Science.gov

Sample records for identified hlxb9 mutation

  1. GSK-3? Protein Phosphorylates and Stabilizes HLXB9 Protein in Insulinoma Cells to Form a Targetable Mechanism of Controlling Insulinoma Cell Proliferation*

    PubMed Central

    Desai, Shruti S.; Modali, Sita D.; Parekh, Vaishali I.; Kebebew, Electron; Agarwal, Sunita K.

    2014-01-01

    Insulinomas (pancreatic islet ? cell tumors) are the most common type of functioning pancreatic neuroendocrine tumors that occur sporadically or as a part of the MEN1 syndrome that is caused by germ line mutations in MEN1. Tissue-specific tumor predisposition from germ line mutations in ubiquitously expressed genes such as MEN1 could occur because of functional consequences on tissue-specific factors. We previously reported the proapoptotic ? cell differentiation factor HLXB9 as a downstream target of menin (encoded by MEN1). Here we show that GSK-3? inactivates the proapoptotic activity of HLXB9 by phosphorylating HLXB9 at Ser-78/Ser-80 (pHLXB9). Although HLXB9 is found in the nucleus and cytoplasm, pHLXB9 is predominantly nuclear. Both pHLXB9 and active GSK-3? are elevated in ? cells with menin knockdown, in MEN1-associated ? cell tumors (insulinomas), and also in human sporadic insulinomas. Pharmacologic inhibition of GSK-3? blocked cell proliferation in three different rodent insulinoma cell lines by arresting the cells in G2/M phase and caused apoptosis. Taken together, these data suggest that the combination of GSK-3? and pHLXB9 forms a therapeutically targetable mechanism of insulinoma pathogenesis. Our results reveal that GSK-3? and pHLXB9 can serve as novel targets for insulinoma treatment and have implications for understanding the pathways associated with ? cell proliferation. PMID:24425879

  2. Pro-oncogenic Roles of HLXB9 Protein in Insulinoma Cells through Interaction with Nono Protein and Down-regulation of the c-Met Inhibitor Cblb (Casitas B-lineage Lymphoma b).

    PubMed

    Desai, Shruti S; Kharade, Sampada S; Parekh, Vaishali I; Iyer, Sucharitha; Agarwal, Sunita K

    2015-10-16

    Pancreatic islet ?-cells that lack the MEN1-encoded protein menin develop into tumors. Such tumors express the phosphorylated isoform of the ?-cell differentiation transcription factor HLXB9. It is not known how phospho-HLXB9 acts as an oncogenic factor in insulin-secreting ?-cell tumors (insulinomas). In this study we investigated the binding partners and target genes of phospho-HLXB9 in mouse insulinoma MIN6 ?-cells. Co-immunoprecipitation coupled with mass spectrometry showed a significant association of phospho-HLXB9 with the survival factor p54nrb/Nono (54-kDa nuclear RNA-binding protein, non-POU-domain-containing octamer). Endogenous phospho-HLXB9 co-localized with endogenous Nono in the nucleus. Overexpression of HLXB9 decreased the level of overexpressed Nono but not endogenous Nono. Anti-phospho-HLXB9 chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) identified the c-Met inhibitor, Cblb, as a direct phospho-HLXB9 target gene. Phospho-HLXB9 occupied the promoter of Cblb and reduced the expression of Cblb mRNA. Cblb overexpression or HLXB9 knockdown decreased c-Met protein and reduced cell migration. Also, increased phospho-HLXB9 coincided with reduced Cblb and increased c-Met in insulinomas of two mouse models of menin loss. These data provide mechanistic insights into the role of phospho-HLXB9 as a pro-oncogenic factor by interacting with a survival factor and by promoting the oncogenic c-Met pathway. These mechanisms have therapeutic implications for reducing ?-cell proliferation in insulinomas by inhibiting phospho-HLXB9 or its interaction with Nono and modulating the expression of its direct (Cblb) or indirect (c-Met) targets. Our data also implicate the use of pro-oncogenic activities of phospho-HLXB9 in ?-cell expansion strategies to alleviate ?-cell loss in diabetes. PMID:26342078

  3. All-codon scanning identifies p53 cancer rescue mutations

    E-print Network

    Lathrop, Richard H.

    All-codon scanning identifies p53 cancer rescue mutations Roberta Baronio1 , Samuel A. Danziger1 encoding the entire p53 core domain. Identification of several novel p53 cancer rescue mutations against cancer (11). p53 mutations occur in $50% of human cancers, and about three-quarters of those *To

  4. Scientists Using TCGA Data Identify 21 Mutational Signatures in Cancer

    Cancer.gov

    Many mutations have been implicated in human cancer, but the biological mechanisms that produce them remain largely unknown. In a study published online in Nature on August 14, 2013, researchers identified 21 signatures of mutational processes underlying 30 types of cancer. Characterizing mutational signatures may provide a greater understanding of the mechanistic basis of cancer and potentially lead to better treatments that target its root causes.

  5. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    SciTech Connect

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak; Evans, Perry; Bacchiocchi, Antonella; McCusker, James P.; Cheng, Elaine; Davis, Matthew J.; Goh, Gerald; Choi, Murim; Ariyan, Stephan; Narayan, Deepak; Dutton-Regester, Ken; Capatana, Ana; Holman, Edna C.; Bosenberg, Marcus; Sznol, Mario; Kluger, Harriet M.; Brash, Douglas E.; Stern, David F.; Materin, Miguel A.; Lo, Roger S.; Mane, Shrikant; Ma, Shuangge; Kidd, Kenneth K.; Hayward, Nicholas K.; Lifton, Richard P.; Schlessinger, Joseph; Boggon, Titus J.; Halaban, Ruth

    2012-10-11

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1{sup P29S}) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1{sup P29S} showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit.

  6. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma

    PubMed Central

    Krauthammer, Michael; Kong, Yong; Ha, Byung Hak; Evans, Perry; Bacchiocchi, Antonella; McCusker, James P; Cheng, Elaine; Davis, Matthew J; Goh, Gerald; Choi, Murim; Ariyan, Stephan; Narayan, Deepak; Dutton-Regester, Ken; Capatana, Ana; Holman, Edna C; Bosenberg, Marcus; Sznol, Mario; Kluger, Harriet M; Brash, Douglas E; Stern, David F; Materin, Miguel A; Lo, Roger S; Mane, Shrikant; Ma, Shuangge; Kidd, Kenneth K; Hayward, Nicholas K; Lifton, Richard P; Schlessinger, Joseph; Boggon, Titus J; Halaban, Ruth

    2012-01-01

    We characterized the mutational landscape of melanoma, the form of skin cancer with the highest mortality rate, by sequencing the exomes of 147 melanomas. Sun-exposed melanomas had markedly more ultraviolet (UV)-like C>T somatic mutations compared to sun-shielded acral, mucosal and uveal melanomas. Among the newly identified cancer genes was PPP6C, encoding a serine/threonine phosphatase, which harbored mutations that clustered in the active site in 12% of sun-exposed melanomas, exclusively in tumors with mutations in BRAF or NRAS. Notably, we identified a recurrent UV-signature, an activating mutation in RAC1 in 9.2% of sun-exposed melanomas. This activating mutation, the third most frequent in our cohort of sun-exposed melanoma after those of BRAF and NRAS, changes Pro29 to serine (RAC1P29S) in the highly conserved switch I domain. Crystal structures, and biochemical and functional studies of RAC1P29S showed that the alteration releases the conformational restraint conferred by the conserved proline, causes an increased binding of the protein to downstream effectors, and promotes melanocyte proliferation and migration. These findings raise the possibility that pharmacological inhibition of downstream effectors of RAC1 signaling could be of therapeutic benefit. PMID:22842228

  7. Multigene mutational profiling of cholangiocarcinomas identifies actionable molecular subgroups

    PubMed Central

    Mafficini, Andrea; Wood, Laura D.; Corbo, Vincenzo; Melisi, Davide; Malleo, Giuseppe; Vicentini, Caterina; Malpeli, Giorgio; Antonello, Davide; Sperandio, Nicola; Capelli, Paola; Tomezzoli, Anna; Iacono, Calogero; Lawlor, Rita T.; Bassi, Claudio; Hruban, Ralph H.; Guglielmi, Alfredo; Tortora, Giampaolo; de Braud, Filippo; Scarpa, Aldo

    2014-01-01

    One-hundred-fifty-three biliary cancers, including 70 intrahepatic cholangiocarcinomas (ICC), 57 extrahepatic cholangiocarcinomas (ECC) and 26 gallbladder carcinomas (GBC) were assessed for mutations in 56 genes using multigene next-generation sequencing. Expression of EGFR and mTOR pathway genes was investigated by immunohistochemistry. At least one mutated gene was observed in 118/153 (77%) cancers. The genes most frequently involved were KRAS (28%), TP53 (18%), ARID1A (12%), IDH1/2 (9%), PBRM1 (9%), BAP1 (7%), and PIK3CA (7%). IDH1/2 (p=0.0005) and BAP1 (p=0.0097) mutations were characteristic of ICC, while KRAS (p=0.0019) and TP53 (p=0.0019) were more frequent in ECC and GBC. Multivariate analysis identified tumour stage and TP53 mutations as independent predictors of survival. Alterations in chromatin remodeling genes (ARID1A, BAP1, PBRM1, SMARCB1) were seen in 31% of cases. Potentially actionable mutations were seen in 104/153 (68%) cancers: i) KRAS/NRAS/BRAF mutations were found in 34% of cancers; ii) mTOR pathway activation was documented by immunohistochemistry in 51% of cases and by mutations in mTOR pathway genes in 19% of cancers; iii) TGF-ß/Smad signaling was altered in 10.5% cancers; iv) mutations in tyrosine kinase receptors were found in 9% cases. Our study identified molecular subgroups of cholangiocarcinomas that can be explored for specific drug targeting in clinical trials. PMID:24867389

  8. Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy.

    PubMed

    Galmiche, Louise; Serre, Valérie; Beinat, Marine; Assouline, Zahra; Lebre, Anne-Sophie; Chretien, Dominique; Nietschke, Patrick; Benes, Vladimir; Boddaert, Nathalie; Sidi, Daniel; Brunelle, Francis; Rio, Marlène; Munnich, Arnold; Rötig, Agnès

    2011-11-01

    By combining exome sequencing in conjunction with genetic mapping, we have identified the first mutation in large mitochondrial ribosomal protein MRPL3 in a family of four sibs with hypertrophic cardiomyopathy, psychomotor retardation, and multiple respiratory chain deficiency. Affected sibs were compound heterozygotes for a missense MRPL3 mutation (P317R) and a large-scale deletion, inherited from the mother and the father, respectively. These mutations were shown to alter ribosome assembly and cause a mitochondrial translation deficiency in cultured skin fibroblasts resulting in an abnormal assembly of several complexes of the respiratory chain. This observation gives support to the view that exome sequencing combined with genetic mapping is a powerful approach for the identification of new genes of mitochondrial disorders. PMID:21786366

  9. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma

    PubMed Central

    Kan, Zhengyan; Zheng, Hancheng; Liu, Xiao; Li, Shuyu; Barber, Thomas D.; Gong, Zhuolin; Gao, Huan; Hao, Ke; Willard, Melinda D.; Xu, Jiangchun; Hauptschein, Robert; Rejto, Paul A.; Fernandez, Julio; Wang, Guan; Zhang, Qinghui; Wang, Bo; Chen, Ronghua; Wang, Jian; Lee, Nikki P.; Zhou, Wei; Lin, Zhao; Peng, Zhiyu; Yi, Kang; Chen, Shengpei; Li, Lin; Fan, Xiaomei; Yang, Jie; Ye, Rui; Ju, Jia; Wang, Kai; Estrella, Heather; Deng, Shibing; Wei, Ping; Qiu, Ming; Wulur, Isabella H.; Liu, Jiangang; Ehsani, Mariam E.; Zhang, Chunsheng; Loboda, Andrey; Sung, Wing Kin; Aggarwal, Amit; Poon, Ronnie T.; Fan, Sheung Tat; Wang, Jun; Hardwick, James; Reinhard, Christoph; Dai, Hongyue; Li, Yingrui; Luk, John M.; Mao, Mao

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the most deadly cancers worldwide and has no effective treatment, yet the molecular basis of hepatocarcinogenesis remains largely unknown. Here we report findings from a whole-genome sequencing (WGS) study of 88 matched HCC tumor/normal pairs, 81 of which are Hepatitis B virus (HBV) positive, seeking to identify genetically altered genes and pathways implicated in HBV-associated HCC. We find beta-catenin to be the most frequently mutated oncogene (15.9%) and TP53 the most frequently mutated tumor suppressor (35.2%). The Wnt/beta-catenin and JAK/STAT pathways, altered in 62.5% and 45.5% of cases, respectively, are likely to act as two major oncogenic drivers in HCC. This study also identifies several prevalent and potentially actionable mutations, including activating mutations of Janus kinase 1 (JAK1), in 9.1% of patients and provides a path toward therapeutic intervention of the disease. PMID:23788652

  10. Hypocrea jecorina cellobiohydrolase I stabilizing mutations identified using noncontiguous recombination.

    PubMed

    Smith, Matthew A; Bedbrook, Claire N; Wu, Timothy; Arnold, Frances H

    2013-12-20

    Noncontiguous recombination (NCR) is a method to identify pieces of structure that can be swapped among homologous proteins to create new, chimeric proteins. These "blocks" are encoded by elements of sequence that are not necessarily contiguous along the polypeptide chain. We used NCR to design a library in which blocks of structure from Hypocrea jecorina cellobiohydrolase I (Cel7A) and its two thermostable homologues from Talaromyces emersonii and Chaetomium thermophilum are shuffled to create 531,438 possible chimeric enzymes. We constructed a maximally informative subset of 35 chimeras to analyze this library and found that the blocks contribute additively to the stability of a chimera. Within two highly stabilizing blocks, we uncovered six single amino acid substitutions that each improve the stability of H. jecorina cellobiohydrolase I by 1-3 °C. The small number of measurements required to find these mutations demonstrates that noncontiguous recombination is an efficient strategy for identifying stabilizing mutations. PMID:23688124

  11. DCEG Scientists Identify New Gene Mutation Related to Familial Melanoma

    Cancer.gov

    Scientists have identified a rare inherited mutation in a gene that can increase the risk of familial melanoma, according to a study that appeared online in Nature Genetics on March 30, 2014. Although the finding does not offer immediate benefit to patients, variation in the Protection of Telomeres-1 (POT1) gene provides additional clues as to the origins of melanoma and may open new avenues in prevention and treatment research.

  12. LineUp: Identifying Deleterious Mutations Using Protein Domain Alignment - Brady Bernard, TCGA Scientific Symposium 2014

    Cancer.gov

    Home News and Events Multimedia Library Videos LineUp: Identifying Deleterious Mutations Using Protein Domain Alignment - Brady Bernard LineUp: Identifying Deleterious Mutations Using Protein Domain Alignment - Brady Bernard, TCGA Scientific Symposium

  13. Identifying driver mutations from sequencing data of heterogeneous tumors in the era of personalized genome sequencing.

    PubMed

    Zhang, Jing; Liu, Jie; Sun, Jianbo; Chen, Chen; Foltz, Gregory; Lin, Biaoyang

    2014-03-01

    Distinguishing driver mutations from passenger mutations is critical to the understanding of the molecular mechanisms of carcinogenesis and for identifying prognostic and diagnostic markers as well as therapeutic targets. We reviewed the current approaches and software for identifying driver mutations from passenger mutations including both biology-based approaches and machine-learning-based approaches. We also reviewed approaches to identify driver mutations in the context of pathways or gene sets. Finally, we discussed the challenges of predicting driver mutations considering the complexities of inter- and intra-tumor heterogeneity as well as the evolution and progression of tumors. PMID:23818492

  14. Identifying and Mapping Parallel Mutations of GAR-3 

    E-print Network

    Prompuntagorn, Christopher

    2009-06-09

    on agarose gel to determine which regions contain 100 percent mutant DNA and could thus statistically be the site of the mutation. We believe the mutation lies in a region on the left end of the X chromosome, based on a larger proportion of N2 DNA compared...

  15. Key Clinical Features to Identify Girls with "CDKL5" Mutations

    ERIC Educational Resources Information Center

    Bahi-Buisson, Nadia; Nectoux, Juliette; Rosas-Vargas, Haydee; Milh, Mathieu; Boddaert, Nathalie; Girard, Benoit; Cances, Claude; Ville, Dorothee; Afenjar, Alexandra; Rio, Marlene; Heron, Delphine; Morel, Marie Ange N'Guyen; Arzimanoglou, Alexis; Philippe, Christophe; Jonveaux, Philippe; Chelly, Jamel; Bienvenu, Thierry

    2008-01-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 ("CDKL5") gene have been shown to cause infantile spasms as well as Rett syndrome (RTT)-like phenotype. To date, less than 25 different mutations have been reported. So far, there are still little data on the key clinical diagnosis criteria and on the natural history of…

  16. An Evolutionary Approach for Identifying Driver Mutations in Colorectal Cancer

    PubMed Central

    Leder, Kevin; Riester, Markus; Iwasa, Yoh; Lengauer, Christoph; Michor, Franziska

    2015-01-01

    The traditional view of cancer as a genetic disease that can successfully be treated with drugs targeting mutant onco-proteins has motivated whole-genome sequencing efforts in many human cancer types. However, only a subset of mutations found within the genomic landscape of cancer is likely to provide a fitness advantage to the cell. Distinguishing such “driver” mutations from innocuous “passenger” events is critical for prioritizing the validation of candidate mutations in disease-relevant models. We design a novel statistical index, called the Hitchhiking Index, which reflects the probability that any observed candidate gene is a passenger alteration, given the frequency of alterations in a cross-sectional cancer sample set, and apply it to a mutational data set in colorectal cancer. Our methodology is based upon a population dynamics model of mutation accumulation and selection in colorectal tissue prior to cancer initiation as well as during tumorigenesis. This methodology can be used to aid in the prioritization of candidate mutations for functional validation and contributes to the process of drug discovery. PMID:26379039

  17. Identifying driver mutations in sequenced cancer genomes: computational approaches to enable precision medicine

    PubMed Central

    2014-01-01

    High-throughput DNA sequencing is revolutionizing the study of cancer and enabling the measurement of the somatic mutations that drive cancer development. However, the resulting sequencing datasets are large and complex, obscuring the clinically important mutations in a background of errors, noise, and random mutations. Here, we review computational approaches to identify somatic mutations in cancer genome sequences and to distinguish the driver mutations that are responsible for cancer from random, passenger mutations. First, we describe approaches to detect somatic mutations from high-throughput DNA sequencing data, particularly for tumor samples that comprise heterogeneous populations of cells. Next, we review computational approaches that aim to predict driver mutations according to their frequency of occurrence in a cohort of samples, or according to their predicted functional impact on protein sequence or structure. Finally, we review techniques to identify recurrent combinations of somatic mutations, including approaches that examine mutations in known pathways or protein-interaction networks, as well as de novo approaches that identify combinations of mutations according to statistical patterns of mutual exclusivity. These techniques, coupled with advances in high-throughput DNA sequencing, are enabling precision medicine approaches to the diagnosis and treatment of cancer. PMID:24479672

  18. SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts.

    PubMed

    Malcovati, Luca; Karimi, Mohsen; Papaemmanuil, Elli; Ambaglio, Ilaria; Jädersten, Martin; Jansson, Monika; Elena, Chiara; Gallì, Anna; Walldin, Gunilla; Della Porta, Matteo G; Raaschou-Jensen, Klas; Travaglino, Erica; Kallenbach, Klaus; Pietra, Daniela; Ljungström, Viktor; Conte, Simona; Boveri, Emanuela; Invernizzi, Rosangela; Rosenquist, Richard; Campbell, Peter J; Cazzola, Mario; Hellström Lindberg, Eva

    2015-07-01

    Refractory anemia with ring sideroblasts (RARS) is a myelodysplastic syndrome (MDS) characterized by isolated erythroid dysplasia and 15% or more bone marrow ring sideroblasts. Ring sideroblasts are found also in other MDS subtypes, such as refractory cytopenia with multilineage dysplasia and ring sideroblasts (RCMD-RS). A high prevalence of somatic mutations of SF3B1 was reported in these conditions. To identify mutation patterns that affect disease phenotype and clinical outcome, we performed a comprehensive mutation analysis in 293 patients with myeloid neoplasm and 1% or more ring sideroblasts. SF3B1 mutations were detected in 129 of 159 cases (81%) of RARS or RCMD-RS. Among other patients with ring sideroblasts, lower prevalence of SF3B1 mutations and higher prevalence of mutations in other splicing factor genes were observed (P < .001). In multivariable analyses, patients with SF3B1 mutations showed significantly better overall survival (hazard ratio [HR], .37; P = .003) and lower cumulative incidence of disease progression (HR = 0.31; P = .018) compared with SF3B1-unmutated cases. The independent prognostic value of SF3B1 mutation was retained in MDS without excess blasts, as well as in sideroblastic categories (RARS and RCMD-RS). Among SF3B1-mutated patients, coexisting mutations in DNA methylation genes were associated with multilineage dysplasia (P = .015) but had no effect on clinical outcome. TP53 mutations were frequently detected in patients without SF3B1 mutation, and were associated with poor outcome. Thus, SF3B1 mutation identifies a distinct MDS subtype that is unlikely to develop detrimental subclonal mutations and is characterized by indolent clinical course and favorable outcome. PMID:25957392

  19. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

    PubMed Central

    Puente, Xose S.; Pinyol, Magda; Quesada, Víctor; Conde, Laura; Ordóñez, Gonzalo R.; Villamor, Neus; Escaramis, Georgia; Jares, Pedro; Beà, Sílvia; González-Díaz, Marcos; Bassaganyas, Laia; Baumann, Tycho; Juan, Manel; López-Guerra, Mónica; Colomer, Dolors; Tubío, José M. C.; López, Cristina; Navarro, Alba; Tornador, Cristian; Aymerich, Marta; Rozman, María; Hernández, Jesús M.; Puente, Diana A.; Freije, José M. P.; Velasco, Gloria; Gutiérrez-Fernández, Ana; Costa, Dolors; Carrió, Anna; Guijarro, Sara; Enjuanes, Anna; Hernández, Lluís; Yagüe, Jordi; Nicolás, Pilar; Romeo-Casabona, Carlos M.; Himmelbauer, Heinz; Castillo, Ester; Dohm, Juliane C.; de Sanjosé, Silvia; Piris, Miguel A.; de Alava, Enrique; Miguel, Jesús San; Royo, Romina; Gelpí, Josep L.; Torrents, David; Orozco, Modesto; Pisano, David G.; Valencia, Alfonso; Guigó, Roderic; Bayés, Mónica; Heath, Simon; Gut, Marta; Klatt, Peter; Marshall, John; Raine, Keiran; Stebbings, Lucy A.; Futreal, P. Andrew; Stratton, Michael R.; Campbell, Peter J.; Gut, Ivo; López-Guillermo, Armando; Estivill, Xavier; Montserrat, Emili; López-Otín, Carlos; Campo, Elías

    2012-01-01

    Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution1,2. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes3,4. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer. PMID:21642962

  20. Novel PTPRQ mutations identified in three congenital hearing loss patients with various types of hearing loss

    PubMed Central

    Sakuma, Naoko; Moteki, Hideaki; Azaiez, Hela; Booth, Kevin T; Takahashi, Masahiro; Arai, Yasuhiro; Shearer, A Eliot; Sloan, Christina M; Nishio, Shin-ya; Kolbe, Diana L; Iwasaki, Satoshi; Oridate, Nobuhiko; Smith, Richard J H; Usami, Shin-ichi

    2015-01-01

    Objective We present three patients with congenital sensorineural hearing loss (SNHL) caused by the novel PTPRQ mutations, including clinical manifestations and phenotypic features. Methods Two hundred and twenty (220) Japanese subjects with sensorineural hearing loss from unrelated and non-consanguineous families were enrolled in the study. Targeted genomic enrichment with massively parallel sequencing of all known non-syndromic hearing loss genes was performed to identify the genetic cause of hearing loss. Results Four novel causative PTPRQ mutations were identified in three cases. Case 1 had progressive profound SNHL with homozygous nonsense mutation. Case 2 had non-progressive profound SNHL with compound heterozygous mutation (nonsense and missense mutation). Case 3 had non-progressive moderate SNHL with compound heterozygous mutation (missense and splice site mutation). Caloric test and vestibular evoked myogenic potential (VEMP) test showed vestibular dysfunction in Case 1. Conclusion Hearing loss levels and progression among the present cases were varied, and there seem to be no obvious correlation between genotypes and the phenotypic features of their hearing loss. The PTPRQ mutation appeared to be responsible for the vestibular dysfunction. PMID:25788564

  1. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome.

    PubMed

    Kulasekararaj, Austin G; Jiang, Jie; Smith, Alexander E; Mohamedali, Azim M; Mian, Syed; Gandhi, Shreyans; Gaken, Joop; Czepulkowski, Barbara; Marsh, Judith C W; Mufti, Ghulam J

    2014-10-23

    The distinction between acquired aplastic anemia (AA) and hypocellular myelodysplastic syndrome (hMDS) is often difficult, especially nonsevere AA. We postulated that somatic mutations are present in a subset of AA, and predict malignant transformation. From our database, we identified 150 AA patients with no morphological evidence of MDS, who had stored bone marrow (BM) and constitutional DNA. We excluded Fanconi anemia, mutations of telomere maintenance, and a family history of BM failure (BMF) or cancer. The initial cohort of 57 patients was screened for 835 known genes associated with BMF and myeloid cancer; a second cohort of 93 patients was screened for mutations in ASXL1, DNMT3A, BCOR, TET2, and MPL. Somatic mutations were detected in 19% of AA, and included ASXL1 (n = 12), DNMT3A (n = 8) and BCOR (n = 6). Patients with somatic mutations had a longer disease duration (37 vs 8 months, P < .04), and shorter telomere lengths (median length, 0.9 vs 1.1, P < .001), compared with patients without mutations. Somatic mutations in AA patients with a disease duration of >6 months were associated with a 40% risk of transformation to MDS (P < .0002). Nearly one-fifth of AA patients harbor mutations in genes typically seen in myeloid malignancies that predicted for later transformation to MDS. PMID:25139356

  2. Whole exome sequencing identifies a recurrent RQCD1 P131L mutation in cutaneous melanoma

    PubMed Central

    Wong, Stephen Q.; Behren, Andreas; Mar, Victoria J.; Woods, Katherine; Li, Jason; Martin, Claire; Sheppard, Karen E.; Wolfe, Rory; Kelly, John; Cebon, Jonathan; Dobrovic, Alexander; McArthur, Grant A.

    2015-01-01

    Melanoma is often caused by mutations due to exposure to ultraviolet radiation. This study reports a recurrent somatic C > T change causing a P131L mutation in the RQCD1 (Required for Cell Differentiation1 Homolog) gene identified through whole exome sequencing of 20 metastatic melanomas. Screening in 715 additional primary melanomas revealed a prevalence of ~4%. This represents the first reported recurrent mutation in a member of the CCR4-NOT complex in cancer. Compared to tumors without the mutation, the P131L mutant positive tumors were associated with increased thickness (p = 0.02), head and neck (p = 0.009) and upper limb (p = 0.03) location, lentigo maligna melanoma subtype (p = 0.02) and BRAF V600K (p = 0.04) but not V600E or NRAS codon 61 mutations. There was no association with nodal disease (p = 0.3). Mutually exclusive mutations of other members of the CCR4-NOT complex were found in ~20% of the TCGA melanoma dataset suggesting the complex may play an important role in melanoma biology. Mutant RQCD1 was predicted to bind strongly to HLA-A0201 and HLA-Cw3 MHC1 complexes. From thirteen patients with mutant RQCD1, an anti-tumor CD8+ T cell response was observed from a single patient's peripheral blood mononuclear cell population stimulated with mutated peptide compared to wildtype indicating a neoantigen may be formed. PMID:25544760

  3. A distinctive oral phenotype points to FAM20A mutations not identified by Sanger sequencing.

    PubMed

    Poulter, James A; Smith, Claire E L; Murrillo, Gina; Silva, Sandra; Feather, Sally; Howell, Marianella; Crinnion, Laura; Bonthron, David T; Carr, Ian M; Watson, Christopher M; Inglehearn, Chris F; Mighell, Alan J

    2015-11-01

    Biallelic FAM20A mutations cause two conditions where Amelogenesis Imperfecta (AI) is the presenting feature: Amelogenesis Imperfecta and Gingival Fibromatosis Syndrome; and Enamel Renal Syndrome. A distinctive oral phenotype is shared in both conditions. On Sanger sequencing of FAM20A in cases with that phenotype, we identified two probands with single, likely pathogenic heterozygous mutations. Given the recessive inheritance pattern seen in all previous FAM20A mutation-positive families and the potential for renal disease, further screening was carried out to look for a second pathogenic allele. Reverse transcriptase-PCR on cDNA was used to determine transcript levels. CNVseq was used to screen for genomic insertions and deletions. In one family, FAM20A cDNA screening revealed only a single mutated FAM20A allele with the wild-type allele not transcribed. In the second family, CNV detection by whole genome sequencing (CNVseq) revealed a heterozygous 54.7 kb duplication encompassing exons 1 to 4 of FAM20A. This study confirms the link between biallelic FAM20A mutations and the characteristic oral phenotype. It highlights for the first time examples of FAM20A mutations missed by the most commonly used mutation screening techniques. This information informed renal assessment and ongoing clinical care. PMID:26740946

  4. A systematic screening to identify de novo mutations causing sporadic early-onset Parkinson's disease.

    PubMed

    Kun-Rodrigues, Celia; Ganos, Christos; Guerreiro, Rita; Schneider, Susanne A; Schulte, Claudia; Lesage, Suzanne; Darwent, Lee; Holmans, Peter; Singleton, Andrew; Bhatia, Kailash; Bras, Jose

    2015-12-01

    Despite the many advances in our understanding of the genetic basis of Mendelian forms of Parkinson's disease (PD), a large number of early-onset cases still remain to be explained. Many of these cases, present with a form of disease that is identical to that underlined by genetic causes, but do not have mutations in any of the currently known disease-causing genes. Here, we hypothesized that de novo mutations may account for a proportion of these early-onset, sporadic cases. We performed exome sequencing in full parent-child trios where the proband presents with typical PD to unequivocally identify de novo mutations. This approach allows us to test all genes in the genome in an unbiased manner. We have identified and confirmed 20 coding de novo mutations in 21 trios. We have used publicly available population genetic data to compare variant frequencies and our independent in-house dataset of exome sequencing in PD (with over 1200 cases) to identify additional variants in the same genes. Of the genes identified to carry de novo mutations, PTEN, VAPB and ASNA1 are supported by various sources of data to be involved in PD. We show that these genes are reported to be within a protein-protein interaction network with PD genes and that they contain additional rare, case-specific, mutations in our independent cohort of PD cases. Our results support the involvement of these three genes in PD and suggest that testing for de novo mutations in sporadic disease may aid in the identification of novel disease-causing genes. PMID:26362251

  5. A systematic screening to identify de novo mutations causing sporadic early-onset Parkinson's disease

    PubMed Central

    Kun-Rodrigues, Celia; Ganos, Christos; Guerreiro, Rita; Schneider, Susanne A.; Schulte, Claudia; Lesage, Suzanne; Darwent, Lee; Holmans, Peter; Singleton, Andrew; Bhatia, Kailash; Bras, Jose

    2015-01-01

    Despite the many advances in our understanding of the genetic basis of Mendelian forms of Parkinson's disease (PD), a large number of early-onset cases still remain to be explained. Many of these cases, present with a form of disease that is identical to that underlined by genetic causes, but do not have mutations in any of the currently known disease-causing genes. Here, we hypothesized that de novo mutations may account for a proportion of these early-onset, sporadic cases. We performed exome sequencing in full parent–child trios where the proband presents with typical PD to unequivocally identify de novo mutations. This approach allows us to test all genes in the genome in an unbiased manner. We have identified and confirmed 20 coding de novo mutations in 21 trios. We have used publicly available population genetic data to compare variant frequencies and our independent in-house dataset of exome sequencing in PD (with over 1200 cases) to identify additional variants in the same genes. Of the genes identified to carry de novo mutations, PTEN, VAPB and ASNA1 are supported by various sources of data to be involved in PD. We show that these genes are reported to be within a protein–protein interaction network with PD genes and that they contain additional rare, case-specific, mutations in our independent cohort of PD cases. Our results support the involvement of these three genes in PD and suggest that testing for de novo mutations in sporadic disease may aid in the identification of novel disease-causing genes. PMID:26362251

  6. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma

    PubMed Central

    Kiel, Mark J.; Velusamy, Thirunavukkarasu; Betz, Bryan L.; Zhao, Lili; Weigelin, Helmut G.; Chiang, Mark Y.; Huebner-Chan, David R.; Bailey, Nathanael G.; Yang, David T.; Bhagat, Govind; Miranda, Roberto N.; Bahler, David W.; Medeiros, L. Jeffrey; Lim, Megan S.

    2012-01-01

    Splenic marginal zone lymphoma (SMZL), the most common primary lymphoma of spleen, is poorly understood at the genetic level. In this study, using whole-genome DNA sequencing (WGS) and confirmation by Sanger sequencing, we observed mutations identified in several genes not previously known to be recurrently altered in SMZL. In particular, we identified recurrent somatic gain-of-function mutations in NOTCH2, a gene encoding a protein required for marginal zone B cell development, in 25 of 99 (?25%) cases of SMZL and in 1 of 19 (?5%) cases of nonsplenic MZLs. These mutations clustered near the C-terminal proline/glutamate/serine/threonine (PEST)-rich domain, resulting in protein truncation or, rarely, were nonsynonymous substitutions affecting the extracellular heterodimerization domain (HD). NOTCH2 mutations were not present in other B cell lymphomas and leukemias, such as chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL; n = 15), mantle cell lymphoma (MCL; n = 15), low-grade follicular lymphoma (FL; n = 44), hairy cell leukemia (HCL; n = 15), and reactive lymphoid hyperplasia (n = 14). NOTCH2 mutations were associated with adverse clinical outcomes (relapse, histological transformation, and/or death) among SMZL patients (P = 0.002). These results suggest that NOTCH2 mutations play a role in the pathogenesis and progression of SMZL and are associated with a poor prognosis. PMID:22891276

  7. VIPoma with multiple endocrine neoplasia type 1 identified as an atypical gene mutation.

    PubMed

    Fujiya, Atsushi; Kato, Makoto; Shibata, Taiga; Sobajima, Hiroshi

    2015-01-01

    A 47-year-old man presented with persistent diarrhoea and hypokalaemia. CT revealed 4 pancreatic tumours that appeared to be VIPomas, because the patient had an elevated plasma vasoactive intestinal polypeptide level. MRI showed a low-intensity area in the pituitary suggestive of a pituitary tumour, and a parathyroid tumour was detected by ultrasonography and 99Tc-MIBI scintigraphy. Given these results, the patient was diagnosed with multiple endocrine neoplasia type 1 (MEN1) and scheduled for surgery. MEN1 is an autosomal dominant disorder associated with MEN1 mutations. Genetic testing indicated that the patient had a MEN1 gene mutation; his 2 sons had the same mutations. Most MEN1 tumours are benign, but some pancreatic and thymic tumours could become malignant. Without treatment, such tumours would result in earlier mortality. Despite its rarity, we should perform genetic testing for family members of patients with MEN1 to identify mutation carriers and improve the patients' prognosis. PMID:26564120

  8. A Novel Mutation of SMAD3 Identified in a Chinese Family with Aneurysms-Osteoarthritis Syndrome

    PubMed Central

    Zhang, Wenwen; Zhou, Min; Liu, Cheng; Liu, Chen; Qiao, Tong; Huang, Dian; Ran, Feng; Wang, Wei; Liu, Changjian; Liu, Zhao

    2015-01-01

    Aneurysms-osteoarthritis syndrome (AOS) is a recently delineated autosomal dominant disorder characterized by aneurysms, dissections, and tortuosity throughout the arterial tree in association with early onset osteoarthritis, mild craniofacial features, and skeletal and cutaneous anomalies. Previous studies have demonstrated that mutations in SMAD3, a key regulator of TGF-? signal transduction, contribute to AOS. Here, we investigated a family of three generations affected by AOS. A novel SMAD3 mutation, c.266G>A (p.C89Y), was identified and cosegregated with the affected individuals in this family. Our finding expands the mutation spectrum of SMAD3 gene and further strengthens the connection between the presence of aneurysms-osteoarthritis phenotype and SMAD3 mutations, which facilitates the understanding of the genotype-phenotype correlation of AOS. PMID:26221609

  9. Phenotypic Variability and Newly Identified Mutations of the IVD Gene in Japanese Patients with Isovaleric Acidemia.

    PubMed

    Sakamoto, Osamu; Arai-Ichinoi, Natsuko; Mitsubuchi, Hiroshi; Chinen, Yasutsugu; Haruna, Hidenori; Maruyama, Hidehiko; Sugawara, Hidenori; Kure, Shigeo

    2015-01-01

    Isovaleric acidemia (IVA) is an autosomal recessive inborn error affecting leucine metabolism. It is caused by a deficiency in isovaleryl-CoA dehydrogenase (IVD), a mitochondrial matrix enzyme that catalyzes the oxidation of isovaleryl-CoA to 3-methylcrotonyl-CoA. IVD is a FAD-containing enzyme, consisting of four identical subunits. Clinical features of IVA include poor feeding, vomiting, lethargy, developmental delay, metabolic acidosis, and a characteristic "sweaty foot" odor. IVA is one of the target disorders for newborn screening by tandem mass spectrometry (MS/MS). The human IVD gene is located on chromosome 15q. To date, over 50 disease-causing mutations have been reported worldwide. In this study, we searched for IVD mutations in five Japanese patients with IVA (neonatal type, two patients; chronic intermittent type, two patients; and mild biochemical type, one patient). The diagnosis of IVA was confirmed by urinary organic acid analysis using gas chromatography and mass spectrometry. All coding exons and the flanking introns in the IVD gene were amplified by PCR and were directly sequenced. We thus identified six hitherto unknown mutations (p.G94D, p.E116K, p.M167T, p.L243P, p.L246P, and c.696+1G>T) and four previously reported (p.R53P, p.R395C, p.Y403C, and p.E411K) pathogenic mutations. All patients were compound heterozygotes, and each mutation was identified in a single patient. Pathogenicity of newly identified mutations was validated using computational programs. Among them, the p.M167T is believed to influence FAD binding, as the position 167 is present in one of the FAD-binding sites. Our results have illustrated the heterogeneous mutation spectrum and clinical presentation of IVA in the Japanese patients. PMID:26018748

  10. Whole Exome Sequencing Identifies Mutations in Usher Syndrome Genes in Profoundly Deaf Tunisian Patients

    PubMed Central

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Lahbib, Saida; Bouyacoub, Yosra; Bechraoui, Rym; Marrakchi, Jihène; Hardelin, Jean-Pierre; Louha, Malek; Largueche, Leila; Ben Yahia, Salim; Kheirallah, Moncef; Elmatri, Leila; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss. PMID:25798947

  11. Whole exome sequencing identifies mutations in Usher syndrome genes in profoundly deaf Tunisian patients.

    PubMed

    Riahi, Zied; Bonnet, Crystel; Zainine, Rim; Lahbib, Saida; Bouyacoub, Yosra; Bechraoui, Rym; Marrakchi, Jihène; Hardelin, Jean-Pierre; Louha, Malek; Largueche, Leila; Ben Yahia, Salim; Kheirallah, Moncef; Elmatri, Leila; Besbes, Ghazi; Abdelhak, Sonia; Petit, Christine

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by combined deafness-blindness. It accounts for about 50% of all hereditary deafness blindness cases. Three clinical subtypes (USH1, USH2, and USH3) are described, of which USH1 is the most severe form, characterized by congenital profound deafness, constant vestibular dysfunction, and a prepubertal onset of retinitis pigmentosa. We performed whole exome sequencing in four unrelated Tunisian patients affected by apparently isolated, congenital profound deafness, with reportedly normal ocular fundus examination. Four biallelic mutations were identified in two USH1 genes: a splice acceptor site mutation, c.2283-1G>T, and a novel missense mutation, c.5434G>A (p.Glu1812Lys), in MYO7A, and two previously unreported mutations in USH1G, i.e. a frameshift mutation, c.1195_1196delAG (p.Leu399Alafs*24), and a nonsense mutation, c.52A>T (p.Lys18*). Another ophthalmological examination including optical coherence tomography actually showed the presence of retinitis pigmentosa in all the patients. Our findings provide evidence that USH is under-diagnosed in Tunisian deaf patients. Yet, early diagnosis of USH is of utmost importance because these patients should undergo cochlear implant surgery in early childhood, in anticipation of the visual loss. PMID:25798947

  12. Microfluidic screening and whole-genome sequencing identifies mutations associated with improved protein secretion by yeast.

    PubMed

    Huang, Mingtao; Bai, Yunpeng; Sjostrom, Staffan L; Hallström, Björn M; Liu, Zihe; Petranovic, Dina; Uhlén, Mathias; Joensson, Haakan N; Andersson-Svahn, Helene; Nielsen, Jens

    2015-08-25

    There is an increasing demand for biotech-based production of recombinant proteins for use as pharmaceuticals in the food and feed industry and in industrial applications. Yeast Saccharomyces cerevisiae is among preferred cell factories for recombinant protein production, and there is increasing interest in improving its protein secretion capacity. Due to the complexity of the secretory machinery in eukaryotic cells, it is difficult to apply rational engineering for construction of improved strains. Here we used high-throughput microfluidics for the screening of yeast libraries, generated by UV mutagenesis. Several screening and sorting rounds resulted in the selection of eight yeast clones with significantly improved secretion of recombinant ?-amylase. Efficient secretion was genetically stable in the selected clones. We performed whole-genome sequencing of the eight clones and identified 330 mutations in total. Gene ontology analysis of mutated genes revealed many biological processes, including some that have not been identified before in the context of protein secretion. Mutated genes identified in this study can be potentially used for reverse metabolic engineering, with the objective to construct efficient cell factories for protein secretion. The combined use of microfluidics screening and whole-genome sequencing to map the mutations associated with the improved phenotype can easily be adapted for other products and cell types to identify novel engineering targets, and this approach could broadly facilitate design of novel cell factories. PMID:26261321

  13. Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome.

    PubMed

    Martínez-Trillos, Alejandra; Pinyol, Magda; Navarro, Alba; Aymerich, Marta; Jares, Pedro; Juan, Manel; Rozman, María; Colomer, Dolors; Delgado, Julio; Giné, Eva; González-Díaz, Marcos; Hernández-Rivas, Jesús M; Colado, Enrique; Rayón, Consolación; Payer, Angel R; Terol, Maria José; Navarro, Blanca; Quesada, Victor; Puente, Xosé S; Rozman, Ciril; López-Otín, Carlos; Campo, Elías; López-Guillermo, Armando; Villamor, Neus

    2014-06-12

    Mutations in Toll-like receptor (TLR) and myeloid differentiation primary response 88 (MYD88) genes have been found in chronic lymphocytic leukemia (CLL) at low frequency. We analyzed the incidence, clinicobiological characteristics, and outcome of patients with TLR/MYD88 mutations in 587 CLL patients. Twenty-three patients (3.9%) had mutations, 19 in MYD88 (one with concurrent IRAK1 mutation), 2 TLR2 (one with concomitant TLR6 mutation), 1 IRAK1, and 1 TLR5. No mutations were found in IRAK2 and IRAK4. TLR/MYD88-mutated CLL overexpressed genes of the nuclear factor ?B pathway. Patients with TLR/MYD88 mutations were significantly younger (83% age ?50 years) than those with no mutations. TLR/MYD88 mutations were the most frequent in young patients. Patients with mutated TLR/MYD88 CLL had a higher frequency of mutated IGHV and low expression of CD38 and ZAP-70. Overall survival (OS) was better in TLR/MYD88-mutated than unmutated patients in the whole series (10-year OS, 100% vs 62%; P = .002), and in the subset of patients age ?50 years (100% vs 70%; P = .02). In addition, relative OS of TLR/MYD88-mutated patients was similar to that in the age- and gender-matched population. In summary, TLR/MYD88 mutations identify a population of young CLL patients with favorable outcome. PMID:24782504

  14. Screening of 38 genes identifies mutations in 62% of families with nonsyndromic deafness in Turkey.

    PubMed

    Duman, Duygu; Sirmaci, Asli; Cengiz, F Basak; Ozdag, Hilal; Tekin, Mustafa

    2011-01-01

    More than 60% of prelingual deafness is genetic in origin, and of these up to 95% are monogenic autosomal recessive traits. Causal mutations have been identified in 1 of 38 different genes in a subset of patients with nonsyndromic autosomal recessive deafness. In this study, we screened 49 unrelated Turkish families with at least three affected children born to consanguineous parents. Probands from all families were negative for mutations in the GJB2 gene, two large deletions in the GJB6 gene, and the 1555A>G substitution in the mitochondrial DNA MTRNR1 gene. Each family was subsequently screened via autozygosity mapping with genomewide single-nucleotide polymorphism arrays. If the phenotype cosegregated with a haplotype flanking one of the 38 genes, mutation analysis of the gene was performed. We identified 22 different autozygous mutations in 11 genes, other than GJB2, in 26 of 49 families, which overall explains deafness in 62% of families. Relative frequencies of genes following GJB2 were MYO15A (9.9%), TMIE (6.6%), TMC1 (6.6%), OTOF (5.0%), CDH23 (3.3%), MYO7A (3.3%), SLC26A4 (1.7%), PCDH15 (1.7%), LRTOMT (1.7%), SERPINB6 (1.7%), and TMPRSS3 (1.7%). Nineteen of 22 mutations are reported for the first time in this study. Unknown rare genes for deafness appear to be present in the remaining 23 families. PMID:21117948

  15. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets

    PubMed Central

    Alexandrov, Ludmil B; Calderaro, Julien; Rebouissou, Sandra; Couchy, Gabrielle; Meiller, Clément; Shinde, Jayendra; Soysouvanh, Frederic; Calatayud, Anna-Line; Pinyol, Roser; Pelletier, Laura; Balabaud, Charles; Laurent, Alexis; Blanc, Jean-Frederic; Mazzaferro, Vincenzo; Calvo, Fabien; Villanueva, Augusto; Nault, Jean-Charles; Bioulac-Sage, Paulette; Stratton, Michael R; Llovet, Josep M; Zucman-Rossi, Jessica

    2015-01-01

    Genomic analyses promise to improve tumor characterization in order to optimize personalized treatment for patients with hepatocellular carcinoma (HCC). Exome sequencing analysis of 243 liver tumors revealed mutational signatures associated with specific risk factors, mainly combined alcohol/tobacco consumption, and aflatoxin B1. We identified 161 putative driver genes associated with 11 recurrent pathways. Associations of mutations defined 3 groups of genes related to risk factors and centered on CTNNB1 (alcohol), TP53 (HBV), and AXIN1. Analyses according to tumor stage progression revealed TERT promoter mutation as an early event whereas FGF3, FGF4, FGF19/CCND1 amplification, TP53 and CDKN2A alterations, appeared at more advanced stages in aggressive tumors. In 28% of the tumors we identified genetic alterations potentially targetable by FDA-approved drugs. In conclusion, we identified risk factor-specific mutational signatures and defined the extensive landscape of altered genes and pathways in HCC which will be useful to design clinical trials for targeted therapy. PMID:25822088

  16. Novel Carboxypeptidase A6 (CPA6) Mutations Identified in Patients with Juvenile Myoclonic and Generalized Epilepsy

    PubMed Central

    Sapio, Matthew R.; Vessaz, Monique; Thomas, Pierre; Genton, Pierre; Fricker, Lloyd D.; Salzmann, Annick

    2015-01-01

    Carboxypeptidase A6 (CPA6) is a peptidase that removes C-terminal hydrophobic amino acids from peptides and proteins. The CPA6 gene is expressed in the brains of humans and animals, with high levels of expression during development. It is translated with a prodomain (as proCPA6), which is removed before secretion. The active form of CPA6 binds tightly to the extracellular matrix (ECM) where it is thought to function in the processing of peptides and proteins. Mutations in the CPA6 gene have been identified in patients with temporal lobe epilepsy and febrile seizures. In the present study, we screened for CPA6 mutations in patients with juvenile myoclonic epilepsy and identified two novel missense mutations: Arg36His and Asn271Ser. Patients harboring these mutations also presented with generalized epilepsy. Neither of the novel mutations was found in a control population. Asn271 is highly conserved in CPA6 and other related metallocarboxypeptidases. Arg36 is present in the prodomain and is not highly conserved. To assess structural consequences of the amino acid substitutions, both mutants were modeled within the predicted structure of the enzyme. To examine the effects of these mutations on enzyme expression and activity, we expressed the mutated enzymes in human embryonic kidney 293T cells. These analyses revealed that Asn271Ser abolished enzymatic activity, while Arg36His led to a ~50% reduction in CPA6 levels in the ECM. Pulse-chase using radio-labeled amino acids was performed to follow secretion. Newly-synthesized CPA6 appeared in the ECM with peak levels between 2-8 hours. There was no major difference in time course between wild-type and mutant forms, although the amount of radiolabeled CPA6 in the ECM was lower for the mutants. Our experiments demonstrate that these mutations in CPA6 are deleterious and provide further evidence for the involvement of CPA6 mutations in the predisposition for several types of epilepsy. PMID:25875328

  17. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  18. New de novo Genetic Mutations in Schizophrenia Identified http://scicasts.com/bio/2039-disease-processes/4882-new-de-novo-genetic-mutations-in-schizophrenia-identified[11/12/2012 12:43:09 PM

    E-print Network

    Healthcare Tech Green Tech Trending Stories Genetic Engineering Scientists Remove Extra Copy of Chromosome 21New de novo Genetic Mutations in Schizophrenia Identified http://scicasts.com/bio/2039-disease-processes/4882-new-de-novo-genetic-mutations-in-schizophrenia-identified[11/12/2012 12:43:09 PM] Image: Dr. Bin

  19. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1.

    PubMed

    Carvill, Gemma L; Heavin, Sinéad B; Yendle, Simone C; McMahon, Jacinta M; O'Roak, Brian J; Cook, Joseph; Khan, Adiba; Dorschner, Michael O; Weaver, Molly; Calvert, Sophie; Malone, Stephen; Wallace, Geoffrey; Stanley, Thorsten; Bye, Ann M E; Bleasel, Andrew; Howell, Katherine B; Kivity, Sara; Mackay, Mark T; Rodriguez-Casero, Victoria; Webster, Richard; Korczyn, Amos; Afawi, Zaid; Zelnick, Nathanel; Lerman-Sagie, Tally; Lev, Dorit; Møller, Rikke S; Gill, Deepak; Andrade, Danielle M; Freeman, Jeremy L; Sadleir, Lynette G; Shendure, Jay; Berkovic, Samuel F; Scheffer, Ingrid E; Mefford, Heather C

    2013-07-01

    Epileptic encephalopathies are a devastating group of epilepsies with poor prognosis, of which the majority are of unknown etiology. We perform targeted massively parallel resequencing of 19 known and 46 candidate genes for epileptic encephalopathy in 500 affected individuals (cases) to identify new genes involved and to investigate the phenotypic spectrum associated with mutations in known genes. Overall, we identified pathogenic mutations in 10% of our cohort. Six of the 46 candidate genes had 1 or more pathogenic variants, collectively accounting for 3% of our cohort. We show that de novo CHD2 and SYNGAP1 mutations are new causes of epileptic encephalopathies, accounting for 1.2% and 1% of cases, respectively. We also expand the phenotypic spectra explained by SCN1A, SCN2A and SCN8A mutations. To our knowledge, this is the largest cohort of cases with epileptic encephalopathies to undergo targeted resequencing. Implementation of this rapid and efficient method will change diagnosis and understanding of the molecular etiologies of these disorders. PMID:23708187

  20. TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor

    Cancer.gov

    Published on Office of Cancer Genomics (https://ocg.cancer.gov) Home > TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing

  1. TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor

    Cancer.gov

    Published on Office of Cancer Genomics (http://ocg.cancer.gov) Home > TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing

  2. C9ORF72 repeat expansions in cases with previously identified pathogenic mutations

    PubMed Central

    van Blitterswijk, Marka; Baker, Matthew C.; DeJesus-Hernandez, Mariely; Ghidoni, Roberta; Benussi, Luisa; Finger, Elizabeth; Hsiung, Ging-Yuek R.; Kelley, Brendan J.; Murray, Melissa E.; Rutherford, Nicola J.; Brown, Patricia E.; Ravenscroft, Thomas; Mullen, Bianca; Ash, Peter E.A.; Bieniek, Kevin F.; Hatanpaa, Kimmo J.; Karydas, Anna; Wood, Elisabeth McCarty; Coppola, Giovanni; Bigio, Eileen H.; Lippa, Carol; Strong, Michael J.; Beach, Thomas G.; Knopman, David S.; Huey, Edward D.; Mesulam, Marsel; Bird, Thomas; White, Charles L.; Kertesz, Andrew; Geschwind, Dan H.; Van Deerlin, Vivianna M.; Petersen, Ronald C.; Binetti, Giuliano; Miller, Bruce L.; Petrucelli, Leonard; Wszolek, Zbigniew K.; Boylan, Kevin B.; Graff-Radford, Neill R.; Mackenzie, Ian R.; Boeve, Bradley F.; Dickson, Dennis W.

    2013-01-01

    Objective: To identify potential genetic modifiers contributing to the phenotypic variability that is detected in patients with repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), we investigated the frequency of these expansions in a cohort of 334 subjects previously found to carry mutations in genes known to be associated with a spectrum of neurodegenerative diseases. Methods: A 2-step protocol, with a fluorescent PCR and a repeat-primed PCR, was used to determine the presence of hexanucleotide expansions in C9ORF72. For one double mutant, we performed Southern blots to assess expansion sizes, and immunohistochemistry to characterize neuropathology. Results: We detected C9ORF72 repeat expansions in 4 of 334 subjects (1.2% [or 1.8% of 217 families]). All these subjects had behavioral phenotypes and also harbored well-known pathogenic mutations in either progranulin (GRN: p.C466LfsX46, p.R493X, p.C31LfsX35) or microtubule-associated protein tau (MAPT: p.P301L). Southern blotting of one double mutant with a p.C466LfsX46 GRN mutation demonstrated a long repeat expansion in brain (>3,000 repeats), and immunohistochemistry showed mixed neuropathology with characteristics of both C9ORF72 expansions and GRN mutations. Conclusions: Our findings indicate that co-occurrence of 2 evidently pathogenic mutations could contribute to the pleiotropy that is detected in patients with C9ORF72 repeat expansions. These findings suggest that patients with known mutations should not be excluded from further studies, and that genetic counselors should be aware of this phenomenon when advising patients and their family members. PMID:24027057

  3. Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing

    PubMed Central

    Tyburczy, Magdalena E.; Dies, Kira A.; Glass, Jennifer; Camposano, Susana; Chekaluk, Yvonne; Thorner, Aaron R.; Lin, Ling; Krueger, Darcy; Franz, David N.; Thiele, Elizabeth A.; Sahin, Mustafa; Kwiatkowski, David J.

    2015-01-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant tumor suppressor gene syndrome due to germline mutations in either TSC1 or TSC2. 10–15% of TSC individuals have no mutation identified (NMI) after thorough conventional molecular diagnostic assessment. 53 TSC subjects who were NMI were studied using next generation sequencing to search for mutations in these genes. Blood/saliva DNA including parental samples were available from all subjects, and skin tumor biopsy DNA was available from six subjects. We identified mutations in 45 of 53 subjects (85%). Mosaicism was observed in the majority (26 of 45, 58%), and intronic mutations were also unusually common, seen in 18 of 45 subjects (40%). Seventeen (38%) mutations were seen at an allele frequency < 5%, five at an allele frequency < 1%, and two were identified in skin tumor biopsies only, and were not seen at appreciable frequency in blood or saliva DNA. These findings illuminate the extent of mosaicism in TSC, indicate the importance of full gene coverage and next generation sequencing for mutation detection, show that analysis of TSC-related tumors can increase the mutation detection rate, indicate that it is not likely that a third TSC gene exists, and enable provision of genetic counseling to the substantial population of TSC individuals who are currently NMI. PMID:26540169

  4. Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing.

    PubMed

    Tyburczy, Magdalena E; Dies, Kira A; Glass, Jennifer; Camposano, Susana; Chekaluk, Yvonne; Thorner, Aaron R; Lin, Ling; Krueger, Darcy; Franz, David N; Thiele, Elizabeth A; Sahin, Mustafa; Kwiatkowski, David J

    2015-11-01

    Tuberous sclerosis complex (TSC) is an autosomal dominant tumor suppressor gene syndrome due to germline mutations in either TSC1 or TSC2. 10-15% of TSC individuals have no mutation identified (NMI) after thorough conventional molecular diagnostic assessment. 53 TSC subjects who were NMI were studied using next generation sequencing to search for mutations in these genes. Blood/saliva DNA including parental samples were available from all subjects, and skin tumor biopsy DNA was available from six subjects. We identified mutations in 45 of 53 subjects (85%). Mosaicism was observed in the majority (26 of 45, 58%), and intronic mutations were also unusually common, seen in 18 of 45 subjects (40%). Seventeen (38%) mutations were seen at an allele frequency < 5%, five at an allele frequency < 1%, and two were identified in skin tumor biopsies only, and were not seen at appreciable frequency in blood or saliva DNA. These findings illuminate the extent of mosaicism in TSC, indicate the importance of full gene coverage and next generation sequencing for mutation detection, show that analysis of TSC-related tumors can increase the mutation detection rate, indicate that it is not likely that a third TSC gene exists, and enable provision of genetic counseling to the substantial population of TSC individuals who are currently NMI. PMID:26540169

  5. Phenotypic population screen identifies a new mutation in bovine DGAT1 responsible for unsaturated milk fat

    PubMed Central

    Lehnert, Klaus; Ward, Hamish; Berry, Sarah D.; Ankersmit-Udy, Alex; Burrett, Alayna; Beattie, Elizabeth M.; Thomas, Natalie L.; Harris, Bevin; Ford, Christine A.; Browning, Sharon R.; Rawson, Pisana; Verkerk, Gwyneth A.; van der Does, Yvonne; Adams, Linda F.; Davis, Stephen R.; Jordan, T. William; MacGibbon, Alastair K. H.; Spelman, Richard J.; Snell, Russell G.

    2015-01-01

    Selective breeding has strongly reduced the genetic diversity in livestock species, and contemporary breeding practices exclude potentially beneficial rare genetic variation from the future gene pool. Here we test whether important traits arising by new mutations can be identified and rescued in highly selected populations. We screened milks from 2.5 million cows to identify an exceptional individual which produced milk with reduced saturated fat content, and improved unsaturated and omega-3 fatty acid concentrations. The milk traits were transmitted dominantly to her offspring, and genetic mapping and genome sequencing revealed a new mutation in a previously unknown splice enhancer of the DGAT1 gene. Homozygous carriers show features of human diarrheal disorders, and may be useful for the development of therapeutic strategies. Our study demonstrates that high-throughput phenotypic screening can uncover rich genetic diversity even in inbred populations, and introduces a novel strategy to develop novel milks with improved nutritional properties. PMID:25719731

  6. Whole-exome sequencing identifies novel LEPR mutations in individuals with severe early onset obesity

    PubMed Central

    Gill, Richard; Cheung, Yee Him; Shen, Yufeng; Lanzano, Patricia; Mirza, Nazrat M.; Ten, Svetlana; Maclaren, Noel K.; Motaghedi, Roja; Han, Joan C.; Yanovski, Jack A.; Leibel, Rudolph L.; Chung, Wendy K.

    2013-01-01

    Objective Obesity is a major public health problem that increases risk for a broad spectrum of co-morbid conditions. Despite evidence for a strong genetic contribution to susceptibility to obesity, previous efforts to discover the relevant genes using positional cloning have failed to account for most of the apparent genetic risk variance. Design and Methods Deploying a strategy combining analysis of exome sequencing data in extremely obese members of four consanguineous families with segregation analysis, we screened for causal genetic variants. Filter-based analysis and homozygosity mapping were used to identify and prioritize putative functional variants. Results We identified two novel frameshift mutations in the Leptin Receptor (LEPR) in two of the families. Conclusions These results provide proof-of-principle that whole-exome sequencing of families segregating for extreme obesity can identify causal pathogenic mutations. The methods described here can be extended to additional families segregating for extreme obesity and should enable the identification of mutations in novel genes that predispose to obesity. PMID:23616257

  7. Genetic testing for sporadic hearing loss using targeted massively parallel sequencing identifies 10 novel mutations.

    PubMed

    Gu, X; Guo, L; Ji, H; Sun, S; Chai, R; Wang, L; Li, H

    2015-06-01

    The genetic heterogeneity of non-syndromic hearing loss (NSHL) has hampered the identification of its pathogenic mutations. Several recent studies applied targeted genome enrichment (TGE) and massively parallel sequencing (MPS) to simultaneously screen a large set of known hearing loss (HL) genes. However, most of these studies were focused on familial cases. To evaluate the effectiveness of TGE and MPS on screening sporadic NSHL patients, we recruited 63 unrelated sporadic NSHL probands, who had various levels of HL and were excluded for mutations in GJB2, MT-RNR1, and SLC26A4 genes. TGE and MPS were performed on 131 known HL genes using the Human Deafness Panel oto-DA3 (Otogenetics Corporation., Norcross, GA). We identified 14 pathogenic variants in STRC, CATSPER2, USH2A, TRIOBP, MYO15A, GPR98, and TMPRSS3 genes in eight patients (diagnostic rate = 12.7%). Among these variants, 10 were novel compound heterozygous mutations. The identification of pathogenic mutations could predict the progression of HL, and guide diagnosis and treatment of the disease. PMID:24853665

  8. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma.

    PubMed

    Jiang, Lu; Gu, Zhao-Hui; Yan, Zi-Xun; Zhao, Xia; Xie, Yin-Yin; Zhang, Zi-Guan; Pan, Chun-Ming; Hu, Yuan; Cai, Chang-Ping; Dong, Ying; Huang, Jin-Yan; Wang, Li; Shen, Yang; Meng, Guoyu; Zhou, Jian-Feng; Hu, Jian-Da; Wang, Jin-Fen; Liu, Yuan-Hua; Yang, Lin-Hua; Zhang, Feng; Wang, Jian-Min; Wang, Zhao; Peng, Zhi-Gang; Chen, Fang-Yuan; Sun, Zi-Min; Ding, Hao; Shi, Ju-Mei; Hou, Jian; Yan, Jin-Song; Shi, Jing-Yi; Xu, Lan; Li, Yang; Lu, Jing; Zheng, Zhong; Xue, Wen; Zhao, Wei-Li; Chen, Zhu; Chen, Sai-Juan

    2015-09-01

    Natural killer/T-cell lymphoma (NKTCL) is a malignant proliferation of CD56(+) and cytoCD3(+) lymphocytes with aggressive clinical course, which is prevalent in Asian and South American populations. The molecular pathogenesis of NKTCL has largely remained elusive. We identified somatic gene mutations in 25 people with NKTCL by whole-exome sequencing and confirmed them in an extended validation group of 80 people by targeted sequencing. Recurrent mutations were most frequently located in the RNA helicase gene DDX3X (21/105 subjects, 20.0%), tumor suppressors (TP53 and MGA), JAK-STAT-pathway molecules (STAT3 and STAT5B) and epigenetic modifiers (MLL2, ARID1A, EP300 and ASXL3). As compared to wild-type protein, DDX3X mutants exhibited decreased RNA-unwinding activity, loss of suppressive effects on cell-cycle progression in NK cells and transcriptional activation of NF-?B and MAPK pathways. Clinically, patients with DDX3X mutations presented a poor prognosis. Our work thus contributes to the understanding of the disease mechanism of NKTCL. PMID:26192917

  9. Perturbation of the mutated EGFR interactome identifies vulnerabilities and resistance mechanisms

    PubMed Central

    Li, Jiannong; Bennett, Keiryn; Stukalov, Alexey; Fang, Bin; Zhang, Guolin; Yoshida, Takeshi; Okamoto, Isamu; Kim, Jae-Young; Song, Lanxi; Bai, Yun; Qian, Xiaoning; Rawal, Bhupendra; Schell, Michael; Grebien, Florian; Winter, Georg; Rix, Uwe; Eschrich, Steven; Colinge, Jacques; Koomen, John; Superti-Furga, Giulio; Haura, Eric B

    2013-01-01

    We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein–protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems-level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14-protein core network critical to the viability of multiple EGFR-mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR-mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance. PMID:24189400

  10. Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome.

    PubMed

    Roosing, Susanne; Hofree, Matan; Kim, Sehyun; Scott, Eric; Copeland, Brett; Romani, Marta; Silhavy, Jennifer L; Rosti, Rasim O; Schroth, Jana; Mazza, Tommaso; Miccinilli, Elide; Zaki, Maha S; Swoboda, Kathryn J; Milisa-Drautz, Joanne; Dobyns, William B; Mikati, Mohamed A; ?ncecik, Faruk; Azam, Matloob; Borgatti, Renato; Romaniello, Romina; Boustany, Rose-Mary; Clericuzio, Carol L; D'Arrigo, Stefano; Strømme, Petter; Boltshauser, Eugen; Stanzial, Franco; Mirabelli-Badenier, Marisol; Moroni, Isabella; Bertini, Enrico; Emma, Francesco; Steinlin, Maja; Hildebrandt, Friedhelm; Johnson, Colin A; Freilinger, Michael; Vaux, Keith K; Gabriel, Stacey B; Aza-Blanc, Pedro; Heynen-Genel, Susanne; Ideker, Trey; Dynlacht, Brian D; Lee, Ji Eun; Valente, Enza Maria; Kim, Joon; Gleeson, Joseph G

    2015-01-01

    Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome-wide small interfering RNA (siRNA) screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised-learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and Sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies. PMID:26026149

  11. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome.

    PubMed

    Villamor, N; Conde, L; Martínez-Trillos, A; Cazorla, M; Navarro, A; Beà, S; López, C; Colomer, D; Pinyol, M; Aymerich, M; Rozman, M; Abrisqueta, P; Baumann, T; Delgado, J; Giné, E; González-Díaz, M; Hernández, J M; Colado, E; Payer, A R; Rayon, C; Navarro, B; José Terol, M; Bosch, F; Quesada, V; Puente, X S; López-Otín, C; Jares, P; Pereira, A; Campo, E; López-Guillermo, A

    2013-04-01

    NOTCH1 has been found recurrently mutated in a subset of patients with chronic lymphocytic leukemia (CLL). To analyze biological features and clinical impact of NOTCH1 mutations in CLL, we sequenced this gene in 565 patients. NOTCH1 mutations, found in 63 patients (11%), were associated with unmutated IGHV, high expression of CD38 and ZAP-70, trisomy 12, advanced stage and elevated lactate dehydrogenase. Sequential analysis in 200 patients demonstrated acquisition of mutation in one case (0.5%) and disappearance after treatment in two. Binet A and B patients with NOTCH1-mutated had a shorter time to treatment. NOTCH1-mutated patients were more frequently refractory to therapy and showed shorter progression-free and overall survival after complete remission. Overall survival was shorter in NOTCH1-mutated patients, although not independently from IGHV. NOTCH1 mutation increased the risk of transformation to diffuse large B-cell lymphoma independently from IGHV, with this being validated in resampling tests of replicability. In summary, NOTCH1 mutational status, that was rarely acquired during the course of the disease, identify a genetic subgroup with high risk of transformation and poor outcome. This recently identified genetic subgroup of CLL patients deserves prospective studies to define their best management. PMID:23295735

  12. Mutational analysis of the Notch2 negative regulatory region identifies key structural elements for mechanical stability

    PubMed Central

    Stephenson, Natalie L.; Avis, Johanna M.

    2015-01-01

    The Notch signalling pathway is fundamental to cell differentiation in developing and self-renewing tissues. Notch is activated upon ligand-induced conformational change of the Notch negative regulatory region (NRR), unmasking a key proteolytic site (S2) and facilitating downstream events. The favoured model requires endocytosis of a tightly bound ligand to transmit force to the NRR region, sufficient to cause a structural change that exposes the S2 site. We have previously shown, using atomic force microscopy and molecular dynamics simulations, that application of force to the N-terminus of the Notch2 NRR facilitates metalloprotease cleavage at an early stage in the unfolding process. Here, mutations are made within the heterodimerization (HD) domain of the NRR that are known to cause constitutive activation of Notch1 whilst having no effect on the chemical stability of Notch2. Comparison of the mechanical stability and simulated forced unfolding of recombinant Notch2 NRR proteins demonstrates a reduced stability following mutation and identifies two critical structural elements of the NRR in its response to force – the linker region between Lin12-Notch repeats LNRA and LNRB and the ?3 helix within the HD domain – both of which mask the S2 cleavage site prior to Notch activation. In two mutated proteins, the LNRC:HD domain interaction is also reduced in stability. The observed changes to mechanical stability following these HD domain mutations highlight key regions of the Notch2 NRR that are important for mechanical, but not chemical, stability. This research could also help determine the fundamental differences in the NRRs of Notch1 and Notch2. PMID:26288744

  13. Exome sequencing identifies a DNAJB6 mutation in a family with dominantly-inherited limb-girdle muscular dystrophy.

    PubMed

    Couthouis, Julien; Raphael, Alya R; Siskind, Carly; Findlay, Andrew R; Buenrostro, Jason D; Greenleaf, William J; Vogel, Hannes; Day, John W; Flanigan, Kevin M; Gitler, Aaron D

    2014-05-01

    Limb-girdle muscular dystrophy primarily affects the muscles of the hips and shoulders (the "limb-girdle" muscles), although it is a heterogeneous disorder that can present with varying symptoms. There is currently no cure. We sought to identify the genetic basis of limb-girdle muscular dystrophy type 1 in an American family of Northern European descent using exome sequencing. Exome sequencing was performed on DNA samples from two affected siblings and one unaffected sibling and resulted in the identification of eleven candidate mutations that co-segregated with the disease. Notably, this list included a previously reported mutation in DNAJB6, p.Phe89Ile, which was recently identified as a cause of limb-girdle muscular dystrophy type 1D. Additional family members were Sanger sequenced and the mutation in DNAJB6 was only found in affected individuals. Subsequent haplotype analysis indicated that this DNAJB6 p.Phe89Ile mutation likely arose independently of the previously reported mutation. Since other published mutations are located close by in the G/F domain of DNAJB6, this suggests that the area may represent a mutational hotspot. Exome sequencing provided an unbiased and effective method for identifying the genetic etiology of limb-girdle muscular dystrophy type 1 in a previously genetically uncharacterized family. This work further confirms the causative role of DNAJB6 mutations in limb-girdle muscular dystrophy type 1D. PMID:24594375

  14. Phenotypes of Recessive Pediatric Cataract in a Cohort of Children with Identified Homozygous Gene Mutations (An American Ophthalmological Society Thesis)

    PubMed Central

    Khan, Arif O.; Aldahmesh, Mohammed A.; Alkuraya, Fowzan S.

    2015-01-01

    Purpose: To assess for phenotype-genotype correlations in families with recessive pediatric cataract and identified gene mutations. Methods: Retrospective review (2004 through 2013) of 26 Saudi Arabian apparently nonsyndromic pediatric cataract families referred to one of the authors (A.O.K.) and for which recessive gene mutations were identified. Results: Fifteen different homozygous recessive gene mutations were identified in the 26 consanguineous families; two genes and five families are novel to this study. Ten families had a founder CRYBB1 deletion (all with bilateral central pulverulent cataract), two had the same missense mutation in CRYAB (both with bilateral juvenile cataract with marked variable expressivity), and two had different mutations in FYCO1 (both with bilateral posterior capsular abnormality). The remaining 12 families each had mutations in 12 different genes (CRYAA, CRYBA1, AKR1E2, AGK, BFSP2, CYP27A1, CYP51A1, EPHA2, GCNT2, LONP1, RNLS, WDR87) with unique phenotypes noted for CYP27A1 (bilateral juvenile fleck with anterior and/or posterior capsular cataract and later cerebrotendinous xanthomatosis), EPHA2 (bilateral anterior persistent fetal vasculature), and BFSP2 (bilateral flecklike with cloudy cortex). Potential carrier signs were documented for several families. Conclusions: In this recessive pediatric cataract case series most identified genes are noncrystallin. Recessive pediatric cataract phenotypes are generally nonspecific, but some notable phenotypes are distinct and associated with specific gene mutations. Marked variable expressivity can occur from a recessive missense CRYAB mutation. Genetic analysis of apparently isolated pediatric cataract can sometimes uncover mutations in a syndromic gene. Some gene mutations seem to be associated with apparent heterozygous carrier signs.

  15. A novel mouse model identifies cooperating mutations and therapeutic targets critical for chronic myeloid leukemia progression.

    PubMed

    Giotopoulos, George; van der Weyden, Louise; Osaki, Hikari; Rust, Alistair G; Gallipoli, Paolo; Meduri, Eshwar; Horton, Sarah J; Chan, Wai-In; Foster, Donna; Prinjha, Rab K; Pimanda, John E; Tenen, Daniel G; Vassiliou, George S; Koschmieder, Steffen; Adams, David J; Huntly, Brian J P

    2015-09-21

    The introduction of highly selective ABL-tyrosine kinase inhibitors (TKIs) has revolutionized therapy for chronic myeloid leukemia (CML). However, TKIs are only efficacious in the chronic phase of the disease and effective therapies for TKI-refractory CML, or after progression to blast crisis (BC), are lacking. Whereas the chronic phase of CML is dependent on BCR-ABL, additional mutations are required for progression to BC. However, the identity of these mutations and the pathways they affect are poorly understood, hampering our ability to identify therapeutic targets and improve outcomes. Here, we describe a novel mouse model that allows identification of mechanisms of BC progression in an unbiased and tractable manner, using transposon-based insertional mutagenesis on the background of chronic phase CML. Our BC model is the first to faithfully recapitulate the phenotype, cellular and molecular biology of human CML progression. We report a heterogeneous and unique pattern of insertions identifying known and novel candidate genes and demonstrate that these pathways drive disease progression and provide potential targets for novel therapeutic strategies. Our model greatly informs the biology of CML progression and provides a potent resource for the development of candidate therapies to improve the dismal outcomes in this highly aggressive disease. PMID:26304963

  16. Exome Sequencing Identifies a Novel MYH7 p.G407C Mutation Responsible for Familial Hypertrophic Cardiomyopathy

    PubMed Central

    Guo, Qianqian; Xu, Yuejuan; Wang, Xike; Guo, Ying; Xu, Rang

    2014-01-01

    Hypertrophic cardiomyopathy (HCM), characterized by myocardial hypertrophy, is the most common cause of sudden cardiac arrest in young individuals. More than 270 mutations have been found to be responsible for familial HCM to date; mutations in MYH7, which encodes the ?-myosin heavy chain (?-MHC) and MYBPC3, which encodes the myosin binding protein C, are seen most often. This study aimed to screen a pathogenic mutation causing HCM in a large family and assess its possible impact on the function of the specific protein. Exome sequencing was applied in the proband for searching a novel mutation; segments bearing the specific mutation were analyzed by polymerase chain reaction and direct sequencing. A novel p.G407C mutation in the ?-MHC gene (MYH7) was identified to be responsible for familial HCM in this family. The mutation may cause damage to the second structure of the protein despite the fact that patients bearing the mutation may have a relatively benign prognosis in this family. The clinical details of the p.G407C mutation are described for the first time in this study. Our report shows a good genotype–phenotype consistency and makes it possible for genetic counseling in this family. PMID:24963656

  17. Targeted next-generation sequencing of cancer genes identified frequent TP53 and ATRX mutations in leiomyosarcoma.

    PubMed

    Yang, Ching-Yao; Liau, Jau-Yu; Huang, Wei-Ju; Chang, Yu-Ting; Chang, Ming-Chu; Lee, Jen-Chieh; Tsai, Jia-Huei; Su, Yi-Ning; Hung, Chia-Cheng; Jeng, Yung-Ming

    2015-01-01

    Leiomyosarcoma is an aggressive soft tissue sarcoma with poor patient survival. The genetic changes of leiomyosarcoma remain to be discovered. In this study, we analyzed the genetic changes of 44 cancer-related genes by using next-generation sequencing in 54 leiomyosarcomas. We identified TP53 mutations in 19 of the 54 tumors (35%) and ATRX mutations in 9 of the 54 tumors (17%). The TP53-mutated leiomyosarcomas were limited to female patients (P = 0.006). All but 2 of the TP53-mutated leiomyosarcomas were located in the uterus (n = 11) or retroperitoneum (n = 6). The ATRX mutations were associated with poorly differentiated leiomyosarcomas (P = 0.028) and the presence of tumor necrosis (P = 0.015). Kaplan-Meier survival analysis showed that patients with ATRX-mutated leiomyosarcomas had worse overall survival than did patients with ATRX-wild-type leiomyosarcomas. All of the ATRX-mutated leiomyosarcomas showed the alternative lengthening of telomere phenotype. The ATRX mutations did not correlate with ATRX protein expression, as detected using immunohistochemistry. In conclusion, we identified loss of function of the p53 and ATRX pathways being the main mechanisms for leiomyosarcomas. The molecular mechanisms may provide new opportunities to treat these aggressive neoplasms. PMID:26692951

  18. Targeted next-generation sequencing of cancer genes identified frequent TP53 and ATRX mutations in leiomyosarcoma

    PubMed Central

    Yang, Ching-Yao; Liau, Jau-Yu; Huang, Wei-Ju; Chang, Yu-Ting; Chang, Ming-Chu; Lee, Jen-Chieh; Tsai, Jia-Huei; Su, Yi-Ning; Hung, Chia-Cheng; Jeng, Yung-Ming

    2015-01-01

    Leiomyosarcoma is an aggressive soft tissue sarcoma with poor patient survival. The genetic changes of leiomyosarcoma remain to be discovered. In this study, we analyzed the genetic changes of 44 cancer-related genes by using next-generation sequencing in 54 leiomyosarcomas. We identified TP53 mutations in 19 of the 54 tumors (35%) and ATRX mutations in 9 of the 54 tumors (17%). The TP53-mutated leiomyosarcomas were limited to female patients (P = 0.006). All but 2 of the TP53-mutated leiomyosarcomas were located in the uterus (n = 11) or retroperitoneum (n = 6). The ATRX mutations were associated with poorly differentiated leiomyosarcomas (P = 0.028) and the presence of tumor necrosis (P = 0.015). Kaplan-Meier survival analysis showed that patients with ATRX-mutated leiomyosarcomas had worse overall survival than did patients with ATRX-wild-type leiomyosarcomas. All of the ATRX-mutated leiomyosarcomas showed the alternative lengthening of telomere phenotype. The ATRX mutations did not correlate with ATRX protein expression, as detected using immunohistochemistry. In conclusion, we identified loss of function of the p53 and ATRX pathways being the main mechanisms for leiomyosarcomas. The molecular mechanisms may provide new opportunities to treat these aggressive neoplasms. PMID:26692951

  19. Exploring preferred amino acid mutations in cancer genes: Applications to identify potential drug targets.

    PubMed

    Anoosha, P; Sakthivel, R; Michael Gromiha, M

    2016-02-01

    Somatic mutations developed with missense, silent, insertions and deletions have varying effects on the resulting protein and are one of the important reasons for cancer development. In this study, we have systematically analysed the effect of these mutations at protein level in 41 different cancer types from COSMIC database on different perspectives: (i) Preference of residues at the mutant positions, (ii) probability of substitutions, (iii) influence of neighbouring residues in driver and passenger mutations, (iv) distribution of driver and passenger mutations around hotspot site in five typical genes and (v) distribution of silent and missense substitutions. We observed that R?H substitution is dominant in drivers followed by R?Q and R?C whereas E?K has the highest preference in passenger mutations. A set of 17 mutations including R?Y, W?A and V?R are specific to driver mutations and 31 preferred substitutions are observed only in passenger mutations. These frequencies of driver mutations vary across different cancer types and are selective to specific tissues. Further, driver missense mutations are mainly surrounded with silent driver mutations whereas the passenger missense mutations are surrounded with silent passenger mutations. This study reveals the variation of mutations at protein level in different cancer types and their preferences in cancer genes and provides new insights for understanding cancer mutations and drug development. PMID:26581171

  20. Ultra-deep targeted sequencing of advanced oral squamous cell carcinoma identifies a mutation-based prognostic gene signature

    PubMed Central

    Huang, Po-Jung; Huang, Yi; Hsu, An; Tang, Petrus; Chang, Yu-Sun; Chen, Hua-Chien; Yen, Tzu-Chen

    2015-01-01

    Background Patients with advanced oral squamous cell carcinoma (OSCC) have heterogeneous outcomes that limit the implementation of tailored treatment options. Genetic markers for improved prognostic stratification are eagerly awaited. Methods Herein, next-generation sequencing (NGS) was performed in 345 formalin-fixed paraffin-embedded (FFPE) samples obtained from advanced OSCC patients. Genetic mutations on the hotspot regions of 45 cancer-related genes were detected using an ultra-deep (>1000×) sequencing approach. Kaplan-Meier plots and Cox regression analyses were used to investigate the associations between the mutation status and disease-free survival (DFS). Results We identified 1269 non-synonymous mutations in 276 OSCC samples. TP53, PIK3CA, CDKN2A, HRAS and BRAF were the most frequently mutated genes. Mutations in 14 genes were found to predict DFS. A mutation-based signature affecting ten genes (HRAS, BRAF, FGFR3, SMAD4, KIT, PTEN, NOTCH1, AKT1, CTNNB1, and PTPN11) was devised to predict DFS. Two different resampling methods were used to validate the prognostic value of the identified gene signature. Multivariate analysis demonstrated that presence of a mutated gene signature was an independent predictor of poorer DFS (P = 0.005). Conclusions Genetic variants identified by NGS technology in FFPE samples are clinically useful to predict prognosis in advanced OSCC patients. PMID:25980437

  1. DYT16 revisited: exome sequencing identifies PRKRA mutations in a European dystonia family.

    PubMed

    Zech, Michael; Castrop, Florian; Schormair, Barbara; Jochim, Angela; Wieland, Thomas; Gross, Nadine; Lichtner, Peter; Peters, Annette; Gieger, Christian; Meitinger, Thomas; Strom, Tim M; Oexle, Konrad; Haslinger, Bernhard; Winkelmann, Juliane

    2014-10-01

    Recessive DYT16 dystonia associated with mutations in PRKRA has until now been reported only in seven Brazilian patients. The aim of this study was to elucidate the genetic cause underlying disease in a Polish family with autosomal-recessive, early-onset generalized dystonia and slight parkinsonism, and to explore further the role of PRKRA in a dystonia series of European ancestry. We employed whole-exome sequencing in two affected siblings of the Polish family and filtered for rare homozygous and compound heterozygous variants shared by both exomes. Validation of the identified variants as well as homozygosity screening and copy number variation analysis was carried out in the two affected individuals and their healthy siblings. PRKRA was analyzed in 339 German patients with various forms of dystonia and 376 population-based controls by direct sequencing or high-resolution melting. The previously described homozygous p.Pro222Leu mutation in PRKRA was found to segregate with the disease in the studied family, contained in a 1.2 Mb homozygous region identical by state with all Brazilian patients in chromosome 2q31.2. The clinical presentation with young-onset, progressive generalized dystonia and mild parkinsonism resembled the phenotype of the original DYT16 cases. PRKRA mutational screening in additional dystonia samples revealed three novel heterozygous changes (p.Thr34Ser, p.Asn102Ser, c.-14A>G), each in a single subject with focal/segmental dystonia. Our study provides the first independent replication of the DYT16 locus at 2q31.2 and strongly confirms the causal contribution of the PRKRA gene to DYT16. Our data suggest worldwide involvement of PRKRA in dystonia. PMID:25142429

  2. Identifying Highly Penetrant Disease Causal Mutations Using Next Generation Sequencing: Guide to Whole Process

    PubMed Central

    Erzurumluoglu, A. Mesut; Shihab, Hashem A.; Baird, Denis; Richardson, Tom G.; Day, Ian N. M.; Gaunt, Tom R.

