Science.gov

Sample records for identify biochemical pathways

  1. Network representations and methods for the analysis of chemical and biochemical pathways

    PubMed Central

    Sandefur, Conner I.; Mincheva, Maya; Schnell, Santiago

    2013-01-01

    Systems biologists increasingly use network representations to investigate biochemical pathways and their dynamic behaviours. In this critical review, we discuss four commonly used network representations of chemical and biochemical pathways. We illustrate how some of these representations reduce network complexity but result in the ambiguous representation of biochemical pathways. We also examine the current theoretical approaches available to investigate the dynamic behaviour of chemical and biochemical networks. Finally, we describe how the critical chemical and biochemical pathways responsible for emergent dynamic behaviour can be identified using network mining and functional mapping approaches. PMID:23857078

  2. Biochemical pathways in seed oil synthesis.

    PubMed

    Bates, Philip D; Stymne, Sten; Ohlrogge, John

    2013-06-01

    Oil produced in plant seeds is utilized as a major source of calories for human nutrition, as feedstocks for non-food uses such as soaps and polymers, and can serve as a high-energy biofuel. The biochemical pathways leading to oil (triacylglycerol) synthesis in seeds involve multiple subcellular organelles, requiring extensive lipid trafficking. Phosphatidylcholine plays a central role in these pathways as a substrate for acyl modifications and likely as a carrier for the trafficking of acyl groups between organelles and membrane subdomains. Although much has been clarified regarding the enzymes and pathways responsible for acyl-group flux, there are still major gaps in our understanding. These include the identity of several key enzymes, how flux between alternative pathways is controlled and the specialized cell biology leading to biogenesis of oil bodies that store up to 80% of carbon in seeds. PMID:23529069

  3. Biochemical Genetic Pathways that Modulate Aging in Multiple Species.

    PubMed

    Bitto, Alessandro; Wang, Adrienne M; Bennett, Christopher F; Kaeberlein, Matt

    2015-01-01

    The mechanisms underlying biological aging have been extensively studied in the past 20 years with the avail of mainly four model organisms: the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, the fruitfly Drosophila melanogaster, and the domestic mouse Mus musculus. Extensive research in these four model organisms has identified a few conserved genetic pathways that affect longevity as well as metabolism and development. Here, we review how the mechanistic target of rapamycin (mTOR), sirtuins, adenosine monophosphate-activated protein kinase (AMPK), growth hormone/insulin-like growth factor 1 (IGF-1), and mitochondrial stress-signaling pathways influence aging and life span in the aforementioned models and their possible implications for delaying aging in humans. We also draw some connections between these biochemical pathways and comment on what new developments aging research will likely bring in the near future. PMID:26525455

  4. The Saccharomyces Genome Database: Exploring Biochemical Pathways and Mutant Phenotypes.

    PubMed

    Cherry, J Michael

    2015-01-01

    Many biochemical processes, and the proteins and cofactors involved, have been defined for the eukaryote Saccharomyces cerevisiae. This understanding has been largely derived through the awesome power of yeast genetics. The proteins responsible for the reactions that build complex molecules and generate energy for the cell have been integrated into web-based tools that provide classical views of pathways. The Yeast Pathways in the Saccharomyces Genome Database (SGD) is, however, the only database created from manually curated literature annotations. In this protocol, gene function is explored using phenotype annotations to enable hypotheses to be formulated about a gene's action. A common use of the SGD is to understand more about a gene that was identified via a phenotypic screen or found to interact with a gene/protein of interest. There are still many genes that do not yet have an experimentally defined function and so the information currently available can be used to speculate about their potential function. Typically, computational annotations based on sequence similarity are used to predict gene function. In addition, annotations are sometimes available for phenotypes of mutations in the gene of interest. Integrated results for a few example genes will be explored in this protocol. This will be instructive for the exploration of details that aid the analysis of experimental results and the establishment of connections within the yeast literature. PMID:26631123

  5. Identifying Branched Metabolic Pathways by Merging Linear Metabolic Pathways

    E-print Network

    Kavraki, Lydia E.

    presents a graph-based algorithm for identify- ing complex metabolic pathways in multi-genome scale of Genes and Genomes (KEGG) [17] and MetaCyc [8]. Gaining understanding from these vast quantities by manual means. Importantly, the ability to find metabolic pathways in multi-genome scale data has

  6. BPS University of Glasgow 1 BPS: Biochemical Pathway Simulator

    E-print Network

    Hillston, Jane

    Receptorreceptor Ras kinase Raf P P P P MEK P ERK P P cytoplasmic substrates Elk SAP Gene Mitogens Growth factors P P P P MEK P ERK P P Raf P P P P MEK P ERK P P cytoplasmic substrates Elk SAP Gene cytoplasmic substrates Elk SAP Gene Elk SAP Gene Biology Wet Lab #12;BPS University of Glasgow 7 BPS: Biochemical Pathway

  7. Inferring biochemical reaction pathways: the case of the gemcitabine pharmacokinetics

    PubMed Central

    2012-01-01

    Background The representation of a biochemical system as a network is the precursor of any mathematical model of the processes driving the dynamics of that system. Pharmacokinetics uses mathematical models to describe the interactions between drug, and drug metabolites and targets and through the simulation of these models predicts drug levels and/or dynamic behaviors of drug entities in the body. Therefore, the development of computational techniques for inferring the interaction network of the drug entities and its kinetic parameters from observational data is raising great interest in the scientific community of pharmacologists. In fact, the network inference is a set of mathematical procedures deducing the structure of a model from the experimental data associated to the nodes of the network of interactions. In this paper, we deal with the inference of a pharmacokinetic network from the concentrations of the drug and its metabolites observed at discrete time points. Results The method of network inference presented in this paper is inspired by the theory of time-lagged correlation inference with regard to the deduction of the interaction network, and on a maximum likelihood approach with regard to the estimation of the kinetic parameters of the network. Both network inference and parameter estimation have been designed specifically to identify systems of biotransformations, at the biochemical level, from noisy time-resolved experimental data. We use our inference method to deduce the metabolic pathway of the gemcitabine. The inputs to our inference algorithm are the experimental time series of the concentration of gemcitabine and its metabolites. The output is the set of reactions of the metabolic network of the gemcitabine. Conclusions Time-lagged correlation based inference pairs up to a probabilistic model of parameter inference from metabolites time series allows the identification of the microscopic pharmacokinetics and pharmacodynamics of a drug with a minimal a priori knowledge. In fact, the inference model presented in this paper is completely unsupervised. It takes as input the time series of the concetrations of the parent drug and its metabolites. The method, applied to the case study of the gemcitabine pharmacokinetics, shows good accuracy and sensitivity. PMID:22640931

  8. Identifying proteins controlling key disease signaling pathways

    PubMed Central

    Gitter, Anthony; Bar-Joseph, Ziv

    2013-01-01

    Motivation: Several types of studies, including genome-wide association studies and RNA interference screens, strive to link genes to diseases. Although these approaches have had some success, genetic variants are often only present in a small subset of the population, and screens are noisy with low overlap between experiments in different labs. Neither provides a mechanistic model explaining how identified genes impact the disease of interest or the dynamics of the pathways those genes regulate. Such mechanistic models could be used to accurately predict downstream effects of knocking down pathway members and allow comprehensive exploration of the effects of targeting pairs or higher-order combinations of genes. Results: We developed methods to model the activation of signaling and dynamic regulatory networks involved in disease progression. Our model, SDREM, integrates static and time series data to link proteins and the pathways they regulate in these networks. SDREM uses prior information about proteins’ likelihood of involvement in a disease (e.g. from screens) to improve the quality of the predicted signaling pathways. We used our algorithms to study the human immune response to H1N1 influenza infection. The resulting networks correctly identified many of the known pathways and transcriptional regulators of this disease. Furthermore, they accurately predict RNA interference effects and can be used to infer genetic interactions, greatly improving over other methods suggested for this task. Applying our method to the more pathogenic H5N1 influenza allowed us to identify several strain-specific targets of this infection. Availability: SDREM is available from http://sb.cs.cmu.edu/sdrem Contact: zivbj@cs.cmu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23812988

  9. Characterizing autism spectrum disorders by key biochemical pathways

    PubMed Central

    Subramanian, Megha; Timmerman, Christina K.; Schwartz, Joshua L.; Pham, Daniel L.; Meffert, Mollie K.

    2015-01-01

    The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions. PMID:26483618

  10. Hierarchical modularization of biochemical pathways using fuzzy-c means clustering.

    PubMed

    de Luis Balaguer, Maria A; Williams, Cranos M

    2014-08-01

    Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal. PMID:24196983

  11. A Computational Model for the Identification of Biochemical Pathways in the Krebs Cycle

    SciTech Connect

    Oliveira, Joseph S.; Bailey, Colin G.; Jones-Oliveira, Janet B.; Dixon, David A.; Gull, Dean W.; Chandler, Mary L.

    2003-03-01

    We have applied an algorithmic methodology which provably decomposes any complex network into a complete family of principal subcircuits to study the minimal circuits that describe the Krebs cycle. Every operational behavior that the network is capable of exhibiting can be represented by some combination of these principal subcircuits and this computational decomposition is linearly efficient. We have developed a computational model that can be applied to biochemical reaction systems which accurately renders pathways of such reactions via directed hypergraphs (Petri nets). We have applied the model to the citric acid cycle (Krebs cycle). The Krebs cycle, which oxidizes the acetyl group of acetyl CoA to CO2 and reduces NAD and FAD to NADH and FADH2 is a complex interacting set of nine subreaction networks. The Krebs cycle was selected because of its familiarity to the biological community and because it exhibits enough complexity to be interesting in order to introduce this novel analytic approach. This study validates the algorithmic methodology for the identification of significant biochemical signaling subcircuits, based solely upon the mathematical model and not upon prior biological knowledge. The utility of the algebraic-combinatorial model for identifying the complete set of biochemical subcircuits as a data set is demonstrated for this important metabolic process.

  12. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    PubMed Central

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  13. A Biochemical Screen for Identification of Small-Molecule Regulators of the Wnt Pathway Using Xenopus Egg Extracts

    PubMed Central

    Thorne, Curtis A.; Lafleur, Bonnie; Lewis, Michelle; Hanson, Alison J.; Jernigan, Kristin K.; Weaver, David C.; Huppert, Kari A.; Chen, Tony W.; Wichadiit, Chonlarat; Cselenyi, Christopher S.; Tahinci, Emilios; Meyers, Kelly C.; Waskow, Emily; Orton, Darren; Salic, Adrian; Lee, Laura A.; Robbins, David J.; Huppert, Stacey S.; Lee, Ethan

    2013-01-01

    Misregulation of the Wnt pathway has been shown to be responsible for a variety of human diseases, most notably cancers. Screens for inhibitors of this pathway have been performed almost exclusively using cultured mammalian cells or with purified proteins. We have previously developed a biochemical assay using Xenopus egg extracts to recapitulate key cytoplasmic events in the Wnt pathway. Using this biochemical system, we show that a recombinant form of the Wnt coreceptor, LRP6, regulates the stability of two key components of the Wnt pathway (?-catenin and Axin) in opposing fashion. We have now fused ?-catenin and Axin to firefly and Renilla luciferase, respectively, and demonstrate that the fusion proteins behave similarly as their wild-type counterparts. Using this dual luciferase readout, we adapted the Xenopus extracts system for high-throughput screening. Results from these screens demonstrate signal distribution curves that reflect the complexity of the library screened. Of several compounds identified as cytoplasmic modulators of the Wnt pathway, one was further validated as a bona fide inhibitor of the Wnt pathway in cultured mammalian cells and Xenopus embryos. We show that other embryonic pathways may be amendable to screening for inhibitors/modulators in Xenopus egg extracts. PMID:21859680

  14. Identifying Determinants of EGFR-Targeted Therapeutic Biochemical Efficacy Using Computational Modeling

    PubMed Central

    Monast, C S; Lazzara, M J

    2014-01-01

    We modeled cellular epidermal growth factor receptor (EGFR) tyrosine phosphorylation dynamics in the presence of receptor-targeting kinase inhibitors (e.g., gefitinib) or antibodies (e.g., cetuximab) to identify systematically the factors that contribute most to the ability of the therapeutics to antagonize EGFR phosphorylation, an effect we define here as biochemical efficacy. Our model identifies distinct processes as controlling gefitinib or cetuximab biochemical efficacy, suggests biochemical efficacy is favored in the presence of certain EGFR ligands, and suggests new drug design principles. For example, the model predicts that gefitinib biochemical efficacy is preferentially sensitive to perturbations in the activity of tyrosine phosphatases regulating EGFR, but that cetuximab biochemical efficacy is preferentially sensitive to perturbations in ligand binding. Our results highlight numerous other considerations that determine biochemical efficacy beyond those reflected by equilibrium affinities. By integrating these considerations, our model also predicts minimum therapeutic combination concentrations to maximally reduce receptor phosphorylation. PMID:25317724

  15. Widespread flower color convergence in Solanaceae via alternate biochemical pathways.

    PubMed

    Ng, Julienne; Smith, Stacey D

    2016-01-01

    Phenotypic convergence is rampant throughout the tree of life. While recent studies have made significant progress in ascertaining the proximate mechanisms underlying convergent phenotypes, less is known about the frequency and predictability with which convergent phenotypes arise via the same or multiple pathways at the macroevolutionary scale. We investigated the proximate causes and evolutionary patterns of red flower color in the tomato family, Solanaceae, using large-scale data mining and new sequence data to reconstruct a megaphylogeny of 1341 species. We then combined spectral and anatomical data to assess how many times red flowers have evolved, the relative contribution of different pathways to independent origins of red, and whether the underlying pathway is predicted by phylogenetic relatedness. We estimated at least 30 relatively recent origins of red flowers using anthocyanins, carotenoids, or a dual production of both pigments, with significant phylogenetic signal in the use of anthocyanins and dual production, indicating that closely related red-flowered species tend to employ the same mechanism for coloration. Our study is the first to test whether developmental pathways exhibit phylogenetic signal and implies that historical contingency strongly influences the evolution of new phenotypes. PMID:26224118

  16. ADAPTIVE MODELING OF BIOCHEMICAL PATHWAYS J.W.G.University, Frankfurt, Germany

    E-print Network

    Brause, R.

    of inflammation modeling a network is constructed and differ- ent learning algorithms are proposed. It turned out, given data. Keywords: model parameter adaption, septic shock. coupled differential equations, genetic851 ADAPTIVE MODELING OF BIOCHEMICAL PATHWAYS R. BRAUSE J.W.G.University, Frankfurt, Germany Brause

  17. Adaptive modeling of biochemical pathways J.W.G.University, Frankfurt, Germany

    E-print Network

    Brause, R.

    to 7,000 equations and 20,000 associated parameters exist and model reality. The motivation for lifeAdaptive modeling of biochemical pathways R.Brause J.W.G.University, Frankfurt, Germany Brause, important example of in- flammation modeling a network is constructed and differ- ent learning algorithms

  18. BN+1 Bayesian network expansion for identifying molecular pathway elements

    PubMed Central

    Hodges, Andrew P; Woolf, Peter

    2010-01-01

    A Bayesian network expansion algorithm called BN+1 was developed to identify undocumented gene interactions in a known pathway using microarray gene expression data. In our recent paper, the BN+1 algorithm has been successfully used to identify key regulators including uspE in the E. coli ROS pathway and biofilm formation.18 In this report, a synthetic network was designed to further evaluate this algorithm. The BN+1 method was found to identify both linear and nonlinear relationships and correctly identify variables near the starting network. Using experimentally derived data, the BN+1 method identifies the gene fdhE as a potentially new ROS regulator. Finally, a range of possible score cutoff methods are explored to identify a set of criteria for selecting BN+1 calls. PMID:21331236

  19. IDENTIFYING ESCHERICHIA SPECIES WITH BIOCHEMICAL TEST KITS AND STANDARD BACTERIOLOGICAL TESTS

    EPA Science Inventory

    Two commercially available biochemical test systems were evaluated for their ability to accurately identify speies of the genus Escherichia. Three laboratories participated in the study. The test kits did not always correctly identify species of Escherichia, but only once was a...

