k/sub F/, the Fermi velocity v/sub F/(k), the many-body enhancement factor lambda(k), and the superconducting energy gap ..delta..(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas--van Alphen (dHvA) data of Karim, Ketterson, and Crabtree (J. Low Temp. Phys. 30, 389 (1978)), a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained kappa,more » ..cap alpha..', and ..cap alpha..'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor lambda(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of lambda(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap ..delta..(k) is estimated from our results for lambda(k), assuming weak anisotropy.« less

  18. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    NASA Astrophysics Data System (ADS)

    Crabtree, G. W.; Dye, D. H.; Karim, D. P.; Campbell, S. A.; Ketterson, J. B.

    1987-02-01

    The detailed angular dependence of the Fermi radius kF, the Fermi velocity vF(k), the many-body enhancement factor λ(k), and the superconducting energy gap Δ(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas-van Alphen (dHvA) data of Karim, Ketterson, and Crabtree [J. Low Temp. Phys. 30, 389 (1978)], a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained κ, α', and α'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor λ(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of λ(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap Δ(k) is estimated from our results for λ(k), assuming weak anisotropy.

  19. Momentum sharing in imbalanced Fermi systems

    DOE PAGES

    Hen, O.; Sargsian, M.; Weinstein, L. B.; ...

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions, protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority fermions (usually neutrons) to have a higher average momentum. Our high-energy electron scattering measurements using 12C, 27Al, 56Fe and 208Pb targets show that, even in heavy neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few body systems to neutron starsmore » and may also be observable experimentally in two-spin state, ultra-cold atomic gas systems.« less

  20. Quantum-mechanical engines working with an ideal gas with a finite number of particles confined in a power-law trap

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Ma, Yongli; He, Jizhou

    2015-07-01

    Based on quantum thermodynamic processes, we make a quantum-mechanical (QM) extension of the typical heat engine cycles, such as the Carnot, Brayton, Otto, Diesel cycles, etc., with no introduction of the concept of temperature. When these QM engine cycles are implemented by an ideal gas confined in an arbitrary power-law trap, a relation between the quantum adiabatic exponent and trap exponent is found. The differences and similarities between the efficiency of a given QM engine cycle and its classical counterpart are revealed and discussed.

  1. Fermi arc mediated entropy transport in topological semimetals

    NASA Astrophysics Data System (ADS)

    McCormick, Timothy M.; Watzman, Sarah J.; Heremans, Joseph P.; Trivedi, Nandini

    2018-05-01

    The low-energy excitations of topological Weyl semimetals are composed of linearly dispersing Weyl fermions that act as monopoles of Berry curvature in the bulk momentum space. Furthermore, on the surface there exist topologically protected Fermi arcs at the projections of these Weyl points. We propose a pathway for entropy transport involving Fermi arcs on one surface connecting to Fermi arcs on the other surface via the bulk Weyl monopoles. We present results for the temperature and magnetic field dependence of the magnetothermal conductance of this conveyor belt channel. The circulating currents result in a net entropy transport without any net charge transport. We provide results for the Fermi arc mediated magnetothermal conductivity in the low-field semiclassical limit as well as in the high-field ultraquantum limit, where only chiral Landau levels are involved. Our work provides a proposed signature of Fermi arc mediated magnetothermal transport and sets the stage for utilizing and manipulating the topological Fermi arcs in thermal applications.

  2. Large optical conductivity of Dirac semimetal Fermi arc surface states

    NASA Astrophysics Data System (ADS)

    Shi, Li-kun; Song, Justin C. W.

    2017-08-01

    Fermi arc surface states, a hallmark of topological Dirac semimetals, can host carriers that exhibit unusual dynamics distinct from that of their parent bulk. Here we find that Fermi arc carriers in intrinsic Dirac semimetals possess a strong and anisotropic light-matter interaction. This is characterized by a large Fermi arc optical conductivity when light is polarized transverse to the Fermi arc; when light is polarized along the Fermi arc, Fermi arc optical conductivity is significantly muted. The large surface spectral weight is locked to the wide separation between Dirac nodes and persists as a large Drude weight of Fermi arc carriers when the system is doped. As a result, large and anisotropic Fermi arc conductivity provides a novel means of optically interrogating the topological surfaces states of Dirac semimetals.

  3. Collapse and revival of the Fermi sea in a Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Iyer, Deepak; Will, Sebastian; Rigol, Marcos

    2014-05-01

    The collapse and revival of quantum fields is one of the most pristine forms of coherent quantum dynamics far from equilibrium. Until now, it has only been observed in the dynamical evolution of bosonic systems. We report on the first observation of the boson mediated collapse and revival of the Fermi sea in a Bose-Fermi mixture. Specifically, we present a simple model which captures the experimental observations shown in the talk titled Observation of Collapse and Revival Dynamics in the Fermionic Component of a Lattice Bose-Fermi Mixture by Sebastian Will. Our theoretical analysis shows why the results are robust to the presence of harmonic traps during the loading or the time evolution phase. It also makes apparent that the fermionic dynamics is independent of whether the bosonic component consists of a coherent state or localized Fock states with random occupation numbers. Because of the robustness of the experimental results, we argue that this kind of collapse and revival experiment can be used to accurately characterize interactions between bosons and fermions in a lattice.

  4. Fermi-Dirac statistics and traffic in complex networks.

    PubMed

    de Moura, Alessandro P S

    2005-06-01

    We propose an idealized model for traffic in a network, in which many particles move randomly from node to node, following the network's links, and it is assumed that at most one particle can occupy any given node. This is intended to mimic the finite forwarding capacity of nodes in communication networks, thereby allowing the possibility of congestion and jamming phenomena. We show that the particles behave like free fermions, with appropriately defined energy-level structure and temperature. The statistical properties of this system are thus given by the corresponding Fermi-Dirac distribution. We use this to obtain analytical expressions for dynamical quantities of interest, such as the mean occupation of each node and the transport efficiency, for different network topologies and particle densities. We show that the subnetwork of free nodes always fragments into small isolated clusters for a sufficiently large number of particles, implying a communication breakdown at some density for all network topologies. These results are compared to direct simulations.

  5. STEM education and Fermi problems

    NASA Astrophysics Data System (ADS)

    Holubova, Renata

    2017-01-01

    One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.

  6. DEVELOPMENT OF THE MODEL OF GALACTIC INTERSTELLAR EMISSION FOR STANDARD POINT-SOURCE ANALYSIS OF FERMI LARGE AREA TELESCOPE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acero, F.; Ballet, J.; Ackermann, M.

    2016-04-01

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM), which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission producedmore » in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within ∼4° of the Galactic Center.« less

  7. Development of the Model of Galactic Interstellar Emission for Standard Point-Source Analysis of Fermi Large Area Telescope Data

    DOE PAGES

    Acero, F.

    2016-04-22

    Most of the celestial γ rays detected by the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point and extended source studies rely on the modeling of this diffuse emission for accurate characterization. We describe here the development of the Galactic Interstellar Emission Model (GIEM) that is the standard adopted by the LAT Collaboration and is publicly available. The model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse Compton emissionmore » produced in the Galaxy. We also include in the GIEM large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra con rm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20° and we observe an enhanced emission toward their base extending in the North and South Galactic direction and located within ~4° of the Galactic Center.« less

  8. Development of the Model of Galactic Interstellar Emission for Standard Point-Source Analysis of Fermi Large Area Telescope Data

    NASA Technical Reports Server (NTRS)

    Acero, F.; Ackermann, M.; Ajello, M.; Albert, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Brandt, T. J.; hide

    2016-01-01

    Most of the celestial gamma rays detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope originate from the interstellar medium when energetic cosmic rays interact with interstellar nucleons and photons. Conventional point-source and extended-source studies rely on the modeling of this diffuse emission for accurate characterization. Here, we describe the development of the Galactic Interstellar Emission Model (GIEM),which is the standard adopted by the LAT Collaboration and is publicly available. This model is based on a linear combination of maps for interstellar gas column density in Galactocentric annuli and for the inverse-Compton emission produced in the Galaxy. In the GIEM, we also include large-scale structures like Loop I and the Fermi bubbles. The measured gas emissivity spectra confirm that the cosmic-ray proton density decreases with Galactocentric distance beyond 5 kpc from the Galactic Center. The measurements also suggest a softening of the proton spectrum with Galactocentric distance. We observe that the Fermi bubbles have boundaries with a shape similar to a catenary at latitudes below 20deg and we observe an enhanced emission toward their base extending in the north and south Galactic directions and located within approximately 4deg of the Galactic Center.

  9. Lifetime of Feshbach dimers in a Fermi-Fermi mixture of 6Li and 40K

    NASA Astrophysics Data System (ADS)

    Jag, M.; Cetina, M.; Lous, R. S.; Grimm, R.; Levinsen, J.; Petrov, D. S.

    2016-12-01

    We present a joint experimental and theoretical investigation of the lifetime of weakly bound dimers formed near narrow interspecies Feshbach resonances in mass-imbalanced Fermi-Fermi systems, considering the specific example of a mixture of 6Li and 40K atoms. Our work addresses the central question of the increase in the stability of the dimers resulting from Pauli suppression of collisional losses, which is a well-known effect in mass-balanced fermionic systems near broad resonances. We present measurements of the spontaneous dissociation of dimers in dilute samples, and of the collisional losses in dense samples arising from both dimer-dimer processes and from atom-dimer processes. We find that all loss processes are suppressed close to the Feshbach resonance. Our general theoretical approach for fermionic mixtures near narrow Feshbach resonances provides predictions for the suppression of collisional decay as a function of the detuning from resonance, and we find excellent agreement with the experimental benchmarks provided by our 40K-6Li system. We finally present model calculations for other Feshbach-resonant Fermi-Fermi systems, which are of interest for experiments in the near future.

  10. Fermi's Conundrum: Proliferation and Closed Societies

    NASA Astrophysics Data System (ADS)

    Teller, Wendy; Westfall, Catherine

    2007-04-01

    On January 1, 1946 Emily Taft Douglas, a freshman Representative at Large for Illinois, sent a letter to Enrico Fermi. She wanted to know whether, if atomic energy was used for peaceful purposes, it might be possible to clandestinely divert some material for bombs. Douglas first learned about the bomb not quite five months before when Hiroshima was bombed. Even though she was not a scientist she identified a key problem of the nuclear age. Fermi responded with requirements to allow peaceful uses of atomic energy and still outlaw nuclear weapons. First, free interchange of information between people was required, and second, people who reported possible violations had to be protected. Fermi had lived in Mussolini's Italy and worked under the war time secrecy restrictions of the Manhattan Project. He was not optimistic that these conditions could be met. This paper discusses how Douglas came to recognize the proliferation issue and what led Fermi to his solution and his pessimism about its practicality.

  11. Universal Fermi Gases in Mixed Dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishida, Yusuke; Tan, Shina

    2008-10-24

    We investigate a two-species Fermi gas in which one species is confined in a two-dimensional plane (2D) or one-dimensional line (1D) while the other is free in the three-dimensional space (3D). We discuss the realization of such a system with the interspecies interaction tuned to resonance. When the mass ratio is in the range 0.0351

  12. Double-wells and double-layers in dusty Fermi-Dirac plasmas: Comparison with the semiclassical Thomas-Fermi counterpart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    Based on the quantum hydrodynamics (QHD) model, a new relationship between the electrostatic-potential and the electron-density in the ultradense plasma is derived. Propagation of arbitrary amplitude nonlinear ion waves is, then, investigated in a completely degenerate dense dusty electron-ion plasma, using this new energy relation for the relativistic electrons, in the ground of quantum hydrodynamics model and the results are compared to the case of semiclassical Thomas-Fermi dusty plasma. Based on the standard pseudopotential approach, it is remarked that the Fermi-Dirac plasma, in contrast to the Thomas-Fermi counterpart, accommodates a wide variety of nonlinear excitations such as positive/negative-potential ion solitarymore » and periodic waves, double-layers, and double-wells. It is also remarked that the relativistic degeneracy parameter which relates to the mass-density of plasma has significant effects on the allowed matching-speed range in Fermi-Dirac dusty plasmas.« less

  13. Effects of impurity and Bose-Fermi interactions on the transition temperature of a dilute dipolar Bose-Einstein condensation in trapped Bose-Fermi mixtures

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Mokhtari, M.

    2014-03-01

    The effects of impurity and Bose-Fermi interactions on the transition temperature of a dipolar Bose-Einstein condensation in trapped Bose-Fermi mixture, by using the two-fluid model, are investigated. The shift of the transition temperature consists of four contributions due to contact, Bose-Fermi, dipole-dipole, and impurity interactions. We will show that in the presence of an anisotropic trap, the Bose-Fermi correction to the shift of transition temperature due to the excitation spectra of the thermal part is independent of anisotropy factor. Applying our results to trapped Bose-Fermi mixtures shows that, by knowing the impurity effect, the shift of the transition temperature due to Bose-Fermi interaction could be measured for isotropic trap (dipole-dipole contributions is zero) and Feshbach resonance technique (contact potential contribution is negligible).

  14. Noise of a Chargeless Fermi Liquid

    NASA Astrophysics Data System (ADS)

    Moca, Cǎtǎlin Paşcu; Mora, Christophe; Weymann, Ireneusz; Zaránd, Gergely

    2018-01-01

    We construct a Fermi liquid theory to describe transport in a superconductor-quantum dot-normal metal junction close to the singlet-doublet (parity changing) transition of the dot. Though quasiparticles do not have a definite charge in this chargeless Fermi liquid, in the case of particle-hole symmetry, a mapping to the Anderson model unveils a hidden U(1) symmetry and a corresponding pseudocharge. In contrast to other correlated Fermi liquids, the back scattering noise reveals an effective charge equal to the charge of Cooper pairs, e*=2 e . In addition, we find a strong suppression of noise when the linear conductance is unitary, even for its nonlinear part.

  15. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    PubMed

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  16. Density and spin modes in imbalanced normal Fermi gases from collisionless to hydrodynamic regime

    NASA Astrophysics Data System (ADS)

    Narushima, Masato; Watabe, Shohei; Nikuni, Tetsuro

    2018-03-01

    We study the mass- and population-imbalance effect on density (in-phase) and spin (out-of-phase) collective modes in a two-component normal Fermi gas. By calculating the eigenmodes of the linearized Boltzmann equation as well as the density/spin dynamic structure factor, we show that mass- and population-imbalance effects offer a variety of collective mode crossover behaviors from collisionless to hydrodynamic regimes. The mass-imbalance effect shifts the crossover regime to the higher-temperature, and a significant peak of the spin dynamic structure factor emerges only in the collisionless regime. This is in contrast to the case of mass- and population-balanced normal Fermi gases, where the spin dynamic response is always absent. Although the population-imbalance effect does not shift the crossover regime, the spin dynamic structure factor survives both in the collisionless and hydrodynamic regimes.

  17. Dark solitons with Majorana fermions in spin-orbit-coupled Fermi gases.

    PubMed

    Xu, Yong; Mao, Li; Wu, Biao; Zhang, Chuanwei

    2014-09-26

    We show that a single dark soliton can exist in a spin-orbit-coupled Fermi gas with a high spin imbalance, where spin-orbit coupling favors uniform superfluids over nonuniform Fulde-Ferrell-Larkin-Ovchinnikov states, leading to dark soliton excitations in highly imbalanced gases. Above a critical spin imbalance, two topological Majorana fermions without interactions can coexist inside a dark soliton, paving a way for manipulating Majorana fermions through controlling solitons. At the topological transition point, the atom density contrast across the soliton suddenly vanishes, suggesting a signature for identifying topological solitons.

  18. Dense Chern-Simons matter with fermions at large N

    NASA Astrophysics Data System (ADS)

    Geracie, Michael; Goykhman, Mikhail; Son, Dam T.

    2016-04-01

    In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry flux through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. As the 't Hooft coupling λ approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ideal gas law. Instead, it can be interpreted as a weakly coupled quantum Bose gas.

  19. Dense Chern-Simons matter with fermions at large N

    DOE PAGES

    Geracie, Michael; Goykhman, Mikhail; Son, Dam T.

    2016-04-18

    In this paper we investigate properties of Chern-Simons theory coupled to massive fermions in the large N limit. We demonstrate that at low temperatures the system is in a Fermi liquid state whose features can be systematically compared to the standard phenomenological theory of Landau Fermi liquids. This includes matching microscopically derived Landau parameters with thermodynamic predictions of Landau Fermi liquid theory. We also calculate the exact conductivity and viscosity tensors at zero temperature and finite chemical potential. In particular we point out that the Hall conductivity of an interacting system is not entirely accounted for by the Berry fluxmore » through the Fermi sphere. Furthermore, investigation of the thermodynamics in the non-relativistic limit reveals novel phenomena at strong coupling. Furthermore, as the ’t Hooft coupling λ approaches 1, the system exhibits an extended intermediate temperature regime in which the thermodynamics is described by neither the quantum Fermi liquid theory nor the classical ideal gas law. Instead, it can be interpreted as a weakly coupled quantum Bose gas.« less

  20. Quantum chaos on a critical Fermi surface.

    PubMed

    Patel, Aavishkar A; Sachdev, Subir

    2017-02-21

    We compute parameters characterizing many-body quantum chaos for a critical Fermi surface without quasiparticle excitations. We examine a theory of [Formula: see text] species of fermions at nonzero density coupled to a [Formula: see text] gauge field in two spatial dimensions and determine the Lyapunov rate and the butterfly velocity in an extended random-phase approximation. The thermal diffusivity is found to be universally related to these chaos parameters; i.e., the relationship is independent of [Formula: see text], the gauge-coupling constant, the Fermi velocity, the Fermi surface curvature, and high-energy details.

  1. Modulation Instability and Phase-Shifted Fermi-Pasta-Ulam Recurrence

    PubMed Central

    Kimmoun, O.; Hsu, H. C.; Branger, H.; Li, M. S.; Chen, Y. Y.; Kharif, C.; Onorato, M.; Kelleher, E. J. R.; Kibler, B.; Akhmediev, N.; Chabchoub, A.

    2016-01-01

    Instabilities are common phenomena frequently observed in nature, sometimes leading to unexpected catastrophes and disasters in seemingly normal conditions. One prominent form of instability in a distributed system is its response to a harmonic modulation. Such instability has special names in various branches of physics and is generally known as modulation instability (MI). The MI leads to a growth-decay cycle of unstable waves and is therefore related to Fermi-Pasta-Ulam (FPU) recurrence since breather solutions of the nonlinear Schrödinger equation (NLSE) are known to accurately describe growth and decay of modulationally unstable waves in conservative systems. Here, we report theoretical, numerical and experimental evidence of the effect of dissipation on FPU cycles in a super wave tank, namely their shift in a determined order. In showing that ideal NLSE breather solutions can describe such dissipative nonlinear dynamics, our results may impact the interpretation of a wide range of new physics scenarios. PMID:27436005

  2. Quantum pump effect induced by a linearly polarized microwave in a two-dimensional electron gas.

    PubMed

    Song, Juntao; Liu, Haiwen; Jiang, Hua

    2012-05-30

    A quantum pump effect is predicted in an ideal homogeneous two-dimensional electron gas (2DEG) that is normally irradiated by linearly polarized microwaves (MW). Without considering effects from spin-orbital coupling or the magnetic field, it is found that a polarized MW can continuously pump electrons from the longitudinal to the transverse direction, or from the transverse to the longitudinal direction, in the central irradiated region. The large pump current is obtained for both the low frequency limit and the high frequency case. Its magnitude depends on sample properties such as the size of the radiated region, the power and frequency of the MW, etc. Through the calculated results, the pump current should be attributed to the dominant photon-assisted tunneling processes as well as the asymmetry of the electron density of states with respect to the Fermi energy.

  3. Dynamical vanishing of the order parameter in a confined Bardeen-Cooper-Schrieffer Fermi gas after an interaction quench

    NASA Astrophysics Data System (ADS)

    Hannibal, S.; Kettmann, P.; Croitoru, M. D.; Axt, V. M.; Kuhn, T.

    2018-01-01

    We present a numerical study of the Higgs mode in an ultracold confined Fermi gas after an interaction quench and find a dynamical vanishing of the superfluid order parameter. Our calculations are done within a microscopic density-matrix approach in the Bogoliubov-de Gennes framework which takes the three-dimensional cigar-shaped confinement explicitly into account. In this framework, we study the amplitude mode of the order parameter after interaction quenches starting on the BCS side of the BEC-BCS crossover close to the transition and ending in the BCS regime. We demonstrate the emergence of a dynamically vanishing superfluid order parameter in the spatiotemporal dynamics in a three-dimensional trap. Further, we show that the signal averaged over the whole trap mirrors the spatiotemporal behavior and allows us to systematically study the effects of the system size and aspect ratio on the observed dynamics. Our analysis enables us to connect the confinement-induced modifications of the dynamics to the pairing properties of the system. Finally, we demonstrate that the signature of the Higgs mode is contained in the dynamical signal of the condensate fraction, which, therefore, might provide a new experimental access to the nonadiabatic regime of the Higgs mode.

  4. Entanglement entropy and the Fermi surface.

    PubMed

    Swingle, Brian

    2010-07-30

    Free fermions with a finite Fermi surface are known to exhibit an anomalously large entanglement entropy. The leading contribution to the entanglement entropy of a region of linear size L in d spatial dimensions is S∼L(d-1)logL, a result that should be contrasted with the usual boundary law S∼L(d-1). This term depends only on the geometry of the Fermi surface and on the boundary of the region in question. I give an intuitive account of this anomalous scaling based on a low energy description of the Fermi surface as a collection of one-dimensional gapless modes. Using this picture, I predict a violation of the boundary law in a number of other strongly correlated systems.

  5. The Cosmic Evolution of Fermi BL Lacertae Objects

    NASA Astrophysics Data System (ADS)

    Ajello, Marco; Gasparrini, Dario; Romani, Roger W.; Shaw, Michael S.

    2014-06-01

    It has been notoriously difficult in the past to measure the cosmological evolution of BL Lacs because of the challenges related to measure their redshift. Extensive optical follow-up observations of a sample of ~200 Fermi-detected BL Lac objects have provided much-needed redshift information for many of them. This stands as the largest and most complete sample of BL Lacs available in the literature and was used to determine the cosmological properties of this elusive source class. This talk will review the cosmic evolution of BL Lacs and discuss the link to their siblings flat-spectrum radio quasars (FSRQs). Evidence suggests that BL Lacs of the high-synchrotron peaked class might be an accretion-starved end-state of an earlier merger-driven gas-rich phase.

  6. Local H i emissivity measured with FERMI-LAT and implications for Cosmic-ray spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casandjian, Jean -Marc

    Cosmic-ray (CR) electrons and nuclei interact with the Galactic interstellar gas and produce high-energy γ-rays. The γ-ray emission rate per hydrogen atom, called emissivity, provides a unique indirect probe of the CR flux. We present the measurement and the interpretation of the emissivity in the solar neighborhood for γ-ray energy from 50 MeV to 50 GeV. We analyzed a subset of 4 yr of observations from the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope ( Fermi) restricted to absolute latitudesmore » $$10^\\circ \\lt | b| \\lt 70^\\circ $$. From a fit to the LAT data including atomic, molecular, and ionized hydrogen column density templates, as well as a dust optical depth map, we derived the emissivities, the molecular hydrogen–to–CO conversion factor $${X}_{\\mathrm{CO}}=(0.902\\pm 0.007)\\times {10}^{20}$$ cm–2 (K km s–1)–1, and the dust-to-gas ratio $${X}_{\\mathrm{DUST}}=(41.4\\pm 0.3)\\times {10}^{20}$$ cm–2 mag–1. Moreover, we detected for the first time γ-ray emission from ionized hydrogen. We compared the extracted emissivities to those calculated from γ-ray production cross sections and to CR spectra measured in the heliosphere. We observed that the experimental emissivities are reproduced only if the solar modulation is accounted for. This provides a direct detection of solar modulation observed previously through the anticorrelation between CR fluxes and solar activity. Lastly, we fitted a parameterized spectral form to the heliospheric CR observations and to the Fermi-LAT emissivity and obtained compatible local interstellar spectra for proton and helium kinetic energy per nucleon between between 1 and 100 GeV and for electron–positrons between 0.1 and 100 GeV.« less

  7. Local H i emissivity measured with FERMI-LAT and implications for Cosmic-ray spectra

    DOE PAGES

    Casandjian, Jean -Marc

    2015-06-20

    Cosmic-ray (CR) electrons and nuclei interact with the Galactic interstellar gas and produce high-energy γ-rays. The γ-ray emission rate per hydrogen atom, called emissivity, provides a unique indirect probe of the CR flux. We present the measurement and the interpretation of the emissivity in the solar neighborhood for γ-ray energy from 50 MeV to 50 GeV. We analyzed a subset of 4 yr of observations from the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope ( Fermi) restricted to absolute latitudesmore » $$10^\\circ \\lt | b| \\lt 70^\\circ $$. From a fit to the LAT data including atomic, molecular, and ionized hydrogen column density templates, as well as a dust optical depth map, we derived the emissivities, the molecular hydrogen–to–CO conversion factor $${X}_{\\mathrm{CO}}=(0.902\\pm 0.007)\\times {10}^{20}$$ cm–2 (K km s–1)–1, and the dust-to-gas ratio $${X}_{\\mathrm{DUST}}=(41.4\\pm 0.3)\\times {10}^{20}$$ cm–2 mag–1. Moreover, we detected for the first time γ-ray emission from ionized hydrogen. We compared the extracted emissivities to those calculated from γ-ray production cross sections and to CR spectra measured in the heliosphere. We observed that the experimental emissivities are reproduced only if the solar modulation is accounted for. This provides a direct detection of solar modulation observed previously through the anticorrelation between CR fluxes and solar activity. Lastly, we fitted a parameterized spectral form to the heliospheric CR observations and to the Fermi-LAT emissivity and obtained compatible local interstellar spectra for proton and helium kinetic energy per nucleon between between 1 and 100 GeV and for electron–positrons between 0.1 and 100 GeV.« less

  8. Quantum mechanical models for the Fermi shuttle

    NASA Astrophysics Data System (ADS)

    Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.