    2015-01-01

    Recent technological advances have created challenges for geneticists and a need to adapt to a wide range of new bioinformatics tools and an expanding wealth of publicly available data (e.g., mutation databases, and software). This wide range of methods and a diversity of file formats used in sequence analysis is a significant issue, with a considerable amount of time spent before anyone can even attempt to analyse the genetic basis of human disorders. Another point to consider that is although many possess “just enough” knowledge to analyse their data, they do not make full use of the tools and databases that are available and also do not fully understand how their data was created. The primary aim of this review is to document some of the key approaches and provide an analysis schema to make the analysis process more efficient and reliable in the context of discovering highly penetrant causal mutations/genes. This review will also compare the methods used to identify highly penetrant variants when data is obtained from consanguineous individuals as opposed to nonconsanguineous; and when Mendelian disorders are analysed as opposed to common-complex disorders. PMID:26106619

  3. Identifying Highly Penetrant Disease Causal Mutations Using Next Generation Sequencing: Guide to Whole Process.

    PubMed

    Erzurumluoglu, A Mesut; Rodriguez, Santiago; Shihab, Hashem A; Baird, Denis; Richardson, Tom G; Day, Ian N M; Gaunt, Tom R

    2015-01-01

    Recent technological advances have created challenges for geneticists and a need to adapt to a wide range of new bioinformatics tools and an expanding wealth of publicly available data (e.g., mutation databases, and software). This wide range of methods and a diversity of file formats used in sequence analysis is a significant issue, with a considerable amount of time spent before anyone can even attempt to analyse the genetic basis of human disorders. Another point to consider that is although many possess "just enough" knowledge to analyse their data, they do not make full use of the tools and databases that are available and also do not fully understand how their data was created. The primary aim of this review is to document some of the key approaches and provide an analysis schema to make the analysis process more efficient and reliable in the context of discovering highly penetrant causal mutations/genes. This review will also compare the methods used to identify highly penetrant variants when data is obtained from consanguineous individuals as opposed to nonconsanguineous; and when Mendelian disorders are analysed as opposed to common-complex disorders. PMID:26106619

  4. Seven new mutations in hMSH2, an HNPCC Gene, identified by denaturing gradient-gel electrophoresis

    SciTech Connect

    Wijnen, J.; Vasen, H.; Khan, P.M.; Klift, H. van der; Leeuwen, C. van; Broek, M. van den; Leeuwen-Cornelisse, I. van; Fodde, R.; Menko, F.H.; Nagengast, F.

    1995-05-01

    Hereditary nonpolyposis colorectal cancer (HNPCC) is a relatively common autosomal dominant cancer-susceptibility condition. The recent isolation of the DNA mismatch repair genes (hMSH2, hMLH1, hPMS1, and hPMS2) responsible for HNPCC has allowed the search for germ-line mutations in affected individuals. In this study we used denaturing gradient-gel electrophoresis to screen for mutations in the hMSH2 gene. Analysis of all the 16 exons of HMSH2, in 34 unrelated HNPCC kindreds, has revealed seven novel pathogenic germ-line mutations resulting in stop codons either directly or through frameshifts. Additionally, nucleotide substitutions giving rise to one missense, two silent, and one useful polymorphism have been identified. The proportion of families in which hMSH2 mutations were found is 21%. Although the spectrum of mutations spread at the hMSH2 gene among HNPCC patients appears extremely heterogeneous, we were not able to establish any correlation between the site of the individual mutations and the corresponding tumor spectrum. Our results indicate that, given the genomic size and organization of the hMSH2 gene and the heterogeneity of its mutation spectrum, a rapid and efficient mutation detection procedure is necessary for routine molecular diagnosis and presymptomatic detection of the disease in a clinical setup. 34 refs., 2 figs., 3 tabs.

  5. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas

    PubMed Central

    Selaru, Florin M; Streppel, Mirte M; Lucas, Donald J; Niknafs, Noushin; Guthrie, Violeta Beleva; Maitra, Anirban; Argani, Pedram; Offerhaus, G Johan A; Roa, Juan Carlos; Roberts, Lewis R; Gores, Gregory J; Popescu, Irinel; Alexandrescu, Sorin T; Dima, Simona; Fassan, Matteo; Simbolo, Michele; Mafficini, Andrea; Capelli, Paola; Lawlor, Rita T; Ruzzenente, Andrea; Guglielmi, Alfredo; Tortora, Giampaolo; de Braud, Filippo; Scarpa, Aldo; Jarnagin, William; Klimstra, David; Karchin, Rachel; Velculescu, Victor E; Hruban, Ralph H; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Wood, Laura D

    2014-01-01

    Through exomic sequencing of 32 intrahepatic cholangiocarcinomas, we discovered frequent inactivating mutations in multiple chromatin-remodeling genes (including BAP1, ARID1A and PBRM1), and mutation in one of these genes occurred in almost half of the carcinomas sequenced. We also identified frequent mutations at previously reported hotspots in the IDH1 and IDH2 genes encoding metabolic enzymes in intrahepatic cholangiocarcinomas. In contrast, TP53 was the most frequently altered gene in a series of nine gallbladder carcinomas. These discoveries highlight the key role of dysregulated chromatin remodeling in intrahepatic cholangiocarcinomas. PMID:24185509

  6. Whole-exome sequencing identifies novel ECHS1 mutations in Leigh syndrome.

    PubMed

    Tetreault, Martine; Fahiminiya, Somayyeh; Antonicka, Hana; Mitchell, Grant A; Geraghty, Michael T; Lines, Matthew; Boycott, Kym M; Shoubridge, Eric A; Mitchell, John J; Michaud, Jacques L; Majewski, Jacek

    2015-09-01

    Leigh syndrome (LS) is a rare heterogeneous progressive neurodegenerative disorder usually presenting in infancy or early childhood. Clinical presentation is variable and includes psychomotor delay or regression, acute neurological or acidotic episodes, hypotonia, ataxia, spasticity, movement disorders, and corresponding anomalies of the basal ganglia and brain stem on magnetic resonance imaging. To date, 35 genes have been associated with LS, mostly involved in mitochondrial respiratory chain function and encoded in either nuclear or mitochondrial DNA. We used whole-exome sequencing to identify disease-causing variants in four patients with basal ganglia abnormalities and clinical presentations consistent with LS. Compound heterozygote variants in ECHS1, encoding the enzyme enoyl-CoA hydratase were identified. One missense variant (p.Thr180Ala) was common to all four patients and the haplotype surrounding this variant was also shared, suggesting a common ancestor of French-Canadian origin. Rare mutations in ECHS1 as well as in HIBCH, the enzyme downstream in the valine degradation pathway, have been associated with LS or LS-like disorders. A clear clinical overlap is observed between our patients and the reported cases with ECHS1 or HIBCH deficiency. The main clinical features observed in our cohort are T2-hyperintense signal in the globus pallidus and putamen, failure to thrive, developmental delay or regression, and nystagmus. Respiratory chain studies are not strikingly abnormal in our patients: one patient had a mild reduction of complex I and III and another of complex IV. The identification of four additional patients with mutations in ECHS1 highlights the emerging importance of this pathway in LS. PMID:26099313

  7. Mutations in GRM6 identified in consanguineous Pakistani families with congenital stationary night blindness

    PubMed Central

    Naeem, Muhammad Asif; Gottsch, Alexander D. H.; Ullah, Inayat; Khan, Shaheen N.; Husnain, Tayyab; Butt, Nadeem H.; Qazi, Zaheeruddin A.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2015-01-01

    Purpose This study was undertaken to investigate the causal mutations responsible for autosomal recessive congenital stationary night blindness (CSNB) in consanguineous Pakistani families. Methods Two consanguineous families with multiple individuals manifesting symptoms of stationary night blindness were recruited. Affected individuals underwent a detailed ophthalmological examination, including fundus examination and electroretinography. Blood samples were collected and genomic DNA was extracted. Exclusion analyses were completed by genotyping closely spaced microsatellite markers, and two-point logarithm of odds (LOD) scores were calculated. All coding exons, along with the exon–intron boundaries of GRM6, were sequenced bidirectionally. Results According to the medical history available to us, affected individuals in both families had experienced night blindness from the early years of their lives. Fundus photographs of affected individuals in both the families appeared normal, with no signs of attenuated arteries or bone spicule pigmentation. The scotopic electroretinogram (ERG) response were absent in all of the affected individuals, while the photopic measurements show reduced b-waves. During exclusion analyses, both families localized to a region on chromosome 5q that harbors GRM6, a gene previously associated with autosomal recessive CSNB. Bidirectional sequencing of GRM6 identified homozygous single base pair changes, specifically c.1336C>T (p.R446X) and c.2267G>A (p.G756D) in families PKRP170 and PKRP172, respectively. Conclusions We identified a novel nonsense and a previously reported missense mutation in GRM6 that were responsible for autosomal recessive CSNB in patients of Pakistani decent. PMID:26628857

  8. DFNA8/12 caused by TECTA mutations is the most identified subtype of nonsyndromic autosomal dominant hearing loss.

    PubMed

    Hildebrand, Michael S; Morín, Matías; Meyer, Nicole C; Mayo, Fernando; Modamio-Hoybjor, Silvia; Mencía, Angeles; Olavarrieta, Leticia; Morales-Angulo, Carmelo; Nishimura, Carla J; Workman, Heather; DeLuca, Adam P; del Castillo, Ignacio; Taylor, Kyle R; Tompkins, Bruce; Goodman, Corey W; Schrauwen, Isabelle; Wesemael, Maarten Van; Lachlan, K; Shearer, A Eliot; Braun, Terry A; Huygen, Patrick L M; Kremer, Hannie; Van Camp, Guy; Moreno, Felipe; Casavant, Thomas L; Smith, Richard J H; Moreno-Pelayo, Miguel A

    2011-07-01

    The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian, and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably, 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the ?-tectorin protein, including those for the first time identified in the entactin domain, as well as the vWFD1, vWFD2, and vWFD3 repeats, and the D1-D2 and TIL2 connectors. Although the majority are private mutations, four of them-p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met, and p.Arg1890Cys-were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of ?-tectorin (entactin domain, vWFD1, and vWFD2) lead to mid-frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL. PMID:21520338

  9. Massively Parallel Validation of Cancer Mutations and Other Variants Identified by Whole Cancer Genome and Exome Sequencing - Georges Natsoulis, TCGA Scientific Symposium 2011

    Cancer.gov

    Home News and Events Multimedia Library Videos Parallel Validation of Cancer Mutations and Other Variants - Georges Natsoulis Massively Parallel Validation of Cancer Mutations and Other Variants Identified by Whole Cancer Genome and Exome Sequencing

  10. Thiamine responsive megaloblastic anemia syndrome: a novel homozygous SLC19A2 gene mutation identified.

    PubMed

    Mikstiene, Violeta; Songailiene, Jurgita; Byckova, Jekaterina; Rutkauskiene, Giedre; Jasinskiene, Edita; Verkauskiene, Rasa; Lesinskas, Eugenijus; Utkus, Algirdas

    2015-07-01

    Thiamine responsive megaloblastic anemia syndrome (TRMAS) is a rare autosomal recessive disorder especially in countries where consanguinity is uncommon. Three main features are characteristic of the disease - megaloblastic anemia, early onset deafness, and non-type I diabetes. TRMAS is a Mendelian disorder; a gene SLC19A2 coding high affinity thiamine transporter mediating vitamin B1 uptake through cell membrane has been identified. We present the first patient with TRMAS in Lithuania - a 3-year-old boy born to a non-consanguineous family with a novel homozygous SLC19A2 gene mutation. The patient had insulin dependent diabetes (onset 11 months), respiratory illness (onset 11 months), bilateral profound hearing loss (onset at 7 months, verified at 20 months), refractory anemia (onset 2 years), and decreased vision acuity and photophobia (onset 2.5 years). The psychomotor abilities developed according to age. Phenotypic evaluation did not reveal any dysmorphic features. The clinical diagnosis of TRMAS was suspected and daily supplementation with thiamine 100?mg was started. The condition of the patient markedly improved several days after the initiation of treatment. The results of SLC19A2 gene molecular testing confirmed the clinical diagnosis - novel homozygous c.[205G>T], p.[(Val69Phe)] mutation changing conserved amino acid residue or even interfering the mRNA splicing. Clinical heterogeneity, diverse dynamics, and wide spectrum of symptoms are aggravating factors in the diagnosis. The possibility of treatment demands early recognition of disorder to facilitate the improvement of the patient's condition. PMID:25707023

  11. Exome Sequencing Identifies a Novel Homozygous Mutation in the Phosphate Transporter SLC34A1 in Hypophosphatemia and Nephrocalcinosis

    PubMed Central

    Rajagopal, Abbhirami; Braslavsky, Débora; Lu, James T.; Kleppe, Soledad; Clément, Florencia; Cassinelli, Hamilton; Liu, David S.; Liern, Jose Miguel; Vallejo, Graciela; Bergadá, Ignacio; Gibbs, Richard A.; Campeau, Phillipe M.

    2014-01-01

    Context: Two Argentinean siblings (a boy and a girl) from a nonconsanguineous family presented with hypercalcemia, hypercalciuria, hypophosphatemia, low parathyroid hormone (PTH), and nephrocalcinosis. Objective: The goal of this study was to identify genetic causes of the clinical findings in the two siblings. Design: Whole exome sequencing was performed to identify disease-causing mutations in the youngest sibling, and a candidate variant was screened in other family members by Sanger sequencing. In vitro experiments were conducted to determine the effects of the mutation that was identified. Patients and Other Participants: Affected siblings (2 y.o. female and 10 y.o male) and their parents were included in the study. Informed consent was obtained for genetic studies. Results: A novel homozygous mutation in the gene encoding the renal sodium-dependent phosphate transporter SLC34A1 was identified in both siblings (c.1484G>A, p.Arg495His). In vitro studies showed that the p.Arg495His mutation resulted in decreased phosphate uptake when compared to wild-type SLC34A1. Conclusions: The homozygous G>A transition that results in the substitution of histidine for arginine at position 495 of the renal sodium-dependent phosphate transporter, SLC34A1, is involved in disease pathogenesis in these patients. Our report of the second family with two mutated SLC34A1 alleles expands the known phenotype of this rare condition. PMID:25050900

  12. Using gene carrier probability to select high risk families for identifying germline mutations in breast cancer susceptibility genes.

    PubMed Central

    Chang-Claude, J; Dong, J; Schmidt, S; Shayeghi, M; Komitowski, D; Becher, H; Stratton, M R; Royer-Pokora, B

    1998-01-01

    Germline mutations in highly penetrant autosomal dominant genes explain about 5% of all breast cancer, and heritable mutations in the BRCA1 breast and ovarian cancer susceptibility gene account for 2-3% of breast cancer in the general population. Nevertheless, the presence of such mutations is highly predictive of disease development. Since screening for mutations is still technically laborious, we investigated whether the prior probability of being a carrier of a dominant breast cancer susceptibility gene in the youngest affected family member could be used to identify families in which the probability of finding a mutation is sufficiently high. Sixty German families with three or more cases of breast/ovarian cancer with at least two cases diagnosed under the age of 60 were screened for mutations by SSCP/CSGE and subsequent direct sequencing. Thirteen germline truncating/splicing mutations in BRCA1 were found in 33% (6/18) of the breast-ovarian cancer families and in 17% (7/42) of breast cancer only families. All the families showing mutations in BRCA1 had carrier probabilities of 0.65 or higher. In families with prior carrier probabilities above 0.6, the proportion detected was 0.46 in breast-ovarian cancer families and 0.26 in breast cancer only families. The average age at diagnosis of breast or ovarian cancer in families with BRCA1 mutations was 41.9 years and significantly lower than in families without mutations (p < 0.05). Mutation carriers and obligate carriers were also found to have cancers at other sites. The probability of being a susceptibility gene carrier, taking into account the complete pedigree information, allows uniform characterisation of all types of families for identifying those in which mutation analysis for BRCA1/2 is warranted. However, prior probabilities calculated using this method can be reduced when the correlation between genotype and phenotype is imperfect. A larger series of families needs to be investigated in this fashion to provide better estimates of the detection rate for different ranges of carrier probabilities. PMID:9507390

  13. STAT3 mutations identified in human hematologic neoplasms induce myeloid malignancies in a mouse bone marrow transplantation model

    PubMed Central

    Couronné, Lucile; Scourzic, Laurianne; Pilati, Camilla; Valle, Véronique Della; Duffourd, Yannis; Solary, Eric; Vainchenker, William; Merlio, Jean-Philippe; Beylot-Barry, Marie; Damm, Frederik; Stern, Marc-Henri; Gaulard, Philippe; Lamant, Laurence; Delabesse, Eric; Merle-Beral, Hélène; Nguyen-Khac, Florence; Fontenay, Michaëla; Tilly, Hervé; Bastard, Christian; Zucman-Rossi, Jessica; Bernard, Olivier A.; Mercher, Thomas

    2013-01-01

    STAT3 protein phosphorylation is a frequent event in various hematologic malignancies and solid tumors. Acquired STAT3 mutations have been recently identified in 40% of patients with T-cell large granular lymphocytic leukemia, a rare T-cell disorder. In this study, we investigated the mutational status of STAT3 in a large series of patients with lymphoid and myeloid diseases. STAT3 mutations were identified in 1.6% (4 of 258) of patients with T-cell neoplasms, in 2.5% (2 of 79) of patients with diffuse large B-cell lymphoma but in no other B-cell lymphoma patients (0 of 104) or patients with myeloid malignancies (0 of 96). Functional in vitro assays indicated that the STAT3Y640F mutation leads to a constitutive phosphorylation of the protein. STA21, a STAT3 small molecule inhibitor, inhibited the proliferation of two distinct STAT3 mutated cell lines. Using a mouse bone marrow transplantation assay, we observed that STAT3Y640F expression leads to the development of myeloproliferative neoplasms with expansion of either myeloid cells or megakaryocytes. Together, these data indicate that the STAT3Y640F mutation leads to constitutive activation of STAT3, induces malignant hematopoiesis in vivo, and may represent a novel therapeutic target in some lymphoid malignancies. PMID:23872306

  14. Two-round coamplification at lower denaturation temperature-PCR (COLD-PCR)-based sanger sequencing identifies a novel spectrum of low-level mutations in lung adenocarcinoma.

    PubMed

    Li, Jin; Milbury, Coren A; Li, Cheng; Makrigiorgos, G Mike

    2009-11-01

    Reliable identification of cancer-related mutations in TP53 is often problematic, as these mutations can be randomly distributed throughout numerous codons and their relative abundance in clinical samples can fall below the sensitivity limits of conventional sequencing. To ensure the highest sensitivity in mutation detection, we adapted the recently described coamplification at lower denaturation temperature-PCR (COLD-PCR) method to employ two consecutive rounds of COLD-PCR followed by Sanger sequencing. Using this highly sensitive approach we screened 48 nonmicrodissected lung adenocarcinoma samples for TP53 mutations. Twenty-four missense/frameshift TP53 mutations throughout exons 5 to 8 were identified in 23 out of 48 (48%) lung adenocarcinoma samples examined, including eight low-level mutations at an abundance of approximately 1 to 17%, most of which would have been missed using conventional methodologies. The identified alterations include two rare lung adenocarcinoma mutations, one of which is a "disruptive" mutation currently undocumented in the lung cancer mutation databases. A sample harboring a low-level mutation ( approximately 2% abundance) concurrently with a clonal mutation (80% abundance) revealed intratumoral TP53 mutation heterogeneity. The ability to identify and sequence low-level mutations in the absence of elaborate microdissection, via COLD-PCR-based Sanger sequencing, provides a platform for accurate mutation profiling in clinical specimens and the use of TP53 as a prognostic/predictive biomarker, evaluation of cancer risk, recurrence, and further understanding of cancer biology. PMID:19760750

  15. New Approach Identifies Mutations that Drive Cancer | Physical Sciences in Oncology

    Cancer.gov

    One of the hallmarks of cancer is the large and varied number of mutations found in the DNA of malignant cells. In recent years, researchers have developed what is known as the "driver and passenger mutation theory," which says that of the many mutations found in a cancer cell's genome, only a few "drive" the development of cancer, while others just come along for the ride, a by-product of the general genomic instability that characterizes malignant cells.

  16. Disease-Targeted Sequencing of Ion Channel Genes identifies de novo mutations in Patients with Non-Familial Brugada Syndrome

    PubMed Central

    Juang, Jyh-Ming Jimmy; Lu, Tzu-Pin; Lai, Liang-Chuan; Ho, Chia-Chuan; Liu, Yen-Bin; Tsai, Chia-Ti; Lin, Lian-Yu; Yu, Chih-Chieh; Chen, Wen-Jone; Chiang, Fu-Tien; Yeh, Shih-Fan Sherri; Lai, Ling-Ping; Chuang, Eric Y.; Lin, Jiunn-Lee

    2014-01-01

    Brugada syndrome (BrS) is one of the ion channelopathies associated with sudden cardiac death (SCD). The most common BrS-associated gene (SCN5A) only accounts for approximately 20–25% of BrS patients. This study aims to identify novel mutations across human ion channels in non-familial BrS patients without SCN5A variants through disease-targeted sequencing. We performed disease-targeted multi-gene sequencing across 133 human ion channel genes and 12 reported BrS-associated genes in 15 unrelated, non-familial BrS patients without SCN5A variants. Candidate variants were validated by mass spectrometry and Sanger sequencing. Five de novo mutations were identified in four genes (SCNN1A, KCNJ16, KCNB2, and KCNT1) in three BrS patients (20%). Two of the three patients presented SCD and one had syncope. Interestingly, the two patients presented with SCD had compound mutations (SCNN1A:Arg350Gln and KCNB2:Glu522Lys; SCNN1A:Arg597* and KCNJ16:Ser261Gly). Importantly, two SCNN1A mutations were identified from different families. The KCNT1:Arg1106Gln mutation was identified in a patient with syncope. Bioinformatics algorithms predicted severe functional interruptions in these four mutation loci, suggesting their pivotal roles in BrS. This study identified four novel BrS-associated genes and indicated the effectiveness of this disease-targeted sequencing across ion channel genes for non-familial BrS patients without SCN5A variants. PMID:25339316

  17. New de novo genetic mutations in schizophrenia identified -Mental Wellness Today http://www.mentalwellnesstoday.com/...hizophrenia/schizophrenia-articles/16-shizophrenia-research/194-new-de-novo-genetic-mutations-in-schizophrenia-identified[10/10/2012 4:3

    E-print Network

    of hope? My Shopping cart Cart empty Our Social Networks Pinterest Trace your steps:Home Mental Illnesses In Twitter YouTube Page Down Page Up Home Our Mental Health Magazines Mental Illnesses Community Store UserNew de novo genetic mutations in schizophrenia identified - Mental Wellness Today http

  18. New de novo Genetic Mutations in Schizophrenia Identified | Columbia University Medical Center http://www.cumc.columbia.edu/news-room/2012/10/03/new-de-novo-genetic-mutations-in-schizophrenia-identified/#.UKJgImdNKuJ[11/13/2012 9:59:28 AM

    E-print Network

    New de novo Genetic Mutations in Schizophrenia Identified | Columbia University Medical Center http://www.cumc.columbia.edu/news-room/2012/10/03/new-de-novo-genetic-mutations-in-schizophrenia-identified/#.UKJgImdNKuJ[11/13/2012 9 Profiles | Map | RSS | Giving New de novo Genetic Mutations in Schizophrenia Identified October 3, 2012 New

  19. TP53 mutation-correlated genes predict the risk of tumor relapse and identify MPS1 as a potential therapeutic kinase in TP53-mutated breast cancers.

    PubMed

    Gy?rffy, Balázs; Bottai, Giulia; Lehmann-Che, Jacqueline; Kéri, György; Orfi, László; Iwamoto, Takayuki; Desmedt, Christine; Bianchini, Giampaolo; Turner, Nicholas C; de Thè, Hugues; André, Fabrice; Sotiriou, Christos; Hortobagyi, Gabriel N; Di Leo, Angelo; Pusztai, Lajos; Santarpia, Libero

    2014-05-01

    Breast cancers (BC) carry a complex set of gene mutations that can influence their gene expression and clinical behavior. We aimed to identify genes driven by the TP53 mutation status and assess their clinical relevance in estrogen receptor (ER)-positive and ER-negative BC, and their potential as targets for patients with TP53 mutated tumors. Separate ROC analyses of each gene expression according to TP53 mutation status were performed. The prognostic value of genes with the highest AUC were assessed in a large dataset of untreated, and neoadjuvant chemotherapy treated patients. The mitotic checkpoint gene MPS1 was the most significant gene correlated with TP53 status, and the most significant prognostic marker in all ER-positive BC datasets. MPS1 retained its prognostic value independently from the type of treatment administered. The biological functions of MPS1 were investigated in different BC cell lines. We also assessed the effects of a potent small molecule inhibitor of MPS1, SP600125, alone and in combination with chemotherapy. Consistent with the gene expression profiling and siRNA assays, the inhibition of MPS1 by SP600125 led to a reduction in cell viability and a significant increase in cell death, selectively in TP53-mutated BC cells. Furthermore, the chemical inhibition of MPS1 sensitized BC cells to conventional chemotherapy, particularly taxanes. Our results collectively demonstrate that TP53-correlated kinase MPS1, is a potential therapeutic target in BC patients with TP53 mutated tumors, and that SP600125 warrant further development in future clinical trials. PMID:24462521

  20. Molecular Analysis of a Recurrent Sarcoma Identifies a Mutation in FAF1

    PubMed Central

    Weber, Georg F.

    2015-01-01

    A patient presented with a recurrent sarcoma (diagnosed as leiomyosarcoma) 12 years after the removal of an initial cancer (diagnosed as extracompartmental osteosarcoma) distally on the same limb. Following surgery, the sarcoma and unaffected muscle and bone were subjected to measurements of DNA exome sequence, RNA and protein expression, and transcription factor binding. The investigation provided corroboration of the diagnosis leiomyosarcoma, as the major upregulations in this tumor comprise muscle-specific gene products and calcium-regulating molecules (calcium is an important second messenger in smooth muscle cells). A likely culprit for the disease is the point mutation S181G in FAF1, which may cause a loss of apoptotic function consecutive to transforming DNA damage. The RNA levels of genes for drug transport and metabolism were extensively skewed in the tumor tissue as compared to muscle and bone. The results suggest that the tumor represents a recurrence of a dormant metastasis from an originally misdiagnosed neoplasm. A loss of FAF1 function could cause constitutive WNT pathway activity (consistent with the downstream inductions of IGF2BP1 and E2F1 in this cancer). While the study has informed on drug transport and drug metabolism pharmacogenetics, it has fallen short of identifying a suitable target for molecular therapy. PMID:25861239

  1. A novel germline mutation in SDHA identified in a rare case of gastrointestinal stromal tumor complicated with renal cell carcinoma

    PubMed Central

    Jiang, Quan; Zhang, Yong; Zhou, Yu-Hong; Hou, Ying-Yong; Wang, Jiong-Yuan; Li, Jing-Lei; Li, Ming; Tong, Han-Xing; Lu, Wei-Qi

    2015-01-01

    Succinate dehydrogenase (SDH), which is located on the mitochondrial inner membrane, is essential to the Krebs cycle. Mutations of the SDH gene are associated with many tumors, such as renal cell carcinoma, wild type gastrointestinal stromal tumors (WT GISTs) and hereditary paragangliomas/pheochromocytomas. Herein we present a rare case diagnosed as a WT GIST complicated with a renal chromophobe cell tumor and detected a novel germline heterozygous mutation (c.2T>C: p.M1T) in the initiation codon of the SDHA gene. We also conduct a preliminary exploration for the mechanism of reduced expression of SDHB without mutation of SDHB gene. Our case enriches the mutation spectrum of the SDH gene. After reviewing previous studies, we found it to be the first case diagnosed as a WT GIST complicated with a synchronous renal chromophobe cell tumor and identified a novel germline heterozygous mutation. It was also the second reported case of a renal cell carcinoma associated with an SDHA mutation. PMID:26722403

  2. A Novel WRN Frameshift Mutation Identified by Multiplex Genetic Testing in a Family with Multiple Cases of Cancer

    PubMed Central

    Yang, Liu; Wang, Guosheng; Zhao, Xinyi; Ye, Song; Shen, Peng; Wang, Weilin; Zheng, Shusen

    2015-01-01

    Next-generation sequencing technology allows simultaneous analysis of multiple susceptibility genes for clinical cancer genetics. In this study, multiplex genetic testing was conducted in a Chinese family with multiple cases of cancer to determine the variations in cancer predisposition genes. The family comprises a mother and her five daughters, of whom the mother and the eldest daughter have cancer and the secondary daughter died of cancer. We conducted multiplex genetic testing of 90 cancer susceptibility genes using the peripheral blood DNA of the mother and all five daughters. WRN frameshift mutation is considered a potential pathogenic variation according to the guidelines of the American College of Medical Genetics. A novel WRN frameshift mutation (p.N1370Tfs*23) was identified in the three cancer patients and in the youngest unaffected daughter. Other rare non-synonymous germline mutations were also detected in DICER and ELAC2. Functional mutations in WRN cause Werner syndrome, a human autosomal recessive disease characterized by premature aging and associated with genetic instability and increased cancer risk. Our results suggest that the WRN frameshift mutation is important in the surveillance of other members of this family, especially the youngest daughter, but the pathogenicity of the novel WRN frameshift mutation needs to be investigated further. Given its extensive use in clinical genetic screening, multiplex genetic testing is a promising tool in clinical cancer surveillance. PMID:26241669

  3. Patients with Griscelli syndrome and normal pigmentation identify RAB27A mutations that selectively disrupt MUNC13-4 binding

    PubMed Central

    Cetica, Valentina; Hackmann, Yvonne; Grieve, Samantha; Sieni, Elena; Ciambotti, Benedetta; Coniglio, Maria Luisa; Pende, Daniela; Gilmour, Kimberly; Romagnoli, Paolo; Griffiths, Gillian M.; Aricò, Maurizio

    2015-01-01

    Background Familial hemophagocytic lymphohistiocytosis (FHL) is a rare and often fatal disorder characterized by defective cellular cytotoxicity and hyperinflammation, and the only cure known to date is hematopoietic stem cell transplantation. Mutations in RAB27A, LYST, and AP3B1 give rise to FHL associated with oculocutaneous albinism, and patients with FHL are usually only screened for mutations in these genes when albinism is observed. A number of patients with FHL and normal pigmentation remain without a genetic diagnosis. Objective We asked whether patients with FHL with immunodeficiency but with normal pigmentation might sometimes have mutations that affected cellular cytotoxicity without affecting pigmentation. Methods We carried out mutation analysis of RAB27A, LYST, and AP3B1 in patients with FHL with pigment dilution, as well as a cohort with no clinical evidence of pigment dilution but no mutations in the other known FHL-related genes (PRF1, STXBP2, and UNC13D). Results We identify patients with Griscelli syndrome type 2 with biallelic mutations in RAB27A in the absence of albinism. All 6 patients carried mutations at amino acids R141, Y159, or S163 of Rab27a that disrupt the interaction of Rab27a with Munc13-4, without impairing the interaction between melanophilin and Rab27a. Conclusion These studies highlight the need for RAB27A sequencing in patients with FHL with normal pigmentation and identify a critical binding site for Munc13-4 on Rab27a, revealing the molecular basis of this interaction. PMID:25312756

  4. A new point mutation in the ND1 mitochondrial gene identified in a type II diabetic patient

    SciTech Connect

    Kalinin, V.N.; Schmidt, W.; Olek, K.

    1995-08-01

    A novel mutation in a mitochondrial gene was identified in a patient with type II diabetes mellitus. G-to-A transition was localized at the nt3316 position of gene ND1 and resulted in alanine threonine replacement at position 4 of mitochondrial NAD-H-dehydrogenase. 6 refs., 2 figs.

  5. Whole exome sequencing identifies three recessive FIG4 mutations in an apparently dominant pedigree with Charcot-Marie-Tooth disease

    PubMed Central

    Menezes, Manoj P.; Waddell, Leigh; Lenk, Guy M.; Kaur, Simranpreet; MacArthur, Daniel G.; Meisler, Miriam H.; Clarke, Nigel F.

    2014-01-01

    Charcot-Marie-Tooth disease (CMT) is genetically heterogeneous and classification based on motor nerve conduction velocity and inheritance is used to direct genetic testing. With the less common genetic forms of CMT, identifying the causative genetic mutation by Sanger sequencing of individual genes can be time-consuming and costly. Next-generation sequencing technologies show promise for clinical testing in diseases where a similar phenotype is caused by different genes. We report the unusual occurrence of CMT4J, caused by mutations in FIG4, in a apparently dominant pedigree. The affected proband and her mother exhibit different disease severities associated with different combinations of compound heterozygous FIG4 mutations, identified by whole exome sequencing. The proband was also shown to carry a de novo nonsense mutation in the dystrophin gene, which may contribute to her more severe phenotype. This study is a cautionary reminder that in families with two generations affected, explanations other than dominant inheritance are possible, such as recessive inheritance due to three mutations segregating in the family. It also emphasizes the advantages of next-generation sequencing approaches that screen multiple CMT genes at once for patients in whom the common genes have been excluded. PMID:24878229

  6. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia[S

    PubMed Central

    Mendoza-Barberá, Elena; Julve, Josep; Nilsson, Stefan K.; Lookene, Aivar; Martín-Campos, Jesús M.; Roig, Rosa; Lechuga-Sancho, Alfonso M.; Sloan, John H.; Fuentes-Prior, Pablo; Blanco-Vaca, Francisco

    2013-01-01

    During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia. PMID:23307945

  7. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity

    E-print Network

    Lander, Eric S.

    The incidence of esophageal adenocarcinoma (EAC) has risen 600% over the last 30 years. With a 5-year survival rate of ~15%, the identification of new therapeutic targets for EAC is greatly important. We analyze the mutation ...

  8. NIH Researchers Identify New Gene Mutation Associated with ALS and Dementia

    MedlinePLUS

    ... cell, has been linked with development of familial amyotrophic lateral sclerosis (ALS). This finding, from a research team led ... Mutations in the Matrin 3 gene cause familial amyotrophic lateral sclerosis. Nature Neuroscience . Published online March 30, 2014. doi: ...

  9. Whole-exome sequencing identifies USH2A mutations in a pseudo-dominant Usher syndrome family

    PubMed Central

    ZHENG, SUI-LIAN; ZHANG, HONG-LIANG; LIN, ZHEN-LANG; KANG, QIAN-YAN

    2015-01-01

    Usher syndrome (USH) is an autosomal recessive (AR) multi-sensory degenerative disorder leading to deaf-blindness. USH is clinically subdivided into three subclasses, and 10 genes have been identified thus far. Clinical and genetic heterogeneities in USH make a precise diagnosis difficult. A dominant-like USH family in successive generations was identified, and the present study aimed to determine the genetic predisposition of this family. Whole-exome sequencing was performed in two affected patients and an unaffected relative. Systematic data were analyzed by bioinformatic analysis to remove the candidate mutations via step-wise filtering. Direct Sanger sequencing and co-segregation analysis were performed in the pedigree. One novel and two known mutations in the USH2A gene were identified, and were further confirmed by direct sequencing and co-segregation analysis. The affected mother carried compound mutations in the USH2A gene, while the unaffected father carried a heterozygous mutation. The present study demonstrates that whole-exome sequencing is a robust approach for the molecular diagnosis of disorders with high levels of genetic heterogeneity. PMID:26310143

  10. Novel TECTA mutations identified in stable sensorineural hearing loss and their clinical implications.

    PubMed

    Kim, Ah Reum; Chang, Mun Young; Koo, Ja-Won; Oh, Seung Ha; Choi, Byung Yoon

    2015-01-01

    TECTA is a causative gene of autosomal dominant (DFNA8/A12) and autosomal recessive (DFNB 21) nonsyndromic sensorineural hearing loss (NSHL). Mutations in TECTA account for 4% of all autosomal dominant NSHL cases in some populations and are thus thought to be one of the major causes of autosomal dominant NSHL. A genotype-phenotype correlation for autosomal dominant mutations in the TECTA gene has been proposed. Two families (SB146 and SB149), which segregated moderate NSHL in an autosomal dominant fashion, were included in this study. We performed targeted resequencing of 134 known deafness genes (TRS-134) and bioinformatics analyses to find causative mutations for NSHL in these 2 families. Through TRS-134, we detected 2 novel mutations, i.e. c.3995G>T (p.C1332F) and c.5618C>T (p.T1873I), in the TECTA gene. These mutations cosegregated with NSHL in the studied families and were not detected in normal controls. The mutations c.3995G>T and c.5618C>T reside in the von Willebrand factor type D3-D4 (vWFD3-D4) interdomain of the zonadhesin (ZA) domain and the zona pellucida (ZP) domain, respectively. p.C1332F is the first mutation detected in the vWFD3-D4 interdomain of the ZA domain. The mutations p.C1332F and p.T1873I were associated with stable high-frequency and mid-frequency hearing loss, respectively. Notably, the cysteine residue mutated to phenylalanine in SB146 was not related to progression of sensorineural hearing loss, which argues against the previous hypothesis. Here we confirm a known genotype-phenotype correlation for the ZP domain and propose a hypothetical genotype-phenotype correlation which relates mutations in vWFD3-D4 to stable high-frequency NSHL in Koreans. This clinical feature makes subjects with the missense mutation in the vWFD3-D4 interdomain of TECTA potentially good candidates for middle ear implantation. PMID:25413827

  11. TARGET Researchers Identify Additional Mutations that Predict Relapse in ALL Patients

    Cancer.gov

    Pediatric acute lymphoblastic leukemia (ALL) is a heterogeneous disease consisting of distinct clinical and biological subtypes that are characterized by specific chromosomal abnormalities or gene mutations. Mutation of genes encoding tyrosine kinases is uncommon in ALL, with the exception of Philadelphia chromosome-positive ALL, where the t(9,22)(q34;q11) translocation encodes the constitutively active BCR-ABL1 tyrosine kinase.

  12. TARGET Researchers Identify Additional Mutations that Predict Relapse in ALL Patients | Office of Cancer Genomics

    Cancer.gov

    Pediatric acute lymphoblastic leukemia (ALL) is a heterogeneous disease consisting of distinct clinical and biological subtypes that are characterized by specific chromosomal abnormalities or gene mutations. Mutation of genes encoding tyrosine kinases is uncommon in ALL, with the exception of Philadelphia chromosome-positive ALL, where the t(9,22)(q34;q11) translocation encodes the constitutively active BCR-ABL1 tyrosine kinase.

  13. Multigene panel analysis identified germline mutations of DNA repair genes in breast and ovarian cancer

    PubMed Central

    Hirotsu, Yosuke; Nakagomi, Hiroshi; Sakamoto, Ikuko; Amemiya, Kenji; Oyama, Toshio; Mochizuki, Hitoshi; Omata, Masao

    2015-01-01

    Approximately 5–10% of all breast and/or ovarian cancer cases are considered as inherited. BRCA1 and BRCA2 tumor suppressor genes account for a high penetrance of hereditary cases, but familial cases without mutations in these genes can also occur. Despite their low penetrance, other hereditary cancer-related genes are known to be associated with breast and ovarian cancer risk. However, the extent to which these genes prevail in breast and ovarian cancer remains to be elucidated. To estimate the frequency of mutations in these predisposition genes, we analyzed the germline mutations of 25 hereditary cancer-related genes in 155 patients using targeted next-generation sequencing. These subjects included 11 BRCA1/2 mutation-positive cases and 144 negative cases. Of these, three patients (1.9%) had pathogenic mutations in ATM, MRE11A, or MSH6, all of which have a central role in DNA repair and the mismatch repair pathway. The MSH6 splice-site mutation (IVS6+1G>T) was predicted to be pathogenic, as demonstrated by in vitro and immunohistochemical analyses. These results suggested deficiencies in cellular DNA repair functions result in the development of breast and ovarian cancer. PMID:26436112

  14. BRAF V600E and TERT Promoter Mutations Cooperatively Identify the Most Aggressive Papillary Thyroid Cancer With Highest Recurrence

    PubMed Central

    Xing, Mingzhao; Liu, Rengyun; Liu, Xiaoli; Murugan, Avaniyapuram Kannan; Zhu, Guangwu; Zeiger, Martha A.; Pai, Sara; Bishop, Justin

    2014-01-01

    Purpose To investigate the prognostic value of the BRAF V600E mutation and the recently identified TERT promoter mutation chr5:1,295,228C>T (C228T), individually and in their coexistence, in papillary thyroid cancer (PTC). Patients and Methods We performed a retrospective study of the relationship of BRAF and TERT C228T mutations with clinicopathologic outcomes of PTC in 507 patients (365 women and 142 men) age 45.9 ± 14.0 years (mean ± SD) with a median follow-up of 24 months (interquartile range, 8 to 78 months). Results Coexisting BRAF V600E and TERT C228T mutations were more commonly associated with high-risk clinicopathologic characteristics of PTC than they were individually. Tumor recurrence rates were 25.8% (50 of 194;77.60 recurrences per 1,000 person-years; 95% CI, 58.81 to 102.38) versus 9.6% (30 of 313; 22.88 recurrences per 1,000 person-years; 95% CI, 16.00 to 32.72) in BRAF mutation–positive versus –negative patients (hazard ratio [HR], 3.22; 95% CI, 2.05 to 5.07) and 47.5% (29 of 61; 108.55 recurrences per 1,000 person-years; 95% CI, 75.43 to 156.20) versus 11.4% (51 of 446; 30.21 recurrences per 1,000 person-years; 95% CI, 22.96 to 39.74) in TERT mutation–positive versus –negative patients (HR, 3.46; 95% CI, 2.19 to 5.45). Recurrence rates were 68.6% (24 of 35; 211.76 recurrences per 1,000 person-years; 95% CI, 141.94 to 315.94) versus 8.7% (25 of 287; 21.60 recurrences per 1,000 person-years; 95% CI, 14.59 to 31.97) in patients harboring both mutations versus patients harboring neither mutation (HR, 8.51; 95% CI, 4.84 to 14.97), which remained significant after clinicopathologic cofactor adjustments. Disease-free patient survival curves displayed a moderate decline with BRAF V600E or TERT C228T alone but a sharp decline with two coexisting mutations. Conclusion Coexisting BRAF V600E and TERT C228T mutations form a novel genetic background that defines PTC with the worst clinicopathologic outcomes, providing unique prognostic and therapeutic implications. PMID:25024077

  15. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer

    PubMed Central

    Hammerman, Peter S; Sos, Martin L; Ramos, Alex H; Xu, Chunxiao; Dutt, Amit; Zhou, Wenjun; Brace, Lear E; Woods, Brittany A; Lin, Wenchu; Zhang, Jianming; Deng, Xianming; Lim, Sang Min; Heynck, Stefanie; Peifer, Martin; Simard, Jeffrey R; Lawrence, Michael S; Onofrio, Robert C; Salvesen, Helga B; Seidel, Danila; Zander, Thomas; Heuckmann, Johannes M; Soltermann, Alex; Moch, Holger; Koker, Mirjam; Leenders, Frauke; Gabler, Franziska; Querings, Silvia; Ansén, Sascha; Brambilla, Elisabeth; Brambilla, Christian; Lorimier, Philippe; Brustugun, Odd Terje; Helland, Åslaug; Petersen, Iver; Clement, Joachim H; Groen, Harry; Timens, Wim; Sietsma, Hannie; Stoelben, Erich; Wolf, Jürgen; Beer, David G; Tsao, Ming Sound; Hanna, Megan; Hatton, Charles; Eck, Michael J; Janne, Pasi A; Johnson, Bruce E; Winckler, Wendy; Greulich, Heidi; Bass, Adam J; Cho, Jeonghee; Rauh, Daniel; Gray, Nathanael S; Wong, Kwok-Kin; Haura, Eric B; Thomas, Roman K; Meyerson, Matthew

    2011-01-01

    While genomically targeted therapies have improved outcomes for patients with lung adenocarcinoma, little is known about the genomic alterations which drive squamous cell lung cancer. Sanger sequencing of the tyrosine kinome identified mutations in the DDR2 kinase gene in 3.8% of squamous cell lung cancers and cell lines. Squamous lung cancer cell lines harboring DDR2 mutations were selectively killed by knock-down of DDR2 by RNAi or by treatment with the multi-targeted kinase inhibitor dasatinib. Tumors established from a DDR2 mutant cell line were sensitive to dasatinib in xenograft models. Expression of mutated DDR2 led to cellular transformation which was blocked by dasatinib. A squamous cell lung cancer patient with a response to dasatinib and erlotinib treatment harbored a DDR2 kinase domain mutation. These data suggest that gain-of-function mutations in DDR2 are important oncogenic events and are amenable to therapy with dasatinib. As dasatinib is already approved for use, these findings could be rapidly translated into clinical trials. PMID:22328973

  16. Exome sequencing and functional analysis identifies BANF1 mutation as the cause of a hereditary progeroid syndrome.

    PubMed

    Puente, Xose S; Quesada, Victor; Osorio, Fernando G; Cabanillas, Rubén; Cadiñanos, Juan; Fraile, Julia M; Ordóñez, Gonzalo R; Puente, Diana A; Gutiérrez-Fernández, Ana; Fanjul-Fernández, Miriam; Lévy, Nicolas; Freije, José M P; López-Otín, Carlos

    2011-05-13

    Accelerated aging syndromes represent a valuable source of information about the molecular mechanisms involved in normal aging. Here, we describe a progeroid syndrome that partially phenocopies Hutchinson-Gilford progeria syndrome (HGPS) but also exhibits distinctive features, including the absence of cardiovascular deficiencies characteristic of HGPS, the lack of mutations in LMNA and ZMPSTE24, and a relatively long lifespan of affected individuals. Exome sequencing and molecular analysis in two unrelated families allowed us to identify a homozygous mutation in BANF1 (c.34G>A [p.Ala12Thr]), encoding barrier-to-autointegration factor 1 (BAF), as the molecular abnormality responsible for this Mendelian disorder. Functional analysis showed that fibroblasts from both patients have a dramatic reduction in BAF protein levels, indicating that the p.Ala12Thr mutation impairs protein stability. Furthermore, progeroid fibroblasts display profound abnormalities in the nuclear lamina, including blebs and abnormal distribution of emerin, an interaction partner of BAF. These nuclear abnormalities are rescued by ectopic expression of wild-type BANF1, providing evidence for the causal role of this mutation. These data demonstrate the utility of exome sequencing for identifying the cause of rare Mendelian disorders and underscore the importance of nuclear envelope alterations in human aging. PMID:21549337

  17. Mathematics Helps Identify Which Cancer Mutations Occur Early in Brain Cancer | Physical Sciences in Oncology

    Cancer.gov

    One of the hallmarks of cancer is that as cancer develops, it accumulates a large number of mutations. Several years ago, researchers in the Dana-Farber Cancer Institute Physical Sciences-Oncology Center (Dana-Farber PS-OC) developed a computational model that can determine the order in which these mutations arise. Now, these investigators have extended their work to include known information about the signaling pathways, enabling them to explore which pathways are altered early or late in the development of the four major forms of glioblastoma.

  18. A Novel Locus Harbouring a Functional CD164 Nonsense Mutation Identified in a Large Danish Family with Nonsyndromic Hearing Impairment.

    PubMed

    Nyegaard, Mette; Rendtorff, Nanna D; Nielsen, Morten S; Corydon, Thomas J; Demontis, Ditte; Starnawska, Anna; Hedemand, Anne; Buniello, Annalisa; Niola, Francesco; Overgaard, Michael T; Leal, Suzanne M; Ahmad, Wasim; Wikman, Friedrik P; Petersen, Kirsten B; Crüger, Dorthe G; Oostrik, Jaap; Kremer, Hannie; Tommerup, Niels; Frödin, Morten; Steel, Karen P; Tranebjærg, Lisbeth; Børglum, Anders D

    2015-07-01

    Nonsyndromic hearing impairment (NSHI) is a highly heterogeneous condition with more than eighty known causative genes. However, in the clinical setting, a large number of NSHI families have unexplained etiology, suggesting that there are many more genes to be identified. In this study we used SNP-based linkage analysis and follow up microsatellite markers to identify a novel locus (DFNA66) on chromosome 6q15-21 (LOD 5.1) in a large Danish family with dominantly inherited NSHI. By locus specific capture and next-generation sequencing, we identified a c.574C>T heterozygous nonsense mutation (p.R192*) in CD164. This gene encodes a 197 amino acid transmembrane sialomucin (known as endolyn, MUC-24 or CD164), which is widely expressed and involved in cell adhesion and migration. The mutation segregated with the phenotype and was absent in 1200 Danish control individuals and in databases with whole-genome and exome sequence data. The predicted effect of the mutation was a truncation of the last six C-terminal residues of the cytoplasmic tail of CD164, including a highly conserved canonical sorting motif (YXX?). In whole blood from an affected individual, we found by RT-PCR both the wild-type and the mutated transcript suggesting that the mutant transcript escapes nonsense mediated decay. Functional studies in HEK cells demonstrated that the truncated protein was almost completely retained on the plasma cell membrane in contrast to the wild-type protein, which targeted primarily to the endo-lysosomal compartments, implicating failed endocytosis as a possible disease mechanism. In the mouse ear, we found CD164 expressed in the inner and outer hair cells of the organ of Corti, as well as in other locations in the cochlear duct. In conclusion, we have identified a new DFNA locus located on chromosome 6q15-21 and implicated CD164 as a novel gene for hearing impairment. PMID:26197441

  19. A Novel Locus Harbouring a Functional CD164 Nonsense Mutation Identified in a Large Danish Family with Nonsyndromic Hearing Impairment

    PubMed Central

    Nielsen, Morten S.; Corydon, Thomas J.; Demontis, Ditte; Starnawska, Anna; Hedemand, Anne; Buniello, Annalisa; Niola, Francesco; Overgaard, Michael T.; Leal, Suzanne M.; Ahmad, Wasim; Wikman, Friedrik P.; Petersen, Kirsten B.; Crüger, Dorthe G.; Oostrik, Jaap; Kremer, Hannie; Tommerup, Niels; Frödin, Morten; Steel, Karen P.; Tranebjærg, Lisbeth; Børglum, Anders D.

    2015-01-01

    Nonsyndromic hearing impairment (NSHI) is a highly heterogeneous condition with more than eighty known causative genes. However, in the clinical setting, a large number of NSHI families have unexplained etiology, suggesting that there are many more genes to be identified. In this study we used SNP-based linkage analysis and follow up microsatellite markers to identify a novel locus (DFNA66) on chromosome 6q15-21 (LOD 5.1) in a large Danish family with dominantly inherited NSHI. By locus specific capture and next-generation sequencing, we identified a c.574C>T heterozygous nonsense mutation (p.R192*) in CD164. This gene encodes a 197 amino acid transmembrane sialomucin (known as endolyn, MUC-24 or CD164), which is widely expressed and involved in cell adhesion and migration. The mutation segregated with the phenotype and was absent in 1200 Danish control individuals and in databases with whole-genome and exome sequence data. The predicted effect of the mutation was a truncation of the last six C-terminal residues of the cytoplasmic tail of CD164, including a highly conserved canonical sorting motif (YXX?). In whole blood from an affected individual, we found by RT-PCR both the wild-type and the mutated transcript suggesting that the mutant transcript escapes nonsense mediated decay. Functional studies in HEK cells demonstrated that the truncated protein was almost completely retained on the plasma cell membrane in contrast to the wild-type protein, which targeted primarily to the endo-lysosomal compartments, implicating failed endocytosis as a possible disease mechanism. In the mouse ear, we found CD164 expressed in the inner and outer hair cells of the organ of Corti, as well as in other locations in the cochlear duct. In conclusion, we have identified a new DFNA locus located on chromosome 6q15-21 and implicated CD164 as a novel gene for hearing impairment. PMID:26197441

  20. Exome Sequencing of Cell-Free DNA from Metastatic Cancer Patients Identifies Clinically Actionable Mutations Distinct from Primary Disease

    PubMed Central

    Butler, Timothy M.; Johnson-Camacho, Katherine; Peto, Myron; Wang, Nicholas J.; Macey, Tara A.; Korkola, James E.; Koppie, Theresa M.; Corless, Christopher L.; Gray, Joe W.; Spellman, Paul T.

    2015-01-01

    The identification of the molecular drivers of cancer by sequencing is the backbone of precision medicine and the basis of personalized therapy; however, biopsies of primary tumors provide only a snapshot of the evolution of the disease and may miss potential therapeutic targets, especially in the metastatic setting. A liquid biopsy, in the form of cell-free DNA (cfDNA) sequencing, has the potential to capture the inter- and intra-tumoral heterogeneity present in metastatic disease, and, through serial blood draws, track the evolution of the tumor genome. In order to determine the clinical utility of cfDNA sequencing we performed whole-exome sequencing on cfDNA and tumor DNA from two patients with metastatic disease; only minor modifications to our sequencing and analysis pipelines were required for sequencing and mutation calling of cfDNA. The first patient had metastatic sarcoma and 47 of 48 mutations present in the primary tumor were also found in the cell-free DNA. The second patient had metastatic breast cancer and sequencing identified an ESR1 mutation in the cfDNA and metastatic site, but not in the primary tumor. This likely explains tumor progression on Anastrozole. Significant heterogeneity between the primary and metastatic tumors, with cfDNA reflecting the metastases, suggested separation from the primary lesion early in tumor evolution. This is best illustrated by an activating PIK3CA mutation (H1047R) which was clonal in the primary tumor, but completely absent from either the metastasis or cfDNA. Here we show that cfDNA sequencing supplies clinically actionable information with minimal risks compared to metastatic biopsies. This study demonstrates the utility of whole-exome sequencing of cell-free DNA from patients with metastatic disease. cfDNA sequencing identified an ESR1 mutation, potentially explaining a patient’s resistance to aromatase inhibition, and gave insight into how metastatic lesions differ from the primary tumor. PMID:26317216

  1. Massively Parallel DNA Sequencing Successfully Identifies New Causative Mutations in Deafness Genes in Patients with Cochlear Implantation and EAS

    PubMed Central

    Miyagawa, Maiko; Nishio, Shin-ya; Ikeda, Takuo; Fukushima, Kunihiro; Usami, Shin-ichi

    2013-01-01

    Genetic factors, the most common etiology in severe to profound hearing loss, are one of the key determinants of Cochlear Implantation (CI) and Electric Acoustic Stimulation (EAS) outcomes. Satisfactory auditory performance after receiving a CI/EAS in patients with certain deafness gene mutations indicates that genetic testing would be helpful in predicting CI/EAS outcomes and deciding treatment choices. However, because of the extreme genetic heterogeneity of deafness, clinical application of genetic information still entails difficulties. Target exon sequencing using massively parallel DNA sequencing is a new powerful strategy to discover rare causative genes in Mendelian disorders such as deafness. We used massive sequencing of the exons of 58 target candidate genes to analyze 8 (4 early-onset, 4 late-onset) Japanese CI/EAS patients, who did not have mutations in commonly found genes including GJB2, SLC26A4, or mitochondrial 1555A>G or 3243A>G mutations. We successfully identified four rare causative mutations in the MYO15A, TECTA, TMPRSS3, and ACTG1 genes in four patients who showed relatively good auditory performance with CI including EAS, suggesting that genetic testing may be able to predict the performance after implantation. PMID:24130743

  2. Massively parallel DNA sequencing successfully identifies new causative mutations in deafness genes in patients with cochlear implantation and EAS.

    PubMed

    Miyagawa, Maiko; Nishio, Shin-ya; Ikeda, Takuo; Fukushima, Kunihiro; Usami, Shin-ichi

    2013-01-01

    Genetic factors, the most common etiology in severe to profound hearing loss, are one of the key determinants of Cochlear Implantation (CI) and Electric Acoustic Stimulation (EAS) outcomes. Satisfactory auditory performance after receiving a CI/EAS in patients with certain deafness gene mutations indicates that genetic testing would be helpful in predicting CI/EAS outcomes and deciding treatment choices. However, because of the extreme genetic heterogeneity of deafness, clinical application of genetic information still entails difficulties. Target exon sequencing using massively parallel DNA sequencing is a new powerful strategy to discover rare causative genes in Mendelian disorders such as deafness. We used massive sequencing of the exons of 58 target candidate genes to analyze 8 (4 early-onset, 4 late-onset) Japanese CI/EAS patients, who did not have mutations in commonly found genes including GJB2, SLC26A4, or mitochondrial 1555A>G or 3243A>G mutations. We successfully identified four rare causative mutations in the MYO15A, TECTA, TMPRSS3, and ACTG1 genes in four patients who showed relatively good auditory performance with CI including EAS, suggesting that genetic testing may be able to predict the performance after implantation. PMID:24130743

  3. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    PubMed Central

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  4. Identifying overlapping mutated driver pathways by constructing gene networks in cancer

    PubMed Central

    2015-01-01

    Background Large-scale cancer genomic projects are providing lots of data on genomic, epigenomic and gene expression aberrations in many cancer types. One key challenge is to detect functional driver pathways and to filter out nonfunctional passenger genes in cancer genomics. Vandin et al. introduced the Maximum Weight Sub-matrix Problem to find driver pathways and showed that it is an NP-hard problem. Methods To find a better solution and solve the problem more efficiently, we present a network-based method (NBM) to detect overlapping driver pathways automatically. This algorithm can directly find driver pathways or gene sets de novo from somatic mutation data utilizing two combinatorial properties, high coverage and high exclusivity, without any prior information. We firstly construct gene networks based on the approximate exclusivity between each pair of genes using somatic mutation data from many cancer patients. Secondly, we present a new greedy strategy to add or remove genes for obtaining overlapping gene sets with driver mutations according to the properties of high exclusivity and high coverage. Results To assess the efficiency of the proposed NBM, we apply the method on simulated data and compare results obtained from the NBM, RME, Dendrix and Multi-Dendrix. NBM obtains optimal results in less than nine seconds on a conventional computer and the time complexity is much less than the three other methods. To further verify the performance of NBM, we apply the method to analyze somatic mutation data from five real biological data sets such as the mutation profiles of 90 glioblastoma tumor samples and 163 lung carcinoma samples. NBM detects groups of genes which overlap with known pathways, including P53, RB and RTK/RAS/PI(3)K signaling pathways. New gene sets with p-value less than 1e-3 are found from the somatic mutation data. Conclusions NBM can detect more biologically relevant gene sets. Results show that NBM outperforms other algorithms for detecting driver pathways or gene sets. Further research will be conducted with the use of novel machine learning techniques. PMID:25859819

  5. Splice-site mutations identified in PDE6A responsible for retinitis pigmentosa in consanguineous Pakistani families

    PubMed Central

    Khan, Shahid Y.; Ali, Shahbaz; Naeem, Muhammad Asif; Khan, Shaheen N.; Husnain, Tayyab; Butt, Nadeem H.; Qazi, Zaheeruddin A.; Akram, Javed; Riazuddin, Sheikh; Ayyagari, Radha; Hejtmancik, J. Fielding

    2015-01-01

    Purpose This study was conducted to localize and identify causal mutations associated with autosomal recessive retinitis pigmentosa (RP) in consanguineous familial cases of Pakistani origin. Methods Ophthalmic examinations that included funduscopy and electroretinography (ERG) were performed to confirm the affectation status. Blood samples were collected from all participating individuals, and genomic DNA was extracted. A genome-wide scan was performed, and two-point logarithm of odds (LOD) scores were calculated. Sanger sequencing was performed to identify the causative variants. Subsequently, we performed whole exome sequencing to rule out the possibility of a second causal variant within the linkage interval. Sequence conservation was performed with alignment analyses of PDE6A orthologs, and in silico splicing analysis was completed with Human Splicing Finder version 2.4.1. Results A large multigenerational consanguineous family diagnosed with early-onset RP was ascertained. An ophthalmic clinical examination consisting of fundus photography and electroretinography confirmed the diagnosis of RP. A genome-wide scan was performed, and suggestive two-point LOD scores were observed with markers on chromosome 5q. Haplotype analyses identified the region; however, the region did not segregate with the disease phenotype in the family. Subsequently, we performed a second genome-wide scan that excluded the entire genome except the chromosome 5q region harboring PDE6A. Next-generation whole exome sequencing identified a splice acceptor site mutation in intron 16: c.2028–1G>A, which was completely conserved in PDE6A orthologs and was absent in ethnically matched 350 control chromosomes, the 1000 Genomes database, and the NHLBI Exome Sequencing Project. Subsequently, we investigated our entire cohort of RP familial cases and identified a second family who harbored a splice acceptor site mutation in intron 10: c.1408–2A>G. In silico analysis suggested that these mutations will result in the elimination of wild-type splice acceptor sites that would result in either skipping of the respective exon or the creation of a new cryptic splice acceptor site; both possibilities would result in retinal photoreceptor cells that lack PDE6A wild-type protein. Conclusions we report two splice acceptor site variations in PDE6A in consanguineous Pakistani families who manifested cardinal symptoms of RP. Taken together with our previously published work, our data suggest that mutations in PDE6A account for about 2% of the total genetic load of RP in our cohort and possibly in the Pakistani population as well. PMID:26321862

  6. Mutations in PRDM5 in Brittle Cornea Syndrome Identify a Pathway Regulating Extracellular Matrix Development and Maintenance

    PubMed Central

    Burkitt Wright, Emma M.M.; Spencer, Helen L.; Daly, Sarah B.; Manson, Forbes D.C.; Zeef, Leo A.H.; Urquhart, Jill; Zoppi, Nicoletta; Bonshek, Richard; Tosounidis, Ioannis; Mohan, Meyyammai; Madden, Colm; Dodds, Annabel; Chandler, Kate E.; Banka, Siddharth; Au, Leon; Clayton-Smith, Jill; Khan, Naz; Biesecker, Leslie G.; Wilson, Meredith; Rohrbach, Marianne; Colombi, Marina; Giunta, Cecilia; Black, Graeme C.M.

    2011-01-01

    Extreme corneal fragility and thinning, which have a high risk of catastrophic spontaneous rupture, are the cardinal features of brittle cornea syndrome (BCS), an autosomal-recessive generalized connective tissue disorder. Enucleation is frequently the only management option for this condition, resulting in blindness and psychosocial distress. Even when the cornea remains grossly intact, visual function could also be impaired by a high degree of myopia and keratoconus. Deafness is another common feature and results in combined sensory deprivation. Using autozygosity mapping, we identified mutations in PRDM5 in families with BCS. We demonstrate that regulation of expression of extracellular matrix components, particularly fibrillar collagens, by PRDM5 is a key molecular mechanism that underlies corneal fragility in BCS and controls normal corneal development and maintenance. ZNF469, encoding a zinc finger protein of hitherto undefined function, has been identified as a quantitative trait locus for central corneal thickness, and mutations in this gene have been demonstrated in Tunisian Jewish and Palestinian kindreds with BCS. We show that ZNF469 and PRDM5, two genes that when mutated cause BCS, participate in the same regulatory pathway. PMID:21664999

  7. Mutations in PRDM5 in brittle cornea syndrome identify a pathway regulating extracellular matrix development and maintenance.

    PubMed

    Burkitt Wright, Emma M M; Spencer, Helen L; Daly, Sarah B; Manson, Forbes D C; Zeef, Leo A H; Urquhart, Jill; Zoppi, Nicoletta; Bonshek, Richard; Tosounidis, Ioannis; Mohan, Meyyammai; Madden, Colm; Dodds, Annabel; Chandler, Kate E; Banka, Siddharth; Au, Leon; Clayton-Smith, Jill; Khan, Naz; Biesecker, Leslie G; Wilson, Meredith; Rohrbach, Marianne; Colombi, Marina; Giunta, Cecilia; Black, Graeme C M

    2011-06-10

    Extreme corneal fragility and thinning, which have a high risk of catastrophic spontaneous rupture, are the cardinal features of brittle cornea syndrome (BCS), an autosomal-recessive generalized connective tissue disorder. Enucleation is frequently the only management option for this condition, resulting in blindness and psychosocial distress. Even when the cornea remains grossly intact, visual function could also be impaired by a high degree of myopia and keratoconus. Deafness is another common feature and results in combined sensory deprivation. Using autozygosity mapping, we identified mutations in PRDM5 in families with BCS. We demonstrate that regulation of expression of extracellular matrix components, particularly fibrillar collagens, by PRDM5 is a key molecular mechanism that underlies corneal fragility in BCS and controls normal corneal development and maintenance. ZNF469, encoding a zinc finger protein of hitherto undefined function, has been identified as a quantitative trait locus for central corneal thickness, and mutations in this gene have been demonstrated in Tunisian Jewish and Palestinian kindreds with BCS. We show that ZNF469 and PRDM5, two genes that when mutated cause BCS, participate in the same regulatory pathway. PMID:21664999

  8. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma.

    PubMed

    Okosun, Jessica; Bödör, Csaba; Wang, Jun; Araf, Shamzah; Yang, Cheng-Yuan; Pan, Chenyi; Boller, Sören; Cittaro, Davide; Bozek, Monika; Iqbal, Sameena; Matthews, Janet; Wrench, David; Marzec, Jacek; Tawana, Kiran; Popov, Nikolay; O'Riain, Ciaran; O'Shea, Derville; Carlotti, Emanuela; Davies, Andrew; Lawrie, Charles H; Matolcsy, András; Calaminici, Maria; Norton, Andrew; Byers, Richard J; Mein, Charles; Stupka, Elia; Lister, T Andrew; Lenz, Georg; Montoto, Silvia; Gribben, John G; Fan, Yuhong; Grosschedl, Rudolf; Chelala, Claude; Fitzgibbon, Jude

    2014-02-01

    Follicular lymphoma is an incurable malignancy, with transformation to an aggressive subtype representing a critical event during disease progression. Here we performed whole-genome or whole-exome sequencing on 10 follicular lymphoma-transformed follicular lymphoma pairs followed by deep sequencing of 28 genes in an extension cohort, and we report the key events and evolutionary processes governing tumor initiation and transformation. Tumor evolution occurred through either a 'rich' or 'sparse' ancestral common progenitor clone (CPC). We identified recurrent mutations in linker histone, JAK-STAT signaling, NF-?B signaling and B cell developmental genes. Longitudinal analyses identified early driver mutations in chromatin regulator genes (CREBBP, EZH2 and KMT2D (MLL2)), whereas mutations in EBF1 and regulators of NF-?B signaling (MYD88 and TNFAIP3) were gained at transformation. Collectively, this study provides new insights into the genetic basis of follicular lymphoma and the clonal dynamics of transformation and suggests that personalizing therapies to target key genetic alterations in the CPC represents an attractive therapeutic strategy. PMID:24362818

  9. Exome sequencing identifies mutations in KIF14 as a novel cause of an autosomal recessive lethal fetal ciliopathy phenotype.

    PubMed

    Filges, I; Nosova, E; Bruder, E; Tercanli, S; Townsend, K; Gibson, W T; Röthlisberger, B; Heinimann, K; Hall, J G; Gregory-Evans, C Y; Wasserman, W W; Miny, P; Friedman, J M

    2014-09-01

    Gene discovery using massively parallel sequencing has focused on phenotypes diagnosed postnatally such as well-characterized syndromes or intellectual disability, but is rarely reported for fetal disorders. We used family-based whole-exome sequencing in order to identify causal variants for a recurrent pattern of an undescribed lethal fetal congenital anomaly syndrome. The clinical signs included intrauterine growth restriction (IUGR), severe microcephaly, renal cystic dysplasia/agenesis and complex brain and genitourinary malformations. The phenotype was compatible with a ciliopathy, but not diagnostic of any known condition. We hypothesized biallelic disruption of a gene leading to a defect related to the primary cilium. We identified novel autosomal recessive truncating mutations in KIF14 that segregated with the phenotype. Mice with autosomal recessive mutations in the same gene have recently been shown to have a strikingly similar phenotype. Genotype-phenotype correlations indicate that the function of KIF14 in cell division and cytokinesis can be linked to a role in primary cilia, supported by previous cellular and model organism studies of proteins that interact with KIF14. We describe the first human phenotype, a novel lethal ciliary disorder, associated with biallelic inactivating mutations in KIF14. KIF14 may also be considered a candidate gene for allelic viable ciliary and/or microcephaly phenotypes. PMID:24128419

  10. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumor types are associated with increased TERT expression and telomerase activation

    PubMed Central

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H.; Yang, Rui; Killela, Patrick J.; Liang, Junbo; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Wang, Si-Zhen; Jiao, Yu-Chen; Yan, Hai; Tao, Hou-Quan

    2015-01-01

    Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets. PMID:25843513

  11. A novel NOTCH2 mutation identified in a Korean family with Hajdu-Cheney syndrome showing phenotypic diversity.

    PubMed

    Han, Mi Seon; Ko, Jung Min; Cho, Tae-Joon; Park, Woong-Yang; Cheong, Hae Il

    2015-01-01

    Hajdu-Cheney syndrome (HCS) and serpentine fibula-polycystic kidney syndrome (SFPKS) share many similarities, including craniofacial abnormalities, bony deformities, and renal involvement. Because mutations in exon 34 of NOTCH2 have been identified recently in both HCS and SFPKS patients, it has been suggested that these two syndromes be classed as the same disorder. A 3-year-old boy presented with polycystic kidneys and club feet detected during the fetal period; however, acroosteolysis and curved fibulae were not observed. His mother showed osteoporosis and had a history of compression fractures in the spine without renal anomalies. Although the same novel mutation in NOTCH2 was found in both the mother and her son, these patients displayed different clinical manifestations. In this report, we present a familial case of HCS in a boy and his mother that was suspected on physical examination and radiological findings. We speculate that HCS and SFPKS are a single disease entity with a wide spectrum of clinical manifestations associated with truncating mutations in exon 34 of NOTCH2. PMID:25696021

  12. Tri-allelic pattern of short tandem repeats identifies the murderer among identical twins and suggests an embryonic mutational origin.

    PubMed

    Wang, Li-Feng; Yang, Ying; Zhang, Xiao-Nan; Quan, Xiao-Liang; Wu, Yuan-Ming

    2015-05-01

    Monozygotic twins can be co-identified by genotyping of short tandem repeats (STRs); however, for distinguishing them, STR genotyping is ineffective, especially in the case of murder. Here, a rarely occurring tri-allelic pattern in the vWA locus (16, 18, 19) was identified only in the DNA of one identical twin, which could help to exonerate the innocent twin in a murder charge. This mutation was defined as primary through genotyping of the family and could be detected in blood, buccal and semen samples from the individual; however, two alternative allele-balanced di-allelic patterns (16, 18 or 16, 19) were detected in hair root sheath cells. Such a kind of segregation indicates a one-step mutation occurs in cell mitosis, which is after embryonic zygote formation and during the early development of the individual after the division of the blastocyte. Sequencing revealed the insertion between the allele 18 and 19 is a repeat unit of TAGA/TCTA (plus/minus strand), which belongs to "AGAT/ATCT"-based core repeats identified from all tri-allelic pattern reports recorded in the STR base and a detailed model was proposed for STR repeat length variation caused by false priming during DNA synthesis. Our model illustrates the possible origination of allele-balanced and unbalanced tri-allelic pattern, clarifies that the genotypes of parent-child mismatches, aberrant di-allelic patterns, and type 1 or 2 tri-allelic patterns should be considered as independent, but interconnected forms of STR mutation. PMID:25732248

  13. Two novel mutations in glucocerebrosidase, C23W and IVS7-1 G>A, identified in Type 1 Gaucher patients heterozygous for N370S.

    PubMed

    Jack, Alexandria; Amato, Dominick; Morris, Geoffrey; Choy, Francis Y M

    2014-03-15

    Gaucher disease is an autosomal recessive lysosomal storage disorder resulting from deficient glucocerebrosidase activity. There have been nearly 300 mutations described to date. Novel mutations can potentially provide insight into the biochemical basis of the disease. Two novel mutations are described in two Type 1 Gaucher patients with N370S compound heterozygosity; a point mutation that causes an amino acid substitution at cysteine residue 23 for tryptophan, and a second point mutation within the splicing element at the 3' end of intron 7. Both mutations were identified by PCR amplification and sequence analysis of patient glucocerebrosidase genomic DNA. Restriction fragment length polymorphism analysis was established for both novel mutations for efficient identification in future patients. Past literature suggests that mutations affecting cysteine residues involved in disulfide bridges, as well as mutations affecting splicing patterns of the glucocerebrosidase transcript, are detrimental to enzyme activity. However, compound heterozygosity with N370S, a mild mutation, will lead to a mild phenotype. The cases reported here support these past findings. PMID:24434810

  14. Whole-Exome Sequencing Identifies LRIT3 Mutations as a Cause of Autosomal-Recessive Complete Congenital Stationary Night Blindness

    PubMed Central

    Zeitz, Christina; Jacobson, Samuel G.; Hamel, Christian P.; Bujakowska, Kinga; Neuillé, Marion; Orhan, Elise; Zanlonghi, Xavier; Lancelot, Marie-Elise; Michiels, Christelle; Schwartz, Sharon B.; Bocquet, Béatrice; Antonio, Aline; Audier, Claire; Letexier, Mélanie; Saraiva, Jean-Paul; Luu, Tien D.; Sennlaub, Florian; Nguyen, Hoan; Poch, Olivier; Dollfus, Hélène; Lecompte, Odile; Kohl, Susanne; Sahel, José-Alain; Bhattacharya, Shomi S.; Audo, Isabelle

    2013-01-01

    Congenital stationary night blindness (CSNB) is a clinically and genetically heterogeneous retinal disorder. Two forms can be distinguished clinically: complete CSNB (cCSNB) and incomplete CSNB. Individuals with cCSNB have visual impairment under low-light conditions and show a characteristic electroretinogram (ERG). The b-wave amplitude is severely reduced in the dark-adapted state of the ERG, representing abnormal function of ON bipolar cells. Furthermore, individuals with cCSNB can show other ocular features such as nystagmus, myopia, and strabismus and can have reduced visual acuity and abnormalities of the cone ERG waveform. The mode of inheritance of this form can be X-linked or autosomal recessive, and the dysfunction of four genes (NYX, GRM6, TRPM1, and GPR179) has been described so far. Whole-exome sequencing in one simplex cCSNB case lacking mutations in the known genes led to the identification of a missense mutation (c.983G>A [p.Cys328Tyr]) and a nonsense mutation (c.1318C>T [p.Arg440?]) in LRIT3, encoding leucine-rich-repeat (LRR), immunoglobulin-like, and transmembrane-domain 3 (LRIT3). Subsequent Sanger sequencing of 89 individuals with CSNB identified another cCSNB case harboring a nonsense mutation (c.1151C>G [p.Ser384?]) and a deletion predicted to lead to a premature stop codon (c.1538_1539del [p.Ser513Cysfs?59]) in the same gene. Human LRIT3 antibody staining revealed in the outer plexiform layer of the human retina a punctate-labeling pattern resembling the dendritic tips of bipolar cells; similar patterns have been observed for other proteins implicated in cCSNB. The exact role of this LRR protein in cCSNB remains to be elucidated. PMID:23246293

  15. Loss of function mutations in RPL27 and RPS27 identified by whole-exome sequencing in Diamond-Blackfan anaemia.

    PubMed

    Wang, RuNan; Yoshida, Kenichi; Toki, Tsutomu; Sawada, Takafumi; Uechi, Tamayo; Okuno, Yusuke; Sato-Otsubo, Aiko; Kudo, Kazuko; Kamimaki, Isamu; Kanezaki, Rika; Shiraishi, Yuichi; Chiba, Kenichi; Tanaka, Hiroko; Terui, Kiminori; Sato, Tomohiko; Iribe, Yuji; Ohga, Shouichi; Kuramitsu, Madoka; Hamaguchi, Isao; Ohara, Akira; Hara, Junichi; Goi, Kumiko; Matsubara, Kousaku; Koike, Kenichi; Ishiguro, Akira; Okamoto, Yasuhiro; Watanabe, Kenichiro; Kanno, Hitoshi; Kojima, Seiji; Miyano, Satoru; Kenmochi, Naoya; Ogawa, Seishi; Ito, Etsuro

    2015-03-01

    Diamond-Blackfan anaemia is a congenital bone marrow failure syndrome that is characterized by red blood cell aplasia. The disease has been associated with mutations or large deletions in 11 ribosomal protein genes including RPS7, RPS10, RPS17, RPS19, RPS24, RPS26, RPS29, RPL5, RPL11, RPL26 and RPL35A as well as GATA1 in more than 50% of patients. However, the molecular aetiology of many Diamond-Blackfan anaemia cases remains to be uncovered. To identify new mutations responsible for Diamond-Blackfan anaemia, we performed whole-exome sequencing analysis of 48 patients with no documented mutations/deletions involving known Diamond-Blackfan anaemia genes except for RPS7, RPL26, RPS29 and GATA1. Here, we identified a de novo splicing error mutation in RPL27 and frameshift deletion in RPS27 in sporadic patients with Diamond-Blackfan anaemia. In vitro knockdown of gene expression disturbed pre-ribosomal RNA processing. Zebrafish models of rpl27 and rps27 mutations showed impairments of erythrocyte production and tail and/or brain development. Additional novel mutations were found in eight patients, including RPL3L, RPL6, RPL7L1T, RPL8, RPL13, RPL14, RPL18A and RPL31. In conclusion, we identified novel germline mutations of two ribosomal protein genes responsible for Diamond-Blackfan anaemia, further confirming the concept that mutations in ribosomal protein genes lead to Diamond-Blackfan anaemia. PMID:25424902

  16. KLF2 mutation is the most frequent somatic change in splenic marginal zone lymphoma and identifies a subset with distinct genotype

    E-print Network

    Clipson, Alexandra; Wang, Ming; de Leval, Laurence; Ashton-Key, Margaret; Wotherspoon, Andrew; Vassiliou, George; Bolli, Niccolo; Grove, Carolyn; Moody, Sarah; Ibarz, Leire Escudero; Gundem, Gunes; Brugger, Kim; Xue, Xuemin; Mi, Ella; Bench, Anthony; Scott, Mike; Liu, Hongxiang; Follows, George; Robles, Eloy F.; Climent, Jose Angel Martinez; Oscier, David; Watkins, A. James; Du, Ming-Qing

    2014-11-27

    To characterise the genetics of splenic marginal zone lymphoma (SMZL), we performed whole exome sequencing of 16 cases and identified novel recurrent inactivating mutations in KLF2, a gene whose deficiency was previously shown to cause splenic...