  20. Degradation of methamidophos by Hyphomicrobium species MAP-1 and the biochemical degradation pathway.

    PubMed

    Wang, Li; Wen, Yang; Guo, Xinqing; Wang, Guangli; Li, Shunpeng; Jiang, Jiandong

    2010-07-01

    Methamidophos is one of the most widely used organophosphorus insecticides usually detectable in the environment. A facultative methylotroph, Hyphomicrobium sp. MAP-1, capable of high efficiently degrading methamidophos, was isolated from methamidophos-contaminated soil in China. It was found that the addition of methanol significantly promoted the growth of strain MAP-1 and enhanced its degradation of methamidophos. Further, this strain could utilize methamidophos as its sole carbon, nitrogen and phosphorus source for growth and could completely degrade 3,000 mg l(-1) methamidophos in 84 h under optimal conditions (pH 7.0, 30 degrees C). The enzyme responsible for methamidophos degradation was mainly located on the cell inner membrane (90.4%). During methamidophos degradation, three metabolites were detected and identified based on tandem mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC-MS) analysis. Using this information, a biochemical degradation pathway of methamidophos by Hyphomicrobium sp. MAP-1 was proposed for the first time. Methamidophos is first cleaved at the P-N bond to form O,S-dimethyl hydrogen thiophosphate and NH(3). Subsequently, O,S-dimethyl hydrogen thiophosphate is hydrolyzed at the P-O bond to release -OCH(3) and form S-methyl dihydrogen thiophosphate. O,S-dimethyl hydrogen thiophosphate can also be hydrolyzed at the P-S bond to release -SCH(3) and form methyl dihydrogen phosphate. Finally, S-methyl dihydrogen thiophosphate and methyl dihydrogen phosphate are likely transformed into phosphoric acid. PMID:19960233

  1. Identifying Differentially Abundant Metabolic Pathways in Metagenomic Datasets

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Pop, Mihai

    Enabled by rapid advances in sequencing technology, metagenomic studies aim to characterize entire communities of microbes bypassing the need for culturing individual bacterial members. One major goal of such studies is to identify specific functional adaptations of microbial communities to their habitats. Here we describe a powerful analytical method (MetaPath) that can identify differentially abundant pathways in metagenomic data-sets, relying on a combination of metagenomic sequence data and prior metabolic pathway knowledge. We show that MetaPath outperforms other common approaches when evaluated on simulated datasets. We also demonstrate the power of our methods in analyzing two, publicly available, metagenomic datasets: a comparison of the gut microbiome of obese and lean twins; and a comparison of the gut microbiome of infant and adult subjects. We demonstrate that the subpathways identified by our method provide valuable insights into the biological activities of the microbiome.

  2. Signal duration and the time scale dependence of signal integration in biochemical pathways

    E-print Network

    Jason W. Locasale

    2008-02-19

    Signal duration (e.g. the time scales over which an active signaling intermediate persists) is a key regulator of biological decisions in myriad contexts such as cell growth, proliferation, and developmental lineage commitments. Accompanying differences in signal duration are numerous downstream biological processes that require multiple steps of biochemical regulation. Here, we present an analysis that investigates how simple biochemical motifs that involve multiple stages of regulation can be constructed to differentially process signals that persist at different time scales. We compute the dynamic gain within these networks and resulting power spectra to better understand how biochemical networks can integrate signals at different time scales. We identify topological features of these networks that allow for different frequency dependent signal processing properties. Our studies suggest design principles for why signal duration in connection with multiple steps of downstream regulation is a ubiquitous control motif in biochemical systems.

  3. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments. PMID:26556218

  4. Metabolic control analysis of biochemical pathways based on a thermokinetic description of reaction rates.

    PubMed Central

    Nielsen, J

    1997-01-01

    Metabolic control analysis is a powerful technique for the evaluation of flux control within biochemical pathways. Its foundation is the elasticity coefficients and the flux control coefficients (FCCs). On the basis of a thermokinetic description of reaction rates it is here shown that the elasticity coefficients can be calculated directly from the pool levels of metabolites at steady state. The only requirement is that one thermodynamic parameter be known, namely the reaction affinity at the intercept of the tangent in the inflection point of the curve of reaction rate against reaction affinity. This parameter can often be determined from experiments in vitro. The methodology is applicable only to the analysis of simple two-step pathways, but in many cases larger pathways can be lumped into two overall conversions. In cases where this cannot be done it is necessary to apply an extension of the thermokinetic description of reaction rates to include the influence of effectors. Here the reaction rate is written as a linear function of the logarithm of the metabolite concentrations. With this type of rate function it is shown that the approach of Delgado and Liao [Biochem. J. (1992) 282, 919-927] can be much more widely applied, although it was originally based on linearized kinetics. The methodology of determining elasticity coefficients directly from pool levels is illustrated with an analysis of the first two steps of the biosynthetic pathway of penicillin. The results compare well with previous findings based on a kinetic analysis. PMID:9003411

  5. Diversity of Bile Salts in Fish and Amphibians: Evolution of a Complex Biochemical Pathway

    PubMed Central

    Hagey, Lee R.; Møller, Peter R.; Hofmann, Alan F.; Krasowski, Matthew D.

    2010-01-01

    Bile salts are the major end-metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates. PMID:20113173

  6. Identification of Genetic Bases of Vibrio fluvialis Species-Specific Biochemical Pathways and Potential Virulence Factors by Comparative Genomic Analysis

    PubMed Central

    Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang

    2014-01-01

    Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen. PMID:24441165

  7. A systems biology approach identifies the biochemical mechanisms regulating monoterpenoid essential oil composition in peppermint

    PubMed Central

    Rios-Estepa, Rigoberto; Turner, Glenn W.; Lee, James M.; Croteau, Rodney B.; Lange, B. Markus

    2008-01-01

    The integration of mathematical modeling and experimental testing is emerging as a powerful approach for improving our understanding of the regulation of metabolic pathways. In this study, we report on the development of a kinetic mathematical model that accurately simulates the developmental patterns of monoterpenoid essential oil accumulation in peppermint (Mentha × piperita). This model was then used to evaluate the biochemical processes underlying experimentally determined changes in the monoterpene pathway under low ambient-light intensities, which led to an accumulation of the branchpoint intermediate (+)-pulegone and the side product (+)-menthofuran. Our simulations indicated that the environmentally regulated changes in monoterpene profiles could only be explained when, in addition to effects on biosynthetic enzyme activities, as yet unidentified inhibitory effects of (+)-menthofuran on the branchpoint enzyme pulegone reductase (PR) were assumed. Subsequent in vitro analyses with recombinant protein confirmed that (+)-menthofuran acts as a weak competitive inhibitor of PR (Ki = 300 ?M). To evaluate whether the intracellular concentration of (+)-menthofuran was high enough for PR inhibition in vivo, we isolated essential oil-synthesizing secretory cells from peppermint leaves and subjected them to steam distillations. When peppermint plants were grown under low-light conditions, (+)-menthofuran was selectively retained in secretory cells and accumulated to very high levels (up to 20 mM), whereas under regular growth conditions, (+)-menthofuran levels remained very low (<400 ?M). These results illustrate the utility of iterative cycles of mathematical modeling and experimental testing to elucidate the mechanisms controlling flux through metabolic pathways. PMID:18287058

  8. MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity

    PubMed Central

    2012-01-01

    Background Exposure to environmental tobacco smoke (ETS) leads to higher rates of pulmonary diseases and infections in children. To study the biochemical changes that may precede lung diseases, metabolomic effects on fetal and maternal lungs and plasma from rats exposed to ETS were compared to filtered air control animals. Genome- reconstructed metabolic pathways may be used to map and interpret dysregulation in metabolic networks. However, mass spectrometry-based non-targeted metabolomics datasets often comprise many metabolites for which links to enzymatic reactions have not yet been reported. Hence, network visualizations that rely on current biochemical databases are incomplete and also fail to visualize novel, structurally unidentified metabolites. Results We present a novel approach to integrate biochemical pathway and chemical relationships to map all detected metabolites in network graphs (MetaMapp) using KEGG reactant pair database, Tanimoto chemical and NIST mass spectral similarity scores. In fetal and maternal lungs, and in maternal blood plasma from pregnant rats exposed to environmental tobacco smoke (ETS), 459 unique metabolites comprising 179 structurally identified compounds were detected by gas chromatography time of flight mass spectrometry (GC-TOF MS) and BinBase data processing. MetaMapp graphs in Cytoscape showed much clearer metabolic modularity and complete content visualization compared to conventional biochemical mapping approaches. Cytoscape visualization of differential statistics results using these graphs showed that overall, fetal lung metabolism was more impaired than lungs and blood metabolism in dams. Fetuses from ETS-exposed dams expressed lower lipid and nucleotide levels and higher amounts of energy metabolism intermediates than control animals, indicating lower biosynthetic rates of metabolites for cell division, structural proteins and lipids that are critical for in lung development. Conclusions MetaMapp graphs efficiently visualizes mass spectrometry based metabolomics datasets as network graphs in Cytoscape, and highlights metabolic alterations that can be associated with higher rate of pulmonary diseases and infections in children prenatally exposed to ETS. The MetaMapp scripts can be accessed at http://metamapp.fiehnlab.ucdavis.edu. PMID:22591066

  9. Oxidation state, bioavailability & biochemical pathway define the fate of carbon in soil

    NASA Astrophysics Data System (ADS)

    Kuzyakov, Yakov; Apostel, Carolin; Gunina, Anna; Herrmann, Anke M.; Dippold, Michaela

    2015-04-01

    Numerous experiments under laboratory and field conditions analyzed microbial utilization and mean residence time (MRT) of carbon (C) from plant and microbial residues as well as root exudates in soil. Most of these studies tested the effects of various environmental factors, such as temperature, soil moisture, texture etc. on these parameters. However, only a few studies compared the properties of the substances themselves and there is no conceptual framework based on biochemical pathways. We hypothesize that the fate of C from organic substances in soil strongly depends on the first step of their microbial utilization, specifically, on biochemical pathway and initial C oxidation state, as well as its bioavailability in soils, defined by its hydrophobicity and molecular weight. Here we introduce and evaluate a new conceptual framework based on the following parameters: 1) C oxidation state, 2) molecular weight and hydrophobicity, 3) initial biochemical pathway of a substance class in microbial cells. To assess these parameters, two databases were prepared based on the literature and own studies. The first database included only the studies with 14C or 13C position specific labeled sugars, amino acids, carboxylic acids, phenols and lipids in soil. This database allowed us to analyze microbial utilization and mineralization of organics to CO2 depending on their C oxidation state (OS) and on functional groups. Additionally, we calculated data on the bond electronegativity of all compounds investigated in these studies. The second data base included the results of 14C and 13C studies with uniformly labeled substances of various classes. This database considered the free enthalpie (Delta H) per C unit from a variety of substrates differing in their aromaticity, hydrophobicity/electronegativity and location of the substance on the van Krevelen diagram. In addition, we calculated the hydrophobicity from the electronegativity of the individual bonds and recorded their molecular weight in our databases. For both data bases the decomposition rates and the MRT of C remaining in soil were calculated by the double first-order kinetics and related to the four parameter groups. The first database showed high correlation of mineralization rates to CO2 with the C oxidation state and biochemical pathway. Carboxyl group (OS = +3) was split at first from the skeleton of nearly all substances. In contrast, the methyl group (OS = -3) was mineralized as the slowest and after incorporation into microbial cells remained the longest period in soil. This general pattern reflects a clear preferential oxidation of already highly oxidized, polar functional groups. The initial use of substances within glucolysis (e.g. sugars) lead to a higher portion of remaining C in soil compared to C introduced via citric acid cycle (e.g. carboxylic acids). Concerning substance groups, the mineralization rates were the fastest for amino acids and sugars and the slowest for of the lipids - corresponding to their molecular weight and hydropobicity. This corresponded well with localization of the substance classes on the van Krevelen diagram. Generally, high oxidation state of the initial substance and consequently its low free enthalpy content lead to faster decomposition. In contrast, low oxidation state (e.g. lipids, aromatics) corresponds to high hydrophobicity and so, slow uptake from soil solution and utilization within microbial cells. Consequently, the optimum for microbial biomass utilization in soil and use for anabolic processes is common for sugars that have the oxidation state close to 0, have medium energy content and are hydrophilic. We conclude that from the tested substance properties, the oxidation state and biochemical pathway explained well the initial fate of C in soil, i.e. its mineralization to CO2 and incorporation into microbial biomass. Because the first step and microbial cycling are crucial for its further transformations, the same criteria are pivotal for C stabilization in soil.

  10. A Systems Biology Approach to Identify Molecular Pathways Altered by HDAC Inhibition in Osteosarcoma

    PubMed Central

    Wittenburg, Luke A.; Ptitsyn, Andrey A.; Thamm, Douglas H.

    2015-01-01

    Osteosarcoma (OS) is the most common primary tumor in humans and dogs affecting the skeleton, and spontaneously occurring OS in dogs serves as an extremely useful model. Unacceptable toxicities using current treatment protocols prevent further dose-intensification from being a viable option to improve patient survival and thus, novel treatment strategies must be developed. Histone deacetylase inhibitors (HDACi) have recently emerged as a promising class of therapeutics demonstrating an ability to enhance the anti-tumor activity of traditional chemotherapeutics. To date, gene expression analysis of OS cell lines treated with HDACi has not been reported, and evaluation of the resultant gene expression changes may provide insight into the mechanisms that lead to success of HDACi. Canine OS cells, treated with a clinically relevant concentration of the HDACi valproic acid (VPA), were used for expression analysis on the Affymetrix canine v2.0 genechip. Differentially expressed genes were grouped into pathways based upon functional annotation; pathway analysis was performed with MetaCore and Ingenuity Pathways Analysis software. Validation of microarray results was performed by a combination of qRT-PCR and functional/biochemical assays revealing oxidative phosphorylation, cytoskeleton remodeling, cell cycle, and ubiquitin-proteasome among those pathways most affected by HDACi. The mitomycin C-bioactivating enzyme NQ01 also demonstrated upregulation following VPA treatment, leading to synergistic reductions in cell viability. These results provide a better understanding of the mechanisms by which HDACi exert their effect in OS, and have the potential to identify biomarkers that may serve as novel targets and/or predictors of response to HDACi-containing combination therapies in OS. PMID:21976144

  11. Harnessing Intracellular Biochemical Pathways for In Vitro Synthesis of Designer Tellurium Nanorods.

    PubMed

    Xiong, Ling-Hong; Cui, Ran; Zhang, Zhi-Ling; Tu, Jia-Wei; Shi, Yun-Bo; Pang, Dai-Wen

    2015-10-01

    Synthesizing nanomaterials of desired properties is a big challenge, which requires extremely harsh conditions and/or use of toxic materials. More recently developed in vivo methods have brought a different set of problems such as separation and purification of nanomaterials made in vivo. Here, a novel approach that harnesses cellular pathways for in vitro synthesis of high-quality tellurium nanorods with tunable lengths and optical properties is reported. It is first demonstrated that in vivo biochemical pathways could be used to synthesize Te nanorods via the intracellular reduction of TeO3 (2-) in living Staphylococcus aureus cells. The pathways to set up a quasi-biological system for Te precursor formation are then utilized, which could further synthesize Te nanorods in vitro. This allows to successfully synthesize in vitro, under routine laboratory conditions, Te nanorods with uniform and tunable lengths, ranging from about 10 to 200 nm, and controllable optical properties with high molar extinction coefficients. The approach here should open new avenues for controllable, facile, and efficient synthesis of designer nanomaterials for diverse industrial and biomedical applications. PMID:26313741

  12. Combinatorial assembly of large biochemical pathways into yeast chromosomes for improved production of value-added compounds.