    2009-05-01

    Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)

  9. Finding Sub-threshold Short Gamma-ray Bursts in Fermi GBM Data

    NASA Astrophysics Data System (ADS)

    Burns, Eric; Fermi Gamma-ray Burst Monitor Team

    2018-01-01

    The all-sky monitoring capability of Fermi GBM makes it ideal for finding transients, and the most prolific detector of short gamma-ray bursts with about 40 on-board triggers per year. Because the observed brightness of short gamma-ray bursts has no correlation with redshift, weak short gamma-ray bursts are important during the gravitational wave era. With this in mind, we discuss two searches of GBM data to find short gamma-ray which were below the on-board trigger threshold. The untargeted search looks for significant background-subtracted signals in two or more detectors at various timescales in the continuous data, detecting ~80 additional short GRB candidates per year. The targeted search is the most sensitive search for weak gamma-ray signals in GBM data and is run over limited time intervals around sources of interest like gravitational waves.

  10. FermiGrid—experience and future plans

    NASA Astrophysics Data System (ADS)

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Sharma, N.; Timm, S.; Yocum, D. R.

    2008-07-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid (OSG) and the Worldwide LHC Computing Grid Collaboration (WLCG). FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the OSG, EGEE, and the WLCG. Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure - the successes and the problems.

  11. FermiGrid - experience and future plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, K.; Berman, E.; Canal, P.

    2007-09-01

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and themore » Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.« less

  12. The Animated Gamma-ray Sky Revealed by the Fermi Gamma-ray Space Telescope

    ScienceCinema

    Isabelle Grenier

    2018-04-17

    The Fermi Gamma-ray Space Telescope has been observing the sky in gamma-rays since August 2008.  In addition to breakthrough capabilities in energy coverage (20 MeV-300 GeV) and angular resolution, the wide field of view of the Large Area Telescope enables observations of 20% of the sky at any instant, and of the whole sky every three hours. It has revealed a very animated sky with bright gamma-ray bursts flashing and vanishing in minutes, powerful active galactic nuclei flaring over hours and days, many pulsars twinkling in the Milky Way, and X-ray binaries shimmering along their orbit. Most of these variable sources had not been seen by the Fermi predecessor, EGRET, and the wealth of new data already brings important clues to the origin of the high-energy emission and particles powered by the compact objects. The telescope also brings crisp images of the bright gamma-ray emission produced by cosmic-ray interactions in the interstellar medium, thus allowing to measure the cosmic nuclei and electron spectra across the Galaxy, to weigh interstellar clouds, in particular in the dark-gas phase. The telescope sensitivity at high energy will soon provide useful constraints on dark-matter annihilations in a variety of environments. I will review the current results and future prospects of the Fermi mission.

  13. Universal relations of an ultracold Fermi gas with arbitrary spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Jie, Jianwen; Qi, Ran; Zhang, Peng

    2018-05-01

    We derive the universal relations for an ultracold two-component Fermi gas with a spin-orbit coupling (SOC) ∑α,β =x ,y ,zλα βσαpβ , where px ,y ,z and σx ,y ,z are the single-atom momentum and Pauli operators for pseudospin, respectively, and the SOC intensity λα β could take an arbitrary value. We consider the system with an s -wave short-range interspecies interaction, and ignore the SOC-induced modification for the value of the scattering length. Using the first-quantized approach developed by Tan [S. Tan, Phys. Rev. Lett. 107, 145302 (2011), 10.1103/PhysRevLett.107.145302], we obtain the short-range and high-momentum expansions for the one-body real-space correlation function and momentum distribution function, respectively. For our system these functions are a 2 ×2 matrix in the pseudospin basis. We find that the leading-order (1 /k4 ) behavior of the diagonal elements of the momentum distribution function, i.e., n↑↑(k ) and n↓↓(k ) , are not modified by the SOC. However, the SOC can significantly modify the large-k behaviors of the distribution difference δ n (k ) ≡n↑↑(k ) -n↓↓(k ) as well as the nondiagonal elements of the momentum distribution function, i.e., n↑↓(k ) and n↓↑(k ) . In the absence of the SOC, the leading order of δ n (k ) , n↑↓(k ) , and n↓↑(k ) is O (1 /k6) . When SOC appears, it can induce a term on the order of 1 /k5 for these elements. We further derive the adiabatic relation and the energy functional. Our results show that the SOC can induce an additional term in the energy functional, which describes the contribution from the SOC to the total energy. In addition, the form of the adiabatic relation for our system is not modified by the SOC. Our results are applicable for the systems with any type of single-atom trapping potential, which could be either diagonal or nondiagonal in the pseudospin basis.

  14. A proof of the Biswas-Mitra-Bhattacharyya conjecture for the ideal quantum gas trapped under the generic power law potential U=\\sum\

    NASA Astrophysics Data System (ADS)

    Mehedi Faruk, Mir; Muktadir Rahman, Md

    2016-03-01

    The well known relation for ideal classical gas $\\Delta \\epsilon^2=kT^2 C_V$ which does not remain valid for quantum system is revisited. A new connection is established between energy fluctuation and specific heat for quantum gases, valid in the classical limit and the degenerate quantum regime as well. Most importantly the proposed Biswas-Mitra-Bhattacharyya (BMB) conjecture (Biswas $et.$ $al.$, J. Stat. Mech. P03013, 2015.) relating hump in energy fluctuation and discontinuity of specific heat is proved and precised in this manuscript.

  15. Radio core dominance of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Pei, Zhi-Yuan; Fan, Jun-Hui; Liu, Yi; Yuan, Yi-Hai; Cai, Wei; Xiao, Hu-Bing; Lin, Chao; Yang, Jiang-He

    2016-07-01

    During the first 4 years of mission, Fermi/LAT detected 1444 blazars (3FGL) (Ackermann et al. in Astrophys. J. 810:14, 2015). Fermi/LAT observations of blazars indicate that Fermi blazars are luminous and strongly variable with variability time scales, for some cases, as short as hours. Those observations suggest a strong beaming effect in Fermi/LAT blazars. In the present work, we will investigate the beaming effect in Fermi/LAT blazars using a core-dominance parameter, R = S_{core}/ S_{ext.}, where S_{core} is the core emission, while S_{ext.} is the extended emission. We compiled 1335 blazars with available core-dominance parameter, out of which 169 blazars have γ-ray emission (from 3FGL). We compared the core-dominance parameters, log R, between the 169 Fermi-detected blazars (FDBs) and the rest non-Fermi-detected blazars (non-FDBs), and we found that the averaged values are < log Rrangle = 0.99±0.87 for FDBs and < log Rrangle = -0.62±1.15 for the non-FDBs. A K-S test shows that the probability for the two distributions of FDBs and non-FDBs to come from the same parent distribution is near zero (P =9.12×10^{-52}). Secondly, we also investigated the variability index (V.I.) in the γ-ray band for FDBs, and we found V.I.=(0.12 ±0.07) log R+(2.25±0.10), suggesting that a source with larger log R has larger V.I. value. Thirdly, we compared the mean values of radio spectral index for FDBs and non-FDBs, and we obtained < α_{radio}rangle =0.06±0.35 for FDBs and < α_{radio}rangle =0.57±0.46 for non-FDBs. If γ-rays are composed of two components like radio emission (core and extended components), then we can expect a correlation between log R and the γ-ray spectral index. When we used the radio core-dominance parameter, log R, to investigate the relationship, we found that the spectral index for the core component is α_{γ}|_{core} = 1.11 (a photon spectral index of α_{γ}^{ph}|_{core} = 2.11) and that for the extended component is α_{γ}|_{ext.} = 0

  16. An Alternative Treatment of Heat Flow for Charge Transport in Semiconductor Devices (Postprint)

    DTIC Science & Technology

    2010-07-01

    is tantamount to treating them as ideal gases. A three-dimensional ideal Fermi gas is spherically symmetric in momentum space, and its distribution in...the first mo- ment of the Boltzmann equation using the momentum relax- ation time and effective mass approximations.13 Neglecting any magnetic field and...where the integral is over all momentum vectors k, v is electron velocity, k is the momentum relaxation time, and kf denotes the gradient in momentum

  17. Fermi Gamma-Ray Space Telescope Science Overview

    NASA Technical Reports Server (NTRS)

    Thompson, David J.

    2010-01-01

    After more than 2 years of science operations, the Fermi Gamma-ray Space Telescope continues to survey the high-energy sky on a daily basis. In addition to the more than 1400 sources found in the first Fermi Large Area Telescope Catalog (I FGL), new results continue to emerge. Some of these are: (1) Large-scale diffuse emission suggests possible activity from the Galactic Center region in the past; (2) a gamma-ray nova was found, indicating particle acceleration in this binary system; and (3) the Crab Nebula, long thought to be a steady source, has varied in the energy ranges seen by both Fermi instruments.

  18. Fermi level dependence of hydrogen diffusivity in GaN

    NASA Astrophysics Data System (ADS)

    Polyakov, A. Y.; Smirnov, N. B.; Pearton, S. J.; Ren, F.; Theys, B.; Jomard, F.; Teukam, Z.; Dmitriev, V. A.; Nikolaev, A. E.; Usikov, A. S.; Nikitina, I. P.

    2001-09-01

    Hydrogen diffusion studies were performed in GaN samples with different Fermi level positions. It is shown that, at 350 °C, hydrogen diffusion is quite fast in heavily Mg doped p-type material with the Fermi level close to Ev+0.15 eV, considerably slower in high-resistivity p-GaN(Zn) with the Fermi level Ev+0.9 eV, while for conducting and semi-insulating n-GaN samples with the Fermi level in the upper half of the band gap no measurable hydrogen diffusion could be detected. For these latter samples it is shown that higher diffusion temperature of 500 °C and longer times (50 h) are necessary to incorporate hydrogen to appreciable depth. These findings are in line with previously published theoretical predictions of the dependence of hydrogen interstitials formation in GaN on the Fermi level position.

  19. Observation strategies with the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    McEnery, Julie E.; Fermi mission Teams

    2015-01-01

    During the first few years of the Fermi mission, the default observation mode has been an all-sky survey, optimized to provide relatively uniform coverage of the entire sky every three hours. Over 95% of the mission has been performed in this observation mode. However, Fermi is capable of flexible survey mode patterns, and inertially pointed observations both of which allow increased coverage of selected parts of the sky. In this presentation, we will describe the types of observations that Fermi can make, the relative advantages and disadvantages of various observations, and provide guidelines to help Fermi users plan and evaluate non-standard observations.

  20. Probing the Southern Fermi Bubble in Ultraviolet Absorption Using Distant AGNs

    NASA Astrophysics Data System (ADS)

    Karim, Md Tanveer; Fox, Andrew J.; Jenkins, Edward B.; Bordoloi, Rongmon; Wakker, Bart P.; Savage, Blair D.; Lockman, Felix J.; Crawford, Steven M.; Jorgenson, Regina A.; Bland-Hawthorn, Joss

    2018-06-01

    The Fermi Bubbles are two giant gamma-ray emitting lobes extending 55° above and below the Galactic center. While the Northern Bubble has been extensively studied in ultraviolet (UV) absorption, little is known about the gas kinematics of the southern Bubble. We use UV absorption-line spectra from the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope to probe the southern Fermi Bubble using a sample of 17 background AGNs projected behind or near the Bubble. We measure the incidence of high-velocity clouds (HVC), finding that 4 out of 6 sightlines passing through the Bubble show HVC absorption, versus 6 out of 11 passing outside. We find strong evidence that the maximum absolute LSR velocity of the HVC components decreases as a function of galactic latitude within the Bubble, for both blueshifted and redshifted components, as expected for a decelerating outflow. We explore whether the column density ratios Si IV/Si III, Si IV/Si II, and Si III/Si II correlate with the absolute galactic latitude within the Bubble. These results demonstrate the use of UV absorption-line spectroscopy to characterize the kinematics and ionization conditions of embedded clouds in the Galactic center outflow.

  1. Enrico Fermi and the Dolomites

    NASA Astrophysics Data System (ADS)

    Battimelli, Giovanni; de Angelis, Alessandro

    2014-11-01

    Summer vacations in the Dolomites were a tradition among the professors of the Faculty of Mathematical and Physical Sciences at the University of Roma since the end of the XIX century. Beyond the academic walls, people like Tullio Levi-Civita, Federigo Enriques and Ugo Amaldi sr., together with their families, were meeting friends and colleagues in Cortina, San Vito, Dobbiaco, Vigo di Fassa and Selva, enjoying trekking together with scientific discussions. The tradition was transmitted to the next generations, in particular in the first half of the XX century, and the group of via Panisperna was directly connected: Edoardo Amaldi, the son of the mathematician Ugo sr., rented at least during two summers, in 1925 and in 1949, and in the winter of 1960, a house in San Vito di Cadore, and almost every year in the Dolomites; Enrico Fermi was a frequent guest. Many important steps in modern physics, in particular the development of the Fermi-Dirac statistics and the Fermi theory of beta decay, are related to scientific discussions held in the region of the Dolomites.

  2. Quasiparticle lifetime in a mixture of Bose and Fermi superfluids.

    PubMed

    Zheng, Wei; Zhai, Hui

    2014-12-31

    In this Letter, we study the effect of quasiparticle interactions in a Bose-Fermi superfluid mixture. We consider the lifetime of a quasiparticle of the Bose superfluid due to its interaction with quasiparticles in the Fermi superfluid. We find that this damping rate, i.e., the inverse of the lifetime, has quite a different threshold behavior at the BCS and the BEC side of the Fermi superfluid. The damping rate is a constant near the threshold momentum in the BCS side, while it increases rapidly in the BEC side. This is because, in the BCS side, the decay process is restricted by the constraint that the fermion quasiparticle is located near the Fermi surface, while such a restriction does not exist in the BEC side where the damping process is dominated by bosonic quasiparticles of the Fermi superfluid. Our results are related to the collective mode experiment in the recently realized Bose-Fermi superfluid mixture.

  3. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    PubMed

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.

  4. Fermi Large Area Telescope

    Science.gov Websites

    Home Mission Instrument Institutions Publications NASA Pictures Internal lock The Fermi Large Area Monitor (GBM). Wikipedia Country Funding Agencies United States NASA; Department of Energy France

  5. Dark lump excitations in superfluid Fermi gases

    NASA Astrophysics Data System (ADS)

    Xu, Yan-Xia; Duan, Wen-Shan

    2012-11-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases. A Kadomtsev—Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen—Cooper—Schrieffer (BCS) regime, Bose—Einstein condensate (BEC) regime, and unitarity regime. One-lump solution as well as one-line soliton solutions for the KPI equation are obtained, and two-line soliton solutions with the same amplitude are also studied in the limited cases. The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  6. Sources of GeV Photons and the Fermi Results

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.

    This chapter presents the elaborated lecture notes on Sources of GeV Photons and the Fermi Results given by Charles D. Dermer at the 40th Saas-Fee Advanced Course on "Astrophysics at Very High Energies". The Fermi Gamma-ray Space Telescope made important discoveries and established new results in various areas of astrophysics: from our solar system to remote gamma-ray bursts, from pulsar physics to limits on dark matter and Lorentz invariance violations. The author gives a broad overview of these results by discussing GeV instrumentation and the GeV sky as seen by Fermi, the Fermi catalogs on gamma-ray sources, pulsars and active galactic nuclei, relativistic jet physics and blazars, gamma-rays from cosmic rays in the Galaxy, from star-forming galaxies and from clusters of galaxies, the diffuse extra-galactic gamma-ray background, micro-quasars, radio galaxies, the extragalactic background light, gamma-ray bursts, Fermi acceleration, ultra-high energy cosmic rays, and black holes.

  7. Quasiparticles and Fermi liquid behaviour in an organic metal

    PubMed Central

    Kiss, T.; Chainani, A.; Yamamoto, H.M.; Miyazaki, T.; Akimoto, T.; Shimojima, T.; Ishizaka, K.; Watanabe, S.; Chen, C.-T.; Fukaya, A.; Kato, R.; Shin, S.

    2012-01-01

    Many organic metals display exotic properties such as superconductivity, spin-charge separation and so on and have been described as quasi-one-dimensional Luttinger liquids. However, a genuine Fermi liquid behaviour with quasiparticles and Fermi surfaces have not been reported to date for any organic metal. Here, we report the experimental Fermi surface and band structure of an organic metal (BEDT-TTF)3Br(pBIB) obtained using angle-resolved photoelectron spectroscopy, and show its consistency with first-principles band structure calculations. Our results reveal a quasiparticle renormalization at low energy scales (effective mass m*=1.9 me) and ω2 dependence of the imaginary part of the self energy, limited by a kink at ~50 meV arising from coupling to molecular vibrations. The study unambiguously proves that (BEDT-TTF)3Br(pBIB) is a quasi-2D organic Fermi liquid with a Fermi surface consistent with Shubnikov-de Haas results. PMID:23011143

  8. Conformal Fermi Coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Liang; Pajer, Enrico; Schmidt, Fabian, E-mail: ldai@ias.edu, E-mail: Enrico.pajer@gmail.com, E-mail: fabians@mpa-garching.mpg.de

    Fermi Normal Coordinates (FNC) are a useful frame for isolating the locally observable, physical effects of a long-wavelength spacetime perturbation. Their cosmological application, however, is hampered by the fact that they are only valid on scales much smaller than the horizon. We introduce a generalization that we call Conformal Fermi Coordinates (CFC). CFC preserve all the advantages of FNC, but in addition are valid outside the horizon. They allow us to calculate the coupling of long- and short-wavelength modes on all scales larger than the sound horizon of the cosmological fluid, starting from the epoch of inflation until today, bymore » removing the complications of the second order Einstein equations to a large extent, and eliminating all gauge ambiguities. As an application, we present a calculation of the effect of long-wavelength tensor modes on small scale density fluctuations. We recover previous results, but clarify the physical content of the individual contributions in terms of locally measurable effects and ''projection'' terms.« less

  9. Not All Ideals are Equal: Intrinsic and Extrinsic Ideals in Relationships.

    PubMed

    Rodriguez, Lindsey M; Hadden, Benjamin W; Knee, C Raymond

    2015-03-01

    The ideal standards model suggests that greater consistency between ideal standards and actual perceptions of one's relationship predicts positive relationship evaluations; however, no research has evaluated whether this differs across types of ideals. A self-determination theory perspective was derived to test whether satisfaction of intrinsic ideals buffers the importance of extrinsic ideals. Participants (N=195) in committed relationships directly and indirectly reported the extent to which their partner met their ideal on two dimensions: intrinsic (e.g., warm, intimate) and extrinsic (e.g., attractive, successful). Relationship need fulfillment and relationship quality were also assessed. Hypotheses were largely supported, such that satisfaction of intrinsic ideals more strongly predicted relationship functioning, and satisfaction of intrinsic ideals buffered the relevance of extrinsic ideals for outcomes.

  10. Not All Ideals are Equal: Intrinsic and Extrinsic Ideals in Relationships

    PubMed Central

    Rodriguez, Lindsey M.; Hadden, Benjamin W.; Knee, C. Raymond

    2015-01-01

    The ideal standards model suggests that greater consistency between ideal standards and actual perceptions of one’s relationship predicts positive relationship evaluations; however, no research has evaluated whether this differs across types of ideals. A self-determination theory perspective was derived to test whether satisfaction of intrinsic ideals buffers the importance of extrinsic ideals. Participants (N=195) in committed relationships directly and indirectly reported the extent to which their partner met their ideal on two dimensions: intrinsic (e.g., warm, intimate) and extrinsic (e.g., attractive, successful). Relationship need fulfillment and relationship quality were also assessed. Hypotheses were largely supported, such that satisfaction of intrinsic ideals more strongly predicted relationship functioning, and satisfaction of intrinsic ideals buffered the relevance of extrinsic ideals for outcomes. PMID:25821396

  11. "Where is Everybody?" An Account of Fermi's Question

    DOE R&D Accomplishments Database

    Jones, E. M.

    1985-03-01

    Enrico Fermi's famous question, now central to debates about the prevalence of extraterrestrial civilizations, arose during a luncheon conversation with Emil Konopinski, Edward Teller, and Herbert York in the summer of 1950. Fermi's companions on that day have provided accounts of the incident.

  12. Planck intermediate results: XXVIII. Interstellar gas and dust in the Chamaeleon clouds as seen by Fermi LAT and Planck $$\\star$$

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Aniano, G.; ...

    2015-09-30

    The nearby Chamaeleon clouds have been observed in γ rays by the Fermi Large Area Telescope (LAT) and in thermal dust emission by Planck and IRAS. Cosmic rays and large dust grains, if smoothly mixed with gas, can jointly serve with the H i and 12CO radio data to (i) map the hydrogen column densities, N H, in the different gas phases, in particular at the dark neutral medium (DNM) transition between the H i-bright and CO-bright media; (ii) constrain the CO-to-H 2 conversion factor, X CO; and (iii) probe the dust properties per gas nucleon in each phase andmore » map their spatial variations across the clouds. We have separated clouds at local, intermediate, and Galactic velocities in H i and 12CO line emission to model in parallel the γ-ray intensity recorded between 0.4 and 100 GeV; the dust optical depth at 353 GHz, τ 353; the thermal radiance of the large grains; and an estimate of the dust extinction, A VQ, empirically corrected for the starlight intensity. Furthermore, the dust and γ-ray models have been coupled to account for the DNM gas. The consistent γ-ray emissivity spectra recorded in the different phases confirm that the GeV–TeV cosmic rays probed by the LAT uniformly permeate all gas phases up to the 12CO cores. The dust and cosmic rays both reveal large amounts of DNM gas, with comparable spatial distributions and twice as much mass as in the CO-bright clouds. We give constraints on the H i-DNM-CO transitions for five separate clouds. CO-dark H 2 dominates the molecular columns up to AV ≃ 0.9 and its mass often exceeds the one-third of the molecular mass expected by theory. The corrected A VQ extinction largely provides the best fit to the total gas traced by the γ rays. Nevertheless, we find evidence for a marked rise in A VQ/N H with increasing N H and molecular fraction, and with decreasing dust temperature. The rise in τ 353/NH is even steeper. Here, we observe variations of lesser amplitude and orderliness for the specific power of

  13. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    PubMed

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  14. On the Equipartition of Kinetic Energy in an Ideal Gas Mixture

    ERIC Educational Resources Information Center

    Peliti, L.

    2007-01-01

    A refinement of an argument due to Maxwell for the equipartition of translational kinetic energy in a mixture of ideal gases with different masses is proposed. The argument is elementary, yet it may work as an illustration of the role of symmetry and independence postulates in kinetic theory. (Contains 1 figure.)