  17. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma

    PubMed Central

    Guichard, Cécile; Amaddeo, Giuliana; Imbeaud, Sandrine; Ladeiro, Yannick; Pelletier, Laura; Maad, Ichrafe Ben; Calderaro, Julien; Bioulac-Sage, Paulette; Letexier, Mélanie; Degos, Françoise; Clément, Bruno; Balabaud, Charles; Chevet, Eric; Laurent, Alexis; Couchy, Gabrielle; Letouzé, Eric; Calvo, Fabien; Zucman-Rossi, Jessica

    2012-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. High-resolution copy number analysis of 125 tumors of which 24 were subjected to whole-exome sequencing identified 135 homozygous deletions and 994 somatic gene mutations with predicted functional consequences. We identified new recurrent alterations in 6 genes (ARID1A, RPS6KA3, NFE2L2, IRF2, CDH8 and PROKR2) not previously described in HCC. Functional analyses demonstrated tumor suppressor properties for IRF2 whose inactivation, exclusively found in hepatitis B virus related tumors, leads to impaired TP53 function. Alternatively, inactivation of proteins involved in chromatin remodeling was frequent and predominant in alcohol related tumors. Moreover, activation of the oxidative stress metabolism and inactivation of RPS6KA3 were new pathways associated with WNT/?-catenin activation, thereby suggesting a cooperative effect in tumorigenesis. This study shows the dramatic somatic genetic diversity in HCC, it reveals interactions between oncogene and tumor suppressor gene mutations markedly related to specific risk factors. PMID:22561517

  18. Identifying disease mutations in genomic medicine settings: current challenges and how to accelerate progress

    PubMed Central

    2012-01-01

    The pace of exome and genome sequencing is accelerating, with the identification of many new disease-causing mutations in research settings, and it is likely that whole exome or genome sequencing could have a major impact in the clinical arena in the relatively near future. However, the human genomics community is currently facing several challenges, including phenotyping, sample collection, sequencing strategies, bioinformatics analysis, biological validation of variant function, clinical interpretation and validity of variant data, and delivery of genomic information to various constituents. Here we review these challenges and summarize the bottlenecks for the clinical application of exome and genome sequencing, and we discuss ways for moving the field forward. In particular, we urge the need for clinical-grade sample collection, high-quality sequencing data acquisition, digitalized phenotyping, rigorous generation of variant calls, and comprehensive functional annotation of variants. Additionally, we suggest that a 'networking of science' model that encourages much more collaboration and online sharing of medical history, genomic data and biological knowledge, including among research participants and consumers/patients, will help establish causation and penetrance for disease causal variants and genes. As we enter this new era of genomic medicine, we envision that consumer-driven and consumer-oriented efforts will take center stage, thus allowing insights from the human genome project to translate directly back into individualized medicine. PMID:22830651

  19. Germline MLH1 Mutations Are Frequently Identified in Lynch Syndrome Patients With Colorectal and Endometrial Carcinoma Demonstrating Isolated Loss of PMS2 Immunohistochemical Expression.

    PubMed

    Dudley, Beth; Brand, Randall E; Thull, Darcy; Bahary, Nathan; Nikiforova, Marina N; Pai, Reetesh K

    2015-08-01

    Current guidelines on germline mutation testing for patients suspected of having Lynch syndrome are not entirely clear in patients with tumors demonstrating isolated loss of PMS2 immunohistochemical expression. We analyzed the clinical and pathologic features of patients with tumors demonstrating isolated loss of PMS2 expression in an attempt to (1) determine the frequency of germline MLH1 and PMS2 mutations and (2) correlate mismatch-repair protein immunohistochemistry and tumor histology with germline mutation results. A total of 3213 consecutive colorectal carcinomas and 215 consecutive endometrial carcinomas were prospectively analyzed for DNA mismatch-repair protein expression by immunohistochemistry. In total, 32 tumors from 31 patients demonstrated isolated loss of PMS2 immunohistochemical expression, including 16 colorectal carcinomas and 16 endometrial carcinomas. Microsatellite instability (MSI) polymerase chain reaction was performed in 29 tumors from 28 patients with the following results: 28 tumors demonstrated high-level MSI, and 1 tumor demonstrated low-level MSI. Twenty of 31 (65%) patients in the study group had tumors demonstrating histopathology associated with high-level MSI. Seventeen patients underwent germline mutation analysis with the following results: 24% with MLH1 mutations, 35% with PMS2 mutations, 12% with PMS2 variants of undetermined significance, and 29% with no mutations in either MLH1 or PMS2. Three of the 4 patients with MLH1 germline mutations had a mutation that results in decreased stability and quantity of the MLH1 protein that compromises the MLH1-PMS2 protein complex, helping to explain the presence of immunogenic but functionally inactive MLH1 protein within the tumor. The high frequency of MLH1 germline mutations identified in our study has important implications for testing strategies in patients suspected of having Lynch syndrome and indicates that patients with tumors demonstrating isolated loss of PMS2 expression without a germline PMS2 mutation must have MLH1 mutation analysis performed. PMID:25871621

  20. Exome sequencing identifies mutations in the gene TTC7A in French-Canadian cases with hereditary multiple intestinal atresia

    PubMed Central

    Samuels, Mark E; Majewski, Jacek; Alirezaie, Najmeh; Fernandez, Isabel; Casals, Ferran; Patey, Natalie; Decaluwe, Hélène; Gosselin, Isabelle; Haddad, Elie; Hodgkinson, Alan; Idaghdour, Youssef; Marchand, Valerie; Michaud, Jacques L; Rodrigue, Marc-André; Desjardins, Sylvie; Dubois, Stéphane; Le Deist, Francoise; Awadalla, Philip; Raymond, Vincent; Maranda, Bruno

    2013-01-01

    Background Congenital multiple intestinal atresia (MIA) is a severe, fatal neonatal disorder, involving the occurrence of obstructions in the small and large intestines ultimately leading to organ failure. Surgical interventions are palliative but do not provide long-term survival. Severe immunodeficiency may be associated with the phenotype. A genetic basis for MIA is likely. We had previously ascertained a cohort of patients of French-Canadian origin, most of whom were deceased as infants or in utero. The goal of the study was to identify the molecular basis for the disease in the patients of this cohort. Methods We performed whole exome sequencing on samples from five patients of four families. Validation of mutations and familial segregation was performed using standard Sanger sequencing in these and three additional families with deceased cases. Exon skipping was assessed by reverse transcription-PCR and Sanger sequencing. Results Five patients from four different families were each homozygous for a four base intronic deletion in the gene TTC7A, immediately adjacent to a consensus GT splice donor site. The deletion was demonstrated to have deleterious effects on splicing causing the skipping of the attendant upstream coding exon, thereby leading to a predicted severe protein truncation. Parents were heterozygous carriers of the deletion in these families and in two additional families segregating affected cases. In a seventh family, an affected case was compound heterozygous for the same 4bp deletion and a second missense mutation p.L823P, also predicted as pathogenic. No other sequenced genes possessed deleterious variants explanatory for all patients in the cohort. Neither mutation was seen in a large set of control chromosomes. Conclusions Based on our genetic results, TTC7A is the likely causal gene for MIA. PMID:23423984

  1. Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid sensitivity

    E-print Network

    Málaga, Universidad de

    , in turn, affects water availability to the plant (Hasegawa et al., 2000). In addition to the hyper) is important for salt and/or osmotic plant tolerance, because tss2 is hypersensitive to growth inh stress severely limits plant growth and agricultural productivity. We have used mutagenesis to identify

  2. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS.

    PubMed

    Smith, Bradley N; Ticozzi, Nicola; Fallini, Claudia; Gkazi, Athina Soragia; Topp, Simon; Kenna, Kevin P; Scotter, Emma L; Kost, Jason; Keagle, Pamela; Miller, Jack W; Calini, Daniela; Vance, Caroline; Danielson, Eric W; Troakes, Claire; Tiloca, Cinzia; Al-Sarraj, Safa; Lewis, Elizabeth A; King, Andrew; Colombrita, Claudia; Pensato, Viviana; Castellotti, Barbara; de Belleroche, Jacqueline; Baas, Frank; ten Asbroek, Anneloor L M A; Sapp, Peter C; McKenna-Yasek, Diane; McLaughlin, Russell L; Polak, Meraida; Asress, Seneshaw; Esteban-Pérez, Jesús; Muñoz-Blanco, José Luis; Simpson, Michael; van Rheenen, Wouter; Diekstra, Frank P; Lauria, Giuseppe; Duga, Stefano; Corti, Stefania; Cereda, Cristina; Corrado, Lucia; Sorarù, Gianni; Morrison, Karen E; Williams, Kelly L; Nicholson, Garth A; Blair, Ian P; Dion, Patrick A; Leblond, Claire S; Rouleau, Guy A; Hardiman, Orla; Veldink, Jan H; van den Berg, Leonard H; Al-Chalabi, Ammar; Pall, Hardev; Shaw, Pamela J; Turner, Martin R; Talbot, Kevin; Taroni, Franco; García-Redondo, Alberto; Wu, Zheyang; Glass, Jonathan D; Gellera, Cinzia; Ratti, Antonia; Brown, Robert H; Silani, Vincenzo; Shaw, Christopher E; Landers, John E

    2014-10-22

    Exome sequencing is an effective strategy for identifying human disease genes. However, this methodology is difficult in late-onset diseases where limited availability of DNA from informative family members prohibits comprehensive segregation analysis. To overcome this limitation, we performed an exome-wide rare variant burden analysis of 363 index cases with familial ALS (FALS). The results revealed an excess of patient variants within TUBA4A, the gene encoding the Tubulin, Alpha 4A protein. Analysis of a further 272 FALS cases and 5,510 internal controls confirmed the overrepresentation as statistically significant and replicable. Functional analyses revealed that TUBA4A mutants destabilize the microtubule network, diminishing its repolymerization capability. These results further emphasize the role of cytoskeletal defects in ALS and demonstrate the power of gene-based rare variant analyses in situations where causal genes cannot be identified through traditional segregation analysis. PMID:25374358

  3. Next generation sequencing identifies mutations in Atonal homolog 7 (ATOH7) in families with global eye developmental defects

    PubMed Central

    Khan, Kamron; Logan, Clare V.; McKibbin, Martin; Sheridan, Eamonn; Elçioglu, Nursel H.; Yenice, Ozlem; Parry, David A.; Fernandez-Fuentes, Narcis; Abdelhamed, Zakia I.A.; Al-Maskari, Ahmed; Poulter, James A.; Mohamed, Moin D.; Carr, Ian M.; Morgan, Joanne E.; Jafri, Hussain; Raashid, Yasmin; Taylor, Graham R.; Johnson, Colin A.; Inglehearn, Chris F.; Toomes, Carmel; Ali, Manir

    2012-01-01

    The atonal homolog 7 (ATOH7) gene encodes a transcription factor involved in determining the fate of retinal progenitor cells and is particularly required for optic nerve and ganglion cell development. Using a combination of autozygosity mapping and next generation sequencing, we have identified homozygous mutations in this gene, p.E49V and p.P18RfsX69, in two consanguineous families diagnosed with multiple ocular developmental defects, including severe vitreoretinal dysplasia, optic nerve hypoplasia, persistent fetal vasculature, microphthalmia, congenital cataracts, microcornea, corneal opacity and nystagmus. Most of these clinical features overlap with defects in the Norrin/?-catenin signalling pathway that is characterized by dysgenesis of the retinal and hyaloid vasculature. Our findings document Mendelian mutations within ATOH7 and imply a role for this molecule in the development of structures at the front as well as the back of the eye. This work also provides further insights into the function of ATOH7, especially its importance in retinal vascular development and hyaloid regression. PMID:22068589

  4. Mutational Analysis of the Yeast TRAPP Subunit Trs20p Identifies Roles in Endocytic Recycling and Sporulation

    PubMed Central

    Mahfouz, Hichem; Ragnini-Wilson, Antonella; Venditti, Rossella; De Matteis, Maria Antonietta; Wilson, Cathal

    2012-01-01

    Trs20p is a subunit of the evolutionarily conserved TRAPP (TRAnsport Protein Particle) complex that mediates various aspects of membrane trafficking. Three TRAPP complexes have been identified in yeast with roles in ER-to-Golgi trafficking, post-Golgi and endosomal-to-Golgi transport and in autophagy. The role of Trs20p, which is essential for viability and a component of all three complexes, and how it might function within each TRAPP complex, has not been clarified to date. To begin to address the role of Trs20p we generated different mutants by random mutagenesis but, surprisingly, no defects were observed in diverse anterograde transport pathways or general secretion in Trs20 temperature-sensitive mutants. Instead, mutation of Trs20 led to defects in endocytic recycling and a block in sporulation/meiosis. The phenotypes of different mutants appear to be separable suggesting that the mutations affect the function of Trs20 in different TRAPP complexes. PMID:23049729

  5. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma

    PubMed Central

    Araf, Shamzah; Yang, Cheng-Yuan; Pan, Chenyi; Boller, Sören; Cittaro, Davide; Bozek, Monika; Iqbal, Sameena; Matthews, Janet; Wrench, David; Marzec, Jacek; Tawana, Kiran; Popov, Nikolay; O’Riain, Ciaran; O’Shea, Derville; Carlotti, Emanuela; Davies, Andrew; Lawrie, Charles H.; Matolcsy, Andras; Calaminici, Maria; Norton, Andrew; Byers, Richard J.; Mein, Charles; Stupka, Elia; Lister, T. Andrew; Lenz, Georg; Montoto, Silvia; Gribben, John G.; Fan, Yuhong; Grosschedl, Rudolf; Chelala, Claude; Fitzgibbon, Jude

    2013-01-01

    Follicular lymphoma (FL) is an incurable malignancy1, with transformation to an aggressive subtype being a critical event during disease progression. Here we performed whole genome or exome sequencing on 10 FL-transformed FL pairs, followed by deep sequencing of 28 genes in an extension cohort and report the key events and evolutionary processes governing initiation and transformation. Tumor evolution occurred through either a ‘rich’ or ‘sparse’ ancestral common progenitor clone (CPC). We identified recurrent mutations in linker histones, JAK-STAT signaling, NF-?B signaling and B-cell development genes. Longitudinal analyses revealed chromatin regulators (CREBBP, EZH2 and MLL2) as early driver genes, whilst mutations in EBF1 and regulators of NF-?B signaling (MYD88 and TNFAIP3) were gained at transformation. Collectively, this study provides novel insights into the genetic basis of follicular lymphoma, the clonal dynamics of transformation and suggests that personalizing therapies to target key genetic alterations within the CPC represents an attractive therapeutic strategy. PMID:24362818

  6. Whole exome sequencing identifies de novo heterozygous CAV1 mutations associated with a novel neonatal onset lipodystrophy syndrome.

    PubMed

    Garg, Abhimanyu; Kircher, Martin; Del Campo, Miguel; Amato, R Stephen; Agarwal, Anil K

    2015-08-01

    Despite remarkable progress in identifying causal genes for many types of genetic lipodystrophies in the last decade, the molecular basis of many extremely rare lipodystrophy patients with distinctive phenotypes remains unclear. We conducted whole exome sequencing of the parents and probands from six pedigrees with neonatal onset of generalized loss of subcutaneous fat with additional distinctive phenotypic features and report de novo heterozygous null mutations, c.424C>T (p.Q142*) and c.479_480delTT (p.F160*), in CAV1 in a 7-year-old male and a 3-year-old female of European origin, respectively. Both the patients had generalized fat loss, thin mottled skin and progeroid features at birth. The male patient had cataracts requiring extraction at age 30 months and the female patient had pulmonary arterial hypertension. Dermal fibroblasts of the female patient revealed negligible CAV1 immunofluorescence staining compared to control but there were no differences in the number and morphology of caveolae upon electron microscopy examination. Based upon the similarities in the clinical features of these two patients, previous reports of CAV1 mutations in patients with lipodystrophies and pulmonary hypertension, and similar features seen in CAV1 null mice, we conclude that these variants are the most likely cause of one subtype of neonatal onset generalized lipodystrophy syndrome. PMID:25898808

  7. 20 ans après: a second mutation in MAOA identified by targeted high-throughput sequencing in a family with altered behavior and cognition

    PubMed Central

    Piton, Amélie; Poquet, Hélène; Redin, Claire; Masurel, Alice; Lauer, Julia; Muller, Jean; Thevenon, Julien; Herenger, Yvan; Chancenotte, Sophie; Bonnet, Marlène; Pinoit, Jean-Michel; Huet, Frédéric; Thauvin-Robinet, Christel; Jaeger, Anne-Sophie; Le Gras, Stéphanie; Jost, Bernard; Gérard, Bénédicte; Peoc'h, Katell; Launay, Jean-Marie; Faivre, Laurence; Mandel, Jean-Louis

    2014-01-01

    Intellectual disability (ID) is characterized by an extraordinary genetic heterogeneity, with >250 genes that have been implicated in monogenic forms of ID. Because this complexity precluded systematic testing for mutations and because clinical features are often non-specific, for some of these genes only few cases or families have been unambiguously documented. It is the case of the X-linked gene encoding monoamine oxidase A (MAOA), for which only one nonsense mutation has been identified in Brunner syndrome, characterized in a single family by mild non-dysmorphic ID and impulsive, violent and aggressive behaviors. We have performed targeted high-throughput sequencing of 220 genes, including MAOA, in patients with undiagnosed ID. We identified a c.797_798delinsTT (p.C266F) missense mutation in MAOA in a boy with autism spectrum disorder, attention deficit and autoaggressive behavior. Two maternal uncles carry the mutation and have severe ID, with a history of maltreatment in early childhood. This novel missense mutation decreases MAOA enzymatic activity, leading to abnormal levels of urinary monoamines. The identification of this new point mutation confirms, for the first time since 1993, the monogenic implication of the MAOA gene in ID of various degrees, autism and behavioral disturbances. The variable expressivity of the mutation observed in male patients of this family may involve gene–environment interactions, and the identification of a perturbation in monoamine metabolism should be taken into account when prescribing psychoactive drugs in such patients. PMID:24169519

  8. Whole exome sequencing identifies a POLRID mutation segregating in a father and two daughters with findings of Klippel-Feil and Treacher Collins syndromes.

    PubMed

    Giampietro, Philip F; Armstrong, Linlea; Stoddard, Alex; Blank, Robert D; Livingston, Janet; Raggio, Cathy L; Rasmussen, Kristen; Pickart, Michael; Lorier, Rachel; Turner, Amy; Sund, Sarah; Sobrera, Nara; Neptune, Enid; Sweetser, David; Santiago-Cornier, Alberto; Broeckel, Ulrich

    2015-01-01

    We report on a father and his two daughters diagnosed with Klippel-Feil syndrome (KFS) but with craniofacial differences (zygomatic and mandibular hypoplasia and cleft palate) and external ear abnormalities suggestive of Treacher Collins syndrome (TCS). The diagnosis of KFS was favored, given that the neck anomalies were the predominant manifestations, and that the diagnosis predated later recognition of the association between spinal segmentation abnormalities and TCS. Genetic heterogeneity and the rarity of large families with KFS have limited the ability to identify mutations by traditional methods. Whole exome sequencing identified a nonsynonymous mutation in POLR1D (subunit of RNA polymerase I and II): exon2:c.T332C:p.L111P. Mutations in POLR1D are present in about 5% of individuals diagnosed with TCS. We propose that this mutation is causal in this family, suggesting a pathogenetic link between KFS and TCS. PMID:25348728

  9. Mutation in KERA Identified by Linkage Analysis and Targeted Resequencing in a Pedigree with Premature Atherosclerosis

    PubMed Central

    van Capelleveen, Julian C.; Bot, Ilze; de Jager, Saskia C.; van Eck, Miranda; Jolley, Jennifer; Kuiper, Johan; Stephens, Jonathon; Albers, Cornelius A.; Vosmeer, C. Ruben; Kruize, Heleen; Geerke, Daan P.; van der Wal, Allard C.; van der Loos, Chris M.; Kastelein, John J. P.; Trip, Mieke D.

    2014-01-01

    Aims Genetic factors explain a proportion of the inter-individual variation in the risk for atherosclerotic events, but the genetic basis of atherosclerosis and atherothrombosis in families with Mendelian forms of premature atherosclerosis is incompletely understood. We set out to unravel the molecular pathology in a large kindred with an autosomal dominant inherited form of premature atherosclerosis. Methods and Results Parametric linkage analysis was performed in a pedigree comprising 4 generations, of which a total of 11 members suffered from premature vascular events. A parametric LOD-score of 3.31 was observed for a 4.4 Mb interval on chromosome 12. Upon sequencing, a non-synonymous variant in KERA (c.920C>G; p.Ser307Cys) was identified. The variant was absent from nearly 28,000 individuals, including 2,571 patients with premature atherosclerosis. KERA, a proteoglycan protein, was expressed in lipid-rich areas of human atherosclerotic lesions, but not in healthy arterial specimens. Moreover, KERA expression in plaques was significantly associated with plaque size in a carotid-collar Apoe?/? mice (r2?=?0.69; p<0.0001). Conclusion A rare variant in KERA was identified in a large kindred with premature atherosclerosis. The identification of KERA in atherosclerotic plaque specimen in humans and mice lends support to its potential role in atherosclerosis. PMID:24879339

  10. Generating and identifying axolotls with targeted mutations using Cas9 RNA-guided nuclease.

    PubMed

    Flowers, G Parker; Crews, Craig M

    2015-01-01

    The CRISPR/Cas9 RNA-guided nuclease now enables a reverse genetics approach to investigate the function of genes of interest during regeneration in the axolotl. The process of generating the constructs necessary for targeting a gene of interest is considerably less labor intensive than for other methods of targeted mutagenesis such as Zinc finger nucleases or Transcription activator-like effector nucleases. Here, we describe the identification of targetable sequences in the gene of interest, the construction of unique guide RNAs, the microinjection of these RNAs with Cas9-encoding mRNA, the selection of well-injected animals, and an inexpensive, PCR-based method for identifying highly mutagenized animals. PMID:25740494

  11. Transcriptional Profile Analysis of RPGRORF15 Frameshift Mutation Identifies Novel Genes Associated with Retinal Degeneration

    PubMed Central

    Genini, Sem; Zangerl, Barbara; Slavik, Julianna; Acland, Gregory M.; Beltran, William A.

    2010-01-01

    Purpose. To identify genes and molecular mechanisms associated with photoreceptor degeneration in a canine model of XLRP caused by an RPGR exon ORF15 microdeletion. Methods. Expression profiles of mutant and normal retinas were compared by using canine retinal custom cDNA microarrays. qRT-PCR, Western blot analysis, and immunohistochemistry (IHC) were applied to selected genes, to confirm and expand the microarray results. Results. At 7 and 16 weeks, respectively, 56 and 18 transcripts were downregulated in the mutant retinas, but none were differentially expressed (DE) at both ages, suggesting the involvement of temporally distinct pathways. Downregulated genes included the known retina-relevant genes PAX6, CHML, and RDH11 at 7 weeks and CRX and SAG at 16 weeks. Genes directly or indirectly active in apoptotic processes were altered at 7 weeks (CAMK2G, NTRK2, PRKCB, RALA, RBBP6, RNF41, SMYD3, SPP1, and TUBB2C) and 16 weeks (SLC25A5 and NKAP). Furthermore, the DE genes at 7 weeks (ELOVL6, GLOD4, NDUFS4, and REEP1) and 16 weeks (SLC25A5 and TARS2) are related to mitochondrial functions. qRT-PCR of 18 genes confirmed the microarray results and showed DE of additional genes not on the array. Only GFAP was DE at 3 weeks of age. Western blot and IHC analyses also confirmed the high reliability of the transcriptomic data. Conclusions. Several DE genes were identified in mutant retinas. At 7 weeks, a combination of nonclassic anti- and proapoptosis genes appear to be involved in photoreceptor degeneration, whereas at both 7 and 16 weeks, the expression of mitochondria-related genes indicates that they may play a relevant role in the disease process. PMID:20574030

  12. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia.

    PubMed

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V; Soulier, Jean; Harrison, Christine J; Clappier, Emmanuelle; Cools, Jan

    2015-10-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799

  13. Targeted sequencing identifies associations between IL7R-JAK mutations and epigenetic modulators in T-cell acute lymphoblastic leukemia

    PubMed Central

    Vicente, Carmen; Schwab, Claire; Broux, Michaël; Geerdens, Ellen; Degryse, Sandrine; Demeyer, Sofie; Lahortiga, Idoya; Elliott, Alannah; Chilton, Lucy; La Starza, Roberta; Mecucci, Cristina; Vandenberghe, Peter; Goulden, Nicholas; Vora, Ajay; Moorman, Anthony V.; Soulier, Jean; Harrison, Christine J.; Clappier, Emmanuelle; Cools, Jan

    2015-01-01

    T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia. PMID:26206799

  14. Identifying potential functional impact of mutations and polymorphisms: linking heart failure, increased risk of arrhythmias and sudden cardiac death

    PubMed Central

    Jagu, Benoît; Charpentier, Flavien; Toumaniantz, Gilles

    2013-01-01

    Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure, and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behavior has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction, or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis, and the degradation of ion channel a-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking. The aim of this review is to inventory, through the description of few representative examples, the role of these different biogenic mechanisms in arrhythmogenesis, HF and SCD in order to help the researcher to identify all the processes that could lead to arrhythmias. Identification of novel targets for drug intervention should result from further understanding of these fundamental mechanisms. PMID:24065925

  15. Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families

    PubMed Central

    Mirabello, Lisa; Macari, Elizabeth R.; Jessop, Lea; Ellis, Steven R.; Myers, Timothy; Giri, Neelam; Taylor, Alison M.; McGrath, Katherine E.; Humphries, Jessica M.; Ballew, Bari J.; Yeager, Meredith; Boland, Joseph F.; He, Ji; Hicks, Belynda D.; Burdett, Laurie; Alter, Blanche P.; Zon, Leonard

    2014-01-01

    Diamond-Blackfan anemia (DBA) is a cancer-prone inherited bone marrow failure syndrome. Approximately half of DBA patients have a germ-line mutation in a ribosomal protein gene. We used whole-exome sequencing to identify disease-causing genes in 2 large DBA families. After filtering, 1 nonsynonymous mutation (p.I31F) in the ribosomal protein S29 (RPS29[AUQ1]) gene was present in all 5 DBA-affected individuals and the obligate carrier, and absent from the unaffected noncarrier parent in 1 DBA family. A second DBA family was found to have a different nonsynonymous mutation (p.I50T) in RPS29. Both mutations are amino acid substitutions in exon 2 predicted to be deleterious and resulted in haploinsufficiency of RPS29 expression compared with wild-type RPS29 expression from an unaffected control. The DBA proband with the p.I31F RPS29 mutation had a pre–ribosomal RNA (rRNA) processing defect compared with the healthy control. We demonstrated that both RPS29 mutations failed to rescue the defective erythropoiesis in the rps29?/? mutant zebra fish DBA model. RPS29 is a component of the small 40S ribosomal subunit and essential for rRNA processing and ribosome biogenesis. We uncovered a novel DBA causative gene, RPS29, and showed that germ-line mutations in RPS29 can cause a defective erythropoiesis phenotype using a zebra fish model. PMID:24829207

  16. Whole-exome sequencing and functional studies identify RPS29 as a novel gene mutated in multicase Diamond-Blackfan anemia families.

    PubMed

    Mirabello, Lisa; Macari, Elizabeth R; Jessop, Lea; Ellis, Steven R; Myers, Timothy; Giri, Neelam; Taylor, Alison M; McGrath, Katherine E; Humphries, Jessica M; Ballew, Bari J; Yeager, Meredith; Boland, Joseph F; He, Ji; Hicks, Belynda D; Burdett, Laurie; Alter, Blanche P; Zon, Leonard; Savage, Sharon A

    2014-07-01

    Diamond-Blackfan anemia (DBA) is a cancer-prone inherited bone marrow failure syndrome. Approximately half of DBA patients have a germ-line mutation in a ribosomal protein gene. We used whole-exome sequencing to identify disease-causing genes in 2 large DBA families. After filtering, 1 nonsynonymous mutation (p.I31F) in the ribosomal protein S29 (RPS29[AUQ1]) gene was present in all 5 DBA-affected individuals and the obligate carrier, and absent from the unaffected noncarrier parent in 1 DBA family. A second DBA family was found to have a different nonsynonymous mutation (p.I50T) in RPS29. Both mutations are amino acid substitutions in exon 2 predicted to be deleterious and resulted in haploinsufficiency of RPS29 expression compared with wild-type RPS29 expression from an unaffected control. The DBA proband with the p.I31F RPS29 mutation had a pre-ribosomal RNA (rRNA) processing defect compared with the healthy control. We demonstrated that both RPS29 mutations failed to rescue the defective erythropoiesis in the rps29(-/-) mutant zebra fish DBA model. RPS29 is a component of the small 40S ribosomal subunit and essential for rRNA processing and ribosome biogenesis. We uncovered a novel DBA causative gene, RPS29, and showed that germ-line mutations in RPS29 can cause a defective erythropoiesis phenotype using a zebra fish model. PMID:24829207

  17. Whole Exome Sequencing Identifies Frequent Somatic Mutations in Cell-Cell Adhesion Genes in Chinese Patients with Lung Squamous Cell Carcinoma.

    PubMed

    Li, Chenguang; Gao, Zhibo; Li, Fei; Li, Xiangchun; Sun, Yihua; Wang, Mengyun; Li, Dan; Wang, Rui; Li, Fuming; Fang, Rong; Pan, Yunjian; Luo, Xiaoyang; He, Jing; Zheng, Liangtao; Xia, Jufeng; Qiu, Lixin; He, Jun; Ye, Ting; Zhang, Ruoxin; He, Minghui; Zhu, Meiling; Hu, Haichuan; Shi, Tingyan; Zhou, Xiaoyan; Sun, Menghong; Tian, Shilin; Zhou, Yong; Wang, Qiaoxiu; Chen, Longyun; Yin, Guangliang; Lu, Jingya; Wu, Renhua; Guo, Guangwu; Li, Yingrui; Hu, Xueda; Li, Lin; Asan; Wang, Qin; Yin, Ye; Feng, Qiang; Wang, Bin; Wang, Hang; Wang, Mingbang; Yang, Xiaonan; Zhang, Xiuqing; Yang, Huanming; Jin, Li; Wang, Cun-Yu; Ji, Hongbin; Chen, Haiquan; Wang, Jun; Wei, Qingyi

    2015-01-01

    Lung squamous cell carcinoma (SQCC) accounts for about 30% of all lung cancer cases. Understanding of mutational landscape for this subtype of lung cancer in Chinese patients is currently limited. We performed whole exome sequencing in samples from 100 patients with lung SQCCs to search for somatic mutations and the subsequent target capture sequencing in another 98 samples for validation. We identified 20 significantly mutated genes, including TP53, CDH10, NFE2L2 and PTEN. Pathways with frequently mutated genes included those of cell-cell adhesion/Wnt/Hippo in 76%, oxidative stress response in 21%, and phosphatidylinositol-3-OH kinase in 36% of the tested tumor samples. Mutations of Chromatin regulatory factor genes were identified at a lower frequency. In functional assays, we observed that knockdown of CDH10 promoted cell proliferation, soft-agar colony formation, cell migration and cell invasion, and overexpression of CDH10 inhibited cell proliferation. This mutational landscape of lung SQCC in Chinese patients improves our current understanding of lung carcinogenesis, early diagnosis and personalized therapy. PMID:26503331

  18. Whole Exome Sequencing Identifies Frequent Somatic Mutations in Cell-Cell Adhesion Genes in Chinese Patients with Lung Squamous Cell Carcinoma

    PubMed Central

    Li, Chenguang; Gao, Zhibo; Li, Fei; Li, Xiangchun; Sun, Yihua; Wang, Mengyun; Li, Dan; Wang, Rui; Li, Fuming; Fang, Rong; Pan, Yunjian; Luo, Xiaoyang; He, Jing; Zheng, Liangtao; Xia, Jufeng; Qiu, Lixin; He, Jun; Ye, Ting; Zhang, Ruoxin; He, Minghui; Zhu, Meiling; Hu, Haichuan; Shi, Tingyan; Zhou, Xiaoyan; Sun, Menghong; Tian, Shilin; Zhou, Yong; Wang, Qiaoxiu; Chen, Longyun; Yin, Guangliang; Lu, Jingya; Wu, Renhua; Guo, Guangwu; Li, Yingrui; Hu, Xueda; Li, Lin; Asan, A; Wang, Qin; Yin, Ye; Feng, Qiang; Wang, Bin; Wang, Hang; Wang, Mingbang; Yang, Xiaonan; Zhang, Xiuqing; Yang, Huanming; Jin, Li; Wang, Cun-Yu; Ji, Hongbin; Chen, Haiquan; Wang, Jun; Wei, Qingyi

    2015-01-01

    Lung squamous cell carcinoma (SQCC) accounts for about 30% of all lung cancer cases. Understanding of mutational landscape for this subtype of lung cancer in Chinese patients is currently limited. We performed whole exome sequencing in samples from 100 patients with lung SQCCs to search for somatic mutations and the subsequent target capture sequencing in another 98 samples for validation. We identified 20 significantly mutated genes, including TP53, CDH10, NFE2L2 and PTEN. Pathways with frequently mutated genes included those of cell-cell adhesion/Wnt/Hippo in 76%, oxidative stress response in 21%, and phosphatidylinositol-3-OH kinase in 36% of the tested tumor samples. Mutations of Chromatin regulatory factor genes were identified at a lower frequency. In functional assays, we observed that knockdown of CDH10 promoted cell proliferation, soft-agar colony formation, cell migration and cell invasion, and overexpression of CDH10 inhibited cell proliferation. This mutational landscape of lung SQCC in Chinese patients improves our current understanding of lung carcinogenesis, early diagnosis and personalized therapy. PMID:26503331

  19. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 are identified in individuals with congenital hypogonadotropic hypogonadism.

    PubMed

    Miraoui, Hichem; Dwyer, Andrew A; Sykiotis, Gerasimos P; Plummer, Lacey; Chung, Wilson; Feng, Bihua; Beenken, Andrew; Clarke, Jeff; Pers, Tune H; Dworzynski, Piotr; Keefe, Kimberley; Niedziela, Marek; Raivio, Taneli; Crowley, William F; Seminara, Stephanie B; Quinton, Richard; Hughes, Virginia A; Kumanov, Philip; Young, Jacques; Yialamas, Maria A; Hall, Janet E; Van Vliet, Guy; Chanoine, Jean-Pierre; Rubenstein, John; Mohammadi, Moosa; Tsai, Pei-San; Sidis, Yisrael; Lage, Kasper; Pitteloud, Nelly

    2013-05-01

    Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ~12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called "FGF8 synexpression" group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH. PMID:23643382

  20. Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism

    PubMed Central

    Miraoui, Hichem; Dwyer, Andrew A.; Sykiotis, Gerasimos P.; Plummer, Lacey; Chung, Wilson; Feng, Bihua; Beenken, Andrew; Clarke, Jeff; Pers, Tune H.; Dworzynski, Piotr; Keefe, Kimberley; Niedziela, Marek; Raivio, Taneli; Crowley, William F.; Seminara, Stephanie B.; Quinton, Richard; Hughes, Virginia A.; Kumanov, Philip; Young, Jacques; Yialamas, Maria A.; Hall, Janet E.; Van Vliet, Guy; Chanoine, Jean-Pierre; Rubenstein, John; Mohammadi, Moosa; Tsai, Pei-San; Sidis, Yisrael; Lage, Kasper; Pitteloud, Nelly

    2013-01-01

    Congenital hypogonadotropic hypogonadism (CHH) and its anosmia-associated form (Kallmann syndrome [KS]) are genetically heterogeneous. Among the >15 genes implicated in these conditions, mutations in FGF8 and FGFR1 account for ?12% of cases; notably, KAL1 and HS6ST1 are also involved in FGFR1 signaling and can be mutated in CHH. We therefore hypothesized that mutations in genes encoding a broader range of modulators of the FGFR1 pathway might contribute to the genetics of CHH as causal or modifier mutations. Thus, we aimed to (1) investigate whether CHH individuals harbor mutations in members of the so-called “FGF8 synexpression” group and (2) validate the ability of a bioinformatics algorithm on the basis of protein-protein interactome data (interactome-based affiliation scoring [IBAS]) to identify high-quality candidate genes. On the basis of sequence homology, expression, and structural and functional data, seven genes were selected and sequenced in 386 unrelated CHH individuals and 155 controls. Except for FGF18 and SPRY2, all other genes were found to be mutated in CHH individuals: FGF17 (n = 3 individuals), IL17RD (n = 8), DUSP6 (n = 5), SPRY4 (n = 14), and FLRT3 (n = 3). Independently, IBAS predicted FGF17 and IL17RD as the two top candidates in the entire proteome on the basis of a statistical test of their protein-protein interaction patterns to proteins known to be altered in CHH. Most of the FGF17 and IL17RD mutations altered protein function in vitro. IL17RD mutations were found only in KS individuals and were strongly linked to hearing loss (6/8 individuals). Mutations in genes encoding components of the FGF pathway are associated with complex modes of CHH inheritance and act primarily as contributors to an oligogenic genetic architecture underlying CHH. PMID:23643382

  1. Integrating Transcriptome and Genome Re-Sequencing Data to Identify Key Genes and Mutations Affecting Chicken Eggshell Qualities

    PubMed Central

    Liu, Long; Zheng, Chuan Wei; Wang, De He; Hou, Zhuo Cheng; Ning, Zhong Hua

    2015-01-01

    Eggshell damages lead to economic losses in the egg production industry and are a threat to human health. We examined 49-wk-old Rhode Island White hens (Gallus gallus) that laid eggs having shells with significantly different strengths and thicknesses. We used HiSeq 2000 (Illumina) sequencing to characterize the chicken transcriptome and whole genome to identify the key genes and genetic mutations associated with eggshell calcification. We identified a total of 14,234 genes expressed in the chicken uterus, representing 89% of all annotated chicken genes. A total of 889 differentially expressed genes were identified by comparing low eggshell strength (LES) and normal eggshell strength (NES) genomes. The DEGs are enriched in calcification-related processes, including calcium ion transport and calcium signaling pathways as reveled by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis. Some important matrix proteins, such as OC-116, LTF and SPP1, were also expressed differentially between two groups. A total of 3,671,919 single-nucleotide polymorphisms (SNPs) and 508,035 Indels were detected in protein coding genes by whole-genome re-sequencing, including 1775 non-synonymous variations and 19 frame-shift Indels in DEGs. SNPs and Indels found in this study could be further investigated for eggshell traits. This is the first report to integrate the transcriptome and genome re-sequencing to target the genetic variations which decreased the eggshell qualities. These findings further advance our understanding of eggshell calcification in the chicken uterus. PMID:25974068

  2. Screening of a large cohort of Leber congenital amaurosis and retinitis pigmentosa patients identifies novel LCA5 mutations and new genotype-phenotype correlations

    PubMed Central

    Sui, Ruifang; van den Born, L. Ingeborgh; Berson, Eliot L.; Ocaka, Louise A.; Davidson, Alice E.; Heckenlively, John R.; Branham, Kari; Ren, Huanan; Lopez, Irma; Maria, Maleeha; Azam, Maleeha; Henkes, Arjen; Blokland, Ellen; Qamar, Raheel; Webster, Andrew R.; Andreasson, Sten; de Baere, Elfride; Bennett, Jean; Chader, Gerald J.; Berger, Wolfgang; Golovleva, Irina; Greenberg, Jacquie; den Hollander, Anneke I.; Klaver, Caroline C.W.; Klevering, B. Jeroen; Lorenz, Birgit; Preising, Markus N.; Ramsear, Raj; Roberts, Lisa; Roepman, Ronald; Rohrschneider, Klaus; Wissinger, Bernd

    2014-01-01

    To investigate the prevalence of sequence variants in LCA5 in patients with Leber congenital amaurosis (LCA), early onset rod-cone dystrophy (EORD) and autosomal recessive retinitis pigmentosa (RP), to delineate the ocular phenotypes, and to provide an overview of all published LCA5 variants in an online database._Patients underwent standard ophthalmic evaluations after providing informed consent. In selected patients, optical coherence tomography (OCT) and fundus autofluorescence imaging was possible. DNA samples from 797 unrelated patients with LCA and 211 with the various types of RP were screened by Sanger sequence analysis of all LCA5 exons and intron/exon junctions. Some LCA patients were pre-screened by APEX technology or selected based on homozygosity mapping. In silico analyses were performed to assess the pathogenicity of the variants. Segregation analysis was performed where possible. Published and novel LCA5 variants were collected, amended for their correct nomenclature, and listed in a Leiden Open Variation Database (LOVD). Sequence analysis identified 18 new probands with 19 different LCA5 variants. Seventeen of the 19 LCA5 variants were novel. Except for two missense variants and one splice site variant, all variants were protein-truncating mutations. Most patients expressed a severe phenotype, typical of LCA. However, some LCA subjects had better vision and intact inner segment/outer segment (IS/OS) junctions on OCT imaging. In two families with LCA5 variants, the phenotype was more compatible with EORD with affected individuals displaying preserved islands of RPE. One of these milder families harbored a homozygous splice site mutation, a second family was found to have a combination of a stop mutation and a missense mutation. This is the largest LCA5 study to date. We sequenced 1008 patients (797 with LCA, 211 with arRP) and identified 18 probands with LCA5 mutations. Mutations in LCA5 are a rare cause of childhood retinal dystrophy accounting for ~2% of disease in this cohort and the majority of LCA5 mutations are likely null. The LCA5 protein truncating mutations are predominantly associated with LCA. However, in two families with the milder EORD, the LCA5 gene analysis revealed a homozygous splice site mutation in one and a stop mutation in combination with a missense mutation in a second family, suggesting that this milder phenotype is due to residual function of lebercilin and expanding the currently known phenotypic spectrum to include the milder early onset RP. Some patients have remaining foveal cone structures (intact IS/OS junctions on OCT imaging) and remaining visual acuities, which may bode well for upcoming treatment trials. PMID:23946133

  3. A new hyperrecombination mutation identifies a novel yeast gene, THP1, connecting transcription elongation with mitotic recombination.

    PubMed Central

    Gallardo, M; Aguilera, A

    2001-01-01

    Given the importance of the incidence of recombination in genomic instability, it is of great interest to know the elements or processes controlling recombination in mitosis. One such process is transcription, which has been shown to induce recombination in bacteria, yeast, and mammals. To further investigate the genetic control of the incidence of recombination and genetic instability and, in particular, its connection with transcription, we have undertaken a search for hyperrecombination mutants among a large number of strains deleted in genes of unknown function. We have identified a new gene, THP1 (YOL072w), whose deletion mutation strongly stimulates recombination between repeats. In addition, thp1 Delta impairs transcription, a defect that is particularly strong at the level of elongation through particular DNA sequences such as lacZ. The hyperrecombination phenotype of thp1 Delta cells is fully dependent on transcription elongation of the repeat construct. When transcription is impeded either by shutting off the promoter or by using a premature transcription terminator, hyperrecombination between repeats is abolished, providing new evidence that transcription-elongation impairment may be a source of recombinogenic substrates in mitosis. We show that Thp1p and two other proteins previously shown to control transcription-associated recombination, Hpr1p and Tho2p, act in the same "pathway" connecting transcription elongation with the incidence of mitotic recombination. PMID:11139493

  4. Personalized synthetic lethality induced by targeting RAD52 in leukemias identified by gene mutation and expression profile.

    PubMed

    Cramer-Morales, Kimberly; Nieborowska-Skorska, Margaret; Scheibner, Kara; Padget, Michelle; Irvine, David A; Sliwinski, Tomasz; Haas, Kimberly; Lee, Jaewoong; Geng, Huimin; Roy, Darshan; Slupianek, Artur; Rassool, Feyruz V; Wasik, Mariusz A; Childers, Wayne; Copland, Mhairi; Müschen, Markus; Civin, Curt I; Skorski, Tomasz

    2013-08-15

    Homologous recombination repair (HRR) protects cells from the lethal effect of spontaneous and therapy-induced DNA double-stand breaks. HRR usually depends on BRCA1/2-RAD51, and RAD52-RAD51 serves as back-up. To target HRR in tumor cells, a phenomenon called "synthetic lethality" was applied, which relies on the addiction of cancer cells to a single DNA repair pathway, whereas normal cells operate 2 or more mechanisms. Using mutagenesis and a peptide aptamer approach, we pinpointed phenylalanine 79 in RAD52 DNA binding domain I (RAD52-phenylalanine 79 [F79]) as a valid target to induce synthetic lethality in BRCA1- and/or BRCA2-deficient leukemias and carcinomas without affecting normal cells and tissues. Targeting RAD52-F79 disrupts the RAD52-DNA interaction, resulting in the accumulation of toxic DNA double-stand breaks in malignant cells, but not in normal counterparts. In addition, abrogation of RAD52-DNA interaction enhanced the antileukemia effect of already-approved drugs. BRCA-deficient status predisposing to RAD52-dependent synthetic lethality could be predicted by genetic abnormalities such as oncogenes BCR-ABL1 and PML-RAR, mutations in BRCA1 and/or BRCA2 genes, and gene expression profiles identifying leukemias displaying low levels of BRCA1 and/or BRCA2. We believe this work may initiate a personalized therapeutic approach in numerous patients with tumors displaying encoded and functional BRCA deficiency. PMID:23836560

  5. Whole-Exome Sequencing Identifies ALMS1, IQCB1, CNGA3, and MYO7A Mutations in Patients with Leber Congenital Amaurosis

    PubMed Central

    Wang, Xia; Wang, Hui; Cao, Ming; Li, Zhe; Chen, Xianfeng; Patenia, Claire; Gore, Athurva; Abboud, Emad B.; Al-Rajhi, Ali A.; Lewis, Richard A.; Lupski, James R.; Mardon, Graeme; Zhang, Kun; Muzny, Donna; Gibbs, Richard A.; Chen, Rui

    2014-01-01

    It has been well documented that mutations in the same retinal disease gene can result in different clinical phenotypes due to difference in the mutant allele and/or genetic background. To evaluate this, a set of consanguineous patient families with Leber congenital amaurosis (LCA) that do not carry mutations in known LCA disease genes was characterized through homozygosity mapping followed by targeted exon/whole-exome sequencing to identify genetic variations. Among these families, a total of five putative disease-causing mutations, including four novel alleles, were found for six families. These five mutations are located in four genes, ALMS1, IQCB1, CNGA3, and MYO7A. Therefore, in our LCA collection from Saudi Arabia, three of the 37 unassigned families carry mutations in retinal disease genes ALMS1, CNGA3, and MYO7A, which have not been previously associated with LCA, and 3 of the 37 carry novel mutations in IQCB1, which has been recently associated with LCA. Together with other reports, our results emphasize that the molecular heterogeneity underlying LCA, and likely other retinal diseases, may be highly complex. Thus, to obtain accurate diagnosis and gain a complete picture of the disease, it is essential to sequence a larger set of retinal disease genes and combine the clinical phenotype with molecular diagnosis. PMID:21901789

  6. Whole-exome re-sequencing in a family quartet identifies POP1 mutations as the cause of a novel skeletal dysplasia.

    PubMed

    Glazov, Evgeny A; Zankl, Andreas; Donskoi, Marina; Kenna, Tony J; Thomas, Gethin P; Clark, Graeme R; Duncan, Emma L; Brown, Matthew A

    2011-03-01

    Recent advances in DNA sequencing have enabled mapping of genes for monogenic traits in families with small pedigrees and even in unrelated cases. We report the identification of disease-causing mutations in a rare, severe, skeletal dysplasia, studying a family of two healthy unrelated parents and two affected children using whole-exome sequencing. The two affected daughters have clinical and radiographic features suggestive of anauxetic dysplasia (OMIM 607095), a rare form of dwarfism caused by mutations of RMRP. However, mutations of RMRP were excluded in this family by direct sequencing. Our studies identified two novel compound heterozygous loss-of-function mutations in POP1, which encodes a core component of the RNase mitochondrial RNA processing (RNase MRP) complex that directly interacts with the RMRP RNA domains that are affected in anauxetic dysplasia. We demonstrate that these mutations impair the integrity and activity of this complex and that they impair cell proliferation, providing likely molecular and cellular mechanisms by which POP1 mutations cause this severe skeletal dysplasia. PMID:21455487

  7. Targeted next generation sequencing identifies novel mutations in RP1 as a relatively common cause of autosomal recessive rod-cone dystrophy.

    PubMed

    El Shamieh, Said; Boulanger-Scemama, Elise; Lancelot, Marie-Elise; Antonio, Aline; Démontant, Vanessa; Condroyer, Christel; Letexier, Mélanie; Saraiva, Jean-Paul; Mohand-Saïd, Saddek; Sahel, José-Alain; Audo, Isabelle; Zeitz, Christina

    2015-01-01

    We report ophthalmic and genetic findings in families with autosomal recessive rod-cone dystrophy (arRCD) and RP1 mutations. Detailed ophthalmic examination was performed in 242 sporadic and arRCD subjects. Genomic DNA was investigated using our customized next generation sequencing panel targeting up to 123 genes implicated in inherited retinal disorders. Stringent filtering coupled with Sanger sequencing and followed by cosegregation analysis was performed to confirm biallelism and the implication of the most likely disease causing variants. Sequencing identified 9 RP1 mutations in 7 index cases. Eight of the mutations were novel, and all cosegregated with severe arRCD phenotype, found associated with additional macular changes. Among the identified mutations, 4 belong to a region, previously associated with arRCD, and 5 others in a region previously associated with adRCD. Our prevalence studies showed that RP1 mutations account for up to 2.5% of arRCD. These results point out for the necessity of sequencing RP1 when genetically investigating sporadic and arRCD. It further highlights the interest of unbiased sequencing technique, which allows investigating the implication of the same gene in different modes of inheritance. Finally, it reports that different regions of RP1 can also lead to arRCD. PMID:25692139

  8. SNP Linkage Analysis and Whole Exome Sequencing Identify a Novel POU4F3 Mutation in Autosomal Dominant Late-Onset Nonsyndromic Hearing Loss (DFNA15)

    PubMed Central

    Park, Kyoung-Jin; Hong, Sung Hwa; Ki, Chang-Seok; Cho, Sang Sun; Venselaar, Hanka; Vriend, Gert; Kim, Jong-Won

    2013-01-01

    Autosomal dominant non-syndromic hearing loss (AD-NSHL) is one of the most common genetic diseases in human and is well-known for the considerable genetic heterogeneity. In this study, we utilized whole exome sequencing (WES) and linkage analysis for direct genetic diagnosis in AD-NSHL. The Korean family had typical AD-NSHL running over 6 generations. Linkage analysis was performed by using genome-wide single nucleotide polymorphism (SNP) chip and pinpointed a genomic region on 5q31 with a significant linkage signal. Sequential filtering of variants obtained from WES, application of the linkage region, bioinformatic analyses, and Sanger sequencing validation identified a novel missense mutation Arg326Lys (c.977G>A) in the POU homeodomain of the POU4F3 gene as the candidate disease-causing mutation in the family. POU4F3 is a known disease gene causing AD-HSLH (DFNA15) described in 5 unrelated families until now each with a unique mutation. Arg326Lys was the first missense mutation affecting the 3rd alpha helix of the POU homeodomain harboring a bipartite nuclear localization signal sequence. The phenotype findings in our family further supported previously noted intrafamilial and interfamilial variability of DFNA15. This study demonstrated that WES in combination with linkage analysis utilizing bi-allelic SNP markers successfully identified the disease locus and causative mutation in AD-NSHL. PMID:24260153

  9. Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia

    PubMed Central

    Austin-Tse, Christina; Halbritter, Jan; Zariwala, Maimoona A.; Gilberti, Renée M.; Gee, Heon Yung; Hellman, Nathan; Pathak, Narendra; Liu, Yan; Panizzi, Jennifer R.; Patel-King, Ramila S.; Tritschler, Douglas; Bower, Raqual; O’Toole, Eileen; Porath, Jonathan D.; Hurd, Toby W.; Chaki, Moumita; Diaz, Katrina A.; Kohl, Stefan; Lovric, Svjetlana; Hwang, Daw-Yang; Braun, Daniela A.; Schueler, Markus; Airik, Rannar; Otto, Edgar A.; Leigh, Margaret W.; Noone, Peadar G.; Carson, Johnny L.; Davis, Stephanie D.; Pittman, Jessica E.; Ferkol, Thomas W.; Atkinson, Jeffry J.; Olivier, Kenneth N.; Sagel, Scott D.; Dell, Sharon D.; Rosenfeld, Margaret; Milla, Carlos E.; Loges, Niki T.; Omran, Heymut; Porter, Mary E.; King, Stephen M.; Knowles, Michael R.; Drummond, Iain A.; Hildebrandt, Friedhelm

    2013-01-01

    Primary ciliary dyskinesia (PCD) is caused when defects of motile cilia lead to chronic airway infections, male infertility, and situs abnormalities. Multiple causative PCD mutations account for only 65% of cases, suggesting that many genes essential for cilia function remain to be discovered. By using zebrafish morpholino knockdown of PCD candidate genes as an in vivo screening platform, we identified c21orf59, ccdc65, and c15orf26 as critical for cilia motility. c21orf59 and c15orf26 knockdown in zebrafish and planaria blocked outer dynein arm assembly, and ccdc65 knockdown altered cilia beat pattern. Biochemical analysis in Chlamydomonas revealed that the C21orf59 ortholog FBB18 is a flagellar matrix protein that accumulates specifically when cilia motility is impaired. The Chlamydomonas ida6 mutant identifies CCDC65/FAP250 as an essential component of the nexin-dynein regulatory complex. Analysis of 295 individuals with PCD identified recessive truncating mutations of C21orf59 in four families and CCDC65 in two families. Similar to findings in zebrafish and planaria, mutations in C21orf59 caused loss of both outer and inner dynein arm components. Our results characterize two genes associated with PCD-causing mutations and elucidate two distinct mechanisms critical for motile cilia function: dynein arm assembly for C21orf59 and assembly of the nexin-dynein regulatory complex for CCDC65. PMID:24094744

  10. Virulence-Associated Genome Mutations of Murine Rotavirus Identified by Alternating Serial Passages in Mice and Cell Cultures

    PubMed Central

    Tatsumi, Masatoshi; Tsutsumi, Hiroyuki

    2014-01-01

    ABSTRACT Although significant clinical efficacy and safety of rotavirus vaccines were recently revealed in many countries, the mechanism of their attenuation is not well understood. We passaged serially a cell culture-adapted murine rotavirus EB strain in mouse pups or in cell cultures alternately and repeatedly and fully sequenced all 11 genes of 21 virus samples passaged in mice or in cell cultures. Sequence analysis revealed that mouse-passaged viruses that regained virulence almost consistently acquired four kinds of amino acid (aa) substitutions in VP4 and substitution in aa 37 (Val to Ala) in NSP4. In addition, they gained and invariably conserved the 3? consensus sequence in NSP1. The molecular changes occurred along with the acquisition of virulence during passages in mice and then disappeared following passages in cell cultures. Intraperitoneal injection of recombinant NSP4 proteins confirmed the aa 37 site as important for its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. IMPORTANCE Serial passage of a virulent wild-type virus in vitro often results in loss of virulence of the virus in an original animal host, while serial passage of a cell culture-adapted avirulent virus in vivo often gains virulence in an animal host. Actually, live attenuated virus vaccines were originally produced by serial passage in cell cultures. Although clinical efficacy and safety of rotavirus vaccines were recently revealed, the mechanism of their attenuation is not well understood. We passaged serially a murine rotavirus by alternating switch of host (mice or cell cultures) repeatedly and sequenced the eleven genes of the passaged viruses to identify mutations associated with the emergence or disappearance of virulence. Sequence analysis revealed that changes in three genes (VP4, NSP1, and NSP4) were associated with virulence in mice. Intraperitoneal injection of recombinant NSP4 proteins confirmed its diarrheagenic activity in mice. These genome changes are likely to be correlated with rotavirus virulence. PMID:24599996

  11. Exome Sequencing Identifies a Novel FOXP3 Mutation in a 2-Generation Family With Inflammatory Bowel Disease

    PubMed Central

    Okou, David T.; Mondal, Kajari; Faubion, William A.; Kobrynski, Lisa J.; Denson, Lee A.; Mulle, Jennifer G.; Ramachandran, Dhanya; Xiong, Yuning; Svingen, Phyllis; Patel, Viren; Bose, Promita; Waters, Jon P.; Prahalad, Sampath; Cutler, David J.; Zwick, Michael E.; Kugathasan, Subra

    2014-01-01

    Objectives Inflammatory bowel disease (IBD) is heritable, but a total of 163 variants commonly implicated in IBD pathogenesis account for only 25% of the heritability. Rare, highly penetrant genetic variants may also explain mendelian forms of IBD and some of the missing heritability. To test the hypothesis that rare loss-of-function mutations can be causative, we performed whole exome sequencing (WES) on 5 members of a 2-generation family of European ancestry presenting with an early-onset and atypical form of IBD. Methods WES was performed for all of the 5 family members; the mother and 3 male offspring were affected, whereas the father was unaffected. Mapping, annotation, and filtering criteria were used to reduce candidate variants. For functional testing we performed forkhead box P3 (FOXP3) staining and a T-cell suppression assay. Results We identified a novel missense variant in exon 6 of the X-linked FOXP3 gene. The c.694A>C substitution in FOXP3 results in a cysteine-toglycine change at the protein position 232 that is completely conserved among all vertebrates. This variant (heterozygous in the mother and hemizygous in all 3 affected sons) did not impair FOXP3 protein expression, but significantly reduced the ability of the host's T regulatory cells to suppress an inappropriate autoimmune response. The variant results in a milder immune dysregulation, polyendocrinopathy, enteropathy, and X-linked phenotype with early-onset IBD. Conclusions Our study illustrates the successful application of WES for making a definitive molecular diagnosis in a case of multiply affected families, with atypical IBD-like phenotype. Our results also have important implications for disease biology and disease-directed therapeutic development. PMID:24792626

  12. Complete direct sequencing of the entire AR gene in 45 unrelated patients with androgen insensitivity syndrome: Mutations identified in 32 patients (18 novel mutations), no mutation detected in 13 other patients (29%)

    SciTech Connect

    Mebarki, F.; Forest, M.G.; Josso, N.

    1994-09-01

    The androgen insensivity syndrome (AIS) is a recessive X-linked disorder resulting from a deficient function of the androgen receptor (AR). The human AR gene has 3 functional domains: N-terminal encoded by exon 1, DNA-binding domain encoded by exons 2 and 3, and androgen-binding domain encoded by exons 4 to 8. In order to characterize the molecular defects of the AR gene in AIS, the entire coding regions and the intronic bording sequences of the AR gene were amplified by PCR before automatic direct sequencing in 45 patients. Twenty seven different point mutations were found in 32 unrelated AIS patients: 18 with a complete form (CAIS), 14 with a partial form (PAIS); 18 of these mutations are novel mutations, not published to date. Only 3 mutations were repeatedly found: R804H in 3 families; M780I in 3 families and R774C in 2 families. For 26 patients out of the 32 found to have a mutation, maternal DNA was collected and sequenced: 6 de novo mutations were detected (i.e. 23% of the cases). Finally, no mutation was detected in 13 patients (29%): 7 with CAIS and 6 familial severe PAIS. The latter all presented with perineal hypospadias, micropenis, 4 out of 6 being raised as girl. Diagnosis of AIS in these 13 families in whom no mutation was detected is supported by the following criteria: clinical data, familial history (2 or 3 index cases in the same family), familial segregation of the polymorphic CAG repeat of the AR gene. Mutations in intronic regions or the promoter of the AR gene could not explain all cases of AIS without mutations in the AR coding regions, because AR binding (performed in 9 out of 13) was normal in 6, suggesting the synthesis of an AR protein. This situation led us to speculate that another X-linked factor associated with the AR could be implicated in some cases of AIS.

  13. Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations.

    PubMed

    Arte, Sirpa; Parmanen, Satu; Pirinen, Sinikka; Alaluusua, Satu; Nieminen, Pekka

    2013-01-01

    Failure to develop complete dentition, tooth agenesis, is a common developmental anomaly manifested most often as isolated but also as associated with many developmental syndromes. It typically affects third molars or one or few other permanent teeth but severe agenesis is also relatively prevalent. Here we report mutational analyses of seven candidate genes in a cohort of 127 probands with non-syndromic tooth agenesis. 82 lacked more than five permanent teeth excluding third molars, called as oligodontia. We identified 28 mutations, 17 of which were novel. Together with our previous reports, we have identified two mutations in MSX1, AXIN2 and EDARADD, five in PAX9, four in EDA and EDAR, and nine in WNT10A. They were observed in 58 probands (44%), with a mean number of missing teeth of 11.7 (range 4 to 34). Almost all of these probands had severe agenesis. Only few of the probands but several relatives with heterozygous genotypes of WNT10A or EDAR conformed to the common type of non-syndromic tooth agenesis, incisor-premolar hypodontia. Mutations in MSX1 and PAX9 affected predominantly posterior teeth, whereas both deciduous and permanent incisors were especially sensitive to mutations in EDA and EDAR. Many mutations in EDAR, EDARADD and WNT10A were present in several families. Biallelic or heterozygous genotypes of WNT10A were observed in 32 and hemizygous or heterozygous genotypes of EDA, EDAR or EDARADD in 22 probands. An EDARADD variant were in seven probands present together with variants in EDAR or WNT10A, suggesting combined phenotypic effects of alleles in distinct genes. PMID:23991204

  14. Whole-exome and targeted sequencing identify ROBO1 and ROBO2 mutations as progression-related drivers in myelodysplastic syndromes

    PubMed Central

    Xu, Feng; Wu, Ling-Yun; Chang, Chun-Kang; He, Qi; Zhang, Zheng; Liu, Li; Shi, Wen-Hui; Guo, Juan; Zhu, Yang; Zhao, You-Shan; Gu, Shu-Cheng; Fei, Cheng-Ming; Wu, Dong; Zhou, Li-Yu; Su, Ji-Ying; Song, Lu-Xi; Xiao, Chao; Li, Xiao

    2015-01-01

    The progressive mechanism underlying myelodysplastic syndrome remains unknown. Here we identify ROBO1 and ROBO2 as novel progression-related somatic mutations using whole-exome and targeted sequencing in 6 of 16 (37.5%) paired MDS patients with disease progression. Further deep sequencing detects 20 (10.4%) patients with ROBO mutations in a cohort of 193 MDS patients. In addition, copy number loss and loss of heterogeneity (LOH) of ROBO1 and ROBO2 are frequently observed in patients with progression or carrying ROBO mutations. In in vitro experiments, overexpression of ROBO1 or ROBO2 produces anti-proliferative and pro-apoptotic effects in leukaemia cells. However, this effect was lost in ROBO mutants and ROBO-SLIT2 signalling is impaired. Multivariate analysis shows that ROBO mutations are independent factors for predicting poor survival. These findings demonstrate a novel contribution of ROBO mutations to the pathogenesis of MDS and highlight a key role for ROBO-SLIT2 signalling in MDS disease progression. PMID:26608094

  15. Severely Incapacitating Mutations in Patients with Extreme Short Stature Identify RNA-Processing Endoribonuclease RMRP as an Essential Cell Growth Regulator

    PubMed Central

    Thiel, Christian T. ; Horn, Denise ; Zabel, Bernhard ; Ekici, Arif B. ; Salinas, Kelly ; Gebhart, Erich ; Rüschendorf, Franz ; Sticht, Heinrich ; Spranger, Jürgen ; Müller, Dietmar ; Zweier, Christiane ; Schmitt, Mark E. ; Reis, André ; Rauch, Anita 

    2005-01-01

    The growth of an individual is deeply influenced by the regulation of cell growth and division, both of which also contribute to a wide variety of pathological conditions, including cancer, diabetes, and inflammation. To identify a major regulator of human growth, we performed positional cloning in an autosomal recessive type of profound short stature, anauxetic dysplasia. Homozygosity mapping led to the identification of novel mutations in the RMRP gene, which was previously known to cause two milder types of short stature with susceptibility to cancer, cartilage hair hypoplasia, and metaphyseal dysplasia without hypotrichosis. We show that different RMRP gene mutations lead to decreased cell growth by impairing ribosomal assembly and by altering cyclin-dependent cell cycle regulation. Clinical heterogeneity is explained by a correlation between the level and type of functional impairment in vitro and the severity of short stature or predisposition to cancer. Whereas the cartilage hair hypoplasia founder mutation affects both pathways intermediately, anauxetic dysplasia mutations do not affect B-cyclin messenger RNA (mRNA) levels but do severely incapacitate ribosomal assembly via defective endonucleolytic cleavage. Anauxetic dysplasia mutations thus lead to poor processing of ribosomal RNA while allowing normal mRNA processing and, therefore, genetically separate the different functions of RNase MRP. PMID:16252239

  16. A dominant mutation in RPE65 identified by whole-exome sequencing causes retinitis pigmentosa with choroidal involvement

    PubMed Central

    Bowne, Sara J; Humphries, Marian M; Sullivan, Lori S; Kenna, Paul F; Tam, Lawrence C S; Kiang, Anna S; Campbell, Matthew; Weinstock, George M; Koboldt, Daniel C; Ding, Li; Fulton, Robert S; Sodergren, Erica J; Allman, Denis; Millington-Ward, Sophia; Palfi, Arpad; McKee, Alex; Blanton, Susan H; Slifer, Susan; Konidari, Ioanna; Farrar, G Jane; Daiger, Stephen P; Humphries, Peter

    2011-01-01

    Linkage testing using Affymetrix 6.0 SNP Arrays mapped the disease locus in TCD-G, an Irish family with autosomal dominant retinitis pigmentosa (adRP), to an 8.8?Mb region on 1p31. Of 50 known genes in the region, 11 candidates, including RPE65 and PDE4B, were sequenced using di-deoxy capillary electrophoresis. Simultaneously, a subset of family members was analyzed using Agilent SureSelect All Exome capture, followed by sequencing on an Illumina GAIIx platform. Candidate gene and exome sequencing resulted in the identification of an Asp477Gly mutation in exon 13 of the RPE65 gene tracking with the disease in TCD-G. All coding exons of genes not sequenced to sufficient depth by next generation sequencing were sequenced by di-deoxy sequencing. No other potential disease-causing variants were found to segregate with disease in TCD-G. The Asp477Gly mutation was not present in Irish controls, but was found in a second Irish family provisionally diagnosed with choroideremia, bringing the combined maximum two-point LOD score to 5.3. Mutations in RPE65 are a known cause of recessive Leber congenital amaurosis (LCA) and recessive RP, but no dominant mutations have been reported. Protein modeling suggests that the Asp477Gly mutation may destabilize protein folding, and mutant RPE65 protein migrates marginally faster on SDS-PAGE, compared with wild type. Gene therapy for LCA patients with RPE65 mutations has shown great promise, raising the possibility of related therapies for dominant-acting mutations in this gene. PMID:21654732

  17. Whole-exome sequencing identifies a novel ALMS1 mutation (p.Q2051X) in two Japanese brothers with Alström syndrome

    PubMed Central

    Katagiri, Satoshi; Yoshitake, Kazutoshi; Akahori, Masakazu; Furuno, Masaaki; Nishino, Jo; Ikeo, Kazuho; Tsuneoka, Hiroshi; Iwata, Takeshi

    2013-01-01

    Purpose No mutations associated with Alström syndrome (AS), a rare autosomal recessive disease, have been reported in the Japanese population. The purpose of this study was to investigate the genetic and clinical features of two brothers with AS in a consanguineous Japanese family. Methods Whole-exome sequencing analysis was performed on two brothers with AS and their unaffected parents. We performed a complete ophthalmic examination, including decimal best-corrected visual acuity, slit-lamp and funduscopic examination, visual-field and color-vision testing, full-field electroretinography, and optical coherence tomography. Fasting blood tests and systemic examinations were also performed. Results A novel mutation (c.6151C>T in exon 8) in the Alström syndrome 1 (ALMS1) gene that causes a premature termination codon at amino acid 2051 (p.Q2051X), was identified in the homozygous state in the affected brothers and in the heterozygous state in the parents. The ophthalmologic findings for both brothers revealed infantile-onset severe retinal degeneration and visual impairment, marked macular thinning, and severe cataracts. Systemic findings showed hepatic dysfunction, hyperlipidemia, hypogonadism, short stature, and wide feet in both brothers, whereas hearing loss, renal failure, abnormal digits, history of developmental delay, scoliosis, hypertension, and alopecia were not observed in either brother. The older brother exhibited type 2 diabetic mellitus and obesity, whereas the younger brother had hyperinsulinemia and subclinical hypothyroidism. Conclusions A novel ALMS1 mutation was identified by using whole-exome sequencing analysis, which is useful not only to identify a disease causing mutation but also to exclude other gene mutations. Although characteristic ophthalmologic findings and most systemic findings were similar between the brothers, the brothers differed slightly in terms of glucose tolerance and thyroid function. PMID:24319333

  18. A General Method for Identifying Recessive Diploid-Specific Mutations in Saccharomyces Cerevisiae, Its Application to the Isolation of Mutants Blocked at Intermediate Stages of Meiotic Prophase and Characterization of a New Gene Sae2

    PubMed Central

    McKee, AHZ.; Kleckner, N.

    1997-01-01

    We describe a general new approach for identifying recessive mutations that affect diploid strains of yeast Saccharomyces cerevisiae and the application of this method to the identification of mutations that confer an intermediate block in meiotic prophase chromosome metabolism. The method uses a temperature-sensitive conjugation mutation ste7-1 in combination with homothallism. The mutations of interest confer a defect in spore formation that is dependent upon a gene required for initiation of meiotic recombination and development of meiosis-specific chromosome structure (SPO11). Identified in this screen were null mutations of the DMC1 gene, nonnull mutations of RAD50 (rad50S), and mutations in three new genes designated SAE1, SAE2 and SAE3 (Sporulation in the Absence of Spo Eleven). Molecular characterization of the SAE2 gene and characterization of meiotic and mitotic phenotypes of sae2 mutants are also presented. The phenotypes conferred by a sae2 null mutation are virtually indistinguishable from those conferred by the previously identified nonnull mutations of RAD50 (rad50S). Most notably, both mutations confer only weak sensitivity to the radiomimetic agent methyl methane sulfonate (MMS) but completely block resection and turnover of meiosis-specific double-strand breaks. These observations provide further evidence that this constellation of phenotypes identifies a specific molecular function. PMID:9215888

  19. Two novel exonic point mutations in HEXA identified in a juvenile Tay-Sachs patient: role of alternative splicing and nonsense-mediated mRNA decay.

    PubMed

    Levit, A; Nutman, D; Osher, E; Kamhi, E; Navon, R

    2010-06-01

    We have identified three mutations in the beta-hexoseaminidase A (HEXA) gene in a juvenile Tay-Sachs disease (TSD) patient, which exhibited a reduced level of HEXA mRNA. Two mutations are novel, c.814G>A (p.Gly272Arg) and c.1305C>T (p.=), located in exon 8 and in exon 11, respectively. The third mutation, c.1195A>G (p.Asn399Asp) in exon 11, has been previously characterized as a common polymorphism in African-Americans. Hex A activity measured in TSD Glial cells, transfected with HEXA cDNA constructs bearing these mutations, was unaltered from the activity level measured in normal HEXA cDNA. Analysis of RT-PCR products revealed three aberrant transcripts in the patient, one where exon 8 was absent, one where exon 11 was absent and a third lacking both exons 10 and 11. All three novel transcripts contain frameshifts resulting in premature termination codons (PTCs). Transfection of mini-gene constructs carrying the c.814G>A and c.1305C>T mutations proved that the two mutations result in exon skipping. mRNAs that harbor a PTC are detected and degraded by the nonsense-mediated mRNA decay (NMD) pathway to prevent synthesis of abnormal proteins. However, although NMD is functional in the patient's fibroblasts, aberrant transcripts are still present. We suggest that the level of correctly spliced transcripts as well as the efficiency in which NMD degrade the PTC-containing transcripts, apparently plays an important role in the phenotype severity of the unique patient and thus should be considered as a potential target for drug therapy. PMID:20363167

  20. A Novel Nonsense Mutation in the DMP1 Gene Identified by a Genome-Wide Association Study Is Responsible for Inherited Rickets in Corriedale Sheep

    PubMed Central

    Blair, Hugh T.; Thompson, Keith G.; Rothschild, Max F.; Garrick, Dorian J.

    2011-01-01

    Inherited rickets of Corriedale sheep is characterized by decreased growth rate, thoracic lordosis and angular limb deformities. Previous outcross and backcross studies implicate inheritance as a simple autosomal recessive disorder. A genome wide association study was conducted using the Illumina OvineSNP50 BeadChip on 20 related sheep comprising 17 affected and 3 carriers. A homozygous region of 125 consecutive single-nucleotide polymorphism (SNP) loci was identified in all affected sheep, covering a region of 6 Mb on ovine chromosome 6. Among 35 candidate genes in this region, the dentin matrix protein 1 gene (DMP1) was sequenced to reveal a nonsense mutation 250C/T on exon 6. This mutation introduced a stop codon (R145X) and could truncate C-terminal amino acids. Genotyping by PCR-RFLP for this mutation showed all 17 affected sheep were “T T” genotypes; the 3 carriers were “C T”; 24 phenotypically normal related sheep were either “C T” or “C C”; and 46 unrelated normal control sheep from other breeds were all “C C”. The other SNPs in DMP1 were not concordant with the disease and can all be ruled out as candidates. Previous research has shown that mutations in the DMP1 gene are responsible for autosomal recessive hypophosphatemic rickets in humans. Dmp1_knockout mice exhibit rickets phenotypes. We believe the R145X mutation to be responsible for the inherited rickets found in Corriedale sheep. A simple diagnostic test can be designed to identify carriers with the defective “T” allele. Affected sheep could be used as animal models for this form of human rickets, and for further investigation of the role of DMP1 in phosphate homeostasis. PMID:21747952

  1. USH1G with unique retinal findings caused by a novel truncating mutation identified by genome-wide linkage analysis

    PubMed Central

    Taibah, Khalid; Bin-Khamis, Ghada; Kennedy, Shelley; Hemidan, Amal; Al-Qahtani, Faisal; Tabbara, Khalid; Mubarak, Bashayer Al; Ramzan, Khushnooda; Meyer, Brian F.; Al-Owain, Mohammed

    2012-01-01

    Purpose Usher syndrome (USH) is an autosomal recessive disorder divided into three distinct clinical subtypes based on the severity of the hearing loss, manifestation of vestibular dysfunction, and the age of onset of retinitis pigmentosa and visual symptoms. To date, mutations in seven different genes have been reported to cause USH type 1 (USH1), the most severe form. Patients diagnosed with USH1 are known to be ideal candidates to benefit from cochlear implantation. Methods Genome-wide linkage analysis using Affymetrix GeneChip Human Mapping 10K arrays were performed in three cochlear implanted Saudi siblings born from a consanguineous marriage, clinically diagnosed with USH1 by comprehensive clinical, audiological, and ophthalmological examinations. From the linkage results, the USH1G gene was screened for mutations by direct sequencing of the coding exons. Results We report the identification of a novel p.S243X truncating mutation in USH1G that segregated with the disease phenotype and was not present in 300 ethnically matched normal controls. We also report on the novel retinal findings and the outcome of cochlear implantation in the affected individuals. Conclusions In addition to reporting a novel truncating mutation, this report expands the retinal phenotype in USH1G and presents the first report of successful cochlear implants in this disease. PMID:22876113

  2. Copyright 1999 by the Genetics Society of America Suppressors of the Arabidopsis lsd5 Cell Death Mutation Identify Genes

    E-print Network

    Dangl, Jeff

    Copyright © 1999 by the Genetics Society of America Suppressors of the Arabidopsis lsd5 Cell Death hypersensitive reaction (HR). Arabidopsis lsd mutants that spontaneously exhibit cell death reminiscent of the HR disease resistance, one of these mutants, lsd5, was used to isolate new mutations that suppress its cell

  3. Intrinsic susceptibility MRI identifies tumors with ALKF1174L mutation in genetically-engineered murine models of high-risk neuroblastoma.