    PubMed

    Yuan, Jifeng; Ching, Chi Bun

    2015-01-16

    Saccharomyces cerevisiae as a eukaryotic organism is particularly suitable as microbial cell factory because it has interesting features such as membrane environments for supporting membrane-associated enzymes and its capability for post-translational modifications of enzymes from plants. However, S. cerevisiae does not readily express polycistronic transcriptional units, which represents a significant challenge for constructing large biochemical pathways in budding yeast. In the present study, we developed a novel approach for rapid construction of large biochemical pathways into yeast chromosomes. Our approach takes advantage of antibiotic selection for combinatorial assembly of large pathways into the ?-sites of retrotransposon elements of yeast chromosomes. As proof-of-principle, a five-gene isobutanol pathway and an eight-gene mevalonate pathway were successfully assembled into yeast chromosomes in one-step fashion. To our knowledge, this is the first report to exploit ?-integration coupled with antibiotic selection for rapid assembly of large biochemical pathways in budding yeast. We envision our new approach could serve as a generalized technique for large pathway construction in yeast-a method that would be of significant interest to the synthetic biology community. PMID:24847678

  13. Prediction and Biochemical Demonstration of a Catabolic Pathway for the Osmoprotectant Proline Betaine

    PubMed Central

    Kumar, Ritesh; Zhao, Suwen; Vetting, Matthew W.; Wood, B. McKay; Sakai, Ayano; Cho, Kyuil; Solbiati, José; Almo, Steven C.; Sweedler, Jonathan V.; Jacobson, Matthew P.; Gerlt, John A.; Cronan, John E.

    2014-01-01

    ABSTRACT Through the use of genetic, enzymatic, metabolomic, and structural analyses, we have discovered the catabolic pathway for proline betaine, an osmoprotectant, in Paracoccus denitrificans and Rhodobacter sphaeroides. Genetic and enzymatic analyses showed that several of the key enzymes of the hydroxyproline betaine degradation pathway also function in proline betaine degradation. Metabolomic analyses detected each of the metabolic intermediates of the pathway. The proline betaine catabolic pathway was repressed by osmotic stress and cold stress, and a regulatory transcription factor was identified. We also report crystal structure complexes of the P. denitrificans HpbD hydroxyproline betaine epimerase/proline betaine racemase with l-proline betaine and cis-hydroxyproline betaine. PMID:24520058

  14. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (edited by Gerhard Michal)

    NASA Astrophysics Data System (ADS)

    Voige, Reviewed By William H.

    2000-02-01

    For decades, a wall chart detailing living organisms' metabolic pathways has been a fixture in many classrooms and laboratories where biochemistry is taught. One of the most popular of those charts first appeared 30 years ago. Now its editor, Gerhard Michal, has produced a book that summarizes metabolism (broadly defined) in graphical and textual formats. The book retains the elegance of the chart. Names of molecules are printed in a crisp, easy-to-read font, and structural formulas are shown with exemplary clarity. Color coding serves multiple purposes: to differentiate enzymes, substrates, cofactors, and effector molecules; to indicate in which group or groups of organisms a reaction has been observed; and to distinguish enzymatic reactions from regulatory effects. The primary advantage of presenting this information in book format is immediately apparent. A typical metabolic chart covers about 2 m2; the book has a total surface area nearly 10 times greater. The extra space is used to add explanatory text to the figures and to include many topics not covered by the traditional definition of metabolism. Examples include replication, transcription, translation, reaction mechanisms for proteolytic enzymes, and the role of chaperones in protein folding. Illustrating these topics is not as straightforward as delineating a metabolic pathway, but the author has done an admirable job of designing figures that clarify these and other aspects of biochemistry and complement the accompanying text. A potential deficiency of book format is the inability to clearly show links between different realms of metabolism: carbohydrate and amino acid pathways, for example. The book overcomes this problem in two ways. A diagrammatic overview of metabolism (with references to applicable sections of the book) is printed inside its front cover, and key compounds (pyruvate, for example) have a distinctive green background to provide a visual link between pathways. (The author compares this feature to the hyperlinks in an electronic document.) The book's index is comprehensive and useful. Entries for "phenylketonuria" and "sickle cell anemia", for example, lead to commendably concise summaries of these hereditary diseases (and the relevant metabolic pathway, in the former case). Looking up a specific molecule, however, is less helpful. The listing for fumarate hydratase, a citric acid cycle enzyme, directs the reader to the chapter on special bacterial metabolism but not to the section on the citric acid cycle itself. Literature references are included at the end of each section and are mainly from the 1990s, but they could be more useful. A long section on heme proteins, for example, concludes with eight citations, but their titles are not included, so it is impossible to determine what topic each one addresses. This book will be most useful to those with a good understanding of the fundamentals of biochemistry. Some of the information it presents could easily confuse less experienced readers. For example, it classifies selenocysteine as a standard amino acid in a figure but not in the accompanying text. In the diagram of anaerobic glycolysis, a double-headed arrow for the hexokinase reaction reinforces the frustratingly common student misperception that the phosphoryl group of glucose-6-phosphate can be used to phosphorylate ADP. Biochemical Pathways compiles a large amount of information in a single source. Its good index and clear, concise text and diagrams should make it a reliable way of gaining insight into many biochemical topics. With a price similar to that of most textbooks, it merits a place in the libraries of individuals and academic departments that teach biochemistry.

  15. Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts.

    PubMed

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-11-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune function. PMID:24278029

  16. A method for integrating and ranking the evidence for biochemical pathways by mining reactions from text

    PubMed Central

    Miwa, Makoto; Ohta, Tomoko; Rak, Rafal; Rowley, Andrew; Kell, Douglas B.; Pyysalo, Sampo; Ananiadou, Sophia

    2013-01-01

    Motivation: To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. Method: We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several ranking methods, using various heuristic and machine-learning approaches. Results: Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText. Availability: An online demonstration of PathText 2 and the annotated corpus are available for research purposes at http://www.nactem.ac.uk/pathtext2/. Contact: makoto.miwa@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813008

  17. Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. for Biodiesel Production

    PubMed Central

    Talebi, Ahmad Farhad; Tohidfar, Masoud; Mousavi Derazmahalleh, Seyedeh Mahsa; Sulaiman, Alawi; Baharuddin, Azhari Samsu; Tabatabaei, Meisam

    2015-01-01

    Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200?mg?L?1 myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200?mg?L?1 myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that “there is a there there” for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality. PMID:26146623

  18. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria.

    PubMed

    Mtimunye, Phalazane J; Chirwa, Evans M N

    2014-10-01

    Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes. PMID:25065785

  19. Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. for Biodiesel Production.

    PubMed

    Talebi, Ahmad Farhad; Tohidfar, Masoud; Mousavi Derazmahalleh, Seyedeh Mahsa; Sulaiman, Alawi; Baharuddin, Azhari Samsu; Tabatabaei, Meisam

    2015-01-01

    Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200?mg?L(-1) myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200?mg?L(-1) myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that "there is a there there" for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality. PMID:26146623

  20. Antiviral cyclic D,L-alpha-peptides: targeting a general biochemical pathway in virus infections.

    PubMed

    Horne, W Seth; Wiethoff, Christopher M; Cui, Chunli; Wilcoxen, Keith M; Amorin, Manuel; Ghadiri, M Reza; Nemerow, Glen R

    2005-09-01

    Diverse virus families have evolved to exploit the acidification of endosomal compartments to gain entry into cells. We describe a supramolecular approach for selectively targeting and inhibiting viral infections through this central biochemical pathway. Using adenovirus as a model non-enveloped virus, we have determined that an eight-residue cyclic D,L-alpha-peptide, selected from a directed combinatorial library, can specifically prevent the development of low pH in endocytic vesicles, arrest the escape of virions from the endosome, and abrogate adenovirus infection without an apparent adverse effect on cell viability. The likely generality of this approach against other pH-dependent viral infections is supported by the inhibition of type-A influenza virus escape from endosomes in the presence of the same peptide. Our studies suggest that self-assembling cyclic D,L-alpha-peptides hold considerable potential as a new rational supramolecular approach toward the design and discovery of broad-spectrum antiviral agents. PMID:15993611

  1. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in Flavonoid Biosynthetic Pathway

    PubMed Central

    Sun, Wei; Meng, Xiangyu; Liang, Lingjie; Jiang, Wangshu; Huang, Yafei; He, Jing; Hu, Haiyan; Almqvist, Jonas; Gao, Xiang; Wang, Li

    2015-01-01

    Chalcone synthase (CHS) catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1) encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants. PMID:25742495

  2. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses.

    PubMed

    Gilbert, Jessica L; Guthart, Matthew J; Gezan, Salvador A; Pisaroglo de Carvalho, Melissa; Schwieterman, Michael L; Colquhoun, Thomas A; Bartoshuk, Linda M; Sims, Charles A; Clark, David G; Olmstead, James W

    2015-01-01

    Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids) genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (P<0.001) were found with sweetness (R2 = 0.70), texture (R2 = 0.68), and flavor (R2 = 0.63). Sourness had a significantly negative relationship with overall liking (R2 = 0.55). The relationship between flavor and texture liking was also linear (R2 = 0.73, P<0.0001) demonstrating interaction between olfaction and somatosensation. Partial least squares analysis was used to identify sugars, acids, and volatile compounds contributing to liking and sensory intensities, and revealed strong effects of fructose, pH, and several volatile compounds upon all sensory parameters measured. To assess the feasibility of breeding for flavor components, a three year study was conducted to compare genetic and environmental influences on flavor biochemistry. Panelists could discern genotypic variation in blueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, ?-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their breeding is worthwhile. PMID:26378911

  3. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses

    PubMed Central

    Gilbert, Jessica L.; Guthart, Matthew J.; Gezan, Salvador A.; Pisaroglo de Carvalho, Melissa; Schwieterman, Michael L.; Colquhoun, Thomas A.; Bartoshuk, Linda M.; Sims, Charles A.; Clark, David G.; Olmstead, James W.

    2015-01-01

    Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids) genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (P<0.001) were found with sweetness (R2 = 0.70), texture (R2 = 0.68), and flavor (R2 = 0.63). Sourness had a significantly negative relationship with overall liking (R2 = 0.55). The relationship between flavor and texture liking was also linear (R2 = 0.73, P<0.0001) demonstrating interaction between olfaction and somatosensation. Partial least squares analysis was used to identify sugars, acids, and volatile compounds contributing to liking and sensory intensities, and revealed strong effects of fructose, pH, and several volatile compounds upon all sensory parameters measured. To assess the feasibility of breeding for flavor components, a three year study was conducted to compare genetic and environmental influences on flavor biochemistry. Panelists could discern genotypic variation in blueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, ?-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their breeding is worthwhile. PMID:26378911

  4. Identifiability and inference of pathway motifs by epistasis analysis

    NASA Astrophysics Data System (ADS)

    Phenix, Hilary; Perkins, Theodore; Kærn, Mads

    2013-06-01

    The accuracy of genetic network inference is limited by the assumptions used to determine if one hypothetical model is better than another in explaining experimental observations. Most previous work on epistasis analysis—in which one attempts to infer pathway relationships by determining equivalences among traits following mutations—has been based on Boolean or linear models. Here, we delineate the ultimate limits of epistasis-based inference by systematically surveying all two-gene network motifs and use symbolic algebra with arbitrary regulation functions to examine trait equivalences. Our analysis divides the motifs into equivalence classes, where different genetic perturbations result in indistinguishable experimental outcomes. We demonstrate that this partitioning can reveal important information about network architecture, and show, using simulated data, that it greatly improves the accuracy of genetic network inference methods. Because of the minimal assumptions involved, equivalence partitioning has broad applicability for gene network inference.

  5. An Effective Method to Identify Shared Pathways and Common Factors among Neurodegenerative Diseases

    PubMed Central

    Li, Ping; Nie, Yaling; Yu, Jingkai

    2015-01-01

    Groups of distinct but related diseases often share common symptoms, which suggest likely overlaps in underlying pathogenic mechanisms. Identifying the shared pathways and common factors among those disorders can be expected to deepen our understanding for them and help designing new treatment strategies effected on those diseases. Neurodegeneration diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), were taken as a case study in this research. Reported susceptibility genes for AD, PD and HD were collected and human protein-protein interaction network (hPPIN) was used to identify biological pathways related to neurodegeneration. 81 KEGG pathways were found to be correlated with neurodegenerative disorders. 36 out of the 81 are human disease pathways, and the remaining ones are involved in miscellaneous human functional pathways. Cancers and infectious diseases are two major subclasses within the disease group. Apoptosis is one of the most significant functional pathways. Most of those pathways found here are actually consistent with prior knowledge of neurodegenerative diseases except two cell communication pathways: adherens and tight junctions. Gene expression analysis showed a high probability that the two pathways were related to neurodegenerative diseases. A combination of common susceptibility genes and hPPIN is an effective method to study shared pathways involved in a group of closely related disorders. Common modules, which might play a bridging role in linking neurodegenerative disorders and the enriched pathways, were identified by clustering analysis. The identified shared pathways and common modules can be expected to yield clues for effective target discovery efforts on neurodegeneration. PMID:26575483

  6. An Effective Method to Identify Shared Pathways and Common Factors among Neurodegenerative Diseases.

    PubMed

    Li, Ping; Nie, Yaling; Yu, Jingkai

    2015-01-01

    Groups of distinct but related diseases often share common symptoms, which suggest likely overlaps in underlying pathogenic mechanisms. Identifying the shared pathways and common factors among those disorders can be expected to deepen our understanding for them and help designing new treatment strategies effected on those diseases. Neurodegeneration diseases, including Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD), were taken as a case study in this research. Reported susceptibility genes for AD, PD and HD were collected and human protein-protein interaction network (hPPIN) was used to identify biological pathways related to neurodegeneration. 81 KEGG pathways were found to be correlated with neurodegenerative disorders. 36 out of the 81 are human disease pathways, and the remaining ones are involved in miscellaneous human functional pathways. Cancers and infectious diseases are two major subclasses within the disease group. Apoptosis is one of the most significant functional pathways. Most of those pathways found here are actually consistent with prior knowledge of neurodegenerative diseases except two cell communication pathways: adherens and tight junctions. Gene expression analysis showed a high probability that the two pathways were related to neurodegenerative diseases. A combination of common susceptibility genes and hPPIN is an effective method to study shared pathways involved in a group of closely related disorders. Common modules, which might play a bridging role in linking neurodegenerative disorders and the enriched pathways, were identified by clustering analysis. The identified shared pathways and common modules can be expected to yield clues for effective target discovery efforts on neurodegeneration. PMID:26575483

  7. Genomic, Proteomic, and Biochemical Analysis of the Organohalide Respiratory Pathway in Desulfitobacterium dehalogenans

    PubMed Central

    van de Pas, Bram A.; Atteia, Ariane; Krab, Klaas; Hagen, Wilfred R.; Goodwin, Lynne; Chain, Patrick; Boeren, Sjef; Maphosa, Farai; Schraa, Gosse; de Vos, Willem M.; van der Oost, John; Smidt, Hauke