  15. Quantum fluctuations in the BCS-BEC crossover of two-dimensional Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Lianyi; Lu, Haifeng; Cao, Gaoqing

    2015-08-14

    We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features of a weakly interacting Bose condensate in the BEC limit and a weakly interacting Fermi liquid in the BCS limit. The inadequacy of the two-dimensional mean-field theory indicates that the quantum fluctuations are much more pronounced than those in three dimensions. In this work, we show thatmore » the inclusion of the Gaussian quantum fluctuations naturally recovers the above features in both the BEC and the BCS limits. In the BEC limit, the missing logarithmic dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical equation of state of two-dimensional Bose gases and determine the ratio of the composite boson scattering length a B to the fermion scattering length a 2D. We find a B ≃ 0.56a 2D, in good agreement with the exact four-body calculation. As a result, we compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo simulations and the experimental measurements and find good agreements.« less

  16. 3D Quantum Hall Effect of Fermi Arc in Topological Semimetals

    NASA Astrophysics Data System (ADS)

    Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.

    2017-09-01

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  17. Reply to “Comment on ‘Magnetotransport signatures of a single nodal electron pocket constructed from Fermi arcs' ”

    DOE PAGES

    Harrison, N.; Sebastian, S. E.

    2017-10-12

    In this paper, we provide arguments relating to those recently made in a comment by Chakravarty and Wang, who question the validity of our proposed charge-density wave Fermi surface reconstruction model and its relation to sign changes in the Hall effect. First, we show that the form of rounding of the vertices (i.e. sharp corners) of the reconstructed electron pocket, as used in our model calculations of the Hall coefficient, is consistent with Bragg reflection from the periodic potential of a charge-density wave, rather than being arbitrarily chosen. Second, we provide further justifications for why an oscillatory transport scattering timemore » provides a useful means for modeling Shubnikov–de Haas oscillations in the Hall effect, in the situation where a Fermi surface pocket departs from the ideal circular form. Third and finally, we discuss recent experimental evidence gathered from two different families of underdoped cuprates supporting the existence of a single electron pocket produced by biaxial charge-density wave order as a universal phenomena.« less

  18. Fermi Sees the Gamma Ray Sky

    NASA Image and Video Library

    2009-10-30

    This view of the gamma-ray sky constructed from one year of Fermi LAT observations is the best view of the extreme universe to date. The map shows the rate at which the LAT detects gamma rays with energies above 300 million electron volts -- about 120 million times the energy of visible light -- from different sky directions. Brighter colors equal higher rates. Credit: NASA/DOE/Fermi LAT Collaboration Full story: www.nasa.gov/mission_pages/GLAST/news/first_year.html

  19. Controlling resonant tunneling in graphene via Fermi velocity engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Jonas R. F., E-mail: jonas.lima@ufrpe.br; Pereira, Luiz Felipe C.; Bezerra, C. G.

    We investigate the resonant tunneling in a single layer graphene superlattice with modulated energy gap and Fermi velocity via an effective Dirac-like Hamiltonian. We calculate the transmission coefficient with the transfer matrix method and analyze the effect of a Fermi velocity modulation on the electronic transmission, in the case of normal and oblique incidence. We find it is possible to manipulate the electronic transmission in graphene by Fermi velocity engineering, and show that it is possible to tune the transmitivity from 0 to 1. We also analyze how a Fermi velocity modulation influences the total conductance and the Fano factor.more » Our results are relevant for the development of novel graphene-based electronic devices.« less

  20. Fermi/GBM Results of Magnetars

    NASA Technical Reports Server (NTRS)

    Kouveliotou, chryssa

    2011-01-01

    Magnetars are magnetically powered rotating neutron stars with extreme magnetic fields (over 10(exp 14) Gauss). They were discovered in the X- and gamma-rays where they predominantly emit their radiation. Very few sources (roughly 18) have been found since their discovery in 1987. NASA's Fermi Gamma-ray Space Telescope was launched June 11,2009; since then the Fermi Gamma-ray Burst Monitor (GBM) recorded emission from four magnetar sources. Two of these were brand new sources, SGR J0501 +4516, discovered with Swift and extensively monitored with Swift and GBM, SGR J0418+5729, discovered with GBM and the Interplanetary Network (IPN). A third was SGR Jl550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP IEI547.0-5408), but exhibiting a very prolific outburst with over 400 events recorded in January 2009. In my talk I will give a short history of magnetars and describe how this, once relatively esoteric field, has emerged as a link between several astrophysical areas including Gamma-Ray Bursts. Finally, I will describe the exciting new results of Fermi in this field and the current status of our knowledge of the magnetar population properties and magnetic fields.

  1. Fermi's Motion Produces a Study in Spirograph

    NASA Image and Video Library

    2013-02-27

    Final still from Fermi video [bit.ly/Y2K4LN]. Credit: NASA/DOE/Fermi LAT Collaboration ----- NASA's Fermi Gamma-ray Space Telescope orbits our planet every 95 minutes, building up increasingly deeper views of the universe with every circuit. Its wide-eyed Large Area Telescope (LAT) sweeps across the entire sky every three hours, capturing the highest-energy form of light -- gamma rays -- from sources across the universe. These range from supermassive black holes billions of light-years away to intriguing objects in our own galaxy, such as X-ray binaries, supernova remnants and pulsars. Now a Fermi scientist has transformed LAT data of a famous pulsar into a mesmerizing movie that visually encapsulates the spacecraft's complex motion. Click here to continue reading: 1.usa.gov/WhYwCU NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. Pairing in a dry Fermi sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Thomas A.; Staar, Peter; Mishra, V.

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  3. Pairing in a dry Fermi sea

    DOE PAGES

    Maier, Thomas A.; Staar, Peter; Mishra, V.; ...

    2016-06-17

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  4. Fermi-LAT detection of ongoing gamma-ray activity from the new gamma-ray source Fermi J1654-1055 (PMN J1632-1052)

    NASA Astrophysics Data System (ADS)

    Kocevski, D.; Ajello, M.; Buson, S.; Buehler, R.; Giomi, M.

    2016-02-01

    During the week between February 8 and 15, 2016, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, observed gamma-ray activity from a new transient source, Fermi J1654-1055.

  5. The Fermi Galactic Center GeV Excess and Implications for Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    2017-05-01

    The region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertainties inmore » the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.« less

  6. Fermi, Szilard and Trinity

    ERIC Educational Resources Information Center

    Anderson, Herbert L.

    1974-01-01

    The final installment of the author's recollections of his work with physicists Enrico Fermi, Leo Szilard and others in developing the first controlled nuclear chain reaction and in preparing the test explosion of the first atomic bomb. (GS)

  7. The cosmic evolution of Fermi BL lacertae objects

    DOE PAGES

    Ajello, M.; Romani, R. W.; Gasparrini, D.; ...

    2013-12-13

    Fermi has provided the largest sample of γ-ray-selected blazars to date. We use a uniformly selected set of 211 BL Lacertae (BL Lac) objects detected by Fermi during its first year of operation. We obtained redshift constraints for 206 out of the 211 BL Lac objects in our sample, making it the largest and most complete sample of BL Lac objects available in the literature. We use this sample to determine the luminosity function of BL Lac objects and its evolution with cosmic time. Here, we find that for most BL Lac classes the evolution is positive, with a space density peaking at modest redshift (z ≈ 1.2). Low-luminosity, high-synchrotron-peaked (HSP) BL Lac objects are an exception, showing strong negative evolution, with number density increasing for z lesssim 0.5. Since this rise corresponds to a drop-off in the density of flat-spectrum radio quasars (FSRQs), a possible interpretation is that these HSPs represent an accretion-starved end state of an earlier merger-driven gas-rich phase. Additionally, we find that the known BL Lac correlation between luminosity and photon spectral index persists after correction for the substantial observational selection effects with implications for the so-called "blazar sequence." Finally, by estimating the beaming corrections to the luminosity function, we find that BL Lac objects have an average Lorentz factor ofmore » $$\\gamma =6.1^{+1.1}_{-0.8}$$, and that most are seen within 10° of the jet axis.« less

  8. Real-Gas Correction Factors for Hypersonic Flow Parameters in Helium

    NASA Technical Reports Server (NTRS)

    Erickson, Wayne D.

    1960-01-01

    The real-gas hypersonic flow parameters for helium have been calculated for stagnation temperatures from 0 F to 600 F and stagnation pressures up to 6,000 pounds per square inch absolute. The results of these calculations are presented in the form of simple correction factors which must be applied to the tabulated ideal-gas parameters. It has been shown that the deviations from the ideal-gas law which exist at high pressures may cause a corresponding significant error in the hypersonic flow parameters when calculated as an ideal gas. For example the ratio of the free-stream static to stagnation pressure as calculated from the thermodynamic properties of helium for a stagnation temperature of 80 F and pressure of 4,000 pounds per square inch absolute was found to be approximately 13 percent greater than that determined from the ideal-gas tabulation with a specific heat ratio of 5/3.

  9. Towards a complete Fermi surface in underdoped high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Harrison, Neil

    The discovery of magnetic quantum oscillations in underdoped high Tc superconductors raised many questions, and initiated a quest to understand the origin of the Fermi surface the like of which had not been seen since the very first discovery of quantum oscillations in elemental bismuth. While studies of the Fermi surface of materials are today mostly assisted by computer codes for calculating the electronic band structure, this was not the case in the underdoped high Tc materials. The Fermi surface was shown to reconstructed into small pockets, yet there was no hint of a viable order parameter. Crucial clues to understanding the origin of the Fermi surface were provided by the small value of the observed Fermi surface cross-section, the negative Hall coefficient and the small electronic heat capacity at high magnetic fields. We also know that the magnetic fields were likely to be too weak to destroy the pseudogap and that vortex pinning effects could be seen to persist to high magnetic fields at low temperatures. I will show that the Fermi surface that appears to fit best with the experimental observations is a small electron pocket formed by connecting the nodal `Fermi arcs' seen in photoemission experiments, corresponding to a density-wave state with two different orthogonal ordering vectors. The existence of such order has subsequently been detected by x-ray scattering experiments, thereby strengthening the case for charge ordering being responsible for reconstructing the Fermi surface. I will discuss new efforts to understand the relationship between the charge ordering and the pseudogap state, discussing the fate of the quasiparticles in the antinodal region and the dimensionality of the Fermi surface. The author acknowledges contributions from Suchitra Sebastian, Brad Ramshaw, Mun Chan, Yu-Te Hsu, Mate Hartstein, Gil Lonzarich, Beng Tan, Arkady Shekhter, Fedor Balakirev, Ross McDonald, Jon Betts, Moaz Altarawneh, Zengwei Zhu, Chuck Mielke, James Day, Doug

  10. Collisions of ideal gas molecules with a rough/fractal surface. A computational study.

    PubMed

    Panczyk, Tomasz

    2007-02-01

    The frequency of collisions of ideal gas molecules (argon) with a rough surface has been studied. The rough/fractal surface was created using random deposition technique. By applying various depositions, the roughness of the surface was controlled and, as a measure of the irregularity, the fractal dimensions of the surfaces were determined. The surfaces were next immersed in argon (under pressures 2 x 10(3) to 2 x 10(5) Pa) and the numbers of collisions with these surfaces were counted. The calculations were carried out using a simplified molecular dynamics simulation technique (only hard core repulsions were assumed). As a result, it was stated that the frequency of collisions is a linear function of pressure for all fractal dimensions studied (D = 2, ..., 2.5). The frequency per unit pressure is quite complex function of the fractal dimension; however, the changes of that frequency with the fractal dimension are not strong. It was found that the frequency of collisions is controlled by the number of weakly folded sites on the surfaces and there is some mapping between the shape of adsorption energy distribution functions and this number of weakly folded sites. The results for the rough/fractal surfaces were compared with the prediction given by the Langmuir-Hertz equation (valid for smooth surface), generally the departure from the Langmuir-Hertz equation is not higher than 48% for the studied systems (i.e. for the surfaces created using the random deposition technique).

  11. Sex Education and Ideals

    ERIC Educational Resources Information Center

    de Ruyter, Doret J.; Spiecker, Ben

    2008-01-01

    This article argues that sex education should include sexual ideals. Sexual ideals are divided into sexual ideals in the strict sense and sexual ideals in the broad sense. It is argued that ideals that refer to the context that is deemed to be most ideal for the gratification of sexual ideals in the strict sense are rightfully called sexual…

  12. Magnetar Observations with Fermi/GBM

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2009-01-01

    NASA's Fermi Observatory was launched June 11, 2009; the Fermi Gamma Ray Burst Monitor (GBM) began normal operations on July 14, about a month after launch, when the trigger algorithms were enabled. In the first year of operations we recorded emission from four magnetar sources; of these, only one was an old magnetar: SGR 1806+20. The other three detections were: SGR J0501+4516, newly discovered with Swift and extensively monitored with both Swift and GBM, SGR J1550-5418, a source originally classified as an Anomalous X-ray Pulsar (AXP) and a very recently discovered new source, SGR 0418+5729. I report below on the current status of the analyses efforts of the GBM data.

  13. Site-Resolved Imaging with the Fermi Gas Microscope

    NASA Astrophysics Data System (ADS)

    Huber, Florian Gerhard

    The recent development of quantum gas microscopy for bosonic rubidium atoms trapped in optical lattices has made it possible to study local structure and correlations in quantum many-body systems. Quantum gas microscopes are a perfect platform to perform quantum simulation of condensed matter systems, offering unprecedented control over both internal and external degrees of freedom at a single-site level. In this thesis, this technique is extended to fermionic particles, paving the way to fermionic quantum simulation, which emulate electrons in real solids. Our implementation uses lithium, the lightest atom amenable to laser cooling. The absolute timescales of dynamics in optical lattices are inversely proportional to the mass. Therefore, experiments are more than six times faster than for the only other fermionic alkali atom, potassium, and more then fourteen times faster than an equivalent rubidium experiment. Scattering and collecting a sufficient number of photons with our high-resolution imaging system requires continuous cooling of the atoms during the fluorescence imaging. The lack of a resolved excited hyperfine structure on the D2 line of lithium prevents efficient conventional sub-Doppler cooling. To address this challenge we have applied a Raman sideband cooling scheme and achieved the first site-resolved imaging of ultracold fermions in an optical lattice.

  14. Chandra and Swift Observations of Unidentified Fermi-LAT Objects

    NASA Astrophysics Data System (ADS)

    Donato, Davide; Cheung, T.; Gehrels, N.

    2010-03-01

    In the last year we targeted some of the unidentified Fermi-LAT objects (UFOs) at high Galactic latitude with Chandra and Swift in order to determine the basic properties (positions, fluxes, hardness ratios) of all X-ray sources within the Fermi-LAT localization circles. These satellites enable us to detect the X-ray conterparts with a flux limit that is at least an order of magnitude lower than achieved in extant RASS data and to further follow-up at other wavelengths, with the ultimate goal to reveal the nature of these enigmatic gamma-ray sources. Here we present the results obtained with 5 Chandra pointings of high Galactic latitude UFOs in the Fermi-LAT 3-months bright source list. The association of detected X-ray sources within the improved 11-months Fermi-LAT localization circles with available optical and radio observations is discussed.

  15. Demonstrating the Gas Laws.

    ERIC Educational Resources Information Center

    Holko, David A.

    1982-01-01

    Presents a complete computer program demonstrating the relationship between volume/pressure for Boyle's Law, volume/temperature for Charles' Law, and volume/moles of gas for Avagadro's Law. The programing reinforces students' application of gas laws and equates a simulated moving piston to theoretical values derived using the ideal gas law.…

  16. Cinema, Fermi problems and general education

    NASA Astrophysics Data System (ADS)

    Efthimiou, C. J.; Llewellyn, R. A.

    2007-05-01

    During the past few years the authors have developed a new approach to the teaching of physical science, a general education course typically found in the curricula of nearly every college and university. This approach, called Physics in Films (Efthimiou and Llewellyn 2006 Phys. Teach. 44 28-33), uses scenes from popular films to illustrate physical principles and has excited student interest and improved student performance. A similar approach at the senior/high-school level, nicknamed Hollywood Physics, has been developed by Chandler (2006 Phys. Teach. 44 290-2 2002 Phys. Teach. 40 420-4). The two approaches may be considered complementary as they target different student groups. The analyses of many of the scenes in Physics in Films are a direct application of Fermi calculations—estimates and approximations designed to make solutions of complex and seemingly intractable problems understandable to the student non-specialist. The intent of this paper is to provide instructors with examples they can use to develop skill in recognizing Fermi problems and making Fermi calculations in their own courses.

  17. An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity.

    PubMed

    Li, Bin; Cui, Xili; O'Nolan, Daniel; Wen, Hui-Min; Jiang, Mengdie; Krishna, Rajamani; Wu, Hui; Lin, Rui-Biao; Chen, Yu-Sheng; Yuan, Daqiang; Xing, Huabin; Zhou, Wei; Ren, Qilong; Qian, Guodong; Zaworotko, Michael J; Chen, Banglin

    2017-12-01

    Realization of ideal molecular sieves, in which the larger gas molecules are completely blocked without sacrificing high adsorption capacities of the preferred smaller gas molecules, can significantly reduce energy costs for gas separation and purification and thus facilitate a possible technological transformation from the traditional energy-intensive cryogenic distillation to the energy-efficient, adsorbent-based separation and purification in the future. Although extensive research endeavors are pursued to target ideal molecular sieves among diverse porous materials, over the past several decades, ideal molecular sieves for the separation and purification of light hydrocarbons are rarely realized. Herein, an ideal porous material, SIFSIX-14-Cu-i (also termed as UTSA-200), is reported with ultrafine tuning of pore size (3.4 Å) to effectively block ethylene (C 2 H 4 ) molecules but to take up a record-high amount of acetylene (C 2 H 2 , 58 cm 3 cm -3 under 0.01 bar and 298 K). The material therefore sets up new benchmarks for both the adsorption capacity and selectivity, and thus provides a record purification capacity for the removal of trace C 2 H 2 from C 2 H 4 with 1.18 mmol g -1 C 2 H 2 uptake capacity from a 1/99 C 2 H 2 /C 2 H 4 mixture to produce 99.9999% pure C 2 H 4 (much higher than the acceptable purity of 99.996% for polymer-grade C 2 H 4 ), as demonstrated by experimental breakthrough curves. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Non-Ideal Compressible-Fluid Dynamics of Fast-Response Pressure Probes for Unsteady Flow Measurements in Turbomachinery

    NASA Astrophysics Data System (ADS)

    Gori, G.; Molesini, P.; Persico, G.; Guardone, A.

    2017-03-01

    The dynamic response of pressure probes for unsteady flow measurements in turbomachinery is investigated numerically for fluids operating in non-ideal thermodynamic conditions, which are relevant for e.g. Organic Rankine Cycles (ORC) and super-critical CO2 applications. The step response of a fast-response pressure probe is investigated numerically in order to assess the expected time response when operating in the non-ideal fluid regime. Numerical simulations are carried out exploiting the Non-Ideal Compressible Fluid-Dynamics (NICFD) solver embedded in the open-source fluid dynamics code SU2. The computational framework is assessed against available experimental data for air in dilute conditions. Then, polytropic ideal gas (PIG), i.e. constant specific heats, and Peng-Robinson Stryjek-Vera (PRSV) models are applied to simulate the flow field within the probe operating with siloxane fluid octamethyltrisiloxane (MDM). The step responses are found to depend mainly on the speed of sound of the working fluid, indicating that molecular complexity plays a major role in determining the promptness of the measurement devices. According to the PRSV model, non-ideal effects can increase the step response time with respect to the acoustic theory predictions. The fundamental derivative of gas-dynamic is confirmed to be the driving parameter for evaluating non-ideal thermodynamic effects related to the dynamic calibration of fast-response aerodynamic pressure probes.

  19. Use of Fermi-Dirac statistics for defects in solids

    NASA Astrophysics Data System (ADS)

    Johnson, R. A.

    1981-12-01

    The Fermi-Dirac distribution function is an approximation describing a special case of Boltzmann statistics. A general occupation probability formula is derived and a criterion given for the use of Fermi-Dirac statistics. Application to classical problems of defects in solids is discussed.

  20. Fermi Large Area Telescope Observations of the Dark Accelerator HESS J1745-303

    NASA Astrophysics Data System (ADS)

    Yeung, Paul

    2016-12-01

    Reviewing the two MeV-GeV investigations in the field of the HESS J1745-303 performed using Fermi Large Area Telescope data, we confirmed that the emission peak comfortably coincides with ‘Region A’ in the TeV regime, which is the brightest part of this feature. The MeV-TeV spectrum can be precisely described by a single power-law. Also, recent investigation has shown that the MeV-GeV feature is elongated from ‘Region A’ toward the north-west, which is similar to the case of large- scale atomic/molecular gas distribution.

  1. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  2. Finite-difference solution for laminar or turbulent boundary layer flow over axisymmetric bodies with ideal gas, CF4, or equilibrium air chemistry

    NASA Astrophysics Data System (ADS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-12-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  3. Fermi bubbles: high latitude X-ray supersonic shell

    NASA Astrophysics Data System (ADS)

    Keshet, Uri; Gurwich, Ilya

    2018-06-01

    The nature of the bipolar, γ-ray Fermi bubbles (FB) is still unclear, in part because their faint, high-latitude X-ray counterpart has until now eluded a clear detection. We stack ROSAT data at varying distances from the FB edges, thus boosting the signal and identifying an expanding shell behind the southwest, southeast, and northwest edges, albeit not in the dusty northeast sector near Loop I. A Primakoff-like model for the underlying flow is invoked to show that the signals are consistent with halo gas heated by a strong, forward shock to ˜keV temperatures. Assuming ion-electron thermal equilibrium then implies a ˜1056 erg event near the Galactic centre ˜7 Myr ago. However, the reported high absorption-line velocities suggest a preferential shock-heating of ions, and thus more energetic (˜1057 erg), younger (≲ 3 Myr) FBs.

  4. FERMI Observations of TeV-Selected Active Galactic Nuclei

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-12-04

    Here, we report on observations of TeV-selected active galactic nuclei (AGNs) made during the first 5.5 months of observations with the Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope (Fermi). In total, 96 AGNs were selected for study, each being either (1) a source detected at TeV energies (28 sources) or (2) an object that has been studied with TeV instruments and for which an upper limit has been reported (68 objects). The Fermi observations show clear detections of 38 of these TeV-selected objects, of which 21 are joint GeV-TeV sources, and 29 were not in the thirdmore » EGRET catalog. For each of the 38 Fermi-detected sources, spectra and light curves are presented. Most can be described with a power law of spectral index harder than 2.0, with a spectral break generally required to accommodate the TeV measurements. Based on an extrapolation of the Fermi spectrum, we identify sources, not previously detected at TeV energies, which are promising targets for TeV instruments. Finally, evidence for systematic evolution of the γ-ray spectrum with redshift is presented and discussed in the context of interaction with the extragalactic background light.« less

  5. The Role of Multiple Representations in the Understanding of Ideal Gas Problems

    ERIC Educational Resources Information Center

    Madden, Sean P.; Jones, Loretta L.; Rahm, Jrene

    2011-01-01

    This study examined the representational competence of students as they solved problems dealing with the temperature-pressure relationship for ideal gases. Seven students enrolled in a first-semester general chemistry course and two advanced undergraduate science majors participated in the study. The written work and transcripts from videotaped…

  6. Detecting Fermi-level shifts by Auger electron spectroscopy in Si and GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debehets, J.; Homm, P.; Menghini, M.