    PubMed

    Jamin, Yann; Glass, Laura; Hallsworth, Albert; George, Rani; Koh, Dow-Mu; Pearson, Andrew D J; Chesler, Louis; Robinson, Simon P

    2014-01-01

    The early identification of children presenting ALK(F1174L)-mutated neuroblastoma, which are associated with resistance to the promising ALK inhibitor crizotinib and a marked poorer prognosis, has become a clinical priority. In comparing the radiology of the novel Th-ALK(F1174L)/Th-MYCN and the well-established Th-MYCN genetically-engineered murine models of neuroblastoma using MRI, we have identified a marked ALK(F1174L)-driven vascular phenotype. We demonstrate that quantitation of the transverse relaxation rate R2* (s(-1)) using intrinsic susceptibility-MRI under baseline conditions and during hyperoxia, can robustly discriminate this differential vascular phenotype, and identify MYCN-driven tumors harboring the ALK(F1174L) mutation with high specificity and selectivity. Intrinsic susceptibility-MRI could thus potentially provide a non-invasive and clinically-exploitable method to help identifying children with MYCN-driven neuroblastoma harboring the ALK(F1174L) mutation at the time of diagnosis. PMID:24667968

  4. Reduction in hepatic drug metabolizing CYP3A4 activities caused by P450 oxidoreductase mutations identified in patients with disordered steroid metabolism

    SciTech Connect

    Flueck, Christa E.; Mullis, Primus E.; Pandey, Amit V.

    2010-10-08

    Research highlights: {yields} Cytochrome P450 3A4 (CYP3A4), metabolizes 50% of drugs in clinical use and requires NADPH-P450 reductase (POR). {yields} Mutations in human POR cause congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. {yields} We are reporting that mutations in POR may reduce CYP3A4 activity. {yields} POR mutants Y181D, A457H, Y459H, V492E and R616X lost 99%, while A287P, C569Y and V608F lost 60-85% CYP3A4 activity. {yields} Reduction of CYP3A4 activity may cause increased risk of drug toxicities/adverse drug reactions in patients with POR mutations. -- Abstract: Cytochrome P450 3A4 (CYP3A4), the major P450 present in human liver metabolizes approximately half the drugs in clinical use and requires electrons supplied from NADPH through NADPH-P450 reductase (POR, CPR). Mutations in human POR cause a rare form of congenital adrenal hyperplasia from diminished activities of steroid metabolizing P450s. In this study we examined the effect of mutations in POR on CYP3A4 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified CYP3A4 to perform kinetic studies. We are reporting that mutations in POR identified in patients with disordered steroidogenesis/Antley-Bixler syndrome (ABS) may reduce CYP3A4 activity, potentially affecting drug metabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had more than 99% loss of CYP3A4 activity, while POR mutations A287P, C569Y and V608F lost 60-85% activity. Loss of CYP3A4 activity may result in increased risk of drug toxicities and adverse drug reactions in patients with POR mutations.

  5. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations

    PubMed Central

    Buczkowicz, Pawel; Hoeman, Christine; Rakopoulos, Patricia; Pajovic, Sanja; Letourneau, Louis; Dzamba, Misko; Morrison, Andrew; Lewis, Peter; Bouffet, Eric; Bartels, Ute; Zuccaro, Jennifer; Agnihotri, Sameer; Ryall, Scott; Barszczyk, Mark; Chornenkyy, Yevgen; Bourgey, Mathieu; Bourque, Guillaume; Montpetit, Alexandre; Cordero, Francisco; Castelo-Branco, Pedro; Mangerel, Joshua; Tabori, Uri; Ho, King Ching; Huang, Annie; Taylor, Kathryn R.; Mackay, Alan; Bendel, Anne E; Nazarian, Javad; Fangusaro, Jason R; Karajannis, Matthias A.; Zagzag, David; Foreman, Nicholas K.; Donson, Andrew; Hegert, Julia V.; Smith, Amy; Chan, Jennifer; Lafay-Cousin, Lucy; Dunn, Sandra; Hukin, Juliette; Dunham, Chris; Scheinemann, Katrin; Michaud, Jean; Zelcer, Shayna; Ramsay, David; Cain, Jason; Brennan, Cameron; Souweidane, Mark M.; Jones, Chris; Allis, C. David; Brudno, Michael; Becher, Oren; Hawkins, Cynthia

    2014-01-01

    Diffuse Intrinsic Pontine Glioma (DIPG) is a fatal brain cancer that arises in the brainstem of children with no effective treatment and near 100% fatality. The failure of most therapies can be attributed to the delicate location of these tumors and choosing therapies based on assumptions that DIPGs are molecularly similar to adult disease. Recent studies have unraveled the unique genetic make-up of this brain cancer with nearly 80% harboring a K27M-H3.3 or K27M-H3.1 mutation. However, DIPGs are still thought of as one disease with limited understanding of the genetic drivers of these tumors. To understand what drives DIPGs we integrated whole-genome-sequencing with methylation, expression and copy-number profiling, discovering that DIPGs are three molecularly distinct subgroups (H3-K27M, Silent, MYCN) and uncovering a novel recurrent activating mutation in the activin receptor ACVR1, in 20% of DIPGs. Mutations in ACVR1 were constitutively activating, leading to SMAD phosphorylation and increased expression of downstream activin signaling targets ID1 and ID2. Our results highlight distinct molecular subgroups and novel therapeutic targets for this incurable pediatric cancer. PMID:24705254

  6. A novel missense mutation in the NSDHL gene identified in a Lithuanian family by targeted next-generation sequencing causes CK syndrome.

    PubMed

    Preiksaitiene, Egle; Caro, Alfonso; Benušien?, Egl?; Oltra, Silvestre; Orellana, Carmen; Mork?nien?, Aušra; Roselló, Mónica Pilar; Kasnauskiene, Jurate; Monfort, Sandra; Ku?inskas, Vaidutis; Mayo, Sonia; Martinez, Francisco

    2015-06-01

    The NSDHL gene encodes 3?-hydroxysteroid dehydrogenase involved in one of the later steps of the cholesterol biosynthetic pathway. Mutations in this gene can cause CHILD syndrome (OMIM 308050) and CK syndrome (OMIM 300831). CHILD syndrome is an X-linked dominant, male lethal disorder caused by mutations in the NSDHL gene that result in the loss of the function of the NSDHL protein. CK syndrome is an allelic X-linked recessive disorder. So far, 13 patients with CK syndrome from two families have been reported on. We present a new five-generation family with affected males manifesting clinical features of CK syndrome. Next generation sequencing was targeted to a custom panel of 542 genes with known or putative implication on intellectual disability. Missense mutation p.Gly152Asp was identified in the NSDHL gene in the DNA sample of the affected male. Mutation carrier status was confirmed for all the obligate carriers in the family. The clinical features of the affected males in the family manifested as weak fetal movements, severe intellectual disability, seizures, spasticity, atrophy of optic discs, microcephaly, plagiocephaly, skeletal abnormalities, and minor facial anomalies, including a high nasal bridge, strabismus, and micrognathia. A highly significant preferential transmission of the mutation was observed in this and previous families segregating CK syndrome. Our report expands the clinical spectrum of this syndrome to include weak fetal movements, spasticity, and plagiocephaly, and transmission ratio distortion. The various findings in these patients increase our understanding of the diversity of the clinical presentation of cholesterol biosynthesis disorders. PMID:25900314

  7. Exome Sequencing Identifies a Novel CEACAM16 Mutation Associated with Autosomal Dominant Nonsyndromic Hearing Loss DFNA4B in a Chinese Family

    PubMed Central

    He, Chufeng; Li, Haibo; Qing, Jie; Grati, Mhamed; Hu, Zhengmao; Li, Jiada; Hu, Yiqiao; Xia, Kun; Mei, Lingyun; Wang, Xingwei; Yu, Jianjun; Chen, Hongsheng; Jiang, Lu; Liu, Yalan; Men, Meichao; Zhang, Hailin; Guan, Liping; Xiao, Jingjing; Zhang, Jianguo; Liu, Xuezhong; Feng, Yong

    2014-01-01

    Autosomal dominant nonsyndromic hearing loss (ADNSHL/DFNA) is a highly genetically heterogeneous disorder. Hitherto only about 30 ADNSHL-causing genes have been identified and many unknown genes remain to be discovered. In this research, genome-wide linkage analysis mapped the disease locus to a 4.3 Mb region on chromosome 19q13 in SY-026, a five-generation nonconsanguineous Chinese family affected by late-onset and progressive ADNSHL. This linkage region showed partial overlap with the previously reported DFNA4. Simultaneously, probands were analyzed using exome capture followed by next generation sequencing. Encouragingly, a heterozygous missense mutation, c.505G>A (p.G169R) in exon 3 of the CEACAM16 gene (carcinoembryonic antigen-related cell adhesion molecule 16), was identified via this combined strategy. Sanger sequencing verified that the mutation co-segregated with hearing loss in the family and that it was not present in 200 unrelated control subjects with matched ancestry. This is the second report in the literature of a family with ADNSHL caused by CEACAM16 mutation. Immunofluorescence staining and Western blots also prove CEACAM16 to be a secreted protein. Furthermore, our studies in transfected HEK293T cells show that the secretion efficacy of the mutant CEACAM16 is much lower than that of the wild-type, suggesting a deleterious effect of the sequence variant. PMID:25589040

  8. Whole exome sequencing identifies a novel frameshift mutation in GPC3 gene in a patient with overgrowth syndrome.

    PubMed

    Das Bhowmik, Aneek; Dalal, Ashwin

    2015-11-10

    Overgrowth syndromes are a heterogeneous group of diseases characterized by focal or generalized overgrowth. Many of the syndromes have overlapping clinical features and it is difficult to diagnose the condition based on clinical features alone. In the present study we report on a patient with overgrowth syndrome where extensive investigation did not reveal the cause of disease. Finally exome sequencing revealed a novel hemizygous single base pair deletion in exon 8 of GPC3 gene (chrX:132670203delA) resulting in a frameshift and creating a new stop codon at 62 amino acids downstream to codon 564 (c.1692delT; p.Leu565SerfsTer63) of the protein. The mutation was confirmed by Sanger sequencing. The mother was found to be heterozygous for the mutation. This variation is not reported in the 1000 Genomes, Exome Variant Server (EVS), Exome Aggregation Consortium (ExAC) and dbSNP databases and the region is conserved across primates. Exome sequencing was helpful in establishing diagnosis of Simpson-Golabi-Behmel syndrome type 1 (SGBS1) in a patient with unknown overgrowth syndrome. PMID:26321508

  9. DNA methylome analysis in Burkitt and follicular lymphomas identifies differentially methylated regions linked to somatic mutation and transcriptional control.

    PubMed

    Kretzmer, Helene; Bernhart, Stephan H; Wang, Wei; Haake, Andrea; Weniger, Marc A; Bergmann, Anke K; Betts, Matthew J; Carrillo-de-Santa-Pau, Enrique; Doose, Gero; Gutwein, Jana; Richter, Julia; Hovestadt, Volker; Huang, Bingding; Rico, Daniel; Jühling, Frank; Kolarova, Julia; Lu, Qianhao; Otto, Christian; Wagener, Rabea; Arnolds, Judith; Burkhardt, Birgit; Claviez, Alexander; Drexler, Hans G; Eberth, Sonja; Eils, Roland; Flicek, Paul; Haas, Siegfried; Hummel, Michael; Karsch, Dennis; Kerstens, Hinrik H D; Klapper, Wolfram; Kreuz, Markus; Lawerenz, Chris; Lenze, Dido; Loeffler, Markus; López, Cristina; MacLeod, Roderick A F; Martens, Joost H A; Kulis, Marta; Martín-Subero, José Ignacio; Möller, Peter; Nagel, Inga; Picelli, Simone; Vater, Inga; Rohde, Marius; Rosenstiel, Philip; Rosolowski, Maciej; Russell, Robert B; Schilhabel, Markus; Schlesner, Matthias; Stadler, Peter F; Szczepanowski, Monika; Trümper, Lorenz; Stunnenberg, Hendrik G; Küppers, Ralf; Ammerpohl, Ole; Lichter, Peter; Siebert, Reiner; Hoffmann, Steve; Radlwimmer, Bernhard

    2015-11-01

    Although Burkitt lymphomas and follicular lymphomas both have features of germinal center B cells, they are biologically and clinically quite distinct. Here we performed whole-genome bisulfite, genome and transcriptome sequencing in 13 IG-MYC translocation-positive Burkitt lymphoma, nine BCL2 translocation-positive follicular lymphoma and four normal germinal center B cell samples. Comparison of Burkitt and follicular lymphoma samples showed differential methylation of intragenic regions that strongly correlated with expression of associated genes, for example, genes active in germinal center dark-zone and light-zone B cells. Integrative pathway analyses of regions differentially methylated in Burkitt and follicular lymphomas implicated DNA methylation as cooperating with somatic mutation of sphingosine phosphate signaling, as well as the TCF3-ID3 and SWI/SNF complexes, in a large fraction of Burkitt lymphomas. Taken together, our results demonstrate a tight connection between somatic mutation, DNA methylation and transcriptional control in key B cell pathways deregulated differentially in Burkitt lymphoma and other germinal center B cell lymphomas. PMID:26437030

  10. Mutational Analysis of Intracellular Loops Identify Cross Talk with Nucleotide Binding Domains of Yeast ABC Transporter Cdr1p

    PubMed Central

    Shah, Abdul Haseeb; Rawal, Manpreet Kaur; Dhamgaye, Sanjiveeni; Komath, Sneha Sudha; Saxena, Ajay Kumar; Prasad, Rajendra

    2015-01-01

    The ABC transporter Cdr1 protein (Cdr1p) of Candida albicans, which plays a major role in antifungal resistance, has two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs) that are interconnected by extracellular (ECLs) and intracellular (ICLs) loops. To examine the communication interface between the NBDs and ICLs of Cdr1p, we subjected all four ICLs to alanine scanning mutagenesis, replacing each of the 85 residues with an alanine. The resulting ICL mutant library was analyzed by biochemical and phenotypic mapping. Only 18% of the mutants from this library displayed enhanced drug susceptibility. Most of the drug-susceptible mutants displayed uncoupling between ATP hydrolysis and drug transport. The two drug-susceptible ICL1 mutants (I574A and S593A) that lay within or close to the predicted coupling helix yielded two chromosomal suppressor mutations that fall near the Q-loop of NBD2 (R935) and in the Walker A motif (G190) of NBD1. Based on a 3D homology model and kinetic analysis of drug transport, our data suggest that large distances between ICL residues and their respective chromosomal suppressor mutations rule out a direct interaction between them. However, they impact the transport cycle by restoring the coupling interface via indirect downstream signaling. PMID:26053667

  11. Whole-exome sequencing in an individual with severe global developmental delay and intractable epilepsy identifies a novel, de novo GRIN2A mutation.

    PubMed

    Venkateswaran, Sunita; Myers, Ken A; Smith, Amanda C; Beaulieu, Chandree L; Schwartzentruber, Jeremy A; Majewski, Jacek; Bulman, Dennis; Boycott, Kym M; Dyment, David A

    2014-07-01

    We present a 4-year-old girl with profound global developmental delay and refractory epilepsy characterized by multiple seizure types (partial complex with secondary generalization, tonic, myoclonic, and atypical absence). Her seizure semiology did not fit within a specific epileptic syndrome. Despite a broad metabolic and genetic workup, a diagnosis was not forthcoming. Whole-exome sequencing with a trio analysis (affected child compared to unaffected parents) was performed and identified a novel de novo missense mutation in GRIN2A, c.2449A>G, p.Met817Val, as the likely cause of the refractory epilepsy and global developmental delay. GRIN2A encodes a subunit of N-methyl-d-aspartate (NMDA) receptor that mediates excitatory transmission in the central nervous system. A significant reduction in the frequency and the duration of her seizures was observed after the addition of topiramate over a 10-month period. Further prospective studies in additional patients with mutations in GRIN2A will be required to optimize seizure management for this rare disorder. This report expands the current phenotype associated with GRIN2A mutations. PMID:24903190

  12. Mutational analysis identifies leucine-rich repeat insertions crucial for pigeon toll-like receptor 7 recognition and signaling.

    PubMed

    Xiong, Dan; Song, Li; Jiao, Yang; Kang, Xilong; Chen, Xiang; Geng, Shizhong; Pan, Zhiming; Jiao, Xinan

    2015-11-15

    Toll-like receptor 7 (TLR7) is responsible for recognizing viral single-stranded RNA and antiviral imidazoquinoline compounds, leading to the activation of the innate immune response. In this study, mutated pigeon TLR7 fragments, in which the insertion at position 10 of leucine-rich repeat 10 (LRR10) or at position 15 of LRR2/11/13/14 was deleted, were amplified with an overlap-PCR method, and inserted into the expression vector pCMV. The immune functions of the TLR7 mutants were determined with an NF-?B luciferase assay of transfected cells. The deletion of the insertions absolutely abolished TLR7-NF-?B signaling. With quantitative real-time PCR and sandwich enzyme-linked immunosorbent assay, we observed that stimulation with R848 failed to induce the expression of interleukin 8 (IL-8) in any of the mutant-TLR7-transfected cells, consistent with their lack of NF-?B activity. However, the expression of interferon ? (IFN-?) and tumor necrosis factor ? (TNF-?) was significantly upregulated in the Del10IN10 and Del14IN15 groups. Remarkably, the levels of pigeon TLR7 expression were significantly increased in all the TLR7-mutated groups. Therefore, we speculate that another part of the deficient TLR7 mediates the induction of IFN-? and TNF-? by increasing the expression of TLR7 as compensation. However, the increased expression of TLR7 in the Del11IN15 group failed to induce the production of IFN-?, IL-8, or TNF-?, indicating that a false compensation occurred when the crucial LRR insertion was deleted. PMID:26553562

  13. Severe vascular calcification and tumoral calcinosis in a family with hyperphosphatemia: a fibroblast growth factor 23 mutation identified by exome sequencing

    PubMed Central

    Shah, Anuja; Miller, Clinton J.; Nast, Cynthia C.; Adams, Mark D.; Truitt, Barbara; Tayek, John A.; Tong, Lili; Mehtani, Parag; Monteon, Francisco; Sedor, John R.; Clinkenbeard, Erica L.; White, Kenneth; Mehrotra, Rajnish; LaPage, Janine; Dickson, Patricia; Adler, Sharon G.; Iyengar, Sudha K.

    2014-01-01

    Background Tumoral calcinosis is an autosomal recessive disorder characterized by ectopic calcification and hyperphosphatemia. Methods We describe a family with tumoral calcinosis requiring amputations. The predominant metabolic anomaly identified in three affected family members was hyperphosphatemia. Biochemical and phenotypic analysis of 13 kindred members, together with exome analysis of 6 members, was performed. Results We identified a novel Q67K mutation in fibroblast growth factor 23 (FGF23), segregating with a null (deletion) allele on the other FGF23 homologue in three affected members. Affected siblings had high circulating plasma C-terminal FGF23 levels, but undetectable intact FGF23 or N-terminal FGF23, leading to loss of FGF23 function. Conclusions This suggests that in human, as in experimental models, severe prolonged hyperphosphatemia may be sufficient to produce bone differentiation proteins in vascular cells, and vascular calcification severe enough to require amputation. Genetic modifiers may contribute to the phenotypic variation within and between families. PMID:25378588

  14. Positional cloning and next-generation sequencing identified a TGM6 mutation in a large Chinese pedigree with acute myeloid leukaemia.

    PubMed

    Pan, Li-Li; Huang, Yuan-mao; Wang, Min; Zhuang, Xiao-e; Luo, Dong-feng; Guo, Shi-cheng; Zhang, Zhi-shun; Huang, Qing; Lin, Sheng-long; Wang, Shao-yuan

    2015-02-01

    An inherited predisposition to acute myeloid leukaemia (AML) is exceedingly rare, but the investigation of these families will aid in the delineation of the underlying mechanisms of the more common, sporadic cases. Three AML predisposition genes, RUNX1, CEBPA and GATA2, have been recognised, but the culprit genes in the majority of AML pedigrees remain obscure. We applied a combined strategy of linkage analysis and next-generation sequencing (NGS) technology in an autosomal-dominant AML Chinese family with 11 cases in four generations. A genome-wide linkage scan using a 500K SNP genotyping array was conducted to identify a previously unreported candidate region on 20p13 with a maximum multipoint heterogeneity LOD (HLOD) score of 3.56 (P=0.00005). Targeted NGS within this region and whole-exome sequencing (WES) revealed a missense mutation in TGM6 (RefSeq, NM_198994.2:c.1550T>G, p.(L517W)), which cosegregated with the phenotype in this family, and was absent in 530 healthy controls. The mutated amino acid was located in a highly conserved position, which may be deleterious and affect the activation of TGM6. Our results strongly support the candidacy of TGM6 as a novel familial AML-associated gene. PMID:24755948

  15. Genomics and drug profiling of fatal TCF3-HLF-positive acute lymphoblastic leukemia identifies recurrent mutation patterns and therapeutic options.

    PubMed

    Fischer, Ute; Forster, Michael; Rinaldi, Anna; Risch, Thomas; Sungalee, Stéphanie; Warnatz, Hans-Jörg; Bornhauser, Beat; Gombert, Michael; Kratsch, Christina; Stütz, Adrian M; Sultan, Marc; Tchinda, Joelle; Worth, Catherine L; Amstislavskiy, Vyacheslav; Badarinarayan, Nandini; Baruchel, André; Bartram, Thies; Basso, Giuseppe; Canpolat, Cengiz; Cario, Gunnar; Cavé, Hélène; Dakaj, Dardane; Delorenzi, Mauro; Dobay, Maria Pamela; Eckert, Cornelia; Ellinghaus, Eva; Eugster, Sabrina; Frismantas, Viktoras; Ginzel, Sebastian; Haas, Oskar A; Heidenreich, Olaf; Hemmrich-Stanisak, Georg; Hezaveh, Kebria; Höll, Jessica I; Hornhardt, Sabine; Husemann, Peter; Kachroo, Priyadarshini; Kratz, Christian P; Kronnie, Geertruy Te; Marovca, Blerim; Niggli, Felix; McHardy, Alice C; Moorman, Anthony V; Panzer-Grümayer, Renate; Petersen, Britt S; Raeder, Benjamin; Ralser, Meryem; Rosenstiel, Philip; Schäfer, Daniel; Schrappe, Martin; Schreiber, Stefan; Schütte, Moritz; Stade, Björn; Thiele, Ralf; Weid, Nicolas von der; Vora, Ajay; Zaliova, Marketa; Zhang, Langhui; Zichner, Thomas; Zimmermann, Martin; Lehrach, Hans; Borkhardt, Arndt; Bourquin, Jean-Pierre; Franke, Andre; Korbel, Jan O; Stanulla, Martin; Yaspo, Marie-Laure

    2015-09-01

    TCF3-HLF-positive acute lymphoblastic leukemia (ALL) is currently incurable. Using an integrated approach, we uncovered distinct mutation, gene expression and drug response profiles in TCF3-HLF-positive and treatment-responsive TCF3-PBX1-positive ALL. We identified recurrent intragenic deletions of PAX5 or VPREB1 in constellation with the fusion of TCF3 and HLF. Moreover somatic mutations in the non-translocated allele of TCF3 and a reduction of PAX5 gene dosage in TCF3-HLF ALL suggest cooperation within a restricted genetic context. The enrichment for stem cell and myeloid features in the TCF3-HLF signature may reflect reprogramming by TCF3-HLF of a lymphoid-committed cell of origin toward a hybrid, drug-resistant hematopoietic state. Drug response profiling of matched patient-derived xenografts revealed a distinct profile for TCF3-HLF ALL with resistance to conventional chemotherapeutics but sensitivity to glucocorticoids, anthracyclines and agents in clinical development. Striking on-target sensitivity was achieved with the BCL2-specific inhibitor venetoclax (ABT-199). This integrated approach thus provides alternative treatment options for this deadly disease. PMID:26214592

  16. A RANKL G278R mutation causing osteopetrosis identifies a functional amino acid essential for trimer assembly in RANKL and TNF.

    PubMed

    Douni, Eleni; Rinotas, Vagelis; Makrinou, Eleni; Zwerina, Jochen; Penninger, Josef M; Eliopoulos, Elias; Schett, Georg; Kollias, George

    2012-02-15

    Receptor activator of nuclear factor-?B ligand (RANKL), a trimeric tumor necrosis factor (TNF) superfamily member, is the central mediator of osteoclast formation and bone resorption. Functional mutations in RANKL lead to human autosomal recessive osteopetrosis (ARO), whereas RANKL overexpression has been implicated in the pathogenesis of bone degenerative diseases such as osteoporosis. Following a forward genetics approach using N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we generated a novel mouse model of ARO caused by a new loss-of-function allele of Rankl with a glycine-to-arginine mutation at codon 278 (G278R) at the extracellular inner hydrophobic F ?-strand of RANKL. Mutant mice develop severe osteopetrosis similar to Rankl-deficient mice, whereas exogenous administration of recombinant RANKL restores osteoclast formation in vivo. We show that RANKL(G278R) monomers fail to assemble into homotrimers, are unable to bind and activate the RANK receptor and interact with wild-type RANKL exerting a dominant-negative effect on its trimerization and function in vitro. Since G278 is highly conserved within the TNF superfamily, we identified that a similar substitution in TNF, G122R, also abrogated trimerization, binding to TNF receptor and consequently impaired TNF biological activity. Notably, SPD304, a potent small-molecule inhibitor of TNF trimerization that interacts with G122, also inhibited RANKL activity, suggesting analogous inhibitory mechanisms. Our results provide a new disease model for ARO and identify a functional amino acid in the TNF-like core domain essential for trimer formation both in RANKL and in TNF that could be considered a novel potential target for inhibiting their biological activities. PMID:22068587

  17. A Novel Quantitative Hemolytic Assay Coupled with Restriction Fragment Length Polymorphisms Analysis Enabled Early Diagnosis of Atypical Hemolytic Uremic Syndrome and Identified Unique Predisposing Mutations in Japan

    PubMed Central

    Yoshida, Yoko; Miyata, Toshiyuki; Matsumoto, Masanori; Shirotani-Ikejima, Hiroko; Uchida, Yumiko; Ohyama, Yoshifumi; Kokubo, Tetsuro; Fujimura, Yoshihiro

    2015-01-01

    For thrombotic microangiopathies (TMAs), the diagnosis of atypical hemolytic uremic syndrome (aHUS) is made by ruling out Shiga toxin-producing Escherichia coli (STEC)-associated HUS and ADAMTS13 activity-deficient thrombotic thrombocytopenic purpura (TTP), often using the exclusion criteria for secondary TMAs. Nowadays, assays for ADAMTS13 activity and evaluation for STEC infection can be performed within a few hours. However, a confident diagnosis of aHUS often requires comprehensive gene analysis of the alternative complement activation pathway, which usually takes at least several weeks. However, predisposing genetic abnormalities are only identified in approximately 70% of aHUS. To facilitate the diagnosis of complement-mediated aHUS, we describe a quantitative hemolytic assay using sheep red blood cells (RBCs) and human citrated plasma, spiked with or without a novel inhibitory anti-complement factor H (CFH) monoclonal antibody. Among 45 aHUS patients in Japan, 24% (11/45) had moderate-to-severe (?50%) hemolysis, whereas the remaining 76% (34/45) patients had mild or no hemolysis (<50%). The former group is largely attributed to CFH-related abnormalities, and the latter group has C3-p.I1157T mutations (16/34), which were identified by restriction fragment length polymorphism (RFLP) analysis. Thus, a quantitative hemolytic assay coupled with RFLP analysis enabled the early diagnosis of complement-mediated aHUS in 60% (27/45) of patients in Japan within a week of presentation. We hypothesize that this novel quantitative hemolytic assay would be more useful in a Caucasian population, who may have a higher proportion of CFH mutations than Japanese patients. PMID:25951460

  18. Genome-Wide Association Study in BRCA1 Mutation Carriers Identifies Novel Loci Associated with Breast and Ovarian Cancer Risk

    PubMed Central

    Wang, Xianshu; McGuffog, Lesley; Lee, Andrew; Olswold, Curtis; Kuchenbaecker, Karoline B.; Soucy, Penny; Fredericksen, Zachary; Barrowdale, Daniel; Dennis, Joe; Gaudet, Mia M.; Dicks, Ed; Kosel, Matthew; Healey, Sue; Sinilnikova, Olga M.; Lee, Adam; Bacot, François; Vincent, Daniel; Hogervorst, Frans B. L.; Peock, Susan; Stoppa-Lyonnet, Dominique; Jakubowska, Anna; Investigators, kConFab; Radice, Paolo; Schmutzler, Rita Katharina; Domchek, Susan M.; Piedmonte, Marion; Singer, Christian F.; Friedman, Eitan; Thomassen, Mads; Hansen, Thomas V. O.; Neuhausen, Susan L.; Szabo, Csilla I.; Blanco, Ignacio; Greene, Mark H.; Karlan, Beth Y.; Garber, Judy; Phelan, Catherine M.; Weitzel, Jeffrey N.; Montagna, Marco; Olah, Edith; Andrulis, Irene L.; Godwin, Andrew K.; Yannoukakos, Drakoulis; Goldgar, David E.; Caldes, Trinidad; Nevanlinna, Heli; Osorio, Ana; Terry, Mary Beth; Daly, Mary B.; van Rensburg, Elizabeth J.; Hamann, Ute; Ramus, Susan J.; Ewart Toland, Amanda; Caligo, Maria A.; Olopade, Olufunmilayo I.; Tung, Nadine; Claes, Kathleen; Beattie, Mary S.; Southey, Melissa C.; Imyanitov, Evgeny N.; Tischkowitz, Marc; Janavicius, Ramunas; John, Esther M.; Kwong, Ava; Diez, Orland; Balmaña, Judith; Barkardottir, Rosa B.; Arun, Banu K.; Rennert, Gad; Teo, Soo-Hwang; Ganz, Patricia A.; Campbell, Ian; van der Hout, Annemarie H.; van Deurzen, Carolien H. M.; Seynaeve, Caroline; Gómez Garcia, Encarna B.; van Leeuwen, Flora E.; Meijers-Heijboer, Hanne E. J.; Gille, Johannes J. P.; Ausems, Margreet G. E. M.; Blok, Marinus J.; Ligtenberg, Marjolijn J. L.; Rookus, Matti A.; Devilee, Peter; Verhoef, Senno; van Os, Theo A. M.; Wijnen, Juul T.; Frost, Debra; Ellis, Steve; Fineberg, Elena; Platte, Radka; Evans, D. Gareth; Izatt, Louise; Eeles, Rosalind A.; Adlard, Julian; Eccles, Diana M.; Cook, Jackie; Brewer, Carole; Douglas, Fiona; Hodgson, Shirley; Morrison, Patrick J.; Side, Lucy E.; Donaldson, Alan; Houghton, Catherine; Rogers, Mark T.; Dorkins, Huw; Eason, Jacqueline; Gregory, Helen; McCann, Emma; Murray, Alex; Calender, Alain; Hardouin, Agnès; Berthet, Pascaline; Delnatte, Capucine; Nogues, Catherine; Lasset, Christine; Houdayer, Claude; Leroux, Dominique; Rouleau, Etienne; Prieur, Fabienne; Damiola, Francesca; Sobol, Hagay; Coupier, Isabelle; Venat-Bouvet, Laurence; Castera, Laurent; Gauthier-Villars, Marion; Léoné, Mélanie; Pujol, Pascal; Mazoyer, Sylvie; Bignon, Yves-Jean; Z?owocka-Per?owska, El?bieta; Gronwald, Jacek; Lubinski, Jan; Durda, Katarzyna; Jaworska, Katarzyna; Huzarski, Tomasz; Spurdle, Amanda B.; Viel, Alessandra; Peissel, Bernard; Bonanni, Bernardo; Melloni, Giulia; Ottini, Laura; Papi, Laura; Varesco, Liliana; Tibiletti, Maria Grazia; Peterlongo, Paolo; Volorio, Sara; Manoukian, Siranoush; Pensotti, Valeria; Arnold, Norbert; Engel, Christoph; Deissler, Helmut; Gadzicki, Dorothea; Gehrig, Andrea; Kast, Karin; Rhiem, Kerstin; Meindl, Alfons; Niederacher, Dieter; Ditsch, Nina; Plendl, Hansjoerg; Preisler-Adams, Sabine; Engert, Stefanie; Sutter, Christian; Varon-Mateeva, Raymonda; Wappenschmidt, Barbara; Weber, Bernhard H. F.; Arver, Brita; Stenmark-Askmalm, Marie; Loman, Niklas; Rosenquist, Richard; Einbeigi, Zakaria; Nathanson, Katherine L.; Rebbeck, Timothy R.; Blank, Stephanie V.; Cohn, David E.; Rodriguez, Gustavo C.; Small, Laurie; Friedlander, Michael; Bae-Jump, Victoria L.; Fink-Retter, Anneliese; Rappaport, Christine; Gschwantler-Kaulich, Daphne; Pfeiler, Georg; Tea, Muy-Kheng; Lindor, Noralane M.; Kaufman, Bella; Shimon Paluch, Shani; Laitman, Yael; Skytte, Anne-Bine; Gerdes, Anne-Marie; Pedersen, Inge Sokilde; Moeller, Sanne Traasdahl; Kruse, Torben A.; Jensen, Uffe Birk; Vijai, Joseph; Sarrel, Kara; Robson, Mark; Kauff, Noah; Mulligan, Anna Marie; Glendon, Gord; Ozcelik, Hilmi; Ejlertsen, Bent; Nielsen, Finn C.; Jønson, Lars; Andersen, Mette K.; Ding, Yuan Chun; Steele, Linda; Foretova, Lenka; Teulé, Alex; Lazaro, Conxi; Brunet, Joan; Pujana, Miquel Angel; Mai, Phuong L.; Loud, Jennifer T.; Walsh, Christine; Lester, Jenny; Orsulic, Sandra; Narod, Steven A.; Herzog, Josef; Sand, Sharon R.; Tognazzo, Silvia; Agata, Simona; Vaszko, Tibor; Weaver, Joellen; Stavropoulou, Alexandra V.; Buys, Saundra S.; Romero, Atocha; de la Hoya, Miguel; Aittomäki, Kristiina; Muranen, Taru A.; Duran, Mercedes; Chung, Wendy K.; Lasa, Adriana; Dorfling, Cecilia M.; Miron, Alexander; Benitez, Javier; Senter, Leigha; Huo, Dezheng; Chan, Salina B.; Sokolenko, Anna P.; Chiquette, Jocelyne; Tihomirova, Laima; Friebel, Tara M.; Agnarsson, Bjarni A.

    2013-01-01

    BRCA1-associated breast and ovarian cancer risks can be modified by common genetic variants. To identify further cancer risk-modifying loci, we performed a multi-stage GWAS of 11,705 BRCA1 carriers (of whom 5,920 were diagnosed with breast and 1,839 were diagnosed with ovarian cancer), with a further replication in an additional sample of 2,646 BRCA1 carriers. We identified a novel breast cancer risk modifier locus at 1q32 for BRCA1 carriers (rs2290854, P?=?2.7×10?8, HR?=?1.14, 95% CI: 1.09–1.20). In addition, we identified two novel ovarian cancer risk modifier loci: 17q21.31 (rs17631303, P?=?1.4×10?8, HR?=?1.27, 95% CI: 1.17–1.38) and 4q32.3 (rs4691139, P?=?3.4×10?8, HR?=?1.20, 95% CI: 1.17–1.38). The 4q32.3 locus was not associated with ovarian cancer risk in the general population or BRCA2 carriers, suggesting a BRCA1-specific association. The 17q21.31 locus was also associated with ovarian cancer risk in 8,211 BRCA2 carriers (P?=?2×10?4). These loci may lead to an improved understanding of the etiology of breast and ovarian tumors in BRCA1 carriers. Based on the joint distribution of the known BRCA1 breast cancer risk-modifying loci, we estimated that the breast cancer lifetime risks for the 5% of BRCA1 carriers at lowest risk are 28%–50% compared to 81%–100% for the 5% at highest risk. Similarly, based on the known ovarian cancer risk-modifying loci, the 5% of BRCA1 carriers at lowest risk have an estimated lifetime risk of developing ovarian cancer of 28% or lower, whereas the 5% at highest risk will have a risk of 63% or higher. Such differences in risk may have important implications for risk prediction and clinical management for BRCA1 carriers. PMID:23544013

  19. Discrimination of germline V genes at different sequencing lengths and mutational burdens: A new tool for identifying and evaluating the reliability of V gene assignment.

    PubMed

    Zhang, Bochao; Meng, Wenzhao; Luning Prak, Eline T; Hershberg, Uri

    2015-12-01

    Immune repertoires are collections of lymphocytes that express diverse antigen receptor gene rearrangements consisting of Variable (V), (Diversity (D) in the case of heavy chains) and Joining (J) gene segments. Clonally related cells typically share the same germline gene segments and have highly similar junctional sequences within their third complementarity determining regions. Identifying clonal relatedness of sequences is a key step in the analysis of immune repertoires. The V gene is the most important for clone identification because it has the longest sequence and the greatest number of sequence variants. However, accurate identification of a clone's germline V gene source is challenging because there is a high degree of similarity between different germline V genes. This difficulty is compounded in antibodies, which can undergo somatic hypermutation. Furthermore, high-throughput sequencing experiments often generate partial sequences and have significant error rates. To address these issues, we describe a novel method to estimate which germline V genes (or alleles) cannot be discriminated under different conditions (read lengths, sequencing errors or somatic hypermutation frequencies). Starting with any set of germline V genes, this method measures their similarity using different sequencing lengths and calculates their likelihood of unambiguous assignment under different levels of mutation. Hence, one can identify, under different experimental and biological conditions, the germline V genes (or alleles) that cannot be uniquely identified and bundle them together into groups of specific V genes with highly similar sequences. PMID:26529062

  20. Exome sequencing identifies de novo gain of function missense mutation in KCND2 in identical twins with autism and seizures that slows potassium channel inactivation

    PubMed Central

    Lee, Hane; Lin, Meng-chin A.; Kornblum, Harley I.; Papazian, Diane M.; Nelson, Stanley F.

    2014-01-01

    Numerous studies and case reports show comorbidity of autism and epilepsy, suggesting some common molecular underpinnings of the two phenotypes. However, the relationship between the two, on the molecular level, remains unclear. Here, whole exome sequencing was performed on a family with identical twins affected with autism and severe, intractable seizures. A de novo variant was identified in the KCND2 gene, which encodes the Kv4.2 potassium channel. Kv4.2 is a major pore-forming subunit in somatodendritic subthreshold A-type potassium current (ISA) channels. The de novo mutation p.Val404Met is novel and occurs at a highly conserved residue within the C-terminal end of the transmembrane helix S6 region of the ion permeation pathway. Functional analysis revealed the likely pathogenicity of the variant in that the p.Val404Met mutant construct showed significantly slowed inactivation, either by itself or after equimolar coexpression with the wild-type Kv4.2 channel construct consistent with a dominant effect. Further, the effect of the mutation on closed-state inactivation was evident in the presence of auxiliary subunits that associate with Kv4 subunits to form ISA channels in vivo. Discovery of a functionally relevant novel de novo variant, coupled with physiological evidence that the mutant protein disrupts potassium current inactivation, strongly supports KCND2 as the causal gene for epilepsy in this family. Interaction of KCND2 with other genes implicated in autism and the role of KCND2 in synaptic plasticity provide suggestive evidence of an etiological role in autism. PMID:24501278

  1. Comparison of gene expression patterns across twelve tumor types identifies a cancer supercluster characterized by TP53 mutations and cell cycle defects

    PubMed Central

    Martínez, Emmanuel; Yoshihara, Kosuke; Kim, Hoon; Mills, Gordon M.; Treviño, Victor; Verhaak, Roel GW

    2014-01-01

    Transcriptional profile based subtypes of cancer are often viewed as identifying different diseases from the same tissue origin. Understanding the mechanisms driving the subtypes may be key in development of novel therapeutics but is challenged by lineage-specific expression signals. Using a t-test statistics approach we compared gene expression subtypes across twelve tumor types, which identified eight transcriptional superclusters characterized by commonly activated disease pathways and similarities in gene expression. One of the largest superclusters was determined by the upregulation of a proliferation signature, significant enrichment in TP53 mutations, genomic loss of CDKN2A (p16ARF), evidence of increased numbers of DNA double strand breaks and high expression of cyclin B1 protein. These correlations suggested that abrogation of the P53 mediated apoptosis response to DNA damage results in activation of cell cycle pathways and represents a common theme in cancer. A second consistent pattern, observed in nine of eleven solid tumor types, was a subtype related to an activated tumor-associated stroma. The similarity in transcriptional footprints across cancers suggested that tumor subtypes are commonly unified by a limited number of molecular themes. PMID:25088195

  2. Identifiers Identifiers

    E-print Network

    Brass, Stefan

    , July 1998. . Tim Berners­Lee: Cool URIs don't change. [http://www.w3.org/Provider/Style/URI] . Uniform://archive.ncsa.uiuc.edu/demoweb/url­primer.html] . T. Berners­Lee, R. Fielding, L. Masinter: Uniform Resource Identifiers (URI): Generic Syntax. RFC Names. RFC 1737, December 1994, 7 pages. . T. Berners­Lee, L. Masinter, M. McCahill: Uniform Resource

  3. Identifiers Identifiers

    E-print Network

    Brass, Stefan

    , July 1998. . Tim Berners­Lee: Cool URIs don't change. [http://www.w3.org/Provider/Style/URI] Stefan://archive.ncsa.uiuc.edu/demoweb/url­primer.html] . T. Berners­Lee, R. Fielding, L. Masinter: Uniform Resource Identifiers (URI): Generic Syntax. RFC Names. RFC 1737, December 1994, 7 pages. . T. Berners­Lee, L. Masinter, M. McCahill: Uniform Resource

  4. Intestinal Cell Barrier Function In Vitro Is Severely Compromised by Keratin 8 and 18 Mutations Identified in Patients with Inflammatory Bowel Disease

    PubMed Central

    Zupancic, Tina; Stojan, Jure; Lane, Ellen Birgitte; Komel, Radovan; Bedina-Zavec, Apolonija; Liovic, Mirjana

    2014-01-01

    Keratin 8 and 18 (K8/K18) mutations have been implicated in the aetiology of certain pathogenic processes of the liver and pancreas. While some K8 mutations (K8 G62C, K8 K464N) are also presumed susceptibility factors for inflammatory bowel disease (IBD), the only K18 mutation (K18 S230T) discovered so far in an IBD patient is thought to be a polymorphism. The aim of our study was to demonstrate that these mutations might also directly affect intestinal cell barrier function. Cell monolayers of genetically engineered human colonocytes expressing these mutations were tested for permeability, growth rate and resistance to heat-stress. We also calculated the change in dissociation constant (Kd, measure of affinity) each of these mutations introduces into the keratin protein, and present the first model of a keratin dimer L12 region with in silico clues to how the K18 S230T mutation may affect keratin function. Physiologically, these mutations cause up to 30% increase in paracellular permeability in vitro. Heat-stress induces little keratin clumping but instead cell monolayers peel off the surface suggesting a problem with cell junctions. K18 S230T has pronounced pathological effects in vitro marked by high Kd, low growth rate and increased permeability. The latter may be due to the altered distribution of tight junction components claudin-4 and ZO-1. This is the first time intestinal cells have been suggested also functionally impaired by K8/K18 mutations. Although an in vitro colonocyte model system does not completely mimic the epithelial lining of the intestine, nevertheless the data suggest that K8/K18 mutations may be also able to produce a phenotype in vivo. PMID:24915158

  5. Somatic mosaicism for a newly identified splice-site mutation in a patient with adenosine deaminase-deficient immunodeficiency and spontaneous clinical recovery

    SciTech Connect

    Hirschhorn, R.; Yang, D.R.; Israni, A.; Huie, M.L. ); Ownby, D.R. )

    1994-07-01

    Absent or severely reduced adenosine deaminase (ADA) activity produces inherited immunodeficiency of varying severity, with defects of both cellular and humoral immunity. The authors report somatic mosaicism as the basis for a delayed presentation and unusual course of a currently healthy young adult receiving no therapy. He was diagnosed at age 2[1/2] years because of life-threatening pneumonia, recurrent infections, failure of normal growth, and lymphopenia, but he retained significant cellular immune function. A fibroblast cell line and a B cell line, established at diagnosis, lacked ADA activity and were heteroallelic for a splice-donor-site mutation in IVS 1 (+1GT[yields]CT) and a missense mutation (Arg101Gln). All clones (17/17) isolated from the B cell mRNA carried the missense mutation, indicating that the allele with the splice-site mutation produced unstable mRNA. In striking contrast, a B cell line established at age 16 years expressed 50% of normal ADA; 50% had the missense mutation. Genomic DNA contained the missense mutation but not the splice-site mutation. All three cell lines were identical for multiple polymorphic markers and the presence of a Y chromosome. In vivo somatic mosaicism was demonstrated in genomic DNA from peripheral blood cells obtained at 16 years of age, in that less than half the DNA carried the splice-site mutation (P<.0.02, vs. original B cell line). Consistent with mosaicism, erythrocyte content of the toxic metabolite deoxyATP was only minimally elevated. Somatic mosaicism could have arisen either by somatic mutation or by reversion at the site of mutation. Selection in vivo for ADA normal hematopoietic cells may have played a role in the return to normal health, in the absence of therapy. 57 refs., 4 figs., 2 tabs.

  6. CDH1 germ-line missense mutation identified by multigene sequencing in a family with no history of diffuse gastric cancer.

    PubMed

    Lajus, Tirzah Braz Petta; Sales, Roberto Magnus Duarte

    2015-09-01

    Germ-line mutation in CDH1 gene is associated with high risk for Hereditary Diffuse Gastric Cancer (HDGC) and Infiltrative Lobular Carcinoma (ILC). Although somatic CDH1 mutations were also detected in ILC with a frequency ranging from 10 to 56%, CDH1 alterations in more frequent infiltrative ductal carcinoma (IDC) appear to be rare, and no association with germ-line CDH1 mutation and IDC has been established. Here we report the case of a woman diagnosed with IDC at 39years of age, presenting extensive familial history of cancer at multiple sites with early-age onset and with no case of HDGC. Deep sequencing have revealed CDH1 missense mutation c.1849G>A (p.Ala617Thr) in heterozygous and four BRCA2 single nucleotide polymorphism in homozygosis. In this family, the mutation c.1849G>A in the CDH1 gene is not related to HDGC nor ILC. Therefore, here we highlight that multigene analysis is important to detect germ-line mutations and genetic variants in patients with cancers at multiple sites in the family, even if inconclusive genetic counseling can be offered, since hereafter, medical awareness will be held. PMID:25981591

  7. Screening for Genomic Rearrangements in Families with Breast and Ovarian Cancer Identifies BRCA1 Mutations Previously Missed by Conformation-Sensitive Gel Electrophoresis or Sequencing

    PubMed Central

    Unger, Meredith A.; Nathanson, Katherine L.; Calzone, Kathleen; Antin-Ozerkis, Danielle; Shih, Helen A.; Martin, Anne-Marie; Lenoir, Gilbert M.; Mazoyer, Sylvie; L. Weber, Barbara

    2000-01-01

    The frequency of genomic rearrangements in BRCA1 was assessed in 42 American families with breast and ovarian cancer who were seeking genetic testing and who were subsequently found to be negative for BRCA1 and BRCA2 coding-region mutations. An affected individual from each family was tested by PCR for the exon 13 duplication (Puget et al. 1999a) and by Southern blot analysis for novel genomic rearrangements. The exon 13 duplication was detected in one family, and four families had other genomic rearrangements. A total of 5 (11.9%) of the 42 families with breast/ovarian cancer who did not have BRCA1 and BRCA2 coding-region mutations had mutations in BRCA1 that were missed by conformation-sensitive gel electrophoresis or sequencing. Four of five families with BRCA1 genomic rearrangements included at least one individual with both breast and ovarian cancer; therefore, 4 (30.8%) of 13 families with a case of multiple primary breast and ovarian cancer had a genomic rearrangement in BRCA1. Families with genomic rearrangements had prior probabilities of having a BRCA1 mutation, ranging from 33% to 97% (mean 70%) (Couch et al. 1997). In contrast, in families without rearrangements, prior probabilities of having a BRCA1 mutation ranged from 7% to 92% (mean 37%). Thus, the prior probability of detecting a BRCA1 mutation may be a useful predictor when considering the use of Southern blot analysis for families with breast/ovarian cancer who do not have detectable coding-region mutations. PMID:10978226

  8. Phenylketonuria mutations in Germany.

    PubMed

    Zschocke, J; Hoffmann, G F

    1999-05-01

    We report the spectrum of mutations and associated modified haplotypes in patients with phenylketonuria living in Germany. A total of 546 independent alleles was investigated, including 411 of German and 65 of Turkish descent. Mutations were identified for 535 PKU alleles (98%) and there were 91 different mutations. The most common mutation was R408W on 22% of alleles. Two mutations, IVS12+1G-->A and IVS10-11G-->A accounted for just under 10% of alleles, whereas the remaining mutations were found at relative frequencies of 6% or less; 43 mutations were observed once only. IVS10-11G-->A was the most common mutation (38% of alleles) in the subgroup of patients of Turkish descent. Modified haplotypes were determined from the analysis of four silent mutations, three diallelic restriction fragment length polymorphisms, a variable number of tandem repeats minisatellite and a short tandem repeat microsatellite in the phenylalanine hydroxylase gene, showing that a considerable proportion of mutations must have recurred in independent founders; other mutations may have changed chromosomal haplotype backgrounds by gene conversion. The spectrum of PKU mutations in Germany reflects the history of a heterogenous Central European population living at the crossroads of migration throughout the centuries. PMID:10394930

  9. Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance

    PubMed Central

    Lee, Jong Seok; Via, Laura E.; Barry, Clifton E.; Alland, David; Chakravorty, Soumitesh

    2015-01-01

    Several molecular assays to detect resistance to Rifampin, the Fluoroquinolones, and Aminoglycosides in Mycobacterium tuberculosis (M. tuberculosis) have been recently described. A systematic approach for comparing these assays in the laboratory is needed in order to determine the relative advantage of each assay and to decide which ones should be advanced to evaluation. We performed an analytic comparison of a Sloppy Molecular Beacon (SMB) melting temperature (Tm) assay and a Dual labeled probe (DLP) Tm assay. Both assays targeted the M. tuberculosis rpoB, gyrA, rrs genes and the eis promoter region. The sensitivity and specificity to detect mutations, analytic limit of detection (LOD) and the detection of heteroresistance were tested using a panel of 56 clinical DNA samples from drug resistant M. tuberculosis strains. Both SMB and DLP assays detected 29/29 (100%) samples with rpoB RRDR mutations and 3/3 (100%) samples with eis promoter mutations correctly. The SMB assay detected all 17/17 gyrA mutants and 22/22 rrs mutants, while the DLP assay detected 16/17 (94%) gyrA mutants and 12/22 (55%) rrs mutants. Both assays showed comparable LODs for detecting rpoB and eis mutations; however, the SMB assay LODs were at least two logs better for detecting wild type and mutants in gyrA and rrs targets. The SMB assay was also moderately better at detecting heteroresistance. In summary, both assays appeared to be promising methods to detect drug resistance associated mutations in M. tuberculosis; however, the relative advantage of each assay varied under each test condition. PMID:25938476

  10. Novel CIC Point Mutations and an Exon-Spanning, Homozygous Deletion Identified in Oligodendroglial Tumors by a Comprehensive Genomic Approach Including Transcriptome Sequencing

    PubMed Central

    Eisenreich, Sophie; Abou-El-Ardat, Khalil; Szafranski, Karol; Campos Valenzuela, Jaime A.; Rump, Andreas; Nigro, Janice M.; Bjerkvig, Rolf; Gerlach, Eva-Maria; Hackmann, Karl; Schröck, Evelin; Krex, Dietmar; Kaderali, Lars; Schackert, Gabriele; Platzer, Matthias; Klink, Barbara

    2013-01-01

    Oligodendroglial tumors form a distinct subgroup of gliomas, characterized by a better response to treatment and prolonged overall survival. Most oligodendrogliomas and also some oligoastrocytomas are characterized by a unique and typical unbalanced translocation, der(1,19), resulting in a 1p/19q co-deletion. Candidate tumor suppressor genes targeted by these losses, CIC on 19q13.2 and FUBP1 on 1p31.1, were only recently discovered. We analyzed 17 oligodendrogliomas and oligoastrocytomas by applying a comprehensive approach consisting of RNA expression analysis, DNA sequencing of CIC, FUBP1, IDH1/2, and array CGH. We confirmed three different genetic subtypes in our samples: i) the “oligodendroglial” subtype with 1p/19q co-deletion in twelve out of 17 tumors; ii) the “astrocytic” subtype in three tumors; iii) the “other” subtype in two tumors. All twelve tumors with the 1p/19q co-deletion carried the most common IDH1 R132H mutation. In seven of these tumors, we found protein-disrupting point mutations in the remaining allele of CIC, four of which are novel. One of these tumors also had a deleterious mutation in FUBP1. Only by integrating RNA expression and array CGH data, were we able to discover an exon-spanning homozygous microdeletion within the remaining allele of CIC in an additional tumor with 1p/19q co-deletion. Therefore we propose that the mutation rate might be underestimated when looking at sequence variants alone. In conclusion, the high frequency and the spectrum of CIC mutations in our 1p/19q-codeleted tumor cohort support the hypothesis that CIC acts as a tumor suppressor in these tumors, whereas FUBP1 might play only a minor role. PMID:24086756

  11. Characterization of clinically identified mutations in NDUFV1, the flavin-binding subunit of respiratory complex I, using a yeast model system

    PubMed Central

    Varghese, Febin; Atcheson, Erwan; Bridges, Hannah R.; Hirst, Judy

    2015-01-01

    Dysfunctions in mitochondrial complex I (NADH:ubiquinone oxidoreductase) are both genetically and clinically highly diverse and a major cause of human mitochondrial diseases. The genetic determinants of individual clinical cases are increasingly being described, but how these genetic defects affect complex I on the molecular and cellular level, and have different clinical consequences in different individuals, is little understood. Furthermore, without molecular-level information innocent genetic variants may be misassigned as pathogenic. Here, we have used a yeast model system (Yarrowia lipolytica) to study the molecular consequences of 16 single amino acid substitutions, classified as pathogenic, in the NDUFV1 subunit of complex I. NDUFV1 binds the flavin cofactor that oxidizes NADH and is the site of complex I-mediated reactive oxygen species production. Seven mutations caused loss of complex I expression, suggesting they are detrimental but precluding further study. In two variants complex I was fully assembled but did not contain any flavin, and four mutations led to functionally compromised enzymes. Our study provides a molecular rationale for assignment of all these variants as pathogenic. However, three variants provided complex I that was functionally equivalent to the wild-type enzyme, challenging their assignment as pathogenic. By combining structural, bioinformatic and functional data, a simple scoring system for the initial evaluation of future NDUFV1 variants is proposed. Overall, our results broaden understanding of how mutations in this centrally important core subunit of complex I affect its function and provide a basis for understanding the role of NDUFV1 mutations in mitochondrial dysfunction. PMID:26345448

  12. Characterization of clinically identified mutations in NDUFV1, the flavin-binding subunit of respiratory complex I, using a yeast model system.

    PubMed

    Varghese, Febin; Atcheson, Erwan; Bridges, Hannah R; Hirst, Judy

    2015-11-15

    Dysfunctions in mitochondrial complex I (NADH:ubiquinone oxidoreductase) are both genetically and clinically highly diverse and a major cause of human mitochondrial diseases. The genetic determinants of individual clinical cases are increasingly being described, but how these genetic defects affect complex I on the molecular and cellular level, and have different clinical consequences in different individuals, is little understood. Furthermore, without molecular-level information innocent genetic variants may be misassigned as pathogenic. Here, we have used a yeast model system (Yarrowia lipolytica) to study the molecular consequences of 16 single amino acid substitutions, classified as pathogenic, in the NDUFV1 subunit of complex I. NDUFV1 binds the flavin cofactor that oxidizes NADH and is the site of complex I-mediated reactive oxygen species production. Seven mutations caused loss of complex I expression, suggesting they are detrimental but precluding further study. In two variants complex I was fully assembled but did not contain any flavin, and four mutations led to functionally compromised enzymes. Our study provides a molecular rationale for assignment of all these variants as pathogenic. However, three variants provided complex I that was functionally equivalent to the wild-type enzyme, challenging their assignment as pathogenic. By combining structural, bioinformatic and functional data, a simple scoring system for the initial evaluation of future NDUFV1 variants is proposed. Overall, our results broaden understanding of how mutations in this centrally important core subunit of complex I affect its function and provide a basis for understanding the role of NDUFV1 mutations in mitochondrial dysfunction. PMID:26345448

  13. Occult ovarian cancers identified at risk-reducing salpingo-oophorectomy in a prospective cohort of BRCA1/2 mutation carriers.

    PubMed

    Domchek, Susan M; Friebel, Tara M; Garber, Judy E; Isaacs, Claudine; Matloff, Ellen; Eeles, Rosalind; Evans, D Gareth; Rubinstein, Wendy; Singer, Christian F; Rubin, Stephen; Lynch, Henry T; Daly, Mary B; Weitzel, Jeffrey; Ganz, Patricia A; Pichert, Gabriella; Olopade, Olufunmilayo I; Tomlinson, Gail; Tung, Nadine; Blum, Joanne L; Couch, Fergus; Rebbeck, Timothy R

    2010-11-01

    Risk-reducing salpingo-oophorectomy (RRSO) is widely used for cancer risk reduction in BRCA1 or BRCA2 (BRCA1/2) mutation carriers. Occult ovarian/fallopian tube cancers (OOC) detected at the time of RRSO have been reported in several studies with wide variability in reported prevalence. We estimated the prevalence of OOC in a prospective cohort of 647 BRCA1/2 mutation carriers from 18 centers (PROSE consortium) who underwent RRSO between 2001 and 2008. OOC was detected in 16 of 647 women (2.5%). The mean age at RRSO was 51.7 in those with OOC versus 46.6 in those without OOC (P = 0.017). Twelve of the 16 OOCs (75%) were diagnosed in women with BRCA1 mutations. Thirty-eight percent of women with OOC had stage 1 cancer versus none of the women in the PROSE database diagnosed with ovarian cancer outside of screening. Among 385 women (60%) in whom pathology reports were available for central review, 246 (64%) RRSOs were performed at participating PROSE centers while 139 (36%) were performed at local sites. Ovarian and fallopian tube tissues removed at major genetics referral centers were significantly more likely to have been examined in toto compared to specimens obtained at non-referral centers (75% vs. 30%, P < 0.001). Our results confirm that OOC may be found at the time of RRSO in BRCA1/2 mutation carriers and suggest that OOC are of a more favorable stage than cancers found outside RRSO. An unacceptably high proportion of pathologic examinations did not adequately examine ovaries and fallopian tubes obtained at RRSO. PMID:20180014

  14. A novel recurrent CHEK2 Y390C mutation identified in high-risk Chinese breast cancer patients impairs its activity and is associated with increased breast cancer risk.

    PubMed

    Wang, N; Ding, H; Liu, C; Li, X; Wei, L; Yu, J; Liu, M; Ying, M; Gao, W; Jiang, H; Wang, Y

    2015-10-01

    Certain predisposition factors such as BRCA1/2 and CHEK2 mutations cause familial breast cancers that occur early. In China, breast cancers are diagnosed at relatively younger age, and higher percentage of patients are diagnosed before 40 years, than that in Caucasians. However, the prevalence for BRCA1/2 mutations and reported CHEK2 germline mutations is much lower or absent in Chinese population, arguing for the need to study other novel risk alleles among Chinese breast cancer patients. In this study, we searched for CHEK2 mutations in young, high-risk breast cancer patients in China and detected a missense variant Y390C (1169A>G) in 12 of 150 patients (8.0%) and 2 in 250 healthy controls (0.8%, P=0.0002). Four of the Y390C carriers have family history of breast and/or ovarian cancer. In patients without family history, Y390C carriers tend to develop breast cancer early, before 35 years of age. The codon change at Y390, a highly conserved residue located in CHEK2's kinase domain, appeared to significantly impair CHEK2 activity. Functional analysis suggested that the CHEK2 Y390C mutation is deleterious as judged by the mutant protein's inability to inactivate CDC25A or to activate p53 after DNA damage. Cells expressing the CHEK2 Y390C variant showed impaired p21 and Puma expression after DNA damage, and the deregulated cell cycle checkpoint and apoptotic response may help conserve mutations and therefore contribute to tumorigeneisis. Taken together, our results not only identified a novel CHEK2 allele that is associated with cancer families and confers increased breast cancer risk, but also showed that this allele significantly impairs CHEK2 function during DNA damage response. Our results provide further insight on how the function of such an important cancer gene may be impaired by existing mutations to facilitate tumorigenesis. It also offers a new subject for breast cancer monitoring, prevention and management. PMID:25619829

  15. TARGET Researchers Identify Mutations in SIX1/2 and microRNA Processing Genes in Favorable Histology Wilms Tumor | Office of Cancer Genomics

    Cancer.gov

    TARGET researchers molecularly characterized favorable histology Wilms tumor (FHWT), a pediatric renal cancer. Comprehensive genome and transcript analyses revealed single-nucleotide substitution/deletion mutations in microRNA processing genes (15% of FHWT patients) and Sine Oculis Homeobox Homolog 1/2 (SIX1/2) genes (7% of FHWT patients). SIX1/2 genes play a critical role in renal development and were not previously associated with FHWT, thus presenting a novel role for SIX1/2 pathway aberrations in this disease.

  16. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    PubMed

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. PMID:26126624

  17. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients

    PubMed Central

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-01-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. PMID:26126624

  18. Genome-wide methylation profiling identifies an essential role of reactive oxygen species in pediatric glioblastoma multiforme and validates a methylome specific for H3 histone family 3A with absence of G-CIMP/isocitrate dehydrogenase 1 mutation

    PubMed Central

    Jha, Prerana; Pia Patric, Irene Rosita; Shukla, Sudhanshu; Pathak, Pankaj; Pal, Jagriti; Sharma, Vikas; Thinagararanjan, Sivaarumugam; Santosh, Vani; Suri, Vaishali; Sharma, Mehar Chand; Arivazhagan, Arimappamagan; Suri, Ashish; Gupta, Deepak; Somasundaram, Kumaravel; Sarkar, Chitra

    2014-01-01

    Background Pediatric glioblastoma multiforme (GBM) is rare, and there is a single study, a seminal discovery showing association of histone H3.3 and isocitrate dehydrogenase (IDH)1 mutation with a DNA methylation signature. The present study aims to validate these findings in an independent cohort of pediatric GBM, compare it with adult GBM, and evaluate the involvement of important functionally altered pathways. Methods Genome-wide methylation profiling of 21 pediatric GBM cases was done and compared with adult GBM data (GSE22867). We performed gene mutation analysis of IDH1 and H3 histone family 3A (H3F3A), status evaluation of glioma cytosine–phosphate–guanine island methylator phenotype (G-CIMP), and Gene Ontology analysis. Experimental evaluation of reactive oxygen species (ROS) association was also done. Results Distinct differences were noted between methylomes of pediatric and adult GBM. Pediatric GBM was characterized by 94 hypermethylated and 1206 hypomethylated cytosine–phosphate–guanine (CpG) islands, with 3 distinct clusters, having a trend to prognostic correlation. Interestingly, none of the pediatric GBM cases showed G-CIMP/IDH1 mutation. Gene Ontology analysis identified ROS association in pediatric GBM, which was experimentally validated. H3F3A mutants (36.4%; all K27M) harbored distinct methylomes and showed enrichment of processes related to neuronal development, differentiation, and cell-fate commitment. Conclusions Our study confirms that pediatric GBM has a distinct methylome compared with that of adults. Presence of distinct clusters and an H3F3A mutation–specific methylome indicate existence of epigenetic subgroups within pediatric GBM. Absence of IDH1/G-CIMP status further indicates that findings in adult GBM cannot be simply extrapolated to pediatric GBM and that there is a strong need for identification of separate prognostic markers. A possible role of ROS in pediatric GBM pathogenesis is demonstrated for the first time and needs further evaluation. PMID:24997139

  19. Gaucher disease types 1, 2, and 3: differential mutations of the acid beta-glucosidase active site identified with conduritol B epoxide derivatives and sphingosine.

    PubMed

    Grabowski, G A; Dinur, T; Osiecki, K M; Kruse, J R; Legler, G; Gatt, S

    1985-05-01

    To elucidate the genetic heterogeneity in Gaucher disease, the residual beta-glucosidase in cultured fibroblasts from affected patients with each of the major phenotypes was investigated in vitro and/or in viable cells by inhibitor studies using the covalent catalytic site inhibitors, conduritol B epoxide or its bromo derivative, and the reversible cationic inhibitor, sphingosine. These studies delineated three distinct groups (designated A, B, and C) of residual activities with characteristic responses to these inhibitors. Group A residual enzymes had normal I50 values (i.e., the concentration of inhibitor that results in 50% inhibition) for the inhibitors and normal or nearly normal t1/2 values for conduritol B epoxide. All neuronopathic (types 2 and 3) and most non-Jewish nonneuronopathic (type 1) patients had group A residual activities and, thus, could not be distinguished by these inhibitor studies. Group B residual enzymes had about four- to fivefold increased I50 values for the inhibitors and similarly increased t1/2 values for conduritol B epoxide. All Ashkenazi Jewish type 1 and only two non-Jewish type 1 patients had group B residual activities. The differences in I50 values between groups A and B also were confirmed by determining the uninhibited enzyme activity after culturing the cells in the presence of bromo-conduritol B epoxide. Group C residual activity had intermediate I50 values for the inhibitors and represented a single Afrikaner type 1 patient: this patient was a genetic compound for the group A (type 2) and group B (type 1) mutations. These inhibition studies indicated that: Gaucher disease type 1 is biochemically heterogeneous, neuronopathic and non-Jewish nonneuronopathic phenotypes cannot be reliably distinguished by these inhibitor studies, and the Ashkenazi Jewish form of Gaucher disease type 1 results from a unique mutation in a specific active site domain of acid beta-glucosidase that leads to a defective enzyme with a decreased Vmax. PMID:4003396

  20. In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer.

    PubMed

    Janiszewska, Michalina; Liu, Lin; Almendro, Vanessa; Kuang, Yanan; Paweletz, Cloud; Sakr, Rita A; Weigelt, Britta; Hanker, Ariella B; Chandarlapaty, Sarat; King, Tari A; Reis-Filho, Jorge S; Arteaga, Carlos L; Park, So Yeon; Michor, Franziska; Polyak, Kornelia

    2015-10-01

    Detection of minor, genetically distinct subpopulations within tumors is a key challenge in cancer genomics. Here we report STAR-FISH (specific-to-allele PCR-FISH), a novel method for the combined detection of single-nucleotide and copy number alterations in single cells in intact archived tissues. Using this method, we assessed the clinical impact of changes in the frequency and topology of PIK3CA mutation and HER2 (ERBB2) amplification within HER2-positive breast cancer during neoadjuvant therapy. We found that these two genetic events are not always present in the same cells. Chemotherapy selects for PIK3CA-mutant cells, a minor subpopulation in nearly all treatment-naive samples, and modulates genetic diversity within tumors. Treatment-associated changes in the spatial distribution of cellular genetic diversity correlated with poor long-term outcome following adjuvant therapy with trastuzumab. Our findings support the use of in situ single cell-based methods in cancer genomics and imply that chemotherapy before HER2-targeted therapy may promote treatment resistance. PMID:26301495

  1. Mutational analysis of the EMCV 2A protein identifies a nuclear localization signal and an eIF4E binding site

    SciTech Connect

    Groppo, Rachel; Brown, Bradley A.; Palmenberg, Ann C.

    2011-02-05

    Cardioviruses have a unique 2A protein (143 aa). During genome translation, the encephalomyocarditis virus (EMCV) 2A is released through a ribosome skipping event mitigated through C-terminal 2A sequences and by subsequent N-terminal reaction with viral 3C{sup pro}. Although viral replication is cytoplasmic, mature 2A accumulates in nucleoli shortly after infection. Some protein also transiently associates with cytoplasmic 40S ribosomal subunits, an activity contributing to inhibition of cellular cap-dependent translation. Cardiovirus sequences predict an eIF4E binding site (aa 126-134) and a nuclear localization signal (NLS, aa 91-102), within 2A, both of which are functional during EMCV infection. Point mutations preventing eIF4E:2A interactions gave small-plaque phenotype viruses, but still inhibited cellular cap-dependent translation. Deletions within the NLS motif relocalized 2A to the cytoplasm and abrogated the inhibition of cap-dependent translation. A fusion protein linking the 2A NLS to eGFP was sufficient to redirect the reporter to the nucleus but not into nucleoli.

  2. Analysis of early strains of the norovirus pandemic variant GII.4 Sydney 2012 identifies mutations in adaptive sites of the capsid protein.

    PubMed

    Giammanco, G M; De Grazia, S; Terio, V; Lanave, G; Catella, C; Bonura, F; Saporito, L; Medici, M C; Tummolo, F; Calderaro, A; Bányai, K; Hansman, G; Martella, V

    2014-02-01

    Global surveillance for norovirus identified in 2012 the emergence of a novel pandemic GII.4 variant, termed Sydney 2012. In Italy, the novel pandemic variant was identified as early as November 2011 but became predominant only in the winter season 2012-2013. Upon sequencing and comparison with strains of global origin, the early Sydney 2012 strains were found to differ from those spreading in 2012-2013 in the capsid (ORF2) putative epitopes B, C and D, segregating into a distinct phylogenetic clade. At least three residues (333, 340 and 393, in epitopes B, C and D, respectively) of the VP1 varied among Sydney 2012 strains of different clades. These findings suggest that the spread of the pandemic variant in Italy during the winter season 2012-2013 was due to the introduction of strains distinct from those circulating at low frequency in the former winter season and that similar strains were also circulating elsewhere worldwide. PMID:24503099

  3. Exome sequencing identifies novel compound heterozygous IFNA4 and IFNA10 mutations as a cause of impaired function in Crohn’s disease patients

    PubMed Central

    Xiao, Chuan-Xing; Xiao, Jing-Jing; Xu, Hong-Zhi; Wang, Huan-Huan; Chen, Xu; Liu, Yuan-Sheng; Li, Ping; Shi, Ying; Nie, Yong-Zhan; Li, Shao; Wu, Kai-Chun; Liu, Zhan-Ju; Ren, Jian-Lin; Guleng, Bayasi

    2015-01-01

    Previous studies have highlighted the role of genetic predispositions in disease, and several genes had been identified as important in Crohn’s disease (CD). However, many of these genes are likely rare and not associated with susceptibility in Chinese CD patients. We found 294 shared identical variants in the CD patients of which 26 were validated by Sanger sequencing. Two heterozygous IFN variants (IFNA10 c.60 T?>?A; IFNA4 c.60 A?>?T) were identified as significantly associated with CD susceptibility. The single-nucleotide changes alter a cysteine situated before the signal peptide cleavage site to a stop code (TGA) in IFNA10 result in the serum levels of IFNA10 were significantly decreased in the CD patients compared to the controls. Furthermore, the IFNA10 and IFNA4 mutants resulted in an impairment of the suppression of HCV RNA replication in HuH7 cells, and the administration of the recombinant IFN subtypes restored DSS-induced colonic inflammation through the upregulation of CD4+ Treg cells. We identified heterozygous IFNA10 and IFNA4 variants as a cause of impaired function and CD susceptibility genes in Chinese patients from multiple center based study. These findings might provide clues in the understanding of the genetic heterogeneity of CD and lead to better screening and improved treatment. PMID:26000985

  4. Phenylketonuria mutations in Europe.

    PubMed

    Zschocke, Johannes

    2003-04-01

    Phenylketonuria (PKU) is heterogeneous. More than 400 different mutations in the phenylalanine hydroxylase (PAH) gene have been identified. In a systematic review of the molecular genetics of PKU in Europe we identified 29 mutations that may be regarded as prevalent in European populations. Comprehensive regional data for these mutations were collated from all available studies. The spectrum of mutations found in individual regions results from a combination of factors including founder effect, range expansion and migration, genetic drift, and probably heterozygote advantage. Common mutations include R408W on a haplotype 2 background in Eastern Europe, IVS10-11G>A in the Mediterranean, IVS12+1G>A in Denmark and England, Y414C in Scandinavia, I65T in Western Europe, and R408W on haplotype 1 in the British Isles. Molecular data from mild hyperphenylalaninemia (MHP) patients are available from a number of countries, but it is currently not possible to calculate relative allele frequencies. The available data on PAH mutations are useful for the understanding of both the clinical features and the population genetics of PAH deficiency in Europe. PMID:12655544

  5. Spectrum of mutations in fucosidosis.

    PubMed

    Willems, P J; Seo, H C; Coucke, P; Tonlorenzi, R; O'Brien, J S

    1999-01-01

    Fucosidosis is a lysosomal storage disorder characterised by progressive psychomotor deterioration, angiokeratoma and growth retardation. It is due to deficient alpha-l-fucosidase activity leading to accumulation of fucose-containing glycolipids and glycoproteins in various tissues. Fucosidosis is extremely rare with less than 100 patients reported worldwide, although the disease occurs at a higher rate in Italy, in the Hispanic-American population of New Mexico and Colorado, and in Cuba. We present here a review study of the mutational spectrum of fucosidosis. Exon by exon mutation analysis of FUCA1, the structural gene of alpha-l-fucosidase, has identified the mutation(s) in nearly all fucosidosis patients investigated. The spectrum of the 22 mutations detected to date includes four missense mutations, 17 nonsense mutations consisting of seven stop codon mutations, six small deletions, two large deletions, one duplication, one small insertion and one splice site mutation. All these mutations lead to nearly absent enzymatic activity and severely reduced cross-reacting immunomaterial. The observed clinical variability is, therefore, not due to the nature of the fucosidosis mutation, but to secondary unknown factors. PMID:10094192

  6. TCF12 is mutated in anaplastic oligodendroglioma.

    PubMed

    Labreche, Karim; Simeonova, Iva; Kamoun, Aurélie; Gleize, Vincent; Chubb, Daniel; Letouzé, Eric; Riazalhosseini, Yasser; Dobbins, Sara E; Elarouci, Nabila; Ducray, Francois; de Reyniès, Aurélien; Zelenika, Diana; Wardell, Christopher P; Frampton, Mathew; Saulnier, Olivier; Pastinen, Tomi; Hallout, Sabrina; Figarella-Branger, Dominique; Dehais, Caroline; Idbaih, Ahmed; Mokhtari, Karima; Delattre, Jean-Yves; Huillard, Emmanuelle; Mark Lathrop, G; Sanson, Marc; Houlston, Richard S

    2015-01-01

    Anaplastic oligodendroglioma (AO) are rare primary brain tumours that are generally incurable, with heterogeneous prognosis and few treatment targets identified. Most oligodendrogliomas have chromosomes 1p/19q co-deletion and an IDH mutation. Here we analysed 51 AO by whole-exome sequencing, identifying previously reported frequent somatic mutations in CIC and FUBP1. We also identified recurrent mutations in TCF12 and in an additional series of 83 AO. Overall, 7.5% of AO are mutated for TCF12, which encodes an oligodendrocyte-related transcription factor. Eighty percent of TCF12 mutations identified were in either the bHLH domain, which is important for TCF12 function as a transcription factor, or were frameshift mutations leading to TCF12 truncated for this domain. We show that these mutations compromise TCF12 transcriptional activity and are associated with a more aggressive tumour type. Our analysis provides further insights into the unique and shared pathways driving AO. PMID:26068201

  7. TCF12 is mutated in anaplastic oligodendroglioma

    PubMed Central

    Labreche, Karim; Simeonova, Iva; Kamoun, Aurélie; Gleize, Vincent; Chubb, Daniel; Letouzé, Eric; Riazalhosseini, Yasser; Dobbins, Sara E.; Elarouci, Nabila; Ducray, Francois; de Reyniès, Aurélien; Zelenika, Diana; Wardell, Christopher P.; Frampton, Mathew; Saulnier, Olivier; Pastinen, Tomi; Hallout, Sabrina; Figarella-Branger, Dominique; Dehais, Caroline; Idbaih, Ahmed; Mokhtari, Karima; Delattre, Jean-Yves; Huillard, Emmanuelle; Mark Lathrop, G.; Sanson, Marc; Houlston, Richard S.; Adam, Clovis; Andraud, Marie; Aubriot-Lorton, Marie-Hélène; Bauchet, Luc; Beauchesne, Patrick; Blechet, Claire; Campone, Mario; Carpentier, Antoine; Carpentier, Catherine; Carpiuc, Ioana; Chenard, Marie-Pierre; Chiforeanu, Danchristian; Chinot, Olivier; Cohen-Moyal, Elisabeth; Colin, Philippe; Dam-Hieu, Phong; Desenclos, Christine; Desse, Nicolas; Dhermain, Frederic; Diebold, Marie-Danièle; Eimer, Sandrine; Faillot, Thierry; Fesneau, Mélanie; Fontaine, Denys; Gaillard, Stéphane; Gauchotte, Guillaume; Gaultier, Claude; Ghiringhelli, Francois; Godard, Joel; Marcel Gueye, Edouard; Sebastien Guillamo, Jean; Hamdi-Elouadhani, Selma; Honnorat, Jerome; Louis Kemeny, Jean; Khallil, Toufik; Jouvet, Anne; Labrousse, Francois; Langlois, Olivier; Laquerriere, Annie; Lechapt-Zalcman, Emmanuelle; Le Guérinel, Caroline; Levillain, Pierre-Marie; Loiseau, Hugues; Loussouarn, Delphine; Maurage, Claude-Alain; Menei, Philippe; Janette Motsuo Fotso, Marie; Noel, Georges; Parker, Fabrice; Peoc'h, Michel; Polivka, Marc; Quintin-Roué, Isabelle; Ramirez, Carole; Ricard, Damien; Richard, Pomone; Rigau, Valérie; Rousseau, Audrey; Runavot, Gwenaelle; Sevestre, Henri; Christine Tortel, Marie; Uro-Coste, Emmanuelle; Burel-Vandenbos, Fanny; Vauleon, Elodie; Viennet, Gabriel; Villa, Chiara; Wager, Michel

    2015-01-01

    Anaplastic oligodendroglioma (AO) are rare primary brain tumours that are generally incurable, with heterogeneous prognosis and few treatment targets identified. Most oligodendrogliomas have chromosomes 1p/19q co-deletion and an IDH mutation. Here we analysed 51 AO by whole-exome sequencing, identifying previously reported frequent somatic mutations in CIC and FUBP1. We also identified recurrent mutations in TCF12 and in an additional series of 83 AO. Overall, 7.5% of AO are mutated for TCF12, which encodes an oligodendrocyte-related transcription factor. Eighty percent of TCF12 mutations identified were in either the bHLH domain, which is important for TCF12 function as a transcription factor, or were frameshift mutations leading to TCF12 truncated for this domain. We show that these mutations compromise TCF12 transcriptional activity and are associated with a more aggressive tumour type. Our analysis provides further insights into the unique and shared pathways driving AO. PMID:26068201

  8. Mutational Heterogeneity in Melanoma: An Inconvenient Truth.

    PubMed

    Chang, Gregory A; Polsky, David

    2015-12-01

    Identification of oncogenic BRAF mutations in primary and metastatic melanomas supports a linear model of clonal evolution in cancer. Some mutational studies, however, have failed to identify BRAF mutations in metastatic tumors from patients with BRAF(mutant) primary melanomas. Using a combination of methods, Riveiro-Falkenbach et al. (2015) assert that technical issues, and not clonal heterogeneity, may explain prior discordant mutational results. PMID:26569584

  9. Novel mutations in GALNT3 causing hyperphosphatemic familial tumoral calcinosis.

    PubMed

    Yancovitch, Alan; Hershkovitz, Dov; Indelman, Margareta; Galloway, Peter; Whiteford, Margo; Sprecher, Eli; K?l?ç, Esra

    2011-09-01

    Hyperphosphatemic familial tumoral calcinosis (HFTC) is known to be caused by mutations in at least three genes: FGF23, GALNT3 and KL. Two families with two affected members suffering from HFTC were scrutinized for mutations in these candidate genes. We identified in both families homozygous missense mutations affecting highly conserved amino acids in GALNT3. One of the mutations is a novel mutation, whereas the second mutation was reported before in a compound heterozygous state. Our data expand the spectrum of known mutations in GALNT3 and contribute to a better understanding of the phenotypic manifestations of mutations in this gene. PMID:21347749

  10. The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and poorer overall survival

    PubMed Central

    O'Riain, Ciarán; Taylor, Claire; Waters, Rachel; Carlotti, Emanuela; MacDougall, Finlay; Gribben, John; Rosenwald, Andreas; Ott, German; Rimsza, Lisa M.; Smeland, Erlend B.; Johnson, Nathalie; Campo, Elias; Greiner, Timothy C.; Chan, Wing C.; Gascoyne, Randy D.; Wright, George; Staudt, Louis M.; Lister, T. Andrew; Fitzgibbon, Jude

    2008-01-01

    The International Prognostic Index and the Follicular Lymphoma International Prognostic Index are widely used for the risk assessment of follicular lymphoma (FL). Although molecular studies have provided insight into the biology of FL, no molecular marker has impacted on treatment stratification. Because TP53 mutations are associated with poor prognosis in hematologic malignancies, we investigated the prognostic value of TP53 mutation at diagnosis in FL. Heterozygous TP53 mutation was detected in 12 of 185 (6%) analyzed cases. Mutation was associated with older age (P = .02) and higher International Prognostic Index score (P = .04). On multivariate analysis, TP53 mutation correlated with shorter progression-free survival (P < .001) and overall survival (P = .009). TP53 mutation was associated with low expression of the immune-response 1 gene expression signature (P = .016) and with an unfavorable gene expression-based survival predictor score (P < .001), demonstrating for the first time that molecular features of the malignant cell may correlate with the nature of the immune response in FL. PMID:18628487

  11. Somatic Mutation, Genomic Variation, and Neurological Disease

    PubMed Central

    Poduri, Annapurna; Evrony, Gilad D.; Cai, Xuyu; Walsh, Christopher A.