    2014-01-01

    Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1T consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA. PMID:25512312

  8. Integrated systems approach identifies risk regulatory pathways and key regulators in coronary artery disease.

    PubMed

    Zhang, Yan; Liu, Dianming; Wang, Lihong; Wang, Shuyuan; Yu, Xuexin; Dai, Enyu; Liu, Xinyi; Luo, Shanshun; Jiang, Wei

    2015-12-01

    Coronary artery disease (CAD) is the most common type of heart disease. However, the molecular mechanisms of CAD remain elusive. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, inferring risk regulatory pathways is an important step toward elucidating the mechanisms underlying CAD. With advances in high-throughput data, we developed an integrated systems approach to identify CAD risk regulatory pathways and key regulators. Firstly, a CAD-related core subnetwork was identified from a curated transcription factor (TF) and microRNA (miRNA) regulatory network based on a random walk algorithm. Secondly, candidate risk regulatory pathways were extracted from the subnetwork by applying a breadth-first search (BFS) algorithm. Then, risk regulatory pathways were prioritized based on multiple CAD-associated data sources. Finally, we also proposed a new measure to prioritize upstream regulators. We inferred that phosphatase and tensin homolog (PTEN) may be a key regulator in the dysregulation of risk regulatory pathways. This study takes a closer step than the identification of disease subnetworks or modules. From the risk regulatory pathways, we could understand the flow of regulatory information in the initiation and progression of the disease. Our approach helps to uncover its potential etiology. Key messages We developed an integrated systems approach to identify risk regulatory pathways. We proposed a new measure to prioritize the key regulators in CAD. PTEN may be a key regulator in dysregulation of the risk regulatory pathways. PMID:26208504

  9. Transcriptomics profiling of Indian mustard (Brassica juncea) under arsenate stress identifies key candidate genes and regulatory pathways

    PubMed Central

    Srivastava, Sudhakar; Srivastava, Ashish K.; Sablok, Gaurav; Deshpande, Tejaswini U.; Suprasanna, Penna

    2015-01-01

    Arsenic (As) is a non-essential element, a groundwater pollutant, whose uptake by plants produces toxic effects. The use of As-contaminated groundwater for irrigation can affect the crop productivity. Realizing the importance of the Brassica juncea as a crop plant in terms of oil-yield, there is a need to unravel mechanistic details of response to As stress and identify key functional genes and pathways. In this research, we studied time-dependent (4–96 h) transcriptome changes in roots and shoots of B. juncea under arsenate [As(V)] stress using Agilent platform. Among the whole transcriptome profiled genes, a total of 1,285 genes showed significant change in expression pattern upon As(V) exposure. The differentially expressed genes were categorized to various signaling pathways including hormones (jasmonate, abscisic acid, auxin, and ethylene) and kinases. Significant effects were also noticed on genes related to sulfur, nitrogen, CHO, and lipid metabolisms along with photosynthesis. Biochemical assays were conducted using specific inhibitors of glutathione and jasmonate biosynthesis, and kinases. The inhibitor studies revealed interconnection among sulfur metabolism, jasmonate, and kinase signaling pathways. In addition, various transposons also constituted a part of the altered transcriptome. Lastly, we profiled a set of key functional up- and down-regulated genes using real-time RT-PCR, which could act as an early indicators of the As stress. PMID:26347763

  10. Systematic Tracking of Disrupted Modules Identifies Altered Pathways Associated with Congenital Heart Defects in Down Syndrome.

    PubMed

    Chen, Denghong; Zhang, Zhenhua; Meng, Yuxiu

    2015-01-01

    BACKGROUND This work aimed to identify altered pathways in congenital heart defects (CHD) in Down syndrome (DS) by systematically tracking the dysregulated modules of reweighted protein-protein interaction (PPI) networks. MATERIAL AND METHODS We performed systematic identification and comparison of modules across normal and disease conditions by integrating PPI and gene-expression data. Based on Pearson correlation coefficient (PCC), normal and disease PPI networks were inferred and reweighted. Then, modules in the PPI network were explored by clique-merging algorithm; altered modules were identified via maximum weight bipartite matching and ranked in non-increasing order. Finally, pathways enrichment analysis of genes in altered modules was carried out based on Database for Annotation, Visualization, and Integrated Discovery (DAVID) to study the biological pathways in CHD in DS. RESULTS Our analyses revealed that 348 altered modules were identified by comparing modules in normal and disease PPI networks. Pathway functional enrichment analysis of disrupted module genes showed that the 4 most significantly altered pathways were: ECM-receptor interaction, purine metabolism, focal adhesion, and dilated cardiomyopathy. CONCLUSIONS We successfully identified 4 altered pathways and we predicted that these pathways would be good indicators for CHD in DS. PMID:26524729

  11. Systematic Tracking of Disrupted Modules Identifies Altered Pathways Associated with Congenital Heart Defects in Down Syndrome

    PubMed Central

    Chen, Denghong; Zhang, Zhenhua; Meng, Yuxiu

    2015-01-01

    Background This work aimed to identify altered pathways in congenital heart defects (CHD) in Down syndrome (DS) by systematically tracking the dysregulated modules of reweighted protein-protein interaction (PPI) networks. Material/Methods We performed systematic identification and comparison of modules across normal and disease conditions by integrating PPI and gene-expression data. Based on Pearson correlation coefficient (PCC), normal and disease PPI networks were inferred and reweighted. Then, modules in the PPI network were explored by clique-merging algorithm; altered modules were identified via maximum weight bipartite matching and ranked in non-increasing order. Finally, pathways enrichment analysis of genes in altered modules was carried out based on Database for Annotation, Visualization, and Integrated Discovery (DAVID) to study the biological pathways in CHD in DS. Results Our analyses revealed that 348 altered modules were identified by comparing modules in normal and disease PPI networks. Pathway functional enrichment analysis of disrupted module genes showed that the 4 most significantly altered pathways were: ECM-receptor interaction, purine metabolism, focal adhesion, and dilated cardiomyopathy. Conclusions We successfully identified 4 altered pathways and we predicted that these pathways would be good indicators for CHD in DS. PMID:26524729

  12. Patient-Specific Pathway Analysis Using PARADIGM Identifies Key Activities in Multiple Cancers - Josh Stuart, TCGA Scientific Symposium 2011

    Cancer.gov

    Home News and Events Multimedia Library Videos Patient-Specific Pathway Analysis Using PARADIGM Identifies Key Activities in Cancers - Josh Stuart Patient-Specific Pathway Analysis Using PARADIGM Identifies Key Activities in Multiple Cancers - Josh

  13. The Use of Functional Chemical-Protein Associations to Identify Multi-Pathway Renoprotectants

    PubMed Central

    Xu, Jia; Meng, Kexin; Zhang, Rui; Yang, He; Liao, Chang; Zhu, Wenliang; Jiao, Jundong

    2014-01-01

    Typically, most nephropathies can be categorized as complex human diseases in which the cumulative effect of multiple minor genes, combined with environmental and lifestyle factors, determines the disease phenotype. Thus, multi-target drugs would be more likely to facilitate comprehensive renoprotection than single-target agents. In this study, functional chemical-protein association analysis was performed to retrieve multi-target drugs of high pathway wideness from the STITCH 3.1 database. Pathway wideness of a drug evaluated the efficiency of regulation of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in quantity. We identified nine experimentally validated renoprotectants that exerted remarkable impact on KEGG pathways by targeting a limited number of proteins. We selected curcumin as an illustrative compound to display the advantage of multi-pathway drugs on renoprotection. We compared curcumin with hemin, an agonist of heme oxygenase-1 (HO-1), which significantly affects only one KEGG pathway, porphyrin and chlorophyll metabolism (adjusted p?=?1.5×10?5). At the same concentration (10 µM), both curcumin and hemin equivalently mitigated oxidative stress in H2O2-treated glomerular mesangial cells. The benefit of using hemin was derived from its agonistic effect on HO-1, providing relief from oxidative stress. Selective inhibition of HO-1 completely blocked the action of hemin but not that of curcumin, suggesting simultaneous multi-pathway intervention by curcumin. Curcumin also increased cellular autophagy levels, enhancing its protective effect; however, hemin had no effects. Based on the fact that the dysregulation of multiple pathways is implicated in the etiology of complex diseases, we proposed a feasible method for identifying multi-pathway drugs from compounds with validated targets. Our efforts will help identify multi-pathway agents capable of providing comprehensive protection against renal injuries. PMID:24830678

  14. Stratified Pathway Analysis to Identify Gene Sets Associated with Oral Contraceptive Use and Breast Cancer

    PubMed Central

    Pang, Herbert; Zhao, Hongyu

    2014-01-01

    Cancer biomarker discovery can facilitate drug development, improve staging of patients, and predict patient prognosis. Because cancer is the result of many interacting genes, analysis based on a set of genes with related biological functions or pathways may be more informative than single gene-based analysis for cancer biomarker discovery. The relevant pathways thus identified may help characterize different aspects of molecular phenotypes related to the tumor. Although it is well known that cancer patients may respond to the same treatment differently because of clinical variables and variation of molecular phenotypes, this patient heterogeneity has not been explicitly considered in pathway analysis in the literature. We hypothesize that combining pathway and patient clinical information can more effectively identify relevant pathways pertinent to specific patient subgroups, leading to better diagnosis and treatment. In this article, we propose to perform stratified pathway analysis based on clinical information from patients. In contrast to analysis using all the patients, this more focused analysis has the potential to reveal subgroup-specific pathways that may lead to more biological insights into disease etiology and treatment response. As an illustration, the power of our approach is demonstrated through its application to a breast cancer dataset in which the patients are stratified according to their oral contraceptive use. PMID:25574128

  15. Biochemical and structural characterization of mouse mitochondrial aspartate aminotransferase, a newly identified kynurenine aminotransferase-IV

    SciTech Connect

    Han, Q.; Robinson, H.; Cai, T.; Tagle, D. A.; Li, J.

    2011-10-01

    Mammalian mAspAT (mitochondrial aspartate aminotransferase) is recently reported to have KAT (kynurenine aminotransferase) activity and plays a role in the biosynthesis of KYNA (kynurenic acid) in rat, mouse and human brains. This study concerns the biochemical and structural characterization of mouse mAspAT. In this study, mouse mAspAT cDNA was amplified from mouse brain first stand cDNA and its recombinant protein was expressed in an Escherichia coli expression system. Sixteen oxo acids were tested for the co-substrate specificity of mouse mAspAT and 14 of them were shown to be capable of serving as co-substrates for the enzyme. Structural analysis of mAspAT by macromolecular crystallography revealed that the cofactor-binding residues of mAspAT are similar to those of other KATs. The substrate-binding residues of mAspAT are slightly different from those of other KATs. Our results provide a biochemical and structural basis towards understanding the overall physiological role of mAspAT in vivo and insight into controlling the levels of endogenous KYNA through modulation of the enzyme in the mouse brain.

  16. Identifying Differences Between Biochemical Failure and Cure: Incidence Rates and Predictors

    SciTech Connect

    Vicini, Frank A.; Shah, Chirag; Kestin, Larry; Ghilezan, Mihai; Krauss, Daniel; Ye Hong; Brabbins, Donald; Martinez, Alvaro A.

    2011-11-15

    Background: Patients treated with radiation therapy (RT) for prostate cancer were evaluated to estimate the length of time required to document biochemical cure (BC) after treatment and the variables associated with long-term treatment efficacy. Patients and Methods: 2,100 patients received RT alone for localized prostate carcinoma (external-beam RT, n = 1,504; brachytherapy alone, n = 241; or brachytherapy + pelvic radiation, n = 355). The median external-beam dose was 68.4 Gy, and the median follow-up time was 8.6 years. Biochemical failure (BF) was defined according to the Phoenix definition. Results: Biochemical failure was experienced by 685 patients (32.6%). The median times to BF for low-, intermediate-, and high-risk groups were 6.0, 5.6, and 4.5 years respectively (p < 0.001). The average annual incidence rates of BF for years 1-5, 5-10,11-15, and 16-20 in low-risk patients were 2.0%, 2.0%, 0.3%, and 0.06% (p < 0.001); for intermediate-risk patients, 4%, 3%, 0.3%, and 0% (p < 0.001); and for high-risk patients, 10.0%, 5.0%, 0.3%, and 0.3% (p < 0.001). After 5 years of treatment, 36.9% of all patients experienced BF. The percentage of total failures occurring during years 1-5, 5-10, 11-15, and 16-20 were 48.7%, 43.5%, 6.5%, and 1.3% for low-risk patients; 64.0%, 32.2%, 3.8%, and 0% for intermediate-risk patients; and 71.9%, 25.9%, 1.1%, and 1.1% for high-risk patients, respectively. Increasing time to nadir was associated with increased time to BF. On multivariate analysis, factors significantly associated with 10-year BC included prostate-specific antigen nadir and time to nadir. Conclusions: The incidence rates for BF did not plateau until later than 10 years after treatment, suggesting that extended follow-up time is required to monitor patients after treatment. Prostate-specific antigen nadir and time to nadir have the strongest association with long-term BC.

  17. Elucidation of the biochemical pathway of 2-phenylethanol from shikimic acid using isolated protoplasts of rose flowers.

    PubMed

    Yang, Ziyin; Sakai, Miwa; Sayama, Hironori; Shimeno, Taku; Yamaguchi, Koji; Watanabe, Naoharu

    2009-05-15

    The isolated protoplasts of rose flowers were used to investigate the metabolic pathway in rose flower leading from shikimic acid or L-phenylalanine (L-Phe) to 2-phenylethanol (2PE), a dominant volatile compound in hybrid roses such as Rosa damascena Mill., R. 'Hoh-Jun', and R. 'Yves Piaget'. Deuterium-labeled L-Phe ([2H8]L-Phe) was supplied to the protoplasts isolated from R. 'Yves Piaget' petals. The volatile end products ([2Hn]-2PE, n=6-8) and their related intermediates ([2Hn]phenylacetaldehyde, n=6-8) were detected in the protoplasts by gas chromatography-mass spectrometry (GC-MS). In addition, we chemically synthesized [2,3,4,5,6-13C5]shikimic acid, a new stable isotopomer, to investigate the formation of 2PE from shikimic acid by GC-MS and nuclear magnetic resonance. We proposed the hypothetical biochemical pathway of 2PE from shikimic acid via chorismic acid, L-Phe, and phenylacetaldehyde. This protoplast system facilitates findings of metabolic intermediates and simplifies the complex branching biosynthetic pathways of floral scents to distinct individual events. PMID:19097671

  18. Using mechanistic Bayesian networks to identify downstream targets of the Sonic Hedgehog pathway

    PubMed Central

    2009-01-01

    Background The topology of a biological pathway provides clues as to how a pathway operates, but rationally using this topology information with observed gene expression data remains a challenge. Results We introduce a new general-purpose analytic method called Mechanistic Bayesian Networks (MBNs) that allows for the integration of gene expression data and known constraints within a signal or regulatory pathway to predict new downstream pathway targets. The MBN framework is implemented in an open-source Bayesian network learning package, the Python Environment for Bayesian Learning (PEBL). We demonstrate how MBNs can be used by modeling the early steps of the sonic hedgehog pathway using gene expression data from different developmental stages and genetic backgrounds in mouse. Using the MBN approach we are able to automatically identify many of the known downstream targets of the hedgehog pathway such as Gas1 and Gli1, along with a short list of likely targets such as Mig12. Conclusions The MBN approach shown here can easily be extended to other pathways and data types to yield a more mechanistic framework for learning genetic regulatory models. PMID:20021670

  19. A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae.

    PubMed

    Shi, Shuobo; Liang, Youyun; Zhang, Mingzi M; Ang, Ee Lui; Zhao, Huimin

    2016-01-01

    Despite recent advances in genome editing capabilities for the model organism Saccharomyces cerevisiae, the chromosomal integration of large biochemical pathways for stable industrial production remains challenging. In this work, we developed a simple platform for high-efficiency, single-step, markerless, multi-copy chromosomal integration of full biochemical pathways in Saccharomyces cerevisiae. In this Di-CRISPR (delta integration CRISPR-Cas) platform based on the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated systems (Cas), we specifically designed guide RNA sequences to target multiple delta sites in the yeast genome. The generation of double stranded breaks at the delta sites allowed simultaneous integration of multiple copies of linearized donor DNA containing large biochemical pathways. With our newly developed Di-CRISPR platform, we were able to attain highly efficient and markerless integration of large biochemical pathways and achieve an unprecedented 18-copy genomic integration of a 24kb combined xylose utilization and (R,R)-2,3-butanediol (BDO) production pathway in a single step, thus generating a strain that was able to produce BDO directly from xylose. The simplicity and high efficiency of the Di-CRISPR platform could provide a superior alternative to high copy plasmids and would render this platform an invaluable tool for genome editing and metabolic engineering in S. cerevisiae. PMID:26546089

  20. Hydrograph Separations can Identify Contaminant-Specific Pathways for Conservation Targeting in a Tile-Drained Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality issues continue to vex agriculture. Understanding contaminant-specific pathways could help clarify effective water quality management strategies in watersheds. Hypothesis: If conducted at nested scales, hydrograph separation techniques can identify contaminant-specific pathways that co...