    In this paper, changes in surface Fermi-level of Si and GaAs, caused by doping and cleaning, are investigated by Auger electron spectroscopy. Based on the Auger voltage contrast, we compared the Auger transition peak energy but with higher accuracy by using a more accurate detector and an improved peak position determination method. For silicon, a peak shift as large as 0.46 eV was detected when comparing a cleaned p-type and n-type wafer, which corresponds rather well with the theoretical difference in Fermi-level. If no cleaning was applied, the peak position did not differ significantly for both wafer types, indicating Fermi-levelmore » pinning in the band gap. For GaAs, peak shifts were detected after cleaning with HF and (NH4)2S-solutions in an inert atmosphere (N2-gas). Although the (NH4)2S-cleaning in N2 is very efficient in removing the oxygen from the surface, the observed Ga- and As-peak shifts are smaller than those obtained after the HF-cleaning. It is shown that the magnitude of the shift is related to the surface composition. After Si-deposition on the (NH4)2S-cleaned surface, the Fermi-level shifts back to a similar position as observed for an as-received wafer, indicating that this combination is not successful in unpinning the Fermi-level of GaAs. This work has been funded by J.D.'s PhD fellowship of the Fund of Scientific Research-Flanders (FWO-V) (Dossier No. 11U4516N). P.H. acknowledges support from Becas Chile-CONICYT. This research was also supported by the FWO Odysseus Program, the Belgian Hercules Stichting with the Project No. Her/08/25 and AKUL/13/19 and the KU Leuven project GOA "Fundamental challenges in Semiconductor Research". The authors would also like to thank Bastiaan Opperdoes and Ludwig Henderix for technical support. The work was supported by the U.S. Department of Energy (USDOE), Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, and performed in the Environmental Molecular

  7. Non-Fermi glasses: fractionalizing electrons at finite energy density

    NASA Astrophysics Data System (ADS)

    Parameswaran, Siddharth; Gopalakrishnan, Sarang

    Non-Fermi liquids are metals that cannot be adiabatically deformed into free fermion states. We argue for the existence of ``non-Fermi glasses,'' which are phases of interacting disordered fermions that are fully many-body localized, yet cannot be deformed into an Anderson insulator without an eigenstate phase transition. We explore the properties of such non-Fermi glasses, focusing on a specific solvable example. At high temperature, non-Fermi glasses have qualitatively similar spectral features to Anderson insulators. We identify a diagnostic, based on ratios of correlation functions, that sharply distinguishes between the two phases even at infinite temperature. We argue that our results and diagnostic should generically apply to the high-temperature behavior of the many-body localized descendants of fractionalized phases. S.A.P. is supported by NSF Grant DMR-1455366 and a UC President's Research Catalyst Award CA-15-327861, and S.G. by the Burke Institute at Caltech.

  8. Thermodynamic properties of Fermi gases in states with defined many-body spins

    NASA Astrophysics Data System (ADS)

    Yurovsky, Vladimir

    2016-05-01

    Zero-range interactions in cold spin- 1 / 2 Fermi gases can be described by single interaction strength, since collisions of atoms in the same spin state are forbidden by the Pauli principle. In a spin-independent trap potential (even in the presence of a homogeneous spin-dependent external field), the gas can persist in a state with the given many-body spin, since the spin operator commutes with the Hamiltonian. Spin and spatial degrees of freedom in such systems are separated, and the spin and spatial wavefunctions form non-Abelian irreducible representations of the symmetric group, unless the total spin is S = N / 2 for N atoms (see). Although the total wavefunction, being a linear combination of products of the spin and spatial functions, is permutation-antisymmetric, the non-Abelian permutation symmetry is disclosed in the matrix elements and, as demonstrated here, in thermodynamic properties. The effects include modification of the specific heat and compressibility of the gas.

  9. Non-Fermi-liquid magic angle effects in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Lebed, A. G.

    2016-07-01

    We investigate a theoretical problem of electron-electron interactions in an inclined magnetic field in a quasi-one-dimensional (Q1D) conductor. We show that they result in strong non-Fermi-liquid corrections to a specific heat, provided that the direction of the magnetic field is far from the so-called Lebed's magic angles (LMAs). If magnetic field is directed close to one of the LMAs, the specific heat corrections become small and the Fermi-liquid picture restores. As a result, we predict Fermi-liquid-non-Fermi-liquid angular crossovers in the vicinities of the LMA directions of the field. We suggest to perform the corresponding experiment in the Q1D conductor (Per) 2Au (mnt) 2 under pressure in magnetic fields of the order of H ≃25 T .

  10. The Fermi Galactic Center GeV excess and implications for dark matter

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2017-05-04

    Here, the region around the Galactic Center (GC) is now well established to be brighter at energies of a few GeV than what is expected from conventional models of diffuse gamma-ray emission and catalogs of known gamma-ray sources. We study the GeV excess using 6.5 yr of data from the Fermi Large Area Telescope. We characterize the uncertainty of the GC excess spectrum and morphology due to uncertainties in cosmic-ray source distributions and propagation, uncertainties in the distribution of interstellar gas in the Milky Way, and uncertainties due to a potential contribution from the Fermi bubbles. We also evaluate uncertaintiesmore » in the excess properties due to resolved point sources of gamma rays. The GC is of particular interest, as it would be expected to have the brightest signal from annihilation of weakly interacting massive dark matter (DM) particles. However, control regions along the Galactic plane, where a DM signal is not expected, show excesses of similar amplitude relative to the local background. Furthermore, based on the magnitude of the systematic uncertainties, we conservatively report upper limits for the annihilation cross-section as a function of particle mass and annihilation channel.« less

  11. Phase Transitions in Definite Total Spin States of Two-Component Fermi Gases.

    PubMed

    Yurovsky, Vladimir A

    2017-05-19

    Second-order phase transitions have no latent heat and are characterized by a change in symmetry. In addition to the conventional symmetric and antisymmetric states under permutations of bosons and fermions, mathematical group-representation theory allows for non-Abelian permutation symmetry. Such symmetry can be hidden in states with defined total spins of spinor gases, which can be formed in optical cavities. The present work shows that the symmetry reveals itself in spin-independent or coordinate-independent properties of these gases, namely as non-Abelian entropy in thermodynamic properties. In weakly interacting Fermi gases, two phases appear associated with fermionic and non-Abelian symmetry under permutations of particle states, respectively. The second-order transitions between the phases are characterized by discontinuities in specific heat. Unlike other phase transitions, the present ones are not caused by interactions and can appear even in ideal gases. Similar effects in Bose gases and strong interactions are discussed.

  12. Leptonic v.s. Hadronic Origin of the Gamma-ray Emission of the Fermi bubbles: Updates from Fermi-LAT and Forecast for Future Gamma-ray Telescopes

    NASA Astrophysics Data System (ADS)

    Su, Meng

    2014-06-01

    Data from the Fermi-LAT revealed two large gamma-ray bubbles, extending 50 degrees above and below the Galactic center, with a width of about 40 degrees in longitude. Such structure has been confirmed with multi-wavelength observations. With the most up to date Fermi-LAT data analysis, I will show that the Fermi bubbles have a spectral cutoff at both low energy < 1 GeV and high energy > 150 GeV. Detailed analysis of the spectral features will help us to distinguish the leptonic origin from hadronic origin of the gamma-ray emission from the bubbles. I will also describe what we expect to learn about the bubbles from future gamma-ray telescopes after Fermi, with an emphasis on Dark Matter Particle Explorer and Pair Production Gamma-ray Unit.

  13. Fractionalized Fermi liquid in a Kondo-Heisenberg model

    DOE PAGES

    Tsvelik, A. M.

    2016-10-10

    The Kondo-Heisenberg model is used as a controllable tool to demonstrate the existence of a peculiar metallic state with unbroken translational symmetry where the Fermi surface volume is not controlled by the total electron density. Here, I use a nonperturbative approach where the strongest interactions are taken into account by means of exact solution, and corrections are controllable. The resulting metallic state represents a fractionalized Fermi liquid where well defined quasiparticles coexist with gapped fractionalized collective excitations, in agreement with the general requirements formulated by T. Senthil et al. [Phys. Rev. Lett. 90, 216403 (2003)]. Furthermore, the system undergoes amore » phase transition to an ordered phase (charge density wave or superconducting), at the transition temperature which is parametrically small in comparison to the quasiparticle Fermi energy.« less

  14. The cosmic-ray and gas content of the Cygnus region as measured in γ -rays by the Fermi Large Area Telescope

    DOE PAGES

    Ackermann, M.

    2012-02-01

    Context. The Cygnus region hosts a giant molecular-cloud complex that actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at γ-ray energies. Several γ-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyze the γ-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 MeV to 100 GeV in order to probe the gas and cosmic-ray content on the scale of the whole Cygnus complex. The γ-ray emission on the scale of the central massive stellar clusters and from individualmore » sources is addressed elsewhere. Methods. The signal from bright pulsars is greatly reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse γ-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. A general model of the region, including other pulsars and γ-ray sources, is sought. Results. The integral Hi emissivity above 100 MeV averaged over the whole Cygnus complex amounts to [2.06 ± 0.11 (stat.) +0.15 -0.84 (syst.)] × 10 -26 photons s -1 sr -1 H-atom -1, where the systematic error is dominated by the uncertainty on the Hi opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average XCO = N(H2)/WCO ratio is found to be [1.68 ± 0.05 (stat.) +0.87 -0.10 (Hi opacity)] × 1020 molecules cm -2 (K km s -1) -1, consistent with other LAT measurements in the Local Arm. We detect significant γ-ray emission from dark neutral gas for a mass corresponding to ~ 40% of what is traced by CO. The total interstellar mass in the Cygnus complex inferred from its γ-ray emission amounts to 8 +5 -1 × 106M⊙ at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and high masses of the interstellar

  15. The Cosmic-Ray and Gas Content of the Cygnus Region as Measured in Gamma Rays by the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Belfiore, A.; Bellazzini, R.; Berenji, B.; hide

    2011-01-01

    Context. The Cygnus region hosts a giant molecular-cloud complex which actively forms massive stars. Interactions of cosmic rays with interstellar gas and radiation fields make it shine at y-ray energies. Several gamma-ray pulsars and other energetic sources are seen in this direction. Aims. In this paper we analyse the gamma-ray emission measured by the Fermi Large Area Telescope in the energy range from 100 Me V to 100 Ge V in order to probe the gas and cosmic-ray content over the scale of the whole Cygnus complex. The gamma-ray emission on the scale of the central massive stellar clusters and from individual sources is addressed elsewhere. Methods. The signal from bright pulsars is largely reduced by selecting photons in their off-pulse phase intervals. We compare the diffuse gamma-ray emission with interstellar gas maps derived from radio/mm-wave lines and visual extinction data. and a global model of the region, including other pulsars and gamma-ray sources, is sought. Results. The integral H I emissivity above 100 MeV averaged over the whole Cygnus complex amounts to 12.06 +/- 0.11 (stat.) (+0.15 -0.84) (syst.J] x 10(exp -26) photons /s / sr / H-atom, where the systematic error is dominated by the uncertainty on the H I opacity to calculate its column densities. The integral emissivity and its spectral energy distribution are both consistent within the systematics with LAT measurements in the interstellar space near the solar system. The average X(sub co) N(H2)/W(sub co) ratio is found to be [1.68 +/- 0.05 (stat.) (H I opacity)] x 1020 molecules cm-2 (K km/s /r, consistent with other LAT measurements in the Local Arm. We detect significant gamma-ray emission from dark neutral gas for a mass corresponding to approx 40% of that traced by CO. The total interstellar mass in the Cygnus complex inferred from its gamma-ray emission amounts to 8(+5 -1) x 10(exp 6) Solar M at a distance of 1.4 kpc. Conclusions. Despite the conspicuous star formation activity and large

  16. Quantum oscillations in the kinetic energy density: Gradient corrections from the Airy gas

    NASA Astrophysics Data System (ADS)

    Lindmaa, Alexander; Mattsson, Ann E.; Armiento, Rickard

    2014-03-01

    We show how one can systematically derive exact quantum corrections to the kinetic energy density (KED) in the Thomas-Fermi (TF) limit of the Airy gas (AG). The resulting expression is of second order in the density variation and we demonstrate how it applies universally to a certain class of model systems in the slowly varying regime, for which the accuracy of the gradient corrections of the extended Thomas-Fermi (ETF) model is limited. In particular we study two kinds of related electronic edges, the Hermite gas (HG) and the Mathieu gas (MG), which are both relevant for discussing periodic systems. We also consider two systems with finite integer particle number, namely non-interacting electrons subject to harmonic confinement as well as the hydrogenic potential. Finally we discuss possible implications of our findings mainly related to the field of functional development of the local kinetic energy contribution.

  17. Surface to bulk Fermi arcs via Weyl nodes as topological defects

    PubMed Central

    Kim, Kun Woo; Lee, Woo-Ram; Kim, Yong Baek; Park, Kwon

    2016-01-01

    A hallmark of Weyl semimetal is the existence of surface Fermi arcs. An intriguing question is what determines the connectivity of surface Fermi arcs, when multiple pairs of Weyl nodes are present. To answer this question, we show that the locations of surface Fermi arcs are predominantly determined by the condition that the Zak phase integrated along the normal-to-surface direction is . The Zak phase can reveal the peculiar topological structure of Weyl semimetal directly in the bulk. Here, we show that the winding of the Zak phase around each projected Weyl node manifests itself as a topological defect of the Wannier–Stark ladder, energy eigenstates under an electric field. Remarkably, this leads to bulk Fermi arcs, open-line segments in the bulk spectra. Bulk Fermi arcs should exist in conjunction with surface counterparts to conserve the Weyl fermion number under an electric field, which is supported by explicit numerical evidence. PMID:27845342

  18. Tuning the Fano factor of graphene via Fermi velocity modulation

    NASA Astrophysics Data System (ADS)

    Lima, Jonas R. F.; Barbosa, Anderson L. R.; Bezerra, C. G.; Pereira, Luiz Felipe C.

    2018-03-01

    In this work we investigate the influence of a Fermi velocity modulation on the Fano factor of periodic and quasi-periodic graphene superlattices. We consider the continuum model and use the transfer matrix method to solve the Dirac-like equation for graphene where the electrostatic potential, energy gap and Fermi velocity are piecewise constant functions of the position x. We found that in the presence of an energy gap, it is possible to tune the energy of the Fano factor peak and consequently the location of the Dirac point, by a modulation in the Fermi velocity. Hence, the peak of the Fano factor can be used experimentally to identify the Dirac point. We show that for higher values of the Fermi velocity the Fano factor goes below 1/3 at the Dirac point. Furthermore, we show that in periodic superlattices the location of Fano factor peaks is symmetric when the Fermi velocity vA and vB is exchanged, however by introducing quasi-periodicity the symmetry is lost. The Fano factor usually holds a universal value for a specific transport regime, which reveals that the possibility of controlling it in graphene is a notable result.

  19. Transition and Damping of Collective Modes in a Trapped Fermi Gas between BCS and Unitary Limits near the Phase Transition

    PubMed Central

    Dong, Hang; Zhang, Wenyuan; Zhou, Li; Ma, Yongli

    2015-01-01

    We investigate the transition and damping of low-energy collective modes in a trapped unitary Fermi gas by solving the Boltzmann-Vlasov kinetic equation in a scaled form, which is combined with both the T-matrix fluctuation theory in normal phase and the mean-field theory in order phase. In order to connect the microscopic and kinetic descriptions of many-body Feshbach scattering, we adopt a phenomenological two-fluid physical approach, and derive the coupling constants in the order phase. By solving the Boltzmann-Vlasov steady-state equation in a variational form, we calculate two viscous relaxation rates with the collision probabilities of fermion’s scattering including fermions in the normal fluid and fermion pairs in the superfluid. Additionally, by considering the pairing and depairing of fermions, we get results of the frequency and damping of collective modes versus temperature and s-wave scattering length. Our theoretical results are in a remarkable agreement with the experimental data, particularly for the sharp transition between collisionless and hydrodynamic behaviour and strong damping between BCS and unitary limits near the phase transition. The sharp transition originates from the maximum of viscous relaxation rate caused by fermion-fermion pair collision at the phase transition point when the fermion depair, while the strong damping due to the fast varying of the frequency of collective modes from BCS limit to unitary limit. PMID:26522094

  20. Diffuse Cosmic Rays Shining in the Galactic Center: A Novel Interpretation of H.E.S.S. and Fermi-LAT γ-Ray Data.

    PubMed

    Gaggero, D; Grasso, D; Marinelli, A; Taoso, M; Urbano, A

    2017-07-21

    We present a novel interpretation of the γ-ray diffuse emission measured by Fermi-LAT and H.E.S.S. in the Galactic center (GC) region and the Galactic ridge (GR). In the first part we perform a data-driven analysis based on PASS8 Fermi-LAT data: We extend down to a few GeV the spectra measured by H.E.S.S. and infer the primary cosmic-ray (CR) radial distribution between 0.1 and 3 TeV. In the second part we adopt a CR transport model based on a position-dependent diffusion coefficient. Such behavior reproduces the radial dependence of the CR spectral index recently inferred from the Fermi-LAT observations. We find that the bulk of the GR emission can be naturally explained by the interaction of the diffuse steady-state Galactic CR sea with the gas present in the central molecular zone. Although we confirm the presence of a residual radial-dependent emission associated with a central source, the relevance of the large-scale diffuse component prevents to claim a solid evidence of GC pevatrons.

  1. Fermi large area telescope second source catalog

    DOE PAGES

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; ...

    2012-03-28

    Here, we present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are fluxmore » measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. Furthermore, we provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. Finally, the 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes.« less

  2. Fermi Large Area Telescope Second Source Catalog

    NASA Technical Reports Server (NTRS)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M; Allafort, A.; Antolini, E; Bonnell, J.; Cannon, A.; Celik O.; Corbet, R.; hide

    2012-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 11eV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.

  3. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, P. L.; Ajello, M.; Allafort, A.

    We present the second catalog of high-energy {gamma}-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurementsmore » in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely {gamma}-ray-producing source classes.« less

  4. Interacting preformed Cooper pairs in resonant Fermi gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubbels, K. B.; Radboud University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, NL-6525 AJ Nijmegen; Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, NL-3584 CE Utrecht

    2011-07-15

    We consider the normal phase of a strongly interacting Fermi gas, which can have either an equal or an unequal number of atoms in its two accessible spin states. Due to the unitarity-limited attractive interaction between particles with different spin, noncondensed Cooper pairs are formed. The starting point in treating preformed pairs is the Nozieres-Schmitt-Rink (NSR) theory, which approximates the pairs as being noninteracting. Here, we consider the effects of the interactions between the Cooper pairs in a Wilsonian renormalization-group scheme. Starting from the exact bosonic action for the pairs, we calculate the Cooper-pair self-energy by combining the NSR formalismmore » with the Wilsonian approach. We compare our findings with the recent experiments by Harikoshi et al. [Science 327, 442 (2010)] and Nascimbene et al. [Nature (London) 463, 1057 (2010)], and find very good agreement. We also make predictions for the population-imbalanced case, which can be tested in experiments.« less

  5. Fermi Spots a Record Flare from Blazar

    NASA Image and Video Library

    2015-07-10

    Blazar 3C 279's historic gamma-ray flare can be seen in this image from the Large Area Telescope (LAT) on NASA's Fermi satellite. Gamma rays with energies from 100 million to 100 billion electron volts (eV) are shown; for comparison, visible light has energies between 2 and 3 eV. The image spans 150 degrees, is shown in a stereographic projection, and represents an exposure from June 11 at 00:28 UT to June 17 at 08:17 UT. Credit: NASA/DOE/Fermi LAT Collaboration

  6. MASTER: OT detection during Fermi trigger inspection

    NASA Astrophysics Data System (ADS)

    Popova, E.; Lipunov, V.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Kornilov, V.; Chazov, V.; Vlasenko, D.; Vladimirov, V.; Gress, O.; Ivanov, K.; Potter, S.; Gabovich, A.

    2016-11-01

    During inspection of Fermi trigger 501261070 ( (Ra,Dec)=47.190,-47.210; GRB_ERROR_radius=3.27deg, GRB_TIME=2016/11/19 15:11:06.40UT http://gcn.gsfc.nasa.gov/other/501261070.fermi ) MASTER-SAAO auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered OT source at (RA, Dec) = 03h 22m 52.70s -48d 29m 10.9s on 2016-11-19 21:17:17.878UT with unfiltered m_OT=17.8 (mlim=19.7).

  7. Experimental observation of optical Weyl points and Fermi arcs

    NASA Astrophysics Data System (ADS)

    Rechtsman, Mikael

    We directly observe the presence type-II Weyl points for optical photons in a three-dimensional dielectric structure comprising arrays of evanescently-coupled, single-mode, helical waveguides. We also observe the corresponding Fermi arc surface states emerging from Weyl points (despite the use of the `Fermi arc' terminology, we are referring to bosons rather than fermions). The Weyl points are manifested by the presence of conical diffraction at the Weyl frequency in the photonic band structure, and the Fermi arc states are manifested by the emergence of surface states as we scan in frequency past the Weyl point. We map the Weyl points to Dirac points of the isofrequency surface, and the Fermi arcs to chiral edge states of an anomalous Floquet insulator. In collaboration with: Jiho Noh, Sheng Huang, Daniel Leykam*, Y. D. Chong, Kevin Chen, and Mikael C. Rechtsman M.C.R. acknowledges the National Science Foundation under Award Number ECCS-1509546, the Penn State MRSEC, Center for Nanoscale Science, under Award Number NSF DMR-1420620, and the Alfred P. Sloan Foundation under fellowship number FG-2016-6418.

  8. On the Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Daligault, Jerome

    2017-10-01

    We explore the crossover from classical plasma to quantum Fermi liquid behavior of electrons in dense plasmas. To this end, we analyze the evolution with density and temperature of the momentum lifetime of a test electron introduced in a dense electron gas. This allows us 1) to determine the boundaries of the crossover region in the temperature-density plane and to shed light on the evolution of scattering properties across it, 2) to quantify the role of the fermionic nature of electrons on electronic collisions across the crossover region, and 3) to explain how the concept of Coulomb logarithm emerges at high enough temperature but disappears at low enough temperature. Work supported by LDRD Grant No. 20170490ER.

  9. Generalized Thomas-Fermi equations as the Lampariello class of Emden-Fowler equations

    NASA Astrophysics Data System (ADS)

    Rosu, Haret C.; Mancas, Stefan C.

    2017-04-01

    A one-parameter family of Emden-Fowler equations defined by Lampariello's parameter p which, upon using Thomas-Fermi boundary conditions, turns into a set of generalized Thomas-Fermi equations comprising the standard Thomas-Fermi equation for p = 1 is studied in this paper. The entire family is shown to be non integrable by reduction to the corresponding Abel equations whose invariants do not satisfy a known integrability condition. We also discuss the equivalent dynamical system of equations for the standard Thomas-Fermi equation and perform its phase-plane analysis. The results of the latter analysis are similar for the whole class.

  10. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guanglong; Xu, Yi; Cao, Yunjiu

    The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized d{sub eq} inmore » scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.« less

  11. Quantum Phase Transitions in the Bose Hubbard Model and in a Bose-Fermi Mixture

    NASA Astrophysics Data System (ADS)

    Duchon, Eric Nicholas

    Ultracold atomic gases may be the ultimate quantum simulator. These isolated systems have the lowest temperatures in the observable universe, and their properties and interactions can be precisely and accurately tuned across a full spectrum of behaviors, from few-body physics to highly-correlated many-body effects. The ability to impose potentials on and tune interactions within ultracold gases to mimic complex systems mean they could become a theorist's playground. One of their great strengths, however, is also one of the largest obstacles to this dream: isolation. This thesis touches on both of these themes. First, methods to characterize phases and quantum critical points, and to construct finite temperature phase diagrams using experimentally accessible observables in the Bose Hubbard model are discussed. Then, the transition from a weakly to a strongly interacting Bose-Fermi mixture in the continuum is analyzed using zero temperature numerical techniques. Real materials can be emulated by ultracold atomic gases loaded into optical lattice potentials. We discuss the characteristics of a single boson species trapped in an optical lattice (described by the Bose Hubbard model) and the hallmarks of the quantum critical region that separates the superfluid and the Mott insulator ground states. We propose a method to map the quantum critical region using the single, experimentally accessible, local quantity R, the ratio of compressibility to local number fluctuations. The procedure to map a phase diagram with R is easily generalized to inhomogeneous systems and generic many-body Hamiltonians. We illustrate it here using quantum Monte Carlo simulations of the 2D Bose Hubbard model. Secondly, we investigate the transition from a degenerate Fermi gas weakly coupled to a Bose Einstein condensate to the strong coupling limit of composite boson-fermion molecules. We propose a variational wave function to investigate the ground state properties of such a Bose-Fermi mixture

  12. On the Effect of Variability on Fermi, Pasta and Ulam Matrices

    NASA Astrophysics Data System (ADS)

    Nelson, Heather; Choubey, Bhaskar

    The first numerical experiment by Fermi, Pasta, Ulam and Tsingou in 1955 observed recurrence in an array of non-linear systems. This has led to a large number of nonlinear numerical experiments with various new results from a chain of ideal oscillators. FPUT arrays consists of linear oscillators connected nonlinearly which leads to recurrence of energy mode with time. However, if such a system were to be physically constructed, inherent process variations would introduce a manufacturing tolerance into the parameters of the system. This abstract reports investigation into the effects of these tolerances on the FPU matrices. It has been observed that tolerance in the oscillators can degrade the observance of recurrence and with a chain of even 64 oscillators, recurrence cannot be observed with tolerances more than 10%. It has also been observed that linear oscillators tolerances have more effects on recurrence than those of the nonlinear coupling. Even with very small tolerances of +/- 1% on the linear components, one start to observe variations in the quality and magnitude of the recurrence and at +/- 5%, recurrence is starting to break down.