    2014-01-01

    Genetic mutations causing human disease are conventionally thought to be inherited through the germ line from one’s parents and present in all somatic (body) cells, except for most cancer mutations, which arise somatically. Increasingly, somatic mutations are being identified in diseases other than cancer, including neurodevelopmental diseases. Somatic mutations can arise during the course of prenatal brain development and cause neurological disease—even when present at low levels of mosaicism, for example—resulting in brain malformations associated with epilepsy and intellectual disability. Novel, highly sensitive technologies will allow more accurate evaluation of somatic mutations in neurodevelopmental disorders and during normal brain development. PMID:23828942

  12. KRAS mutations in lung cancer.

    PubMed

    Karachaliou, Niki; Mayo, Clara; Costa, Carlota; Magrí, Ignacio; Gimenez-Capitan, Ana; Molina-Vila, Miguel Angel; Rosell, Rafael

    2013-05-01

    Epidermal growth factor receptor (EGFR) gene mutations and increased EGFR copy numbers have been associated with a favorable response to EGFR tyrosine kinase inhibitors (TKI) in patients with non-small-cell lung cancer (NSCLC), and several markers have been identified that predict response to treatment. Lung adenocarcinomas also harbor activating mutations in the downstream GTPase, v-Ki-ras2 Kirsten rat sarcoma viral oncogene (KRAS), and mutations in EGFR and KRAS appear to be mutually exclusive. Even though KRAS mutations were identified in NSCLC tumors more than 20 years ago, we have only just begun to appreciate the clinical value of determining KRAS tumor status. Recent studies indicate that patients with mutant KRAS tumors fail to benefit from adjuvant chemotherapy and do not respond to EGFR inhibitors. There is a clear need for therapies specifically developed for patients with KRAS-mutant NSCLC. In this review, we summarize the clinical and pathologic characteristics of patients with NSCLC and with KRAS mutations, describe work that explores the predictive and prognostic influence of KRAS mutations, and provide an overview of the "synthetic lethal" interactions and current approaches to targeting KRAS-mutant NSCLC. PMID:23122493

  13. Researchers identify dozens of new de novo genetic mutations in schizophrenia http://www.eurekalert.org/pub_releases/2012-10/cumc-rid100312.php[10/9/2012 1:11:24 PM

    E-print Network

    discovered genes most active during fetal development New York, NY (October 3, 2012) -- Columbia University-to-mid fetal development. Together, the findings show that both the function of the mutated gene and when a significant role in the development of schizophrenia, adding to the growing list of genetic variants that can

  14. OXPHOS mutations and neurodegeneration

    PubMed Central

    Koopman, Werner J H; Distelmaier, Felix; Smeitink, Jan AM; Willems, Peter HGM

    2013-01-01

    Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI–CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce ‘primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration. PMID:23149385

  15. Precise estimates of mutation rate and spectrum in yeast

    PubMed Central

    Zhu, Yuan O.; Siegal, Mark L.; Hall, David W.; Petrov, Dmitri A.

    2014-01-01

    Mutation is the ultimate source of genetic variation. The most direct and unbiased method of studying spontaneous mutations is via mutation accumulation (MA) lines. Until recently, MA experiments were limited by the cost of sequencing and thus provided us with small numbers of mutational events and therefore imprecise estimates of rates and patterns of mutation. We used whole-genome sequencing to identify nearly 1,000 spontaneous mutation events accumulated over ?311,000 generations in 145 diploid MA lines of the budding yeast Saccharomyces cerevisiae. MA experiments are usually assumed to have negligible levels of selection, but even mild selection will remove strongly deleterious events. We take advantage of such patterns of selection and show that mutation classes such as indels and aneuploidies (especially monosomies) are proportionately much more likely to contribute mutations of large effect. We also provide conservative estimates of indel, aneuploidy, environment-dependent dominant lethal, and recessive lethal mutation rates. To our knowledge, for the first time in yeast MA data, we identified a sufficiently large number of single-nucleotide mutations to measure context-dependent mutation rates and were able to (i) confirm strong AT bias of mutation in yeast driven by high rate of mutations from C/G to T/A and (ii) detect a higher rate of mutation at C/G nucleotides in two specific contexts consistent with cytosine methylation in S. cerevisiae. PMID:24847077

  16. Strategy of mutual compensation of green and red mutants of firefly luciferase identifies a mutation of the highly conservative residue E457 with a strong red shift of bioluminescence.

    PubMed

    Koksharov, Mikhail I; Ugarova, Natalia N

    2013-11-01

    Bioluminescence spectra of firefly luciferases demonstrate highly pH-sensitive spectra changing the color from green to red light when pH is lowered from alkaline to acidic. This reflects a change of ratio of the green and red emitters in the bimodal spectra of bioluminescence. We show that the mutations strongly stabilizing green (Y35N) or red (H433Y) emission compensate each other leading to the WT color of firefly luciferase. We further used this compensating ability of Y35N to search for strong red-shifting mutations in the C-domain of firefly luciferase by random mutagenesis. The discovered mutation E457K substantially increased the contribution of the red emitter and caused a 12 nm red shift of the green emitter as well. E457 is highly conservative not only in beetle luciferases but also in a whole ANL superfamily of adenylating enzymes and forms a conservative structural hydrogen bond with V471. Our results suggest that the removal of this hydrogen bond only mildly affects luciferase properties and that most of the effect of E457K is caused by the introduction of positive charge. E457 forms a salt bridge with R534 in most ANL enzymes including pH-insensitive luciferases which is absent in pH-sensitive firefly luciferases. The mutant A534R shows that this salt bridge is not important for pH-sensitivity but considerably improves in vivo thermostability. Although E457 is located far from the oxyluciferin-binding site, the properties of the mutant E457K suggest that it affects color by influencing the AMP binding. PMID:24057044

  17. Driver Missense Mutation Identification Using Feature Selection and Model Fusion.

    PubMed

    Soliman, Ahmed T; Meng, Tao; Chen, Shu-Ching; Iyengar, S S; Iyengar, Puneeth; Yordy, John; Shyu, Mei-Ling

    2015-12-01

    Driver mutations propel oncogenesis and occur much less frequently than passenger mutations. The need for automatic and accurate identification of driver mutations has increased dramatically with the exponential growth of mutation data. Current computational solutions to identify driver mutations rely on sequence homology. Here we construct a machine learning-based framework that does not rely on sequence homology or domain knowledge to predict driver missense mutations. A windowing approach to represent the local environment of the sequence around the mutation point as a mutation sample is applied, followed by extraction of three sequence-level features from each sample. After selecting the most significant features, the support vector machine and multimodal fusion strategies are employed to give final predictions. The proposed framework achieves relatively high performance and outperforms current state-of-the-art algorithms. The ease of deploying the proposed framework and the relatively accurate performance make this solution applicable to large-scale mutation data analyses. PMID:26402258

  18. Recurrent somatic mutations in regulatory regions of human cancer genomes.

    PubMed

    Melton, Collin; Reuter, Jason A; Spacek, Damek V; Snyder, Michael

    2015-07-01

    Aberrant regulation of gene expression in cancer can promote survival and proliferation of cancer cells. Here we integrate whole-genome sequencing data from The Cancer Genome Atlas (TCGA) for 436 patients from 8 cancer subtypes with ENCODE and other regulatory annotations to identify point mutations in regulatory regions. We find evidence for positive selection of mutations in transcription factor binding sites, consistent with these sites regulating important cancer cell functions. Using a new method that adjusts for sample- and genomic locus-specific mutation rates, we identify recurrently mutated sites across individuals with cancer. Mutated regulatory sites include known sites in the TERT promoter and many new sites, including a subset in proximity to cancer-related genes. In reporter assays, two new sites display decreased enhancer activity upon mutation. These data demonstrate that many regulatory regions contain mutations under selective pressure and suggest a greater role for regulatory mutations in cancer than previously appreciated. PMID:26053494

  19. Caenorhabditis elegans dnj-14, the orthologue of the DNAJC5 gene mutated in adult onset neuronal ceroid lipofuscinosis, provides a new platform for neuroprotective drug screening and identifies a SIR-2.1-independent action of resveratrol.

    PubMed

    Kashyap, Sudhanva S; Johnson, James R; McCue, Hannah V; Chen, Xi; Edmonds, Matthew J; Ayala, Mimieveshiofuo; Graham, Margaret E; Jenn, Robert C; Barclay, Jeff W; Burgoyne, Robert D; Morgan, Alan

    2014-11-15

    Adult onset neuronal lipofuscinosis (ANCL) is a human neurodegenerative disorder characterized by progressive neuronal dysfunction and premature death. Recently, the mutations that cause ANCL were mapped to the DNAJC5 gene, which encodes cysteine string protein alpha. We show here that mutating dnj-14, the Caenorhabditis elegans orthologue of DNAJC5, results in shortened lifespan and a small impairment of locomotion and neurotransmission. Mutant dnj-14 worms also exhibited age-dependent neurodegeneration of sensory neurons, which was preceded by severe progressive chemosensory defects. A focussed chemical screen revealed that resveratrol could ameliorate dnj-14 mutant phenotypes, an effect mimicked by the cAMP phosphodiesterase inhibitor, rolipram. In contrast to other worm neurodegeneration models, activation of the Sirtuin, SIR-2.1, was not required, as sir-2.1; dnj-14 double mutants showed full lifespan rescue by resveratrol. The Sirtuin-independent neuroprotective action of resveratrol revealed here suggests potential therapeutic applications for ANCL and possibly other human neurodegenerative diseases. PMID:24947438

  20. SOX10 mutations mimic isolated hearing loss.

    PubMed

    Pingault, V; Faubert, E; Baral, V; Gherbi, S; Loundon, N; Couloigner, V; Denoyelle, F; Noël-Pétroff, N; Ducou Le Pointe, H; Elmaleh-Bergès, M; Bondurand, N; Marlin, S

    2015-10-01

    Ninety genes have been identified to date that are involved in non-syndromic hearing loss, and more than 300 different forms of syndromic hearing impairment have been described. Mutations in SOX10, one of the genes contributing to syndromic hearing loss, induce a large range of phenotypes, including several subtypes of Waardenburg syndrome and Kallmann syndrome with deafness. In addition, rare mutations have been identified in patients with isolated signs of these diseases. We used the recent characterization of temporal bone imaging aspects in patients with SOX10 mutations to identify possible patients with isolated hearing loss due to SOX10 mutation. We selected 21 patients with isolated deafness and temporal bone morphological defects for mutational screening. We identified two SOX10 mutations and found that both resulted in a non-functional protein in vitro. Re-evaluation of the two affected patients showed that both had previously undiagnosed olfactory defects. Diagnosis of anosmia or hyposmia in young children is challenging, and particularly in the absence of magnetic resonance imaging (MRI), SOX10 mutations can mimic non-syndromic hearing impairment. MRI should complete temporal bones computed tomographic scan in the management of congenital deafness as it can detect brain anomalies, cochlear nerve defects, and olfactory bulb malformation in addition to inner ear malformations. PMID:25256313

  1. Three Turkish families with different transthyretin mutations.

    PubMed

    Bekircan-Kurt, Can Ebru; Güne?, Nalan; Y?lmaz, Arda; Erdem-Özdamar, Sevim; Tan, Ersin

    2015-09-01

    Transthyretin (TTR)-related hereditary amyloidosis, also called familial amyloid polyneuropathy (FAP), is a rare autosomal dominant systemic disorder that presents with progressive axonal sensory, autonomic and/or motor neuropathies. The present report describes three families with three different TTR mutations who were followed from 1995 to 2014. Only one of these families expressed the Val30Met mutation, which is the most common mutation in endemic regions; all members of this family had late disease onset but varied severities and clinical presentations of the disease. The second family expressed the Thr49Ser mutation, which has not been well documented previously. Our limited experience obtained from these patients indicates that this mutation presents with autonomic neuropathy but a greater degree of cardiac involvement, especially fatal heart failure. The third mutation, Glu54Lys, has been identified as a cause of severe familial amyloid polyneuropathy; the family members with this mutation exhibited severe motor and autonomic neuropathy, early vitreous opacity, and fatal heart failure. Three of the patients with the Val30Met mutation were treated with tafamidis for longer than one year and cessation of the polyneuropathy resulted. However, a short trial of tafamidis in two patients with the Glu54Lys mutation, who showed severe systemic and neurological involvement, did not gain any clinical benefits. PMID:26115788

  2. Spectrum of mutations in alpha-mannosidosis.

    PubMed Central

    Berg, T; Riise, H M; Hansen, G M; Malm, D; Tranebjaerg, L; Tollersrud, O K; Nilssen, O

    1999-01-01

    alpha-Mannosidosis is an autosomal recessive disorder caused by deficiency of lysosomal alpha-mannosidase (LAMAN). The resulting intracellular accumulation of mannose-containing oligosaccharides leads to mental retardation, hearing impairment, skeletal changes, and immunodeficiency. Recently, we reported the first alpha-mannosidosis-causing mutation affecting two Palestinian siblings. In the present study 21 novel mutations and four polymorphic amino acid positions were identified by the screening of 43 patients, from 39 families, mainly of European origin. Disease-causing mutations were identified in 72% of the alleles and included eight splicing, six missense, and three nonsense mutations, as well as two small insertions and two small deletions. In addition, Southern blot analysis indicated rearrangements in some alleles. Most mutations were private or occurred in two or three families, except for a missense mutation resulting in an R750W substitution. This mutation was found in 13 patients, from different European countries, and accounted for 21% of the disease alleles. Although there were clinical variations among the patients, no significant LAMAN activity could be detected in any of the fibroblast cultures. In addition, no correlation between the types of mutations and the clinical manifestations was evident. PMID:9915946

  3. Multiple mutations and mutation combinations in the sodium channel of permethrin resistant mosquitoes, Culex quinquefasciatus

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhang, Lee; Reid, William R.; Xu, Qiang; Dong, Ke; Liu, Nannan

    2012-10-01

    A previous study identified 3 nonsynonymous and 6 synonymous mutations in the entire mosquito sodium channel of Culex quinquefasciatus, the prevalence of which were strongly correlated with levels of resistance and increased dramatically following insecticide selection. However, it is unclear whether this is unique to this specific resistant population or is a common mechanism in field mosquito populations in response to insecticide pressure. The current study therefore further characterized these mutations and their combinations in other field and permethrin selected Culex mosquitoes, finding that the co-existence of all 9 mutations was indeed correlated with the high levels of permethrin resistance in mosquitoes. Comparison of mutation combinations revealed several common mutation combinations presented across different field and permethrin selected populations in response to high levels of insecticide resistance, demonstrating that the co-existence of multiple mutations is a common event in response to insecticide resistance across different Cx. quinquefasciatus mosquito populations.

  4. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer.

    PubMed

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L

    2016-01-01

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. PMID:26590264

  5. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer

    PubMed Central

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L.

    2016-01-01

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. PMID:26590264

  6. NOTCH mutations: multiple faces in human malignancies.

    PubMed

    Mao, Li

    2015-04-01

    NOTCH proteins have been implicated in multiple cellular functions, such as stem cell maintenance and cell fate determination. Initially identified as proto-oncogenes because they promote the development of certain types of leukemia, inactivating mutations of NOTCH were later reported. Together with the potential distinct functions of NOTCH family members, their ligands and associated niches, the precise roles of NOTCH in human cancers, particularly solid tumors, remain unsettled. In oral squamous cell carcinoma (OSCC), mutations of NOTCH1 are found in 10% to 15% tumors from Caucasian patients, mostly inactivating mutations. Recent studies of OSCC from Chinese patients, however, showed mutation rates of NOTCH1 about 50% with a considerable portion of potential activating mutations. These findings add another twist into the already complex picture of NOTCH alterations in human cancers, calling for further investigation to uncover what role exactly these molecules play in cancer initiation and progression to develop strategies targeting NOTCH signaling for cancer prevention and treatment. PMID:25712049

  7. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  8. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  9. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  10. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  11. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... regulator (CFTR) gene mutation detection system. 866.5900 Section 866.5900 Food and Drugs FOOD AND DRUG...) gene mutation detection system. (a) Identification. The CFTR gene mutation detection system is a device used to simultaneously detect and identify a panel of mutations and variants in the CFTR gene. It...

  12. CF Mutation Panel

    MedlinePLUS

    ... Home Visit Global Sites Search Help? CF Mutation Panel Share this page: Was this page helpful? Also ... Fibrosis Genotyping; CF DNA Analysis; CF Gene Mutation Panel; CF Molecular Genetic Testing Formal name: Cystic Fibrosis ...

  13. High-throughput oncogene mutation profiling in human cancer.

    PubMed

    Thomas, Roman K; Baker, Alissa C; Debiasi, Ralph M; Winckler, Wendy; Laframboise, Thomas; Lin, William M; Wang, Meng; Feng, Whei; Zander, Thomas; MacConaill, Laura; Macconnaill, Laura E; Lee, Jeffrey C; Nicoletti, Rick; Hatton, Charlie; Goyette, Mary; Girard, Luc; Majmudar, Kuntal; Ziaugra, Liuda; Wong, Kwok-Kin; Gabriel, Stacey; Beroukhim, Rameen; Peyton, Michael; Barretina, Jordi; Dutt, Amit; Emery, Caroline; Greulich, Heidi; Shah, Kinjal; Sasaki, Hidefumi; Gazdar, Adi; Minna, John; Armstrong, Scott A; Mellinghoff, Ingo K; Hodi, F Stephen; Dranoff, Glenn; Mischel, Paul S; Cloughesy, Tim F; Nelson, Stan F; Liau, Linda M; Mertz, Kirsten; Rubin, Mark A; Moch, Holger; Loda, Massimo; Catalona, William; Fletcher, Jonathan; Signoretti, Sabina; Kaye, Frederic; Anderson, Kenneth C; Demetri, George D; Dummer, Reinhard; Wagner, Stephan; Herlyn, Meenhard; Sellers, William R; Meyerson, Matthew; Garraway, Levi A

    2007-03-01

    Systematic efforts are underway to decipher the genetic changes associated with tumor initiation and progression. However, widespread clinical application of this information is hampered by an inability to identify critical genetic events across the spectrum of human tumors with adequate sensitivity and scalability. Here, we have adapted high-throughput genotyping to query 238 known oncogene mutations across 1,000 human tumor samples. This approach established robust mutation distributions spanning 17 cancer types. Of 17 oncogenes analyzed, we found 14 to be mutated at least once, and 298 (30%) samples carried at least one mutation. Moreover, we identified previously unrecognized oncogene mutations in several tumor types and observed an unexpectedly high number of co-occurring mutations. These results offer a new dimension in tumor genetics, where mutations involving multiple cancer genes may be interrogated simultaneously and in 'real time' to guide cancer classification and rational therapeutic intervention. PMID:17293865

  14. Weaver syndrome and EZH2 mutations: Clarifying the clinical phenotype.

    PubMed

    Tatton-Brown, Katrina; Murray, Anne; Hanks, Sandra; Douglas, Jenny; Armstrong, Ruth; Banka, Siddharth; Bird, Lynne M; Clericuzio, Carol L; Cormier-Daire, Valerie; Cushing, Tom; Flinter, Frances; Jacquemont, Marie-Line; Joss, Shelagh; Kinning, Esther; Lynch, Sally Ann; Magee, Alex; McConnell, Vivienne; Medeira, Ana; Ozono, Keiichi; Patton, Michael; Rankin, Julia; Shears, Debbie; Simon, Marleen; Splitt, Miranda; Strenger, Volker; Stuurman, Kyra; Taylor, Clare; Titheradge, Hannah; Van Maldergem, Lionel; Temple, I Karen; Cole, Trevor; Seal, Sheila; Rahman, Nazneen

    2013-12-01

    Weaver syndrome, first described in 1974, is characterized by tall stature, a typical facial appearance, and variable intellectual disability. In 2011, mutations in the histone methyltransferase, EZH2, were shown to cause Weaver syndrome. To date, we have identified 48 individuals with EZH2 mutations. The mutations were primarily missense mutations occurring throughout the gene, with some clustering in the SET domain (12/48). Truncating mutations were uncommon (4/48) and only identified in the final exon, after the SET domain. Through analyses of clinical data and facial photographs of EZH2 mutation-positive individuals, we have shown that the facial features can be subtle and the clinical diagnosis of Weaver syndrome is thus challenging, especially in older individuals. However, tall stature is very common, reported in >90% of affected individuals. Intellectual disability is also common, present in ~80%, but is highly variable and frequently mild. Additional clinical features which may help in stratifying individuals to EZH2 mutation testing include camptodactyly, soft, doughy skin, umbilical hernia, and a low, hoarse cry. Considerable phenotypic overlap between Sotos and Weaver syndromes is also evident. The identification of an EZH2 mutation can therefore provide an objective means of confirming a subtle presentation of Weaver syndrome and/or distinguishing Weaver and Sotos syndromes. As mutation testing becomes increasingly accessible and larger numbers of EZH2 mutation-positive individuals are identified, knowledge of the clinical spectrum and prognostic implications of EZH2 mutations should improve. PMID:24214728

  15. Mutation Clustering Shamaila Hussain

    E-print Network

    Harman, Mark

    Mutation Clustering Shamaila Hussain shamaila.2.hussain@kcl.ac.uk Student Number: 0425528/2008 Department of Computer Science September 5, 2008 #12;Abstract Mutation testing, a type of white box testing quality. This form of testing deals with mutating parts of the program intentionally and then detecting

  16. Mutational landscape of yeast mutator strains.

    PubMed

    Serero, Alexandre; Jubin, Claire; Loeillet, Sophie; Legoix-Né, Patricia; Nicolas, Alain G

    2014-02-01

    The acquisition of mutations is relevant to every aspect of genetics, including cancer and evolution of species on Darwinian selection. Genome variations arise from rare stochastic imperfections of cellular metabolism and deficiencies in maintenance genes. Here, we established the genome-wide spectrum of mutations that accumulate in a WT and in nine Saccharomyces cerevisiae mutator strains deficient for distinct genome maintenance processes: pol32? and rad27? (replication), msh2? (mismatch repair), tsa1? (oxidative stress), mre11? (recombination), mec1? tel1? (DNA damage/S-phase checkpoints), pif1? (maintenance of mitochondrial genome and telomere length), cac1? cac3? (nucleosome deposition), and clb5? (cell cycle progression). This study reveals the diversity, complexity, and ultimate unique nature of each mutational spectrum, composed of punctual mutations, chromosomal structural variations, and/or aneuploidies. The mutations produced in clb5?/CCNB1, mec1?/ATR, tel1?/ATM, and rad27?/FEN1 strains extensively reshape the genome, following a trajectory dependent on previous events. It comprises the transmission of unstable genomes that lead to colony mosaicisms. This comprehensive analytical approach of mutator defects provides a model to understand how genome variations might accumulate during clonal evolution of somatic cell populations, including tumor cells. PMID:24449905

  17. Isocitrate dehydrogenase mutations in gliomas.

    PubMed

    Waitkus, Matthew S; Diplas, Bill H; Yan, Hai

    2016-01-01

    Over the last decade, extraordinary progress has been made in elucidating the underlying genetic causes of gliomas. In 2008, our understanding of glioma genetics was revolutionized when mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2) were identified in the vast majority of progressive gliomas and secondary glioblastomas (GBMs). IDH enzymes normally catalyze the decarboxylation of isocitrate to generate ?-ketoglutarate (?KG), but recurrent mutations at Arg(132) of IDH1 and Arg(172) of IDH2 confer a neomorphic enzyme activity that catalyzes reduction of ?KG into the putative oncometabolite D-2-hydroxyglutate (D2HG). D2HG inhibits ?KG-dependent dioxygenases and is thought to create a cellular state permissive to malignant transformation by altering cellular epigenetics and blocking normal differentiation processes. Herein, we discuss the relevant literature on mechanistic studies of IDH1/2 mutations in gliomas, and we review the potential impact of IDH1/2 mutations on molecular classification and glioma therapy. PMID:26188014

  18. Homozygous MAPT R406W mutation causing FTDP phenotype: A unique instance of a unique mutation.

    PubMed

    Behnam, Mahdiyeh; Ghorbani, Fatemeh; Shin, Jin-Hong; Kim, Dae-Seong; Jang, Hojung; Nouri, Narges; Sedghi, Maryam; Salehi, Mansoor; Ansari, Behnaz; Basiri, Keivan

    2015-10-01

    Frontotemporal dementia is a neurodegenerative disorder among adults. An autosomal-dominantly form of frontotemporal dementia and parkinsonism linked to chromosome 17q21.2 (FTDP-17) was defined in 1996. The MAPT gene is responsible for the major cases of FTDP-17, and tau also has a role in Alzheimer's disease. So far, different FTDP-17 causing mutations have been identified in the MAPT gene. Among different MAPT mutations, the R406W mutation has been reported with a phenotype resembling Alzheimer's disease. Nonetheless, in this study we have identified the first homozygous case of R406W mutation in an Iranian family which shows characteristics of FTDP, just like the other heterozygous mutations of MAPT. This study clearly indicates that homozygous R406W mutation could result in FTDP phenotype. Our family confirms heterogeneity in the clinical phenotype of MAPT mutations; moreover, in the R406W mutation, a dosage effect is likely to contribute to this clinical heterogeneity. PMID:26086902

  19. Transglutaminase 1 mutations in autosomal recessive congenital ichthyosis: private and recurrent mutations in an isolated population.

    PubMed Central

    Laiho, E; Ignatius, J; Mikkola, H; Yee, V C; Teller, D C; Niemi, K M; Saarialho-Kere, U; Kere, J; Palotie, A

    1997-01-01

    Autosomal recessive congenital ichthyosis (ARCI) is a rare, heterogenous keratinization disorder of the skin, classically divided into two clinical subtypes, lamellar ichthyosis (LI) and nonbullous congenital ichthyosiformis erythroderma (CIE). Recently, strong evidence for the involvement of the transglutaminase 1 gene (TGM1) in LI has evolved. We have studied ARCI in the isolated Finnish population, in which recessive disorders are often caused by single mutations enriched by a founder effect. Surprisingly, five different mutations of TGM1 (Arg141His, Arg142Cys, Gly217Ser, Val378Leu, and Arg395Leu) were found in Finnish ARCI patients. In addition to affected LI patients, we also identified TGM1 mutations in CIE patients. Moreover, haplotype analysis of the chromosomes carrying the most common mutation, a C-->T transition changing Arg142 to Cys, revealed that the same mutation has been introduced twice in the Finnish population. In addition to this Arg142Cys mutation, three other mutations, in Arg141 and Arg142, have been described elsewhere, in other populations. These findings suggest that this region of TGM1 is more susceptible to mutation. The corresponding amino acid sequence is conserved in other transglutaminases, but, for example, coagulation factor XIII (FXIII) mutations do not cluster in this region. Protein modeling of the Arg142Cys mutation suggested disruption or destabilization of the protein. In transfection studies, the closely related transglutaminase FXIII protein with the corresponding mutation was shown to be susceptible to degradation in COS cells, further supporting evidence of the destabilizing effect of the Arg142Cys mutation in TGM1. Images Figure 3 Figure 4 PMID:9326318

  20. Quantification of Colonic Stem Cell Mutations.

    PubMed

    Whetstone, Ryan D; Gold, Barry

    2015-01-01

    The ability to measure stem cell mutations is a powerful tool to quantify in a critical cell population if, and to what extent, a chemical can induce mutations that potentially lead to cancer. The use of an enzymatic assay to quantify stem cell mutations in the X-linked glucose-6-phosphate dehydrogenase gene has been previously reported.(1) This method requires the preparation of frozen sections and incubation of the sectioned tissue with a reaction mixture that yields a blue color if the cells produce functional glucose-6-phosphate dehydrogenase (G6PD) enzyme. If not, the cells appear whitish. We have modified the reaction mixture using Optimal Cutting Temperature Compound (OCT) medium in place of polyvinyl alcohol. This facilitates pH measurement, increases solubilization of the G6PD staining components and restricts diffusion of the G6PD enzyme. To demonstrate that a mutation occurred in a stem cell, the entire crypt must lack G6PD enzymatic activity. Only if a stem cell harbors a phenotypic G6PD mutation will all of the progeny in the crypt lack G6PD enzymatic activity. To identify crypts with a stem cell mutation, four consecutive adjacent frozen sections (a level) were cut at 7 µm thicknesses. This approach of making adjacent cuts provides conformation that a crypt was fully mutated since the same mutated crypt will be observed in adjacent sections. Slides with tissue samples that were more than 50 µm apart were prepared to assess a total of >10(4) crypts per mouse. The mutation frequency is the number of observed mutated (white) crypts÷by the number of wild type (blue) crypts in a treatment group. PMID:26436534

  1. Mutation analysis in glutaric aciduria type I

    PubMed Central

    Zschocke, J.; Quak, E.; Guldberg, P.; Hoffmann, G.

    2000-01-01

    Glutaric aciduria type 1 (GA1), resulting from the genetic deficiency of glutaryl-CoA dehydrogenase (GDH), is a relatively common cause of acute metabolic brain damage in infants. Encephalopathic crises may be prevented by carnitine supplementation and diet, but diagnosis can be difficult as some patients do not show the typical excretion of large amounts of glutaric and 3-hydroxyglutaric acids in the urine. We present a rapid and efficient denaturing gradient gel electrophoresis (DGGE) method for the identification of mutations in the glutaryl-CoA dehydrogenase (GCDH) gene that may be used for the molecular diagnosis of GA1 in a routine setting. Using this technique, we identified mutations on both alleles in 48 patients with confirmed GDH deficiency, while no mutations were detected in other patients with clinical suspicion of GA1 but normal enzyme studies. There was a total of 38 different mutations; 27 mutations were found in single patients only, and 21 mutations have not been previously reported. Fourteen mutations involved hypermutable CpG sites. The commonest GA1 mutation in Europeans is R402W, which accounts for almost 40% of alleles in patients of German origin. GCDH gene haplotypes were determined through the analysis of polymorphic markers in all families, and three CpG mutations were associated with different haplotypes, possibly reflecting independent recurrence. The high sensitivity of the DGGE method allows the rapid and cost efficient diagnosis of GA1 in instances where enzyme analyses are not available or feasible, despite the marked heterogeneity of the disease.???Keywords: glutaric aciduria type I; glutaryl-CoA dehydrogenase; mutation; denaturing gradient gel electrophoresis PMID:10699052

  2. Mutational profiling of colorectal cancers with microsatellite instability.

    PubMed

    Lin, Elaine I; Tseng, Li-Hui; Gocke, Christopher D; Reil, Stacy; Le, Dung T; Azad, Nilofer S; Eshleman, James R

    2015-12-01

    Microsatellite instability (MSI) is caused by defective mismatch repair in 15-20% of colorectal cancers (CRCs). Higher mutation loads in tumors with mismatch repair deficiency can predict response to pembrolizumab, an anti-programmed death 1 (PD-1) immune checkpoint inhibitor. We analyzed the mutations in 113 CRCs without MSI (MSS) and 29 CRCs with MSI-High (MSI-H) using the 50-gene AmpliSeq cancer panel. Overall, MSI-H CRCs showed significantly higher mutations than MSS CRCs, including insertion/deletion mutations at repeat regions. MSI-H CRCs showed higher incidences of mutations in the BRAF, PIK3CA, and PTEN genes as well as mutations in the receptor tyrosine kinase families. While the increased mutations in BRAF and PTEN in MSI-H CRCs are well accepted, we also support findings of mutations in the mTOR pathway and receptor tyrosine kinase family genes. MSS CRCs showed higher incidences of mutations in the APC, KRAS and TP53 genes, confirming previous findings. NGS assays may be designed to detect driver mutations for targeted therapeutics and to identify tumors with high mutation loads for potential treatment with immune checkpoint blockade therapies. Further studies may be warranted to elucidate potential targeted therapeutics against mutations in the mTOR pathway and the receptor tyrosine kinase family in MSI-H CRCs as well as the benefit of anti-PD-1 immunotherapy in hypermutated MSS CRCs or other cancers. PMID:26517354

  3. Inherited cardiomyopathies caused by troponin mutations

    PubMed Central

    Lu, Qun-Wei; Wu, Xiao-Yan; Morimoto, Sachio

    2013-01-01

    Genetic investigations of cardiomyopathy in the recent two decades have revealed a large number of mutations in the genes encoding sarcomeric proteins as a cause of inherited hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), or restrictive cardiomyopathy (RCM). Most functional analyses of the effects of mutations on cardiac muscle contraction have revealed significant changes in the Ca2+-regulatory mechanism, in which cardiac troponin (cTn) plays important structural and functional roles as a key regulatory protein. Over a hundred mutations have been identified in all three subunits of cTn, i.e., cardiac troponins T, I, and C. Recent studies on cTn mutations have provided plenty of evidence that HCM- and RCM-linked mutations increase cardiac myofilament Ca2+ sensitivity, while DCM-linked mutations decrease it. This review focuses on the functional consequences of mutations found in cTn in terms of cardiac myofilament Ca2+ sensitivity, ATPase activity, force generation, and cardiac troponin I phosphorylation, to understand potential molecular and cellular pathogenic mechanisms of the three types of inherited cardiomyopathy. PMID:23610579

  4. Identification of mutations in Colombian patients affected with Fabry disease.

    PubMed

    Uribe, Alfredo; Mateus, Heidi Eliana; Prieto, Juan Carlos; Palacios, Maria Fernanda; Ospina, Sandra Yaneth; Pasqualim, Gabriela; da Silveira Matte, Ursula; Giugliani, Roberto

    2015-12-15

    Fabry Disease (FD) is an X-linked inborn error of glycosphingolipid catabolism, caused by a deficiency of the lisosomal ?-galactosidase A (AGAL). The disorder leads to a vascular disease secondary to the involvement of kidney, heart and the central nervous system. The mutation analysis is a valuable tool for diagnosis and genetic counseling. Although more than 600 mutations have been identified, most mutations are private. Our objective was to describe the analysis of nine Colombian patients with Fabry disease by automated sequencing of the seven exons of the GLA gene. Two novel mutations were identified in two patients affected with the classical subtype of FD, in addition to other 6 mutations previously reported. The present study confirms the heterogeneity of mutations in Fabry disease and the importance of molecular analysis for genetic counseling, female heterozygotes detection as well as therapeutic decisions. PMID:26297554

  5. Mitochondrial DNA replication and disease: insights from DNA polymerase ? mutations

    PubMed Central

    Stumpf, Jeffrey D.

    2011-01-01

    DNA polymerase ? (pol ?), encoded by POLG, is responsible for replicating human mitochondrial DNA. About 150 mutations in the human POLG have been identified in patients with mitochondrial diseases such as Alpers syndrome, progressive external ophthalmoplegia, and ataxia-neuropathy syndromes. Because many of the mutations are described in single citations with no genotypic family history, it is important to ascertain which mutations cause or contribute to mitochondrial disease. The vast majority of data about POLG mutations has been generated from biochemical characterizations of recombinant pol ?. However, recently, the study of mitochondrial dysfunction in Saccharomyces cerevisiae and mouse models provides important in vivo evidence for the role of POLG mutations in disease. Also, the published 3D-structure of the human pol ? assists in explaining some of the biochemical and genetic properties of the mutants. This review summarizes the current evidence that identifies and explains disease-causing POLG mutations. PMID:20927567

  6. Homozygous Desmocollin-2 Mutations and Arrhythmogenic Cardiomyopathy.

    PubMed

    Lorenzon, Alessandra; Pilichou, Kalliopi; Rigato, Ilaria; Vazza, Giovanni; De Bortoli, Marzia; Calore, Martina; Occhi, Gianluca; Carturan, Elisa; Lazzarini, Elisabetta; Cason, Marco; Mazzotti, Elisa; Poloni, Giulia; Mostacciuolo, Maria Luisa; Daliento, Luciano; Thiene, Gaetano; Corrado, Domenico; Basso, Cristina; Bauce, Barbara; Rampazzo, Alessandra

    2015-10-15

    Dominant mutations in desmocollin-2 (DSC2) gene cause arrhythmogenic cardiomyopathy (ACM), a progressive heart muscle disease characterized by ventricular tachyarrhythmias, heart failure, and risk of juvenile sudden death. Recessive mutations are rare and are associated with a cardiac or cardiocutaneous phenotype. Here, we evaluated the impact of a homozygous founder DSC2 mutation on clinical expression of ACM. An exon-by-exon analysis of the DSC2 coding region was performed in 94 ACM index patients. The c.536A>G (p.D179G) mutation was identified in 5 patients (5.3%), 4 of which resulted to be homozygous carriers. The 5 subjects shared a conserved haplotype, strongly indicating a common founder. Genetic and clinical investigation of probands' families revealed that p.D179G homozygous carriers displayed severe forms of biventricular cardiomyopathy without hair or skin abnormalities. The only heterozygous proband, who carried an additional variant of unknown significance in ?T-catenin gene, showed a mild form of ACM without left ventricular involvement. All heterozygous family members were clinically asymptomatic. In conclusion, this is the first homozygous founder mutation in DSC2 gene identified among Italian ACM probands. Our findings provide further evidence of the occurrence of recessive DSC2 mutations in patients with ACM predominantly presenting with biventricular forms of the disease. PMID:26310507

  7. Distinct clinical characteristics of myeloproliferative neoplasms with calreticulin mutations

    PubMed Central

    Andrikovics, Hajnalka; Krahling, Tunde; Balassa, Katalin; Halm, Gabriella; Bors, Andras; Koszarska, Magdalena; Batai, Arpad; Dolgos, Janos; Csomor, Judit; Egyed, Miklos; Sipos, Andrea; Remenyi, Peter; Tordai, Attila; Masszi, Tamas

    2014-01-01

    Somatic insertions/deletions in the calreticulin gene have recently been discovered to be causative alterations in myeloproliferative neoplasms. A combination of qualitative and quantitative allele-specific polymerase chain reaction, fragment-sizing, high resolution melting and Sanger-sequencing was applied for the detection of three driver mutations (in Janus kinase 2, calreticulin and myeloproliferative leukemia virus oncogene genes) in 289 cases of essential thrombocythemia and 99 cases of primary myelofibrosis. In essential thrombocythemia, 154 (53%) Janus kinase 2 V617F, 96 (33%) calreticulin, 9 (3%) myeloproliferative leukemia virus oncogene gene mutation-positive and 30 triple-negative (11%) cases were identified, while in primary myelofibrosis 56 (57%) Janus kinase 2 V617F, 25 (25%) calreticulin, 7 (7%) myeloproliferative leukemia virus oncogene gene mutation-positive and 11 (11%) triple-negative cases were identified. Patients positive for the calreticulin mutation were younger and had higher platelet counts compared to Janus kinase 2 mutation-positive counterparts. Calreticulin mutation-positive patients with essential thrombocythemia showed a lower risk of developing venous thrombosis, but no difference in overall survival. Calreticulin mutation-positive patients with primary myelofibrosis had a better overall survival compared to that of the Janus kinase 2 mutation-positive (P=0.04) or triple-negative cases (P=0.01). Type 2 calreticulin mutation occurred more frequently in essential thrombocythemia than in primary myelofibrosis (P=0.049). In essential thrombocythemia, the calreticulin mutational load was higher than the Janus kinase 2 mutational load (P<0.001), and increased gradually in advanced stages. Calreticulin mutational load influenced blood counts even at the time point of diagnosis in essential thrombocythemia. We confirm that calreticulin mutation is associated with distinct clinical characteristics and explored relationships between mutation type, load and clinical outcome. PMID:24895336

  8. OBSCN Mutations Associated with Dilated Cardiomyopathy and Haploinsufficiency

    PubMed Central

    Marston, Steven; Montgiraud, Cecile; Munster, Alex B.; Copeland, O’Neal; Choi, Onjee; dos Remedios, Cristobal; Messer, Andrew E.; Ehler, Elisabeth; Knöll, Ralph

    2015-01-01

    Background Studies of the functional consequences of DCM-causing mutations have been limited to a few cases where patients with known mutations had heart transplants. To increase the number of potential tissue samples for direct investigation we performed whole exon sequencing of explanted heart muscle samples from 30 patients that had a diagnosis of familial dilated cardiomyopathy and screened for potentially disease-causing mutations in 58 HCM or DCM-related genes. Results We identified 5 potentially disease-causing OBSCN mutations in 4 samples; one sample had two OBSCN mutations and one mutation was judged to be not disease-related. Also identified were 6 truncating mutations in TTN, 3 mutations in MYH7, 2 in DSP and one each in TNNC1, TNNI3, MYOM1, VCL, GLA, PLB, TCAP, PKP2 and LAMA4. The mean level of obscurin mRNA was significantly greater and more variable in healthy donor samples than the DCM samples but did not correlate with OBSCN mutations. A single obscurin protein band was observed in human heart myofibrils with apparent mass 960 ± 60 kDa. The three samples with OBSCN mutations had significantly lower levels of obscurin immunoreactive material than DCM samples without OBSCN mutations (45±7, 48±3, and 72±6% of control level).Obscurin levels in DCM controls, donor heart and myectomy samples were the same. Conclusions OBSCN mutations may result in the development of a DCM phenotype via haploinsufficiency. Mutations in the obscurin gene should be considered as a significant causal factor of DCM, alone or in concert with other mutations. PMID:26406308

  9. Prevalence of rare mitochondrial DNA mutations in mitochondrial disorders

    PubMed Central

    Bannwarth, Sylvie; Procaccio, Vincent; Lebre, Anne Sophie; Jardel, Claude; Chaussenot, Annabelle; Hoarau, Claire; Maoulida, Hassani; Charrier, Nathanaël; Gai, Xiaowu; Xie, Hongbo M; Ferre, Marc; Fragaki, Konstantina; Hardy, Gaëlle; Mousson de Camaret, Bénédicte; Marlin, Sandrine; Dhaenens, Claire Marie; Slama, Abdelhamid; Rocher, Christophe; Paul Bonnefont, Jean; Rötig, Agnès; Aoutil, Nadia; Gilleron, Mylène; Desquiret-Dumas, Valérie; Reynier, Pascal; Ceresuela, Jennifer; Jonard, Laurence; Devos, Aurore; Espil-Taris, Caroline; Martinez, Delphine; Gaignard, Pauline; Le Quan Sang, Kim-Hanh; Amati-Bonneau, Patrizia; Falk, Marni J; Florentz, Catherine; Chabrol, Brigitte; Durand-Zaleski, Isabelle; Paquis-Flucklinger, Véronique

    2013-01-01

    Abstract Background Mitochondrial DNA (mtDNA) diseases are rare disorders whose prevalence is estimated around 1 in 5000. Patients are usually tested only for deletions and for common mutations of mtDNA which account for 5–40% of cases, depending on the study. However, the prevalence of rare mtDNA mutations is not known. Methods We analysed the whole mtDNA in a cohort of 743 patients suspected of manifesting a mitochondrial disease, after excluding deletions and common mutations. Both heteroplasmic and homoplasmic variants were identified using two complementary strategies (Surveyor and MitoChip). Multiple correspondence analyses followed by hierarchical ascendant cluster process were used to explore relationships between clinical spectrum, age at onset and localisation of mutations. Results 7.4% of deleterious mutations and 22.4% of novel putative mutations were identified. Pathogenic heteroplasmic mutations were more frequent than homoplasmic mutations (4.6% vs 2.8%). Patients carrying deleterious mutations showed symptoms before 16?years of age in 67% of cases. Early onset disease (<1?year) was significantly associated with mutations in protein coding genes (mainly in complex I) while late onset disorders (>16?years) were associated with mutations in tRNA genes. MTND5 and MTND6 genes were identified as ‘hotspots’ of mutations, with Leigh syndrome accounting for the large majority of associated phenotypes. Conclusions Rare mitochondrial DNA mutations probably account for more than 7.4% of patients with respiratory chain deficiency. This study shows that a comprehensive analysis of mtDNA is essential, and should include young children, for an accurate diagnosis that is now accessible with the development of next generation sequencing technology. PMID:23847141

  10. Germ-line and somatic DICER1 mutations in pineoblastoma

    PubMed Central

    de Kock, Leanne; Sabbaghian, Nelly; Druker, Harriet; Weber, Evan; Hamel, Nancy; Miller, Suzanne; Choong, Catherine S.; Gottardo, Nicholas G.; Kees, Ursula R.; Rednam, Surya P.; van Hest, Liselotte P.; Jongmans, Marjolijn C.; Jhangiani, Shalini; Lupski, James R.; Zacharin, Margaret; Bouron-Dal Soglio, Dorothée; Huang, Annie; Priest, John R.; Perry, Arie; Mueller, Sabine; Albrecht, Steffen; Malkin, David; Grundy, Richard G.

    2015-01-01

    Germ-line RB-1 mutations predispose to pineoblastoma (PinB), but other predisposing genetic factors are not well established. We recently identifed a germ-line DICER1 mutation in a child with a PinB. This was accompanied by loss of heterozygosity (LOH) of the wild-type allele within the tumour. We set out to establish the prevalence of DICER1 mutations in an opportunistically ascertained series of PinBs. Twenty-one PinB cases were studied: eighteen cases had not undergone previous testing for DICER1 mutations; three patients were known carriers of germ-line DICER1 mutations. The eighteen PinBs were sequenced by Sanger and/or Fluidigm-based next-generation sequencing to identify DICER1 mutations in blood gDNA and/or tumour gDNA. Testing for somatic DICER1 mutations was also conducted on one case with a known germ-line DICER1 mutation. From the eighteen PinBs, we identified four deleterious DICER1 mutations, three of which were germ line in origin, and one for which a germ line versus somatic origin could not be determined; in all four, the second allele was also inactivated leading to complete loss of DICER1 protein. No somatic DICER1 RNase IIIb mutations were identified. One PinB arising in a germ-line DICER1 mutation carrier was found to have LOH. This study suggests that germ-line DICER1 mutations make a clinically significant contribution to PinB, establishing DICER1 as an important susceptibility gene for PinB and demonstrates PinB to be a manifestation of a germ-line DICER1 mutation. The means by which the second allele is inactivated may differ from other DICER1-related tumours. PMID:25022261

  11. Emerging patterns of somatic mutations in cancer

    PubMed Central

    Watson, Ian R.; Takahashi, Koichi; Futreal, P. Andrew; Chin, Lynda

    2014-01-01

    The advance in technological tools for massively parallel, high-throughput sequencing of DNA has enabled the comprehensive characterization of somatic mutations in large number of tumor samples. Here, we review recent cancer genomic studies that have assembled emerging views of the landscapes of somatic mutations through deep sequencing analyses of the coding exomes and whole genomes in various cancer types. We discuss the comparative genomics of different cancers, including mutation rates, spectrums, and roles of environmental insults that influence these processes. We highlight the developing statistical approaches used to identify significantly mutated genes, and discuss the emerging biological and clinical insights from such analyses as well as the challenges ahead translating these genomic data into clinical impacts. PMID:24022702

  12. Gestational mutations in radiation carcinogenesis

    NASA Astrophysics Data System (ADS)

    Meza, R.; Luebeck, G.; Moolgavkar, S.

    Mutations in critical genes during gestation could increase substantially the risk of cancer. We examine the consequences of such mutations using the Luebeck-Moolgavkar model for colorectal cancer and the Lea-Coulson modification of the Luria-Delbruck model for the accumulation of mutations during gestation. When gestational mutation rates are high, such mutations make a significant contribution to cancer risk even for adult tumors. Furthermore, gestational mutations ocurring at distinct times during emryonic developmemt lead to substantially different numbers of mutated cells at birth, with early mutations leading to a large number (jackpots) of mutated cells at birth and mutation occurring late leading to only a few mutated cells. Thus gestational mutations could confer considerable heterogeneity of the risk of cancer. If the fetus is exposed to an environmental mutagen, such as ionizing radiation, the gestational mutation rate would be expected to increase. We examine the consequences of such exposures during gestation on the subsequent development of cancer.

  13. Spontaneous Mutation Accumulation Studies in

    E-print Network

    Keightley, Peter

    Spontaneous Mutation Accumulation Studies in Evolutionary Genetics Daniel L. Halligan and Peter D of mutation effects, dominance, epistasis, genotype-environment interaction, mutation rate Abstract Mutation accumulation (MA) experiments, in which mutations are allowed to drift to fixation in inbred lines, have been

  14. Human somatic mutation assays as biomarkers of carcinogenesis

    SciTech Connect

    Compton, P.J.E.; Smith, M.T. ); Hooper, K. )

    1991-08-01

    This paper describes four assays that detect somatic gene mutations in humans: the hypoxanthine-guanine phosphoribosyl transferase assay, the glycophorin A assay, the HLA-A assay, and the sickle cell hemoglobin assay. Somatic gene mutations can be considered a biomarker of carcinogenesis, and assays for somatic mutation may assist epidemiologists in studies that attempt to identify factors associated with increased risks of cancer. Practical aspects of the use of these assays are discussed.

  15. Identification of new mutations in familial amyotrophic lateral sclerosis

    SciTech Connect

    Siddique, T.; Deng, H.X.; Hentati, A.

    1994-09-01

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease due to motor neuron death in the cortex, brain stem and spinal cord. Ten percent of ALS cases are familial (FALS). Previously a subset of FALS families have been mapped to chromosome 21 and mutations in the Cu,Zn superoxide dismutase gene have been identified in those families. Nineteen different mutations at 16 distinct codons have been documented, of which 12 different mutations were identified in our 29 FALS families. These mutations account for about twenty percent of all FALS families screened. The mutations identified in our FALS families are A4V, A4T, G37R, G41D, H43R, G85R, G93A, E100G, L106V, I113T, L144F, and V148G. Mutation A4V is the most frequent one which occurred in 14 out of our 29 FALS families. In further screening of our FALS families, two new mutations, V14M and L84V, have been identified. Thus a total of 21 different mutations at 18 distinct codon sites have been identified in SOD1.

  16. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  17. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma

    PubMed Central

    Odejide, Oreofe; Weigert, Oliver; Lane, Andrew A.; Toscano, Dan; Lunning, Matthew A.; Kopp, Nadja; Kim, Sunhee; van Bodegom, Diederik; Bolla, Sudha; Schatz, Jonathan H.; Teruya-Feldstein, Julie; Hochberg, Ephraim; Louissaint, Abner; Dorfman, David; Stevenson, Kristen; Rodig, Scott J.; Piccaluga, Pier Paolo; Jacobsen, Eric; Pileri, Stefano A.; Harris, Nancy L.; Ferrero, Simone; Inghirami, Giorgio; Horwitz, Steven M.

    2014-01-01

    The genetics of angioimmunoblastic T-cell lymphoma (AITL) are very poorly understood. We defined the mutational landscape of AITL across 219 genes in 85 cases from the United States and Europe. We identified ?2 mutations in 34 genes, nearly all of which were not previously implicated in AITL. These included loss-of-function mutations in TP53 (n = 4), ETV6 (n = 3), CCND3 (n = 2), and EP300 (n = 5), as well as gain-of-function mutations in JAK2 (n = 2) and STAT3 (n = 4). TET2 was mutated in 65 (76%) AITLs, including 43 that harbored 2 or 3 TET2 mutations. DNMT3A mutations occurred in 28 (33%) AITLs; 100% of these also harbored TET2 mutations (P < .0001). Seventeen AITLs harbored IDH2 R172 substitutions, including 15 with TET2 mutations. In summary, AITL is characterized by high frequencies of overlapping mutations in epigenetic modifiers and targetable mutations in a subset of cases. PMID:24345752

  18. Systematic analysis of somatic mutations impacting gene expression in 12 tumour types.

    PubMed

    Ding, Jiarui; McConechy, Melissa K; Horlings, Hugo M; Ha, Gavin; Chun Chan, Fong; Funnell, Tyler; Mullaly, Sarah C; Reimand, Jüri; Bashashati, Ali; Bader, Gary D; Huntsman, David; Aparicio, Samuel; Condon, Anne; Shah, Sohrab P

    2015-01-01

    We present a novel hierarchical Bayes statistical model, xseq, to systematically quantify the impact of somatic mutations on expression profiles. We establish the theoretical framework and robust inference characteristics of the method using computational benchmarking. We then use xseq to analyse thousands of tumour data sets available through The Cancer Genome Atlas, to systematically quantify somatic mutations impacting expression profiles. We identify 30 novel cis-effect tumour suppressor gene candidates, enriched in loss-of-function mutations and biallelic inactivation. Analysis of trans-effects of mutations and copy number alterations with xseq identifies mutations in 150 genes impacting expression networks, with 89 novel predictions. We reveal two important novel characteristics of mutation impact on expression: (1) patients harbouring known driver mutations exhibit different downstream gene expression consequences; (2) expression patterns for some mutations are stable across tumour types. These results have critical implications for identification and interpretation of mutations with consequent impact on transcription in cancer. PMID:26436532

  19. Systematic analysis of somatic mutations impacting gene expression in 12 tumour types

    PubMed Central

    Ding, Jiarui; McConechy, Melissa K.; Horlings, Hugo M.; Ha, Gavin; Chun Chan, Fong; Funnell, Tyler; Mullaly, Sarah C.; Reimand, Jüri; Bashashati, Ali; Bader, Gary D.; Huntsman, David; Aparicio, Samuel; Condon, Anne; Shah, Sohrab P.

    2015-01-01

    We present a novel hierarchical Bayes statistical model, xseq, to systematically quantify the impact of somatic mutations on expression profiles. We establish the theoretical framework and robust inference characteristics of the method using computational benchmarking. We then use xseq to analyse thousands of tumour data sets available through The Cancer Genome Atlas, to systematically quantify somatic mutations impacting expression profiles. We identify 30 novel cis-effect tumour suppressor gene candidates, enriched in loss-of-function mutations and biallelic inactivation. Analysis of trans-effects of mutations and copy number alterations with xseq identifies mutations in 150 genes impacting expression networks, with 89 novel predictions. We reveal two important novel characteristics of mutation impact on expression: (1) patients harbouring known driver mutations exhibit different downstream gene expression consequences; (2) expression patterns for some mutations are stable across tumour types. These results have critical implications for identification and interpretation of mutations with consequent impact on transcription in cancer. PMID:26436532

  20. Mutations in Lettuce Improvement.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mutations can make profound impact on the evolution and improvement of a self-pollinated crop such as lettuce. Since it is nontransgenic, mutation breeding is more acceptable to consumers. Combined with genomic advances in new technologies like TILLING, mutagenesis is becoming an even more powerfu...

  1. IBMFS - gene mutations

    Cancer.gov

    A "mutation" is a change in a gene that prevents it from working properly. A "germline" mutation is a change that occurs in the egg or the sperm, or both, and is passed from one parent or both parents to the child.

  2. Mutational Analysis of Pneumocystis jirovecii Dihydropteroate Synthase and Dihydrofolate Reductase Genes in HIV-Infected Patients in China

    PubMed Central

    Deng, Xilong; Zhuo, Li; Lan, Yun; Dai, Zhaoxia; Chen, Wan-shan; Cai, Weiping; Kovacs, Joseph A.; Ma, Liang

    2014-01-01

    We investigated Pneumocystis jirovecii dihydropteroate synthase (DHPS) and dihydrofolate reductase (DHFR) genes for mutations in 25 Chinese HIV-infected patients with P. jirovecii pneumonia. We identified DHPS mutations in 3 (12%) patients and DHFR mutations in 1 (4%) patient. The prevalence of DHPS and DHFR mutations in China remains low, as it does in other developing countries. PMID:25122865

  3. Mutation spectrum in South American Lynch syndrome families

    PubMed Central

    2013-01-01

    Background Genetic counselling and testing for Lynch syndrome have recently been introduced in several South American countries, though yet not available in the public health care system. Methods We compiled data from publications and hereditary cancer registries to characterize the Lynch syndrome mutation spectrum in South America. In total, data from 267 families that fulfilled the Amsterdam criteria and/or the Bethesda guidelines from Argentina, Brazil, Chile, Colombia and Uruguay were included. Results Disease-predisposing mutations were identified in 37% of the families and affected MLH1 in 60% and MSH2 in 40%. Half of the mutations have not previously been reported and potential founder effects were identified in Brazil and in Colombia. Conclusion The South American Lynch syndrome mutation spectrum includes multiple new mutations, identifies potential founder effects and is useful for future development of genetic testing in this continent. PMID:24344984

  4. Mutation and premating isolation

    NASA Technical Reports Server (NTRS)

    Woodruff, R. C.; Thompson, J. N. Jr

    2002-01-01

    While premating isolation might be traceable to different genetic mechanisms in different species, evidence supports the idea that as few as one or two genes may often be sufficient to initiate isolation. Thus, new mutation can theoretically play a key role in the process. But it has long been thought that a new isolation mutation would fail, because there would be no other individuals for the isolation-mutation-carrier to mate with. We now realize that premeiotic mutations are very common and will yield a cluster of progeny carrying the same new mutant allele. In this paper, we discuss the evidence for genetically simple premating isolation barriers and the role that clusters of an isolation mutation may play in initiating allopatric, and even sympatric, species divisions.

  5. LHON: Mitochondrial Mutations and More

    PubMed Central

    Kirches, E

    2011-01-01

    Leber’s hereditary optic neuropathy (LHON) is a mitochondrial disorder leading to severe visual impairment or even blindness by death of retinal ganglion cells (RGCs). The primary cause of the disease is usually a mutation of the mitochondrial genome (mtDNA) causing a single amino acid exchange in one of the mtDNA-encoded subunits of NADH:ubiquinone oxidoreductase, the first complex of the electron transport chain. It was thus obvious to accuse neuronal energy depletion as the most probable mediator of neuronal death. The group of Valerio Carelli and other authors have nicely shown that energy depletion shapes the cell fate in a LHON cybrid cell model. However, the cybrids used were osteosarcoma cells, which do not fully model neuronal energy metabolism. Although complex I mutations may cause oxidative stress, a potential pathogenetic role of the latter was less taken into focus. The hypothesis of bioenergetic failure does not provide a simple explanation for the relatively late disease onset and for the incomplete penetrance, which differs remarkably between genders. It is assumed that other genetic and environmental factors are needed in addition to the ‘primary LHON mutations’ to elicit RGC death. Relevant nuclear modifier genes have not been identified so far. The review discusses the unresolved problems of a pathogenetic hypothesis based on ATP decline and/or ROS-induced apoptosis in RGCs. PMID:21886454

  6. DISCOVERY OF MUTATED SUBNETWORKS ASSOCIATED WITH CLINICAL DATA IN CANCER

    E-print Network

    Raphael, Ben J.

    DISCOVERY OF MUTATED SUBNETWORKS ASSOCIATED WITH CLINICAL DATA IN CANCER FABIO VANDIN, PATRICK CLAY,pclay,eli,braphael}@cs.brown.edu A major goal of cancer sequencing projects is to identify genetic alterations that determine clinical phenotypes, such as survival time or drug response. Somatic mutations in cancer are typically very diverse

  7. Screening for duplications, deletions and a common intronic mutation detects 35% of second mutations in patients with USH2A monoallelic mutations on Sanger sequencing

    PubMed Central

    2013-01-01

    Background Usher Syndrome is the leading cause of inherited deaf-blindness. It is divided into three subtypes, of which the most common is Usher type 2, and the USH2A gene accounts for 75-80% of cases. Despite recent sequencing strategies, in our cohort a significant proportion of individuals with Usher type 2 have just one heterozygous disease-causing mutation in USH2A, or no convincing disease-causing mutations across nine Usher genes. The purpose of this study was to improve the molecular diagnosis in these families by screening USH2A for duplications, heterozygous deletions and a common pathogenic deep intronic variant USH2A: c.7595-2144A>G. Methods Forty-nine Usher type 2 or atypical Usher families who had missing mutations (mono-allelic USH2A or no mutations following Sanger sequencing of nine Usher genes) were screened for duplications/deletions using the USH2A SALSA MLPA reagent kit (MRC-Holland). Identification of USH2A: c.7595-2144A>G was achieved by Sanger sequencing. Mutations were confirmed by a combination of reverse transcription PCR using RNA extracted from nasal epithelial cells or fibroblasts, and by array comparative genomic hybridisation with sequencing across the genomic breakpoints. Results Eight mutations were identified in 23 Usher type 2 families (35%) with one previously identified heterozygous disease-causing mutation in USH2A. These consisted of five heterozygous deletions, one duplication, and two heterozygous instances of the pathogenic variant USH2A: c.7595-2144A>G. No variants were found in the 15 Usher type 2 families with no previously identified disease-causing mutations. In 11 atypical families, none of whom had any previously identified convincing disease-causing mutations, the mutation USH2A: c.7595-2144A>G was identified in a heterozygous state in one family. All five deletions and the heterozygous duplication we report here are novel. This is the first time that a duplication in USH2A has been reported as a cause of Usher syndrome. Conclusions We found that 8 of 23 (35%) of ‘missing’ mutations in Usher type 2 probands with only a single heterozygous USH2A mutation detected with Sanger sequencing could be attributed to deletions, duplications or a pathogenic deep intronic variant. Future mutation detection strategies and genetic counselling will need to take into account the prevalence of these types of mutations in order to provide a more comprehensive diagnostic service. PMID:23924366

  8. Somatic SETBP1 mutations in myeloid malignancies.

    PubMed

    Makishima, Hideki; Yoshida, Kenichi; Nguyen, Nhu; Przychodzen, Bartlomiej; Sanada, Masashi; Okuno, Yusuke; Ng, Kwok Peng; Gudmundsson, Kristbjorn O; Vishwakarma, Bandana A; Jerez, Andres; Gomez-Segui, Ines; Takahashi, Mariko; Shiraishi, Yuichi; Nagata, Yasunobu; Guinta, Kathryn; Mori, Hiraku; Sekeres, Mikkael A; Chiba, Kenichi; Tanaka, Hiroko; Muramatsu, Hideki; Sakaguchi, Hirotoshi; Paquette, Ronald L; McDevitt, Michael A; Kojima, Seiji; Saunthararajah, Yogen; Miyano, Satoru; Shih, Lee-Yung; Du, Yang; Ogawa, Seishi; Maciejewski, Jaroslaw P

    2013-08-01

    Here we report whole-exome sequencing of individuals with various myeloid malignancies and identify recurrent somatic mutations in SETBP1, consistent with a recent report on atypical chronic myeloid leukemia (aCML). Closely positioned somatic SETBP1 mutations encoding changes in Asp868, Ser869, Gly870, Ile871 and Asp880, which match germline mutations in Schinzel-Giedion syndrome (SGS), were detected in 17% of secondary acute myeloid leukemias (sAML) and 15% of chronic myelomonocytic leukemia (CMML) cases. These results from deep sequencing demonstrate a higher mutational detection rate than reported with conventional sequencing methodology. Mutant cases were associated with advanced age and monosomy 7/deletion 7q (-7/del(7q)) constituting poor prognostic factors. Analysis of serially collected samples indicated that SETBP1 mutations were acquired during leukemic evolution. Transduction with mutant Setbp1 led to the immortalization of mouse myeloid progenitors that showed enhanced proliferative capacity compared to cells transduced with wild-type Setbp1. Somatic mutations of SETBP1 seem to cause gain of function, are associated with myeloid leukemic transformation and convey poor prognosis in myelodysplastic syndromes (MDS) and CMML. PMID:23832012

  9. Microsatellite mutations and inferences about human demography.

    PubMed Central

    Gonser, R; Donnelly, P; Nicholson, G; Di Rienzo, A

    2000-01-01

    Microsatellites have been widely used as tools for population studies. However, inference about population processes relies on the specification of mutation parameters that are largely unknown and likely to differ across loci. Here, we use data on somatic mutations to investigate the mutation process at 14 tetranucleotide repeats and carry out an advanced multilocus analysis of different demographic scenarios on worldwide population samples. We use a method based on less restrictive assumptions about the mutation process, which is more powerful to detect departures from the null hypothesis of constant population size than other methods previously applied to similar data sets. We detect a signal of population expansion in all samples examined, except for one African sample. As part of this analysis, we identify an "anomalous" locus whose extreme pattern of variation cannot be explained by variability in mutation size. Exaggerated mutation rate is proposed as a possible cause for its unusual variation pattern. We evaluate the effect of using it to infer population histories and show that inferences about demographic histories are markedly affected by its inclusion. In fact, exclusion of the anomalous locus reduces interlocus variability of statistics summarizing population variation and strengthens the evidence in favor of demographic growth. PMID:10747070

  10. Mutation analysis of two families with inherited congenital cataracts

    PubMed Central

    LIANG, CHANG; LIANG, HAN; YANG, YU; PING, LIU; JIE, QIAO

    2015-01-01

    The present study aimed to identify the genetic mutations in two families affected with congenital cataracts. Detailed family histories and clinical data of the family members were recorded. The family members with affected phenotypes were recruited, and candidate gene sequencing was performed to determine the disease-causing mutation. Bioinformatics analysis was performed to predict the function of the mutant gene. Green fluorescent protein-tagged human wild-type CRYAA and GJA8 were sub-cloned, and the mutants were generated by site-directed mutagenesis. A novel mutation, c.416T>C (p.L139P), in CRYAA and a known mutation, c.139G>A (p.D47N), in GJA8 were identified. These mutations co-segregated with all affected individuals in each family and were not observed in the unaffected family members or in unrelated controls. The results of the bioinformatics analysis indicated that the amino acid at position 139 was highly conserved and that the p.L139P mutation was predicted to be damaging, as with p.D47N. Finally, overexpression of the two mutants revealed marked alterations, compared with the wild-type proteins. These results extend the mutation spectrum of CRYAA and provides further evidence that the p.D47N mutation in GJA8 is a hot-spot mutation. PMID:26004348

  11. GE-05EXOME SEQUENCING REVEALS BRAF MUTATIONS IN PAPILLARY CRANIOPHARYNGIOMAS

    PubMed Central

    Brastianos, Priscilla; Taylor-Weiner, Amaro; Manley, Peter; Jones, Robert; Dias-Santagata, Dora; Thorner, Aaron; Rodriguez, Fausto; Bernardo, Lindsay; Schubert, Laura; Stewart, Chip; Kieran, Mark; Louis, David; Getz, Gad; Santagata, Sandro

    2014-01-01

    Craniopharyngiomas are epithelial tumors that typically arise in the suprasellar region of the brain. Patients experience substantial clinical sequelae both from extension of the tumors and from therapeutic interventions which damage the optic chiasm, the pituitary stalk, and the hypothalamic area. Using whole exome sequencing we identified mutations in beta-catenin (CTNNB1) in nearly all adamantinomatous craniopharyngiomas (11/12; 92%) and recurrent mutations in BRAF (V600E) in all papillary craniopharyngiomas (3/3; 100%). Targeted genotyping revealed BRAF V600E in 95% of papillary craniopharyngiomas (36 of 39 tumors) and CTNNB1 mutation in 96% of adamantinomatous craniopharyngiomas (51 of 53 tumors). The CTNNB1 and BRAF mutations were clonal in each tumor subtype and no other recurrent mutations or genomic aberrations were detected in either subtype. Adamantinomatous and papillary craniopharyngiomas harbor mutations that are mutually exclusive and clonal. These findings have important implications for the diagnosis and treatment of these neoplasms.

  12. Mutations affecting the chemosensory neurons of Caenorhabditis elegans

    SciTech Connect

    Starich, T.A.; Herman, R.K.; Kari, C.K.

    1995-01-01

    We have identified and characterized 95 mutations that reduce or abolish dye filling of amphid and phasmid neurons and that have little effect on viability, fertility or movement. Twenty-seven mutations occurred spontaneously in strains with a high frequency of transposon insertion. Sixty-eight were isolated after treatment with EMS. All of the mutations result in defects in one or more chemosensory responses, such as chemotaxis to ammonium chloride or formation of dauer larvae under conditions of starvation and overcrowding. Seventy-five of the mutations are alleles of 12 previously defined genes, mutations which were previously shown to lead to defects in amphid ultrastructure. We have assigned 20 mutations to 13 new genes, called dyf-1 through dyf-13. We expect that the genes represented by dye-filling defective mutants are important for the differentiation of amphid and phasmid chemosensilla. 58 refs., 3 figs., 6 tabs.

  13. Highly recurrent TERT promoter mutations in human melanoma.

    PubMed

    Huang, Franklin W; Hodis, Eran; Xu, Mary Jue; Kryukov, Gregory V; Chin, Lynda; Garraway, Levi A

    2013-02-22

    Systematic sequencing of human cancer genomes has identified many recurrent mutations in the protein-coding regions of genes but rarely in gene regulatory regions. Here, we describe two independent mutations within the core promoter of telomerase reverse transcriptase (TERT), the gene coding for the catalytic subunit of telomerase, which collectively occur in 50 of 70 (71%) melanomas examined. These mutations generate de novo consensus binding motifs for E-twenty-six (ETS) transcription factors, and in reporter assays, the mutations increased transcriptional activity from the TERT promoter by two- to fourfold. Examination of 150 cancer cell lines derived from diverse tumor types revealed the same mutations in 24 cases (16%), with preliminary evidence of elevated frequency in bladder and hepatocellular cancer cells. Thus, somatic mutations in regulatory regions of the genome may represent an important tumorigenic mechanism. PMID:23348506

  14. Novel mutations target distinct subgroups of medulloblastoma

    PubMed Central

    Robinson, Giles; Parker, Matthew; Kranenburg, Tanya A.; Lu, Charles; Chen, Xiang; Ding, Li; Phoenix, Timothy N.; Hedlund, Erin; Wei, Lei; Zhu, Xiaoyan; Chalhoub, Nader; Baker, Suzanne J.; Huether, Robert; Kriwacki, Richard; Curley, Natasha; Thiruvenkatam, Radhika; Wang, Jianmin; Wu, Gang; Rusch, Michael; Hong, Xin; Beckford, Jared; Gupta, Pankaj; Ma, Jing; Easton, John; Vadodaria, Bhavin; Onar-Thomas, Arzu; Lin, Tong; Li, Shaoyi; Pounds, Stanley; Paugh, Steven; Zhao, David; Kawauchi, Daisuke; Roussel, Martine F.; Finkelstein, David; Ellison, David W.; Lau, Ching C.; Bouffet, Eric; Hassall, Tim; Gururangan, Sridharan; Cohn, Richard; Fulton, Robert S.; Fulton, Lucinda L.; Dooling, David J.; Ochoa, Kerri; Gajjar, Amar; Mardis, Elaine R.; Wilson, Richard K.; Downing, James R.; Zhang, Jinghui; Gilbertson, Richard J.

    2012-01-01

    Summary Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. To identify mutations that drive medulloblastoma we sequenced the entire genomes of 37 tumours and matched normal blood. One hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma: several target distinct components of the epigenetic machinery in different disease subgroups, e.g., regulators of H3K27 and H3K4 trimethylation in subgroup-3 and 4 (e.g., KDM6A and ZMYM3), and CTNNB1-associated chromatin remodellers in WNT-subgroup tumours (e.g., SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours, identified genes that maintain this cell lineage (DDX3X) as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumourigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development. PMID:22722829

  15. Novel mutations target distinct subgroups of medulloblastoma.

    PubMed

    Robinson, Giles; Parker, Matthew; Kranenburg, Tanya A; Lu, Charles; Chen, Xiang; Ding, Li; Phoenix, Timothy N; Hedlund, Erin; Wei, Lei; Zhu, Xiaoyan; Chalhoub, Nader; Baker, Suzanne J; Huether, Robert; Kriwacki, Richard; Curley, Natasha; Thiruvenkatam, Radhika; Wang, Jianmin; Wu, Gang; Rusch, Michael; Hong, Xin; Becksfort, Jared; Gupta, Pankaj; Ma, Jing; Easton, John; Vadodaria, Bhavin; Onar-Thomas, Arzu; Lin, Tong; Li, Shaoyi; Pounds, Stanley; Paugh, Steven; Zhao, David; Kawauchi, Daisuke; Roussel, Martine F; Finkelstein, David; Ellison, David W; Lau, Ching C; Bouffet, Eric; Hassall, Tim; Gururangan, Sridharan; Cohn, Richard; Fulton, Robert S; Fulton, Lucinda L; Dooling, David J; Ochoa, Kerri; Gajjar, Amar; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Zhang, Jinghui; Gilbertson, Richard J

    2012-08-01

    Medulloblastoma is a malignant childhood brain tumour comprising four discrete subgroups. Here, to identify mutations that drive medulloblastoma, we sequenced the entire genomes of 37 tumours and matched normal blood. One-hundred and thirty-six genes harbouring somatic mutations in this discovery set were sequenced in an additional 56 medulloblastomas. Recurrent mutations were detected in 41 genes not yet implicated in medulloblastoma; several target distinct components of the epigenetic machinery in different disease subgroups, such as regulators of H3K27 and H3K4 trimethylation in subgroups 3 and 4 (for example, KDM6A and ZMYM3), and CTNNB1-associated chromatin re-modellers in WNT-subgroup tumours (for example, SMARCA4 and CREBBP). Modelling of mutations in mouse lower rhombic lip progenitors that generate WNT-subgroup tumours identified genes that maintain this cell lineage (DDX3X), as well as mutated genes that initiate (CDH1) or cooperate (PIK3CA) in tumorigenesis. These data provide important new insights into the pathogenesis of medulloblastoma subgroups and highlight targets for therapeutic development. PMID:22722829

  16. Mutation Profile of Well-Differentiated Thyroid Cancer in Asians

    PubMed Central

    Song, Young Shin; Lim, Jung Ah

    2015-01-01

    Recent advances in molecular diagnostics have led to significant insights into the genetic basis of thyroid tumorigenesis. Among the mutations commonly seen in thyroid cancers, the vast majority are associated with the mitogen-activated protein kinase pathway. B-Raf proto-oncogene (BRAF) mutations are the most common mutations observed in papillary thyroid cancers (PTCs), followed by RET/PTC rearrangements and RAS mutations, while follicular thyroid cancers are more likely to harbor RAS mutations or PAX8/peroxisome proliferator-activated receptor ? (PPAR?) rearrangements. Beyond these more common mutations, alterations in the telomerase reverse transcriptase (TERT) promoter have recently been associated with clinicopathologic features, disease prognosis, and tumorigenesis in thyroid cancer. While the mutations underlying thyroid tumorigenesis are well known, the frequency of these mutations is strongly associated with geography, with clear differences reported between Asian and Western countries. Of particular interest is the prevalence of BRAF mutations, with Korean patients exhibiting the highest rate of BRAF-associated thyroid cancers in the world. Here, we review the prevalence of each of the most common mutations in Asian and Western countries, and identify the characteristics of well-differentiated thyroid cancer in Asians. PMID:26435130

  17. First report of HGD mutations in a Chinese with alkaptonuria.

    PubMed

    Yang, Yong-jia; Guo, Ji-hong; Chen, Wei-jian; Zhao, Rui; Tang, Jin-song; Meng, Xiao-hua; Zhao, Liu; Tu, Ming; He, Xin-yu; Wu, Ling-qian; Zhu, Yi-min

    2013-04-15

    Alkaptonuria (AKU) is one of the first prototypic inborn errors in metabolism and the first human disease found to be transmitted via Mendelian autosomal recessive inheritance. It is caused by HGD mutations, which leads to a deficiency in homogentisate 1,2-dioxygenase (HGD) activity. To date, several HGD mutations have been identified as the cause of the prototypic disease across different ethnic populations worldwide. However, in Asia, the HGD mutation is very rarely reported. For the Chinese population, no literature on HGD mutation screening is available to date. In this paper, we describe two novel HGD mutations in a Chinese AKU family, the splicing mutation of IVS7+1G>C, a donor splice site of exon 7, and a missense mutation of F329C in exon 12. The predicted new splicing site of the mutated exon 7 sequence demonstrated a 303bp extension after the mutation site. The F329C mutation most probably disturbed the stability of the conformation of the two loops critical to the Fe(2+) active site of the HGD enzyme. PMID:23353776

  18. Phenylketonuria mutation analysis in Northern Ireland: a rapid stepwise approach.

    PubMed Central

    Zschocke, J; Graham, C A; Carson, D J; Nevin, N C

    1995-01-01

    We present a multistep approach for the rapid analysis of phenylketonuria (PKU) mutations. In the first step, three common mutations and a polymorphic short tandem repeat (STR) system are rapidly analyzed with a fluorescent multiplex assay. In the second step, minihaplotypes combining STR and VNTR data are used to determine rare mutations likely to be present in an investigated patient, which are then confirmed by restriction enzyme analysis. The remaining mutations are analyzed with denaturant gradient-gel electrophoresis and sequencing. The first two steps together identify both mutations in 90%-95% of PKU patients, and results can be obtained within 2 d. We have investigated 121 Northern Irish families with hyperphenylalaninemia, including virtually all patients born since 1972, and have found 34 different mutations on 241 of the 242 mutant alleles. Three mutations (R408W, I65T, and F39L) account for 57.5% of mutations, while 14 mutations occur with a frequency of 1%-6%. The present analysis system is efficient and inexpensive and is particularly well suited to routine mutation analysis in a diagnostic setting. PMID:8533759

  19. GATA2 mutations in patients with acute myeloid leukemia-paired samples analyses show that the mutation is unstable during disease evolution.