  1. Do SADQ and AUDIT identify independent impacts of alcohol abuse - clinical and biochemical markers respectively?

    PubMed Central

    Pradeep, R. Johnson; Dhilip, Andrew M.; Mysore, Ashok

    2015-01-01

    Background and Objectives: We have analyzed extant data to see if Alcohol Use Disorder Identification Test (AUDIT) and Severity of Alcohol Dependence Questionnaire (SADQ) assess overlapping aspects of alcoholism, and how they relate to lab measures of alcoholism. Materials and Methods: Consecutive male patients between 20 and 50 years were recruited from varied departments of a general hospital. AUDIT and SADQ, as well as liver function tests, were part of the data obtained. Results: Despite, a significant correlation between total scores of SADQ and AUDIT (? = 0.188, P < 0.021) and some of their sub-scores. SADQ scores alone were significantly correlating with clinical variables of alcoholism such as family history and age of onset; AUDIT did not. On the other hand, AUDIT total scores correlated with total and conjugated bilirubin, while SADQ did not. Interpretation and Conclusion: Our data suggests that the two scales, AUDIT and SADQ may be tapping into two different outcomes of increased alcohol use namely clinical and biochemical markers, respectively. SADQ could be useful in studies looking at withdrawal related severity and clinical aspects of alcoholism; while AUDIT could be more suitable for studies looking at alcoholism-related medical morbidity. This needs to be confirmed in larger unselected samples from different community and clinical settings. PMID:26600582

  2. IDENTIFYING DISEASE RESISTANCE GENES AND PATHWAYS THROUGH HOST-PATHOGEN PROTEIN INTERACTIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major objective of both animal and plant genomics research is to identify disease resistance genes and pathways. Popular approaches to achieve this goal include candidate gene testing, genome-wide QTL screens, and DNA microarrays. We argue that the two-hybrid assay, which detects protein-protein...

  3. Evidence from Biochemical Pathways in Favor of Unfinished Evolution Rather than Intelligent Design

    ERIC Educational Resources Information Center

    Behrman, Edward J.; Marzluf, George A.

    2004-01-01

    An argument is made in favor of imperfect or unfinished evolution based on some metabolic pathways in which it seems that intelligent design would have done better. The case studies noted indicate the absence of highly intelligent design and are not intended as comprehensive collection but as a limited sample of inefficient situations in…

  4. Identifying a Polymorphic ‘Switch’ That Influences miRNAs' Regulation of a Myasthenia Gravis Risk Pathway

    PubMed Central

    Cao, Yuze; Ning, Shangwei; Zhang, Huixue; Chen, Lixia; Li, Ronghong; Tian, Qinghua; Wang, Lihua; Wang, Weizhi; Li, Xia

    2014-01-01

    The significant roles of genetic variants in myasthenia gravis (MG) pathogenesis have been demonstrated in many studies, and recently it has been revealed that aberrant level/regulation of microRNAs (miRNAs) might contribute to the initiation and progression of MG. However, the dysfunction of miRNA associated with single nucleotide polymorphisms (miRSNPs) has not been well investigated in MG. In this study, we created a contemporary catalog of 89 MG risk genes via manual literature-mining. Based on this risk gene catalog, we obtained 18 MG risk pathways. Furthermore, we identified 93 miRNAs that target MG risk pathways and revealed the miRSNPs ‘switches’ in miRNA regulation in the MG risk pathways by integrating the database information of miRSNPs. We also constructed a miRNA-mediated SNP switching pathway network (MSSPN) to intuitively analyze miRNA regulation of MG risk pathways and the relationship of the polymorphism ‘switch’ with these changes in regulation. Moreover, we carried out in-depth dissection on the correlation between hsa05200 (pathway in cancer) and MG development, and elaborated the significance of 4 high-risk genes. By network analysis and literature mining, we proposed a potential mechanism of miRSNPs?gene?pathway effects on MG pathogenesis, especially for rs28457673 (miR-15/16/195/424/497 family)?IGF1R?hsa05200 (pathway in cancer). Therefore, our studies have revealed a functional role for genetic modulators in MG pathogenesis at a systemic level, which could be informative for further miRNA and miRSNPs studies in MG. PMID:25118158

  5. Probabilistic approach to identify sensitive parameter distributions in multimedia pathway analysis.

    SciTech Connect

    Kamboj, S.; Gnanapragasam, E.; LePoire, D.; Biwer, B. M.; Cheng, J.; Arnish, J.; Yu, C.; Chen, S. Y.; Mo, T.; Abu-Eid, R.; Thaggard, M.; Environmental Assessment; NRC

    2002-01-01

    Sensitive parameter distributions were identified with the use of probabilistic analysis in the RESRAD computer code. RESRAD is a multimedia pathway analysis code designed to evaluate radiological exposures resulting from radiological contamination in soil. The dose distribution was obtained by using a set of default parameter distribution/values. Most of the variations in the output dose distribution could be attributed to uncertainty in a small set of input parameters that could be considered as sensitive parameter distributions. The identification of the sensitive parameters is a first step in the prioritization of future research and information gathering. When site-specific parameter distribution/values are available for an actual site, the same process should be used with these site-specific data. Regression analysis used to identify sensitive parameters indicated that the dominant pathways depended on the radionuclide and source configurations. However, two parameter distributions were sensitive for many radionuclides: the external shielding factor when external exposure was the dominant pathway and the plant transfer factor when plant ingestion was the dominant pathway. No single correlation or regression coefficient can be used alone to identify sensitive parameters in all the cases. The coefficients are useful guides, but they have to be used in conjunction with other aids, such as scatter plots, and should undergo further analysis.

  6. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer's disease.

    PubMed

    Li, Xinzhong; Long, Jintao; He, Taigang; Belshaw, Robert; Scott, James

    2015-01-01

    Previous studies have evaluated gene expression in Alzheimer's disease (AD) brains to identify mechanistic processes, but have been limited by the size of the datasets studied. Here we have implemented a novel meta-analysis approach to identify differentially expressed genes (DEGs) in published datasets comprising 450 late onset AD (LOAD) brains and 212 controls. We found 3124 DEGs, many of which were highly correlated with Braak stage and cerebral atrophy. Pathway Analysis revealed the most perturbed pathways to be (a) nitric oxide and reactive oxygen species in macrophages (NOROS), (b) NFkB and (c) mitochondrial dysfunction. NOROS was also up-regulated, and mitochondrial dysfunction down-regulated, in healthy ageing subjects. Upstream regulator analysis predicted the TLR4 ligands, STAT3 and NFKBIA, for activated pathways and RICTOR for mitochondrial genes. Protein-protein interaction network analysis emphasised the role of NFKB; identified a key interaction of CLU with complement; and linked TYROBP, TREM2 and DOK3 to modulation of LPS signalling through TLR4 and to phosphatidylinositol metabolism. We suggest that NEUROD6, ZCCHC17, PPEF1 and MANBAL are potentially implicated in LOAD, with predicted links to calcium signalling and protein mannosylation. Our study demonstrates a highly injurious combination of TLR4-mediated NFKB signalling, NOROS inflammatory pathway activation, and mitochondrial dysfunction in LOAD. PMID:26202100

  7. How Can Men Destined for Biochemical Failure After Androgen Deprivation and Radiotherapy be Identified Earlier?

    PubMed Central

    D'Ambrosio, David J.; Ruth, Karen; Horwitz, Eric M.; Uzzo, Robert G.; Pollack, Alan; Buyyounouski, Mark K.

    2009-01-01

    Purpose The significance of prostate-specific antigen (PSA) increases during the recovery of androgen after androgen deprivation therapy (ADT) and radiotherapy for prostate cancer is not well understood. This study sought to determine whether the initial PSA increase from undetectable after completion of all treatment predicts for eventual biochemical failure (BF). Methods and Materials Between July 1992 and March 2004, 163 men with a Gleason score of 8–10 or initial PSA level >20 ng/mL, or Stage T3 prostate cancer were treated with radiotherapy (median dose, 76 Gy) and ADT and achieved an undetectable PSA level. The first detectable PSA level after the cessation of ADT was defined as the PSA sentinel rise (SR). A PSA-SR of >0.25, >0.5, >0.75, and >1.0 ng/mL was studied as predictors of BF (nadir plus 2 ng/mL). Cox proportional hazards models were used for univariate and multivariate analyses for BF adjusting for pretreatment differences in Gleason score, stage, PSA level (continuous), dose (continuous), and ADT duration (<12 vs. ?12 months). Results Of the 163 men, 41 had BF after therapy. The median time to BF was 25 months (range, 4–96). The 5-year BF rate stratified by a PSA-SR of ?0.25 vs. >0.25 ng/mL was 28% vs. 43% (p = 0.02), ?0.5 vs. >0.5 ng/mL was 30% vs. 56% (p = 0.0003), ?0.75 vs. >0.75 ng/mL was 29% vs. 66% (p < 0.0001), and ?1.0 vs. >1.0 ng/mL was 29% vs. 75% (p < 0.0001). All four PSA-SRs were independently predictive of BF on multivariate analysis. Conclusion The PSA-SR predicts for BF. A PSA-SR of >0.5 ng/mL can be used for early identification of men at greater risk of BF. PMID:18164854

  8. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways

    NASA Technical Reports Server (NTRS)

    McAllister, T. N.; Frangos, J. A.

    1999-01-01

    Fluid flow has been shown to be a potent stimulus in osteoblasts and osteocytes and may therefore play an important role in load-induced bone remodeling. The objective of this study was to investigate the characteristics of flow-activated pathways. Previously we reported that fluid flow stimulates rapid and continuous release of nitric oxide (NO) in primary rat calvarial osteoblasts. Here we demonstrate that flow-induced NO release is mediated by shear stress and that this response is distinctly biphasic. Transients in shear stress associated with the onset of flow stimulated a burst in NO production (8.2 nmol/mg of protein/h), while steady flow stimulated sustained NO production (2.2 nmol/mg of protein/h). Both G-protein inhibition and calcium chelation abolished the burst phase but had no effect on sustained production. Activation of G-proteins stimulated dose-dependent NO release in static cultures of both calvarial osteoblasts and UMR-106 osteoblast-like cells. Pertussis toxin had no effect on NO release. Calcium ionophore stimulated low levels of NO production within 15 minutes but had no effect on sustained production. Taken together, these data suggest that fluid shear stress stimulates NO release by two distinct pathways: a G-protein and calcium-dependent phase sensitive to flow transients, and a G-protein and calcium-independent pathway stimulated by sustained flow.

  9. "Campylobacter upsaliensis" isolated from cats as identified by DNA relatedness and biochemical features.

    PubMed Central

    Fox, J G; Maxwell, K O; Taylor, N S; Runsick, C D; Edmonds, P; Brenner, D J

    1989-01-01

    Campylobacter spp. were isolated from the feces of 20 (58%) of 53 asymptomatic cats during routine physical examination while the cats were maintained in an accredited quarantine facility. Fifteen of these Campylobacter spp. were identified phenotypically as Campylobacter jejuni, and two were identified as C. coli. DNA-DNA hybridization (hydroxyapatite method) was used to confirm the identification of three thermotolerant catalase-negative isolates. They were 80 to 100% related to each other and to the type strain of "C. upsaliensis" in reassociation reactions under optimal conditions and a stringent hybridization criterion. These strains were 75 to 100% interrelated and less than 12% related to type strains of other Campylobacter species. These strains represent the first reported feline isolate of "C. upsaliensis" and show that cats used in biomedical research can harbor this and other Campylobacter species. PMID:2584385

  10. Combined Analysis of SNP Array Data Identifies Novel CNV Candidates and Pathways in Ependymoma and Mesothelioma

    PubMed Central

    Wajnberg, Gabriel; Carvalho, Benilton S.; Ferreira, Carlos G.; Passetti, Fabio

    2015-01-01

    Copy number variation is a class of structural genomic modifications that includes the gain and loss of a specific genomic region, which may include an entire gene. Many studies have used low-resolution techniques to identify regions that are frequently lost or amplified in cancer. Usually, researchers choose to use proprietary or non-open-source software to detect these regions because the graphical interface tends to be easier to use. In this study, we combined two different open-source packages into an innovative strategy to identify novel copy number variations and pathways associated with cancer. We used a mesothelioma and ependymoma published datasets to assess our tool. We detected previously described and novel copy number variations that are associated with cancer chemotherapy resistance. We also identified altered pathways associated with these diseases, like cell adhesion in patients with mesothelioma and negative regulation of glutamatergic synaptic transmission in ependymoma patients. In conclusion, we present a novel strategy using open-source software to identify copy number variations and altered pathways associated with cancer. PMID:26185765

  11. Biochemical and Structural Characterization of a Ureidoglycine Aminotransferase in the Klebsiella pneumoniae Uric Acid Catabolic Pathway

    SciTech Connect

    French, Jarrod B.; Ealick, Steven E.

    2010-09-03

    Many plants, fungi, and bacteria catabolize allantoin as a mechanism for nitrogen assimilation. Recent reports have shown that in plants and some bacteria the product of hydrolysis of allantoin by allantoinase is the unstable intermediate ureidoglycine. While this molecule can spontaneously decay, genetic analysis of some bacterial genomes indicates that an aminotransferase may be present in the pathway. Here we present evidence that Klebsiella pneumoniae HpxJ is an aminotransferase that preferentially converts ureidoglycine and an {alpha}-keto acid into oxalurate and the corresponding amino acid. We determined the crystal structure of HpxJ, allowing us to present an explanation for substrate specificity.