  13. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2015-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  14. Spin Imbalanced Quasi-Two-Dimensional Fermi Gases

    NASA Astrophysics Data System (ADS)

    Ong, Willie C.

    Spin-imbalanced Fermi gases serve as a testbed for fundamental notions and are efficient table-top emulators of a variety of quantum matter ranging from neutron stars, the quark-gluon plasma, to high critical temperature superconductors. A macroscopic quantum phenomenon which occurs in spin-imbalanced Fermi gases is that of phase separation; in three dimensions, a spin-balanced, fully-paired superfluid core is surrounded by an imbalanced normal-fluid shell, followed by a fully polarized shell. In one dimension, the behavior is reversed; a balanced phase appears outside a spin-imbalanced core. This thesis details the first density profile measurements and studies on spin-imbalanced quasi-2D Fermi gases, accomplished with high-resolution, rapid sequential spin-imaging. The measured cloud radii and central densities are in disagreement with mean-field Bardeen-Cooper-Schrieffer theory for a 2D system. Data for normal-fluid mixtures are well fit by a simple 2D polaron model of the free energy. Not predicted by the model is an observed phase transition to a spin-balanced central core above a critical polarisation.

  15. Fermi: The Gamma-Ray Large Area Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10 seconds of gigaelectronvolts from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as super-symmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  16. Viscosity of a multichannel one-dimensional Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeGottardi, Wade; Matveev, K. A.

    Many one-dimensional systems of experimental interest possess multiple bands arising from shallow confining potentials. In this paper, we study a gas of weakly interacting fermions and show that the bulk viscosity is dramatically altered by the occupation of more than one band. The reasons for this are twofold: a multichannel system is more easily displaced from equilibrium and the associated relaxation processes lead to more rapid equilibration than in the single channel case. We estimate the bulk viscosity in terms of the underlying microscopic interactions. The experimental relevance of this physics is discussed in the context of quantum wires andmore » trapped cold atomic gases.« less

  17. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE PAGES

    Harrison, Neil

    2016-08-16

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  18. Number of holes contained within the Fermi surface volume in underdoped high-temperature superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Neil

    Here, we provide a potential solution to the longstanding problem relating Fermi surface reconstruction to the number of holes contained within the Fermi surface volume in underdoped high T c superconductors. On considering uniaxial and biaxial charge-density wave order, we show that there exists a relationship between the ordering wave vector, the hole doping, and the cross-sectional area of the reconstructed Fermi surface whose precise form depends on the volume of the starting Fermi surface. We consider a “large” starting Fermi surface comprising 1+p hole carriers, as predicted by band structure calculations, and a “small” starting Fermi surface comprising pmore » hole carriers, as proposed in models in which the Coulomb repulsion remains the dominant energy. Using the reconstructed Fermi surface cross-sectional area obtained in quantum oscillation experiments in YBa 2Cu 3O 6+x and HgBa 2CuO 4+x and the established methods for estimating the chemical hole doping, we find the ordering vectors obtained from x-ray scattering measurements to show a close correspondence with those expected for the small starting Fermi surface. We therefore show the quantum oscillation frequency and charge-density wave vectors provide accurate estimates for the number of holes contributing to the Fermi surface volume in the pseudogap regime.« less

  19. Modeling of heavy-gas effects on airfoil flows

    NASA Technical Reports Server (NTRS)

    Drela, Mark

    1992-01-01

    Thermodynamic models were constructed for a calorically imperfect gas and for a non-ideal gas. These were incorporated into a quasi one dimensional flow solver to develop an understanding of the differences in flow behavior between the new models and the perfect gas model. The models were also incorporated into a two dimensional flow solver to investigate their effects on transonic airfoil flows. Specifically, the calculations simulated airfoil testing in a proposed high Reynolds number heavy gas test facility. The results indicate that the non-idealities caused significant differences in the flow field, but that matching of an appropriate non-dimensional parameter led to flows similar to those in air.

  20. Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Hui, C. Y.; Yeung, P. K. H.; Ng, C. W.; Lin, L. C. C.; Tam, P. H. T.; Cheng, K. S.; Kong, A. K. H.; Chernyshov, D. O.; Dogiel, V. A.

    2016-04-01

    We report the results from a detailed γ-ray investigation in the field of two `dark accelerators', HESS J1745-303 and HESS J1741-302, with 6.9 yr of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we found that its MeV-GeV emission is mainly originated from the `Region A' of the TeV feature. Its γ-ray spectrum can be modelled with a single power law with a photon index of Γ ˜ 2.5 from few hundreds MeV-TeV. Moreover, an elongated feature, which extends from `Region A' towards north-west for ˜1.3°, is discovered for the first time. The orientation of this feature is similar to that of a large-scale atomic/molecular gas distribution. For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for this unidentified TeV source. On the other hand, we have detected a new point source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved which resembles that of a γ-ray pulsar. This makes it possibly associated with PSR B1737-20 or PSR J1739-3023.

  1. Effective field theories for superconducting systems with multiple Fermi surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braga, P.R., E-mail: pedro.rangel.braga@gmail.com; Granado, D.R., E-mail: diegorochagrana@uerj.br; Department of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent

    2016-11-15

    In this work we investigate the description of superconducting systems with multiple Fermi surfaces. For the case of one Fermi surface we re-obtain the result that the superconductor is more precisely described as a topological state of matter. Studying the case of more than one Fermi surface, we obtain the effective theory describing a time reversal symmetric topological superconductor. These results are obtained by employing a general procedure to construct effective low energy actions describing states of electromagnetic systems interacting with charges and defects. The procedure consists in taking into account the proliferation or dilution of these charges and defectsmore » and its consequences for the low energy description of the electromagnetic response of the system. We find that the main ingredient entering the low energy characterization of the system with more than one Fermi surface is a non-conservation of the canonical supercurrent triggered by particular vortex configurations.« less

  2. Do the surface Fermi arcs in Weyl semimetals survive disorder?

    NASA Astrophysics Data System (ADS)

    Wilson, Justin H.; Pixley, J. H.; Huse, David A.; Refael, Gil; Das Sarma, S.

    2018-06-01

    We theoretically study the topological robustness of the surface physics induced by Weyl Fermi-arc surface states in the presence of short-ranged quenched disorder and surface-bulk hybridization. This is investigated with numerically exact calculations on a lattice model exhibiting Weyl Fermi arcs. We find that the Fermi-arc surface states, in addition to having a finite lifetime from disorder broadening, hybridize with nonperturbative bulk rare states making them no longer bound to the surface (i.e., they lose their purely surface spectral character). Thus, we provide strong numerical evidence that the Weyl Fermi arcs are not topologically protected from disorder. Nonetheless, the surface chiral velocity is robust and survives in the presence of strong disorder, persisting all the way to the Anderson-localized phase by forming localized current loops that live within the localization length of the surface. Thus, the Weyl semimetal is not topologically robust to the presence of disorder, but the surface chiral velocity is.

  3. QUANTIFYING THE INTERSTELLAR MEDIUM AND COSMIC RAYS IN THE MBM 53, 54, AND 55 MOLECULAR CLOUDS AND THE PEGASUS LOOP USING FERMI -LAT GAMMA-RAY OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizuno, T.; Abdollahi, S.; Fukui, Y.

    A study of the interstellar medium (ISM) and cosmic rays (CRs) using Fermi Large Area Telescope (LAT) data, in a region encompassing the nearby molecular clouds MBM 53, 54, and 55 and a farinfrared loop-like structure in Pegasus, is reported. By comparing Planck dust thermal emission model with Fermi -LAT γ-ray data, it was found that neither the dust radiance (R) nor the dust opacity at 353 GHz (τ353) were proportional to the total gas column density N(Htot) primarily because N(Htot)/R and N(Htot)/τ353 depend on the dust temperature (Td). The N(Htot) distribution was evaluated using γ-ray data by assuming themore » regions of high Td to be dominated by optically thin atomic hydrogen (HI) and by employing an empirical linear relation of N(Htot)/R to Td. It was determined that the mass of the gas not traced by the 21-cm or 2.6-mm surveys is ~25% of the mass of HI in the optically thin case and is larger than the mass of the molecular gas traced by carbon monoxide by a factor of up to 5. The measured γ-ray emissivity spectrum is consistent with a model based on CR spectra measured at the Earth and the nuclear enhancement factor of ≤1.5. It is, however, lower than local HI emissivities reported by previous Fermi -LAT studies employing different analysis methods and assumptions on ISM properties by 15%–20% in energies below a few GeV, even if we take account of the statistical and systematic uncertainties. The origin of the discrepancy is also discussed.« less

  4. QUANTIFYING THE INTERSTELLAR MEDIUM AND COSMIC RAYS IN THE MBM 53, 54, AND 55 MOLECULAR CLOUDS AND THE PEGASUS LOOP USING FERMI -LAT GAMMA-RAY OBSERVATIONS

    DOE PAGES

    Mizuno, T.; Abdollahi, S.; Fukui, Y.; ...

    2016-12-20

    A study of the interstellar medium (ISM) and cosmic rays (CRs) using Fermi Large Area Telescope (LAT) data, in a region encompassing the nearby molecular clouds MBM 53, 54, and 55 and a farinfrared loop-like structure in Pegasus, is reported. By comparing Planck dust thermal emission model with Fermi -LAT γ-ray data, it was found that neither the dust radiance (R) nor the dust opacity at 353 GHz (τ353) were proportional to the total gas column density N(Htot) primarily because N(Htot)/R and N(Htot)/τ353 depend on the dust temperature (Td). The N(Htot) distribution was evaluated using γ-ray data by assuming themore » regions of high Td to be dominated by optically thin atomic hydrogen (HI) and by employing an empirical linear relation of N(Htot)/R to Td. It was determined that the mass of the gas not traced by the 21-cm or 2.6-mm surveys is ~25% of the mass of HI in the optically thin case and is larger than the mass of the molecular gas traced by carbon monoxide by a factor of up to 5. The measured γ-ray emissivity spectrum is consistent with a model based on CR spectra measured at the Earth and the nuclear enhancement factor of ≤1.5. It is, however, lower than local HI emissivities reported by previous Fermi -LAT studies employing different analysis methods and assumptions on ISM properties by 15%–20% in energies below a few GeV, even if we take account of the statistical and systematic uncertainties. The origin of the discrepancy is also discussed.« less

  5. Five Years of the Fermi LAT Flare Advocate

    NASA Astrophysics Data System (ADS)

    Carpenter, Bryce; Ojha, R.; Gasparrini, D.; Ciprini, S.; Fermi LAT Collaboration; Fermi LAT Flare Advocates

    2014-01-01

    Since the launch of the Fermi satellite, the Fermi Large Area Telescope (LAT) team has run a program that provides a daily review of the the gamma-ray sky as soon as Fermi LAT data becomes available. The Flare Advocate/Gamma-ray Sky Watcher (FA-GSW) program allows a rapid analysis of the Automatic Science Processing (ASP) products and triggers dedicated followup analyses by several LAT science groups such as those studying Galactic transients, extragalactic sources and new gamma-ray sources. Significant gamma-ray detections also trigger rapid communications to the entire astrophysical community via astronomical telegrams and gamma-ray coordination network notices. The FA-GSW program plays a key role in maximizing the science return from Fermi by increasing the rate of multi-frequency observations of sources in an active gamma-ray state. In the past ~5 years blazar flaring activity of varying strength and duty cycles, gravitationally lensed blazars, flares from Galactic sources (like Nova Delphini and the Crab Nebula), unidentified transients near and off the Galactic plane, and emission from the quiet and flaring Sun, represent the range of detections made. Flare Advocates have published about 250 Astronomical Telegrams and they publish a weekly blog. Timely, extensive multi-frequency campaigns have been organized to follow-up on these phenomena leading to some of Fermi’s most interesting results.

  6. Ideals versus reality: Are weight ideals associated with weight change in the population?

    PubMed

    Kärkkäinen, Ulla; Mustelin, Linda; Raevuori, Anu; Kaprio, Jaakko; Keski-Rahkonen, Anna

    2016-04-01

    To quantify weight ideals of young adults and to examine whether the discrepancy between actual and ideal weight is associated with 10-year body mass index (BMI) change in the population. This study comprised 4,964 adults from the prospective population-based FinnTwin16 study. They reported their actual and ideal body weight at age 24 (range 22-27) and 10 years later (attrition 24.6%). The correlates of discrepancy between actual and ideal body weight and the impact on subsequent BMI change were examined. The discrepancy between actual and ideal weight at 24 years was on average 3.9 kg (1.4 kg/m(2) ) among women and 1.2 kg (0.4 kg/m(2) ) among men. On average, participants gained weight during follow-up irrespective of baseline ideal weight: women ¯x = +4.8 kg (1.7 kg/m(2) , 95% CI 1.6-1.9 kg/m(2) ), men ¯x = +6.3 kg (2.0 kg/m(2) , 95% CI 1.8-2.1 kg/m(2) ). Weight ideals at 24 years were not correlated with 10-year weight change. At 34 years, just 13.2% of women and 18.9% of men were at or below the weight they had specified as their ideal weight at 24 years. Women and men adjusted their ideal weight upward over time. Irrespective of ideal weight at baseline, weight gain was nearly universal. Weight ideals were shifted upward over time. © 2016 The Obesity Society.

  7. Fermi-Level Pinning of Contacted Single-Wall Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Wu, Shi-Yu; Liu, Lei; Jayanthi, Chakram; Guo, Guang-Yu

    2004-03-01

    Experimental evidences suggest that the Fermi-level of a contacted SWCNT with an energy gap is pinned in the vicinity of either the top of the valence band or the bottom of the conduction band, depending on the work function of the metallic leads (see, for example, E. D. Minot, Yuval Yaish,Vera Sazonova, Ji-Yong Park, Markus Brink, and Paul L. McEuen, Phys. Rev. Lett. 90, 156401 (2003)). This pinning of the Fermi-level may be attributed to the finite length of the contacted SWCNT. In this presentation, we report the result of our study of the pinning of the Fermi-level of a finite SWCNT, using the single π-orbital theory modified by the inclusion of a self-consistent scheme for the determination of charge transfer. We will also discuss the effect of the Fermi-level pinning on the transport properties of a SWCNT with a gap, either intrinsic or induced by a mechanical deformation. This work is supported by the NSF (Grant Nos: DMR-0112824 and ECS-0224114), the U.S. Department of Energy (Grant No: DE-FG02-00ER45832), and the National Science Council of Taiwan.

  8. The novel metallic states of the cuprates: Topological Fermi liquids and strange metals

    NASA Astrophysics Data System (ADS)

    Sachdev, Subir; Chowdhury, Debanjan

    2016-12-01

    We review ideas on the nature of the metallic states of the hole-doped cuprate high temperature superconductors, with an emphasis on the connections between the Luttinger theorem for the size of the Fermi surface, topological quantum field theories (TQFTs), and critical theories involving changes in the size of the Fermi surface. We begin with the derivation of the Luttinger theorem for a Fermi liquid, using momentum balance during a process of flux insertion in a lattice electronic model with toroidal boundary conditions. We then review the TQFT of the ℤ spin liquid, and demonstrate its compatibility with the toroidal momentum balance argument. This discussion leads naturally to a simple construction of "topological" Fermi liquid states: the fractionalized Fermi liquid (FL*) and the algebraic charge liquid (ACL). We present arguments for a description of the pseudogap metal of the cuprates using ℤ-FL* or ℤ-ACL states with Ising-nematic order. These pseudogap metal states are also described as Higgs phases of a SU(2) gauge theory. The Higgs field represents local antiferromagnetism, but the Higgs-condensed phase does not have long-range antiferromagnetic order: the magnitude of the Higgs field determines the pseudogap, the reconstruction of the Fermi surface, and the Ising-nematic order. Finally, we discuss the route to the large Fermi surface Fermi liquid via the critical point where the Higgs condensate and Ising nematic order vanish, and the application of Higgs criticality to the strange metal.

  9. New Theoretical Estimates of the Contribution of Unresolved Star-Forming Galaxies to the Extragalactic Gamma-Ray Background (EGB) as Measured by EGRET and the Fermi-LAT

    NASA Technical Reports Server (NTRS)

    Venters, Tonia M.

    2011-01-01

    We present new theoretical estimates of the contribution of unresolved star-forming galaxies to the extragalactic gamma-ray background (EGB) as measured by EGRET and the Fermi-LAT. We employ several methods for determining the star-forming galaxy contribution the the EGB, including a method positing a correlation between the gamma-ray luminosity of a galaxy and its rate of star formation as calculated from the total infrared luminosity, and a method that makes use of a model of the evolution of the galaxy gas mass with cosmic time. We find that depending on the model, unresolved star-forming galaxies could contribute significantly to the EGB as measured by the Fermi-LAT at energies between approx. 300 MeV and approx. few GeV. However, the overall spectrum of unresolved star-forming galaxies can explain neither the EGRET EGB spectrum at energies between 50 and 200 MeV nor the Fermi-LAT EGB spectrum at energies above approx. few GeV.

  10. Evaluation of hydrogen as a cryogenic wind tunnel test gas

    NASA Technical Reports Server (NTRS)

    Haut, R. C.

    1977-01-01

    The nondimensional ratios used to describe various flow situations in hydrogen were determined and compared with the corresponding ideal diatomic gas ratios. The results were used to examine different inviscid flow configurations. The relatively high value of the characteristic rotational temperature causes the behavior of hydrogen, under cryogenic conditions, to deviate substantially from the behavior of an ideal diatomic gas in the compressible flow regime. Therefore, if an idea diatomic gas is to be modeled, cryogenic hydrogen is unacceptable as a wind tunnel test gas in a compressible flow situation.

  11. Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; hide

    2012-01-01

    We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.

  12. Bose and Fermi Gases of Ultracold Ytterbium in a Triangular Optical Lattice

    NASA Astrophysics Data System (ADS)

    Thobe, Alexander; Doerscher, Soeren; Hundt, Bastian; Kochanke, Andre; Becker, Christoph; Sengstock, Klaus

    2013-05-01

    Quantum gases of alkaline-earth like atoms such as Calcium, Strontium and Ytterbium (Yb) open up exciting new possibilities for the study of many body physics in optical lattices, ranging from SU(N) symmetric spin Hamiltonians to the Kondo Lattice Model. Here, we present experimental studies of ultracold bosonic and fermionic Yb quantum gases. Unlike other experiments studying ultracold alkaline earth-like atoms, we have implemented a 2D-MOT instead of a Zeeman slower as a source of cold atoms. From the 2D-MOT, operating on the broad 1S0 -->1P1 transtition, the atoms are directly loaded into the 3D-MOT operating on a narrow intercombination line. The atoms are then evaporatively cooled to quantum degeneracy in a crossed optical dipole trap. With this setup we routinely produce BECs and degenerate Fermi gases of different Yb isotopes. Moreover, we present first results on spectroscopy of an interacting fermi gas on the ultranarrow 1S0 -->3P0 clock transition in a magic wavelength optical lattice. In future experiments, this spectroscopy will serve as a versatile tool for interaction sensing and selective addressing of atoms in a wavelength tunable, state dependent, triangular optical lattice, which we are currently implementing. This work is supported by DFG within SFB 925 and GrK 1355, as well as EU FETOpen (iSense).

  13. Constraints on the Galactic Halo Dark Matter From FERMI-LAT Diffuse Measurements

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2012-11-28

    For this study, we have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e +/e – produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limitsmore » is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. In conclusion, the resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.« less

  14. (Fuzzy) Ideals of BN-Algebras

    PubMed Central

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  15. Enrico Fermi - And the Revolutions of Modern Physics

    NASA Astrophysics Data System (ADS)

    Cooper, Dan

    1999-02-01

    In 1938, at the age of 37, Enrico Fermi was awarded the Nobel Prize in Physics. That same year he emigrated from Italy to the United States and, in the course of his experiments, discovered nuclear fission--a process which forms the basis of nuclear power and atomic bombs. Soon the brilliant physicist was involved in the top secret race to produce the deadliest weapon on Earth. He created the first self-sustaining chain reaction, devised new methods for purifying plutonium, and eventually participated in the first atomic test. This compelling biography traces Fermis education in Italy, his meteoric career in the scientific world, his escape from fascism to America, and the ingenious experiments he devised and conducted at the University of Rome, Columbia University, and the Los Alamos laboratory. The book also presents a mini-course in quantum and nuclear physics in an accessible, fast-paced narrative that invokes all the dizzying passion of Fermis brilliant discoveries.

  16. Modeling the instability behavior of thin film devices: Fermi Level Pinning

    NASA Astrophysics Data System (ADS)

    Moeini, Iman; Ahmadpour, Mohammad; Gorji, Nima E.

    2018-05-01

    We investigate the underlying physics of degradation/recovery of a metal/n-CdTe Schottcky junction under reverse or forward bias stressing conditions. We used Sah-Noyce-Shockley (SNS) theory to investigate if the swept of Fermi level pinning at different levels (under forward/reverse bias) is the origin of change in current-voltage characteristics of the device. This theory is based on Shockley-Read-Hall recombination within the depletion width and takes into account the interface defect levels. Fermi Level Pinning theory was primarily introduced by Ponpon and developed to thin film solar cells by Dharmadasa's group in Sheffield University-UK. The theory suggests that Fermi level pinning at multiple levels occurs due to high concentration of electron-traps or acceptor-like defects at the interface of a Schottky or pn junction and this re-arranges the recombination rate and charage collection. Shift of these levels under stress conditions determines the change in current-voltage characteristics of the cell. This theory was suggested for several device such as metal/n-CdTe, CdS/CdTe, CIGS/CdS or even GaAs solar cells without a modeling approach to clearly explain it's physics. We have applied the strong SNS modeling approach to shed light on Fermi Level Pinning theory. The modeling confirms that change in position of Fermi Level and it's pining in a lower level close to Valence band increases the recombination and reduces the open-circuit voltage. In contrast, Fermi Level pinning close to conduction band strengthens the electric field at the junction which amplifies the carrier collection and boosts the open-circuit voltage. This theory can well explain the stress effect on device characteristics of various solar cells or Schottky junctions by simply finding the right Fermi level pinning position at every specific stress condition.

  17. Analysis of senior high school student understanding on gas kinetic theory material

    NASA Astrophysics Data System (ADS)

    Anri, Y.; Maknun, J.; Chandra, D. T.

    2018-05-01

    The purpose of this research conducted to find out student understanding profile about gas kinetic theory. Particularly, on ideal gas law material, ideal gas equations and kinetic energy of ideal gas. This research was conducted on student of class XII in one of the schools in Bandung. This research is a descriptive research. The data of this research collected by using test instrument which was the essay that has been developed by the researcher based on Bloom’s Taxonomy revised. Based on the analysis result to student answer, this research discovered that whole student has low understanding in the material of gas kinetic theory. This low understanding caused of the misconception of the student, student attitude on physic subjects, and teacher teaching method who are less helpful in obtaining clear pictures in material being taught.

  18. Fermi surfaces of the pyrite-type cubic AuSb2 compared with split Fermi surfaces of the ullmannite-type cubic chiral NiSbS and PdBiSe

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Kakihana, M.; Nakamura, A.; Aoki, D.; Harima, H.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    We grew high-quality single crystals of AuSb2 with the pyrite (FeS2)-type cubic structure by the Bridgman method and studied the Fermi surface properties by the de Haas-van Alphen (dHvA) experiment and the full potential LAPW band calculation. The Fermi surfaces of AuSb2 are found to be similar to those of NiSbS and PdBiSe with the ullmannite (NiSbS)-type cubic chiral structure because the crystal structures are similar each other and the number of valence electrons is the same between two different compounds. Note that each Fermi surface splits into two Fermi surfaces in NiSbS and PdBiSe, reflecting the non-centrosymmetric crystal structure.

  19. Second-Order Fermi Acceleration and Emission in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Asano, Katsuaki; Takahara, Fumio; Toma, Kenji; Kusunose, Masaaki; Kakuwa, Jun

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations, adopt it for 1ES 1101-232, and Mrk 421. The Fermi-II model with radial evolution of the electron injection rate and/or diffusion coefficient can reproduce the spectra from the radio to the gamma-ray regime. For Mrk 421, an external radio photon field with a luminosity of 4.9 begin{math} {times} 10 (38) erg s (-1) is required to agree with the observed GeV flux. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.