    PubMed

    Hou, Hsin-An; Lin, Yun-Chu; Kuo, Yuan-Yeh; Chou, Wen-Chien; Lin, Chien-Chin; Liu, Chieh-Yu; Chen, Chien-Yuan; Lin, Liang-In; Tseng, Mei-Hsuan; Huang, Chi-Fei; Chiang, Ying-Chieh; Liu, Ming-Chih; Liu, Chia-Wen; Tang, Jih-Luh; Yao, Ming; Huang, Shang-Yi; Ko, Bor-Sheng; Hsu, Szu-Chun; Wu, Shang-Ju; Tsay, Woei; Chen, Yao-Chang; Tien, Hwei-Fang

    2015-02-01

    Recently, mutations of the GATA binding protein 2 (GATA2) gene were identified in acute myeloid leukemia (AML) patients with CEBPA double mutations (CEBPA (double-mut)), but the interaction of this mutation with other genetic alterations and its dynamic changes during disease progression remain to be determined. In this study, 14 different missense GATA2 mutations, which were all clustered in the highly conserved N-terminal zinc finger 1 domain, were identified in 27.4, 6.7, and 1 % of patients with CEBPA (double-mut), CEBPA (single-mut), and CEBPA wild type, respectively. All but one patient with GATA2 mutation had concurrent CEBPA mutation. GATA2 mutations were closely associated with younger age, FAB M1 subtype, intermediate-risk cytogenetics, expression of HLA-DR, CD7, CD15, or CD34 on leukemic cells, and CEBPA mutation, but negatively associated with FAB M4 subtype, favorable-risk cytogenetics, and NPM1 mutation. Patients with GATA2 mutation had significantly better overall survival and relapse-free survival than those without GATA2 mutation. Sequential analysis showed that the original GATA2 mutations might be lost during disease progression in GATA2-mutated patients, while novel GATA2 mutations might be acquired at relapse in GATA2-wild patients. In conclusion, AML patients with GATA2 mutations had distinct clinic-biological features and a favorable prognosis. GATA2 mutations might be lost or acquired at disease progression, implying that it was a second hit in the leukemogenesis of AML, especially those with CEBPA mutation. PMID:25241285

  20. Recessive truncating titin gene, TTN, mutations presenting as centronuclear myopathy

    PubMed Central

    Ceyhan-Birsoy, Ozge; Agrawal, Pankaj B.; Hidalgo, Carlos; Schmitz-Abe, Klaus; DeChene, Elizabeth T.; Swanson, Lindsay C.; Soemedi, Rachel; Vasli, Nasim; Iannaccone, Susan T.; Shieh, Perry B.; Shur, Natasha; Dennison, Jane M.; Lawlor, Michael W.; Laporte, Jocelyn; Markianos, Kyriacos; Fairbrother, William G.; Granzier, Henk

    2013-01-01

    Objective: To identify causative genes for centronuclear myopathies (CNM), a heterogeneous group of rare inherited muscle disorders that often present in infancy or early life with weakness and hypotonia, using next-generation sequencing of whole exomes and genomes. Methods: Whole-exome or -genome sequencing was performed in a cohort of 29 unrelated patients with clinicopathologic diagnoses of CNM or related myopathy depleted for cases with mutations of MTM1, DNM2, and BIN1. Immunofluorescence analyses on muscle biopsies, splicing assays, and gel electrophoresis of patient muscle proteins were performed to determine the molecular consequences of mutations of interest. Results: Autosomal recessive compound heterozygous truncating mutations of the titin gene, TTN, were identified in 5 individuals. Biochemical analyses demonstrated increased titin degradation and truncated titin proteins in patient muscles, establishing the impact of the mutations. Conclusions: Our study identifies truncating TTN mutations as a cause of congenital myopathy that is reported as CNM. Unlike the classic CNM genes that are all involved in excitation-contraction coupling at the triad, TTN encodes the giant sarcomeric protein titin, which forms a myofibrillar backbone for the components of the contractile machinery. This study expands the phenotypic spectrum associated with TTN mutations and indicates that TTN mutation analysis should be considered in cases of possible CNM without mutations in the classic CNM genes. PMID:23975875

  1. Algorithms for Detecting Significantly Mutated Pathways in Cancer

    NASA Astrophysics Data System (ADS)

    Vandin, Fabio; Upfal, Eli; Raphael, Benjamin J.

    Recent genome sequencing studies have shown that the somatic mutations that drive cancer development are distributed across a large number of genes. This mutational heterogeneity complicates efforts to distinguish functional mutations from sporadic, passenger mutations. Since cancer mutations are hypothesized to target a relatively small number of cellular signaling and regulatory pathways, a common approach is to assess whether known pathways are enriched for mutated genes. However, restricting attention to known pathways will not reveal novel cancer genes or pathways. An alterative strategy is to examine mutated genes in the context of genome-scale interaction networks that include both well characterized pathways and additional gene interactions measured through various approaches. We introduce a computational framework for de novo identification of subnetworks in a large gene interaction network that are mutated in a significant number of patients. This framework includes two major features. First, we introduce a diffusion process on the interaction network to define a local neighborhood of "influence" for each mutated gene in the network. Second, we derive a two-stage multiple hypothesis test to bound the false discovery rate (FDR) associated with the identified subnetworks. We test these algorithms on a large human protein-protein interaction network using mutation data from two recent studies: glioblastoma samples from The Cancer Genome Atlas and lung adenocarcinoma samples from the Tumor Sequencing Project. We successfully recover pathways that are known to be important in these cancers, such as the p53 pathway. We also identify additional pathways, such as the Notch signaling pathway, that have been implicated in other cancers but not previously reported as mutated in these samples. Our approach is the first, to our knowledge, to demonstrate a computationally efficient strategy for de novo identification of statistically significant mutated subnetworks. We anticipate that our approach will find increasing use as cancer genome studies increase in size and scope.

  2. A Novel Missense Mutation in POMT1 Modulates the Severe Congenital Muscular Dystrophy Phenotype Associated with POMT1 Nonsense Mutations

    PubMed Central

    Wallace, Stephanie E.; Conta, Jessie H.; Winder, Thomas L.; Willer, Tobias; Eskuri, Jamie M.; Haas, Richard; Patterson, Kathleen; Campbell, Kevin P.; Moore, Steven A.; Gospe, Sidney M.

    2014-01-01

    Mutations in POMT1 lead to a group of neuromuscular conditions ranging in severity from Walker-Warburg syndrome to limb girdle muscular dystrophy. We report two male siblings, ages 19 and 14, and an unrelated 6-year old female with early onset muscular dystrophy and intellectual disability with minimal structural brain anomalies and no ocular abnormalities. Compound heterozygous mutations in POMT1 were identified including a previously reported nonsense mutation (c.2167dupG; p.Asp723Glyfs*8) associated with Walker-Warburg syndrome and a novel missense mutation in a highly conserved region of the protein O-mannosyltransferase 1 protein (c.1958C>T; p.Pro653Leu). This novel variant reduces the phenotypic severity compared to patients with homozygous c.2167dupG mutations or compound heterozygous patients with a c.2167dupG mutation and a wide range of other mutant POMT1 alleles. PMID:24491487

  3. Brief Report:MECP2 Mutations in People without Rett Syndrome

    ERIC Educational Resources Information Center

    Suter, Bernhard; Treadwell-Deering, Diane; Zoghbi, Huda Y.; Glaze, Daniel G.; Neul, Jeffrey L.

    2014-01-01

    Mutations in "Methyl-CpG-Binding protein 2" ("MECP2") are commonly associated with the neurodevelopmental disorder Rett syndrome (RTT). However, some people with RTT do not have mutations in "MECP2," and interestingly there have been people identified with "MECP2" mutations that do not have the clinical…

  4. Ligand-and mutation-induced conformational selection in the CCR5 chemokine G

    E-print Network

    Goddard III, William A.

    Ligand- and mutation-induced conformational selection in the CCR5 chemokine G protein show that a sin- gle-point mutation in a GPCR can dramatically alter the available low different binding site pharmacophore. To validate our predictions, we identified 11 singly mutated CCR5

  5. Gene Mutations Show Potential New Targets for NHL Treatment

    Cancer.gov

    Researchers have discovered genetic mutations that may contribute to the development of an aggressive form of non-Hodgkin's lymphoma. These findings provide insight into a mechanism that cancer cells may use to survive, thus identifying potential new targ

  6. Computational Method Uncovers Mutations That Drive Cancer | Physical Sciences in Oncology

    Cancer.gov

    Cancer gene sequencing initiatives, such as The Cancer Genome Atlas project, are finding thousands of gene mutations in cancer cells, and making sense of all these genetic alterations is proving to be as big a challenge as identifying them. In an attempt to identify the most important of these mutations, researchers at Columbia University and the Dana-Farber Cancer Institute have developed a computation method that can identify so-called driver mutations in human melanomas.

  7. Mutator dynamics in fluctuating environments.

    PubMed Central

    Travis, J M J; Travis, E R

    2002-01-01

    Populations with high mutation rates (mutator clones) are being found in increasing numbers of species, and a clear link is being established between the presence of mutator clones and drug resistance. Mutator clones exist despite the fact that in a constant environment most mutations are deleterious, with the spontaneous mutation rate generally held at a low value. This implies that mutator clones have an important role in the adaptation of organisms to changing environments. Our study examines how mutator dynamics vary according to the frequency of environmental fluctuations. Although recent studies have considered a single environmental switch, here we investigate mutator dynamics in a regularly varying environment, seeking to mimic conditions present, for example, under certain drug or pesticide regimes. Our model provides four significant new insights. First, the results demonstrate that mutators are most prevalent under intermediate rates of environmental change. When the environment oscillates more rapidly, mutators are unable to provide sufficient adaptability to keep pace with the frequent changes in selection pressure and, instead, a population of 'environmental generalists' dominates. Second, our findings reveal that mutator dynamics may be complex, exhibiting limit cycles and chaos. Third, we demonstrate that when each beneficial mutation provides a greater gain in fitness, mutators achieve higher densities in more rapidly fluctuating environments. Fourth, we find that mutators of intermediate strength reach higher densities than very weak or strong mutators. PMID:11916475

  8. New ABCC6 gene mutations in German pseudoxanthoma elasticum patients.

    PubMed

    Hendig, Doris; Schulz, Veronika; Eichgrün, Jutta; Szliska, Christiane; Götting, Christian; Kleesiek, Knut

    2005-02-01

    Pseudoxanthoma elasticum (PXE; OMIM 177850 and 264800) is a rare heritable disorder of the connective tissue affecting the extracellular matrix of the skin, eyes, gastrointestinal system, and cardiovascular system. It has recently been found that mutations in the ABCC6 gene encoding the multidrug resistance-associated protein (MRP) 6 cause PXE. This study examined novel mutations in the ABCC6 gene in our cohort of 76 German PXE patients and 54 unaffected or not yet affected relatives with a view to expanding the known mutational spectrum of the gene. Mutational analysis was performed using denaturing high-performance liquid chromatography and direct sequencing. The mutational screening revealed a total of 22 different ABCC6 sequence variations. We identified seven novel and four previously described PXE-associated mutations as well as eight novel neutral ABCC6 sequence variants. The new PXE-associated mutations included five missense mutations, one single base pair deletion, and one larger out-of-frame deletion. We suspect that the novel missense mutations lead to an impaired function of MRP6. Both deletions are predicted to result in a dysfunctional MRP6 protein. The seven new ABCC6 mutations were not present in 200 alleles from healthy blood donors which served as a control cohort. Most of the PXE patients who were found to carry PXE-causing ABCC6 mutations were assumed to manifest the PXE phenotype because of a compound heterozygous genotype. However, a genotype-phenotype correlation could not be established for the detected ABCC6 mutations. In summary, our data give a further insight into the spectrum of ABCC6 mutations in PXE patients. PMID:15723264

  9. Characterization of rare transforming KRAS mutations in sporadic colorectal cancer.

    PubMed

    Tong, Joanna H M; Lung, Raymond W M; Sin, Frankie M C; Law, Peggy P Y; Kang, Wei; Chan, Anthony W H; Ma, Brigette B Y; Mak, Tony W C; Ng, Simon S M; To, Ka Fai

    2014-06-01

    KRAS mutational status has been shown to be a predictive biomarker of resistance to anti-EGFR monoclonal antibody (mAb) therapy in patients with metastatic colorectal cancer. We report the spectrum of KRAS mutation in 1506 patients with colorectal cancer and the identification and characterization of rare insertion mutations within the functional domain of KRAS. KRAS mutations are found in 44.5% (670/1506) of the patients. Two cases are found to harbor double mutations involving both codons 12 and 13. The frequencies of KRAS mutations at its codons 12, 13, 61, and 146 are 75.1%, 19.3%, 2.5%, and 2.7%, respectively. The most abundant mutation of codon 12 is G12D, followed by G12V and G12C while G13D is the predominant mutation in codon 13. Mutations in other codons are rare. The KRAS mutation rate is significantly higher in women (48%, 296/617) than in men (42.1%, 374/889, P = 0.023). Tumors on the right colon have a higher frequency of KRAS mutations than those on the left (57.3% vs. 40.4%, P<0.0001). Two in-frame insertion mutations affect the phosphate-binding loop (codon 10-16) of KRAS are identified. One of them has never been reported before. Compared with wild-type protein, the insertion variants enhance the cellular accumulation of active RAS (RAS-GTP) and constitutively activate the downstream signaling pathway. NIH3T3 cells transfected with the insertion variants show enhanced anchorage-independent growth and in vivo tumorigenicity. Potentially these mutations contribute to primary resistance to anti-EGFR mAb therapy but the clinical implication requires further validation. PMID:24642870

  10. Mutations leading to constitutive active gp130/JAK1/STAT3 pathway.

    PubMed

    Pilati, Camilla; Zucman-Rossi, Jessica

    2015-10-01

    Constitutive activation of STAT (Signal Transducer and Activator of Transcription) transcription factors is a common feature identified in numerous tumors. Inflammatory hepatocellular adenomas (IHCA) are benign liver tumors characterized by an inflammatory phenotype and an overexpression of STAT3 target genes. Recurrent somatic mutations in major actors belonging to the IL6/JAK/STAT3 pathway have been identified in these tumors. (1) 60% of IHCA show IL-6 signal transducer (IL6ST; gp130) mutations; (2) 10% harbor mutations of the Fyn-related kinase FRK; (3) 5% harbor mutations in STAT3; (4) 5% harbor somatic mutations in the GNAS complex locus; and (5) 1% of IHCA harbor mutations in the Janus kinase 1 (JAK1). All these IHCA-associated mutations promote the constitutive activation of STAT3. In this review, we discuss the role of these mutated genes in IHCA and other tumors. PMID:26188635

  11. Viral Mutation Rates ?

    PubMed Central

    Sanjuán, Rafael; Nebot, Miguel R.; Chirico, Nicola; Mansky, Louis M.; Belshaw, Robert

    2010-01-01

    Accurate estimates of virus mutation rates are important to understand the evolution of the viruses and to combat them. However, methods of estimation are varied and often complex. Here, we critically review over 40 original studies and establish criteria to facilitate comparative analyses. The mutation rates of 23 viruses are presented as substitutions per nucleotide per cell infection (s/n/c) and corrected for selection bias where necessary, using a new statistical method. The resulting rates range from 10?8 to10?6 s/n/c for DNA viruses and from 10?6 to 10?4 s/n/c for RNA viruses. Similar to what has been shown previously for DNA viruses, there appears to be a negative correlation between mutation rate and genome size among RNA viruses, but this result requires further experimental testing. Contrary to some suggestions, the mutation rate of retroviruses is not lower than that of other RNA viruses. We also show that nucleotide substitutions are on average four times more common than insertions/deletions (indels). Finally, we provide estimates of the mutation rate per nucleotide per strand copying, which tends to be lower than that per cell infection because some viruses undergo several rounds of copying per cell, particularly double-stranded DNA viruses. A regularly updated virus mutation rate data set will be available at www.uv.es/rsanjuan/virmut. PMID:20660197

  12. Comparing Mutational Variabilities

    PubMed Central

    Houle, D.; Morikawa, B.; Lynch, M.

    1996-01-01

    We have reviewed the available data on V(M), the amount of genetic variation in phenotypic traits produced each generation by mutation. We use these data to make several qualitative tests of the mutation-selection balance hypothesis for the maintenance of genetic variance (MSB). To compare V(M) values, we use three dimensionless quantities: mutational heritability, V(M)/V(E); the mutational coefficient of variation, CV(M); and the ratio of the standing genetic variance to V(M), V(G)/V(M). Since genetic coefficients of variation for life history traits are larger than those for morphological traits, we predict that under MSB, life history traits should also have larger CV(M). This is confirmed; life history traits have a median CV(M) value more than six times higher than that for morphological traits. V(G)/V(M) approximates the persistence time of mutations under MSB in an infinite population. In order for MSB to hold, V(G)/V(M) must be small, substantially less than 1000, and life history traits should have smaller values than morphological traits. V(G)/V(M) averages about 50 generations for life history traits and 100 generations for morphological traits. These observations are all consistent with the predictions of a mutation-selection balance model. PMID:8807316

  13. Rates of spontaneous mutation.

    PubMed Central

    Drake, J W; Charlesworth, B; Charlesworth, D; Crow, J F

    1998-01-01

    Rates of spontaneous mutation per genome as measured in the laboratory are remarkably similar within broad groups of organisms but differ strikingly among groups. Mutation rates in RNA viruses, whose genomes contain ca. 10(4) bases, are roughly 1 per genome per replication for lytic viruses and roughly 0.1 per genome per replication for retroviruses and a retrotransposon. Mutation rates in microbes with DNA-based chromosomes are close to 1/300 per genome per replication; in this group, therefore, rates per base pair vary inversely and hugely as genome sizes vary from 6 x 10(3) to 4 x 10(7) bases or base pairs. Mutation rates in higher eukaryotes are roughly 0.1-100 per genome per sexual generation but are currently indistinguishable from 1/300 per cell division per effective genome (which excludes the fraction of the genome in which most mutations are neutral). It is now possible to specify some of the evolutionary forces that shape these diverse mutation rates. PMID:9560386

  14. High-throughput oncogene mutation profiling shows demographic differences in BRAF mutation rates among melanoma patients.

    PubMed

    van den Hurk, Karin; Balint, Balazs; Toomey, Sinead; O'Leary, Patrick C; Unwin, Louise; Sheahan, Kieran; McDermott, Enda W; Murphy, Ian; van den Oord, Joost J; Rafferty, Mairin; FitzGerald, Dara M; Moran, Julie; Cummins, Robert; MacEneaney, Owen; Kay, Elaine W; O'Brien, Cathal P; Finn, Stephen P; Heffron, Cynthia C B B; Murphy, Michelle; Yela, Ruben; Power, Derek G; Regan, Padraic J; McDermott, Clodagh M; O'Keeffe, Allan; Orosz, Zsolt; Donnellan, Paul P; Crown, John P; Hennessy, Bryan T; Gallagher, William M

    2015-06-01

    Because of advances in targeted therapies, the clinical evaluation of cutaneous melanoma is increasingly based on a combination of traditional histopathology and molecular pathology. Therefore, it is necessary to expand our knowledge of the molecular events that accompany the development and progression of melanoma to optimize clinical management. The central objective of this study was to increase our knowledge of the mutational events that complement melanoma progression. High-throughput genotyping was adapted to query 159 known single nucleotide mutations in 33 cancer-related genes across two melanoma cohorts from Ireland (n=94) and Belgium (n=60). Results were correlated with various clinicopathological characteristics. A total of 23 mutations in 12 genes were identified, that is--BRAF, NRAS, MET, PHLPP2, PIK3R1, IDH1, KIT, STK11, CTNNB1, JAK2, ALK, and GNAS. Unexpectedly, we discovered significant differences in BRAF, MET, and PIK3R1 mutations between the cohorts. That is, cases from Ireland showed significantly lower (P<0.001) BRAF mutation rates (19%) compared with the mutation frequency observed in Belgian patients (43%). Moreover, MET mutations were detected in 12% of Irish cases, whereas none of the Belgian patients harbored these mutations, and Irish patients significantly more often (P=0.027) had PIK3R1-mutant (33%) melanoma versus 17% of Belgian cases. The low incidence of BRAF-mutant melanoma among Irish patients was confirmed in five independent Irish cohorts, and in total, only 165 of 689 (24%) Irish cases carried mutant BRAF. Together, our data show that melanoma-driving mutations vary by demographic area, which has important implications for the clinical management of this disease. PMID:25746038

  15. S267P mutation in FGFR2: first report in a patient with Crouzon syndrome.

    PubMed

    Ke, Ronghu; Yang, Xianxian; Ge, Min; Cai, Tianyi; Lei, Jiaqi; Mu, Xiongzheng

    2015-03-01

    It has been known for several years that mutations in the fibroblast growth factor receptor (FGFR2) result in syndromic craniosynostosis including Apert, Crouzon, or Pfeiffer syndromes. Here, we report on a child with a clinically diagnosed Crouzon syndrome that shows the missense point mutation S267P in FGFR2 gene. The mutation is firstly identified in Crouzon syndrome. Our observations expand the molecular spectrum of FGFR2 mutations in the syndrome. PMID:25759927

  16. Low incidence of oncogenic EGFR, HRAS, and KRAS mutations in seborrheic keratosis.

    PubMed

    Georgieva, Ivelina A; Mauerer, Andreas; Groesser, Leopold; Herschberger, Eva; Aslanidis, Charalampos; Dietmaier, Wolfgang; Landthaler, Michael; Hafner, Christian

    2014-08-01

    Seborrheic keratosis (SK) represents a frequent epidermal skin tumor. Although lacking a malignant potential, these tumors reveal multiple oncogenic mutations. A previous study identified activating mutations in 89% of SK, particularly in FGFR3 and PIK3CA genes. The aim of this study was to identify further oncogenic mutations in human SK. Therefore, we screened for mutations in EGFR, FGFR2, PIK3R1, HRAS, KRAS, and NRAS genes using both Sanger sequencing of selected exons and a multiplex SNaPshot assay in 58 SK of 14 patients. We identified a somatic EGFR p.L858R mutation in 1 SK. Furthermore, the HRAS mutations p.G13R (2/58 SK) and p.Q61L (2/58 SK) were found. These mutations have not been described in human SK yet. In addition, 1 SK revealed the KRAS p.G12V mutation, which has already been reported in SK. No mutations were detected in FGFR2, PIK3R1, and NRAS genes. The results of this study suggest that activating mutations of EGFR, HRAS, and KRAS contribute to the pathogenesis of human SK, although at a lower frequency than FGFR3 and PIK3CA mutations. FGFR2, PIK3R1, and NRAS mutations obviously do not have a significant role in the development of SK. PMID:23739246

  17. Mutation detection of immunoglobulin V-regions by DHPLC.

    PubMed

    Bardwell, Philip D; Martin, Alberto; Scharff, Matthew D

    2002-08-01

    One of the key features in the affinity maturation of antibodies is somatic hypermutation of the variable regions of immunoglobulin genes. The mutations that occur in immunoglobulin genes are detected by direct sequencing of cloned polymerase chain reaction (PCR) products. The frequencies of mutations in vivo are generally high enough to provide sufficient numbers of point mutations in order to generate large databases that can be analyzed in various ways. Recently, the mechanisms of variable (V)-region hypermutation have been studied in tissue culture systems and transgenic mice where mutation occurs at frequencies that are approximately 10-fold lower than the estimated in vivo rate. Identifying mutations by brute force sequencing of PCR products in comparative studies is limiting when trying to determine if there are statistically significant differences. Here we describe a high throughput technique that can facilitate the identification of immunoglobulin V-regions that contain one or more mutations before sequencing. This technique, known as denaturing high-performance liquid chromatography (DHPLC), utilizes a standard HPLC apparatus with a column that binds double-stranded DNA (dsDNA). In this study, we have successfully detected approximately 90% of previously sequenced mutated V-regions by DHPLC. Our results show that we were able to detect mutations throughout a 321-base pair (bp) region of the Ricin 45 immunoglobulin (Ig) V-region. Also, with the use of this assay, we have been able to detect mutations in multiple clones of different immunoglobulin genes. PMID:12133633

  18. Mutation analysis of the gene involved in adrenoleukodystrophy

    SciTech Connect

    Oost, B.A. van; Ligtenberg, M.J.L.; Kemp, S.; Bolhuis, P.A.

    1994-09-01

    A gene responsible for the X-linked genetic disorder adrenoleukodystrophy (ALD) that is characterized by demyelination of the nervous system and adrenocortical insufficiency has been identified by positional cloning. The gene encodes an ATP-binding transporter which is located in the peroxisomal membrane. Deficiency of the gene leads to accumulation of unsaturated very long chain fatty acids due to impaired peroxisomal {beta}-oxidation. A systematic analysis of the open reading frame of the ALD gene unraveled the mutations in 28 different families using reverse transcriptase-PCR followed by direct sequencing. No entire gene deletions or drastic promoter mutations have been detected. Only in one family did the mutation involved multiple exons. The remaining mutations were subtle alterations leading to missense (about 50%) or nonsense mutations, frameshifts or splice acceptor site defects. In one patient a single codon was missing. Mutations affecting a single amino acid were concentrated in the region between the third and fourth putative membrane spanning fragments and in the ATP-binding domain. This overview of mutations aids in the determination of structural and functional important regions and facilitates the screening for mutations in other ALD patients. The detection of mutations in virtually all ALD families tested indicates that the isolated gene is the only gene responsible for ALD located in Xq28.

  19. Rapid identification of HEXA mutations in Tay-Sachs patients.

    PubMed

    Giraud, Carole; Dussau, Jeanne; Azouguene, Emilie; Feillet, François; Puech, Jean-Philippe; Caillaud, Catherine

    2010-02-19

    Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder due to mutations in the HEXA gene resulting in a beta-hexosaminidase A (Hex A) deficiency. The purpose of this study was to characterize the molecular abnormalities in patients with infantile or later-onset forms of the disease. The complete sequencing of the 14 exons and flanking regions of the HEXA gene was performed with a unique technical condition in 10 unrelated TSD patients. Eleven mutations were identified, including five splice mutations, one insertion, two deletions and three single-base substitutions. Four mutations were novel: two splice mutations (IVS8+5G>A, IVS2+4delAGTA), one missense mutation in exon 6 (c.621T>G (p.D207E)) and one small deletion (c.1211-1212delTG) in exon 11 resulting in a premature stop codon at residue 429. The c.621T>G missense mutation was found in a patient presenting an infantile form. Its putative role in the pathogenesis of TSD is suspected as residue 207 is highly conserved in human, mouse and rat. Moreover, structural modelling predicted changes likely to affect substrate binding and catalytic activity of the enzyme. The time-saving procedure reported here could be useful for the characterization of Tay-Sachs-causing mutations, in particular in non-Ashkenazi patients mainly exhibiting rare mutations. PMID:20100466

  20. CFTR gene mutations in isolated chronic obstructive pulmonary disease

    SciTech Connect

    Pignatti, P.F.; Bombien, C.; Marigo, C.

    1994-09-01

    In order to identify a possible hereditary predisposition to the development of chronic obstructive pulmonary disease (COPD), we have looked for the presence of cystic fibrosis transmembrane regulator (CFTR) gene DNA sequence modifications in 28 unrelated patients with no signs of cystic fibrosis. The known mutations in Italian CF patients, as well as the most frequent worldwide CF mutations, were investigated. In addition, a denaturing gradient gel electrophoresis analysis of about half of the coding sequence of the gene in 56 chromosomes from the patients and in 102 chromosomes from control individuals affected by other pulmonary diseases and from normal controls was performed. Nine different CFTR gene mutations and polymorphisms were found in seven patients, a highly significant increase over controls. Two of the patients were compound heterozygotes. Two frequent CF mutations were detected: deletion F508 and R117H; two rare CF mutations: R1066C and 3667ins4; and five CF sequence variants: R75Q (which was also described as a disease-causing mutation in male sterility cases due to the absence of the vasa deferentia), G576A, 2736 A{r_arrow}G, L997F, and 3271+18C{r_arrow}T. Seven (78%) of the mutations are localized in transmembrane domains. Six (86%) of the patients with defined mutations and polymorphisms had bronchiectasis. These results indicate that CFTR gene mutations and sequence alterations may be involved in the etiopathogenesis of some cases of COPD.

  1. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F.

    1996-10-01

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments generated by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  2. Laser desorption mass spectrometry for point mutation detection

    SciTech Connect

    Taranenko, N.I.; Chung, C.N.; Zhu, Y.F.

    1996-12-31

    A point mutation can be associated with the pathogenesis of inherited or acquired diseases. Laser desorption mass spectrometry coupled with allele specific polymerase chain reaction (PCR) was first used for point mutation detection. G551D is one of several mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) gene present in 1-3% of the mutant CFTR alleles in most European populations. In this work, two different approaches were pursued to detect G551D point mutation in the cystic fibrosis gene. The strategy is to amplify the desired region of DNA template by PCR using two primers that overlap one base at the site of the point mutation and which vary in size. If the two primers based on the normal sequence match the target DNA sequence, a normal PCR product will be produced. However, if the alternately sized primers that match the mutant sequence recognize the target DNA, an abnormal PCR product will be produced. Thus, the mass spectrometer can be used to identify patients that are homozygous normal, heterozygous for a mutation or homozygous abnormal at a mutation site. Another approach to identify similar mutations is the use of sequence specific restriction enzymes which respond to changes in the DNA sequence. Mass spectrometry is used to detect the length of the restriction fragments by digestion of a PCR generated target fragment. 21 refs., 10 figs., 2 tabs.

  3. DNAJC13 mutations in Parkinson disease.

    PubMed

    Vilariño-Güell, Carles; Rajput, Alex; Milnerwood, Austen J; Shah, Brinda; Szu-Tu, Chelsea; Trinh, Joanne; Yu, Irene; Encarnacion, Mary; Munsie, Lise N; Tapia, Lucia; Gustavsson, Emil K; Chou, Patrick; Tatarnikov, Igor; Evans, Daniel M; Pishotta, Frederick T; Volta, Mattia; Beccano-Kelly, Dayne; Thompson, Christina; Lin, Michelle K; Sherman, Holly E; Han, Heather J; Guenther, Bruce L; Wasserman, Wyeth W; Bernard, Virginie; Ross, Colin J; Appel-Cresswell, Silke; Stoessl, A Jon; Robinson, Christopher A; Dickson, Dennis W; Ross, Owen A; Wszolek, Zbigniew K; Aasly, Jan O; Wu, Ruey-Meei; Hentati, Faycal; Gibson, Rachel A; McPherson, Peter S; Girard, Martine; Rajput, Michele; Rajput, Ali H; Farrer, Matthew J

    2014-04-01

    A Saskatchewan multi-incident family was clinically characterized with Parkinson disease (PD) and Lewy body pathology. PD segregates as an autosomal-dominant trait, which could not be ascribed to any known mutation. DNA from three affected members was subjected to exome sequencing. Genome alignment, variant annotation and comparative analyses were used to identify shared coding mutations. Sanger sequencing was performed within the extended family and ethnically matched controls. Subsequent genotyping was performed in a multi-ethnic case-control series consisting of 2928 patients and 2676 control subjects from Canada, Norway, Taiwan, Tunisia, and the USA. A novel mutation in receptor-mediated endocytosis 8/RME-8 (DNAJC13 p.Asn855Ser) was found to segregate with disease. Screening of cases and controls identified four additional patients with the mutation, of which two had familial parkinsonism. All carriers shared an ancestral DNAJC13 p.Asn855Ser haplotype and claimed Dutch-German-Russian Mennonite heritage. DNAJC13 regulates the dynamics of clathrin coats on early endosomes. Cellular analysis shows that the mutation confers a toxic gain-of-function and impairs endosomal transport. DNAJC13 immunoreactivity was also noted within Lewy body inclusions. In late-onset disease which is most reminiscent of idiopathic PD subtle deficits in endosomal receptor-sorting/recycling are highlighted by the discovery of pathogenic mutations VPS35, LRRK2 and now DNAJC13. With this latest discovery, and from a neuronal perspective, a temporal and functional ecology is emerging that connects synaptic exo- and endocytosis, vesicular trafficking, endosomal recycling and the endo-lysosomal degradative pathway. Molecular deficits in these processes are genetically linked to the phenotypic spectrum of parkinsonism associated with Lewy body pathology. PMID:24218364

  4. Mutation detection using a novel plant endonuclease.

    PubMed

    Oleykowski, C A; Bronson Mullins, C R; Godwin, A K; Yeung, A T

    1998-10-15

    We have discovered a useful new reagent for mutation detection, a novel nuclease CEL I from celery. It is specific for DNA distortions and mismatches from pH 6 to 9. Incision is on the 3'-side of the mismatch site in one of the two DNA strands in a heteroduplex. CEL I-like nucleases are found in many plants. We report here that a simple method of enzyme mutation detection using CEL I can efficiently identify mutations and polymorphisms. To illustrate the efficacy of this approach, the exons of the BRCA1 gene were amplified by PCR using primers 5'-labeled with fluorescent dyes of two colors. The PCR products were annealed to form heteroduplexes and subjected to CEL I incision. In GeneScan analyses with a PE Applied Biosystems automated DNA sequencer, two independent incision events, one in each strand, produce truncated fragments of two colors that complement each other to confirm the position of the mismatch. CEL I can detect 100% of the sequence variants present, including deletions, insertions and missense alterations. Our results indicate that CEL I mutation detection is a highly sensitive method for detecting both polymorphisms and disease-causing mutations in DNA fragments as long as 1120 bp in length. PMID:9753726

  5. Phenylalanine hydroxylase gene mutations in the United States: report from the Maternal PKU Collaborative Study.

    PubMed Central

    Guldberg, P.; Levy, H. L.; Hanley, W. B.; Koch, R.; Matalon, R.; Rouse, B. M.; Trefz, F.; de la Cruz, F.; Henriksen, K. F.; Güttler, F.

    1996-01-01

    The major cause of hyperphenylalaninemia is mutations in the gene encoding phenylalanine hydroxylase (PAH). The known mutations have been identified primarily in European patients. The purpose of this study was to determine the spectrum of mutations responsible for PAH deficiency in the United States. One hundred forty-nine patients enrolled in the Maternal PKU Collaborative Study were subjects for clinical and molecular investigations. PAH gene mutations associated with phenylketonuria (PKU) or mild hyperphenylalaninemia (MHP) were identified on 279 of 294 independent mutant chromosomes, a diagnostic efficiency of 95%. The spectrum is composed of 71 different mutations, including 47 missense mutations, 11 splice mutations, 5 nonsense mutations, and 8 microdeletions. Sixteen previously unreported mutations were identified. Among the novel mutations, five were found in patients with MHP, and the remainder were found in patients with PKU. The most common mutations were R408W, IVS12nt1g-->a, and Y414C, accounting for 18.7%, 7.8%, and 5.4% of the mutant chromosomes, respectively. Thirteen mutations had relative frequencies of 1%-5%, and 55 mutations each had frequencies < or = 1%. The mutational spectrum corresponded to that observed for the European ancestry of the U.S. population. To evaluate the extent of allelic variation at the PAH locus within the United States in comparison with other populations, we used allele frequencies to calculate the homozygosity for 11 populations where >90% ascertainment of mutations has been obtained. The United States was shown to contain one of the most heterogeneous populations, with homozygosity values similar to Sicily and ethnically mixed sample populations in Europe. The extent of allelic heterogeneity must be a major determining factor in the choice of mutation-detection methodology for molecular diagnosis in PAH deficiency. Images Figure 1 PMID:8659548

  6. Different Somatic Mutations in Multinodular Adrenals With Aldosterone-Producing Adenoma.

    PubMed

    Fernandes-Rosa, Fabio Luiz; Giscos-Douriez, Isabelle; Amar, Laurence; Gomez-Sanchez, Celso E; Meatchi, Tchao; Boulkroun, Sheerazed; Zennaro, Maria-Christina

    2015-11-01

    Primary aldosteronism is the most common form of secondary hypertension. Somatic mutations in KCNJ5, ATP1A1, ATP2B3, and CACNA1D are found in aldosterone-producing adenoma. In addition, adrenals with aldosterone-producing adenomas show cortical remodeling and frequently multiple secondary nodules. Our aim was to investigate whether different aldosterone-producing nodules from the same adrenal share the same mutational status. Aldosterone synthase expression was assessed in multinodular adrenals from 27 patients. DNA of 37 aldosterone-producing secondary nodules was extracted from formalin-fixed paraffin-embedded tissues and genotyped for KCNJ5, ATP1A1, ATP2B3, and CACNA1D mutations. Among 17 adrenals with a somatic mutation in the principal nodule, 4 showed the same mutation in a secondary nodule, whereas 10 had no mutation in any of the known genes. In 1 adrenal harboring the KCNJ5 p.Gly151Arg mutation in the principal nodule, the same mutation was present in 2 secondary nodules, but no mutation was found in a third nodule. Finally, in 2 adrenals with a CACNA1D mutation in the principal nodule, a KCNJ5 mutation was identified in the secondary nodule. Among 10 adrenals without mutations in the principal nodule, 1 carried a KCNJ5 mutation in the secondary nodule. No mutations were detected in 7 aldosterone-producing cell clusters from 6 adrenals. No association was observed between the presence of mutations in secondary nodules and clinical parameters. In conclusion, different mutations are found in different aldosterone-producing nodules from the same adrenal, suggesting that somatic mutations are independent events triggered by mechanisms that remain to be identified. PMID:26351028

  7. Repository of mutations from Oman: The entry point to a national mutation database

    PubMed Central

    Rajab, Anna; Hamza, Nishath; Al Harasi, Salma; Al Lawati, Fatma; Gibbons, Una; Al Alawi, Intesar; Kobus, Karoline; Hassan, Suha; Mahir, Ghariba; Al Salmi, Qasim; Mons, Barend; Robinson, Peter

    2015-01-01

    The Sultanate of Oman is a rapidly developing Muslim country with well-organized government-funded health care services, and expanding medical genetic facilities. The preservation of tribal structures within the Omani population coupled with geographical isolation has produced unique patterns of rare mutations. In order to provide diagnosticians and researchers with access to an up-to-date resource that will assist them in their daily practice we collated and analyzed all of the Mendelian disease-associated mutations identified in the Omani population. By the 1 st of August 2015, the dataset contained 300 mutations detected in over 150 different genes. More than half of the data collected reflect novel genetic variations that were first described in the Omani population, and most disorders with known mutations are inherited in an autosomal recessive fashion. A number of novel Mendelian disease genes have been discovered in Omani nationals, and the corresponding mutations are included here. The current study provides a comprehensive resource of the mutations in the Omani population published in scientific literature or reported through service provision that will be useful for genetic care in Oman and will be a starting point for variation databases as next-generation sequencing technologies are introduced into genetic medicine in Oman. PMID:26594346

  8. Identification of deleterious mutations within three human genomes

    PubMed Central

    Chun, Sung; Fay, Justin C.

    2009-01-01

    Each human carries a large number of deleterious mutations. Together, these mutations make a significant contribution to human disease. Identification of deleterious mutations within individual genome sequences could substantially impact an individual's health through personalized prevention and treatment of disease. Yet, distinguishing deleterious mutations from the massive number of nonfunctional variants that occur within a single genome is a considerable challenge. Using a comparative genomics data set of 32 vertebrate species we show that a likelihood ratio test (LRT) can accurately identify a subset of deleterious mutations that disrupt highly conserved amino acids within protein-coding sequences, which are likely to be unconditionally deleterious. The LRT is also able to identify known human disease alleles and performs as well as two commonly used heuristic methods, SIFT and PolyPhen. Application of the LRT to three human genomes reveals 796–837 deleterious mutations per individual, ?40% of which are estimated to be at <5% allele frequency. However, the overlap between predictions made by the LRT, SIFT, and PolyPhen, is low; 76% of predictions are unique to one of the three methods, and only 5% of predictions are shared across all three methods. Our results indicate that only a small subset of deleterious mutations can be reliably identified, but that this subset provides the raw material for personalized medicine. PMID:19602639

  9. De Novo KCNB1 Mutations in Epileptic Encephalopathy

    PubMed Central

    Bjork, Robert L.; Friedman, Jennifer R.; Bloss, Cinnamon S.; Cohen, Julie; Gupta, Siddharth; Naidu, Sakkubai; Vanoye, Carlos G.; George, Alfred L.; Kearney, Jennifer A.

    2014-01-01

    Background Numerous studies have demonstrated increased load of de novo copy number variants (CNVs) or single nucleotide variants (SNVs) in individuals with neurodevelopmental disorders, including epileptic encephalopathies, intellectual disability and autism. Methods We searched for de novo mutations in a family quartet with a sporadic case of epileptic encephalopathy with no known etiology to determine the underlying cause using high coverage whole exome sequencing (WES) and lower coverage whole genome sequencing (WGS). Mutations in additional patients were identified by WES. The effect of mutations on protein function was assessed in a heterologous expression system. Results We identified a de novo missense mutation in KCNB1 that encodes the KV2.1 voltage-gated potassium channel. Functional studies demonstrated a deleterious effect of the mutation on KV2.1 function leading to a loss of ion selectivity and gain of a depolarizing inward cation conductance. Subsequently, we identified two additional patients with epileptic encephalopathy and de novo KCNB1 missense mutations that cause a similar pattern of KV2.1 dysfunction. Interpretation Our genetic and functional evidence demonstrate that KCNB1 mutation can result in early onset epileptic encephalopathy. This expands the locus heterogeneity associated with epileptic encephalopathies and suggests that clinical WES may be useful for diagnosis of epileptic encephalopathies of unknown etiology. PMID:25164438

  10. Inactivating CUX1 mutations promote tumorigenesis

    PubMed Central

    Wong, Chi C.; Martincorena, Inigo; Rust, Alistair G.; Rashid, Mamunur; Alifrangis, Constantine; Alexandrov, Ludmil B.; Tiffen, Jessamy C.; Kober, Christina; Green, Anthony R.; Massie, Charles E.; Nangalia, Jyoti; Lempidaki, Stella; Döhner, Hartmut; Döhner, Konstanze; Bray, Sarah J.; McDermott, Ultan; Papaemmanuil, Elli; Campbell, Peter J.; Adams, David J.

    2013-01-01

    A major challenge for cancer genetics is to determine which low frequency somatic mutations are drivers of tumorigenesis. Here we interrogate the genomes of 7,651 diverse human cancers to identify novel drivers and find inactivating mutations in the homeodomain transcription factor CUX1 (cut-like homeobox 1) in ~1-5% of tumors. Meta-analysis of CUX1 mutational status in 2,519 cases of myeloid malignancies reveals disruptive mutations associated with poor survival, highlighting the clinical significance of CUX1 loss. In parallel, we validate CUX1 as a bona fide tumor suppressor using mouse transposon-mediated insertional mutagenesis and Drosophila cancer models. We demonstrate that CUX1 deficiency activates phosphoinositide 3-kinase (PI3K) signaling through direct transcriptional downregulation of the PI3K inhibitor PIK3IP1 (phosphoinositide-3-kinase interacting protein 1), leading to increased tumor growth, while exposing susceptibility to PI3K-AKT inhibition. Thus, our complementary approaches identify CUX1 as a new pan-driver of tumorigenesis and uncover a potential strategy for treating CUX1-mutant tumors. PMID:24316979

  11. The Wilson disease gene: Haplotypes and mutations

    SciTech Connect

    Thomas, G.R.; Roberts, E.A.; Cox, D.W.; Walshe, J.M.

    1994-09-01

    Wilson disease (WND) is an autosomal recessive defect of copper transport. The gene involved in WND, located on chromosome 13, has recently been shown to be a putative copper transporting P-type ATPase, designated ATP7B. The gene is highly similar to ATP7A, located on the X chromosome, which is defective in Menkes disease, another disorder of copper transport. We have available for study WND families from Canada (34 families), the United Kingdom (32 families), Japan (4 families), Iceland (3 families) and Hong Kong (2 families). We have utilized four highly polymorphic CA repeat markers (D13S296, D13S301, D13S314 and D13S316) surrounding the ATP7B locus to construct haplotypes in these families. Analysis indicates that there are many unique WND haplotypes not present on normal chromosomes and that there may be a large number of different WND mutations. We have screened the WND patients for mutations in the ATP7B gene. Fifty six patients, representing all of the identified haplotypes, have been screened using single strand conformational polymorphism (SSCP), followed by selective sequencing. To date, 19 mutations and 12 polymorphisms have been identified. All of the changes are nucleotide substitutions or small insertions/deletions and there is no evidence for larger deletions as seen in the similar gene on the X chromosome, ATP7A. Haplotypes of close markers and the ability to detect some of the mutations present in the gene allow for more reliable molecular diagnosis of presymptomatic sibs of WND patients. A reassessment of individuals previously diagnosed in the presymptomatic phase is now required, as we have have identified some heterozygotes who are biochemically indistinguishable from affected homozygotes. The identification of specific mutations will soon allow direct diagnosis of WND patients with a high level of certainty.

  12. ALS2 mutations

    PubMed Central

    Schneider, Susanne A.; Carr, Lucinda; Deuschl, Guenther; Hopfner, Franziska; Stamelou, Maria; Wood, Nicholas W.; Bhatia, Kailash P.

    2014-01-01

    Objective: To determine the genetic etiology in 2 consanguineous families who presented a novel phenotype of autosomal recessive juvenile amyotrophic lateral sclerosis associated with generalized dystonia. Methods: A combination of homozygosity mapping and whole-exome sequencing in the first family and Sanger sequencing of candidate genes in the second family were used. Results: Both families were found to have homozygous loss-of-function mutations in the amyotrophic lateral sclerosis 2 (juvenile) (ALS2) gene. Conclusions: We report generalized dystonia and cerebellar signs in association with ALS2-related disease. We suggest that the ALS2 gene should be screened for mutations in patients who present with a similar phenotype. PMID:24562058

  13. The Phenotype of a Germline Mutation in PIGA: The Gene Somatically Mutated in Paroxysmal Nocturnal Hemoglobinuria

    PubMed Central

    Johnston, Jennifer J.; Gropman, Andrea L.; Sapp, Julie C.; Teer, Jamie K.; Martin, Jodie M.; Liu, Cyndi F.; Yuan, Xuan; Ye, Zhaohui; Cheng, Linzhao; Brodsky, Robert A.; Biesecker, Leslie G.

    2012-01-01

    Phosphatidylinositol glycan class A (PIGA) is involved in the first step of glycosylphosphatidylinositol (GPI) biosynthesis. Many proteins, including CD55 and CD59, are anchored to the cell by GPI. Loss of CD55 and CD59 on erythrocytes causes complement-mediated lysis in paroxysmal nocturnal hemoglobinuria (PNH), a disease that manifests after clonal expansion of hematopoietic cells with somatic PIGA mutations. Although somatic PIGA mutations have been identified in many PNH patients, it has been proposed that germline mutations are lethal. We report a family with an X-linked lethal disorder involving cleft palate, neonatal seizures, contractures, central nervous system (CNS) structural malformations, and other anomalies. An X chromosome exome next-generation sequencing screen identified a single nonsense PIGA mutation, c.1234C>T, which predicts p.Arg412?. This variant segregated with disease and carrier status in the family, is similar to mutations known to cause PNH as a result of PIGA dysfunction, and was absent in 409 controls. PIGA-null mutations are thought to be embryonic lethal, suggesting that p.Arg412? PIGA has residual function. Transfection of a mutant p.Arg412? PIGA construct into PIGA-null cells showed partial restoration of GPI-anchored proteins. The genetic data show that the c.1234C>T (p.Arg412?) mutation is present in an affected child, is linked to the affected chromosome in this family, is rare in the population, and results in reduced, but not absent, biosynthesis of GPI anchors. We conclude that c.1234C>T in PIGA results in the lethal X-linked phenotype recognized in the reported family. PMID:22305531

  14. Detection of Ultra-Rare Mitochondrial Mutations in Breast Stem Cells by Duplex Sequencing

    PubMed Central

    Ahn, Eun Hyun; Hirohata, Kensen; Kohrn, Brendan F.; Fox, Edward J.; Chang, Chia-Cheng; Loeb, Lawrence A.

    2015-01-01

    Long-lived adult stem cells could accumulate non-repaired DNA damage or mutations that increase the risk of tumor formation. To date, studies on mutations in stem cells have concentrated on clonal (homoplasmic) mutations and have not focused on rarely occurring stochastic mutations that may accumulate during stem cell dormancy. A major challenge in investigating these rare mutations is that conventional next generation sequencing (NGS) methods have high error rates. We have established a new method termed Duplex Sequencing (DS), which detects mutations with unprecedented accuracy. We present a comprehensive analysis of mitochondrial DNA mutations in human breast normal stem cells and non-stem cells using DS. The vast majority of mutations occur at low frequency and are not detectable by NGS. The most prevalent point mutation types are the C>T/G>A and A>G/T>C transitions. The mutations exhibit a strand bias with higher prevalence of G>A, T>C, and A>C mutations on the light strand of the mitochondrial genome. The overall rare mutation frequency is significantly lower in stem cells than in the corresponding non-stem cells. We have identified common and unique non-homoplasmic mutations between non-stem and stem cells that include new mutations which have not been reported previously. Four mutations found within the MT-ND5 gene (m.12684G>A, m.12705C>T, m.13095T>C, m.13105A>G) are present in all groups of stem and non-stem cells. Two mutations (m.8567T>C, m.10547C>G) are found only in non-stem cells. This first genome-wide analysis of mitochondrial DNA mutations may aid in characterizing human breast normal epithelial cells and serve as a reference for cancer stem cell mutation profiles. PMID:26305705

  15. Combined Complement Gene Mutations in Atypical Hemolytic Uremic Syndrome Influence Clinical Phenotype

    PubMed Central

    Bresin, Elena; Rurali, Erica; Caprioli, Jessica; Sanchez-Corral, Pilar; Fremeaux-Bacchi, Veronique; Rodriguez de Cordoba, Santiago; Pinto, Sheila; Goodship, Timothy H.J.; Alberti, Marta; Ribes, David; Valoti, Elisabetta; Remuzzi, Giuseppe

    2013-01-01

    Several abnormalities in complement genes reportedly contribute to atypical hemolytic uremic syndrome (aHUS), but incomplete penetrance suggests that additional factors are necessary for the disease to manifest. Here, we sought to describe genotype–phenotype correlations among patients with combined mutations, defined as mutations in more than one complement gene. We screened 795 patients with aHUS and identified single mutations in 41% and combined mutations in 3%. Only 8%–10% of patients with mutations in CFH, C3, or CFB had combined mutations, whereas approximately 25% of patients with mutations in MCP or CFI had combined mutations. The concomitant presence of CFH and MCP risk haplotypes significantly increased disease penetrance in combined mutated carriers, with 73% penetrance among carriers with two risk haplotypes compared with 36% penetrance among carriers with zero or one risk haplotype. Among patients with CFH or CFI mutations, the presence of mutations in other genes did not modify prognosis; in contrast, 50% of patients with combined MCP mutation developed end stage renal failure within 3 years from onset compared with 19% of patients with an isolated MCP mutation. Patients with combined mutations achieved remission with plasma treatment similar to patients with single mutations. Kidney transplant outcomes were worse, however, for patients with combined MCP mutation compared with an isolated MCP mutation. In summary, these data suggest that genotyping for the risk haplotypes in CFH and MCP may help predict the risk of developing aHUS in unaffected carriers of mutations. Furthermore, screening patients with aHUS for all known disease-associated genes may inform decisions about kidney transplantation. PMID:23431077

  16. Germline mutations causing familial lung cancer.

    PubMed

    Tomoshige, Koichi; Matsumoto, Keitaro; Tsuchiya, Tomoshi; Oikawa, Masahiro; Miyazaki, Takuro; Yamasaki, Naoya; Mishima, Hiroyuki; Kinoshita, Akira; Kubo, Toru; Fukushima, Kiyoyasu; Yoshiura, Koh-Ichiro; Nagayasu, Takeshi

    2015-10-01

    Genetic factors are important in lung cancer, but as most lung cancers are sporadic, little is known about inherited genetic factors. We identified a three-generation family with suspected autosomal dominant inherited lung cancer susceptibility. Sixteen individuals in the family had lung cancer. To identify the gene(s) that cause lung cancer in this pedigree, we extracted DNA from the peripheral blood of three individuals and from the blood of one cancer-free control family member and performed whole-exome sequencing. We identified 41 alterations in 40 genes in all affected family members but not in the unaffected member. These were considered candidate mutations for familial lung cancer. Next, to identify somatic mutations and/or inherited alterations in these 40 genes among sporadic lung cancers, we performed exon target enrichment sequencing using 192 samples from sporadic lung cancer patients. We detected somatic 'candidate' mutations in multiple sporadic lung cancer samples; MAST1, CENPE, CACNB2 and LCT were the most promising candidate genes. In addition, the MAST1 gene was located in a putative cancer-linked locus in the pedigree. Our data suggest that several genes act as oncogenic drivers in this family, and that MAST1 is most likely to cause lung cancer. PMID:26178433

  17. Mastocytosis: a mutated KIT receptor induced myeloproliferative disorder

    PubMed Central

    Chatterjee, Anindya; Ghosh, Joydeep; Kapur, Reuben

    2015-01-01

    Although more than 90% systemic mastocytosis (SM) patients express gain of function mutations in the KIT receptor, recent next generation sequencing has revealed the presence of several additional genetic and epigenetic mutations in a subset of these patients, which confer poor prognosis and inferior overall survival. A clear understanding of how genetic and epigenetic mutations cooperate in regulating the tremendous heterogeneity observed in these patients will be essential for designing effective treatment strategies for this complex disease. In this review, we describe the clinical heterogeneity observed in patients with mastocytosis, the nature of relatively novel mutations identified in these patients, therapeutic strategies to target molecules downstream from activating KIT receptor and finally we speculate on potential novel strategies to interfere with the function of not only the oncogenic KIT receptor but also epigenetic mutations seen in these patients. PMID:26158763

  18. Exhaustive Database Searching for Amino Acid Mutations in Proteomes

    SciTech Connect

    Hyatt, Philip Douglas; Pan, Chongle

    2012-01-01

    Amino acid mutations in proteins can be found by searching tandem mass spectra acquired in shotgun proteomics experiments against protein sequences predicted from genomes. Traditionally, unconstrained searches for amino acid mutations have been accomplished by using a sequence tagging approach that combines de novo sequencing with database searching. However, this approach is limited by the performance of de novo sequencing. The Sipros algorithm v2.0 was developed to perform unconstrained database searching using high-resolution tandem mass spectra by exhaustively enumerating all single non-isobaric mutations for every residue in a protein database. The performance of Sipros for amino acid mutation identification exceeded that of an established sequence tagging algorithm, Inspect, based on benchmarking results from a Rhodopseudomonas palustris proteomics dataset. To demonstrate the viability of the algorithm for meta-proteomics, Sipros was used to identify amino acid mutations in a natural microbial community in acid mine drainage.

  19. Mutations on the ?2-Globin Gene That May Trigger ?(+)-Thalassemia.

    PubMed

    Farashi, Samaneh; Vakili, Shadi; Garous, Negin F; Ashki, Mehri; Imanian, Hashem; Azarkeivan, Azita; Najmabadi, Hossein

    2015-12-01

    In the present study, a total of 11 individuals with hypochromic microcytic anemia who did not reveal the most common ?-thalassemia (?-thal) deletions or mutations, were subjected to more investigations by DNA sequencing of the ?-globin genes. Seven novel nondeletional ?-thal mutations localized on the ?2-globin gene in the heterozygous state were identified. These mutations either corrupted regulatory splice sites and consequently affected RNA processing or created unstable hemoglobin (Hb) variants. The mutations described here produced globin gene variants that lead to amino acid changes in critical regions of the globin chain. The clinical presentation of most patients was a persistent mild microcytic anemia similar to an ?(+)-thal. In the last decade, numerous ?-globin mutations have been observed leading to an ?-thal phenotype and these studies have been considered to be important as discussed here. PMID:26329872

  20. TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution

    PubMed Central

    Hou, H-A; Chou, W-C; Kuo, Y-Y; Liu, C-Y; Lin, L-I; Tseng, M-H; Chiang, Y-C; Liu, M-C; Liu, C-W; Tang, J-L; Yao, M; Li, C-C; Huang, S-Y; Ko, B-S; Hsu, S-C; Chen, C-Y; Lin, C-T; Wu, S-J; Tsay, W; Chen, Y-C; Tien, H-F

    2015-01-01

    The TP53 mutation is frequently detected in acute myeloid leukemia (AML) patients with complex karyotype (CK), but the stability of this mutation during the clinical course remains unclear. In this study, TP53 mutations were identified in 7% of 500 patients with de novo AML and 58.8% of patients with CK. TP53 mutations were closely associated with older age, lower white blood cell (WBC) and platelet counts, FAB M6 subtype, unfavorable-risk cytogenetics and CK, but negatively associated with NPM1 mutation, FLT3/ITD and DNMT3A mutation. Multivariate analysis demonstrated that TP53 mutation was an independent poor prognostic factor for overall survival and disease-free survival among the total cohort and the subgroup of patients with CK. A scoring system incorporating TP53 mutation and nine other prognostic factors, including age, WBC counts, cytogenetics and gene mutations, into survival analysis proved to be very useful to stratify AML patients. Sequential study of 420 samples showed that TP53 mutations were stable during AML evolution, whereas the mutation was acquired only in 1 of the 126 TP53 wild-type patients when therapy-related AML originated from different clone emerged. In conclusion, TP53 mutations are associated with distinct clinic-biological features and poor prognosis in de novo AML patients and are rather stable during disease progression. PMID:26230955

  1. Identification of anaplastic lymphoma kinase break points and oncogenic mutation profiles in acral/mucosal melanomas.

    PubMed

    Niu, Hai-Tao; Zhou, Qi-Ming; Wang, Fang; Shao, Qiong; Guan, Yuan-Xiang; Wen, Xi-Zhi; Chen, Li-Zhen; Feng, Qi-Sheng; Li, Wei; Zeng, Yi-Xin; Zhang, Xiao-Shi

    2013-09-01

    Acral and mucosal melanomas, the two most common subtypes of melanoma in China, exhibit different genetic alterations and biologic behavior compared with other subtypes of melanomas. The purpose of this study was to identify the genetic alterations in patients with acral or mucosal melanomas in southern China. Fluorescence in situ hybridization (FISH), immunohistochemistry (IHC) analysis, polymerase chain reaction (PCR), and quantitative real-time reverse transcriptase PCR (qRT-PCR) were used to assess the anaplastic lymphoma kinase (ALK) break points. Furthermore, a mass spectrometry-based genotyping platform was used to analyze 30 acral melanomas and 28 mucosal melanomas to profile 238 known somatic mutations in 19 oncogenes. ALK break points were identified in four acral cases (6.9%). Eight (13.8%) cases harbored BRAF mutations, six (10.3%) had NRAS mutations, four (6.9%) had KIT mutations, two (3.5%) had EGFR mutations, two (3.5%) had KRAS mutations, two (3.5%) had MET mutations, one (1.7%) had an HRAS mutation, and one (1.7%) had a PIK3CA mutation. Two cases exhibited co-occurring mutations, and one case with a BRAF mutation had a translocation in ALK. This study represents a comprehensive and concurrent analysis of the major recurrent oncogenic mutations involved in melanoma cases from southern China. These data have implications for both clinical trial designs and therapeutic strategies. PMID:23751074

  2. Novel recruitment strategy to enrich for LRRK2 mutation carriers

    PubMed Central

    Foroud, Tatiana; Smith, Danielle; Jackson, Jacqueline; Verbrugge, Jennifer; Halter, Cheryl; Wetherill, Leah; Sims, Katherine; Xin, Winnie; Arnedo, Vanessa; Lasch, Shirley; Marek, Kenneth

    2015-01-01

    The LRRK2 G2019S mutation is found at higher frequency among Parkinson disease (PD) patients of Ashkenazi Jewish (AJ) ancestry. This study was designed to test whether an internet-based approach could be an effective approach to screen and identify mutation carriers. Individuals with and without PD of AJ ancestry were recruited and consented through an internet-based study website. An algorithm was applied to a series of screening questions to identify individuals at increased risk to carry the LRRK2 G2019S mutation. About 1000 individuals completed the initial screening. Around 741 qualified for mutation testing and 650 were tested. Seventy-two individuals carried at least one LRRK2 G2019S mutation; 38 with PD (12.5%) and 34 without (10.1%). Among the AJ PD participants, each affected first-degree relative increased the likelihood the individual was LRRK2+ [OR = 4.7; 95% confidence interval = (2.4–9.0)]. The same was not observed among the unaffected AJ subjects (P = 0.11). An internet-based approach successfully screened large numbers of individuals to identify those with risk factors increasing the likelihood that they carried a LRRK2 G2019S mutation. A similar approach could be implemented in other disorders to identify individuals for clinical trials, biomarker analyses and other types of research studies. PMID:26436106

  3. CYP1B1 Mutation Profile of Iranian Primary Congenital Glaucoma Patients and Associated Haplotypes

    PubMed Central

    Chitsazian, Fereshteh; Tusi, Betsabeh Khoramian; Elahi, Elahe; Saroei, Heidar Amini; Sanati, Mohammad H.; Yazdani, Shahin; Pakravan, Mohammad; Nilforooshan, Navid; Eslami, Yadollah; Mehrjerdi, Mohammad Ali Zare; Zareei, Reza; Jabbarvand, Mahmood; Abdolahi, Ali; Lasheyee, Ali R.; Etemadi, Arash; Bayat, Behnaz; Sadeghi, Mehdi; Banoei, Mohammad M.; Ghafarzadeh, Behnam; Rohani, Mohammad R.; Rismanchian, Akram; Thorstenson, Yvonne; Sarfarazi, Mansoor

    2007-01-01

    The mutation spectrum of CYP1B1 among 104 primary congenital glaucoma patients of the genetically heterogeneous Iranian population was investigated by sequencing. We also determined intragenic single nucleotide polymorphism (SNP) haplotypes associated with the mutations and compared these with haplotypes of other populations. Finally, the frequency distribution of the haplotypes was compared among primary congenital glaucoma patients with and without CYP1B1 mutations and normal controls. Genotype classification of six high-frequency SNPs was performed using the PHASE 2.0 software. CYP1B1 mutations in the Iranian patients were very heterogeneous. Nineteen nonconservative mutations associated with disease, and 10 variations not associated with disease were identified. Ten mutations and three variations not associated with disease were novel. The 13 novel variations make a notable contribution to the ?70 known variations in the gene. CYP1B1 mutations were identified in 70% of the patients. The four most common mutations were G61E, R368H, R390H, and R469W, which together constituted 76.2% of the CYP1B1 mutated alleles found. Six unique core SNP haplotypes were identified, four of which were common to the patients with and without CYP1B1 mutations and controls studied. Three SNP blocks determined the haplotypes. Comparison of haplotypes with those of other populations suggests a common origin for many of the mutations. PMID:17591938

  4. CYP1B1 mutation profile of Iranian primary congenital glaucoma patients and associated haplotypes.

    PubMed

    Chitsazian, Fereshteh; Tusi, Betsabeh Khoramian; Elahi, Elahe; Saroei, Heidar Amini; Sanati, Mohammad H; Yazdani, Shahin; Pakravan, Mohammad; Nilforooshan, Navid; Eslami, Yadollah; Mehrjerdi, Mohammad Ali Zare; Zareei, Reza; Jabbarvand, Mahmood; Abdolahi, Ali; Lasheyee, Ali R; Etemadi, Arash; Bayat, Behnaz; Sadeghi, Mehdi; Banoei, Mohammad M; Ghafarzadeh, Behnam; Rohani, Mohammad R; Rismanchian, Akram; Thorstenson, Yvonne; Sarfarazi, Mansoor

    2007-07-01

    The mutation spectrum of CYP1B1 among 104 primary congenital glaucoma patients of the genetically heterogeneous Iranian population was investigated by sequencing. We also determined intragenic single nucleotide polymorphism (SNP) haplotypes associated with the mutations and compared these with haplotypes of other populations. Finally, the frequency distribution of the haplotypes was compared among primary congenital glaucoma patients with and without CYP1B1 mutations and normal controls. Genotype classification of six high-frequency SNPs was performed using the PHASE 2.0 software. CYP1B1 mutations in the Iranian patients were very heterogeneous. Nineteen nonconservative mutations associated with disease, and 10 variations not associated with disease were identified. Ten mutations and three variations not associated with disease were novel. The 13 novel variations make a notable contribution to the approximately 70 known variations in the gene. CYP1B1 mutations were identified in 70% of the patients. The four most common mutations were G61E, R368H, R390H, and R469W, which together constituted 76.2% of the CYP1B1 mutated alleles found. Six unique core SNP haplotypes were identified, four of which were common to the patients with and without CYP1B1 mutations and controls studied. Three SNP blocks determined the haplotypes. Comparison of haplotypes with those of other populations suggests a common origin for many of the mutations. PMID:17591938

  5. Concurrent Mutations in ATM and Genes Associated with Common ? Chain Signaling in Peripheral T Cell Lymphoma

    PubMed Central

    Simpson, Haley M.; Khan, Rashid Z.; Song, Chang; Sharma, Deva; Sadashivaiah, Kavitha; Furusawa, Aki; Liu, Xinyue; Nagaraj, Sushma; Sengamalay, Naomi; Sadzewicz, Lisa; Tallon, Luke J.; Chen, Qing C.; Livak, Ferenc; Rapoport, Aaron P.; Kimball, Amy; Banerjee, Arnob

    2015-01-01

    Peripheral T cell lymphoma (PTCL) is a heterogeneous malignancy with poor response to current therapeutic strategies and incompletely characterized genetics. We conducted whole exome sequencing of matched PTCL and non-malignant samples from 12 patients, spanning 8 subtypes, to identify potential oncogenic mutations in PTCL. Analysis of the mutations identified using computational algorithms, CHASM, PolyPhen2, PROVEAN, and MutationAssessor to predict the impact of these mutations on protein function and PTCL tumorigenesis, revealed 104 somatic mutations that were selected as high impact by all four algorithms. Our analysis identified recurrent somatic missense or nonsense mutations in 70 genes, 9 of which contained mutations predicted significant by all 4 algorithms: ATM, RUNX1T1, WDR17, NTRK3, TP53, TRMT12, CACNA2D1, INTS8, and KCNH8. We observed somatic mutations in ATM (ataxia telangiectasia-mutated) in 5 out of the 12 samples and mutations in the common gamma chain (?c) signaling pathway (JAK3, IL2RG, STAT5B) in 3 samples, all of which also harbored mutations in ATM. Our findings contribute insights into the genetics of PTCL and suggest a relationship between ?c signaling and ATM in T cell malignancy. PMID:26536348

  6. Protein Domain-Level Landscape of Cancer-Type-Specific Somatic Mutations

    PubMed Central

    Yang, Fan; Petsalaki, Evangelia; Rolland, Thomas; Hill, David E.; Vidal, Marc; Roth, Frederick P.

    2015-01-01

    Identifying driver mutations and their functional consequences is critical to our understanding of cancer. Towards this goal, and because domains are the functional units of a protein, we explored the protein domain-level landscape of cancer-type-specific somatic mutations. Specifically, we systematically examined tumor genomes from 21 cancer types to identify domains with high mutational density in specific tissues, the positions of mutational hotspots within these domains, and the functional and structural context where possible. While hotspots corresponding to specific gain-of-function mutations are expected for oncoproteins, we found that tumor suppressor proteins also exhibit strong biases toward being mutated in particular domains. Within domains, however, we observed the expected patterns of mutation, with recurrently mutated positions for oncogenes and evenly distributed mutations for tumor suppressors. For example, we identified both known and new endometrial cancer hotspots in the tyrosine kinase domain of the FGFR2 protein, one of which is also a hotspot in breast cancer, and found new two hotspots in the Immunoglobulin I-set domain in colon cancer. Thus, to prioritize cancer mutations for further functional studies aimed at more precise cancer treatments, we have systematically correlated mutations and cancer types at the protein domain level. PMID:25794154

  7. Mutational signatures indicative of environmental stress in bacteria.

    PubMed

    Maharjan, Ram; Ferenci, Thomas

    2015-02-01

    Evolutionary innovations are dependent on mutations. Mutation rates are increased by adverse conditions in the laboratory, but there is no evidence that stressful environments that do not directly impact on DNA leave a mutational imprint on extant genomes. Mutational spectra in the laboratory are normally determined with unstressed cells but are unavailable with stressed bacteria. To by-pass problems with viability, selection effects, and growth rate differences due to stressful environments, in this study we used a set of genetically engineered strains to identify the mutational spectrum associated with nutritional stress. The strain set members each had a fixed level of the master regulator protein, RpoS, which controls the general stress response of Escherichia coli. By assessing mutations in cycA gene from 485 cycloserine resistant mutants collected from as many independent cultures with three distinct perceived stress (RpoS) levels, we were able establish a dose-dependent relationship between stress and mutational spectra. The altered mutational patterns included base pair substitutions, single base pair indels, longer indels, and transpositions of different insertion sequences. The mutational spectrum of low-RpoS cells closely matches the genome-wide spectrum previously generated in laboratory environments, while the spectra of high RpoS, high perceived stress cells more closely matches spectra found in comparisons of extant genomes. Our results offer an explanation of the uneven mutational profiles such as the transition-transversion biases observed in extant genomes and provide a framework for assessing the contribution of stress-induced mutagenesis to evolutionary transitions and the mutational emergence of antibiotic resistance and disease states. PMID:25389207

  8. Novel insight into mutational landscape of head and neck squamous cell carcinoma.

    PubMed

    Gaykalova, Daria A; Mambo, Elizabeth; Choudhary, Ashish; Houghton, Jeffery; Buddavarapu, Kalyan; Sanford, Tiffany; Darden, Will; Adai, Alex; Hadd, Andrew; Latham, Gary; Danilova, Ludmila V; Bishop, Justin; Li, Ryan J; Westra, William H; Hennessey, Patrick; Koch, Wayne M; Ochs, Michael F; Califano, Joseph A; Sun, Wenyue

    2014-01-01

    Development of head and neck squamous cell carcinoma (HNSCC) is characterized by accumulation of mutations in several oncogenes and tumor suppressor genes. We have formerly described the mutation pattern of HNSCC and described NOTCH signaling pathway alterations. Given the complexity of the HNSCC, here we extend the previous study to understand the overall HNSCC mutation context and to discover additional genetic alterations. We performed high depth targeted exon sequencing of 51 highly actionable cancer-related genes with a high frequency of mutation across many cancer types, including head and neck. DNA from primary tumor tissues and matched normal tissues was analyzed for 37 HNSCC patients. We identified 26 non-synonymous or stop-gained mutations targeting 11 of 51 selected genes. These genes were mutated in 17 out of 37 (46%) studied HNSCC patients. Smokers harbored 3.2-fold more mutations than non-smokers. Importantly, TP53 was mutated in 30%, NOTCH1 in 8% and FGFR3 in 5% of HNSCC. HPV negative patients harbored 4-fold more TP53 mutations than HPV positive patients. These data confirm prior reports of the HNSCC mutational profile. Additionally, we detected mutations in two new genes, CEBPA and FES, which have not been previously reported in HNSCC. These data extend the spectrum of HNSCC mutations and define novel mutation targets in HNSCC carcinogenesis, especially for smokers and HNSCC without HPV infection. PMID:24667986

  9. Fitness evolution and the rise of mutator alleles in experimental Escherichia coli populations.

    PubMed Central

    Shaver, Aaron C; Dombrowski, Peter G; Sweeney, Joseph Y; Treis, Tania; Zappala, Renata M; Sniegowski, Paul D

    2002-01-01

    We studied the evolution of high mutation rates and the evolution of fitness in three experimental populations of Escherichia coli adapting to a glucose-limited environment. We identified the mutations responsible for the high mutation rates and show that their rate of substitution in all three populations was too rapid to be accounted for simply by genetic drift. In two of the populations, large gains in fitness relative to the ancestor occurred as the mutator alleles rose to fixation, strongly supporting the conclusion that mutator alleles fixed by hitchhiking with beneficial mutations at other loci. In one population, no significant gain in fitness relative to the ancestor occurred in the population as a whole while the mutator allele rose to fixation, but a substantial and significant gain in fitness occurred in the mutator subpopulation as the mutator neared fixation. The spread of the mutator allele from rarity to fixation took >1000 generations in each population. We show that simultaneous adaptive gains in both the mutator and wild-type subpopulations (clonal interference) retarded the mutator fixation in at least one of the populations. We found little evidence that the evolution of high mutation rates accelerated adaptation in these populations. PMID:12399371

  10. Novel Insight into Mutational Landscape of Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Gaykalova, Daria A.; Mambo, Elizabeth; Choudhary, Ashish; Houghton, Jeffery; Buddavarapu, Kalyan; Sanford, Tiffany; Darden, Will; Adai, Alex; Hadd, Andrew; Latham, Gary; Danilova, Ludmila V.; Bishop, Justin; Li, Ryan J.; Westra, William H.; Hennessey, Patrick; Koch, Wayne M.; Ochs, Michael F.; Califano, Joseph A.; Sun, Wenyue

    2014-01-01

    Development of head and neck squamous cell carcinoma (HNSCC) is characterized by accumulation of mutations in several oncogenes and tumor suppressor genes. We have formerly described the mutation pattern of HNSCC and described NOTCH signaling pathway alterations. Given the complexity of the HNSCC, here we extend the previous study to understand the overall HNSCC mutation context and to discover additional genetic alterations. We performed high depth targeted exon sequencing of 51 highly actionable cancer-related genes with a high frequency of mutation across many cancer types, including head and neck. DNA from primary tumor tissues and matched normal tissues was analyzed for 37 HNSCC patients. We identified 26 non-synonymous or stop-gained mutations targeting 11 of 51 selected genes. These genes were mutated in 17 out of 37 (46%) studied HNSCC patients. Smokers harbored 3.2-fold more mutations than non-smokers. Importantly, TP53 was mutated in 30%, NOTCH1 in 8% and FGFR3 in 5% of HNSCC. HPV negative patients harbored 4-fold more TP53 mutations than HPV positive patients. These data confirm prior reports of the HNSCC mutational profile. Additionally, we detected mutations in two new genes, CEBPA and FES, which have not been previously reported in HNSCC. These data extend the spectrum of HNSCC mutations and define novel mutation targets in HNSCC carcinogenesis, especially for smokers and HNSCC without HPV infection. PMID:24667986

  11. Phenylalanine hydroxylase gene mutations in the United States: Report from the maternal PKU collaborative study

    SciTech Connect

    Guldberg, P.; Henriksen, K.F.; Guettler, F.

    1996-07-01

    The major cause of hyperphenylalaninemia is mutations in the gene encoding phenylalanine hydroxylase (PAH). The known mutations have been identified primarily in European patients. The purpose of this study was to determine the spectrum of mutations responsible for PAH deficiency in the United States. One hundred forty-nine patients enrolled in the Maternal PKU Collaborative Study were subjects for clinical and molecular investigations. PAH gene mutations associated with phenylketonuria (PKU) or mild hyperphenylalaninemia (MHP) were identified on 279 of 294 independent mutant chromosomes, a diagnostic efficiency of 95%. The spectrum is composed of 71 different mutations, including 47 missense mutations, 11 splice mutations, 5 nonsense mutations, and 8 microdeletions. Sixteen previously unreported mutations were identified. Among the novel mutations, five were found in patients with MHP, and the remainder were found in patients with PKU. The most common mutations were R408W, IVS12nt1g{r_arrow}a, and Y414C, accounting for 18.7%, 7.8% and 5.4% of the mutant chromosomes, respectively. Thirteen mutations had relative frequencies of 1%-5%, and 55 mutations each had frequencies {le}1%. The mutational spectrum corresponded to that observed for the European ancestry of the U.S. population. To evaluate the extent of allelic variation at the PAH locus within the United States in comparison with other populations, we used allele frequencies to calculate the homozygosity for 11 populations where >90% ascertainment has been obtained. The United States was shown to contain one of the most heterogeneous populations, with homozygosity values similar to Sicily and ethnically mixed sample populations in Europe. The extent of allelic heterogeneity must be a major determining factor in the choice of mutation-detection methodology for molecular diagnosis in PAH deficiency. 47 refs., 1 fig., 5 tabs.

  12. Precore/Core Region Mutations in Hepatitis B Virus DNA Predict Postoperative Survival in Hepatocellular Carcinoma

    PubMed Central

    Zhao, Yufei; Zhang, Lan; Zhao, Yue; Liu, Binghui; Guo, Zhanjun

    2015-01-01

    Hepatitis B virus (HBV) DNA is prone to mutations because of the proofreading deficiencies of HBV polymerase. We have identified hepatocellular carcinoma (HCC) survival-associated HBV mutations in the X protein region of HBV DNA. In the present study, we extend our research to assess HCC survival-associated HBV mutations in the HBV precore/core (PreC/C) region. The PreC/C region was amplified and sequenced and the HBV mutations were identified according to the NCBI database (http://www.ncbi.nlm.nih.gov/genome/5536). The relationships between the mutations in the PreC/C region and HCC survival were analyzed. Survival curves were generated using the Kaplan-Meier method, and comparisons between the curves were made using the log-rank test. Multivariate survival analysis was performed using a Cox proportional hazards model. After adjusting for clinical characteristics, the 1915, 2134, 2221, 2245 and 2288 mutational sites were identified as statistically significant independent predictors of HCC survival by multivariate survival analysis using a Cox proportional hazards model. In addition, the mutational site of 1896 was identified for its association with survival at a borderline significance level. A total of five mutations in the precore/core region were identified as independent predictors of postoperative survival in HCC patients. The analysis of HBV DNA mutations may help identify patient subgroups with poor prognosis and may help refine therapeutic decisions regarding HCC patients. PMID:26208136

  13. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion

    E-print Network

    Lander, Eric S.

    Prior studies have identified recurrent oncogenic mutations in colorectal adenocarcinoma and have surveyed exons of protein-coding genes for mutations in 11 affected individuals. Here we report whole-genome sequencing from ...

  14. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes.

    PubMed

    Walter, M J; Shen, D; Shao, J; Ding, L; White, B S; Kandoth, C; Miller, C A; Niu, B; McLellan, M D; Dees, N D; Fulton, R; Elliot, K; Heath, S; Grillot, M; Westervelt, P; Link, D C; DiPersio, J F; Mardis, E; Ley, T J; Wilson, R K; Graubert, T A

    2013-06-01

    Recent studies suggest that most cases of myelodysplastic syndrome (MDS) are clonally heterogeneous, with a founding clone and multiple subclones. It is not known whether specific gene mutations typically occur in founding clones or subclones. We screened a panel of 94 candidate genes in a cohort of 157 patients with MDS or secondary acute myeloid leukemia (sAML). This included 150 cases with samples obtained at MDS diagnosis and 15 cases with samples obtained at sAML transformation (8 were also analyzed at the MDS stage). We performed whole-genome sequencing (WGS) to define the clonal architecture in eight sAML genomes and identified the range of variant allele frequencies (VAFs) for founding clone mutations. At least one mutation or cytogenetic abnormality was detected in 83% of the 150 MDS patients and 17 genes were significantly mutated (false discovery rate ?0.05). Individual genes and patient samples displayed a wide range of VAFs for recurrently mutated genes, indicating that no single gene is exclusively mutated in the founding clone. The VAFs of recurrently mutated genes did not fully recapitulate the clonal architecture defined by WGS, suggesting that comprehensive sequencing may be required to accurately assess the clonal status of recurrently mutated genes in MDS. PMID:23443460

  15. Clonal diversity of recurrently mutated genes in myelodysplastic syndromes

    PubMed Central

    Walter, MJ; Shen, D; Shao, J; Ding, L; White, BS; Kandoth, C; Miller, CA; Niu, B; McLellan, MD; Dees, ND; Fulton, R; Elliot, K; Heath, S; Grillot, M; Westervelt, P; Link, DC; DiPersio, JF; Mardis, E; Ley, TJ; Wilson, RK; Graubert, TA

    2013-01-01

    Recent studies suggest that most cases of myelodysplastic syndrome (MDS) are clonally heterogeneous, with a founding clone and multiple subclones. It is not known whether specific gene mutations typically occur in founding clones or subclones. We screened a panel of 94 candidate genes in a cohort of 157 patients with MDS or secondary acute myeloid leukemia (sAML). This included 150 cases with samples obtained at MDS diagnosis and 15 cases with samples obtained at sAML transformation (8 were also analyzed at the MDS stage). We performed whole-genome sequencing (WGS) to define the clonal architecture in eight sAML genomes and identified the range of variant allele frequencies (VAFs) for founding clone mutations. At least one mutation or cytogenetic abnormality was detected in 83% of the 150 MDS patients and 17 genes were significantly mutated (false discovery rate ?0.05). Individual genes and patient samples displayed a wide range of VAFs for recurrently mutated genes, indicating that no single gene is exclusively mutated in the founding clone. The VAFs of recurrently mutated genes did not fully recapitulate the clonal architecture defined by WGS, suggesting that comprehensive sequencing may be required to accurately assess the clonal status of recurrently mutated genes in MDS. PMID:23443460

  16. BRAF mutations in non-small cell lung cancer

    PubMed Central

    Luk, Peter P.; Yu, Bing; Ng, Chiu Chin; Mercorella, Belinda; Selinger, Christina; Lum, Trina; Kao, Steven; O’Toole, Sandra A.