  12. Transcriptome and Biochemical Analyses Revealed a Detailed Proanthocyanidin Biosynthesis Pathway in Brown Cotton Fiber

    PubMed Central

    Xiao, Yue-Hua; Yan, Qian; Ding, Hui; Luo, Ming; Hou, Lei; Zhang, Mi; Yao, Dan; Liu, Hou-Sheng; Li, Xin; Zhao, Jia; Pei, Yan

    2014-01-01

    Brown cotton fiber is the major raw material for colored cotton industry. Previous studies have showed that the brown pigments in cotton fiber belong to proanthocyanidins (PAs). To clarify the details of PA biosynthesis pathway in brown cotton fiber, gene expression profiles in developing brown and white fibers were compared via digital gene expression profiling and qRT-PCR. Compared to white cotton fiber, all steps from phenylalanine to PA monomers (flavan-3-ols) were significantly up-regulated in brown fiber. Liquid chromatography mass spectrometry analyses showed that most of free flavan-3-ols in brown fiber were in 2, 3-trans form (gallocatechin and catechin), and the main units of polymeric PAs were trihydroxylated on B ring. Consistent with monomeric composition, the transcript levels of flavonoid 3?, 5?-hydroxylase and leucoanthocyanidin reductase in cotton fiber were much higher than their competing enzymes acting on the same substrates (dihydroflavonol 4-reductase and anthocyanidin synthase, respectively). Taken together, our data revealed a detailed PA biosynthesis pathway wholly activated in brown cotton fiber, and demonstrated that flavonoid 3?, 5?-hydroxylase and leucoanthocyanidin reductase represented the primary flow of PA biosynthesis in cotton fiber. PMID:24466041

  13. Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification

    DOEpatents

    Holzrichter, John F. (Berkeley, CA); Siekhaus, Wigbert J. (Berkeley, CA)

    1997-01-01

    A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule.

  14. Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification

    DOEpatents

    Holzrichter, J.F.; Siekhaus, W.J.

    1997-04-15

    A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule. 6 figs.

  15. A genome-wide RNA interference screen identifies two novel components of the metazoan secretory pathway

    PubMed Central

    Wendler, Franz; Gillingham, Alison K; Sinka, Rita; Rosa-Ferreira, Cláudia; Gordon, David E; Franch-Marro, Xavier; Peden, Andrew A; Vincent, Jean-Paul; Munro, Sean

    2010-01-01

    Genetic screens in the yeast Saccharomyces cerevisiae have identified many proteins involved in the secretory pathway, most of which have orthologues in higher eukaryotes. To investigate whether there are additional proteins that are required for secretion in metazoans but are absent from yeast, we used genome-wide RNA interference (RNAi) to look for genes required for secretion of recombinant luciferase from Drosophila S2 cells. This identified two novel components of the secretory pathway that are conserved from humans to plants. Gryzun is distantly related to, but distinct from, the Trs130 subunit of the TRAPP complex but is absent from S. cerevisiae. RNAi of human Gryzun (C4orf41) blocks Golgi exit. Kish is a small membrane protein with a previously uncharacterised orthologue in yeast. The screen also identified Drosophila orthologues of almost 60% of the yeast genes essential for secretion. Given this coverage, the small number of novel components suggests that contrary to previous indications the number of essential core components of the secretory pathway is not much greater in metazoans than in yeasts. PMID:19942856

  16. Physiological and biochemical characteristics of adrenergic receptors and pathways in brown adipocytes

    NASA Technical Reports Server (NTRS)

    Horwitz, B. A.

    1975-01-01

    Mechanisms involved in the thermogenic response of brown adipose tissue (BAT) to sympathetic nervous stimulation (e.g., by cold exposure) and to norepinephrine (NE) release are investigated. Three effects appear to play a role in the increased oxygen consumption (and heat production) of the adipocytes: increased membrane permeability, activation of the beta-adrenergic pathway, and enhancement of Na(+)/K(+) membrane pump activity. Increased passive influx of Na(+) and efflux of K(+) due to greater permeability raise the energy demands of the Na/K pump; the pump is also stimulated by increased cyclic AMP synthesis resulting from activation by NE of membrane-bound adenyl cyclase. Studies with inhibitors such as propanolol, phentolamine, and ouabain support this hypothesis.

  17. Biochemical characterization of GDP-L-fucose de novo synthesis pathway in fungus Mortierella alpina

    SciTech Connect

    Ren, Yan; Perepelov, Andrei V.; Wang, Haiyan; Zhang, Hao; Knirel, Yuriy A.; Wang, Lei; Chen, Wei

    2010-01-22

    Mortierella alpina is a filamentous fungus commonly found in soil, which is able to produce large amount of polyunsaturated fatty acids. L-Fucose is an important sugar found in a diverse range of organisms, playing a variety of biological roles. In this study, we characterized the de novo biosynthetic pathway of GDP-L-fucose (the nucleotide-activated form of L-fucose) in M. alpina. Genes encoding GDP-D-mannose 4,6-dehydratase (GMD) and GDP-keto-6-deoxymannose 3,5-epimerase/4-reductase (GMER) were expressed heterologously in Escherichia coli. The recombinant enzymes were produced as His-tagged fusion proteins. Conversion of GDP-mannose to GDP-4-keto-6-deoxy mannose by GMD and GDP-4-keto-6-deoxy mannose to GDP-L-fucose by GMER were analyzed by capillary electrophoresis, electro-spray ionization-mass spectrometry, and nuclear magnetic resonance spectroscopy. The k{sub m} values of GMD for GDP-mannose and GMER for GDP-4-keto-6-deoxy mannose were determined to be 0.77 mM and 1.047 mM, respectively. Both NADH and NADPH may be used by GMER as the coenzyme. The optimum temperature and pH were determined to be 37 {sup o}C and pH 9.0 (GMD) or pH 7.0 (GMER). Divalent cations are not required for GMD and GMER activity, and the activities of both enzymes may be enhanced by DTT. To our knowledge this is the first report on the characterization of GDP-L-fucose biosynthetic pathway in fungi.

  18. Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins

    PubMed Central

    Hassan, Karl A.; Jackson, Scott M.; Penesyan, Anahit; Patching, Simon G.; Tetu, Sasha G.; Eijkelkamp, Bart A.; Brown, Melissa H.; Henderson, Peter J. F.; Paulsen, Ian. T.

    2013-01-01

    Chlorhexidine is widely used as an antiseptic or disinfectant in both hospital and community settings. A number of bacterial species display resistance to this membrane-active biocide. We examined the transcriptomic response of a representative nosocomial human pathogen, Acinetobacter baumannii, to chlorhexidine to identify the primary chlorhexidine resistance elements. The most highly up-regulated genes encoded components of a major multidrug efflux system, AdeAB. The next most highly overexpressed gene under chlorhexidine stress was annotated as encoding a hypothetical protein, named here as AceI. Orthologs of the aceI gene are conserved within the genomes of a broad range of proteobacterial species. Expression of aceI or its orthologs from several other ?- or ?-proteobacterial species in Escherichia coli resulted in significant increases in resistance to chlorhexidine. Additionally, disruption of the aceI ortholog in Acinetobacter baylyi rendered it more susceptible to chlorhexidine. The AceI protein was localized to the membrane after overexpression in E. coli. This protein was purified, and binding assays demonstrated direct and specific interactions between AceI and chlorhexidine. Transport assays using [14C]-chlorhexidine determined that AceI was able to mediate the energy-dependent efflux of chlorhexidine. An E15Q AceI mutant with a mutation in a conserved acidic residue, although unable to mediate chlorhexidine resistance and transport, was still able to bind chlorhexidine. Taken together, these data are consistent with AceI being an active chlorhexidine efflux protein and the founding member of a family of bacterial drug efflux transporters. PMID:24277845

  19. Formation of soil organic matter via biochemical and physical pathways of litter mass loss

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. Francesca; Soong, Jennifer L.; Horton, Andrew J.; Campbell, Eleanor E.; Haddix, Michelle L.; Wall, Diana H.; Parton, William J.

    2015-10-01

    Soil organic matter is the largest terrestrial carbon pool. The pool size depends on the balance between formation of soil organic matter from decomposition of plant litter and its mineralization to inorganic carbon. Knowledge of soil organic matter formation remains limited and current C numerical models assume that stable soil organic matter is formed primarily from recalcitrant plant litter. However, labile components of plant litter could also form mineral-stabilized soil organic matter. Here we followed the decomposition of isotopically labelled above-ground litter and its incorporation into soil organic matter over three years in a grassland in Kansas, USA, and used laboratory incubations to determine the decay rates and pool structure of litter-derived organic matter. Early in decomposition, soil organic matter formed when non-structural compounds were lost from litter. Soil organic matter also formed at the end of decomposition, when both non-structural and structural compounds were lost at similar rates. We conclude that two pathways yield soil organic matter efficiently. A dissolved organic matter-microbial path occurs early in decomposition when litter loses mostly non-structural compounds, which are incorporated into microbial biomass at high rates, resulting in efficient soil organic matter formation. An equally efficient physical-transfer path occurs when litter fragments move into soil.

  20. A new screening pathway for identifying asymptomatic patients using dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Hayashi, Tatsuro; Matsumoto, Takuya; Sawagashira, Tsuyoshi; Tagami, Motoki; Katsumata, Akitoshi; Hayashi, Yoshinori; Muramatsu, Chisako; Zhou, Xiangrong; Iida, Yukihiro; Matsuoka, Masato; Katagi, Kiyoji; Fujita, Hiroshi

    2012-03-01

    To identify asymptomatic patients is the challenging task and the essential first step in diagnosis. Findings of dental panoramic radiographs include not only dental conditions but also radiographic signs that are suggestive of possible systemic diseases such as osteoporosis, arteriosclerosis, and maxillary sinusitis. Detection of such signs on panoramic radiographs has a potential to provide supplemental benefits for patients. However, it is not easy for general dental practitioners to pay careful attention to such signs. We addressed the development of a computer-aided detection (CAD) system that detects radiographic signs of pathology on panoramic images, and the design of the framework of new screening pathway by cooperation of dentists and our CAD system. The performance evaluation of our CAD system showed the sensitivity and specificity in the identification of osteoporotic patients were 92.6 % and 100 %, respectively, and those of the maxillary sinus abnormality were 89.6 % and 73.6 %, respectively. The detection rate of carotid artery calcifications that suggests the need for further medical evaluation was approximately 93.6 % with 4.4 false-positives per image. To validate the utility of the new screening pathway, preliminary clinical trials by using our CAD system were conducted. To date, 223 panoramic images were processed and 4 asymptomatic patients with suspected osteoporosis, 7 asymptomatic patients with suspected calcifications, and 40 asymptomatic patients with suspected maxillary sinusitis were detected in our initial trial. It was suggested that our new screening pathway could be useful to identify asymptomatic patients with systemic diseases.

  1. A cellular genetics approach identifies gene-drug interactions and pinpoints drug toxicity pathway nodes

    PubMed Central

    Suzuki, Oscar T.; Frick, Amber; Parks, Bethany B.; Trask, O. Joseph; Butz, Natasha; Steffy, Brian; Chan, Emmanuel; Scoville, David K.; Healy, Eric; Benton, Cristina; McQuaid, Patricia E.; Thomas, Russell S.; Wiltshire, Tim

    2014-01-01

    New approaches to toxicity testing have incorporated high-throughput screening across a broad-range of in vitro assays to identify potential key events in response to chemical or drug treatment. To date, these approaches have primarily utilized repurposed drug discovery assays. In this study, we describe an approach that combines in vitro screening with genetic approaches for the experimental identification of genes and pathways involved in chemical or drug toxicity. Primary embryonic fibroblasts isolated from 32 genetically-characterized inbred mouse strains were treated in concentration-response format with 65 compounds, including pharmaceutical drugs, environmental chemicals, and compounds with known modes-of-action. Integrated cellular responses were measured at 24 and 72 h using high-content imaging and included cell loss, membrane permeability, mitochondrial function, and apoptosis. Genetic association analysis of cross-strain differences in the cellular responses resulted in a collection of candidate loci potentially underlying the variable strain response to each chemical. As a demonstration of the approach, one candidate gene involved in rotenone sensitivity, Cybb, was experimentally validated in vitro and in vivo. Pathway analysis on the combined list of candidate loci across all chemicals identified a number of over-connected nodes that may serve as core regulatory points in toxicity pathways. PMID:25221565

  2. Parallel RNAi and compound screens identify the PDK1 pathway as a target for tamoxifen sensitization.

    PubMed

    Iorns, Elizabeth; Lord, Christopher J; Ashworth, Alan

    2009-01-01

    Tamoxifen is the most commonly used drug to treat breast cancer and acts by blocking ERalpha (oestrogen receptor alpha) signalling. Although highly effective, its usefulness is limited by the development of resistance. Given this, strategies that limit resistance by sensitizing cells to tamoxifen may be of use in the clinic. To gain insight into how this might be achieved, we used chemical and genetic screens to identify targets and small-molecule inhibitors that cause tamoxifen sensitization. A high-throughput genetic screen, using an RNA interference library targeting 779 kinases and related proteins, identified the PDK1 (phosphoinositide-dependent kinase 1) signalling pathway as a strong determinant of sensitivity to multiple ERalpha antagonists, including tamoxifen. A chemical screen using existing drugs and known kinase inhibitors also identified inhibitors of the PDK1 pathway, including triciribine and tetrandrine. Aside from identifying novel agents and targets for tamoxifen sensitization, this approach also provides evidence that performing chemical and genetic screens in parallel may be useful. PMID:18976239

  3. Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways.

    PubMed

    Kumar, Yashwant; Dholakia, Bhushan B; Panigrahi, Priyabrata; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2015-08-01

    Chickpea is the third most widely grown legume in the world and mainly used as a vegetarian source of human dietary protein. Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri (Foc), is one of the major threats to global chickpea production. Host resistance is the best way to protect crops from diseases; however, in spite of using various approaches, the mechanism of Foc resistance in chickpea remains largely obscure. In the present study, non-targeted metabolic profiling at several time points of resistant and susceptible chickpea cultivars using high-resolution liquid chromatography-mass spectrometry was applied to better understand the mechanistic basis of wilt resistance or susceptibility. Multivariate analysis of the data (OPLS-DA) revealed discriminating metabolites in chickpea root tissue after Foc inoculation such as flavonoids, isoflavonoids, alkaloids, amino acids and sugars. Foc inoculated resistant plants had more flavonoids and isoflavonoids along with their malonyl conjugates. Many antifungal metabolites that were induced after Foc infection viz., aurantion-obstine ?-glucosides and querecitin were elevated in resistant cultivar. Overall, diverse genetic and biochemical mechanisms were operational in the resistant cultivar for Foc defense as compared to the susceptible plant. The resistant chickpea plants employed the above-mentioned metabolic pathways as potential defense strategy against Foc. PMID:25935544

  4. PCOSKB: A KnowledgeBase on genes, diseases, ontology terms and biochemical pathways associated with PolyCystic Ovary Syndrome.