  20. Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu2Su2

    NASA Astrophysics Data System (ADS)

    Yamagami, Hiroshi

    2011-01-01

    In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu2Si2 are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu2Si2 crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like "curing-stone", "rugby-ball " and "ball". The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.

  1. Anomalous heat conduction in a one-dimensional ideal gas.

    PubMed

    Casati, Giulio; Prosen, Tomaz

    2003-01-01

    We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.

  2. Fermi bubbles as a source of cosmic rays above 1015 eV

    NASA Astrophysics Data System (ADS)

    Chernyshov, D. O.; Cheng, K. S.; Dogiel, V. A.; Ko, C. M.

    2014-11-01

    Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of order of 10 kpc recently discovered by Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the region covered by Fermi bubbles implies the presence of high-energy electrons in this region. Since it is relatively difficult for relativistic electrons of this energy to travel all the way from the Galactic sources toward Fermi bubbles one can assume that they accelerated in-situ. The corresponding acceleration mechanism should also affect the distribution of the relativistic protons in the Galaxy. Since protons have much larger lifetimes the effect may even be observed near the Earth. In our model we suggest that Fermi bubbles are created by acceleration of electrons on series of shocks born due to periodic star accretions by supermassive black hole Sgr A*. We propose that hadronic CR within the 'knee' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Reacceleration of these particles in the Fermi Bubble produces CRs beyond the knee. This model provides a natural explanation of the observed CR flux, spectral indexes, and matching of spectra at the knee.

  3. Theory of inhomogeneous quantum systems. III. Variational wave functions for Fermi fluids

    NASA Astrophysics Data System (ADS)

    Krotscheck, E.

    1985-04-01

    We develop a general variational theory for inhomogeneous Fermi systems such as the electron gas in a metal surface, the surface of liquid 3He, or simple models of heavy nuclei. The ground-state wave function is expressed in terms of two-body correlations, a one-body attenuation factor, and a model-system Slater determinant. Massive partial summations of cluster expansions are performed by means of Born-Green-Yvon and hypernetted-chain techniques. An optimal single-particle basis is generated by a generalized Hartree-Fock equation in which the two-body correlations screen the bare interparticle interaction. The optimization of the pair correlations leads to a state-averaged random-phase-approximation equation and a strictly microscopic determination of the particle-hole interaction.

  4. Superallowed Fermi β decay studies at TRIUMF-ISAC

    NASA Astrophysics Data System (ADS)

    Svensson, C. E.; Dunlop, R.; Finlay, P.; Ball, G. C.; Ettenauer, S.; Leslie, J. R.; Towner, I. S.; Andreoiu, C.; Austin, R. A. E.; Bandyopadhyay, D.; Chagnon-Lessard, S.; Chester, A.; Cross, D. S.; Demand, G.; Djongolov, M.; Garnsworthy, A. B.; Garrett, P. E.; Green, K. L.; Glister, J.; Grinyer, G. F.; Hackman, G.; Hadinia, B.; Leach, K. G.; Pearson, C. J.; Phillips, A. A.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Tardiff, E. R.; Triambak, S.; Williams, S. J.; Wong, J.; Yates, S. W.; Zganjar, E. F.

    2013-10-01

    A program of high-precision superallowed Fermi β decay studies is being carried out at the Isotope Separator and Accelerator (ISAC) radioactive ion beam facility at TRIUMF. Recent high-precision branching ratio measurements for the superallowed decays of 74Rb and 26Alm, as well as a half-life measurement for 26Alm that is the most precise half-life measurement for any superallowed emitter to date, are reported. These results provide demanding tests of the theoretical isospin symmetry breaking corrections in superallowed Fermi β decays.

  5. MASTER-OAFA: Fermi GRB faded optical counterpart detection

    NASA Astrophysics Data System (ADS)

    Pogrosheva, T.; Lipunov, V.; Podesta, R.; Levato, H.; Buckley, D.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Gress, O.; Kornilov, V.; Vladimirov, V.; Chazov, V.; Gorbunov, I.; Krylov, A.; Shumkov, V.; Kuvshinov, D.

    2017-02-01

    During Fermi GBM 508295323 trigger ( GRB_TIME: 2017-02-09 01:08:38.08 UT https://gcn.gsfc.nasa.gov/other/508295323.fermi ) inspection MASTER-OAFA auto-detection system ( Lipunov et al., "MASTER Global Robotic Net", Advances in Astronomy, 2010, 30L ) discovered new OT source (Podesta et al. GCN #20650) at (RA, Dec) = 07h 23m 07.30s -52d 14m 46.6s on 2017-02-09 02:07:07.478UT with unfiltered m_OT=17.4 (mlimit=18.1m).

  6. Enrico Fermi

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Enrico Fermi was, of all the great physicists of the 20th century, among the most respected and admired. He was respected and admired because of his contributions to both theoretical and experimental physics, because of his leadership in discovering for mankind a powerful new source of energy, and above all, because of his personal character. He was always reliable and trustworthy. He had both of his feet on the ground all the time. He had great strength, but never threw his weight around. He did not play to the gallery. He did not practise one-up-manship. He exemplified, I always believe, the perfect Confucian gentleman...

  7. FERMI LAT discovery of extended gamma-ray emissions in the vicinity of the HB 3 supernova remnant

    DOE PAGES

    Katagiri, H.; Yoshida, K.; Ballet, J.; ...

    2016-02-11

    We report the discovery of extended gamma-ray emission measured by the Large Area Tele- scope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova rem- nant (SNR) HB 3 (G132.7+1.3) and the W3 HII complex adjacent to the southeast of the remnant. W3 is spatially associated with bright 12CO (J=1-0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in inter- actions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon-nucleon interactions betweenmore » accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission fromW3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.« less

  8. FERMI LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSIONS IN THE VICINITY OF THE HB 3 SUPERNOVA REMNANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katagiri, H.; Yoshida, K.; Ballet, J.

    2016-02-20

    We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB 3 (G132.7+1.3) and the W3 II complex adjacent to the southeast of the remnant. W3 is spatially associated with bright {sup 12}CO (J = 1–0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon–nucleon interactions between accelerated hadrons and interstellar gas provides amore » reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.« less

  9. Nonextensive Thomas-Fermi model

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen; Martinenko, Evgeny

    2007-11-01

    Nonextensive Thomas-Fermi model was father investigated in the following directions: Heavy atom in strong magnetic field. following Shivamoggi work on the extension of Kadomtsev equation we applied nonextensive formalism to father generalize TF model for the very strong magnetic fields (of order 10e12 G). The generalized TF equation and the binding energy of atom were calculated which contain a new nonextensive term dominating the classical one. The binding energy of a heavy atom was also evaluated. Thomas-Fermi equations in N dimensions which is technically the same as in Shivamoggi (1998) ,but behavior is different and in interesting 2 D case nonextesivity prevents from becoming linear ODE as in classical case. Effect of nonextensivity on dielectrical screening reveals itself in the reduction of the envelope radius. It was shown that nonextesivity in each case is responsible for new term dominating classical thermal correction term by order of magnitude, which is vanishing in a limit q->1. Therefore it appears that nonextensive term is ubiquitous for a wide range of systems and father work is needed to understand the origin of it.

  10. Perron-Frobenius theorem on the superfluid transition of an ultracold Fermi gas

    NASA Astrophysics Data System (ADS)

    Sakumichi, Naoyuki; Kawakami, Norio; Ueda, Masahito

    2014-05-01

    The Perron-Frobenius theorem is applied to identify the superfluid transition of the BCS-BEC crossover based on a cluster expansion method of Lee and Yang. Here, the cluster expansion is a systematic expansion of the equation of state (EOS) in terms of the fugacity z = exp (βμ) as βpλ3 = 2 z +b2z2 +b3z3 + ⋯ , with inverse temperature β =(kB T) - 1 , chemical potential μ, pressure p, and thermal de Broglie length λ =(2 πℏβ / m) 1 / 2 . According to the method of Lee and Yang, EOS is expressed by the Lee-Yang graphs. A singularity of an infinite series of ladder-type Lee-Yang graphs is analyzed. We point out that the singularity is governed by the Perron-Frobenius eigenvalue of a certain primitive matrix which is defined in terms of the two-body cluster functions and the Fermi distribution functions. As a consequence, it is found that there exists a unique fugacity at the phase transition point, which implies that there is no fragmentation of Bose-Einstein condensates of dimers and Cooper pairs at the ladder-approximation level of Lee-Yang graphs. An application to a BEC of strongly bounded dimers is also made.

  11. Fermi bubbles: the explosive nuclear activity of the Galaxy

    NASA Astrophysics Data System (ADS)

    Bland-Hawthorn, Joss

    2015-08-01

    The Galaxy's supermassive black hole (Sgr A*) is a hundred times closer than any other massive singularity. It is surrounded by a highly unstable gas disk so why is the black hole so peaceful at the present time? This mystery has led to a flurry of models in order to explain why Sgr A* is radiating far below (1 part in 10^8) the Eddington accretion limit. But has this always been so? Evidence is gathering that Sgr A* has been far more active in the recent past, on timescales of thousands of years and longer. The bipolar wind discovered by MSX, the gamma-ray bubbles discovered by Fermi-LAT, the WMAP haze, the positronium flash confirmed by INTEGRAL, are suggestive of something truly spectacular in the recent past. We present exciting new evidence that the Galactic Centre was a full blown "active galaxy" just two million years ago. The echo of this incredible event can be seen today imprinted across the Galaxy.

  12. Anisotropic breakdown of Fermi liquid quasiparticle excitations in overdoped La₂-xSrxCuO₄.

    PubMed

    Chang, J; Månsson, M; Pailhès, S; Claesson, T; Lipscombe, O J; Hayden, S M; Patthey, L; Tjernberg, O; Mesot, J

    2013-01-01

    High-temperature superconductivity emerges from an un-conventional metallic state. This has stimulated strong efforts to understand exactly how Fermi liquids breakdown and evolve into an un-conventional metal. A fundamental question is how Fermi liquid quasiparticle excitations break down in momentum space. Here we show, using angle-resolved photoemission spectroscopy, that the Fermi liquid quasiparticle excitations of the overdoped superconducting cuprate La1.77Sr0.23CuO4 is highly anisotropic in momentum space. The quasiparticle scattering and residue behave differently along the Fermi surface and hence the Kadowaki-Wood's relation is not obeyed. This kind of Fermi liquid breakdown may apply to a wide range of strongly correlated metal systems where spin fluctuations are present.

  13. Spin-imbalanced pairing and Fermi surface deformation in flat bands

    NASA Astrophysics Data System (ADS)

    Huhtinen, Kukka-Emilia; Tylutki, Marek; Kumar, Pramod; Vanhala, Tuomas I.; Peotta, Sebastiano; Törmä, Päivi

    2018-06-01

    We study the attractive Hubbard model with spin imbalance on two lattices featuring a flat band: the Lieb and kagome lattices. We present mean-field phase diagrams featuring exotic superfluid phases, similar to the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, whose stability is confirmed by dynamical mean-field theory. The nature of the pairing is found to be richer than just the Fermi surface shift responsible for the usual FFLO state. The presence of a flat band allows for changes in the particle momentum distributions at null energy cost. This facilitates formation of nontrivial superfluid phases via multiband Cooper pair formation: the momentum distribution of the spin component in the flat band deforms to mimic the Fermi surface of the other spin component residing in a dispersive band. The Fermi surface of the unpaired particles that are typical for gapless superfluids becomes deformed as well. The results highlight the profound effect of flat dispersions on Fermi surface instabilities, and provide a potential route for observing spin-imbalanced superfluidity and superconductivity.

  14. Applications of Fermi-Lowdin-Orbital Self-Interaction Correction Scheme to Organic Systems

    NASA Astrophysics Data System (ADS)

    Baruah, Tunna; Kao, Der-You; Yamamoto, Yoh

    Recent progress in treating the self-interaction errors by means of local, Lowdin-orthogonalized Fermi Orbitals offers a promising route to study the effect of self-interaction errors in the electronic structure of molecules. The Fermi orbitals depend on the location of the electronic positions, called as Fermi orbital descriptors. One advantage of using the Fermi orbitals is that the corrected Hamiltonian is unitarily invariant. Minimization of the corrected energies leads to an optimized set of centroid positions. Here we discuss the applications of this method to various systems from constituent atoms to several medium size molecules such as Mg-porphyrin, C60, pentacene etc. The applications to the ionic systems will also be discussed. De-SC0002168, NSF-DMR 125302.

  15. FERMI Observations of High-Energy Gamma-Ray Emission from GRB 080825C

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Asano, K.; ...

    2009-11-24

    The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here in this paper, we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. Finally, we also present some theoretical interpretation ofmore » GRB 080825C observations as well as some common features observed in other LAT GRBs.« less

  16. Fermi surface properties of NbAs2 studied by de Haas-van Alphen oscillation

    NASA Astrophysics Data System (ADS)

    Singha, Ratnadwip; Mandal, Prabhat

    2018-04-01

    We have grown high quality single crystal of NbAs2, a member of the transition metal dipnictide family and measured magnetotransport properties. Very large magnetoresistance ˜1.3×105 % has been observed at 2 K with 9 T magnetic field. The Fermi surface properties have been studied by de Haas-van Alphen oscillation technique. The Fermi surface is highly anisotropic and consists of multiple Fermi pockets. From quantum oscillation results, different Fermi surface related parameters have been quantified.

  17. Small Fermi surfaces of PtSn4 and Pt3In7

    NASA Astrophysics Data System (ADS)

    Yara, T.; Kakihana, M.; Nishimura, K.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.

    2018-05-01

    An extremely large magnetoresistance of PtSn4 has been recently observed and discussed from a viewpoint of de Haas-van Alphen (dHvA) oscillations and theoretical small Fermi surfaces. We have studied precisely the Fermi surfaces by measuring angular dependences of dHvA frequencies and have also carried out the full potential LAPW band calculation. Furthermore, small Fermi surfaces have been detected in another Pt-based compound of Pt3In7 with the cubic structure.

  18. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnell, Dan

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydratesmore » and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.« less

  19. Bose-Fermi symmetry in the odd-even gold isotopes

    NASA Astrophysics Data System (ADS)

    Thomas, T.; Régis, J.-M.; Jolie, J.; Heinze, S.; Albers, M.; Bernards, C.; Fransen, C.; Radeck, D.

    2014-05-01

    In this work the results of an in-beam experiment on 195Au are presented, yielding new spins, multipole mixing ratios, and new low-lying states essential for the understanding of this nucleus. The positive-parity states from this work together with compiled data from the available literature for 185-199Au are compared to Interacting Boson Fermion Model calculations employing the Spin(6) Bose-Fermi symmetry. The evolution of the parameters for the τ splitting and the J splitting reveals a smooth behavior. Thereby, a common description based on the Bose-Fermi symmetry is found for 189-199Au. Furthermore, the calculated E2 transition strengths are compared to experimental values with fixed effective boson and fermion charges for all odd-even gold isotopes, emphasizing that the Spin(6) Bose-Fermi symmetry is valid for the gold isotopes.

  20. Generalized charge-screening in relativistic Thomas–Fermi model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, themore » variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}∝r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact

  1. A joint analysis of the Drake equation and the Fermi paradox

    NASA Astrophysics Data System (ADS)

    Prantzos, Nikos

    2013-07-01

    I propose a unified framework for a joint analysis of the Drake equation and the Fermi paradox, which enables a simultaneous, quantitative study of both of them. The analysis is based on a simplified form of the Drake equation and on a fairly simple scheme for the colonization of the Milky Way. It appears that for sufficiently long-lived civilizations, colonization of the Galaxy is the only reasonable option to gain knowledge about other life forms. This argument allows one to define a region in the parameter space of the Drake equation, where the Fermi paradox definitely holds (`Strong Fermi paradox').

  2. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions

    PubMed Central

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-01-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687

  3. Search for Gamma-Ray Emission from Galactic Novae using Fermi-LAT Pass 8

    NASA Astrophysics Data System (ADS)

    Buson, Sara; Franckowiak, Anna; Cheung, Teddy; Jean, Pierre; Fermi-LAT Collaboration

    2016-01-01

    Recently Galactic novae have been identified as a new class of GeV gamma-ray emitters, with 6 detected so far with the Fermi Large Area Telescope (Fermi-LAT) data. Based on optical observations we have compiled a catalog of ~70 Galactic novae, which peak (in optical) during the operations of the Fermi mission. Based on the properties of known gamma-ray novae we developed a search procedure that we apply to all novae in the catalog to detect these slow transient sources or set flux upper limits using the Fermi-LAT Pass 8 data set. This is the first time a large sample of Galactic novae has been uniformly studied.

  4. Goldstone mode and pair-breaking excitations in atomic Fermi superfluids

    NASA Astrophysics Data System (ADS)

    Hoinka, Sascha; Dyke, Paul; Lingham, Marcus G.; Kinnunen, Jami J.; Bruun, Georg M.; Vale, Chris J.

    2017-10-01

    Spontaneous symmetry breaking is a central paradigm of elementary particle physics, magnetism, superfluidity and superconductivity. According to Goldstone's theorem, phase transitions that break continuous symmetries lead to the existence of gapless excitations in the long-wavelength limit. These Goldstone modes can become the dominant low-energy excitation, showing that symmetry breaking has a profound impact on the physical properties of matter. Here, we present a comprehensive study of the elementary excitations in a homogeneous strongly interacting Fermi gas through the crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate (BEC) of molecules using two-photon Bragg spectroscopy. The spectra exhibit a discrete Goldstone mode, associated with the broken-symmetry superfluid phase, as well as pair-breaking single-particle excitations. Our techniques yield a direct determination of the superfluid pairing gap and speed of sound in close agreement with strong-coupling theories.

  5. Fermi Large Area Telescope Second Source Catalog

    NASA Astrophysics Data System (ADS)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Belfiore, A.; Bellazzini, R.; Berenji, B.; Bignami, G. F.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Bonnell, J.; Borgland, A. W.; Bottacini, E.; Bouvier, A.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Campana, R.; Cañadas, B.; Cannon, A.; Caraveo, P. A.; Casandjian, J. M.; Cavazzuti, E.; Ceccanti, M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Chipaux, R.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Conrad, J.; Corbet, R.; Cutini, S.; D'Ammando, F.; Davis, D. S.; de Angelis, A.; DeCesar, M. E.; DeKlotz, M.; De Luca, A.; den Hartog, P. R.; de Palma, F.; Dermer, C. D.; Digel, S. W.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Dumora, D.; Enoto, T.; Escande, L.; Fabiani, D.; Falletti, L.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Gustafsson, M.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Hill, A. B.; Horan, D.; Hou, X.; Hughes, R. E.; Iafrate, G.; Itoh, R.; Jóhannesson, G.; Johnson, R. P.; Johnson, T. E.; Johnson, A. S.; Johnson, T. J.; Kamae, T.; Katagiri, H.; Kataoka, J.; Katsuta, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Landriu, D.; Latronico, L.; Lemoine-Goumard, M.; Lionetto, A. M.; Llena Garde, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Marelli, M.; Massaro, E.; Mazziotta, M. N.; McConville, W.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Minuti, M.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Mongelli, M.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Perkins, J. S.; Pesce-Rollins, M.; Pierbattista, M.; Pinchera, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Ritz, S.; Rochester, L. S.; Romani, R. W.; Roth, M.; Rousseau, R.; Ryde, F.; Sadrozinski, H. F.-W.; Salvetti, D.; Sanchez, D. A.; Saz Parkinson, P. M.; Sbarra, C.; Scargle, J. D.; Schalk, T. L.; Sgrò, C.; Shaw, M. S.; Shrader, C.; Siskind, E. J.; Smith, D. A.; Spandre, G.; Spinelli, P.; Stephens, T. E.; Strickman, M. S.; Suson, D. J.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Tibolla, O.; Tinebra, F.; Tinivella, M.; Torres, D. F.; Tosti, G.; Troja, E.; Uchiyama, Y.; Vandenbroucke, J.; Van Etten, A.; Van Klaveren, B.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Wallace, E.; Wang, P.; Werner, M.; Winer, B. L.; Wood, D. L.; Wood, K. S.; Wood, M.; Yang, Z.; Zimmer, S.

    2012-04-01

    We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes. We dedicate this paper to the memory of our colleague Patrick Nolan, who died on 2011 November 6. His career spanned much of the history of high-energy astronomy from space and his work on the Large Area Telescope (LAT) began nearly 20 years ago when it was just a concept. Pat was a central member in the operation of the LAT collaboration and he is greatly missed.

  6. Fermi and Swift as supernova alarms: Alert, localization, and diagnosis of future Galactic Type Ia explosions

    NASA Astrophysics Data System (ADS)

    Wang, Xilu; Fields, Brian D.; Lien, Amy Y.

    2017-01-01

    A Galactic SNIa event could go entirely unnoticed due to the large optical and near-IR extinction in the Milky Way plane, low radio and X-ray luminosities, and a weak neutrino signal. But the recent SN2014J confirms that Type Ia supernovae emit nuclear γ- ray lines, from the 56Ni → 56Co → 56Fe radioactive decay. The energy released in these decays powers the SNIa UVOIR light curve at times after ~1 week, leading to an exponential decline. Importantly for Swift and Fermi, these decays are accompanied by γ-ray line emission, with distinct series of lines for both the 56Ni and 56Co decays, spanning 158 keV to 2.6 MeV. These lines are squarely within the Fermi/GBM energy range, and the 56Ni 158 keV line is detectable by Swift/BAT. The Galaxy is optically thin to γ-rays, so the supernova line flux will suffer negligible extinction. Both GBM and BAT have continuous and nearly all-sky coverage. Thus GBM and BAT are ideal Galactic SNIa monitors and early warning systems. We will illustrate expected GBM and BAT light curves and spectra, based on our model for SNIa γ-ray emission and transfer. We show that the supernova signal emerges as distinct from the GBM background within days after the explosion in the SN2014J shell model. Therefore, if a Galactic SNIa were to explode, there are two possibilities of confirming and sounding the alert: 1) Swift/BAT discovers the SNIa first and localizes it within arcminutes; 2) Fermi/GBM finds the SNIa first and localizes it to within ~1 degree, using the Earth occultation technique, followed up by BAT to localize it within arcminutes. After the alert of either BAT or GBM, Swift localizes it to take spectra in optical, UV, soft and hard X-rays simultaneously with both XRT and UVOT instruments.

  7. The Fermi-Pasta-Ulam problem: Paradox turns discovery

    NASA Astrophysics Data System (ADS)

    Ford, Joseph

    1992-05-01

    This pedagogical review is written as a personal retrospective which seeks to place the celebrated Fermi, Pasta, and Ulam paradox into historical perspective. After stating the Fermi-Pasta-Ulam results, we treat the questions it raises as a pedagogical “skeleton” upon which to drape (and motivate) the evolving story of nonlinear dynamics/chaos. This review is thus but another retelling of that story by one intimately involved in its unfolding. This is done without apology for two reasons. First, if my colleagues have taught me anything, it is that an audience of experts will seldom pay greater attention than when, with some modicum of grace and polish, they are told things they know perfectly well already. Second, if generations of students have taught me anything, it is that few things fascinate them more than a scientific mystery - and the Fermi-Pasta-Ulam paradox is a cracker-jack mystery. And so readers, especially graduate students curious about nonlinear dynamics/chaos, are now invited to sit back, loosen their belts (and minds), and prepare for fact that sometimes reads like fantasy.

  8. A Mobile Data Application for the Fermi Mission

    NASA Astrophysics Data System (ADS)

    Stephens, Thomas E.; Science Support Center, Fermi

    2014-01-01

    With the ever increasing use of smartphones and tablets among scientists and the world at large, it becomes increasingly important for projects and missions to have mobile friendly access to their data. This access could come in the form of mobile friendly websites and/or native mobile applications that allow the users to explore or access the data. The Fermi Gamma-ray Space Telescope mission has begun work along the latter path. In this poster I present the current version of the Fermi Data Portal, a native mobile application for both Android and iOS devices that allows access to various high level public data products from the Fermi Science Support Center (FSSC), the Gamma-ray Coordinate Network (GCN), and other sources. While network access is required to download data, most of the data served by the app are stored locally and are available even when a network connection is not available. This poster discusses the application's features as well as the development experience and lessons learned so far along the way.

  9. A Mobile Data Application for the Fermi Mission

    NASA Astrophysics Data System (ADS)

    Stephens, T. E.