    2015-01-01

    Background BRAF is a proto-oncogene encoding a serine/threonine protein kinase which promotes cell proliferation and survival. BRAF mutations are commonly seen in melanoma and papillary thyroid carcinoma. We aimed to investigate the prevalence and clinicopathological features of BRAF mutations in non-small cell lung cancer (NSCLC) cases submitted for routine mutation testing at our institution. Methods Mutation analysis for BRAF, EGFR and KRAS was performed using Sequenom MassARRAY platform with OncoCarta panel v1.0. Pathological features were reviewed and immunohistochemistry for BRAF V600E was also performed. Results Seven out of 273 cases (2.6%) had BRAF mutations (three males and four females, median age 70 years, all smokers), with six adenocarcinomas and one NSCLC, not otherwise specified (NOS). All had wild-type EGFR and KRAS. The identified BRAF mutations were V600E (4/7, 58%), K601N, L597Q and G469V. BRAF V600E immunohistochemistry was positive in two cases with V600E and negative in one case with K601N (tissue available in three cases only). No significant difference in age or gender was found (BRAF mutant vs. wild-type). Conclusions BRAF mutations occur in a small proportion of NSCLC that lack other driver mutations. The clinicopathological profile differs from that of EGFR mutant tumours. The potential benefits of BRAF-inhibitors should be investigated. PMID:25870796

  17. Extended phenotypic spectrum of KIF5A mutations

    PubMed Central

    Liu, Yo-Tsen; Laurá, Matilde; Hersheson, Joshua; Horga, Alejandro; Jaunmuktane, Zane; Brandner, Sebastian; Pittman, Alan; Hughes, Deborah; Polke, James M.; Sweeney, Mary G.; Proukakis, Christos; Janssen, John C.; Auer-Grumbach, Michaela; Zuchner, Stephan; Shields, Kevin G.; Reilly, Mary M.

    2014-01-01

    Objective: To establish the phenotypic spectrum of KIF5A mutations and to investigate whether KIF5A mutations cause axonal neuropathy associated with hereditary spastic paraplegia (HSP) or typical Charcot-Marie-Tooth disease type 2 (CMT2). Methods: KIF5A sequencing of the motor-domain coding exons was performed in 186 patients with the clinical diagnosis of HSP and in 215 patients with typical CMT2. Another 66 patients with HSP or CMT2 with pyramidal signs were sequenced for all exons of KIF5A by targeted resequencing. One additional patient was genetically diagnosed by whole-exome sequencing. Results: Five KIF5A mutations were identified in 6 unrelated patients: R204W and D232N were novel mutations; R204Q, R280C, and R280H have been previously reported. Three patients had CMT2 as the predominant and presenting phenotype; 2 of them also had pyramidal signs. The other 3 patients presented with HSP but also had significant axonal neuropathy or other additional features. Conclusion: This is currently the largest study investigating KIF5A mutations. By combining next-generation sequencing and conventional sequencing, we confirm that KIF5A mutations can cause variable phenotypes ranging from HSP to CMT2. The identification of mutations in CMT2 broadens the phenotypic spectrum and underlines the importance of KIF5A mutations, which involve degeneration of both the central and peripheral nervous systems and should be tested in HSP and CMT2. PMID:25008398

  18. Identification of somatic gene mutations in penile squamous cell carcinoma.

    PubMed

    Ferrándiz-Pulido, Carla; Hernández-Losa, Javier; Masferrer, Emili; Vivancos, Ana; Somoza, Rosa; Marés, Roso; Valverde, Claudia; Salvador, Carlos; Placer, Jose; Morote, Juan; Pujol, Ramon M; Ramon y Cajal, Santiago; de Torres, Ines; Toll, Agusti; García-Patos, Vicente

    2015-10-01

    There is a lack of studies on somatic gene mutations and cell signaling driving penile carcinogenesis. Our objective was to analyze somatic mutations in genes downstream of EGFR in penile squamous cell carcinomas, especially the mTOR and RAS/MAPK pathways. We retrospectively analyzed somatic mutations in 10 in situ and 65 invasive penile squamous cell carcinomas by using Sequenom's Mass Spectrometry iPlex Technology and Oncocarta v1.0 Panel. The DNA was extracted from FFPE blocks and we identified somatic missense mutations in three in situ tumors and in 19 invasive tumors, mostly in PIK3CA, KRAS, HRAS, NRAS, and PDGFA genes. Somatic mutations in the PIK3CA gene or RAS family genes were neither associated with tumor grade, stage or outcome, and were equally often identified in hrHPV positive and in hrHPV negative tumors that showed no p53 expression. Mutations in PIK3CA, KRAS, and HRAS are frequent in penile squamous cell carcinoma and likely play a role in the development of p53-negative tumors. Although the presence of these mutations does not seem to correlate with tumoral behavior or outcome, they could be biomarkers of treatment failure with anti-EGFR mAb in patients with penile squamous cell carcinoma. PMID:26216163

  19. Pyridoxine responsiveness in novel mutations of the PNPO gene

    PubMed Central

    Paul, Karl; Mills, Philippa; Clayton, Peter; Paschke, Eduard; Maier, Oliver; Hasselmann, Oswald; Schmiedel, Gudrun; Kanz, Simone; Connolly, Mary; Wolf, Nicole; Struys, Eduard; Stockler, Sylvia; Abela, Lucia; Hofer, Doris

    2014-01-01

    Objective: To determine whether patients with pyridoxine-responsive seizures but normal biomarkers for antiquitin deficiency and normal sequencing of the ALDH7A1 gene may have PNPO mutations. Methods: We sequenced the PNPO gene in 31 patients who fulfilled the above-mentioned criteria. Results: We were able to identify 11 patients carrying 3 novel mutations of the PNPO gene. In 6 families, a homozygous missense mutation p.Arg225His in exon 7 was identified, while 1 family was compound heterozygous for a novel missense mutation p.Arg141Cys in exon 5 and a deletion c.279_290del in exon 3. Pathogenicity of the respective mutations was proven by absence in 100 control alleles and expression studies in CHO-K1 cell lines. The response to pyridoxine was prompt in 4, delayed in 2, on EEG only in 2, and initially absent in another 2 patients. Two unrelated patients homozygous for the p.Arg225His mutation experienced status epilepticus when switched to pyridoxal 5?-phosphate (PLP). Conclusions: This study challenges the paradigm of exclusive PLP responsiveness in patients with pyridoxal 5?-phosphate oxidase deficiency and underlines the importance of consecutive testing of pyridoxine and PLP in neonates with antiepileptic drug–resistant seizures. Patients with pyridoxine response but normal biomarkers for antiquitin deficiency should undergo PNPO mutation analysis. PMID:24658933

  20. Distinct Viral and Mutational Spectrum of Endemic Burkitt Lymphoma

    PubMed Central

    Mundo, Lucia; Laginestra, Maria Antonella; Fuligni, Fabio; Rossi, Maura; Zairis, Sakellarios; Gazaneo, Sara; De Falco, Giulia; Lazzi, Stefano; Bellan, Cristiana; Rocca, Bruno Jim; Amato, Teresa; Marasco, Elena; Etebari, Maryam; Ogwang, Martin; Calbi, Valeria; Ndede, Isaac; Patel, Kirtika; Chumba, David; Piccaluga, Pier Paolo; Pileri, Stefano; Leoncini, Lorenzo; Rabadan, Raul

    2015-01-01

    Endemic Burkitt lymphoma (eBL) is primarily found in children in equatorial regions and represents the first historical example of a virus-associated human malignancy. Although Epstein-Barr virus (EBV) infection and MYC translocations are hallmarks of the disease, it is unclear whether other factors may contribute to its development. We performed RNA-Seq on 20 eBL cases from Uganda and showed that the mutational and viral landscape of eBL is more complex than previously reported. First, we found the presence of other herpesviridae family members in 8 cases (40%), in particular human herpesvirus 5 and human herpesvirus 8 and confirmed their presence by immunohistochemistry in the adjacent non-neoplastic tissue. Second, we identified a distinct latency program in EBV involving lytic genes in association with TCF3 activity. Third, by comparing the eBL mutational landscape with published data on sporadic Burkitt lymphoma (sBL), we detected lower frequencies of mutations in MYC, ID3, TCF3 and TP53, and a higher frequency of mutation in ARID1A in eBL samples. Recurrent mutations in two genes not previously associated with eBL were identified in 20% of tumors: RHOA and cyclin F (CCNF). We also observed that polyviral samples showed lower numbers of somatic mutations in common altered genes in comparison to sBL specimens, suggesting dual mechanisms of transformation, mutation versus virus driven in sBL and eBL respectively. PMID:26468873

  1. Engineered T Cells Targeting Tumor-Specific Mutations

    Cancer.gov

    Scientists at the National Cancer Institute's Surgery Branch have developed a method to identify and generate T-cell receptor (TCR) engineered T- cells for personalized cancer therapy. The TCR is a complex of integral membrane proteins that recognizes antigens and activates T cells. Human cancers contain genetic mutations that are unique in each patient. The researchers found cancer-specific mutations by sequencing tumors and comparing with normal cells.

  2. MUTATION IN BRIEF HUMAN MUTATION Mutation in Brief #259 (1999) Online

    E-print Network

    Monnat, Ray

    1999-01-01

    enzyme HPRT1 from human cells. We report here two in vivo somatic HPRT1 mutations in human kidney tubular-Liss, Inc. KEY WORDS: HPRT1, mutation, somatic, kidney, mRNA splicing, intron inclusion INTRODUCTION HPRT1 gene (MIM# 308000) mutations in human kidney tubular epithelial cells that disrupt HPRT1 intron 1

  3. Inactivating CUX1 mutations promote tumorigenesis.

    PubMed

    Wong, Chi C; Martincorena, Inigo; Rust, Alistair G; Rashid, Mamunur; Alifrangis, Constantine; Alexandrov, Ludmil B; Tiffen, Jessamy C; Kober, Christina; Green, Anthony R; Massie, Charles E; Nangalia, Jyoti; Lempidaki, Stella; Döhner, Hartmut; Döhner, Konstanze; Bray, Sarah J; McDermott, Ultan; Papaemmanuil, Elli; Campbell, Peter J; Adams, David J

    2014-01-01

    A major challenge in cancer genetics is to determine which low-frequency somatic mutations are drivers of tumorigenesis. Here we interrogate the genomes of 7,651 diverse human cancers and find inactivating mutations in the homeodomain transcription factor gene CUX1 (cut-like homeobox 1) in ~1-5% of various tumors. Meta-analysis of CUX1 mutational status in 2,519 cases of myeloid malignancies reveals disruptive mutations associated with poor survival, highlighting the clinical significance of CUX1 loss. In parallel, we validate CUX1 as a bona fide tumor suppressor using mouse transposon-mediated insertional mutagenesis and Drosophila cancer models. We demonstrate that CUX1 deficiency activates phosphoinositide 3-kinase (PI3K) signaling through direct transcriptional downregulation of the PI3K inhibitor PIK3IP1 (phosphoinositide-3-kinase interacting protein 1), leading to increased tumor growth and susceptibility to PI3K-AKT inhibition. Thus, our complementary approaches identify CUX1 as a pan-driver of tumorigenesis and uncover a potential strategy for treating CUX1-mutant tumors. PMID:24316979

  4. TNXB Mutations Can Cause Vesicoureteral Reflux

    PubMed Central

    Brophy, Patrick D.; Adeyemo, Adebowale; Hall, Gentzon; Gupta, Indra R.; Hains, David; Bartkowiak, Bartlomeij; Rabinovich, C. Egla; Chandrasekharappa, Settara; Homstad, Alison; Westreich, Katherine; Wu, Guanghong; Liu, Yutao; Holanda, Danniele; Clarke, Jason; Lavin, Peter; Selim, Angelica; Miller, Sara; Wiener, John S.; Ross, Sherry S.; Foreman, John; Rotimi, Charles; Winn, Michelle P.

    2013-01-01

    Primary vesicoureteral reflux (VUR) is the most common congenital anomaly of the kidney and the urinary tract, and it is a major risk factor for pyelonephritic scarring and CKD in children. Although twin studies support the heritability of VUR, specific genetic causes remain elusive. We performed a sequential genome-wide linkage study and whole-exome sequencing in a family with hereditary VUR. We obtained a significant multipoint parametric logarithm of odds score of 3.3 on chromosome 6p, and whole-exome sequencing identified a deleterious heterozygous mutation (T3257I) in the gene encoding tenascin XB (TNXB in 6p21.3). This mutation segregated with disease in the affected family as well as with a pathogenic G1331R change in another family. Fibroblast cell lines carrying the T3257I mutation exhibited a reduction in both cell motility and phosphorylated focal adhesion kinase expression, suggesting a defect in the focal adhesions that link the cell cytoplasm to the extracellular matrix. Immunohistochemical studies revealed that the human uroepithelial lining of the ureterovesical junction expresses TNXB, suggesting that TNXB may be important for generating tensile forces that close the ureterovesical junction during voiding. Taken together, these results suggest that mutations in TNXB can cause hereditary VUR. PMID:23620400

  5. LEOPARD Syndrome: Clinical Features and Gene Mutations

    PubMed Central

    Martínez-Quintana, E.; Rodríguez-González, F.

    2012-01-01

    The RAS/MAPK pathway proteins with germline mutations in their respective genes are associated with some disorders such as Noonan, LEOPARD (LS), neurofibromatosis type 1, Costello and cardio-facio-cutaneous syndromes. LEOPARD is an acronym, mnemonic for the major manifestations of this disorder, characterized by multiple lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonic stenosis, abnormal genitalia, retardation of growth, and sensorineural deafness. Though it is not included in the acronym, hypertrophic cardiomyopathy is the most frequent cardiac anomaly observed, representing a potentially life-threatening problem in these patients. PTPN11, RAF1 and BRAF are the genes known to be associated with LS, identifying molecular genetic testing of the 3 gene mutations in about 95% of affected individuals. PTPN11 mutations are the most frequently found. Eleven different missense PTPN11 mutations (Tyr279Cys/Ser, Ala461Thr, Gly464Ala, Thr468Met/Pro, Arg498Trp/Leu, Gln506Pro, and Gln510Glu/Pro) have been reported so far in LS, 2 of which (Tyr279Cys and Thr468Met) occur in about 65% of the cases. Here, we provide an overview of clinical aspects of this disorder, the molecular mechanisms underlying pathogenesis and major genotype-phenotype correlations. PMID:23239957

  6. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis

    PubMed Central

    Forshew, Tim; Barbera, Mariagnese; Murtaza, Muhammed; Ong, Chin-Ann J.; Lao-Sirieix, Pierre; Dunning, Mark J; Smith, Laura; Smith, Mike L.; Anderson, Charlotte L.; Carvalho, Benilton; O’Donovan, Maria; Underwood, Timothy J.; May, Andrew P; Grehan, Nicola; Hardwick, Richard; Davies, Jim; Oloumi, Arusha; Aparicio, Sam; Caldas, Carlos; Eldridge, Matthew D.; Edwards, Paul A.W.; Rosenfeld, Nitzan; Tavaré, Simon; Fitzgerald, Rebecca C

    2014-01-01

    Cancer genome sequencing studies have identified numerous driver genes but the relative timing of mutations in carcinogenesis remains unclear. The gradual progression from pre-malignant Barrett’s esophagus to esophageal adenocarcinoma (EAC) provides an ideal model to study the ordering of somatic mutations. We identified recurrently-mutated genes and assessed clonal structure using whole-genome sequencing and amplicon-resequencing of 112 EACs. We next screened a cohort of 109 biopsies from two key transition points in the development of malignancy; benign metaplastic never-dysplastic Barrett’s esophagus (NDBE, n=66), and high-grade dysplasia (HGD, n=43). Unexpectedly, the majority of recurrently mutated genes in EAC were also mutated in NDBE. Only TP53 and SMAD4 were stage-specific, confined to HGD and EAC, respectively. Finally, we applied this knowledge to identify high-risk Barrett’s esophagus in a novel non-endoscopic test. In conclusion, mutations in EAC driver genes generally occur exceptionally early in disease development with profound implications for diagnostic and therapeutic strategies. PMID:24952744

  7. Mutations in the transcriptional repressor REST predispose to Wilms tumor.

    PubMed

    Mahamdallie, Shazia S; Hanks, Sandra; Karlin, Kristen L; Zachariou, Anna; R Perdeaux, Elizabeth; Ruark, Elise; Shaw, Chad A; Renwick, Alexander; Ramsay, Emma; Yost, Shawn; Elliott, Anna; Birch, Jillian; Capra, Michael; Gray, Juliet; Hale, Juliet; Kingston, Judith; Levitt, Gill; McLean, Thomas; Sheridan, Eamonn; Renwick, Anthony; Seal, Sheila; Stiller, Charles; Sebire, Neil; Westbrook, Thomas F; Rahman, Nazneen

    2015-12-01

    Wilms tumor is the most common childhood renal cancer. To identify mutations that predispose to Wilms tumor, we are conducting exome sequencing studies. Here we describe 11 different inactivating mutations in the REST gene (encoding RE1-silencing transcription factor) in four familial Wilms tumor pedigrees and nine non-familial cases. Notably, no similar mutations were identified in the ICR1000 control series (13/558 versus 0/993; P < 0.0001) or in the ExAC series (13/558 versus 0/61,312; P < 0.0001). We identified a second mutational event in two tumors, suggesting that REST may act as a tumor-suppressor gene in Wilms tumor pathogenesis. REST is a zinc-finger transcription factor that functions in cellular differentiation and embryonic development. Notably, ten of 11 mutations clustered within the portion of REST encoding the DNA-binding domain, and functional analyses showed that these mutations compromise REST transcriptional repression. These data establish REST as a Wilms tumor predisposition gene accounting for ?2% of Wilms tumor. PMID:26551668

  8. Clinical Consequences of Mutations in Thyroid Hormone Receptor-?1

    PubMed Central

    van Mullem, Alies A.; Visser, Theo J.; Peeters, Robin P.

    2014-01-01

    Thyroid hormone (TH) exerts its biological activity via the TH receptors TR?1 and TR?1/2, which are encoded by the THRA and THRB genes. The first patients with mutations in THRB were identified decades ago. These patients had a clinical syndrome of resistance to TH associated with high serum TH and nonsuppressed thyroid-stimulating hormone levels. Until recently, no patients with mutations in THRA had been identified. In an attempt to predict the clinical phenotype of such patients, different TR?1 mutant mouse models have been generated. These mice have a variable phenotype depending on the location and severity of the mutation. Recently, the first humans with mutations in THRA were identified. Their phenotype consists of relatively low serum T4 and high serum T3 levels (and thus an elevated T3/T4 ratio), growth retardation, delayed mental and bone development, and constipation. While, in retrospect, certain features present in humans can also be found in mouse models, the first humans carrying a defect in TR?1 were not suspected of having a THRA gene mutation initially. The current review focuses on the clinical consequences of TR?1 mutations. PMID:24847461

  9. Identification of novel PKD1 and PKD2 mutations in a Chinese population with autosomal dominant polycystic kidney disease

    PubMed Central

    Liu, Bei; Chen, Song-Chang; Yang, Yan-Mei; Yan, Kai; Qian, Ye-Qing; Zhang, Jun-Yu; Hu, Yu-Ting; Dong, Min-Yue; Jin, Fan; Huang, He-Feng; Xu, Chen-Ming

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequently inherited renal diseases caused by mutations in PKD1 and PKD2. We performed mutational analyses of PKD genes in 49 unrelated patients using direct PCR-sequencing and multiplex ligation-dependent probe amplification (MLPA) for PKD1 and PKD2. RT-PCR analysis was also performed in a family with a novel PKD2 splicing mutation. Disease-causing mutations were identified in 44 (89.8%) of the patients: 42 (95.5%) of the patients showed mutations in PKD1, and 2 (4.5%) showed mutations in PKD2. Ten nonsense, 17 frameshift, 4 splicing and one in-frame mutation were found in 32 of the patients. Large rearrangements were found in 3 patients, and missense mutations were found in 9 patients. Approximately 61.4% (27/44) of the mutations are first reported with a known mutation rate of 38.6%. RNA analysis of a novel PKD2 mutation (c.595_595?+?14delGGTAAGAGCGCGCGA) suggested monoallelic expression of the wild-type allele. Furthermore, patients with PKD1-truncating mutations reached end-stage renal disease (ESRD) earlier than patients with non-truncating mutations (47?±?3.522 years vs. 59?±?11.687 years, P?=?0.016). The mutation screening of PKD genes in Chinese ADPKD patients will enrich our mutation database and significantly contribute to improve genetic counselling for ADPKD patients. PMID:26632257

  10. Identification of novel PKD1 and PKD2 mutations in a Chinese population with autosomal dominant polycystic kidney disease.

    PubMed

    Liu, Bei; Chen, Song-Chang; Yang, Yan-Mei; Yan, Kai; Qian, Ye-Qing; Zhang, Jun-Yu; Hu, Yu-Ting; Dong, Min-Yue; Jin, Fan; Huang, He-Feng; Xu, Chen-Ming

    2015-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequently inherited renal diseases caused by mutations in PKD1 and PKD2. We performed mutational analyses of PKD genes in 49 unrelated patients using direct PCR-sequencing and multiplex ligation-dependent probe amplification (MLPA) for PKD1 and PKD2. RT-PCR analysis was also performed in a family with a novel PKD2 splicing mutation. Disease-causing mutations were identified in 44 (89.8%) of the patients: 42 (95.5%) of the patients showed mutations in PKD1, and 2 (4.5%) showed mutations in PKD2. Ten nonsense, 17 frameshift, 4 splicing and one in-frame mutation were found in 32 of the patients. Large rearrangements were found in 3 patients, and missense mutations were found in 9 patients. Approximately 61.4% (27/44) of the mutations are first reported with a known mutation rate of 38.6%. RNA analysis of a novel PKD2 mutation (c.595_595?+?14delGGTAAGAGCGCGCGA) suggested monoallelic expression of the wild-type allele. Furthermore, patients with PKD1-truncating mutations reached end-stage renal disease (ESRD) earlier than patients with non-truncating mutations (47?±?3.522 years vs. 59?±?11.687 years, P?=?0.016). The mutation screening of PKD genes in Chinese ADPKD patients will enrich our mutation database and significantly contribute to improve genetic counselling for ADPKD patients. PMID:26632257

  11. Two Novel De Novo GARS Mutations Cause Early-Onset Axonal Charcot-Marie-Tooth Disease

    PubMed Central

    Liao, Yi-Chu; Liu, Yo-Tsen; Tsai, Pei-Chien; Chang, Chia-Ching; Huang, Yen-Hua; Soong, Bing-Wen; Lee, Yi-Chung

    2015-01-01

    Background Mutations in the GARS gene have been identified in a small number of patients with Charcot-Marie-Tooth disease (CMT) type 2D or distal spinal muscular atrophy type V, for whom disease onset typically occurs during adolescence or young adulthood, initially manifesting as weakness and atrophy of the hand muscles. The role of GARS mutations in patients with inherited neuropathies in Taiwan remains elusive. Methodology and Principal Findings Mutational analyses of the coding regions of GARS were performed using targeted sequencing of 54 patients with molecularly unassigned axonal CMT, who were selected from 340 unrelated CMT patients. Two heterozygous mutations in GARS, p.Asp146Tyr and p.Met238Arg, were identified; one in each patient. Both are novel de novo mutations. The p.Asp146Tyr mutation is associated with a severe infantile-onset neuropathy and the p.Met238Arg mutation results in childhood-onset disability. Conclusion GARS mutations are an uncommon cause of CMT in Taiwan. The p.Asp146Tyr and p.Met238Arg mutations are associated with early-onset axonal CMT. These findings broaden the mutational spectrum of GARS and also highlight the importance of considering GARS mutations as a disease cause in patients with early-onset neuropathies. PMID:26244500

  12. Novel mutations in the RB1 gene from Chinese families with a history of retinoblastoma.

    PubMed

    Zhang, Leilei; Jia, Renbing; Zhao, Junyang; Fan, Jiayan; Zhou, YiXiong; Han, Bing; Song, Xin; Wu, Li; Zhang, He; Song, Huaidong; Ge, Shengfang; Fan, Xianqun

    2015-04-01

    Retinoblastoma is an aggressive eye cancer that develops during infancy and is divided into two clinical types, sporadic and heritable. RB1 has been identified as the only pathological gene responsible for heritable retinoblastoma. Here, we identified 11 RB1 germline mutations in the Han pedigrees of 17 bilateral retinoblastoma patients from China. Four mutations were nonsense mutations, five were splice site mutations, and two resulted in a frame shift due to an insertion or a deletion. Three of the mutations had not been previously reported, and the p.Q344L mutation occurred in two generations of retinoblastoma patients. We investigated phenotypic-genotypic relationships for the novel mutations and showed that these mutations affected the expression, location, and function of the retinoblastoma protein. Abnormal protein localization was observed after transfection of the mutant genes. In addition, changes in the cell cycle distribution and apoptosis rates were observed when the Saos-2 cell line was transfected with plasmids encoding the mutant RB1 genes. Our findings expand the spectrum of known RB1 mutations and will benefit the investigation of RB1 mutation hotspots. Genetic counseling can be offered to families with heritable RB1 mutations. PMID:25424699

  13. ENU-induced phenovariance in mice: inferences from 587 mutations

    PubMed Central

    2012-01-01

    Background We present a compendium of N-ethyl-N-nitrosourea (ENU)-induced mouse mutations, identified in our laboratory over a period of 10 years either on the basis of phenotype or whole genome and/or whole exome sequencing, and archived in the Mutagenetix database. Our purpose is threefold: 1) to formally describe many point mutations, including those that were not previously disclosed in peer-reviewed publications; 2) to assess the characteristics of these mutations; and 3) to estimate the likelihood that a missense mutation induced by ENU will create a detectable phenotype. Findings In the context of an ENU mutagenesis program for C57BL/6J mice, a total of 185 phenotypes were tracked to mutations in 129 genes. In addition, 402 incidental mutations were identified and predicted to affect 390 genes. As previously reported, ENU shows strand asymmetry in its induction of mutations, particularly favoring T to A rather than A to T in the sense strand of coding regions and splice junctions. Some amino acid substitutions are far more likely to be damaging than others, and some are far more likely to be observed. Indeed, from among a total of 494 non-synonymous coding mutations, ENU was observed to create only 114 of the 182 possible amino acid substitutions that single base changes can achieve. Based on differences in overt null allele frequencies observed in phenotypic vs. non-phenotypic mutation sets, we infer that ENU-induced missense mutations create detectable phenotype only about 1 in 4.7 times. While the remaining mutations may not be functionally neutral, they are, on average, beneath the limits of detection of the phenotypic assays we applied. Conclusions Collectively, these mutations add to our understanding of the chemical specificity of ENU, the types of amino acid substitutions it creates, and its efficiency in causing phenovariance. Our data support the validity of computational algorithms for the prediction of damage caused by amino acid substitutions, and may lead to refined predictions as to whether specific amino acid changes are responsible for observed phenotypes. These data form the basis for closer in silico estimations of the number of genes mutated to a state of phenovariance by ENU within a population of G3 mice. PMID:23095377

  14. Mutation screening of the RYR1 gene in malignant hyperthermia: Detection of a novel Tyr to ser mutation in a pedigree with associated centrl cores

    SciTech Connect

    Quane, K.A.; Keating, K.E.; Healy, J.M.S.

    1994-09-01

    The ryanodine receptor gene (RYR1) has been shown to be mutated in a small number of malignant hyperthermia (MH) predigrees. Missense mutations in this gene have also been identified in two families with central core disease (CCD), a rare myopathy closely associated with MH. In an effort to identify other RYR1 mutations responsible for MH and CCD, we used a SSCP approach to screen the RYR1 gene for mutations in a family exhibiting susceptibility to MH (MHS) where some of the MHS individuals display core regions in their muscle. Sequence analysis of a unique aberrant SSCP has allowed us to identify a point mutation cosegregating with MHS in the described family. The mutation changes a conserved tyrosine residue at position 522 to a serine residue. This mutation is positioned relatively close to five of the six MHS/CCD mutations known to date and provides further evidence that MHS/CCD mutations may cluster in the amino terminal region of the RYR1 protein.

  15. Recurrent and novel GLB1 mutations in India.

    PubMed

    Bidchol, Abdul Mueed; Dalal, Ashwin; Trivedi, Rakesh; Shukla, Anju; Nampoothiri, Sheela; Sankar, V H; Danda, Sumita; Gupta, Neerja; Kabra, Madhulika; Hebbar, Shrikiran A; Bhat, Ramesh Y; Matta, Divya; Ekbote, Alka V; Puri, Ratna Dua; Phadke, Shubha R; Gowrishankar, Kalpana; Aggarwal, Shagun; Ranganath, Prajnya; Sharda, Sheetal; Kamate, Mahesh; Datar, Chaitanya A; Bhat, Kamalakshi; Kamath, Nutan; Shah, Hitesh; Krishna, Shuba; Gopinath, Puthiya Mundyat; Verma, Ishwar C; Nagarajaram, H A; Satyamoorthy, Kapaettu; Girisha, Katta Mohan

    2015-08-10

    GM1 gangliosidosis is a lysosomal storage disorder caused by mutations in the GLB1 gene, leading to the deficiency of the enzyme ?-d-galactosidase. In this study, we report molecular findings in 50 Asian Indian families with GM1 gangliosidosis. We sequenced all the exons and flanking intronic sequences of GLB1 gene. We identified 33 different mutations (20 novel and 13 previously reported). The novel mutations include 12 missense (p.M1?, p.E129Q, p.G134R, p.L236P, p.G262E, p.L297F, p.Y331C, p.G414V, p.K493N, p.L514P, p.P597L, p.T600I), four splicing (c.246-2A>G, c.397-2A>G, c.552+1G>T, c.956-2A>G), three indels (p.R22Qfs*8, p.L24Cfs*47, p.I489Qfs*4) and one nonsense mutation (p.Q452*). Most common mutations identified in this study were c.75+2InsT (14%) and p.L337P (10%). Known mutations accounted for 67% of allele frequency in our cohort of patients, suggesting that these mutations in GLB1 are recurrent across different populations. Twenty three mutations were localized in the TIM barrel domain, ?-domain 1 and ?-domain 2. In silico sequence and structure analysis of GLB1 reveal that all the novel mutations affect the function and structure of the protein. We hereby report on the largest series of patients with GM1 gangliosidosis and the first from India. PMID:25936995

  16. Characterization of the factor VIII defect in 147 patients with sporadic hemophilia A: Family studies indicate a mutation type-dependent sex ratio of mutation frequencies

    SciTech Connect

    Becker, J.; Schmidt, W.; Olek, K.

    1996-04-01

    The clinical manifestation of hemophilia A is caused by a wide range of different mutations. In this study the factor VIII genes of 147 severe hemophilia A patients-all exclusively from sporadic families-were screened for mutations by use of the complete panel of modern DNA techniques. The pathogenous defect could be characterized in 126 patients (85.7%). Fifty-five patients (37.4%) showed a F8A-gene inversion, 47 (32.0%) a point mutation, 14 (9.5%) a small deletion, 8 (5.4%) a large deletion, and 2 (1.4%) a small insertion. Further, four (2.7%) mutations were localized but could not be sequenced yet. No mutation could be identified in 17 patients (11.6%). Sixteen (10.9%) of the P identified mutations occurred in the B domain. Four of these were located in an adenosine nucleotide stretch at codon 1192, indicating a mutation hotspot. Somatic mosaicisms were detected in 3 (3.9%) of 76 patients` mothers, comprising 3 of 16 de novo mutations in the patients` mothers. Investigation of family relatives allowed detection of a de novo mutation in 16 of 76 two-generation and 28 of 34 three-generation families. On the basis of these data, the male:female ratio of mutation frequencies (k) was estimated as k = 3.6. By use of the quotients of mutation origin in maternal grandfather to patient`s mother or to maternal grandmother, k was directly estimated as k = 15 and k = 7.5, respectively. Considering each mutation type separately, we revealed a mutation type-specific sex ratio of mutation frequencies. Point mutations showed a 5-to-10-fold-higher and inversions a >10-fold- higher mutation rate in male germ cells, whereas deletions showed a >5-fold-higher mutation rate in female germ cells. Consequently, and in accordance with the data of other diseases like Duchenne muscular dystrophy, our results indicate that at least for X-chromosomal disorders the male:female mutation rate of a disease is determined by its proportion of the different mutation types. 68 refs., 1 fig., 5 tabs.

  17. ELOVL5 mutations cause spinocerebellar ataxia 38.

    PubMed

    Di Gregorio, Eleonora; Borroni, Barbara; Giorgio, Elisa; Lacerenza, Daniela; Ferrero, Marta; Lo Buono, Nicola; Ragusa, Neftj; Mancini, Cecilia; Gaussen, Marion; Calcia, Alessandro; Mitro, Nico; Hoxha, Eriola; Mura, Isabella; Coviello, Domenico A; Moon, Young-Ah; Tesson, Christelle; Vaula, Giovanna; Couarch, Philippe; Orsi, Laura; Duregon, Eleonora; Papotti, Mauro Giulio; Deleuze, Jean-François; Imbert, Jean; Costanzi, Chiara; Padovani, Alessandro; Giunti, Paola; Maillet-Vioud, Marcel; Durr, Alexandra; Brice, Alexis; Tempia, Filippo; Funaro, Ada; Boccone, Loredana; Caruso, Donatella; Stevanin, Giovanni; Brusco, Alfredo

    2014-08-01

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal-dominant neurodegenerative disorders involving the cerebellum and 23 different genes. We mapped SCA38 to a 56 Mb region on chromosome 6p in a SCA-affected Italian family by whole-genome linkage analysis. Targeted resequencing identified a single missense mutation (c.689G>T [p.Gly230Val]) in ELOVL5. Mutation screening of 456 independent SCA-affected individuals identified the same mutation in two further unrelated Italian families. Haplotyping showed that at least two of the three families shared a common ancestor. One further missense variant (c.214C>G [p.Leu72Val]) was found in a French family. Both missense changes affect conserved amino acids, are predicted to be damaging by multiple bioinformatics tools, and were not identified in ethnically matched controls or within variant databases. ELOVL5 encodes an elongase involved in the synthesis of polyunsaturated fatty acids of the ?3 and ?6 series. Arachidonic acid and docosahexaenoic acid, two final products of the enzyme, were reduced in the serum of affected individuals. Immunohistochemistry on control mice and human brain demonstrated high levels in Purkinje cells. In transfection experiments, subcellular localization of altered ELOVL5 showed a perinuclear distribution with a signal increase in the Golgi compartment, whereas the wild-type showed a widespread signal in the endoplasmic reticulum. SCA38 and SCA34 are examples of SCAs due to mutations in elongase-encoding genes, emphasizing the importance of fatty-acid metabolism in neurological diseases. PMID:25065913

  18. ELOVL5 Mutations Cause Spinocerebellar Ataxia 38

    PubMed Central

    Di Gregorio, Eleonora; Borroni, Barbara; Giorgio, Elisa; Lacerenza, Daniela; Ferrero, Marta; Lo Buono, Nicola; Ragusa, Neftj; Mancini, Cecilia; Gaussen, Marion; Calcia, Alessandro; Mitro, Nico; Hoxha, Eriola; Mura, Isabella; Coviello, Domenico A.; Moon, Young-Ah; Tesson, Christelle; Vaula, Giovanna; Couarch, Philippe; Orsi, Laura; Duregon, Eleonora; Papotti, Mauro Giulio; Deleuze, Jean-François; Imbert, Jean; Costanzi, Chiara; Padovani, Alessandro; Giunti, Paola; Maillet-Vioud, Marcel; Durr, Alexandra; Brice, Alexis; Tempia, Filippo; Funaro, Ada; Boccone, Loredana; Caruso, Donatella; Stevanin, Giovanni; Brusco, Alfredo

    2014-01-01

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal-dominant neurodegenerative disorders involving the cerebellum and 23 different genes. We mapped SCA38 to a 56 Mb region on chromosome 6p in a SCA-affected Italian family by whole-genome linkage analysis. Targeted resequencing identified a single missense mutation (c.689G>T [p.Gly230Val]) in ELOVL5. Mutation screening of 456 independent SCA-affected individuals identified the same mutation in two further unrelated Italian families. Haplotyping showed that at least two of the three families shared a common ancestor. One further missense variant (c.214C>G [p.Leu72Val]) was found in a French family. Both missense changes affect conserved amino acids, are predicted to be damaging by multiple bioinformatics tools, and were not identified in ethnically matched controls or within variant databases. ELOVL5 encodes an elongase involved in the synthesis of polyunsaturated fatty acids of the ?3 and ?6 series. Arachidonic acid and docosahexaenoic acid, two final products of the enzyme, were reduced in the serum of affected individuals. Immunohistochemistry on control mice and human brain demonstrated high levels in Purkinje cells. In transfection experiments, subcellular localization of altered ELOVL5 showed a perinuclear distribution with a signal increase in the Golgi compartment, whereas the wild-type showed a widespread signal in the endoplasmic reticulum. SCA38 and SCA34 are examples of SCAs due to mutations in elongase-encoding genes, emphasizing the importance of fatty-acid metabolism in neurological diseases. PMID:25065913

  19. Mutations in presenilin 2 and its implications in Alzheimer’s disease and other dementia-associated disorders

    PubMed Central

    Cai, Yan; An, Seong Soo A; Kim, SangYun

    2015-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. Mutations in the genes encoding presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein have been identified as the main genetic causes of familial AD. To date, more than 200 mutations have been described worldwide in PSEN1, which is highly homologous with PSEN2, while mutations in PSEN2 have been rarely reported. We performed a systematic review of studies describing the mutations identified in PSEN2. Most PSEN2 mutations were detected in European and in African populations. Only two were found in Korean populations. Interestingly, PSEN2 mutations appeared not only in AD patients but also in patients with other disorders, including frontotemporal dementia, dementia with Lewy bodies, breast cancer, dilated cardiomyopathy, and Parkinson’s disease with dementia. Here, we have summarized the PSEN2 mutations and the potential implications of these mutations in dementia-associated disorders. PMID:26203236

  20. A Common Mutation and a Novel Mutation in the HPGD Gene in Nine Patients with Primary Hypertrophic Osteoarthropathy.

    PubMed

    Yuan, Lu; Chen, Ling; Liao, Ruo-xi; Lin, Yuan-yuan; Jiang, Yan; Wang, Ou; Li, Mei; Xing, Xiao-Ping; Pang, Qian-Qian; Jiajue, Ruizhi; Xia, Wei-bo

    2015-10-01

    Primary hypertrophic osteoarthropathy (PHO) is a hereditary bone disease characterized by digital clubbing, periostosis, and pachydermia. The HPGD gene encoding 15-prostaglandin dehydrogenase and SLCO2A1 encoding one type of prostaglandin transporter were found to be responsible for PHO. Mutations of either gene would lead to increased level of prostaglandin E2 (PGE2), which might contribute to the constellation of the symptoms. The aim of the study was to analyze the HPGD gene and the clinical characteristics in nine patients with the diagnosis of PHO. Nine patients, (eight males and one female) including two siblings and seven sporadic cases, were enrolled in the study. Clinical features were summarized, and blood and urine samples were collected. Sanger method was used to sequence the HPGD gene to detect mutations. Urinary PGE2 and prostaglandin metabolite (PGE-M) levels for each patient were measured and compared to the healthy controls. A recurrent c.310_311delCT mutation was identified in all patients, of which six were homozygous, two were heterozygous, and one was compound heterozygous with this mutation and a novel heterozygous missense mutation c.488G>A (p.R163H). The levels of PGE2 in urine were much higher than normal in all patients, along with lower PGE-M levels. In conclusion, nine PHO patients were characterized by typical clinical manifestations including digital clubbing, periostosis, and pachydermia. A common mutation and a novel mutation in HPGD gene were identified to be responsible for the disease, and c.310_311delCT mutation is likely to be a hot-spot mutation site for Asian PHO patients. PMID:26135126

  1. CLCN1 mutations in Czech patients with myotonia congenita, in silico analysis of novel and known mutations in the human dimeric skeletal muscle chloride channel.

    PubMed

    Skálová, Daniela; Zídková, Jana; Vohá?ka, Stanislav; Mazanec, Radim; Mušová, Zuzana; Vondrá?ek, Petr; Mrázová, Lenka; Kraus, Josef; Réblová, Kamila; Fajkusová, Lenka

    2013-01-01

    Myotonia congenita (MC) is a genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1) encoding the skeletal muscle chloride channel (ClC-1). Mutations of CLCN1 result in either autosomal dominant MC (Thomsen disease) or autosomal recessive MC (Becker disease). The ClC-1 protein is a homodimer with a separate ion pore within each monomer. Mutations causing recessive myotonia most likely affect properties of only the mutant monomer in the heterodimer, leaving the wild type monomer unaffected, while mutations causing dominant myotonia affect properties of both subunits in the heterodimer. Our study addresses two points: 1) molecular genetic diagnostics of MC by analysis of the CLCN1 gene and 2) structural analysis of mutations in the homology model of the human dimeric ClC-1 protein. In the first part, 34 different types of CLCN1 mutations were identified in 51 MC probands (14 mutations were new). In the second part, on the basis of the homology model we identified the amino acids which forming the dimer interface and those which form the Cl(-) ion pathway. In the literature, we searched for mutations of these amino acids for which functional analyses were performed to assess the correlation between localisation of a mutation and occurrence of a dominant-negative effect (corresponding to dominant MC). This revealed that both types of mutations, with and without a dominant-negative effect, are localised at the dimer interface while solely mutations without a dominant-negative effect occur inside the chloride channel. This work is complemented by structural analysis of the homology model which provides elucidation of the effects of mutations, including a description of impacts of newly detected missense mutations. PMID:24349310

  2. CLCN1 Mutations in Czech Patients with Myotonia Congenita, In Silico Analysis of Novel and Known Mutations in the Human Dimeric Skeletal Muscle Chloride Channel

    PubMed Central

    Skálová, Daniela; Zídková, Jana; Vohá?ka, Stanislav; Mazanec, Radim; Mušová, Zuzana; Vondrá?ek, Petr; Mrázová, Lenka; Kraus, Josef; Réblová, Kamila; Fajkusová, Lenka

    2013-01-01

    Myotonia congenita (MC) is a genetic disease caused by mutations in the skeletal muscle chloride channel gene (CLCN1) encoding the skeletal muscle chloride channel (ClC-1). Mutations of CLCN1 result in either autosomal dominant MC (Thomsen disease) or autosomal recessive MC (Becker disease). The ClC-1 protein is a homodimer with a separate ion pore within each monomer. Mutations causing recessive myotonia most likely affect properties of only the mutant monomer in the heterodimer, leaving the wild type monomer unaffected, while mutations causing dominant myotonia affect properties of both subunits in the heterodimer. Our study addresses two points: 1) molecular genetic diagnostics of MC by analysis of the CLCN1 gene and 2) structural analysis of mutations in the homology model of the human dimeric ClC-1 protein. In the first part, 34 different types of CLCN1 mutations were identified in 51 MC probands (14 mutations were new). In the second part, on the basis of the homology model we identified the amino acids which forming the dimer interface and those which form the Cl- ion pathway. In the literature, we searched for mutations of these amino acids for which functional analyses were performed to assess the correlation between localisation of a mutation and occurrence of a dominant-negative effect (corresponding to dominant MC). This revealed that both types of mutations, with and without a dominant-negative effect, are localised at the dimer interface while solely mutations without a dominant-negative effect occur inside the chloride channel. This work is complemented by structural analysis of the homology model which provides elucidation of the effects of mutations, including a description of impacts of newly detected missense mutations. PMID:24349310

  3. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures.

    PubMed

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5-13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known. We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations. PMID:24879340

  4. Identification of two poorly prognosed ovarian carcinoma subtypes associated with CHEK2 germ-line mutation and non-CHEK2 somatic mutation gene signatures

    PubMed Central

    Ow, Ghim Siong; Ivshina, Anna V; Fuentes, Gloria; Kuznetsov, Vladimir A

    2014-01-01

    High-grade serous ovarian cancer (HG-SOC), a major histologic type of epithelial ovarian cancer (EOC), is a poorly-characterized, heterogeneous and lethal disease where somatic mutations of TP53 are common and inherited loss-of-function mutations in BRCA1/2 predispose to cancer in 9.5–13% of EOC patients. However, the overall burden of disease due to either inherited or sporadic mutations is not known.     We performed bioinformatics analyses of mutational and clinical data of 334 HG-SOC tumor samples from The Cancer Genome Atlas to identify novel tumor-driving mutations, survival-significant patient subgroups and tumor subtypes potentially driven by either hereditary or sporadic factors. We identified a sub-cluster of high-frequency mutations in 22 patients and 58 genes associated with DNA damage repair, apoptosis and cell cycle. Mutations of CHEK2, observed with the highest intensity, were associated with poor therapy response and overall survival (OS) of these patients (P = 8.00e-05), possibly due to detrimental effect of mutations at the nuclear localization signal. A 21-gene mutational prognostic signature significantly stratifies patients into relatively low or high-risk subgroups with 5-y OS of 37% or 6%, respectively (P = 7.31e-08). Further analysis of these genes and high-risk subgroup revealed 2 distinct classes of tumors characterized by either germline mutations of genes such as CHEK2, RPS6KA2 and MLL4, or somatic mutations of other genes in the signature. Our results could provide improvement in prediction and clinical management of HG-SOC, facilitate our understanding of this complex disease, guide the design of targeted therapeutics and improve screening efforts to identify women at high-risk of hereditary ovarian cancers distinct from those associated with BRCA1/2 mutations. PMID:24879340

  5. Reverse mutation in fragile X syndrome

    SciTech Connect

    Antinolo, G.; Borrego, S.; Cabeza, J.C.

    1996-01-01

    The fragile X syndrome is the most common cause of familial mental retardation, with an incidence of {approximately}1/1,500 in males and 1/2,500 in females. The clinical expression includes moderate to severe mental retardation, macroorchidism, dysmorphic facial features and behavior disturbances. In 1991, the FMR-1 gene was isolated from the region of the fragile X site. The fragile X phenotype has been found, in most cases, to be characterized at the molecular level by expansion of a (CGG){sub n} repeat and hypermethylation of a CpG island identified in the 5{prime}-UTR of the FMR-1 gene. It has been proposed, and some evidence has been shown, that germ cells carry only premutation alleles and that expansion occurs at a postzygotic stage. A few cases of reduction of the (CGG){sub n} repeat in fragile X syndrome have been reported. These reductions were from a larger premutation to a smaller premutation, in female-to-male transmission, from full mutation to a mosaic pattern, reduction from mosaic full-mutation/premutation females or regression from premutation to normal. We present here the novel observation of a phenotypically normal female carrying a nonmosaic full-mutation allele in somatic cells who transmits a premutation allele to her daughter. This daughter has three mosaic offspring with the full mutation and the premutation. Two of them are monozygotic (MZ) twins sharing a concordant mutation pattern. They are monoamniotic monochorionic, which indicates a late form of twinning. 20 refs., 1 fig.

  6. ?-Globin chain abnormalities with coexisting ?-thalassemia mutations

    PubMed Central

    Canataroglu, Abdullah; Unsal, Cagatay; Yildiz, Sule Menziletoglu; Turhan, Ferda Tekin; Bozdogan, Sevcan Tug; Dincer, Suleyman; Erkman, Hakan

    2012-01-01

    Introduction The frequency of hemoglobinopathies is still high in Adana, the biggest city of the Cukurova Region that is located in the southern part of Turkey. Our aim was to identify the concomitant mutations in ?- and ?-globin genes which lead to complex hemoglobinopathies and to establish an appropriate plan of action for each subject, particularly when prenatal diagnosis is necessary. Material and methods We studied the association between the ?-globin gene and ?-thalassemia genotypes. The reverse hybridization technique was employed to perform molecular analysis, and the results were confirmed by amplification refractory mutation system (ARMS) or restriction fragment length polymorphism (RFLP) technique. Results We evaluated 36 adult subjects (28 female and 8 male; age range: 18-52 years) with concomitant mutations in their ?- and ?-globin genes. The –?3.7/?? deletion was the commonest defect in the ?-chain as expected, followed by ?3.7/–?3.7 deletion. Twenty-five of 36 cases were sickle cell trait with coexisting ?-thalassemia, while seven Hb S/S patients had concurrent mutations in their ?-genes. The coexistence of ?PolyA-2?/?? with Hb A/D and with Hb S/D, which is very uncommon, was also detected. There was a subject with compound heterozygosity for ?-globin chain (–?3.7/?? with IVSI.110/S), and also a case who had –?3.7/?? deletion with IVSI.110/A. Conclusions Although limited, our data suggest that it would be valuable to study coexisting ?-globin mutations in subjects with sickle cell disease or ?-thalassemia trait during the screening programs for premarital couples, especially in populations with a high frequency of hemoglobinopathies. PMID:23056075

  7. Identification and functional analysis of novel FZD4 mutations in Han Chinese with familial exudative vitreoretinopathy

    PubMed Central

    Fei, Ping; Zhu, Xiong; Jiang, Zhilin; Ma, Shi; Li, Jing; Zhang, Qi; Zhou, Yu; Xu, Yu; Tai, Zhengfu; Zhang, Lin; Huang, Lulin; Yang, Zhenglin; Zhao, Peiquan; Zhu, Xianjun

    2015-01-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disease characterized by defects in the development of retinal vessels. However, known genetic mutations can only explain approximately 50% of FEVR patients. To assess the mutation frequency of Frizzled 4 (FZD4) in Chinese patients, we analysed patients with FEVR from 61 families from China to identify mutations in FZD4 and to study the effects of identified mutations on FZD4 function. All coding exons and adjacent intronic regions of FZD4 were amplified by polymerase chain reaction and subjected to Sanger sequencing analysis. Three mutations in the FZD4 gene were identified in these families. Of these, two were novel mutations: p.E134* and p.T503fs. Both mutations involve highly conserved residues and were not present in 800 normal individuals. Each of these two novel FZD4 mutations was introduced into wild-type FZD4 cDNA by site-directed mutagenesis. Wild-type and mutant FZD4 DNAs were introduced into HEK293 cells to analyse the function of FZD4 in Norrin-dependent activation of the Norrin/?-catenin pathway using luciferase reporter assays. Both the p.E134* and p.T503fs mutants failed to induce luciferase reporter activity in response to Norrin. Our study identified two novel FZD4 mutations in Chinese patients with FEVR. PMID:26530129

  8. New somatic mutations and WNK1-B4GALNT3 gene fusion in papillary thyroid carcinoma

    PubMed Central

    Ziviello, Carmela; Sepe, Romina; Bim, Larissa Valdemarin; Cacciola, Nunzio Antonio; Decaussin-Petrucci, Myriam; Pallante, Pierlorenzo; Fusco, Alfredo; Ciccodicola, Alfredo

    2015-01-01

    Papillary thyroid carcinoma (PTC) is the most frequent thyroid malignant neoplasia. Oncogene activation occurs in more than 70% of the cases. Indeed, about 40% of PTCs harbor mutations in BRAF gene, whereas RET rearrangements (RET/PTC oncogenes) are present in about 20% of cases. Finally, RAS mutations and TRK rearrangements account for about 5% each of these malignancies. We used RNA-Sequencing to identify fusion transcripts and mutations in cancer driver genes in a cohort of 18 PTC patients. Furthermore, we used targeted DNA sequencing to validate identified mutations. We extended the screening to 50 PTC patients and 30 healthy individuals. Using this approach we identified new missense mutations in CBL, NOTCH1, PIK3R4 and SMARCA4 genes. We found somatic mutations in DICER1, MET and VHL genes, previously found mutated in other tumors, but not described in PTC. We identified a new chimeric transcript generated by the fusion of WNK1 and B4GALNT3 genes, correlated with B4GALNT3 overexpression. Our data confirmed PTC genetic heterogeneity, revealing that gene expression correlates more with the mutation pattern than with tumor staging. Overall, this study provides new data about mutational landscape of this neoplasia, suggesting potential pharmacological adjuvant therapies against Notch signaling and chromatin remodeling enzymes. PMID:25803323

  9. Compound heterozygous mutations in PYCR1 further expand the phenotypic spectrum of De Barsy syndrome.

    PubMed

    Lin, Dar-Shong; Chang, Jui-Hsing; Liu, Hsuan-Liang; Wei, Chin-Hung; Yeung, Chun-Yan; Ho, Che-Sheng; Shu, Chyong-Hsin; Chiang, Ming-Fu; Chuang, Chih-Kuang; Huang, Yu-Wen; Wu, Tsu-Yen; Jian, Yuan-Ren; Huang, Zon-Darr; Lin, Shuan-Pei

    2011-12-01

    De Barsy syndrome (DBS) is characterized by progeroid features, ophthalmological abnormalities, intrauterine growth retardation, and cutis laxa. Recently, PYCR1 mutations were identified in cutis laxa with progeroid features. Herein, we report on a DBS patient born to a nonconsanguineous Chinese family. The exceptional observation of congenital glaucoma, aortic root dilatation, and idiopathic hypertrophic pyloric stenosis in this patient widened the range of symptoms that have been noted in DBS. Mutation analysis of PYCR1 revealed compound heterozygous PYCR1 mutations, including a p.P115fsX7 null mutation allele and a second allele with two missense mutations in cis: p.G248E and p.G297R. The effect of mutation results in a reduction of PYCR1 mRNA expression and PYCR1 protein expression in skin fibroblasts from the patient. The findings presented here suggest a mutation screening of PYCR1 and cardiovascular survey in patients with DBS. PMID:22052856

  10. Mutational and Functional Analysis Reveals ADAMTS18 Metalloproteinase as a Novel Oncogene in Melanoma

    PubMed Central

    Wei, Xiaomu; Prickett, Todd D.; Viloria, Cristina G.; Molinolo, Alfredo; Lin, Jimmy C.; Cardenas-Navia, Isabel; Cruz, Pedro; Rosenberg, Steven A.; Davies, Michael A.; Gershenwald, Jeffrey E.; López-Otín, Carlos; Samuels, Yardena

    2010-01-01

    The disintegrin-metalloproteinases with thrombospondin domains (ADAMTS) genes have been suggested to function as tumor suppressors as several have been found to be epigenetically silenced in various cancers. We performed a mutational analysis of the ADAMTS gene family in human melanoma and identified a large fraction of melanomas to harbor somatic mutations. To evaluate the functional consequences of the most commonly mutated gene, ADAMTS18, six of its mutations were biologically examined. ADAMTS18 mutations had little effect on melanoma cell growth under standard conditions, but reduced cell dependence on growth factors. ADAMTS18 mutations also reduced adhesion to laminin and increased migration in vitro and metastasis in vivo. Melanoma cells expressing mutant ADAMTS18 had reduced cell migration after shRNA-mediated knockdown of ADAMTS18, suggesting that ADAMTS18 mutations are growth-, migration- and metastasis- promoting in melanoma. PMID:21047771

  11. Molecular analysis in X-linked adrenoleukodystrophy patients: identification of a novel mutation.

    PubMed

    Durmaz, Asude; Atik, Tahir; Onay, Hüseyin; Canda, Ebru Erba?; Uçar, Sema Kalkan; Bademk?ran, Fikret; Coker, Mahmut; Co?ulu, Özgür; Özk?nay, Ferda

    2014-09-01

    X linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease characterized by progressive demyelination of the central nervous system, adrenocortical insufficiency and elevated levels of very long chain fatty acids (VLCFAs). It is caused by mutations in ABCD1 gene located at Xq28. More than 1,300 mutations have been identified to date which is unique to each patient. In this study we report the mutational analysis of 2 X-ALD patients (1 male and 1 female) showing variable clinical spectrum. The mutation analysis of the female patient revealed IVS5-6delC (c.1489-6delC) and p. P543L variations in compound heterozygous state. The male patient was found to be hemizygous for a novel mutation, p. R104P. In conclusion, while defining a novel mutation, the cases presented herein may contribute to the mutation and clinical spectrum of X-ALD. PMID:24788897

  12. Emergence of Hemagglutinin Mutations During the Course of Influenza Infection

    PubMed Central

    Cushing, Anna; Kamali, Amanda; Winters, Mark; Hopmans, Erik S.; Bell, John M.; Grimes, Susan M.; Xia, Li C.; Zhang, Nancy R.; Moss, Ronald B.; Holodniy, Mark; Ji, Hanlee P.

    2015-01-01

    Influenza remains a significant cause of disease mortality. The ongoing threat of influenza infection is partly attributable to the emergence of new mutations in the influenza genome. Among the influenza viral gene products, the hemagglutinin (HA) glycoprotein plays a critical role in influenza pathogenesis, is the target for vaccines and accumulates new mutations that may alter the efficacy of immunization. To study the emergence of HA mutations during the course of infection, we employed a deep-targeted sequencing method. We used samples from 17 patients with active H1N1 or H3N2 influenza infections. These patients were not treated with antivirals. In addition, we had samples from five patients who were analyzed longitudinally. Thus, we determined the quantitative changes in the fractional representation of HA mutations during the course of infection. Across individuals in the study, a series of novel HA mutations directly altered the HA coding sequence were identified. Serial viral sampling revealed HA mutations that either were stable, expanded or were reduced in representation during the course of the infection. Overall, we demonstrated the emergence of unique mutations specific to an infected individual and temporal genetic variation during infection. PMID:26538451

  13. Autosomal mutations affecting adhesion between wing surfaces in Drosophila melanogaster.

    PubMed

    Prout, M; Damania, Z; Soong, J; Fristrom, D; Fristrom, J W

    1997-05-01

    Integrins are evolutionarily conserved transmembrane alpha,beta heterodimeric receptors involved in cell-to-matrix and cell-to-cell adhesions. In Drosophila the position-specific (PS) integrins mediate the formation and maintenance of junctions between muscle and epidermis and between the two epidermal wing surfaces. Besides integrins, other proteins are implicated in integrin-dependent adhesion. In Drosophila, somatic clones of mutations in PS integrin genes disrupt adhesion between wing surfaces to produce wing blisters. To identify other genes whose products function in adhesion between wing surfaces, we conducted a screen for autosomal mutations that produce blisters in somatic wing clones. We isolated 76 independent mutations in 25 complementation groups, 15 of which contain more than one allele. Chromosomal sites were determined by deficiency mapping, and genetic interactions with mutations in the beta PS integrin gene myospheroid were investigated. Mutations in four known genes (blistered, Delta, dumpy and mastermind) were isolated. Mutations were isolated in three new genes (piopio, rhea and steamer duck) that affect myo-epidermal junctions or muscle function in embryos. Mutations in three other genes (kakapo, kiwi and moa) may also affect cell adhesion or muscle function at hatching. These new mutants provide valuable material for the study of integrin-dependent cell-to-cell adhesion. PMID:9136017

  14. Heteroduplex analysis of the dystrophin gene: Application to point mutation and carrier detection

    SciTech Connect

    Prior, T.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Western, L.M.; Bartolo, C.; Mendell, J.R.; Moxley, R.T.

    1994-03-01

    Approximately one-third of Duchenne muscular dystrophy patients have undefined mutations in the dystrophin gene. For carrier and prenatal studies in families without detectable mutations, the indirect restriction fragment length polymorphism linkage approach is used. Using a multiplex amplification and heteroduplex analysis of dystrophin exons, the authors identified nonsense mutations in two DMD patients. Although the nonsense mutations are predicted to severely truncate the dystrophin protein, both patients presented with mild clinical courses of the disease. As a result of identifying the mutation in the affected boys, direct carrier studies by heteroduplex analysis were extended to other relatives. The authors conclude that the technique is not only ideal for mutation detection but is also useful for diagnostic testing. 29 refs., 4 figs.

  15. Identification of Genetic Mutations in Human Lung Cancer by Targeted Sequencing

    PubMed Central

    Feng, Hongxiang; Wang, Xiaowei; Zhang, Zhenrong; Tang, Chuanning; Ye, Hua; Jones, Lindsey; Lou, Feng; Zhang, Dandan; Jiang, Shouwen; Sun, Hong; Dong, Haichao; Zhang, Guangchun; Liu, Zhiyuan; Dong, Zhishou; Guo, Baishuai; Yan, He; Yan, Chaowei; Wang, Lu; Su, Ziyi; Li, Yangyang; Nandakumar, Vijayalakshmi; Huang, Xue F; Chen, Si-Yi; Liu, Deruo

    2015-01-01

    Lung cancer remains the most prevalent malignancy and the primary cause of cancer-related deaths worldwide. Unique mutations patterns can be found in lung cancer subtypes, in individual cancers, or within a single tumor, and drugs that target these genetic mutations and signal transduction pathways are often beneficial to patients. In this study, we used the Ion Torrent AmpliSeq Cancer Panel to sequence 737 loci from 45 cancer-related genes and oncogenes to identify genetic mutations in 48 formalin-fixed, paraffin-embedded (FFPE) human lung cancer samples from Chinese patients. We found frequent mutations in EGFR, KRAS, PIK3CA, and TP53 genes. Moreover, we observed that a portion of the lung cancer samples harbored two or more mutations in these key genes. This study demonstrates the feasibility of using the Ion Torrent sequencing to efficiently identify genetic mutations in individual tumors for targeted lung cancer therapy. PMID:26244006

  16. Dominant ?-catenin mutations cause intellectual disability with recognizable syndromic features

    PubMed Central

    Tucci, Valter; Kleefstra, Tjitske; Hardy, Andrea; Heise, Ines; Maggi, Silvia; Willemsen, Marjolein H.; Hilton, Helen; Esapa, Chris; Simon, Michelle; Buenavista, Maria-Teresa; McGuffin, Liam J.; Vizor, Lucie; Dodero, Luca; Tsaftaris, Sotirios; Romero, Rosario; Nillesen, Willy N.; Vissers, Lisenka E.L.M.; Kempers, Marlies J.; Vulto-van Silfhout, Anneke T.; Iqbal, Zafar; Orlando, Marta; Maccione, Alessandro; Lassi, Glenda; Farisello, Pasqualina; Contestabile, Andrea; Tinarelli, Federico; Nieus, Thierry; Raimondi, Andrea; Greco, Barbara; Cantatore, Daniela; Gasparini, Laura; Berdondini, Luca; Bifone, Angelo; Gozzi, Alessandro; Wells, Sara; Nolan, Patrick M.

    2014-01-01

    The recent identification of multiple dominant mutations in the gene encoding ?-catenin in both humans and mice has enabled exploration of the molecular and cellular basis of ?-catenin function in cognitive impairment. In humans, ?-catenin mutations that cause a spectrum of neurodevelopmental disorders have been identified. We identified de novo ?-catenin mutations in patients with intellectual disability, carefully characterized their phenotypes, and were able to define a recognizable intellectual disability syndrome. In parallel, characterization of a chemically mutagenized mouse line that displays features similar to those of human patients with ?-catenin mutations enabled us to investigate the consequences of ?-catenin dysfunction through development and into adulthood. The mouse mutant, designated batface (Bfc), carries a Thr653Lys substitution in the C-terminal armadillo repeat of ?-catenin and displayed a reduced affinity for membrane-associated cadherins. In association with this decreased cadherin interaction, we found that the mutation results in decreased intrahemispheric connections, with deficits in dendritic branching, long-term potentiation, and cognitive function. Our study provides in vivo evidence that dominant mutations in ?-catenin underlie losses in its adhesion-related functions, which leads to severe consequences, including intellectual disability, childhood hypotonia, progressive spasticity of lower limbs, and abnormal craniofacial features in adults. PMID:24614104

  17. ?-Thalassemia mutations in the Kurdish population of northeastern Iraq.

    PubMed

    Jalal, Sana D; Al-Allawi, Nasir A S; Bayat, Nooshin; Imanian, Hasham; Najmabadi, Hossein; Faraj, Azad

    2010-01-01

    A random 123 carriers of ?-thalassemia (?-thal), identified by the Sulaimaniyah Provincial Premarital Screening Program in northeastern Iraq, were screened for ?-thal mutations using multiplex polymerase chain reaction followed by reverse hybridization StripAssay and direct sequencing. A total of 11 different ?-thal mutations was identified in the studied samples, of which eight represented 96% of the mutated ?-globin genes. These were IVS-II-1 (G>A), IVS-I-110 (G>A), codon 8 (-AA), codons 8/9 (+G), IVS-I-5 (G>C), codon 5 (-CT), IVS-I-6 (T>C) and IVS-I-1 (G>A). Other mutations were less common or sporadic. There were some notable differences in frequencies of various mutations in comparison to other eastern Mediterranean populations, as well as with previous studies of Iraqi Kurds. The latter illustrate the relative heterogeneity of the mutations distributed in Iraq, and the need to screen other areas of the country, to ensure the establishment of an effective prenatal diagnosis program. PMID:20854121

  18. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis.

    PubMed

    Kannengiesser, Caroline; Borie, Raphael; Ménard, Christelle; Réocreux, Marion; Nitschké, Patrick; Gazal, Steven; Mal, Hervé; Taillé, Camille; Cadranel, Jacques; Nunes, Hilario; Valeyre, Dominique; Cordier, Jean François; Callebaut, Isabelle; Boileau, Catherine; Cottin, Vincent; Grandchamp, Bernard; Revy, Patrick; Crestani, Bruno

    2015-08-01

    Pulmonary fibrosis is a fatal disease with progressive loss of respiratory function. Defective telomere maintenance leading to telomere shortening is a cause of pulmonary fibrosis, as mutations in the telomerase component genes TERT (reverse transcriptase) and TERC (RNA component) are found in 15% of familial pulmonary fibrosis (FPF) cases. However, so far, about 85% of FPF remain genetically uncharacterised.Here, in order to identify new genetic causes of FPF, we performed whole-exome sequencing, with a candidate-gene approach, of 47 affected subjects from 35 families with FPF without TERT and TERC mutations.We identified heterozygous mutations in regulator of telomere elongation helicase 1 (RTEL1) in four families. RTEL1 is a DNA helicase with roles in DNA replication, genome stability, DNA repair and telomere maintenance. The heterozygous RTEL1 mutations segregated as an autosomal dominant trait in FPF, and were predicted by structural analyses to severely affect the function and/or stability of RTEL1. In agreement with this, RTEL1-mutated patients exhibited short telomeres in comparison with age-matched controls.Our results provide evidence that heterozygous RTEL1 mutations are responsible for FPF and, thereby, extend the clinical spectrum of RTEL1 deficiency. Thus, RTEL1 enlarges the number of telomere-associated genes implicated in FPF. PMID:26022962

  19. LMX1B Mutations Cause Hereditary FSGS without Extrarenal Involvement

    PubMed Central

    Boyer, Olivia; Woerner, Stéphanie; Yang, Fan; Oakeley, Edward J.; Linghu, Bolan; Gribouval, Olivier; Tête, Marie-Josèphe; Duca, José S.; Klickstein, Lloyd; Damask, Amy J.; Szustakowski, Joseph D.; Heibel, Françoise; Matignon, Marie; Baudouin, Véronique; Chantrel, François; Champigneulle, Jacqueline; Martin, Laurent; Nitschké, Patrick; Gubler, Marie-Claire; Johnson, Keith J.; Chibout, Salah-Dine

    2013-01-01

    LMX1B encodes a homeodomain-containing transcription factor that is essential during development. Mutations in LMX1B cause nail-patella syndrome, characterized by dysplasia of the patellae, nails, and elbows and FSGS with specific ultrastructural lesions of the glomerular basement membrane (GBM). By linkage analysis and exome sequencing, we unexpectedly identified an LMX1B mutation segregating with disease in a pedigree of five patients with autosomal dominant FSGS but without either extrarenal features or ultrastructural abnormalities of the GBM suggestive of nail-patella–like renal disease. Subsequently, we screened 73 additional unrelated families with FSGS and found mutations involving the same amino acid (R246) in 2 families. An LMX1B in silico homology model suggested that the mutated residue plays an important role in strengthening the interaction between the LMX1B homeodomain and DNA; both identified mutations would be expected to diminish such interactions. In summary, these results suggest that isolated FSGS could result from mutations in genes that are also involved in syndromic forms of FSGS. This highlights the need to include these genes in all diagnostic approaches to FSGS that involve next-generation sequencing. PMID:23687361

  20. Search for Novel Candidate Mutations for Metronidazole Resistance in Helicobacter pylori Using Next-Generation Sequencing

    PubMed Central

    Binh, Tran Thanh; Suzuki, Rumiko; Trang, Tran Thi Huyen; Kwon, Dong Hyeon

    2015-01-01

    Metronidazole resistance is a key factor associated with Helicobacter pylori treatment failure. Although this resistance is mainly associated with mutations in the rdxA and frxA genes, the question of whether metronidazole resistance is caused by the inactivation of frxA alone is still debated. Furthermore, it is unclear whether there are other mutations involved in addition to the two genes that are associated with resistance. A metronidazole-resistant strain was cultured from the metronidazole-susceptible H. pylori strain 26695-1 by exposure to low concentrations of metronidazole. The genome sequences of both susceptible and resistant H. pylori strains were determined by Illumina next-generation sequencing, from which putative candidate resistance mutations were identified. Natural transformation was used to introduce PCR products containing candidate mutations into the susceptible parent strain 26695-1, and the metronidazole MIC was determined for each strain. Mutations in frxA (hp0642), rdxA (hp0954), and rpsU (hp0562) were confirmed by the Sanger method. The mutated sequence in rdxA was successfully transformed into strain 26695-1, and the transformants showed resistance to metronidazole. The transformants containing a single mutation in rdxA showed a low MIC (16 mg/liter), while those containing mutations in both rdxA and frxA showed a higher MIC (48 mg/liter). No transformants containing a single mutation in frxA or rpsU were obtained. Next-generation sequencing was used to identify mutations related to drug resistance. We confirmed that the mutations in rdxA are mainly associated with metronidazole resistance, and mutations in frxA are able to enhance H. pylori resistance only in the presence of rdxA mutations. Moreover, mutations in rpsU may play a role in metronidazole resistance. PMID:25645832

  1. An evaluation of common breast cancer gene mutations in a population of Ashkenazi Jews.

    PubMed Central

    Lalloo, F; Cochrane, S; Bulman, B; Varley, J; Elles, R; Howell, A; Evans, D G

    1998-01-01

    OBJECTIVES: In view of the recent reports of recurrent mutations in BRCA1 and BRCA2 in the Ashkenazi Jewish population, we have undertaken to assess the frequency of these mutations in this population attending for genetic counselling and risk assessment of familial breast cancer. DESIGN: Mutation screening for the 185delAG and the 5382insC mutations in BRCA1 and the 6174delT mutation in BRCA2 was performed on DNA samples from either subjects affected by breast or ovarian cancer or obligate gene carriers. The likelihood of the cancers being hereditary in each family was calculated. SUBJECTS: Blood samples were obtained from 26 affected subjects or obligate gene carriers from 23 Ashkenazi Jewish families, all with a history of either early onset breast or ovarian cancers, or multiple cases of breast or ovarian cancer. RESULTS: Twelve mutations have been identified in the 23 families (52%) of which eight (67%) were the 185delAG mutation, three (25%) were the 6174delT mutation, and one (8%) was the 5382insC mutation. While the majority of these mutations were identified in families with a greater than 50% probability of being hereditary under the CASH segregation model, three mutations were identified in families with a 35% or less probability. CONCLUSIONS: Genetic screening of the recurrent mutations in Ashkenazi Jewish families will lead to the availability of predictive testing in a reasonably large proportion, even if the family history of breast/ovarian cancer is not particularly strong. In our view it is possible to reassure high risk unaffected members of these families, if the screening is negative for these mutations, even if a sample from an affected member of the family is unavailable for previous screening. PMID:9475087

  2. Characterization of mutations in patients with multiple endocrine neoplasia type 1.

    PubMed Central

    Bassett, J H; Forbes, S A; Pannett, A A; Lloyd, S E; Christie, P T; Wooding, C; Harding, B; Besser, G M; Edwards, C R; Monson, J P; Sampson, J; Wass, J A; Wheeler, M H; Thakker, R V

    1998-01-01

    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder characterized by tumors of the parathyroids, pancreatic islets, and anterior pituitary. The MEN1 gene, on chromosome 11q13, has recently been cloned, and mutations have been identified. We have characterized such MEN1 mutations, assessed the reliability of SSCP analysis for the detection of these mutations, and estimated the age-related penetrance for MEN1. Sixty-three unrelated MEN1 kindreds (195 affected and 396 unaffected members) were investigated for mutations in the 2,790-bp coding region and splice sites, by SSCP and DNA sequence analysis. We identified 47 mutations (12 nonsense mutations, 21 deletions, 7 insertions, 1 donor splice-site mutation, and 6 missense mutations), that were scattered throughout the coding region, together with six polymorphisms that had heterozygosity frequencies of 2%-44%. More than 10% of the mutations arose de novo, and four mutation hot spots accounted for >25% of the mutations. SSCP was found to be a sensitive and specific mutational screening method that detected >85% of the mutations. Two hundred and one MEN1 mutant-gene carriers (155 affected and 46 unaffected) were identified, and these helped to define the age-related penetrance of MEN1 as 7%, 52%, 87%, 98%, 99%, and 100% at 10, 20, 30, 40, 50, and 60 years of age, respectively. These results provide the basis for a molecular-genetic screening approach that will supplement the clinical evaluation and genetic counseling of members of MEN1 families. PMID:9463336

  3. The TREAT-NMD DMD Global Database: Analysis of More than 7,000 Duchenne Muscular Dystrophy Mutations

    PubMed Central

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Bariši?, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ay?e; Topalo?lu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-01-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  4. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations.

    PubMed

    Bladen, Catherine L; Salgado, David; Monges, Soledad; Foncuberta, Maria E; Kekou, Kyriaki; Kosma, Konstantina; Dawkins, Hugh; Lamont, Leanne; Roy, Anna J; Chamova, Teodora; Guergueltcheva, Velina; Chan, Sophelia; Korngut, Lawrence; Campbell, Craig; Dai, Yi; Wang, Jen; Bariši?, Nina; Brabec, Petr; Lahdetie, Jaana; Walter, Maggie C; Schreiber-Katz, Olivia; Karcagi, Veronika; Garami, Marta; Viswanathan, Venkatarman; Bayat, Farhad; Buccella, Filippo; Kimura, En; Koeks, Zaïda; van den Bergen, Janneke C; Rodrigues, Miriam; Roxburgh, Richard; Lusakowska, Anna; Kostera-Pruszczyk, Anna; Zimowski, Janusz; Santos, Rosário; Neagu, Elena; Artemieva, Svetlana; Rasic, Vedrana Milic; Vojinovic, Dina; Posada, Manuel; Bloetzer, Clemens; Jeannet, Pierre-Yves; Joncourt, Franziska; Díaz-Manera, Jordi; Gallardo, Eduard; Karaduman, A Ay?e; Topalo?lu, Haluk; El Sherif, Rasha; Stringer, Angela; Shatillo, Andriy V; Martin, Ann S; Peay, Holly L; Bellgard, Matthew I; Kirschner, Jan; Flanigan, Kevin M; Straub, Volker; Bushby, Kate; Verschuuren, Jan; Aartsma-Rus, Annemieke; Béroud, Christophe; Lochmüller, Hanns

    2015-04-01

    Analyzing the type and frequency of patient-specific mutations that give rise to Duchenne muscular dystrophy (DMD) is an invaluable tool for diagnostics, basic scientific research, trial planning, and improved clinical care. Locus-specific databases allow for the collection, organization, storage, and analysis of genetic variants of disease. Here, we describe the development and analysis of the TREAT-NMD DMD Global database (http://umd.be/TREAT_DMD/). We analyzed genetic data for 7,149 DMD mutations held within the database. A total of 5,682 large mutations were observed (80% of total mutations), of which 4,894 (86%) were deletions (1 exon or larger) and 784 (14%) were duplications (1 exon or larger). There were 1,445 small mutations (smaller than 1 exon, 20% of all mutations), of which 358 (25%) were small deletions and 132 (9%) small insertions and 199 (14%) affected the splice sites. Point mutations totalled 756 (52% of small mutations) with 726 (50%) nonsense mutations and 30 (2%) missense mutations. Finally, 22 (0.3%) mid-intronic mutations were observed. In addition, mutations were identified within the database that would potentially benefit from novel genetic therapies for DMD including stop codon read-through therapies (10% of total mutations) and exon skipping therapy (80% of deletions and 55% of total mutations). PMID:25604253

  5. BRAF Mutations in Canine Cancers

    PubMed Central

    Mochizuki, Hiroyuki; Kennedy, Katherine; Shapiro, Susan G.; Breen, Matthew

    2015-01-01

    Activating mutations of the BRAF gene lead to constitutive activation of the MAPK pathway. Although many human cancers carry the mutated BRAF gene, this mutation has not yet been characterized in canine cancers. As human and canine cancers share molecular abnormalities, we hypothesized that BRAF gene mutations also exist in canine cancers. To test this hypothesis, we sequenced the exon 15 of BRAF, mutation hot spot of the gene, in 667 canine primary tumors and 38 control tissues. Sequencing analysis revealed that a single nucleotide T to A transversion at nucleotide 1349 occurred in 64 primary tumors (9.6%), with particularly high frequency in prostatic carcinoma (20/25, 80%) and urothelial carcinoma (30/45, 67%). This mutation results in the amino acid substitution of glutamic acid for valine at codon 450 (V450E) of canine BRAF, corresponding to the most common BRAF mutation in human cancer, V600E. The evolutional conservation of the BRAF V600E mutation highlights the importance of MAPK pathway activation in neoplasia and may offer opportunity for molecular diagnostics and targeted therapeutics for dogs bearing BRAF-mutated cancers. PMID:26053201

  6. Brief report: MECP2 mutations in people without Rett syndrome.

    PubMed

    Suter, Bernhard; Treadwell-Deering, Diane; Zoghbi, Huda Y; Glaze, Daniel G; Neul, Jeffrey L

    2014-03-01

    Mutations in Methyl-CpG-Binding protein 2 (MECP2) are commonly associated with the neurodevelopmental disorder Rett syndrome (RTT). However, some people with RTT do not have mutations in MECP2, and interestingly there have been people identified with MECP2 mutations that do not have the clinical features of RTT. In this report we present four people with neurodevelopmental abnormalities and clear RTT-disease causing MECP2 mutation but lacking the characteristic clinical features of RTT. One patient's symptoms suggest an extension of the known spectrum of MECP2 associated phenotypes to include global developmental delay with obsessive compulsive disorder and attention deficit hyperactivity disorder. These results reemphasize that RTT should remain a clinical diagnosis, based on the recent consensus criteria. PMID:23921973

  7. Immunogenicity of somatic mutations in human gastrointestinal cancers.

    PubMed

    Tran, Eric; Ahmadzadeh, Mojgan; Lu, Yong-Chen; Gros, Alena; Turcotte, Simon; Robbins, Paul F; Gartner, Jared J; Zheng, Zhili; Li, Yong F; Ray, Satyajit; Wunderlich, John R; Somerville, Robert P; Rosenberg, Steven A

    2015-12-11

    It is unknown whether the human immune system frequently mounts a T cell response against mutations expressed by common epithelial cancers. Using a next-generation sequencing approach combined with high-throughput immunologic screening, we demonstrated that tumor-infiltrating lymphocytes (TILs) from 9 out of 10 patients with metastatic gastrointestinal cancers contained CD4(+) and/or CD8(+) T cells that recognized one to three neo-epitopes derived from somatic mutations expressed by the patient's own tumor. There were no immunogenic epitopes shared between these patients. However, we identified in one patient a human leukocyte antigen-C*08:02-restricted T cell receptor from CD8(+) TILs that targeted the KRAS(G12D) hotspot driver mutation found in many human cancers. Thus, a high frequency of patients with common gastrointestinal cancers harbor immunogenic mutations that can potentially be exploited for the development of highly personalized immunotherapies. PMID:26516200

  8. MECP2 Mutations in People without Rett Syndrome

    PubMed Central

    Suter, Bernhard; Treadwell-Deering, Diane; Zoghbi, Huda Y.; Glaze, Daniel G.; Neul, Jeffrey L.