    PubMed

    Joseph, Shaini; Barai, Ram Shankar; Bhujbalrao, Rasika; Idicula-Thomas, Susan

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the major causes of female subfertility worldwide and ?7-10% of women in reproductive age are affected by it. The affected individuals exhibit varying types and levels of comorbid conditions, along with the classical PCOS symptoms. Extensive studies on PCOS across diverse ethnic populations have resulted in a plethora of information on dysregulated genes, gene polymorphisms and diseases linked to PCOS. However, efforts have not been taken to collate and link these data. Our group, for the first time, has compiled PCOS-related information available through scientific literature; cross-linked it with molecular, biochemical and clinical databases and presented it as a user-friendly, web-based online knowledgebase for the benefit of the scientific and clinical community. Manually curated information on associated genes, single nucleotide polymorphisms, diseases, gene ontology terms and pathways along with supporting reference literature has been collated and included in PCOSKB (http://pcoskb.bicnirrh.res.in). PMID:26578565

  5. PCOSKB: A KnowledgeBase on genes, diseases, ontology terms and biochemical pathways associated with PolyCystic Ovary Syndrome

    PubMed Central

    Joseph, Shaini; Barai, Ram Shankar; Bhujbalrao, Rasika; Idicula-Thomas, Susan

    2016-01-01

    Polycystic ovary syndrome (PCOS) is one of the major causes of female subfertility worldwide and ?7–10% of women in reproductive age are affected by it. The affected individuals exhibit varying types and levels of comorbid conditions, along with the classical PCOS symptoms. Extensive studies on PCOS across diverse ethnic populations have resulted in a plethora of information on dysregulated genes, gene polymorphisms and diseases linked to PCOS. However, efforts have not been taken to collate and link these data. Our group, for the first time, has compiled PCOS-related information available through scientific literature; cross-linked it with molecular, biochemical and clinical databases and presented it as a user-friendly, web-based online knowledgebase for the benefit of the scientific and clinical community. Manually curated information on associated genes, single nucleotide polymorphisms, diseases, gene ontology terms and pathways along with supporting reference literature has been collated and included in PCOSKB (http://pcoskb.bicnirrh.res.in). PMID:26578565

  6. Carbon and chlorine isotope analysis to identify abiotic degradation pathways of 1,1,1-trichloroethane.

    PubMed

    Palau, Jordi; Shouakar-Stash, Orfan; Hunkeler, Daniel

    2014-12-16

    This study investigates dual C-Cl isotope fractionation during 1,1,1-TCA transformation by heat-activated persulfate (PS), hydrolysis/dehydrohalogenation (HY/DH) and Fe(0). Compound-specific chlorine isotope analysis of 1,1,1-TCA was performed for the first time, and transformation-associated isotope fractionation ? bulk C and ? bulk Cl values were -4.0 ± 0.2‰ and no chlorine isotope fractionation with PS, -1.6 ± 0.2‰ and -4.7 ± 0.1‰ for HY/DH, -7.8 ± 0.4‰ and -5.2 ± 0.2‰ with Fe(0). Distinctly different dual isotope slopes (??13C/??37Cl): ? with PS, 0.33 ± 0.04 for HY/DH and 1.5 ± 0.1 with Fe(0) highlight the potential of this approach to identify abiotic degradation pathways of 1,1,1-TCA in the field. The trend observed with PS agreed with a C-H bond oxidation mechanism in the first reaction step. For HY/DH and Fe(0) pathways, different slopes were obtained although both pathways involve cleavage of a C-Cl bond in their initial reaction step. In contrast to the expected larger primary carbon isotope effects relative to chlorine for C-Cl bond cleavage, ? bulk C < ? bulk Cl was observed for HY/DH and in a similar range for reduction by Fe(0), suggesting the contribution of secondary chlorine isotope effects. Therefore, different magnitude of secondary chlorine isotope effects could at least be partly responsible for the distinct slopes between HY/DH and Fe(0) pathways. Following this dual isotope approach, abiotic transformation processes can unambiguously be identified and quantified. PMID:25379605

  7. Using Smoke Injection in Drains to Identify Potential Preferential Pathways in a Drained Arable Field

    NASA Astrophysics Data System (ADS)

    Nielsen, M. H.; Petersen, C. T.; Hansen, S.

    2014-12-01

    Macropores forming a continuous pathway between the soil surface and subsurface drains favour the transport of many contaminants from agricultural fields to surface waters. The smoke injection method presented by Shipitalo and Gibbs (2000) used for demonstrating and quantifying such pathways has been further developed and used on a drained Danish sandy loam. In order to identify the preferential pathways to drains, smoke was injected in three 1.15 m deep tile drains (total drain length 93 m), and smoke emitting macropores (SEMP) at the soil surface were counted and characterized as producing either strong or weak plumes compared to reference plumes from 3 and 6 mm wide tubes. In the two situations investigated in the present study - an early spring and an autumn situation, smoke only penetrated the soil surface layer via earthworm burrows located in a 1.0 m wide belt directly above the drain lines. However, it is known from previous studies that desiccation fractures in a dry summer situation also can contribute to the smoke pattern. The distance between SEMP measured along the drain lines was on average 0.46 m whereas the average spacing between SEMP with strong plumes was 2.3 m. Ponded water was applied in 6 cm wide rings placed above 52 burrows including 17 reference burrows which did not emit smoke. Thirteen pathways in the soil were examined using dye tracer and profile excavation. SEMP with strong plumes marked the entrance of highly efficient transport pathways conducting surface applied water and dye tracer into the drain. However, no single burrow was traced all the way from the surface into the drain, the dye patterns branched off in a network of other macropores. Water infiltration rates were significantly higher (P < 0.05) in SEMP with strong plumes (average rate: 247 mL min-1 n = 19) compared to SEMP with weak plumes (average rate: 87 mL min-1 n = 16) and no plumes (average rate: 56 mL min-1 n = 17). The results suggest that the smoke injection method is useful for identification of potentially efficient pathways for surface applied contaminants to drains and surface waters, pathways being associated primarily with unevenly distributed SEMP producing strong smoke plumes.

  8. Anthropogenic Molecular Markers: Tools to Identify the Sources and Transport Pathways of Pollutants

    USGS Publications Warehouse

    Takada, H.; Satoh, F.; Bothner, Michael H.; Tripp, B.W.; Johnson, C.G.; Farrington, J.W.

    1997-01-01

    The activities of modern civilization have released to the oceans a wide variety of both mobilized natural compounds and synthetic compounds not found prior to modern times. Many of these compounds provide a means of identifying sources of inputs and pathways of movement of chemicals through oceanic ecosystems and serve as molecular markers of human activities. A coastal ocean (Tokyo Bay) and a deep ocean (Deep Water Dump Site 106 in the Western North Atlantic Ocean) example are presented. In the deep ocean study, the correlation between potential sewage marker, i.e. linear alkylbenzenes (LABs), and polychlorinated biphenyls (PCBs) concentrations indicates a contribution of sewage sludge PCBs to the dump site sediments.

  9. Large-scale integrative network-based analysis identifies common pathways disrupted by copy number alterations across cancers

    PubMed Central

    2013-01-01

    Background Many large-scale studies analyzed high-throughput genomic data to identify altered pathways essential to the development and progression of specific types of cancer. However, no previous study has been extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data with human protein-protein interaction networks and pathway databases to identify pathways that are commonly disrupted in many different types of cancer. Results We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers for different human cancers. Analysis with independent microarray gene expression datasets confirms that the commonly disrupted pathways can be used to identify patient subgroups with significantly different survival outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect pathways that regulate cell growth, cycle, and differentiation for tumorigenesis. Conclusions In this work, we demonstrated that the network-based integrative analysis can help to identify pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and source code are available at http://compbio.cs.umn.edu/NetPathID/. PMID:23822816

  10. Identifying Genetic Variants for Heart Rate Variability in the Acetylcholine Pathway

    PubMed Central

    Riese, Harriëtte; Muñoz, Loretto M.; Hartman, Catharina A.; Ding, Xiuhua; Su, Shaoyong; Oldehinkel, Albertine J.; van Roon, Arie M.; van der Most, Peter J.; Lefrandt, Joop; Gansevoort, Ron T.; van der Harst, Pim; Verweij, Niek; Licht, Carmilla M. M.; Boomsma, Dorret I.; Hottenga, Jouke-Jan; Willemsen, Gonneke; Penninx, Brenda W. J. H.; Nolte, Ilja M.; de Geus, Eco J. C.; Wang, Xiaoling; Snieder, Harold

    2014-01-01

    Heart rate variability is an important risk factor for cardiovascular disease and all-cause mortality. The acetylcholine pathway plays a key role in explaining heart rate variability in humans. We assessed whether 443 genotyped and imputed common genetic variants in eight key genes (CHAT, SLC18A3, SLC5A7, CHRNB4, CHRNA3, CHRNA, CHRM2 and ACHE) of the acetylcholine pathway were associated with variation in an established measure of heart rate variability reflecting parasympathetic control of the heart rhythm, the root mean square of successive differences (RMSSD) of normal RR intervals. The association was studied in a two stage design in individuals of European descent. First, analyses were performed in a discovery sample of four cohorts (n?=?3429, discovery stage). Second, findings were replicated in three independent cohorts (n?=?3311, replication stage), and finally the two stages were combined in a meta-analysis (n?=?6740). RMSSD data were obtained under resting conditions. After correction for multiple testing, none of the SNPs showed an association with RMSSD. In conclusion, no common genetic variants for heart rate variability were identified in the largest and most comprehensive candidate gene study on the acetylcholine pathway to date. Future gene finding efforts for RMSSD may want to focus on hypothesis free approaches such as the genome-wide association study. PMID:25384021

  11. Gene Expression Profiling Identifies Molecular Pathways Associated with Collagen VI Deficiency and Provides Novel Therapeutic Targets

    PubMed Central

    Paco, Sonia; Kalko, Susana G.; Jou, Cristina; Rodríguez, María A.; Corbera, Joan; Muntoni, Francesco; Feng, Lucy; Rivas, Eloy; Torner, Ferran; Gualandi, Francesca; Gomez-Foix, Anna M.; Ferrer, Anna; Ortez, Carlos; Nascimento, Andrés; Colomer, Jaume; Jimenez-Mallebrera, Cecilia

    2013-01-01

    Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered. PMID:24223098

  12. Gene expression profiling identifies molecular pathways associated with collagen VI deficiency and provides novel therapeutic targets.

    PubMed

    Paco, Sonia; Kalko, Susana G; Jou, Cristina; Rodríguez, María A; Corbera, Joan; Muntoni, Francesco; Feng, Lucy; Rivas, Eloy; Torner, Ferran; Gualandi, Francesca; Gomez-Foix, Anna M; Ferrer, Anna; Ortez, Carlos; Nascimento, Andrés; Colomer, Jaume; Jimenez-Mallebrera, Cecilia

    2013-01-01

    Ullrich congenital muscular dystrophy (UCMD), caused by collagen VI deficiency, is a common congenital muscular dystrophy. At present, the role of collagen VI in muscle and the mechanism of disease are not fully understood. To address this we have applied microarrays to analyse the transcriptome of UCMD muscle and compare it to healthy muscle and other muscular dystrophies. We identified 389 genes which are differentially regulated in UCMD relative to controls. In addition, there were 718 genes differentially expressed between UCMD and dystrophin deficient muscle. In contrast, only 29 genes were altered relative to other congenital muscular dystrophies. Changes in gene expression were confirmed by real-time PCR. The set of regulated genes was analysed by Gene Ontology, KEGG pathways and Ingenuity Pathway analysis to reveal the molecular functions and gene networks associated with collagen VI defects. The most significantly regulated pathways were those involved in muscle regeneration, extracellular matrix remodelling and inflammation. We characterised the immune response in UCMD biopsies as being mainly mediated via M2 macrophages and the complement pathway indicating that anti-inflammatory treatment may be beneficial to UCMD as for other dystrophies. We studied the immunolocalisation of ECM components and found that biglycan, a collagen VI interacting proteoglycan, was reduced in the basal lamina of UCMD patients. We propose that biglycan reduction is secondary to collagen VI loss and that it may be contributing towards UCMD pathophysiology. Consequently, strategies aimed at over-expressing biglycan and restore the link between the muscle cell surface and the extracellular matrix should be considered. PMID:24223098

  13. Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities.

    PubMed

    Itakura, Haruka; Achrol, Achal S; Mitchell, Lex A; Loya, Joshua J; Liu, Tiffany; Westbroek, Erick M; Feroze, Abdullah H; Rodriguez, Scott; Echegaray, Sebastian; Azad, Tej D; Yeom, Kristen W; Napel, Sandy; Rubin, Daniel L; Chang, Steven D; Harsh, Griffith R; Gevaert, Olivier

    2015-09-01

    Glioblastoma (GBM) is the most common and highly lethal primary malignant brain tumor in adults. There is a dire need for easily accessible, noninvasive biomarkers that can delineate underlying molecular activities and predict response to therapy. To this end, we sought to identify subtypes of GBM, differentiated solely by quantitative magnetic resonance (MR) imaging features, that could be used for better management of GBM patients. Quantitative image features capturing the shape, texture, and edge sharpness of each lesion were extracted from MR images of 121 single-institution patients with de novo, solitary, unilateral GBM. Three distinct phenotypic "clusters" emerged in the development cohort using consensus clustering with 10,000 iterations on these image features. These three clusters--pre-multifocal, spherical, and rim-enhancing, names reflecting their image features--were validated in an independent cohort consisting of 144 multi-institution patients with similar tumor characteristics from The Cancer Genome Atlas (TCGA). Each cluster mapped to a unique set of molecular signaling pathways using pathway activity estimates derived from the analysis of TCGA tumor copy number and gene expression data with the PARADIGM (Pathway Recognition Algorithm Using Data Integration on Genomic Models) algorithm. Distinct pathways, such as c-Kit and FOXA, were enriched in each cluster, indicating differential molecular activities as determined by the image features. Each cluster also demonstrated differential probabilities of survival, indicating prognostic importance. Our imaging method offers a noninvasive approach to stratify GBM patients and also provides unique sets of molecular signatures to inform targeted therapy and personalized treatment of GBM. PMID:26333934

  14. Integrated Metabolomics, Transcriptomics and Proteomics Identifies Metabolic Pathways Affected by Anaplasma phagocytophilum Infection in Tick Cells.