    2013-10-01

    With the ever increasing use of smartphones and tablets among scientists and the world at large, it becomes increasingly important for projects and missions to have mobile friendly access to their data. This access could come in the form of mobile friendly websites and/or native mobile applications that allow the users to explore or access the data. The Fermi Gamma-ray Space Telescope Mission has begun work along the latter path. In this poster I present the initial version of the Fermi Mobile Data Portal, a native application for both Android and iOS devices that allows access to various high level public data products from the Fermi Science Support Center (FSSC), the Gamma-ray Coordinate Network (GCN), and other sources. While network access is required to download data, most of the data served by the app are stored locally and are available even when a network connection is not available. This poster discusses the application's features as well as the development experience and lessons learned so far along the way.

  10. Fermi: The Gamma-Ray Large Area Space Telescope

    NASA Technical Reports Server (NTRS)

    McEnery, Julie

    2014-01-01

    Following its launch in June 2008, high-energy gamma-ray observations by the Fermi Gamma-ray Space Telescope have unveiled over 1000 new sources and opened an important and previously unexplored window on a wide variety of phenomena. These have included the discovery of an population of pulsars pulsing only in gamma rays; the detection of photons up to 10s of GeV from gamma-ray bursts, enhancing our understanding of the astrophysics of these powerful explosions; the detection of hundreds of active galaxies; a measurement of the high energy cosmic-ray electron spectrum which may imply the presence of nearby astrophysical particle accelerators; the determination of the diffuse gamma-ray emission with unprecedented accuracy and the constraints on phenomena such as supersymmetric dark-matter annihilations and exotic relics from the Big Bang. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from active galaxies and the discovery of transient sources in our galaxy. In this talk I will describe the current status of the Fermi observatory and review the science highlights from Fermi.

  11. Luttinger theorem and imbalanced Fermi systems

    NASA Astrophysics Data System (ADS)

    Pieri, Pierbiagio; Strinati, Giancarlo Calvanese

    2017-04-01

    The proof of the Luttinger theorem, which was originally given for a normal Fermi liquid with equal spin populations formally described by the exact many-body theory at zero temperature, is here extended to an approximate theory given in terms of a "conserving" approximation also with spin imbalanced populations. The need for this extended proof, whose underlying assumptions are here spelled out in detail, stems from the recent interest in superfluid trapped Fermi atoms with attractive inter-particle interaction, for which the difference between two spin populations can be made large enough that superfluidity is destroyed and the system remains normal even at zero temperature. In this context, we will demonstrate the validity of the Luttinger theorem separately for the two spin populations for any "Φ-derivable" approximation, and illustrate it in particular for the self-consistent t-matrix approximation.

  12. Generalized susceptibilities and Landau parameters for anisotropic Fermi liquids

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ponte, P.; Cabra, D.; Grandi, N.

    2015-05-01

    We study Fermi liquids (FLs) with a Fermi surface that lacks continuous rotational invariance and in the presence of an arbitrary quartic interaction. We obtain the expressions of the generalized static susceptibilities that measure the linear response of a generic order parameter to a perturbation of the Hamiltonian. We apply our formulae to the spin and charge susceptibilities. Based on the resulting expressions, we make a proposal for the definition of the Landau parameters in nonisotropic FL.

  13. Teaching Thermodynamics of Ideal Solutions: An Entropy-Based Approach to Help Students Better Understand and Appreciate the Subtleties of Solution Models

    ERIC Educational Resources Information Center

    Tomba, J. Pablo

    2015-01-01

    The thermodynamic formalism of ideal solutions is developed in most of the textbooks postulating a form for the chemical potential of a generic component, which is adapted from the thermodynamics of ideal gas mixtures. From this basis, the rest of useful thermodynamic properties can be derived straightforwardly without further hypothesis. Although…

  14. Twelve Years of Education and Public Outreach with the Fermi Gamma-ray Space Telescope

    NASA Astrophysics Data System (ADS)

    Cominsky, Lynn R.; McLin, K. M.; Simonnet, A.; Fermi E/PO Team

    2013-04-01

    During the past twelve years, NASA's Fermi Gamma-ray Space Telescope has supported a wide range of Education and Public Outreach (E/PO) activities, targeting K-14 students and the general public. The purpose of the Fermi E/PO program is to increase student and public understanding of the science of the high-energy Universe, through inspiring, engaging and educational activities linked to the mission’s science objectives. The E/PO program has additional more general goals, including increasing the diversity of students in the Science, Technology, Engineering and Mathematics (STEM) pipeline, and increasing public awareness and understanding of Fermi science and technology. Fermi's multi-faceted E/PO program includes elements in each major outcome category: ● Higher Education: Fermi E/PO promotes STEM careers through the use of NASA data including research experiences for students and teachers (Global Telescope Network), education through STEM curriculum development projects (Cosmology curriculum) and through enrichment activities (Large Area Telescope simulator). ● Elementary and Secondary education: Fermi E/PO links the science objectives of the Fermi mission to well-tested, customer-focused and NASA-approved standards-aligned classroom materials (Black Hole Resources, Active Galaxy Education Unit and Pop-up book, TOPS guides, Supernova Education Unit). These materials have been distributed through (Educator Ambassador and on-line) teacher training workshops and through programs involving under-represented students (after-school clubs and Astro 4 Girls). ● Informal education and public outreach: Fermi E/PO engages the public in sharing the experience of exploration and discovery through high-leverage multi-media experiences (Black Holes planetarium and PBS NOVA shows), through popular websites (Gamma-ray Burst Skymap, Epo's Chronicles), social media (Facebook, MySpace), interactive web-based activities (Space Mysteries, Einstein@Home) and activities by

  15. 2FHL: The Second Catalog of Hard Fermi-LAT Sources

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2016-01-14

    We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass 8 event-level analysis allows the detection and characterization of sources in the 50 GeV–2TeV energy range. In this energy band, Fermi - LAT has detected 360 sources, which constitute the second catalog of hard Fermi -LAT sources (2FHL). The improved angular resolution enables the precise localization of point sources (~1.'7 radius at 68 % C. L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associatedmore » with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi -LAT on orbit and the observations performed at higher energies by Cherenkov telescopes from the ground.« less

  16. 2FHL- The Second Catalog of Hard Fermi-LAT Sources

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J. Becerra; Bellazzini, R.; Bissaldi, E.; hide

    2016-01-01

    We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass8 event-level analysis allows the detection and characterization of sources in the 50 GeV-2 TeV energy range. In this energy band, Fermi-LAT has detected 360 sources, which constitute the second catalog of hard Fermi-LAT sources (2FHL). The improved angular resolution enables the precise localization of point sources (1.7 radius at 68% C.L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associated with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHLsources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi-LAT on orbit and the observations performed at higher energies byCherenkov telescopes from the ground.

  17. 2FHL: The Second Catalog of Hard Fermi-LAT Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Ajello, M.; Atwood, W. B.

    We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass 8 event-level analysis allows the detection and characterization of sources in the 50 GeV–2TeV energy range. In this energy band, Fermi - LAT has detected 360 sources, which constitute the second catalog of hard Fermi -LAT sources (2FHL). The improved angular resolution enables the precise localization of point sources (~1.'7 radius at 68 % C. L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associatedmore » with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHL sources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi -LAT on orbit and the observations performed at higher energies by Cherenkov telescopes from the ground.« less

  18. Probing topological Fermi-Arcs and bulk boundary correspondence in the Weyl semimetal TaAs

    NASA Astrophysics Data System (ADS)

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    The relation between surface Fermi-arcs and bulk Weyl cones in a Weyl semimetal, uniquely allows to study the notion of bulk to surface correspondence. We visualize these topological Fermi arc states on the surface of the Weyl semi-metal tantalum arsenide using scanning tunneling spectroscopy. Its surface hosts 12 Fermi arcs amongst several other surface bands of non-topological origin. We detect the possible scattering processes of surface bands in which Fermi arcs are involved including intra- and inter arc scatterings and arc-trivial scatterings. Each of the measured scattering processes entails additional information on the unique nature of Fermi arcs in tantalum arsenide: their contour, their energy-momentum dispersion and its relation with the bulk Weyl nodes. We further identify a sharp distinction between the wave function's spatial distribution of topological versus trivial bands. The non-topological surface bands, which are derived from the arsenic dangling bonds, are tightly bound to the arsenic termination layer. In contrast, the Fermi-arc bands reside on the deeper tantalum layer, penetrating into the bulk, which is predominantly derived from tantalum orbitals.

  19. Unified Description of Dynamics of a Repulsive Two-Component Fermi Gas

    NASA Astrophysics Data System (ADS)

    Grochowski, Piotr T.; Karpiuk, Tomasz; Brewczyk, Mirosław; Rzążewski, Kazimierz

    2017-11-01

    We study a binary spin mixture of a zero-temperature repulsively interacting Li 6 atoms using both the atomic-orbital and density-functional approaches. The gas is initially prepared in a configuration of two magnetic domains and we determine the frequency of the spin-dipole oscillations which are emerging after the repulsive barrier, initially separating the domains, is removed. We find, in agreement with recent experiment [G. Valtolina et al., Nat. Phys. 13, 704 (2017), 10.1038/nphys4108], the occurrence of a ferromagnetic instability in an atomic gas while the interaction strength between different spin states is increased, after which the system becomes ferromagnetic. The ferromagnetic instability is preceded by the softening of the spin-dipole mode.

  20. Where Was Everybody? Olaf Stapledon and the Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Baxter, S.

    In 1948 Olaf Stapledon gave an address to the BIS in which he summarised his vision of mankind's cosmic future: `One can imagine some sort of cosmical community of worlds ...' One might ask, however, since the universe is vastly older than mankind, why races on other worlds have not already built such a community. This is a `Fermi Paradox' question. The Paradox is based on the observation that there has been time for extraterrestrial intelligence to arise and colonise the Galaxy many times over, yet we see no sign of such endeavours. In this paper Stapledon's novels are retrospectively analysed from the point of view of the Fermi Paradox. In Last and First Men (1930) humanity is forever isolated because life and mind are rare in the Galaxy, and interstellar distances are too large ever to be traversed. These are classic candidate Fermi `solutions'. The `solution' implicit in Star Maker (1937) might be criticised in that it posits that humanity lives at a special epoch, with the cosmically transforming development of interstellar travel occurring a `mere' ten billion years after mankind, in a universe supposedly ~200bn years old. Stapledon died in 1950, the year the Paradox was formulated, and was probably unaware of the Paradox. However to apply retrospectively Fermi thinking to Stapledon's cosmologies is to gain a new insight into the author's philosophy.

  1. Strain-Induced Anisotropic Fermi Contour of 2D Holes and Composite Fermions

    NASA Astrophysics Data System (ADS)

    Jo, Insun; Rosales, K. A. V.; Mueed, M. A.; Padmanabhan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Winkler, R.; Shayegan, M.

    We present experimental and theoretical results demonstrating strain-induced Fermi contour anisotropy of two-dimensional (2D) holes and composite fermions (CFs) confined to a (001) GaAs quantum well. We apply a tunable uniaxial strain to a thinned (001) GaAs wafer, glued to a piezoelectric actuator. When the 2D holes are subjected to an in-plane uniaxial strain, their band structure and Fermi contour become anisotropic by about 30% even for a minute amount of strain, on the order of 10-4. Via measurements of commensurability oscillations, we determine the Fermi contour anisotropy for holes near zero magnetic field, and for CFs at high magnetic fields, as a function of uniaxial strain. The measured Fermi contour anisotropy of holes is consistent with the calculation results. The observed CF Fermi contour anisotropy also shows a strong dependence on the applied strain, which we compare quantitatively to that of the low-field holes. Supported by the NSF(Grants DMR-1305691, ECCS-1508925, and MRSEC DMR-1420541), the DOE Basic Energy Sciences (DE-FG02-00-ER45841), the Gordon and Betty Moore Foundation (GBMF4420), and the Keck Foundation. R. W. is supported by the NSF (DMR-1310199).

  2. A Route to Dirac Liquid Theory: A Fermi Liquid Description for Dirac Materials

    NASA Astrophysics Data System (ADS)

    Gochan, Matthew; Bedell, Kevin

    Since the pioneering work developed by L.V. Landau sixty years ago, Fermi Liquid Theory has seen great success in describing interacting Fermi systems. While much interest has been generated over the study of non-Fermi Liquid systems, Fermi Liquid theory serves as a formidable model for many systems and offers a rich amount of of results and insight. The recent classification of Dirac Materials, and the lack of a unifying theoretical framework for them, has motivated our study. Dirac materials are a versatile class of materials in which an abundance of unique physical phenomena can be observed. Such materials are found in all dimensions, with the shared property that their low-energy fermionic excitations behave as massless Dirac fermions and are therefore governed by the Dirac equation. The most popular Dirac material, graphene, is the focus of this work. We present our Fermi Liquid description of Graphene. We find many interesting results, specifically in the transport and dynamics of the system. Additionally, we expand on previous work regarding the Virial Theorem and its impact on the Fermi Liquid parameters in graphene. Finally, we remark on viscoelasticity of Dirac Materials and other unusual results that are consequences of AdS-CFT.

  3. Relativistic extended Thomas-Fermi calculations with exchange term contributions

    NASA Astrophysics Data System (ADS)

    Haddad, S.; Weigel, M. K.

    1994-10-01

    In this investigation we present self-consistent relativistic extended Thomas-Fermi (ETF) and extended Thomas-Fermi-Fock (ETFF) approaches, derived from the semiclassical treatment of the relativistic nuclear Hartree-Fock problem. The approximations are used to describe the ground-state properties of finite nuclei. The resulting equations are solved numerically for several one-boson-exchange (OBE) lagrangians. The results are discussed and compared with the outcome of full quantal Hartree and Hartree-Fock calculations, other semiclassical treatments and experimental data.

  4. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    PubMed Central

    Doiron-Leyraud, N.; Badoux, S.; René de Cotret, S.; Lepault, S.; LeBoeuf, D.; Laliberté, F.; Hassinger, E.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Park, J.-H..; Vignolles, D.; Vignolle, B.; Taillefer, L.; Proust, C.

    2015-01-01

    In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge–density–wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap. PMID:25616011

  5. Renormalization of Fermi Velocity in a Composite Two Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Weger, M.; Burlachkov, L.

    We calculate the self-energy Σ(k, ω) of an electron gas with a Coulomb interaction in a composite 2D system, consisting of metallic layers of thickness d ≳ a0, where a0 = ħ2ɛ1/me2 is the Bohr radius, separated by layers with a dielectric constant ɛ2 and a lattice constant c perpendicular to the planes. The behavior of the electron gas is determined by the dimensionless parameters kFa0 and kFc ɛ2/ɛ1. We find that when ɛ2/ɛ1 is large (≈5 or more), the velocity v(k) becomes strongly k-dependent near kF, and v(kF) is enhanced by a factor of 5-10. This behavior is similar to the one found by Lindhard in 1954 for an unscreened electron gas; however here we take screening into account. The peak in v(k) is very sharp (δk/kF is a few percent) and becomes sharper as ɛ2/ɛ1 increases. This velocity renormalization has dramatic effects on the transport properties; the conductivity at low T increases like the square of the velocity renormalization and the resistivity due to elastic scattering becomes temperature dependent, increasing approximately linearly with T. For scattering by phonons, ρ ∝ T2. Preliminary measurements suggest an increase in vk in YBCO very close to kF.

  6. The Place of Ideals in Teaching.

    ERIC Educational Resources Information Center

    Hansen, David T.

    This paper examines whether ideals and idealism have a role to play in teaching, identifying some ambiguities and problems associated with ideals and arguing that ideals figure importantly in teaching, but they are ideals of character or personhood as much as they are ideals of educational purpose. The first section focuses on the promise and…

  7. Extending the Fermi-LAT data processing pipeline to the grid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zimmer, S.; Arrabito, L.; Glanzman, T.

    2015-05-12

    The Data Handling Pipeline ("Pipeline") has been developed for the Fermi Gamma-Ray Space Telescope (Fermi) Large Area Telescope (LAT) which launched in June 2008. Since then it has been in use to completely automate the production of data quality monitoring quantities, reconstruction and routine analysis of all data received from the satellite and to deliver science products to the collaboration and the Fermi Science Support Center. Aside from the reconstruction of raw data from the satellite (Level 1), data reprocessing and various event-level analyses are also reasonably heavy loads on the pipeline and computing resources. These other loads, unlike Levelmore » 1, can run continuously for weeks or months at a time. Additionally, it receives heavy use in performing production Monte Carlo tasks.« less

  8. Hydrodynamic flows of non-Fermi liquids: Magnetotransport and bilayer drag

    NASA Astrophysics Data System (ADS)

    Patel, Aavishkar A.; Davison, Richard A.; Levchenko, Alex

    2017-11-01

    We consider a hydrodynamic description of transport for generic two-dimensional electron systems that lack Galilean invariance and do not fall into the category of Fermi liquids. We study magnetoresistance and show that it is governed only by the electronic viscosity provided that the wavelength of the underlying disorder potential is large compared to the microscopic equilibration length. We also derive the Coulomb drag transresistance for double-layer non-Fermi-liquid systems in the hydrodynamic regime. As an example, we consider frictional drag between two quantum Hall states with half-filled lowest Landau levels, each described by a Fermi surface of composite fermions coupled to a U (1 ) gauge field. We contrast our results to prior calculations of drag of Chern-Simons composite particles and place our findings in the context of available experimental data.

  9. Fermi Large Area Telescope as a Galactic Supernovae Axionscope

    DOE PAGES

    Meyer, M.; Giannotti, M.; Mirizzi, A.; ...

    2017-01-06

    In a Galactic core-collapse supernova (SN), axionlike particles (ALPs) could be emitted via the Primakoff process and eventually convert into γ rays in the magnetic field of the Milky Way. From a data-driven sensitivity estimate, we find that, for a SN exploding in our Galaxy, the Fermi Large Area Telescope (LAT) would be able to explore the photon-ALP coupling down to g aγ ≃ 2 × 10 -13 GeV -1 for an ALP mass m a ≲ 10 -9 eV. Also, these values are out of reach of next generation laboratory experiments. In this event, the Fermi LAT would probemore » large regions of the ALP parameter space invoked to explain the anomalous transparency of the Universe to γ rays, stellar cooling anomalies, and cold dark matter. Lastly, if no γ-ray emission were to be detected, Fermi-LAT observations would improve current bounds derived from SN 1987A by more than 1 order of magnitude.« less

  10. CCC and the Fermi paradox

    NASA Astrophysics Data System (ADS)

    Gurzadyan, V. G.; Penrose, R.

    2016-01-01

    Within the scheme of conformal cyclic cosmology (CCC), information can be transmitted from aeon to aeon. Accordingly, the "Fermi paradox" and the SETI programme --of communication by remote civilizations-- may be examined from a novel perspective: such information could, in principle, be encoded in the cosmic microwave background. The current empirical status of CCC is also discussed.

  11. Repulsive atomic gas in a harmonic trap on the border of itinerant ferromagnetism.

    PubMed

    Conduit, G J; Simons, B D

    2009-11-13

    Alongside superfluidity, itinerant (Stoner) ferromagnetism remains one of the most well-characterized phases of correlated Fermi systems. A recent experiment has reported the first evidence for novel phase behavior on the repulsive side of the Feshbach resonance in a two-component ultracold Fermi gas. By adapting recent theoretical studies to the atomic trap geometry, we show that an adiabatic ferromagnetic transition would take place at a weaker interaction strength than is observed in experiment. This discrepancy motivates a simple nonequilibrium theory that takes account of the dynamics of magnetic defects and three-body losses. The formalism developed displays good quantitative agreement with experiment.

  12. Stepwise Bose-Einstein Condensation in a Spinor Gas.

    PubMed

    Frapolli, C; Zibold, T; Invernizzi, A; Jiménez-García, K; Dalibard, J; Gerbier, F

    2017-08-04

    We observe multistep condensation of sodium atoms with spin F=1, where the different Zeeman components m_{F}=0,±1 condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization m_{z} and on the quadratic Zeeman energy q (QZE) in an applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal spin-1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions. For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the ideal case, leading, for instance, to condensation in m_{F}=±1, a phenomenon that cannot occur for an ideal gas with q>0.

  13. Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blume, D.; Daily, K. M.

    We treat small trapped unequal-mass two-component Fermi gases at unitarity within a nonperturbative microscopic framework and investigate the system properties as functions of the mass ratio {kappa}, and the numbers N{sub 1} and N{sub 2} of heavy and light fermions. While equal-mass Fermi gases with infinitely large interspecies s-wave scattering length a{sub s} are universal, we find that unequal-mass Fermi gases are, for sufficiently large {kappa} and in the regime where Efimov physics is absent, not universal. In particular, the (N{sub 1},N{sub 2})=(2,1) and (3, 1) systems exhibit three-body and four-body resonances at {kappa}=12.314(2) and 10.4(2), respectively, as well asmore » surprisingly large finite-range effects. These findings have profound implications for ongoing experimental efforts and quantum simulation proposals that utilize unequal-mass atomic Fermi gases.« less

  14. Fermi Blobs and the Symplectic Camel: A Geometric Picture of Quantum States

    NASA Astrophysics Data System (ADS)

    Gossona, Maurice A. De

    We have explained in previous work the correspondence between the standard squeezed coherent states of quantum mechanics, and quantum blobs, which are the smallest phase space units compatible with the uncertainty principle of quantum mechanics and having the symplectic group as a group of symmetries. In this work, we discuss the relation between quantum blobs and a certain level set (which we call "Fermi blob") introduced by Enrico Fermi in 1930. Fermi blobs allows us to extend our previous results not only to the excited states of the generalized harmonic oscillator in n dimensions, but also to arbitrary quadratic Hamiltonians. As is the case for quantum blobs, we can evaluate Fermi blobs using a topological notion, related to the uncertainty principle, the symplectic capacity of a phase space set. The definition of this notion is made possible by Gromov's symplectic non-squeezing theorem, nicknamed the "principle of the symplectic camel".

  15. Fermi Large Area Telescope Detection of Supernova Remnant RCW 86

    NASA Astrophysics Data System (ADS)

    Yuan, Qiang; Huang, Xiaoyuan; Liu, Siming; Zhang, Bing

    2014-04-01

    Using 5.4 yr Fermi Large Area Telescope data, we report the detection of GeV γ-ray emission from the shell-type supernova remnant RCW 86 (G315.4-2.3) with a significance of ~5.1σ. The data slightly favors an extended emission of this supernova remnant. The spectral index of RCW 86 is found to be very hard, Γ ~ 1.4, in the 0.4-300 GeV range. A one-zone leptonic model can well fit the multi-wavelength data from radio to very high energy γ-rays. The very hard GeV γ-ray spectrum and the inferred low gas density seem to disfavor a hadronic origin for the γ-rays. The γ-ray behavior of RCW 86 is very similar to several other TeV shell-type supernova remnants, e.g., RX J1713.7-3946, RX J0852.0-4622, SN 1006, and HESS J1731-347.

  16. Medical ethics and more: ideal theories, non-ideal theories and conscientious objection.

    PubMed

    Luna, Florencia

    2015-01-01

    Doing 'good medical ethics' requires acknowledgment that it is often practised in non-ideal circumstances! In this article I present the distinction between ideal theory (IT) and non-ideal theory (NIT). I show how IT may not be the best solution to tackle problems in non-ideal contexts. I sketch a NIT framework as a useful tool for bioethics and medical ethics and explain how NITs can contribute to policy design in non-ideal circumstances. Different NITs can coexist and be evaluated vis-à-vis the IT. Additionally, I address what an individual doctor ought to do in this non-ideal context with the view that knowledge of NITs can facilitate the decision-making process. NITs help conceptualise problems faced in the context of non-compliance and scarcity in a better and more realistic way. Deciding which policy is optimal in such contexts may influence physicians' decisions regarding their patients. Thus, this analysis-usually identified only with policy making-may also be relevant to medical ethics. Finally, I recognise that this is merely a first step in an unexplored but fundamental theoretical area and that more work needs to be done. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. A Probabilistic Analysis of the Fermi Paradox

    NASA Astrophysics Data System (ADS)

    Solomonides, Evan; Terzian, Yervant

    2016-06-01

    The Fermi paradox uses an appeal to the mediocrity principle to make it seem counterintuitive that humanity has not been contacted by extraterrestrial intelligence. A numerical, statistical analysis was conducted to determine whether this apparent loneliness is, in fact, unexpected. An inequality was derived to relate the frequency of life arising and developing technology on a suitable planet in the galaxy; the average length of time since the first broadcast of such a civilization; and a constant term. An analysis of the sphere reached thus far by human communication was also conducted, considering our local neighborhood and planets of particular interest. These analyses both conclude that the Fermi paradox is not, in fact, unexpected. By the mediocrity principle and numerical modeling, it is actually unlikely that the Earth would have been reached by extraterrestrial communication at this point. We predict that under 1% of the galaxy has been reached at all thus far, and we do not anticipate to be reached until approximately 50% of stars/planets have been reached. We offer a prediction that we should not expect this until at least 1,500 years in the future. Thus the Fermi paradox is not a shocking observation- or lack thereof- and humanity may very well be contacted within our species’ lifespan (we can begin to expect to be contacted 1,500 years in the future).