    2013-01-01

    Mutations in Methyl-CpG-Binding protein 2 (MECP2) are commonly associated with and the neurodevelopmental disorder Rett syndrome (RTT). However, some people with RTT do not have mutations in MECP2, and interestingly there have been people identified with MECP2 mutations that do not have the clinical features of RTT. In this report we present four people with neurodevelopmental abnormalities and clear RTT-disease causing MECP2 mutation but lacking the characteristic clinical features of RTT. One patient's symptoms suggest an extension of the known spectrum of MECP2 associated phenotypes to include Global Developmental Delay (GDD) with Obsessive Compulsive Disorder (OCD) and Attention Deficit Hyperactivity Disorder (ADHD). These results furthermore reemphasize that RTT should remain a clinical diagnosis, based on the recent refurbished consensus criteria. PMID:23921973

  9. Analysis of 16 cystic fibrosis mutations in Mexican patients

    SciTech Connect

    Villalobos-Torres, C.; Rojas-Martinez, A.; Barrera-Saldana, H.A.

    1997-04-14

    We carried out molecular analysis of 80 chromosomes from 40 unrelated Mexican patients with a diagnosis of cystic fibrosis. The study was performed in two PCR steps: a preliminary one to identify mutation AF508, the most frequent cause of cystic fibrosis worldwide, and the second a reverse dot-blot with allele-specific oligonucleotide probes to detect 15 additional common mutations in the Caucasian population. A frequency of 45% for AF508 was found, making it the most common in our sample of Mexican patients. Another five mutations (G542X, 3849 + 10 kb C{r_arrow}T, N1303K, S549N, and 621 + 1 G{r_arrow}T) were detected, and these accounted for 11.25%. The remaining mutations (43.75%) were undetectable with the methodology used. 20 refs., 2 tabs.

  10. Recurrence of Marfan syndrome as a result of parental germ-line mosaicism for an FBN1 mutation.

    PubMed Central

    Rantamäki, T; Kaitila, I; Syvänen, A C; Lukka, M; Peltonen, L

    1999-01-01

    Mutations in the FBN1 gene cause Marfan syndrome (MFS), a dominantly inherited connective tissue disease. Almost all the identified FBN1mutations have been family specific, and the rate of new mutations is high. We report here a de novo FBN1mutation that was identified in two sisters with MFS born to clinically unaffected parents. The paternity and maternity were unequivocally confirmed by genotyping. Although one of the parents had to be an obligatory carrier for the mutation, we could not detect the mutation in the leukocyte DNA of either parent. To identify which parent was a mosaic for the mutation we analyzed several tissues from both parents, with a quantitative and sensitive solid-phase minisequencing method. The mutation was not, however, detectable in any of the analyzed tissues. Although the mutation could not be identified in a sperm sample from the father or in samples of multiple tissue from the mother, we concluded that the mother was the likely mosaic parent and that the mutation must have occurred during the early development of her germ-line cells. Mosaicism confined to germ-line cells has rarely been reported, and this report of mosaicism for the FBN1 mutation in MFS represents an important case, in light of the evaluation of the recurrence risk in genetic counseling of families with MFS. PMID:10090884

  11. Mutation spectrum and genotype–phenotype correlation of hearing loss patients caused by SLC26A4 mutations in the Japanese: a large cohort study

    PubMed Central

    Miyagawa, Maiko; Nishio, Shin-ya; Usami, Shin-ichi

    2014-01-01

    Mutations in SLC26A4 cause a broad phenotypic spectrum, from typical Pendred syndrome to nonsyndromic hearing loss associated with enlarged vestibular aqueduct. Identification of these mutations is important for accurate diagnosis, proper medical management and appropriate genetic counseling and requires updated information regarding spectrum, clinical characteristics and genotype–phenotype correlations, based on a large cohort. In 100 patients with bilateral enlarged vestibular aqueduct among 1511 Japanese hearing loss probands registered in our gene bank, goiter data were available for 79, of whom 15 had Pendred syndrome and 64 had nonsyndromic hearing loss. We clarified the mutation spectrum for the SLC26A4 mutations and also summarized hearing levels, progression, fluctuation and existence of genotype–phenotype correlation. SLC26A4 mutations were identified in 82 of the 100 patients (82.0%). Of the Pendred syndrome patients, 93% (14/15) were carriers, as were 77% (49/64) of the nonsyndromic hearing loss patients. Clinical characteristics of patients with SLC26A4 mutations were congenital, fluctuating and progressive hearing loss usually associated with vertigo and/or goiter. We found no genotype–phenotype correlations, indicating that, unlike in the case of GJB2 mutations, the phenotype cannot be predicted from the genotype. Our mutation analysis confirmed the importance of mutations in the SLC26A4 gene among hearing loss patients with enlarged vestibular aqueduct and revealed the mutation spectrum, essential information when performing genetic testing. PMID:24599119

  12. "Coarse" Notes Population Genetics INTRODUCTION TO MUTATION

    E-print Network

    Gomulkiewicz, Richard

    "Coarse" Notes Population Genetics III-1 MUTATION INTRODUCTION TO MUTATION READING: Hedrick pp. 247­260 and 265­272 ­ Mutation plays two key roles in evolution: (1) It is an evolutionary force that changes gene must explain processes that create mutations. ­ Most mutations are rare. · Alleles are rarely

  13. Mutations in XPR1 cause primary familial brain calcification associated with altered phosphate export

    PubMed Central

    Legati, Andrea; Giovannini, Donatella; Nicolas, Gaël; López-Sánchez, Uriel; Quintáns, Beatriz; Oliveira, João; Sears, Renee L.; Marisa Ramos, Eliana; Spiteri, Elizabeth; Sobrido, María-Jesús; Carracedo, Ángel; Castro-Fernández, Cristina; Cubizolle, Stéphanie; Fogel, Brent L.; Goizet, Cyril; Jen, Joanna C.; Kirdlarp, Suppachok; Lang, Anthony E.; Miedzybrodzka, Zosia; Mitarnun, Witoon; Paucar, Martin; Paulson, Henry; Pariente, Jérémie; Richard, Anne-Claire; Salins, Naomi S.; Simpson, Sheila A.; Striano, Pasquale; Svenningsson, Per; Tison, François; Unni, Vivek K.; Vanakker, Olivier; Wessels, Marja W.; Wetchaphanphesat, Suppachok; Yang, Michele; Boller, Francois; Campion, Dominique; Hannequin, Didier; Sitbon, Marc; Geschwind, Daniel H.; Battini, Jean-Luc; Coppola, Giovanni

    2015-01-01

    Primary familial brain calcification (PFBC) is a neurological disease characterized by calcium phosphate deposits in the basal ganglia and other brain regions, thus far associated with SLC20A2, PDGFB, or PDGFRB mutations. We identified in multiple PFBC families mutations in XPR1, a gene encoding a retroviral receptor with phosphate export function. These mutations alter phosphate export, providing a direct evidence of an impact of XPR1 and phosphate homeostasis in PFBC. PMID:25938945

  14. Identification and genotype/phenotype correlation of mutations in a large German cohort with hearing loss.

    PubMed

    Beck, Christopher; Pérez-Álvarez, Jose Carmelo; Sigruener, Alexander; Haubner, Frank; Seidler, Till; Aslanidis, Charalampos; Strutz, Jürgen; Schmitz, Gerd

    2015-10-01

    The prevalence of hearing impairment is estimated as approximately 1 on 1,000 newborn children. To assess a higher mutation detection rate in individuals with hearing loss a three-step mutation screening program consisting of GJB2 in first line, then GJB1, GJB3 and GJB6 (second step) and if tested negative or heterozygote, testing of GJA1, GJB4, SLC26A4 and PJVK (third) was performed. Audiograms were derived from all patients to characterize audiological features of GJB2 mutations especially. In 59 patients (31.3%) of the 188 probands, the hearing impairment was due to GJB2 mutations, 45 (23.9%) of these being homozygous for 35delG mutation and 14 (7.4%) compound heterozygous for GJB2 mutations in the coding region of exon 2 whereas no significant sequence variation was found in exon 1. In 22 (11.7%) additional patients a single recessive mutation in GJB2, GJB3, GJB6 and SLC26A4 without a second mutation on the other allele was identified, making genetic counseling difficult. Our study showed significant difference in hearing loss degree in the patients with GJB2-mutations. Forty-five (45.5%) GJB2-cases were identified in 99 individuals diagnosed with severe to profound hearing loss, 14 (17.7%) GJB2-cases were identified in 79 individuals with moderate deafness whereas no clear GJB2 mutation was found in 10 patients with mild hearing loss (p < 0.001). Revealing a high variability of hearing levels in identical genotypes (even intrafamilial), a significant genotype-phenotype correlation could not be established. Based on the identified mutations spectrum and frequencies, speaking mostly of GJB2, a step by step screening for mutations can be devised and in addition may lead to a better stratification of patients for specific therapeutical approaches. PMID:25214170

  15. Mutational screening of the USH2A gene in Spanish USH patients reveals 23 novel pathogenic mutations

    PubMed Central

    2011-01-01

    Background Usher Syndrome type II (USH2) is an autosomal recessive disorder, characterized by moderate to severe hearing impairment and retinitis pigmentosa (RP). Among the three genes implicated, mutations in the USH2A gene account for 74-90% of the USH2 cases. Methods To identify the genetic cause of the disease and determine the frequency of USH2A mutations in a cohort of 88 unrelated USH Spanish patients, we carried out a mutation screening of the 72 coding exons of this gene by direct sequencing. Moreover, we performed functional minigene studies for those changes that were predicted to affect splicing. Results As a result, a total of 144 DNA sequence variants were identified. Based upon previous studies, allele frequencies, segregation analysis, bioinformatics' predictions and in vitro experiments, 37 variants (23 of them novel) were classified as pathogenic mutations. Conclusions This report provide a wide spectrum of USH2A mutations and clinical features, including atypical Usher syndrome phenotypes resembling Usher syndrome type I. Considering only the patients clearly diagnosed with Usher syndrome type II, and results obtained in this and previous studies, we can state that mutations in USH2A are responsible for 76.1% of USH2 disease in patients of Spanish origin. PMID:22004887

  16. Analysis of mutation of the c-Kit gene and PDGFRA in gastrointestinal stromal tumors

    PubMed Central

    XU, CHUN-WEI; LIN, SHAN; WANG, WU-LONG; GAO, WEN-BIN; LV, JIN-YAN; GAO, JING-SHAN; ZHANG, LI-YING; LI, YANG; WANG, LIN; ZHANG, YU-PING; TIAN, YU-WANG

    2015-01-01

    The aim of the present study was to investigate mutation status of the c-Kit gene (KIT) and PDGFRA in patients with a gastrointestinal stromal tumor (GIST). In total, 93 patients with a GIST were included in the study, in which polymerase chain reaction amplification and gene sequencing were used to detect the sequences of exons 9, 11, 13 and 17 in KIT and exons 12 and 18 in PDGFRA. KIT mutations were detected in 64 cases (68.82%), of which exon 11 mutations were detected in 56 cases (60.22%), exon 13 mutations were detected in three cases (3.23%) and one case (1.08%) was shown to have a mutation in exon 17. The most common mutation in exon 11 was a deletion, which accounted for 55.36% (31/56) of the cases, followed by a point mutation observed in 26.79% (15/56) of the cases, while an insertion (tandem repeats) was identified in 14.29% (8/56) of the cases, and 3.57% (2/56) of the exon 11 mutations were deletions associated with a point mutation. The majority of the mutations were heterozygous, with only a few homozygous mutations. Mutational analysis revealed the mutations to be more concentrated in the classic hot zone at the 5?-end, followed by the tandem repeat frame at the 3?-end. In four cases, a mutation was detected in exon 18 of PDGFRA, of which one was associated with a mutation in KIT. The remaining three cases (10.34%, 3/29) were not associated with mutations in KIT and accounted for 37.5% (3/8) of the CD117-negative GIST cases. Therefore, the majority of the GIST cases were characterized by mutations in KIT or PDGFRA, which were directly associated with the disease. Pairs of different mutations in the same exon of KIT, or KIT mutations coupled with pairs of mutations in PDGFRA, were detected in a small number of patients. Imatinib is a small molecule tyrosine kinase inhibitor and is the first line targeted treatment for GIST, resulting in markedly improved survival rates. Thus, gene mutation genotyping may provide inspiration and guidance for imatinib-based targeted cancer therapy.

  17. ABCD1 mutations and phenotype distribution in Chinese patients with X-linked adrenoleukodystrophy.

    PubMed

    Niu, Yan-Fang; Ni, Wang; Wu, Zhi-Ying

    2013-06-10

    X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder resulting from mutations within the ABCD1 gene. Adrenomyeloneuropathy (AMN) and childhood cerebral ALD (CCALD) are most common phenotypes in the Western ALD patients. Here we performed mutation analysis of ABCD1 in 10 Chinese ALD families and identified 8 mutations, including one novel deletion (c.1477_1488+11del23) and 7 known mutations. Mutations c.1772G>A and c.1816T>C were first reported in the Chinese patients. Mutations c.1661G>A and c.1679C>T were demonstrated to be de novo mutations. The dinucleotide deletion 1415_16delAG, described as a mutational hotspot in different ethnic groups, was identified in two families. In addition, we performed a retrospective nation-wide mutation study of X-linked ALD in China based on a literature review. The retrospective study further confirmed the hypothesis that exon 6 is a potential mutation cluster region in the Asian populations. Furthermore, it suggested that CCALD is the most common phenotype in China. PMID:23566833

  18. ADCY5 mutations are another cause of benign hereditary chorea

    PubMed Central

    Mencacci, Niccolo E.; Wiethoff, Sarah; Hersheson, Joshua; Ryten, Mina; Balint, Bettina; Ganos, Christos; Stamelou, Maria; Quinn, Niall; Houlden, Henry; Wood, Nicholas W.; Bhatia, Kailash P.

    2015-01-01

    Objective: To determine the contribution of ADCY5 mutations in cases with genetically undefined benign hereditary chorea (BHC). Methods: We studied 18 unrelated cases with BHC (7 familial, 11 sporadic) who were negative for NKX2-1 mutations. The diagnosis of BHC was based on the presence of a childhood-onset movement disorder, predominantly characterized by chorea and no other major neurologic features. ADCY5 analysis was performed by whole-exome sequencing or Sanger sequencing. ADCY5 and NKX2-1 expression during brain development and in the adult human brain was assessed using microarray analysis of postmortem brain tissue. Results: The c.1252C>T; p.R418W mutation was identified in 2 cases (1 familial, 1 sporadic). The familial case inherited the mutation from the affected father, who had a much milder presentation, likely due to low-grade somatic mosaicism. The mutation was de novo in the sporadic case. The clinical presentation of these cases featured nonparoxysmal generalized chorea, as well as dystonia in the most severely affected, but no facial myokymia. We observed significant progression of symptoms in ADCY5 mutation carriers, in contrast to BHC secondary to NKX2-1 mutations. The difference in the clinical course is mirrored by the brain expression data, showing increasing ADCY5 expression in the striatum during brain development, whereas NKX2-1 shows an opposite trend. Conclusions: Our study identifies mutations in ADCY5, the gene previously linked to familial dyskinesia with facial myokymia, as a cause of familial and sporadic BHC. ADCY5 genetic analysis should be performed in cases with a benign choreiform movement disorder even in the absence of facial myokymia. PMID:26085604

  19. Novel heteroplasmic frameshift and missense somatic mitochondrial DNA mutations in oral cancer of betel quid chewers.

    PubMed

    Tan, Duan-Jun; Chang, Julia; Chen, Woan-Ling; Agress, Lesley J; Yeh, Kun-Tu; Wang, Baotyan; Wong, Lee-Jun C

    2003-06-01

    Mitochondrial DNA (mtDNA) has been proposed to be involved in carcinogenesis because of its high susceptibility to oxidative DNA damage and limited repair mechanisms. For investigation of the potential role of somatic mtDNA mutations in the tumorigenesis of oral cancer, we screened the occurrence of mtDNA mutations by the temporal temperature gradient gel electrophoresis method. We amplified the entire mitochondrial genome by use of 32 pairs of overlapping primers, and to identify the mutations, we sequenced DNA fragments showing different banding patterns between normal and tumor mtDNA. Fourteen of eighteen (77.8%) oral carcinomas displayed somatic mtDNA mutations, with a total of 26 mutations. Among them, six were in the mRNA coding region. Three were missense mutations (C14F, H186R, T173P) in NADH dehydrogenase subunit 2, and one was a frameshift mutation, 9485delC, in cytochrome c oxidase subunit III. Eight (44%) tumors had insertion or deletion mutations in the nucleotide position 303-309 poly C region of the D-loop. Multiple large deletions were also observed. Our results demonstrate that somatic mtDNA mutations occur in oral cancer. Some missense and frameshift mutations may play an important role in the tumorigenesis of this carcinoma. More extensive biochemical and molecular studies will be necessary for determining the pathologic effect of these somatic mutations. PMID:12696067

  20. Seventeen Complementation Groups of Mutations Decreasing Meiotic Recombination in Schizosaccharomyces Pombe

    PubMed Central

    DeVeaux, L. C.; Hoagland, N. A.; Smith, G. R.

    1992-01-01

    We have analyzed 43 recessive mutations reducing meiotic intragenic recombination in Schizosaccharomyces pombe. These mutations were isolated by a screen for reduced plasmid-by-chromosome recombination at the ade6 locus. Sixteen of the mutations define 10 new complementation groups, bringing to 17 the number of genes identified to be involved in meiotic recombination. The mutations were grouped into three discrete classes depending on the severity of the recombination deficiency in crosses involving the ade6-M26 recombination hotspot. Class I mutations caused at least a 1000-fold reduction in M26-stimulated intragenic recombination at the ade6 locus. Class II mutations reduced M26-stimulated recombination approximately 100-fold. Class III mutations caused a 3-10-fold reduction in either M26-stimulated or non-hotspot recombination. We obtained multiple alleles of class I and class II mutations, suggesting that we may be nearing saturation for mutations of this type. As a first step toward mapping, we used mitotic segregation to assign fourteen of the rec genes to chromosomes. Mutations in the six rec genes tested also caused a decrease in intragenic recombination at the ura4 locus; five of these mutations also reduced intergenic recombination between the pro2 and arg3 genes. These results indicate that these multiple rec gene products are required for high level meiotic recombination throughout the S. pombe genome. PMID:1541389

  1. Identification of Mutations Underlying 20 Inborn Errors of Metabolism in the United Arab Emirates Population

    PubMed Central

    Ben-Rebeh, Imen; Hertecant, Jozef L.; Al-Jasmi, Fatma A.; Aburawi, Hanan E.; Al-Yahyaee, Said A.; Al-Gazali, Lihadh

    2012-01-01

    Inborn errors of metabolism (IEM) are frequently encountered by physicians in the United Arab Emirates (UAE). However, the mutations underlying a large number of these disorders have not yet been determined. Therefore, the objective of this study was to identify the mutations underlying a number of IEM disorders among UAE residents from both national and expatriate families. A case series of patients from 34 families attending the metabolic clinic at Tawam Hospital were clinically evaluated, and molecular testing was carried out to determine their causative mutations. The mutation analysis was carried out at molecular genetics diagnostic laboratories. Thirty-eight mutations have been identified as responsible for twenty IEM disorders, including in the metabolism of amino acids, lipids, steroids, metal transport and mitochondrial energy metabolism, and lysosomal storage disorders. Nine of the identified mutations are novel, including two missense mutations, three premature stop codons and four splice site mutations. Mutation analysis of IEM disorders in the UAE population has an important impact on molecular diagnosis and genetic counseling for families affected by these disorders. PMID:22106832

  2. Novel myosin mutations for hereditary hearing loss revealed by targeted genomic capture and massively parallel sequencing

    PubMed Central

    Brownstein, Zippora; Abu-Rayyan, Amal; Karfunkel-Doron, Daphne; Sirigu, Serena; Davidov, Bella; Shohat, Mordechai; Frydman, Moshe; Houdusse, Anne; Kanaan, Moien; Avraham, Karen B

    2014-01-01

    Hereditary hearing loss is genetically heterogeneous, with a large number of genes and mutations contributing to this sensory, often monogenic, disease. This number, as well as large size, precludes comprehensive genetic diagnosis of all known deafness genes. A combination of targeted genomic capture and massively parallel sequencing (MPS), also referred to as next-generation sequencing, was applied to determine the deafness-causing genes in hearing-impaired individuals from Israeli Jewish and Palestinian Arab families. Among the mutations detected, we identified nine novel mutations in the genes encoding myosin VI, myosin VIIA and myosin XVA, doubling the number of myosin mutations in the Middle East. Myosin VI mutations were identified in this population for the first time. Modeling of the mutations provided predicted mechanisms for the damage they inflict in the molecular motors, leading to impaired function and thus deafness. The myosin mutations span all regions of these molecular motors, leading to a wide range of hearing phenotypes, reinforcing the key role of this family of proteins in auditory function. This study demonstrates that multiple mutations responsible for hearing loss can be identified in a relatively straightforward manner by targeted-gene MPS technology and concludes that this is the optimal genetic diagnostic approach for identification of mutations responsible for hearing loss. PMID:24105371

  3. Ten novel ORF15 mutations confirm mutational hot spot in the RPGR gene in European patients with X-linked retinitis pigmentosa.

    PubMed

    Pusch, Carsten M; Broghammer, Martina; Jurklies, Bernhard; Besch, Dorothea; Jacobi, Felix K

    2002-11-01

    RGPR was the first gene found to be mutated in XLRP, the subtype of RP displaying the most severe form of retinal degeneration with partial or complete blindness in the third or fourth decade of life. Despite the RP3 locus on Xp21.1 accounting for 60-90% of XLRP, only 10-20% of identified RPGR mutations were reported in earlier analyses. This discrepancy appeared to be resolved when Vervoort et al. identified a mutational hot spot in a new purine-rich 3' exon (ORF15) that accounted for 60% of their XLRP patients [Vervoort et al., 2000]. In our mutation screening of 37 unrelated European XLRP patients we identified two recently described deletions and 10 novel mutations in exon ORF15 of RPGR, 4 of which were nonsense and 6 frameshift mutations. The latter included one duplication and 5 deletion mutations, all of which lead to a downstream premature termination. No mutations were detected in the additionally screened new exon ORF14. The data reported here, together with previous findings, document a significant clustering of mutations as well as polymorphisms in ORF15 of RPGR. In our unselected XLRP patient population, ORF15 mutations constitute 32% of cases, a finding that contradicts the results of Vervoort and coworkers [Vervoort et al., 2000] but is in agreement with a more recent study on North American XLRP patients [Breuer et al., 2002]. The observed prevalence is sufficient to justify an initial mutation screening of ORF15 in the genetically heterogeneous group of XLRP. PMID:12402343

  4. Linkage and mutation analysis of Thomsen and Becker myotonia families

    SciTech Connect

    Koty, P.P.; Pegoraro, E.; Hoffman, E.P.

    1994-09-01

    Thomsen (autosomal dominant) and Becker (autosomal recessive) myotonias are characterized by the inability for muscle relaxation after voluntary, mechanical, or electrical stimulation. Families with both diseases have been linked to the skeletal muscle chloride channel (CLC1) on chromosome 7q35; however, only 2 gene mutations have been identified, and the reasons underlying the alternative dominant or recessive inheritance are not clear. We used linkage analysis and SSCP of 23 exons to screen 8 families (56 individuals) and 7 isolated cases with the diagnosis of Thomsen/Becker myotonia. A novel mutation (1290M) in exon 8 was detected in a family with Thomsen disease. Three additional families showed the previously described G230E change. Thus, chloride channel mutations could be identified in 4/5 families showing dominant inheritance. We were able to exclude linkage to the CLC1 gene in the fifth family. In patients with recessive Becker disease, an isolated case had two unique conformers, one causing a novel A437T change in exon 12. We also identified the previously reported F413C change in a second family. We found significant differences in the clinical picture between families with different mutations but also in families with the same mutation. Our data indicates that DNA studies are critical for correct diagnosis of the myotonias.

  5. Genome-wide analysis of noncoding regulatory mutations in cancer.

    PubMed

    Weinhold, Nils; Jacobsen, Anders; Schultz, Nikolaus; Sander, Chris; Lee, William

    2014-11-01

    Cancer primarily develops because of somatic alterations in the genome. Advances in sequencing have enabled large-scale sequencing studies across many tumor types, emphasizing the discovery of alterations in protein-coding genes. However, the protein-coding exome comprises less than 2% of the human genome. Here we analyze the complete genome sequences of 863 human tumors from The Cancer Genome Atlas and other sources to systematically identify noncoding regions that are recurrently mutated in cancer. We use new frequency- and sequence-based approaches to comprehensively scan the genome for noncoding mutations with potential regulatory impact. These methods identify recurrent mutations in regulatory elements upstream of PLEKHS1, WDR74 and SDHD, as well as previously identified mutations in the TERT promoter. SDHD promoter mutations are frequent in melanoma and are associated with reduced gene expression and poor prognosis. The non-protein-coding cancer genome remains widely unexplored, and our findings represent a step toward targeting the entire genome for clinical purposes. PMID:25261935

  6. Mutations Preventing Regulated Exon Skipping in MET Cause Osteofibrous Dysplasia.

    PubMed

    Gray, Mary J; Kannu, Peter; Sharma, Swarkar; Neyt, Christine; Zhang, Dongping; Paria, Nandina; Daniel, Philip B; Whetstone, Heather; Sprenger, Hans-Georg; Hammerschmidt, Philipp; Weng, Angela; Dupuis, Lucie; Jobling, Rebekah; Mendoza-Londono, Roberto; Dray, Michael; Su, Peiqiang; Wilson, Megan J; Kapur, Raj P; McCarthy, Edward F; Alman, Benjamin A; Howard, Andrew; Somers, Gino R; Marshall, Christian R; Manners, Simon; Flanagan, Adrienne M; Rathjen, Karl E; Karol, Lori A; Crawford, Haemish; Markie, David M; Rios, Jonathan J; Wise, Carol A; Robertson, Stephen P

    2015-12-01

    The periosteum contributes to bone repair and maintenance of cortical bone mass. In contrast to the understanding of bone development within the epiphyseal growth plate, factors that regulate periosteal osteogenesis have not been studied as intensively. Osteofibrous dysplasia (OFD) is a congenital disorder of osteogenesis and is typically sporadic and characterized by radiolucent lesions affecting the cortical bone immediately under the periosteum of the tibia and fibula. We identified germline mutations in MET, encoding a receptor tyrosine kinase, that segregate with an autosomal-dominant form of OFD in three families and a mutation in a fourth affected subject from a simplex family and with bilateral disease. Mutations identified in all families with dominant inheritance and in the one simplex subject with bilateral disease abolished the splice inclusion of exon 14 in MET transcripts, which resulted in a MET receptor (MET(?14)) lacking a cytoplasmic juxtamembrane domain. Splice exclusion of this domain occurs during normal embryonic development, and forced induction of this exon-exclusion event retarded osteoblastic differentiation in vitro and inhibited bone-matrix mineralization. In an additional subject with unilateral OFD, we identified a somatic MET mutation, also affecting exon 14, that substituted a tyrosine residue critical for MET receptor turnover and, as in the case of the MET(?14) mutations, had a stabilizing effect on the mature protein. Taken together, these data show that aberrant MET regulation via the juxtamembrane domain subverts core MET receptor functions that regulate osteogenesis within cortical diaphyseal bone. PMID:26637977

  7. Germline BAP1 Mutations Predispose to Renal Cell Carcinomas

    PubMed Central

    Popova, Tatiana; Hebert, Lucie; Jacquemin, Virginie; Gad, Sophie; Caux-Moncoutier, Virginie; Dubois-d’Enghien, Catherine; Richaudeau, Bénédicte; Renaudin, Xavier; Sellers, Jason; Nicolas, André; Sastre-Garau, Xavier; Desjardins, Laurence; Gyapay, Gabor; Raynal, Virginie; Sinilnikova, Olga M.; Andrieu, Nadine; Manié, Elodie; de Pauw, Antoine; Gesta, Paul; Bonadona, Valérie; Maugard, Christine M.; Penet, Clotilde; Avril, Marie-Françoise; Barillot, Emmanuel; Cabaret, Odile; Delattre, Olivier; Richard, Stéphane; Caron, Olivier; Benfodda, Meriem; Hu, Hui-Han; Soufir, Nadem; Bressac-de Paillerets, Brigitte; Stoppa-Lyonnet, Dominique; Stern, Marc-Henri

    2013-01-01

    The genetic cause of some familial nonsyndromic renal cell carcinomas (RCC) defined by at least two affected first-degree relatives is unknown. By combining whole-exome sequencing and tumor profiling in a family prone to cases of RCC, we identified a germline BAP1 mutation c.277A>G (p.Thr93Ala) as the probable genetic basis of RCC predisposition. This mutation segregated with all four RCC-affected relatives. Furthermore, BAP1 was found to be inactivated in RCC-affected individuals from this family. No BAP1 mutations were identified in 32 familial cases presenting with only RCC. We then screened for germline BAP1 deleterious mutations in familial aggregations of cancers within the spectrum of the recently described BAP1-associated tumor predisposition syndrome, including uveal melanoma, malignant pleural mesothelioma, and cutaneous melanoma. Among the 11 families that included individuals identified as carrying germline deleterious BAP1 mutations, 6 families presented with 9 RCC-affected individuals, demonstrating a significantly increased risk for RCC. This strongly argues that RCC belongs to the BAP1 syndrome and that BAP1 is a RCC-predisposition gene. PMID:23684012

  8. Conversion Analysis for Mutation Detection in MLH1 and MSH2 in Patients With Colorectal Cancer

    PubMed Central

    Casey, Graham; Lindor, Noralane M.; Papadopoulos, Nickolas; Thibodeau, Stephen N.; Moskow, John; Steelman, Scott; Buzin, Carolyn H.; Sommer, Steve S.; Collins, Christine E.; Butz, Malinda; Aronson, Melyssa; Gallinger, Steven; Barker, Melissa A.; Young, Joanne P.; Jass, Jeremy R.; Hopper, John L.; Diep, Anh; Bapat, Bharati; Salem, Michael; Seminara, Daniela; Haile, Robert

    2010-01-01

    Context The accurate identification and interpretation of germline mutations in mismatch repair genes in colorectal cancer cases is critical for clinical management. Current data suggest that mismatch repair mutations are highly heterogeneous and that many mutations are not detected when conventional DNA sequencing alone is used. Objective To evaluate the potential of conversion analysis compared with DNA sequencing alone to detect heterogeneous germline mutations in MLH1, MSH2, and MSH6 in colorectal cancer patients. Design, Setting, and Participants Multicenter study with patients who participate in the Colon Cancer Family Registry. Mutation analyses were performed in participant samples determined to have a high probability of carrying mismatch repair germline mutations. Samples from a total of 64 hereditary nonpolyposis colorectal cancer cases, 8 hereditary nonpolyposis colorectal cancer–like cases, and 17 cases diagnosed prior to age 50 years were analyzed from June 2002 to June 2003. Main Outcome Measures Classification of family members as carriers or noncarriers of germline mutations in MLH1, MSH2, or MSH6; mutation data from conversion analysis compared with genomic DNA sequencing. Results Genomic DNA sequencing identified 28 likely deleterious exon mutations, 4 in-frame deletion mutations, 16 missense changes, and 22 putative splice site mutations. Conversion analysis identified all mutations detected by genomic DNA sequencing—plus an additional exon mutation, 12 large genomic deletions, and 1 exon duplication mutation—yielding an increase of 33% (14/42) in diagnostic yield of deleterious mutations. Conversion analysis also showed that 4 of 16 missense changes resulted in exon skipping in transcripts and that 17 of 22 putative splice site mutations affected splicing or mRNA transcript stability. Conversion analysis provided an increase of 56% (35/63) in the diagnostic yield of genetic testing compared with genomic DNA sequencing alone. Conclusions The data confirm the heterogeneity of mismatch repair mutations and reveal that many mutations in colorectal cancer cases would be missed using conventional genomic DNA sequencing alone. Conversion analysis substantially increases the diagnostic yield of genetic testing for mismatch repair mutations in patients diagnosed as having colorectal cancer. PMID:15713769

  9. AB026. SCN1A mutational analysis in 20 Vietnamese children with Dravet syndrome

    PubMed Central

    Do, Thi-Thu-Hang; Le, Thieu-Mai-Thao; Bui, Chi-Bao; Vu, Diem-My

    2015-01-01

    Background Dravet syndrome is one of the most catastrophic types of epilepsy in infants. It is found that 70-80% of cases of Dravet syndrome are caused by mutations in SCN1A, the gene encoding alpha-1 subunit of the sodium channel. Mutations of the SCN1A gene have an autosomal dominant inheritance pattern. To date, over 1,000 SCN1A mutations have been reported all over the world, however, no SCN1A mutation studies have been performed in the Vietnamese population, and genetic characteristics of Vietnamese Dravet patients are not yet clear. In this study, we analyzed SCN1A gene in 20 Vietnamese patients with clinical features of Dravet syndrome at Children’s Hospital 2, Ho Chi Minh City, Vietnam. Methods Direct sequencing and multiple ligation-dependent probe amplification (MLPA) were performed to screen the entire coding regions as well as exon-intron boundaries of the gene. Results Fourteen mutations (14/20; 70%) were identified including 13 point mutations detected by PCR-Sequencing and 1 large deletion mutation spanning nearly whole exon 7 detected by MLPA. Five mutations were classified as truncations (2 frameshift and 3 nonsense mutations) and 9 were classified as missense mutations. There were 7 mutations were localized at pore-forming loop (connecting S5-S6); 5 mutations were localized at cytoplasmic loops (connecting 2 nearby homologous domains), 1 mutations were localized at transmembrane segments, and 1 mutation in a intronic region. Nine of these 14 SCN1A mutations were novel and parental DNA analysis for the identified mutations in 11 available cases show that all of the mutations were de nono. Besides well-known genotype–phenotype correlations, our study results strongly suggests the existence of modifying factors. Conclusions The proportion of SCN1A mutations among Vietnamese Dravet patients in this study appeared to be consistent with other populations (70%). Our study also expands the spectrum of SCN1A mutations and confirms the current understanding of genotype–phenotype correlations.

  10. GATA2 germline mutations impair GATA2 transcription, causing haploinsufficiency: functional analysis of the p.Arg396Gln mutation.

    PubMed

    Cortés-Lavaud, Xabier; Landecho, Manuel F; Maicas, Miren; Urquiza, Leire; Merino, Juana; Moreno-Miralles, Isabel; Odero, María D

    2015-03-01

    Germline GATA2 mutations have been identified as the cause of familial syndromes with immunodeficiency and predisposition to myeloid malignancies. GATA2 mutations appear to cause loss of function of the mutated allele leading to haploinsufficiency; however, this postulate has not been experimentally validated as the basis of these syndromes. We hypothesized that mutations that are translated into abnormal proteins could affect the transcription of GATA2, triggering GATA2 deficiency. Chromatin immunoprecipitation and luciferase assays showed that the human GATA2 protein activates its own transcription through a specific region located at -2.4 kb, whereas the p.Thr354Met, p.Thr355del, and p.Arg396Gln germline mutations impair GATA2 promoter activation. Accordingly, GATA2 expression was decreased to ?58% in a patient with p.Arg396Gln, compared with controls. p.Arg396Gln is the second most common mutation in these syndromes, and no previous functional analyses have been performed. We therefore analyzed p.Arg396Gln. Our data show that p.Arg396Gln is a loss-of-function mutation affecting DNA-binding ability and, as a consequence, it fails to maintain the immature characteristics of hematopoietic stem and progenitor cells, which could result in defects in this cell compartment. In conclusion, we show that human GATA2 binds to its own promoter, activating its transcription, and that the aforementioned mutations impair the transcription of GATA2. Our results indicate that they can affect other GATA2 target genes, which could partially explain the variability of symptoms in these diseases. Moreover, we show that p.Arg396Gln is a loss-of-function mutation, which is unable to retain the progenitor phenotype in cells where it is expressed. PMID:25624456

  11. 'Goldilocks' suppressor screen identifies web of polarity regulators.

    PubMed

    Seydoux, Geraldine

    2013-01-01

    Genome sequencing and RNAi have been powerful allies in the quest to assign function to every gene. Systematic RNAi screens identify essential genes efficiently, but are less effective with pleiotropic or redundant genes. A common trick used by geneticists to overcome this problem is to screen for genetic interactors - mutations that enhance or suppress the phenotype of a starting mutation. Now, this classic approach has been combined with the versatility of RNAi to generate an expanded gene network for cell polarity. PMID:23263368

  12. Researchers Use a Kinome Screen to Identify New Therapeutic Targets

    Cancer.gov

    The tumor suppressor p53 is mutated in over 50% of head and neck squamous cell carcinomas (HNSCC), yet there are currently no available therapies to target it. CTD2 researchers at the Fred Hutchison Cancer Research Center hypothesized that HNSCC cancer cells with p53 mutations are dependent on particular kinases for survival. In a study published in Clinical Cancer Research, they sought to identify these kinases using RNAi against known kinase genes in mouse and human cell lines.

  13. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions

    PubMed Central

    Nault, Jean Charles; Mallet, Maxime; Pilati, Camilla; Calderaro, Julien; Bioulac-Sage, Paulette; Laurent, Christophe; Laurent, Alexis; Cherqui, Daniel; Balabaud, Charles; Rossi, Jessica Zucman

    2013-01-01

    Somatic mutations activating telomerase reverse-trancriptase promoter were recently identified in several tumour types. Here we identify frequent similar mutations in human hepatocellular carcinomas (59%), cirrhotic preneoplastic macronodules (25%) and hepatocellular adenomas with malignant transformation in hepatocellular carcinomas (44%). In hepatocellular tumours, telomerase reverse-transcripase- and CTNNB1-activating mutations are significantly associated. Moreover, preliminary data suggest that telomerase reverse-trancriptase promoter mutations can increase the expression of telomerase transcript. In conclusion, telomerase reverse-trancriptase promoter mutation is the earliest recurrent genetic event identified in cirrhotic preneoplastic lesions so far and is also the most frequent genetic alteration in hepatocellular carcinomas, arising from both the cirrhotic or non-cirrhotic liver. PMID:23887712

  14. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and preneoplastic lesions.

    PubMed

    Nault, Jean Charles; Mallet, Maxime; Pilati, Camilla; Calderaro, Julien; Bioulac-Sage, Paulette; Laurent, Christophe; Laurent, Alexis; Cherqui, Daniel; Balabaud, Charles; Zucman-Rossi, Jessica; Zucman Rossi, Jessica

    2013-01-01

    Somatic mutations activating telomerase reverse-trancriptase promoter were recently identified in several tumour types. Here we identify frequent similar mutations in human hepatocellular carcinomas (59%), cirrhotic preneoplastic macronodules (25%) and hepatocellular adenomas with malignant transformation in hepatocellular carcinomas (44%). In hepatocellular tumours, telomerase reverse-transcripase- and CTNNB1-activating mutations are significantly associated. Moreover, preliminary data suggest that telomerase reverse-trancriptase promoter mutations can increase the expression of telomerase transcript. In conclusion, telomerase reverse-trancriptase promoter mutation is the earliest recurrent genetic event identified in cirrhotic preneoplastic lesions so far and is also the most frequent genetic alteration in hepatocellular carcinomas, arising from both the cirrhotic or non-cirrhotic liver. PMID:23887712

  15. Somatic Mosaic Activating Mutations in PIK3CA Cause CLOVES Syndrome

    PubMed Central

    Kurek, Kyle C.; Luks, Valerie L.; Ayturk, Ugur M.; Alomari, Ahmad I.; Fishman, Steven J.; Spencer, Samantha A.; Mulliken, John B.; Bowen, Margot E.; Yamamoto, Guilherme L.; Kozakewich, Harry P.W.; Warman, Matthew L.

    2012-01-01

    Congenital lipomatous overgrowth with vascular, epidermal, and skeletal anomalies (CLOVES) is a sporadically occurring, nonhereditary disorder characterized by asymmetric somatic hypertrophy and anomalies in multiple organs. We hypothesized that CLOVES syndrome would be caused by a somatic mutation arising during early embryonic development. Therefore, we employed massively parallel sequencing to search for somatic mosaic mutations in fresh, frozen, or fixed archival tissue from six affected individuals. We identified mutations in PIK3CA in all six individuals, and mutant allele frequencies ranged from 3% to 30% in affected tissue from multiple embryonic lineages. Interestingly, these same mutations have been identified in cancer cells, in which they increase phosphoinositide-3-kinase activity. We conclude that CLOVES is caused by postzygotic activating mutations in PIK3CA. The application of similar sequencing strategies will probably identify additional genetic causes for sporadically occurring, nonheritable malformations. PMID:22658544

  16. The origins of mutational robustness.

    PubMed

    Fares, Mario A

    2015-07-01

    Biological systems are resistant to genetic changes; a property known as mutational robustness, the origin of which remains an open question. In recent years, researchers have explored emergent properties of biological systems and mechanisms of genetic redundancy to reveal how mutational robustness emerges and persists. Several mechanisms have been proposed to explain the origin of mutational robustness, including molecular chaperones and gene duplication. The latter has received much attention, but its role in robustness remains controversial. Here, I examine recent findings linking genetic redundancy through gene duplication and mutational robustness. Experimental evolution and genome resequencing have made it possible to test the role of gene duplication in tolerating mutations at both the coding and regulatory levels. This evidence as well as previous findings on regulatory reprogramming of duplicates support the role of gene duplication in the origin of robustness. PMID:26013677

  17. Secondary and tertiary structure modeling reveals effects of novel mutations in polycystic liver disease genes PRKCSH and SEC63.

    PubMed

    Waanders, E; Venselaar, H; te Morsche, R H M; de Koning, D B; Kamath, P S; Torres, V E; Somlo, S; Drenth, J P H

    2010-07-01

    Polycystic liver disease (PCLD) is characterized by intralobular bile duct cysts in the liver. It is caused by mutations in PRKCSH, encoding hepatocystin, and SEC63, encoding Sec63p. The main goals of this study were to screen for novel mutations and to analyze mutations for effects on protein structure and function. We screened 464 subjects including 76 probands by direct sequencing or conformation-sensitive capillary electrophoresis. We analyzed the effects of all known and novel mutations using a combination of splice site recognition, evolutionary conservation, secondary and tertiary structure predictions, PolyPhen, and pMut and sift. We identified a total of 26 novel mutations in PRKCSH (n = 14) and SEC63 (n = 12), including four splice site mutations, eight insertions/ deletions, six non-sense mutations, and eight missense mutations. Out of 48 PCLD mutations, 13 were predicted to affect splicing. Most mutations were located in highly conserved regions and homology modeling for two domains of Sec63p showed severe effects of the residue substitutions. In conclusion, we identified 26 novel mutations associated with PCLD and we provide in silico analysis in order to delineate the role of these mutations. PMID:20095989

  18. Expression and characterization of six mutations in the protoporphyrinogen oxidase gene among Finnish variegate porphyria patients.

    PubMed Central

    von und zu Fraunberg, M.; Tenhunen, R.; Kauppinen, R.

    2001-01-01

    BACKGROUND: Variegate porphyria (VP) is an inherited disorder of heme biosynthesis that results from a partial deficiency of protoporphyrinogen oxidase (PPOX). Patients with VP may experience acute neurovisceral attacks and cutaneous photosensitivity. To date we have characterized 109 VP patients representing 19 VP families in the Finnish population of 5 million, both biochemically and clinically. MATERIALS AND METHODS: Mutations were identified by direct sequencing of the patients' genomic DNA. The effect of the mutations was determined by sequencing the reverse transcriptase polymerase chain reaction (RT-PCR) product amplified from total RNA extracted from the patients' lymphoblast cell lines and expressing the mutations in E. coli and COS-1 cells. RESULTS: Of the six mutations identified in the PPOX gene, three mutations (IVS2-2a-->c, 338G-->C, and 470A-->4C) caused splicing defects, one produced a frameshift (78insC) and two mutations (R152C and L401F) caused amino acid substitutions. In RT-PCR, the IVS2-2a-->c mutation caused a retention of a 36-bp fragment in the 3' end of intron 2, the 338G-->C mutation caused an exon 4 deletion, and the 470A-->C mutation caused an exon 5 deletion with retention of a 19-bp fragment of the 3' end of intron 5. In both prokaryotic and eukaryotic expression systems, the PPOX activities of five mutants were decreased to 0-5% of the normal activity. CONCLUSIONS: This study describes five novel mutations and one earlier described major mutation among Finnish VP patients. All mutations produced detectable transcripts, but resulted in decreased PPOX activity confirming the causality of the mutations and the biochemical defects in these patients. PMID:11474578

  19. Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models

    PubMed Central

    Svetlichnyy, Dmitry; Imrichova, Hana; Fiers, Mark; Kalender Atak, Zeynep; Aerts, Stein

    2015-01-01

    Cancer genomes contain vast amounts of somatic mutations, many of which are passenger mutations not involved in oncogenesis. Whereas driver mutations in protein-coding genes can be distinguished from passenger mutations based on their recurrence, non-coding mutations are usually not recurrent at the same position. Therefore, it is still unclear how to identify cis-regulatory driver mutations, particularly when chromatin data from the same patient is not available, thus relying only on sequence and expression information. Here we use machine-learning methods to predict functional regulatory regions using sequence information alone, and compare the predicted activity of the mutated region with the reference sequence. This way we define the Predicted Regulatory Impact of a Mutation in an Enhancer (PRIME). We find that the recently identified driver mutation in the TAL1 enhancer has a high PRIME score, representing a “gain-of-target” for MYB, whereas the highly recurrent TERT promoter mutation has a surprisingly low PRIME score. We trained Random Forest models for 45 cancer-related transcription factors, and used these to score variations in the HeLa genome and somatic mutations across more than five hundred cancer genomes. Each model predicts only a small fraction of non-coding mutations with a potential impact on the function of the encompassing regulatory region. Nevertheless, as these few candidate driver mutations are often linked to gains in chromatin activity and gene expression, they may contribute to the oncogenic program by altering the expression levels of specific oncogenes and tumor suppressor genes. PMID:26562774

  20. A novel somatic MAPK1 mutation in primary ovarian mixed germ cell tumors.

    PubMed

    Zou, Yang; Deng, Wei; Wang, Feng; Yu, Xiao-Hong; Liu, Fa-Ying; Yang, Bi-Cheng; Huang, Mei-Zhen; Guo, Jiu-Bai; Xie, Qiu-Hua; He, Ming; Huang, Ou-Ping

    2016-02-01

    A recent exome-sequencing study revealed prevalent mitogen-activated protein kinase 1 (MAPK1) p.E322K mutation in cervical carcinoma. It remains largely unknown whether ovarian carcinomas also harbor MAPK1 mutations. As paralogous gene mutations co?occur frequently in human malignancies, we analyzed here a total of 263 ovarian carcinomas for the presence of MAPK1 and paralogous MAPK3 mutations by DNA sequencing. A previously unreported MAPK1 p.D321N somatic mutation was identified in 2 out of 18 (11.1%) ovarian mixed germ cell tumors, while no other MAPK1 or MAPK3 mutation was detected in our samples. Of note, OCC?115, the MAPK1?mutated sample with bilateral cancerous ovaries affected, harbored MAPK1 mutation in the right ovary while retained the left ovary intact, implicating that the genetic alterations underlying ovarian mixed germ cell tumor may be different, even in patients with similar genetic backgrounds and tumor microenvironments. The results of evolutionary conservation and protein structure modeling analysis implicated that MAPK1 p.D321N mutation may be pathogenic. Additionally, mutations in protein phosphatase 2 regulatory subunit ? (PPP2R1A), ring finger protein 43 (RNF43), DNA directed polymerase ? (POLE1), ribonuclease type III (DICER1), CCCTC?binding factor (CTCF), ribosomal protein L22 (RPL22), DNA methyltransferase 3? (DNMT3A), transformation/transcription domain?associated protein (TRRAP), isocitrate dehydrogenase (IDH)1 and IDH2 were not detected in ovarian mixed germ cell tumors, implicating these genetic alterations may be not associated with MAPK1 mutation in the development of this malignancy. The present study identified a previously unreported MAPK1 mutation in ovarian mixed germ cell tumors for the first time, and this mutation may be actively involved in the tumorigenesis of this disease. PMID:26548627

  1. Identification of High-Impact cis-Regulatory Mutations Using Transcription Factor Specific Random Forest Models.

    PubMed

    Svetlichnyy, Dmitry; Imrichova, Hana; Fiers, Mark; Kalender Atak, Zeynep; Aerts, Stein

    2015-11-01

    Cancer genomes contain vast amounts of somatic mutations, many of which are passenger mutations not involved in oncogenesis. Whereas driver mutations in protein-coding genes can be distinguished from passenger mutations based on their recurrence, non-coding mutations are usually not recurrent at the same position. Therefore, it is still unclear how to identify cis-regulatory driver mutations, particularly when chromatin data from the same patient is not available, thus relying only on sequence and expression information. Here we use machine-learning methods to predict functional regulatory regions using sequence information alone, and compare the predicted activity of the mutated region with the reference sequence. This way we define the Predicted Regulatory Impact of a Mutation in an Enhancer (PRIME). We find that the recently identified driver mutation in the TAL1 enhancer has a high PRIME score, representing a "gain-of-target" for MYB, whereas the highly recurrent TERT promoter mutation has a surprisingly low PRIME score. We trained Random Forest models for 45 cancer-related transcription factors, and used these to score variations in the HeLa genome and somatic mutations across more than five hundred cancer genomes. Each model predicts only a small fraction of non-coding mutations with a potential impact on the function of the encompassing regulatory region. Nevertheless, as these few candidate driver mutations are often linked to gains in chromatin activity and gene expression, they may contribute to the oncogenic program by altering the expression levels of specific oncogenes and tumor suppressor genes. PMID:26562774

  2. Novel mutations in the ABCC6 gene of German patients with pseudoxanthoma elasticum.

    PubMed

    Schulz, Veronika; Hendig, Doris; Szliska, Christiane; Götting, Christian; Kleesiek, Knut

    2005-06-01

    Pseudoxanthoma elasticum (PXE) is a heritable disorder of the connective tissue affecting the skin, eyes, and cardiovascular system. Recently, the PXE candidate gene ABCC6 was identified and a limited number of ABCC6 mutations were observed in different PXE cohorts. To identify novel PXE-causing ABCC6 mutations in German patients with PXE, we investigated a cohort of 54 German PXE patients and 23 family members from 49 apparently nonconsanguineous families. From the mutational analysis we found 27 different ABCC6 sequence variations. Among these, 11 were polymorphisms or neutral alterations and 16 were PXE-causing mutations. The most common mutation in our PXE cohort was the nonsense mutation p.R1141X, which occurred with an allele frequency of 25.9%. Furthermore, we found nine missense, one additional nonsense, and two putative splice site mutations as well as three single-nucleotide deletions. Most of these mutations were unique and occurred in cytoplasmic regions of the MRP6 protein; these mutations are proposed to be critical for the physiological function of the MRP6 protein. In these regions we also found the three novel PXE-causing mutations p.R1114C, p.Y1239H, and p.G1311E, which were identified in three alleles from patients with PXE and were absent in 200 healthy control subjects. In addition, the first genotype-phenotype correlation was observed. By obtaining these genetic mutation data, we are contributing to an overview of all ABCC6 mutations leading to PXE and the pathogenetics of this disease. PMID:16392638

  3. A comparison of somatic mutational spectra in healthy study populations from Russia, Sweden and USA

    SciTech Connect

    Noori, P; Hou, S; Jones, I M; Thomas, C B; Lambert, B

    2004-10-27

    Comparison of mutation spectra at the hypoxanthine-phosphoribosyl transferase (HPRT) gene of peripheral blood T lymphocytes may provide insight into the aetiology of somatic mutation contributing to carcinogenesis and other diseases. To increase knowledge of mutation spectra in healthy people, we have analyzed HPRT mutant T-cells of 50 healthy Russians originally recruited as controls for a study of Chernobyl clean-up workers (Jones et al. Radiation Res. 158, 2002, 424). Reverse transcriptase polymerase chain reactions and DNA sequencing identified 161 independent mutations among 176 thioguanine resistant mutants. Forty (40) mutations affected splicing mechanisms and 27 deletions or insertions of 1 to 60 nucleotides were identified. Ninety four (94) single base substitutions were identified, including 62 different mutations at 55 different nucleotide positions, of which 19 had not previously been reported in human T-cells. Comparison of this base substitution spectrum with mutation spectra in a USA (Burkhart-Schultz et al. Carcinogenesis 17, 1996, 1871) and two Swedish populations (Podlutsky et al, Carcinogenesis 19, 1998, 557, Podlutsky et al. Mutation Res. 431, 1999, 325) revealed similarity in the type, frequency and distribution of mutations in the four spectra, consistent with aetiologies inherent in human metabolism. There were 15-19 identical mutations in the three pair-wise comparisons of Russian with USA and Swedish spectra. Intriguingly, there were 21 mutations unique to the Russian spectrum, and comparison by the Monte Carlo method of Adams and Skopek (J. Mol. Biol. 194, 1987, 391) indicated that the Russian spectrum was different from both Swedish spectra (P=0.007, 0.002) but not different from the USA spectrum (P=0.07), when Bonferroni correction for multiple comparisons was made (p < 0.008 required for significance). Age and smoking did not account for these differences. Other factors causing mutational differences need to be explored.

  4. REEP1 Mutation Spectrum and Genotype/Phenotype Correlation in Hereditary Spastic Paraplegia Type 31

    ERIC Educational Resources Information Center

    Beetz, Christian; Schule, Rebecca; Deconinck, Tine; Tran-Viet, Khanh-Nhat; Zhu, Hui; Kremer, Berry P. H.; Frints, Suzanna G. M.; van Zelst-Stams, Wendy A. G.; Byrne, Paula; Otto, Susanne; Nygren, Anders O. H.; Baets, Jonathan; Smets, Katrien; Ceulemans, Berten; Dan, Bernard; Nagan, Narasimhan; Kassubek, Jan; Klimpe, Sven; Klopstock, Thomas; Stolze, Henning; Smeets, Hubert J. M.; Schrander-Stumpel, Constance T. R. M.; Hutchinson, Michael; van de Warrenburg, Bart P.; Braastad, Corey; Deufel, Thomas; Pericak-Vance, Margaret; Schols, Ludger; de Jonghe, Peter; Zuchner, Stephan

    2008-01-01

    Mutations in the receptor expression enhancing protein 1 (REEP1) have recently been reported to cause autosomal dominant hereditary spastic paraplegia (HSP) type SPG31. In a large collaborative effort, we screened a sample of 535 unrelated HSP patients for "REEP1" mutations and copy number variations. We identified 13 novel and 2 known "REEP1"…

  5. Detection of Quinolone-Resistance Mutations In Salmonella Spp. Strains of Epidemic and Poultry Origin

    PubMed Central

    de Souza, Roberta Barreiros; Magnani, Marciane; Ferrari, Rafaela Gomes; Kottwitz, Luciana Bill Mikito; Sartori, Daniele; Tognim, Maria Cristina Bronharo; de Oliveira, Tereza Cristina R. M.

    2011-01-01

    Mutations into codons Aspartate-87 (62%) and Serine-83 (38%) in QRDR of gyrA were identified in 105 Salmonella strains resistant to nalidixic acid (94 epidemic and 11 of poultry origin). The results show a high incidence of mutations associated to quinolone resistance but suggest association with others mechanisms of resistance. PMID:24031623

  6. Prediction and Prioritization of Rare Oncogenic Mutations in the Cancer Kinome Using Novel Features and Multiple Classifiers

    PubMed Central

    Katiyar, Samiksha; Rasheed, Khaled; Kannan, Natarajan

    2014-01-01

    Cancer is a genetic disease that develops through a series of somatic mutations, a subset of which drive cancer progression. Although cancer genome sequencing studies are beginning to reveal the mutational patterns of genes in various cancers, identifying the small subset of “causative” mutations from the large subset of “non-causative” mutations, which accumulate as a consequence of the disease, is a challenge. In this article, we present an effective machine learning approach for identifying cancer-associated mutations in human protein kinases, a class of signaling proteins known to be frequently mutated in human cancers. We evaluate the performance of 11 well known supervised learners and show that a multiple-classifier approach, which combines the performances of individual learners, significantly improves the classification of known cancer-associated mutations. We introduce several novel features related specifically to structural and functional characteristics of protein kinases and find that the level of conservation of the mutated residue at specific evolutionary depths is an important predictor of oncogenic effect. We consolidate the novel features and the multiple-classifier approach to prioritize and experimentally test a set of rare unconfirmed mutations in the epidermal growth factor receptor tyrosine kinase (EGFR). Our studies identify T725M and L861R as rare cancer-associated mutations inasmuch as these mutations increase EGFR activity in the absence of the activating EGF ligand in cell-based assays. PMID:24743239

  7. Identification of common cystic fibrosis mutations in African-Americans with cystic fibrosis increases the detection rate to 75%.

    PubMed Central

    Macek, M; Mackova, A; Hamosh, A; Hilman, B C; Selden, R F; Lucotte, G; Friedman, K J; Knowles, M R; Rosenstein, B J; Cutting, G R

    1997-01-01

    Cystic fibrosis (CF)--an autosomal recessive disorder caused by mutations in CF transmembrane conductance regulator (CFTR) and characterized by abnormal chloride conduction across epithelial membranes, leading to chronic lung and exocrine pancreatic disease--is less common in African-Americans than in Caucasians. No large-scale studies of mutation identification and screening in African-American CF patients have been reported, to date. In this study, the entire coding and flanking intronic sequence of the CFTR gene was analyzed by denaturing gradient-gel electrophoresis and sequencing in an index group of 82 African-American CF chromosomes to identify mutations. One novel mutation, 3120+1G-->A, occurred with a frequency of 12.3% and was also detected in a native African patient. To establish frequencies, an additional group of 66 African-American CF chromosomes were screened for mutations identified in two or more African-American patients. Screening for 16 "common Caucasian" mutations identified 52% of CF alleles in African-Americans, while screening for 8 "common African" mutations accounted for an additional 23%. The combined detection rate of 75% was comparable to the sensitivity of mutation analysis in Caucasian CF patients. These results indicate that African-Americans have their own set of "common" CF mutations that originate from the native African population. Inclusion of these "common" mutations substantially improves CF mutation detection rates in African-Americans. PMID:9150159

  8. Rapid detection of homozygous mutations in congenital recessive ichthyosis.

    PubMed

    Lugassy, Jennie; Hennies, Hans Christian; Indelman, Margarita; Khamaysi, Ziad; Bergman, Reuven; Sprecher, Eli

    2008-02-01

    Congenital recessive ichthyoses (CRI) form a remarkably heterogeneous group of diseases, resulting from mutations in at least eight distinct genes, six of which have been identified so far. In the present study we ascertained two CRI families of Iranian and Druze origins. Exploiting the high degree of consanguinity characterizing these populations, we typed all family members for microsatellite markers spanning the major CRI chromosomal loci and used homozygosity mapping to identify candidate genes for subsequent mutational analysis. This strategy led to the rapid identification of two novel homozygous CRI-causing mutations in TGM1 (c.2058delC) and FLJ39501 (p.W521X). The present data demonstrate that the molecular analyses of CRI in consanguineous families can be readily completed in less than 96 h at relatively low costs. PMID:18034255

  9. Leveraging a Multi-Omics Strategy for Prioritizing Personalized Candidate Mutation-Driver Genes: A Proof-of-Concept Study

    PubMed Central

    Ding, Keyue; Wu, Songfeng; Ying, Wantao; Pan, Qi; Li, Xiaoyuan; Zhao, Dachun; Li, Xianyu; Zhao, Qing; Zhu, Yunping; Ren, Hong; Qian, Xiaohong

    2015-01-01

    The expression of mutant forms of proteins (e.g., oncogenes and tumor suppressors) has implications in cancer biology and clinical practice. Initial efforts have been made to characterize the transcription of tumor-mutated alleles; however, few studies have been reported to link tumor-mutated alleles to proteomics. We aimed to characterize the transcriptional and translational patterns of tumor-mutated alleles. We performed whole-exome sequencing, RNA-seq, and proteome profiling in a hyper-mutated patient of hepatocellular carcinoma. Using the patient as a model, we show that only a small proportion of tumor-mutated alleles were expressed. In this case, 42% and 3.5% of the tumor-mutated alleles were identified to be transcribed and translated, respectively. Compared with genes with germline variations or without mutations, somatic mutations significantly reduced protein expression abundance. Using the transcriptional and translational patterns of tumor-mutated alleles, we classified the mutations into four types, and only one type may be associated with the liver cancer and lead to hepatocarcinogenesis in the patient. Our results demonstrate how tumor-mutated alleles are transcribed and translated, and how the expression enables the classification of somatic mutations that cause cancer. Leveraging multiple ‘omics’ datasets provides a new avenue for understanding patient-specific mutations that underlie carcinogenesis. PMID:26631547

  10. Leveraging a Multi-Omics Strategy for Prioritizing Personalized Candidate Mutation-Driver Genes: A Proof-of-Concept Study.

    PubMed

    Ding, Keyue; Wu, Songfeng; Ying, Wantao; Pan, Qi; Li, Xiaoyuan; Zhao, Dachun; Li, Xianyu; Zhao, Qing; Zhu, Yunping; Ren, Hong; Qian, Xiaohong

    2015-01-01

    The expression of mutant forms of proteins (e.g., oncogenes and tumor suppressors) has implications in cancer biology and clinical practice. Initial efforts have been made to characterize the transcription of tumor-mutated alleles; however, few studies have been reported to link tumor-mutated alleles to proteomics. We aimed to characterize the transcriptional and translational patterns of tumor-mutated alleles. We performed whole-exome sequencing, RNA-seq, and proteome profiling in a hyper-mutated patient of hepatocellular carcinoma. Using the patient as a model, we show that only a small proportion of tumor-mutated alleles were expressed. In this case, 42% and 3.5% of the tumor-mutated alleles were identified to be transcribed and translated, respectively. Compared with genes with germline variations or without mutations, somatic mutations significantly reduced protein expression abundance. Using the transcriptional and translational patterns of tumor-mutated alleles, we classified the mutations into four types, and only one type may be associated with the liver cancer and lead to hepatocarcinogenesis in the patient. Our results demonstrate how tumor-mutated alleles are transcribed and translated, and how the expression enables the classification of somatic mutations that cause cancer. Leveraging multiple 'omics' datasets provides a new avenue for understanding patient-specific mutations that underlie carcinogenesis. PMID:26631547

  11. Association of PAX2 and Other Gene Mutations with the Clinical Manifestations of Renal Coloboma Syndrome

    PubMed Central

    Higashide, Tomomi; Sakurai, Mayumi; Hashimoto, Shin-ichi; Shinozaki, Yasuyuki; Hara, Akinori; Iwata, Yasunori; Sakai, Norihiko; Sugiyama, Kazuhisa; Kaneko, Shuichi; Wada, Takashi

    2015-01-01

    Background Renal coloboma syndrome (RCS) is characterized by renal anomalies and optic nerve colobomas. PAX2 mutations contribute to RCS. However, approximately half of the patients with RCS have no mutation in PAX2 gene. Methods To investigate the incidence and effects of mutations of PAX2 and 25 candidate genes, patient genes were screened using next-generation sequence analysis, and candidate mutations were confirmed using Sanger sequencing. The correlation between mutations and clinical manifestation was evaluated. Result Thirty patients, including 26 patients (two families of five and two, 19 sporadic cases) with RCS, and 4 optic nerve coloboma only control cases were evaluated in the present study. Six PAX2 mutations in 21 probands [28%; two in family cohorts (n = 5 and n = 2) and in 4 out of 19 patients with sporadic disease] including four novel mutations were confirmed using Sanger sequencing. Moreover, four other sequence variants (CHD7, SALL4, KIF26B, and SIX4) were also confirmed, including a potentially pathogenic novel KIF26B mutation. Kidney function and proteinuria were more severe in patients with PAX2 mutations than in those without the mutation. Moreover, the coloboma score was significantly higher in patients with PAX2 gene mutations. Three out of five patients with PAX2 mutations had focal segmental glomerulosclerosis (FSGS) diagnosed from kidney biopsies. Conclusion The results of this study identify several new mutations of PAX2, and sequence variants in four additional genes, including a novel potentially pathogenic mutation in KIF26B, which may play a role in the pathogenesis of RCS. PMID:26571382

  12. Age and origin of two common MLH1 mutations predisposing to hereditary colon cancer.

    PubMed Central

    Moisio, A. L.; Sistonen, P.; Weissenbach, J.; de la Chapelle, A.; Peltomäki, P.

    1996-01-01

    Two mutations in the DNA mismatch repair gene MLH1, referred to as mutations 1 and 2, are frequent among Finnish kindreds with hereditary nonpolyposis colorectal cancer (HNPCC). In order to assess the ages and origins of these mutations, we constructed a map of 15 microsatellite markers around MLH1 and used this information in haplotype analyses of 19 kindreds with mutation 1 and 6 kindreds with mutation 2. All kindreds with mutation 1 showed a single allele for the intragenic marker D3S1611 that was not observed on any unaffected chromosome. They also shared portions of a haplotype of 4-15 markers encompassing 2.0-19.0 cM around MLH1. All kindreds with mutation 2 shared another allele for D3S1611 and a conserved haplotype of 5-14 markers spanning 2.0-15.0 cM around MLH1. The degree of haplotype conservation was used to estimate the ages of these two mutations. While some recessive disease genes have been estimated to have existed and spread for as long as thousands of generations worldwide and hundreds of generations in the Finnish population, our analyses suggest that the spread of mutation 1 started 16-43 generations (400-1,075 years) ago and that of mutation 2 some 5-21 generations (125-525 years) ago. These datings are compatible with our genealogical results identifying a common ancestor born in the 16th and 18th century, respectively. Overall, our results indicate that all Finnish kindreds studied to date showing either mutation 1 or mutation 2 are due to single ancestral founding mutations relatively recent in origin in the population. Alternatively, the mutations arose elsewhere earlier and were introduced in Finland more recently. PMID:8940269

  13. FGFR3 protein expression and its relationship to mutation status and prognostic variables in bladder cancer

    PubMed Central

    Tomlinson, DC; Baldo, O; Harnden, P; Knowles, MA

    2008-01-01

    FGFR3 is frequently activated by mutation in urothelial carcinoma (UC) and represents a potential target for therapy. In multiple myeloma, both over-expression and mutation of FGFR3 contribute to tumour development. To define the population of UC patients who may benefit from FGFR-targeted therapy, we assessed both mutation and receptor over-expression in primary UCs from a population of new patients. Manual or laser capture microdissection was used to isolate pure tumour cell populations. Where present, non-invasive and invasive components in the same section were microdissected. A screen of the region of highest tumour stage in each sample yielded a mutation frequency of 42%. Mutations comprised 61 single and 5 double mutations, all in hotspot codons previously identified in UC. There was a significant association of mutation with low tumour grade and stage. Subsequently, non-invasive areas from the 43 tumours with both non-invasive and invasive components were analysed separately. Eighteen of these had mutation in at least one region, including 9 with mutation in all regions examined, 8 with mutation in only the non-invasive component and one with different mutations in different regions. Of the 8 with mutation in only the non-invasive component, 6 were predicted to represent a single tumour and 2 showed morphological dissimilarity of fragments within the block, indicating possible presence of distinct tumour clones. Immunohistochemistry showed over-expression of FGFR3 protein in many tumours compared to normal bladder and ureteric controls. Increased expression was associated with mutation (85% of mutant tumours showed high-level expression). Overall, 42% of tumours with no detectable mutation showed over-expression including many muscle invasive tumours. This may represent a non-mutant subset of tumours in which FGFR3 signalling contributes to the transformed phenotype and which may benefit from FGFR-targeted therapies. PMID:17668422

  14. NF1 Mutations Are Common in Desmoplastic Melanoma.

    PubMed

    Wiesner, Thomas; Kiuru, Maija; Scott, Sasinya N; Arcila, Maria; Halpern, Allan C; Hollmann, Travis; Berger, Michael F; Busam, Klaus J

    2015-10-01

    Desmoplastic melanoma (DM) is a rare variant of melanoma with distinct clinical, histopathologic, and immunohistochemical features. Clinically, DM differs from conventional melanoma by a higher propensity for local recurrence and less frequent metastatic spread to regional lymph nodes. In its pure form, DM has a distinct appearance displaying a low density of fusiform melanocytes in a collagen-rich matrix. Whereas a number of mutations have been identified in primary melanoma, including BRAF, NRAS, GNAQ, GNA11, and KIT, and the occurrence of these mutations has been found to correlate to some extent with the histopathologic features, anatomic site, and/or mode of sun exposure, no distinct set of mutations has so far been reported for DM. To study the potential association of neurofibromin (NF1) mutations with DM, we examined 15 desmoplastic and 20 non-DMs by next-generation sequencing. Mutations of the NF1 gene were found in 14 of 15 (93%) DMs and 4 of 20 (20%) non-DMs. The high frequency of NF1 mutations in DMs suggests an important role for NF1 in the biology of this type of melanoma. PMID:26076063

  15. Absence of telomerase reverse transcriptase promoter mutations in neuroblastoma

    PubMed Central

    LINDNER, SVEN; BACHMANN, HAGEN S.; ODERSKY, ANDREA; SCHAEFERS, SIMON; KLEIN-HITPASS, LUDGER; HERO, BARBARA; FISCHER, MATTHIAS; EGGERT, ANGELIKA; SCHRAMM, ALEXANDER; SCHULTE, JOHANNES H.

    2015-01-01

    Maintenance of telomere length is a critical hallmark of malignant transformation. While silenced in somatic cells, telomerase reverse transcriptase (TERT), the catalytic subunit of telomerase, is frequently overexpressed in malignant cells thereby maintaining their telomere length. Specific point mutations in the TERT promoter region have recently been identified in melanoma and other tumor entities resulting in high TERT expression. Neuroblastoma is the most common extracranial tumor of childhood, arising from neural-crest progenitor cells. TERT overexpression has been observed in the majority of neuroblastoma. Taking into consideration that TERT promoter mutations are frequently described in neural-crest-derived tumors such as melanoma, as well as a variety of other neuronal tumors, the present study analyzed the frequency of TERT promoter mutations in primary neuroblastoma and neuroblastoma cell lines. In 131 neuroblastoma primary tumors representing the whole spectrum of neuroblastoma, no TERT promoter mutations were detected. However, in 3 out of 19 neuroblastoma cell lines the previously described C228T TERT promoter mutation was present. In conclusion, the TERT promoter mutations are not a frequent mechanism of TERT overexpression in neuroblastoma. PMID:26171145

  16. Mutational analysis of primary central nervous system lymphoma

    PubMed Central

    Bruno, Aurélie; Boisselier, Blandine; Labreche, Karim; Marie, Yannick; Polivka, Marc; Jouvet, Anne; Adam, Clovis; Figarella-Branger, Dominique; Miquel, Catherine; Eimer, Sandrine; Houillier, Caroline; Soussain, Carole; Mokhtari, Karima; Daveau, Romain; Hoang-Xuan, Khê

    2014-01-01

    Little is known about the genomic basis of primary central nervous system lymphoma (PCNSL) tumorigenesis. To investigate the mutational profile of PCNSL, we analyzed nine paired tumor and germline DNA samples from PCNSL patients by high throughput exome sequencing. Eight genes of interest have been further investigated by focused resequencing in 28 additional PCNSL tumors to better estimate their incidence. Our study identified recurrent somatic mutations in 37 genes, some involved in key signaling pathways such as NFKB, B cell differentiation and cell cycle control. Focused resequencing in the larger cohort revealed high mutation rates for genes already described as mutated in PCNSL such as MYD88 (38%), CD79B (30%), PIM1 (22%) and TBL1XR1 (19%) and for genes not previously reported to be involved in PCNSL tumorigenesis such as ETV6 (16%), IRF4 (14%), IRF2BP2 (11%) and EBF1 (11%). Of note, only 3 somatically acquired SNVs were annotated in the COSMIC database. Our results demonstrate a high genetic heterogeneity of PCNSL and mutational pattern similarities with extracerebral diffuse large B cell lymphomas, particularly of the activated B-cell (ABC) subtype, suggesting shared underlying biological mechanisms. The present study provides new insights into the mutational profile of PCNSL and potential targets for therapeutic strategies. PMID:24970810

  17. The spectrum of ?-thalassemia mutations in Baghdad, Central Iraq.

    PubMed

    Al-Allawi, Nasir A S; Al-Mousawi, Bassam M S; Badi, Ameer I A; Jalal, Sana D

    2013-01-01

    While previous studies from Iraq have focused on ?-thalassemia (?-thal) mutations in the northern part of the country, inhabited mainly by Kurds, no study of significance has looked at these mutations in central or southern Iraq, which is inhabited by the Arab majority. For the latter purpose this study was initiated and 103 ?-thal carriers from Baghdad at the center of the country were investigated using multiplex polymerase chain reaction (PCR) and reverse hybridization followed by sequencing. The results revealed that a total of 17 mutations were implicated, six of which, IVS-I-110 (G>A), IVS-II-1 (G>A), IVS-I-5 (G>C), codons 8/9 (+G), IVS-I-I (G>A) and codon 44 (-C), constituted 78.0% of the mutations characterized. Among the 17 mutations identified, six are reported for the first time from Iraq and include: IVS-I, 25 bp deletion, IVS-II-848 (C>A), -28 (A>C), IVS-I-130 (G>C), IVS-I-128 (T>G) and codons 41/42 (-TTCT). The findings of the current study clearly illustrate the genetic heterogeneity of the population of central Iraq, as demonstrated by the presence of a combination of Mediterranean, Asian Indian, Kurdish, Iranian, Egyptian, Saudi Arabian and Turkish mutations that is reflective of the historical background of this part of the country. PMID:23826747

  18. Potential clinical implications of BRAF mutations in histiocytic proliferations

    PubMed Central

    Bubolz, Anna-Maria; Weissinger, Stephanie E.; Stenzinger, Albrecht; Arndt, Annette; Steinestel, Konrad; Brüderlein, Silke; Cario, Holger; Lubatschofski, Anneli; Welke, Claudia; Anagnostopoulos, Ioannis; Barth, Thomas F. E.; Beer, Ambros J.; Möller, Peter; Gottstein, Martin

    2014-01-01

    For a growing number of tumors the BRAF V600E mutation carries therapeutic relevance. In histiocytic proliferations the distribution of BRAF mutations and their relevance has not been clarified. Here we present a retrospective genotyping study and a prospective observational study of a patient treated with a BRAF inhibitor. Genotyping of 69 histiocytic lesions revealed that 23/48 Langerhans cell lesions were BRAF-V600E-mutant whereas all non-Langerhans cell lesions (including dendritic cell sarcoma, juvenile xanthogranuloma, Rosai-Dorfman disease, and granular cell tumor) were wild-type. A metareview of 29 publications showed an overall mutation frequency of 48.5%; and with N=653 samples, this frequency is well defined. The BRAF mutation status cannot be predicted based on clinical parameters and outcome analysis showed no difference. Genotyping identified a 45 year-old woman with an aggressive and treatment-refractory, ultrastructurally confirmed systemic BRAF-mutant LCH. Prior treatments included glucocorticoid/vinblastine and cladribine-monotherapy. Treatment with vemurafenib over 3 months resulted in a dramatic metabolic response by FDG-PET and stable radiographic disease; the patient experienced progression after 6 months. In conclusion, BRAF mutations in histiocytic proliferations are restricted to lesions of the Langerhans-cell type. While for most LCH-patients efficient therapies are available, patients with BRAF mutations may benefit from the BRAF inhibitor vemurafenib. PMID:24938183

  19. Characterization of mutations at the mouse phenylalanine hydroxylase locus

    SciTech Connect

    McDonald, J.D.; Charlton, C.K.

    1997-02-01

    Two genetic mouse models for human phenylketonuria have been characterized by DNA sequence analysis. For each, a distinct mutation was identified within the protein coding sequence of the phenylalanine hydroxylase gene. This establishes that the mutated locus is the same as that causing human phenylketonuria and allows a comparison between these mouse phenylketonuria models and the human disease. A genotype/phenotype relationship that is strikingly similar to the human disease emerges, underscoring the similarity of phenylketonuria in mouse and man. In PAH{sup ENU1}, the phenotype is mild. The Pah{sup enu1} mutation predicts a conservative valine to alanine amino acid substitution and is located in exon 3, a gene region where serious mutations are rare in humans. In PAH{sup ENU2} the phenotype is severe. The Pah{sup enu2} mutation predicts a radical phenylalanine to serine substitution and is located in exon 7, a gene region where serious mutations are common in humans. In PAH{sup ENU2}, the sequence information was used to devise a direct genotyping system based on the creation of a new Alw26I restriction endonuclease site. 26 refs., 2 figs., 1 tab.

  20. Directed adenovirus evolution using engineered mutator viral polymerases

    PubMed Central

    Uil, Taco G.; Vellinga, Jort; de Vrij, Jeroen; van den Hengel, Sanne K.; Rabelink, Martijn J. W. E.; Cramer, Steve J.; Eekels, Julia J. M.; Ariyurek, Yavuz; van Galen, Michiel; Hoeben, Rob C.

    2011-01-01

    Adenoviruses (Ads) are the most frequently used viruses for oncolytic and gene therapy purposes. Most Ad-based vectors have been generated through rational design. Although this led to significant vector improvements, it is often hampered by an insufficient understanding of Ad’s intricate functions and interactions. Here, to evade this issue, we adopted a novel, mutator Ad polymerase-based, ‘accelerated-evolution’ approach that can serve as general method to generate or optimize adenoviral vectors. First, we site specifically substituted Ad polymerase residues located in either the nucleotide binding pocket or the exonuclease domain. This yielded several polymerase mutants that, while fully supportive of viral replication, increased Ad’s intrinsic mutation rate. Mutator activities of these mutants were revealed by performing deep sequencing on pools of replicated viruses. The strongest identified mutators carried replacements of residues implicated in ssDNA binding at the exonuclease active site. Next, we exploited these mutators to generate the genetic diversity required for directed Ad evolution. Using this new forward genetics approach, we isolated viral mutants with improved cytolytic activity. These mutants revealed a common mutation in a splice acceptor site preceding the gene for the adenovirus death protein (ADP). Accordingly, the isolated viruses showed high and untimely expression of ADP, correlating with a severe deregulation of E3 transcript splicing. PMID:21138963