  18. Theoretical Interpretation of Pass 8 Fermi -LAT e + + e - Data

    DOE PAGES

    Di Mauro, M.; Manconi, S.; Vittino, A.; ...

    2017-08-17

    The flux of positrons and electrons (e + + e -) has been measured by the Fermi Large Area Telescope (LAT) in the energy range between 7 GeV and 2 TeV. Here, we discuss a number of interpretations of Pass 8 Fermi-LAT e + + e - spectrum, combining electron and positron emission from supernova remnants (SNRs) and pulsar wind nebulae (PWNe), or produced by the collision of cosmic rays (CRs) with the interstellar medium. We also found that the Fermi-LAT spectrum is compatible with the sum of electrons from a smooth SNR population, positrons from cataloged PWNe, and amore » secondary component. If we include in our analysis constraints from the AMS-02 positron spectrum, we obtain a slightly worse fit to the e + + e - Fermi-LAT spectrum, depending on the propagation model. As an additional scenario, we replace the smooth SNR component within 0.7 kpc with the individual sources found in Green's catalog of Galactic SNRs. We find that separate consideration of far and near sources helps to reproduce the e + + e - Fermi-LAT spectrum. However, we show that the fit degrades when the radio constraints on the positron emission from Vela SNR (which is the main contributor at high energies) are taken into account. We find that a break in the power-law injection spectrum at about 100 GeV can also reproduce the measured e + + e -spectrum and, among the CR propagation models that we consider, no reasonable break of the power-law dependence of the diffusion coefficient can modify the electron flux enough to reproduce the observed shape.« less

  19. Theoretical Interpretation of Pass 8 Fermi -LAT e + + e - Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Mauro, M.; Manconi, S.; Vittino, A.

    The flux of positrons and electrons (e + + e -) has been measured by the Fermi Large Area Telescope (LAT) in the energy range between 7 GeV and 2 TeV. Here, we discuss a number of interpretations of Pass 8 Fermi-LAT e + + e - spectrum, combining electron and positron emission from supernova remnants (SNRs) and pulsar wind nebulae (PWNe), or produced by the collision of cosmic rays (CRs) with the interstellar medium. We also found that the Fermi-LAT spectrum is compatible with the sum of electrons from a smooth SNR population, positrons from cataloged PWNe, and amore » secondary component. If we include in our analysis constraints from the AMS-02 positron spectrum, we obtain a slightly worse fit to the e + + e - Fermi-LAT spectrum, depending on the propagation model. As an additional scenario, we replace the smooth SNR component within 0.7 kpc with the individual sources found in Green's catalog of Galactic SNRs. We find that separate consideration of far and near sources helps to reproduce the e + + e - Fermi-LAT spectrum. However, we show that the fit degrades when the radio constraints on the positron emission from Vela SNR (which is the main contributor at high energies) are taken into account. We find that a break in the power-law injection spectrum at about 100 GeV can also reproduce the measured e + + e -spectrum and, among the CR propagation models that we consider, no reasonable break of the power-law dependence of the diffusion coefficient can modify the electron flux enough to reproduce the observed shape.« less

  20. Many body effects in a widely tunable Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Ahamdi, Peyman; Wu, Cheng-Hsun; Santiago, Ibon; Park, Jee Woo; Zwierlein, Martin

    2011-05-01

    A Bose-Einstein condensate immersed in the Fermi sea provides a rich platform for the study of many body effects such as polaron physics, boson-induced superfluidity and models of high-tc superconductivity. Few bosonic impurities in a Fermi sea form bosonic polarons, dressed quasi-particles that can condense, while few fermionic impurities in a Bose condensate might dress into heavy fermions with an immense increase of the effective mass. In an atom trap, both extremes of boson-fermion imbalance can in principle be realized in one and the same sample. Recently we have realized a Bose Einstein condensate of 41K immersed in a Fermi sea of 40K at T /TF = 0.3 and detected a wide Feshbach resonance between them. The mixture's lifetime is long enough so that bosonic polarons should form at an expected binding energy of about 0.6 TF. In this talk I will summarize our observations and the progress we have made to detect polaron physics in Bose-Fermi mixtures. This work was supported by the NSF, AFOSR-MURI, AFOSR-YIP, ARO-MURI, a grant from the Army Research Office with funding from the DARPA OLE program, the David and Lucille Packard Foundation and the Alfred P. Sloan Foundation.

  1. Magnetic and Fermi Surface Properties of EuGa4

    NASA Astrophysics Data System (ADS)

    Nakamura, Ai; Hiranaka, Yuichi; Hedo, Masato; Nakama, Takao; Miura, Yasunao; Tsutsumi, Hiroki; Mori, Akinobu; Ishida, Kazuhiro; Mitamura, Katsuya; Hirose, Yusuke; Sugiyama, Kiyohiro; Honda, Fuminori; Settai, Rikio; Takeuchi, Tetsuya; Hagiwara, Masayuki; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Haga, Yoshinori; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Harima, Hisatomo; Ōnuki, Yoshichika

    2013-10-01

    We grew a high-quality single crystal EuGa4 with the tetragonal structure by the Ga self-flux method, and measured the electrical resistivity, magnetic susceptibility, high-field magnetization, specific heat, thermoelectric power and de Haas--van Alphen (dHvA) effect, together with the electrical resistivity and thermoelectric power under pressure. EuGa4 is found to be a Eu-divalent compound without anisotropy of the magnetic susceptibility in the paramagnetic state and to reveal the same magnetization curve between H \\parallel [100] and [001] in the antiferromagnetic state, where the antiferromagnetic easy-axis is oriented along the [100] direction below a Néel temperature TN=16.5 K. The magnetization curve is discussed on the basis of a simple two-sublattice model. The Fermi surface in the paramagnetic state was clarified from the results of a dHvA experiment for EuGa4 and an energy band calculation for a non-4f reference compound SrGa4, which consists of a small ellipsoidal hole--Fermi surface and a compensated cube-like electron--Fermi surface with vacant space in center. We observed an anomaly in the temperature dependence of the electrical resistivity and thermoelectric power at TCDW=150 K under 2 GPa. This might correspond to an emergence of the charge density wave (CDW). The similar phenomenon was also observed in EuAl4 at ambient pressure. We discussed the CDW phenomenon on the basis of the present peculiar Fermi surfaces.

  2. Observation of Spin Polarons in a Tunable Fermi Liquid of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Zwierlein, Martin

    2009-05-01

    We have observed spin polarons, dressed spin down impurities in a spin up Fermi sea of ultracold atoms via tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom dressed with a spin up cloud constitutes the spin- or Fermi polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The spectra allow us to directly measure the polaron energy and the quasi-particle residue Z. The polarons are found to be only weakly interacting with each other, and can thus be identified with the quasi-particles of Landau's Fermi liquid theory. At a critical interaction strength, we observe a transition from spin one-half polarons to spin zero molecules. At this point the Fermi liquid undergoes a phase transition into a superfluid Bose liquid.

  3. First-Order Antiferromagnetic Transition and Fermi Surfaces in Semimetal EuSn3

    NASA Astrophysics Data System (ADS)

    Mori, Akinobu; Miura, Yasunao; Tsutsumi, Hiroki; Mitamura, Katsuya; Hagiwara, Masayuki; Sugiyama, Kiyohiro; Hirose, Yusuke; Honda, Fuminori; Takeuchi, Tetsuya; Nakamura, Ai; Hiranaka, Yuichi; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2014-02-01

    We grew high-quality single crystals of the antiferromagnet EuSn3 with the AuCu3-type cubic crystal structure by the Sn self-flux method and measured the electrical resistivity, magnetic susceptibility, high-field magnetization, specific heat, thermal expansion, and de Haas-van Alphen (dHvA) effect, in order to study the magnetic and Fermi surface properties. We observed steplike changes in the electrical resistivity and magnetic susceptibility, and a sharp peak of the specific heat and thermal expansion coefficient at a Néel temperature TN = 36.4 K. The first-order nature of the antiferromagnetic transition was ascertained by the observation of thermal hysteresis as well as of latent heat at TN. The present antiferromagnetic transition is found to be not a typical second-order phase transition but a first-order one. From the results of dHvA experiment, we clarified that the Fermi surface is very similar to that of the divalent compound YbSn3, mainly consisting of a nearly spherical hole Fermi surface and eight ellipsoidal electron Fermi surfaces. EuSn3 is possibly a compensated metal, and the occupation of a nearly spherical hole Fermi surface is 3.5% in its Brillouin zone, indicating that EuSn3 is a semimetal.

  4. First-principles study of electronic structure and Fermi surface in semimetallic YAs

    DOE PAGES

    Swatek, Przemys?aw Wojciech

    2018-03-23

    In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less

  5. First-principles study of electronic structure and Fermi surface in semimetallic YAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swatek, Przemys?aw Wojciech

    In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less

  6. Dissolution of topological Fermi arcs in a dirty Weyl semimetal

    NASA Astrophysics Data System (ADS)

    Slager, Robert-Jan; Juričić, Vladimir; Roy, Bitan

    2017-11-01

    Weyl semimetals (WSMs) have recently attracted a great deal of attention as they provide a condensed matter realization of chiral anomaly, feature topologically protected Fermi arc surface states, and sustain sharp chiral Weyl quasiparticles up to a critical disorder at which a continuous quantum phase transition (QPT) drives the system into a metallic phase. We here numerically demonstrate that with increasing strength of disorder, the Fermi arc gradually loses its sharpness, and close to the WSM-metal QPT it completely dissolves into the metallic bath of the bulk. The predicted topological nature of the WSM-metal QPT and the resulting bulk-boundary correspondence across this transition can be directly observed in angle-resolved photoemission spectroscopy (ARPES) and Fourier transformed scanning tunneling microscopy (STM) measurements by following the continuous deformation of the Fermi arcs with increasing disorder in recently discovered Weyl materials.

  7. Single-Particle Properties of a Strongly Interacting Bose-Fermi Mixture Above the BEC Phase Transition Temperature

    NASA Astrophysics Data System (ADS)

    Kharga, D.; Inotani, D.; Hanai, R.; Ohashi, Y.

    2017-06-01

    We theoretically investigate the normal state properties of a Bose-Fermi mixture with a strong attractive interaction between Fermi and Bose atoms. We extend the ordinary T-matrix approximation (TMA) with respect to Bose-Fermi pairing fluctuations, to include the Hugenholtz-Pines' relation for all Bose Green's functions appearing in TMA self-energy diagrams. This extension is shown to be essentially important to correctly describe the physical properties of the Bose-Fermi mixture, especially near the Bose-Einstein condensation instability. Using this improved TMA, we clarify how the formation of composite fermions affects Bose and Fermi single-particle excitation spectra, over the entire interaction strength.

  8. Fermi Bubbles: an elephant in the gamma-ray sky

    NASA Astrophysics Data System (ADS)

    Malyshev, Dmitry

    2017-03-01

    The Fermi bubbles are one of the most remarkable features in the gamma-ray sky revealed by the Fermi Large Area Telescope (LAT). The nature of the gamma-ray emission and the origin of the bubbles are still open questions. In this note, we will review some basic features of leptonic and hadronic modes of gamma-ray production. At the moment, gamma rays are our best method to study the bubbles, but in order to resolve the origin of the bubbles multi-wavelength and multi-messenger observations will be crucial.

  9. Fluctuation-induced forces in confined ideal and imperfect Bose gases.

    PubMed

    Diehl, H W; Rutkevich, Sergei B

    2017-06-01

    Fluctuation-induced ("Casimir") forces caused by thermal and quantum fluctuations are investigated for ideal and imperfect Bose gases confined to d-dimensional films of size ∞^{d-1}×D under periodic (P), antiperiodic (A), Dirichlet-Dirichlet (DD), Neumann-Neumann (NN), and Robin (R) boundary conditions (BCs). The full scaling functions Υ_{d}^{BC}(x_{λ}=D/λ_{th},x_{ξ}=D/ξ) of the residual reduced grand potential per area φ_{res,d}^{BC}(T,μ,D)=D^{-(d-1)}Υ_{d}^{BC}(x_{λ},x_{ξ}) are determined for the ideal gas case with these BCs, where λ_{th} and ξ are the thermal de Broglie wavelength and the bulk correlation length, respectively. The associated limiting scaling functions Θ_{d}^{BC}(x_{ξ})≡Υ_{d}^{BC}(∞,x_{ξ}) describing the critical behavior at the bulk condensation transition are shown to agree with those previously determined from a massive free O(2) theory for BC=P,A,DD,DN,NN. For d=3, they are expressed in closed analytical form in terms of polylogarithms. The analogous scaling functions Υ_{d}^{BC}(x_{λ},x_{ξ},c_{1}D,c_{2}D) and Θ_{d}^{R}(x_{ξ},c_{1}D,c_{2}D) under the RBCs (∂_{z}-c_{1})ϕ|_{z=0}=(∂_{z}+c_{2})ϕ|_{z=D}=0 with c_{1}≥0 and c_{2}≥0 are also determined. The corresponding scaling functions Υ_{∞,d}^{P}(x_{λ},x_{ξ}) and Θ_{∞,d}^{P}(x_{ξ}) for the imperfect Bose gas are shown to agree with those of the interacting Bose gas with n internal degrees of freedom in the limit n→∞. Hence, for d=3, Θ_{∞,d}^{P}(x_{ξ}) is known exactly in closed analytic form. To account for the breakdown of translation invariance in the direction perpendicular to the boundary planes implied by free BCs such as DDBCs, a modified imperfect Bose gas model is introduced that corresponds to the limit n→∞ of this interacting Bose gas. Numerically and analytically exact results for the scaling function Θ_{∞,3}^{DD}(x_{ξ}) therefore follow from those of the O(2n)ϕ^{4} model for n→∞.

  10. New integrable models and analytical solutions in f (R ) cosmology with an ideal gas

    NASA Astrophysics Data System (ADS)

    Papagiannopoulos, G.; Basilakos, Spyros; Barrow, John D.; Paliathanasis, Andronikos

    2018-01-01

    In the context of f (R ) gravity with a spatially flat FLRW metric containing an ideal fluid, we use the method of invariant transformations to specify families of models which are integrable. We find three families of f (R ) theories for which new analytical solutions are given and closed-form solutions are provided.

  11. High-Precision Half-Life Measurements for the Superallowed Fermi β+ Emitters 14O and 18Ne

    NASA Astrophysics Data System (ADS)

    Laffoley, A. T.; Andreoiu, C.; Austin, R. A. E.; Ball, G. C.; Bender, P. C.; Bidaman, H.; Bildstein, V.; Blank, B.; Bouzomita, H.; Cross, D. S.; Deng, G.; Diaz Varela, A.; Dunlop, M. R.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Garrett, P.; Giovinazzo, J.; Grinyer, G. F.; Grinyer, J.; Hadinia, B.; Jamieson, D. S.; Jigmeddorj, B.; Ketelhut, S.; Kisliuk, D.; Leach, K. G.; Leslie, J. R.; MacLean, A.; Miller, D.; Mills, B.; Moukaddam, M.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Svensson, C. E.; Tardiff, E.; Thomas, J. C.; Turko, J.; Voss, P.; Unsworth, C.

    High-precision half-life measurements, at the level of ±0.04%, for the superallowed Fermi emitters 14O and 18Ne have been performed at TRIUMF's Isotope Separator and Accelerator facility. Using 3 independent detector systems, a gas-proportional counter, a fast plastic scintillator, and a high-purity germanium array, a series of direct β and γ counting measurements were performed for each of the isotopes. In the case of 14O, these measurements were made to help resolve an existing discrepancy between detection methods, whereas for 18Ne the half-life precision has been improved in anticipation of forthcoming high-precision branching ratio measurements.

  12. Fermi (Formerly GLAST) at Six Months

    NASA Technical Reports Server (NTRS)

    Ritz, Steven M.

    2009-01-01

    The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to more than 300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.

  13. Fermi (nee GLAST) at Six Months

    NASA Technical Reports Server (NTRS)

    Ritz, Steve

    2009-01-01

    The Fermi Gamma-ray Space Telescope, formerly called GLAST, is a mission to measure the cosmic gamma-ray flux in the energy range 20 MeV to >300 GeV, with supporting measurements for gamma-ray bursts from 8 keV to 30 MeV. In addition to breakthrough capabilities in energy coverage and localization, the very large field of view enables observations of 20% of the sky at any instant, and the entire sky on a timescale of a few hours. With its recent launch on 11 June 2008, Fermi now opens a new and important window on a wide variety of phenomena, including pulsars, black holes and active galactic nuclei, gamma-ray bursts, the origin of cosmic rays and supernova remnants, and searches for hypothetical new phenomena such as supersymmetric dark matter annihilations. In addition to early results and the science opportunities, this talk includes a description of the instruments and the mission status and plans.

  14. Stokes paradox in electronic Fermi liquids

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew

    2017-03-01

    The Stokes paradox is the statement that in a viscous two-dimensional fluid, the "linear response" problem of fluid flow around an obstacle is ill posed. We present a simple consequence of this paradox in the hydrodynamic regime of a Fermi liquid of electrons in two-dimensional metals. Using hydrodynamics and kinetic theory, we estimate the contribution of a single cylindrical obstacle to the global electrical resistance of a material, within linear response. Momentum relaxation, present in any realistic electron liquid, resolves the classical paradox. Nonetheless, this paradox imprints itself in the resistance, which can be parametrically larger than predicted by Ohmic transport theory. We find a remarkably rich set of behaviors, depending on whether or not the quasiparticle dynamics in the Fermi liquid should be treated as diffusive, hydrodynamic, or ballistic on the length scale of the obstacle. We argue that all three types of behavior are observable in present day experiments.

  15. Broken rotational symmetry on the Fermi surface of a high-Tc superconductor

    DOE PAGES

    Ramshaw, B. J.; Harrison, N.; Sebastian, S. E.; ...

    2017-02-13

    Broken fourfold rotational (C 4) symmetry is observed in the experimental properties of several classes of unconventional superconductors. It has been proposed that this symmetry breaking is important for superconducting pairing in these materials, but in the high-T c cuprates this broken symmetry has never been observed on the Fermi surface. Here we report a pronounced anisotropy in the angle dependence of the interlayer magnetoresistance of the underdoped high transition temperature (high-T c) superconductor YBa 2Cu 3O 6.58, directly revealing broken C 4 symmetry on the Fermi surface. Moreover, we demonstrate that this Fermi surface has C 2 symmetry ofmore » the type produced by a uniaxial or anisotropic density-wave phase. This establishes the central role of C 4 symmetry breaking in the Fermi surface reconstruction of YBa 2Cu 3O 6+δ , and suggests a striking degree of universality among unconventional superconductors.« less

  16. Developmental Idealism in China

    PubMed Central

    Thornton, Arland; Xie, Yu

    2016-01-01

    This paper examines the intersection of developmental idealism with China. It discusses how developmental idealism has been widely disseminated within China and has had enormous effects on public policy and programs, on social institutions, and on the lives of individuals and their families. This dissemination of developmental idealism to China began in the 19th century, when China met with several military defeats that led many in the country to question the place of China in the world. By the beginning of the 20th century, substantial numbers of Chinese had reacted to the country’s defeats by exploring developmental idealism as a route to independence, international respect, and prosperity. Then, with important but brief aberrations, the country began to implement many of the elements of developmental idealism, a movement that became especially important following the assumption of power by the Communist Party of China in 1949. This movement has played a substantial role in politics, in the economy, and in family life. The beliefs and values of developmental idealism have also been directly disseminated to the grassroots in China, where substantial majorities of Chinese citizens have assimilated them. These ideas are both known and endorsed by very large numbers in China today. PMID:28316833

  17. Developmental Idealism in China.

    PubMed

    Thornton, Arland; Xie, Yu

    2016-10-01

    This paper examines the intersection of developmental idealism with China. It discusses how developmental idealism has been widely disseminated within China and has had enormous effects on public policy and programs, on social institutions, and on the lives of individuals and their families. This dissemination of developmental idealism to China began in the 19 th century, when China met with several military defeats that led many in the country to question the place of China in the world. By the beginning of the 20 th century, substantial numbers of Chinese had reacted to the country's defeats by exploring developmental idealism as a route to independence, international respect, and prosperity. Then, with important but brief aberrations, the country began to implement many of the elements of developmental idealism, a movement that became especially important following the assumption of power by the Communist Party of China in 1949. This movement has played a substantial role in politics, in the economy, and in family life. The beliefs and values of developmental idealism have also been directly disseminated to the grassroots in China, where substantial majorities of Chinese citizens have assimilated them. These ideas are both known and endorsed by very large numbers in China today.

  18. Strongly Interacting Multi-component Fermions: From Ultracold Atomic Fermi Gas to Asymmetric Nuclear Matter in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Tajima, Hiroyuki; Hatsuda, Tetsuo; Ohashi, Yoji

    2018-03-01

    We investigate an asymmetric nuclear matter consisting of protons and neutrons with spin degrees of freedom (σ = ↑, ↓). By generalizing the Nozières and Schmitt-Rink theory for two-component Fermi gases to the four-component case, we analyze the critical temperature T c of the superfluid phase transition. Although the pure neutron matter exhibits the dineutron condensation in the low-density region, the superfluid instability toward the deuteron condensation is found to take place as the proton fraction increases. We clarify the mechanism of the competition between the deuteron condensation and dineutron condensation. Our results would serve for understanding the properties of asymmetric nuclear matter realized in the interior of neutron stars.

  19. Fractionalized Fermi liquids and exotic superconductivity in the Kitaev-Kondo lattice

    NASA Astrophysics Data System (ADS)

    Seifert, Urban F. P.; Meng, Tobias; Vojta, Matthias

    2018-02-01

    Fractionalized Fermi liquids (FL*) have been introduced as non-Fermi-liquid metallic phases, characterized by coexisting electron-like charge carriers and local moments which form a fractionalized spin liquid. Here we investigate a Kondo lattice model on the honeycomb lattice with Kitaev interactions among the local moments, a concrete model hosting FL* phases based on Kitaev's Z2 spin liquid. We characterize the FL* phases via perturbation theory, and we employ a Majorana-fermion mean-field theory to map out the full phase diagram. Most remarkably we find nematic triplet superconducting phases which mask the quantum phase transition between fractionalized and conventional Fermi liquid phases. Their pairing structure is inherited from the Kitaev spin liquid; i.e., superconductivity is driven by Majorana glue.

  20. Fermi-Lat Observations of High-Energy Gamma-Ray Emission Toward the Galactic Center

    NASA Technical Reports Server (NTRS)

    Ajello, M.; Albert, A.; Atwood, W.B.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Brandt, T. J.; hide

    2016-01-01

    The Fermi Large Area Telescope (LAT) has provided the most detailed view to date of the emission toward the Galactic center (GC) in high-energy gamma-rays. This paper describes the analysis of data taken during the first 62 months of the mission in the energy range 1-100 GeV from a 15 degrees x 15 degrees region about the direction of the GC. Specialized interstellar emission models (IEMs) are constructed to enable the separation of the gamma-ray emissions produced by cosmic ray particles interacting with the interstellar gas and radiation fields in the Milky Way into that from the inner 1 kpc surrounding the GC, and that from the rest of the Galaxy. A catalog of point sources for the 15 degrees x 15 degrees region is self-consistently constructed using these IEMs: the First Fermi-LAT Inner Galaxy Point SourceCatalog (1FIG). The spatial locations, fluxes, and spectral properties of the 1FIG sources are presented, and compared with gamma-ray point sources over the same region taken from existing catalogs. After subtracting the interstellar emission and point-source contributions a residual is found. If templates that peak toward the GC areused to model the positive residual the agreement with the data improves, but none of the additional templates tried account for all of its spatial structure. The spectrum of the positive residual modeled with these templates has a strong dependence on the choice of IEM.