    PubMed

    Villar, Margarita; Ayllón, Nieves; Alberdi, Pilar; Moreno, Andrés; Moreno, María; Tobes, Raquel; Mateos-Hernández, Lourdes; Weisheit, Sabine; Bell-Sakyi, Lesley; de la Fuente, José

    2015-12-01

    Anaplasma phagocytophilum is an emerging zoonotic pathogen that causes human granulocytic anaplasmosis. These intracellular bacteria establish infection by affecting cell function in both the vertebrate host and the tick vector, Ixodes scapularis. Previous studies have characterized the tick transcriptome and proteome in response to A. phagocytophilum infection. However, in the postgenomic era, the integration of omics datasets through a systems biology approach allows network-based analyses to describe the complexity and functionality of biological systems such as host-pathogen interactions and the discovery of new targets for prevention and control of infectious diseases. This study reports the first systems biology integration of metabolomics, transcriptomics, and proteomics data to characterize essential metabolic pathways involved in the tick response to A. phagocytophilum infection. The ISE6 tick cells used in this study constitute a model for hemocytes involved in pathogen infection and immune response. The results showed that infection affected protein processing in endoplasmic reticulum and glucose metabolic pathways in tick cells. These results supported tick-Anaplasma co-evolution by providing new evidence of how tick cells limit pathogen infection, while the pathogen benefits from the tick cell response to establish infection. Additionally, ticks benefit from A. phagocytophilum infection by increasing survival while pathogens guarantee transmission. The results suggested that A. phagocytophilum induces protein misfolding to limit the tick cell response and facilitate infection but requires protein degradation to prevent ER stress and cell apoptosis to survive in infected cells. Additionally, A. phagocytophilum may benefit from the tick cell's ability to limit bacterial infection through PEPCK inhibition leading to decreased glucose metabolism, which also results in the inhibition of cell apoptosis that increases infection of tick cells. These results support the use of this experimental approach to systematically identify cell pathways and molecular mechanisms involved in tick-pathogen interactions. Data are available via ProteomeXchange with identifier PXD002181. PMID:26424601

  15. Integrated Genomics Identifies Convergence of Ankylosing Spondylitis with Global Immune Mediated Disease Pathways

    PubMed Central

    Uddin, Mohammed; Codner, Dianne; Mahmud Hasan, S M; Scherer, Stephen W; O’Rielly, Darren D; Rahman, Proton

    2015-01-01

    Ankylosing spondylitis(AS), a highly heritable complex inflammatory arthritis. Although, a handful of non-HLA risk loci have been identified, capturing the unexplained genetic contribution to AS pathogenesis remains a challenge attributed to additive, pleiotropic and epistatic-interactions at the molecular level. Here, we developed multiple integrated genomic approaches to quantify molecular convergence of non-HLA loci with global immune mediated diseases. We show that non-HLA genes are significantly sensitive to deleterious mutation accumulation in the general population compared with tolerant genes. Human developmental proteomics (prenatal to adult) analysis revealed that proteins encoded by non-HLA AS risk loci are 2-fold more expressed in adult hematopoietic cells.Enrichment analysis revealed AS risk genes overlap with a significant number of immune related pathways (p?pathways with other immune mediated diseases. This information will be pivotal to fully explain AS pathogenesis and identify new therapeutic targets. PMID:25980808

  16. Suppressors of systemin signaling identify genes in the tomato wound response pathway.

    PubMed Central

    Howe, G A; Ryan, C A

    1999-01-01

    In tomato plants, systemic induction of defense genes in response to herbivory or mechanical wounding is regulated by an 18-amino-acid peptide signal called systemin. Transgenic plants that overexpress prosystemin, the systemin precursor, from a 35S::prosystemin (35S::prosys) transgene exhibit constitutive expression of wound-inducible defense proteins including proteinase inhibitors and polyphenol oxidase. To study further the role of (pro)systemin in the wound response pathway, we isolated and characterized mutations that suppress 35S::prosys-mediated phenotypes. Ten recessive, extragenic suppressors were identified. Two of these define new alleles of def-1, a previously identified mutation that blocks both wound- and systemin-induced gene expression and renders plants susceptible to herbivory. The remaining mutants defined four loci designated Spr-1, Spr-2, Spr-3, and Spr-4 (for Suppressed in 35S::prosystemin-mediated responses). spr-3 and spr-4 mutants were not significantly affected in their response to either systemin or mechanical wounding. In contrast, spr-1 and spr-2 plants lacked systemic wound responses and were insensitive to systemin. These results confirm the function of (pro)systemin in the transduction of systemic wound signals and further establish that wounding, systemin, and 35S::prosys induce defensive gene expression through a common signaling pathway defined by at least three genes (Def-1, Spr-1, and Spr-2). PMID:10545469

  17. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma

    PubMed Central

    Weiser, Keith C.; Liu, Bin; Hansen, Gwenn M.; Skapura, Darlene; Hentges, Kathryn E.; Yarlagadda, Sujatha; Morse III, Herbert C.

    2007-01-01

    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NF?B, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision. PMID:17926094

  18. Network analysis identifies a putative role for the PPAR and type 1 interferon pathways in glucocorticoid actions in asthmatics

    PubMed Central

    2012-01-01

    Background Asthma is a chronic inflammatory airway disease influenced by genetic and environmental factors that affects ~300 million people worldwide, leading to ~250,000 deaths annually. Glucocorticoids (GCs) are well-known therapeutics that are used extensively to suppress airway inflammation in asthmatics. The airway epithelium plays an important role in the initiation and modulation of the inflammatory response. While the role of GCs in disease management is well understood, few studies have examined the holistic effects on the airway epithelium. Methods Gene expression data were used to generate a co-transcriptional network, which was interrogated to identify modules of functionally related genes. In parallel, expression data were mapped to the human protein-protein interaction (PPI) network in order to identify modules with differentially expressed genes. A common pathways approach was applied to highlight genes and pathways functionally relevant and significantly altered following GC treatment. Results Co-transcriptional network analysis identified pathways involved in inflammatory processes in the epithelium of asthmatics, including the Toll-like receptor (TLR) and PPAR signaling pathways. Analysis of the PPI network identified RXRA, PPARGC1A, STAT1 and IRF9, among others genes, as differentially expressed. Common pathways analysis highlighted TLR and PPAR signaling pathways, providing a link between general inflammatory processes and the actions of GCs. Promoter analysis identified genes regulated by the glucocorticoid receptor (GCR) and PPAR pathways as well as highlighted the interferon pathway as a target of GCs. Conclusions Network analyses identified known genes and pathways associated with inflammatory processes in the airway epithelium of asthmatics. This workflow illustrated a hypothesis generating experimental design that integrated multiple analysis methods to produce a weight-of-evidence based approach upon which future focused studies can be designed. In this case, results suggested a mechanism whereby GCs repress TLR-mediated interferon production via upregulation of the PPAR signaling pathway. These results highlight the role of interferons in asthma and their potential as targets of future therapeutic efforts. PMID:22713245

  19. Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity.

    PubMed

    Uran, S L; Gómez-Casati, M E; Guelman, L R

    2014-10-01

    Sound is an important part of man's contact with the environment and has served as critical means for survival throughout his evolution. As a result of exposure to noise, physiological functions such as those involving structures of the auditory and non-auditory systems might be damaged. We have previously reported that noise-exposed developing rats elicited hippocampal-related histological, biochemical and behavioral changes. However, no data about the time lapse of these changes were reported. Moreover, measurements of auditory pathway function were not performed in exposed animals. Therefore, with the present work, we aim to test the onset and the persistence of the different extra-auditory abnormalities observed in noise-exposed rats and to evaluate auditory pathway integrity. Male Wistar rats of 15 days were exposed to moderate noise levels (95-97 dB SPL, 2 h a day) during one day (acute noise exposure, ANE) or during 15 days (sub-acute noise exposure, SANE). Hippocampal biochemical determinations as well as short (ST) and long term (LT) behavioral assessments were performed. In addition, histological and functional evaluations of the auditory pathway were carried out in exposed animals. Our results show that hippocampal-related behavioral and biochemical changes (impairments in habituation, recognition and associative memories as well as distortion of anxiety-related behavior, decreases in reactive oxygen species (ROS) levels and increases in antioxidant enzymes activities) induced by noise exposure were almost completely restored by PND 90. In addition, auditory evaluation shows that increased cochlear thresholds observed in exposed rats were re-established at PND 90, although with a remarkable supra-threshold amplitude reduction. These data suggest that noise-induced hippocampal and auditory-related alterations are mostly transient and that the effects of noise on the hippocampus might be, at least in part, mediated by the damage on the auditory pathway. However, we cannot exclude that a different mechanism might be responsible for the observed hippocampal-related changes. PMID:24911434

  20. Significant Deregulated Pathways in Diabetes Type II Complications Identified through Expression Based Network Biology

    NASA Astrophysics Data System (ADS)

    Ukil, Sanchaita; Sinha, Meenakshee; Varshney, Lavneesh; Agrawal, Shipra

    Type 2 Diabetes is a complex multifactorial disease, which alters several signaling cascades giving rise to serious complications. It is one of the major risk factors for cardiovascular diseases. The present research work describes an integrated functional network biology approach to identify pathways that get transcriptionally altered and lead to complex complications thereby amplifying the phenotypic effect of the impaired disease state. We have identified two sub-network modules, which could be activated under abnormal circumstances in diabetes. Present work describes key proteins such as P85A and SRC serving as important nodes to mediate alternate signaling routes during diseased condition. P85A has been shown to be an important link between stress responsive MAPK and CVD markers involved in fibrosis. MAPK8 has been shown to interact with P85A and further activate CTGF through VEGF signaling. We have traced a novel and unique route correlating inflammation and fibrosis by considering P85A as a key mediator of signals. The next sub-network module shows SRC as a junction for various signaling processes, which results in interaction between NF-kB and beta catenin to cause cell death. The powerful interaction between these important genes in response to transcriptionally altered lipid metabolism and impaired inflammatory response via SRC causes apoptosis of cells. The crosstalk between inflammation, lipid homeostasis and stress, and their serious effects downstream have been explained in the present analyses.

  1. Characterization of the novel dimethyl sulfide-degrading bacterium Alcaligenes sp. SY1 and its biochemical degradation pathway.

    PubMed

    Sun, Yiming; Qiu, Jiguo; Chen, Dongzhi; Ye, Jiexu; Chen, Jianmeng

    2016-03-01

    Recently, the biodegradation of volatile organic sulfur compounds (VOSCs) has become a burgeoning field, with a growing focus on the reduction of VOSCs. The reduction of VOSCs encompasses both organic emission control and odor control. Herein, Alcaligenes sp. SY1 was isolated from active sludge and found to utilize dimethyl sulfide (DMS) as a growth substrate in a mineral salt medium. Response surface methodology (RSM) analysis was applied to optimize the incubation conditions. The following conditions for optimal degradation were identified: temperature 27.03°C; pH 7.80; inoculum salinity 0.84%; and initial DMS concentration 1585.39?M. Under these conditions, approximately 99% of the DMS was degraded within 30h of incubation. Two metabolic compounds were detected and identified by gas chromatography-mass spectrometry (GC-MS): dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). The DMS degradation kinetics for different concentrations were evaluated using the Haldane-Andrews model and the pseudo first-order model. The maximum specific growth rate and degradation rate of Alcaligenes sp. SY1 were 0.17h(-1) and 0.63gsgx(-1)h(-1). A possible degradation pathway is proposed, and the results suggest that Alcaligenes sp. SY1 has the potential to control odor emissions under aerobic conditions. PMID:26623933

  2. Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis

    PubMed Central

    Mkrtchyan, Garik; Aleshin, Vasily; Parkhomenko, Yulia; Kaehne, Thilo; Luigi Di Salvo, Martino; Parroni, Alessia; Contestabile, Roberto; Vovk, Andrey; Bettendorff, Lucien; Bunik, Victoria

    2015-01-01

    Thiamin (vitamin B1) is a pharmacological agent boosting central metabolism through the action of the coenzyme thiamin diphosphate (ThDP). However, positive effects, including improved cognition, of high thiamin doses in neurodegeneration may be observed without increased ThDP or ThDP-dependent enzymes in brain. Here, we determine protein partners and metabolic pathways where thiamin acts beyond its coenzyme role. Malate dehydrogenase, glutamate dehydrogenase and pyridoxal kinase were identified as abundant proteins binding to thiamin- or thiazolium-modified sorbents. Kinetic studies, supported by structural analysis, revealed allosteric regulation of these proteins by thiamin and/or its derivatives. Thiamin triphosphate and adenylated thiamin triphosphate activate glutamate dehydrogenase. Thiamin and ThDP regulate malate dehydrogenase isoforms and pyridoxal kinase. Thiamin regulation of enzymes related to malate-aspartate shuttle may impact on malate/citrate exchange, responsible for exporting acetyl residues from mitochondria. Indeed, bioinformatic analyses found an association between thiamin- and thiazolium-binding proteins and the term acetylation. Our interdisciplinary study shows that thiamin is not only a coenzyme for acetyl-CoA production, but also an allosteric regulator of acetyl-CoA metabolism including regulatory acetylation of proteins and acetylcholine biosynthesis. Moreover, thiamin action in neurodegeneration may also involve neurodegeneration-related 14-3-3, DJ-1 and ?-amyloid precursor proteins identified among the thiamin- and/or thiazolium-binding proteins. PMID:26212886

  3. Identifying biological pathways that underlie primordial short stature using network analysis

    PubMed Central

    Hanson, Dan; Stevens, Adam; Murray, Philip G; Black, Graeme C M; Clayton, Peter E

    2014-01-01

    Mutations in CUL7, OBSL1 and CCDC8, leading to disordered ubiquitination, cause one of the commonest primordial growth disorders, 3-M syndrome. This condition is associated with i) abnormal p53 function, ii) GH and/or IGF1 resistance, which may relate to failure to recycle signalling molecules, and iii) cellular IGF2 deficiency. However the exact molecular mechanisms that may link these abnormalities generating growth restriction remain undefined. In this study, we have used immunoprecipitation/mass spectrometry and transcriptomic studies to generate a 3-M ‘interactome’, to define key cellular pathways and biological functions associated with growth failure seen in 3-M. We identified 189 proteins which interacted with CUL7, OBSL1 and CCDC8, from which a network including 176 of these proteins was generated. To strengthen the association to 3-M syndrome, these proteins were compared with an inferred network generated from the genes that were differentially expressed in 3-M fibroblasts compared with controls. This resulted in a final 3-M network of 131 proteins, with the most significant biological pathway within the network being mRNA splicing/processing. We have shown using an exogenous insulin receptor (INSR) minigene system that alternative splicing of exon 11 is significantly changed in HEK293 cells with altered expression of CUL7, OBSL1 and CCDC8 and in 3-M fibroblasts. The net result is a reduction in the expression of the mitogenic INSR isoform in 3-M syndrome. From these preliminary data, we hypothesise that disordered ubiquitination could result in aberrant mRNA splicing in 3-M; however, further investigation is required to determine whether this contributes to growth failure. PMID:24711643

  4. Functional signaling pathway analysis of lung adenocarcinomas identifies novel therapeutic targets for KRAS mutant tumors.

    PubMed

    Baldelli, Elisa; Bellezza, Guido; Haura, Eric B; Crinó, Lucio; Cress, W Douglas; Deng, Jianghong; Ludovini, Vienna; Sidoni, Angelo; Schabath, Matthew B; Puma, Francesco; Vannucci, Jacopo; Siggillino, Annamaria; Liotta, Lance A; Petricoin, Emanuel F; Pierobon, Mariaelena

    2015-10-20

    Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets.Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to Laser Capture Microdissection and Reverse Phase Protein Microarray analysis to explore the expression/activation levels of 150 signaling proteins along with co-activation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC).Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p<0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-?) (p=0.02).This finding was verified in an independent population by IHC (p=0.03).KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-?, anti-estrogen therapy may have important clinical implications. PMID:26468985

  5. An evidence-based knowledgebase of metastasis suppressors to identify key pathways relevant to cancer metastasis

    PubMed Central

    Zhao, Min; Li, Zhe; Qu, Hong

    2015-01-01

    Metastasis suppressor genes (MS genes) are genes that play important roles in inhibiting the process of cancer metastasis without preventing growth of the primary tumor. Identification of these genes and understanding their functions are critical for investigation of cancer metastasis. Recent studies on cancer metastasis have identified many new susceptibility MS genes. However, the comprehensive illustration of diverse cellular processes regulated by metastasis suppressors during the metastasis cascade is lacking. Thus, the relationship between MS genes and cancer risk is still unclear. To unveil the cellular complexity of MS genes, we have constructed MSGene (http://MSGene.bioinfo-minzhao.org/), the first literature-based gene resource for exploring human MS genes. In total, we manually curated 194 experimentally verified MS genes and mapped to 1448 homologous genes from 17 model species. Follow-up functional analyses associated 194 human MS genes with epithelium/tissue morphogenesis and epithelia cell proliferation. In addition, pathway analysis highlights the prominent role of MS genes in activation of platelets and coagulation system in tumor metastatic cascade. Moreover, global mutation pattern of MS genes across multiple cancers may reveal common cancer metastasis mechanisms. All these results illustrate the importance of MSGene to our understanding on cell development and cancer metastasis. PMID:26486520

  6. A model for genetic and epigenetic regulatory networks identifies rare pathways for transcription factor induced pluripotency

    NASA Astrophysics Data System (ADS)

    Artyomov, Maxim; Meissner, Alex; Chakraborty, Arup

    2010-03-01

    Most cells in an organism have the same DNA. Yet, different cell types express different proteins and carry out different functions. This is because of epigenetic differences; i.e., DNA in different cell types is packaged distinctly, making it hard to express certain genes while facilitating the expression of others. During development, upon receipt of appropriate cues, pluripotent embryonic stem cells differentiate into diverse cell types that make up the organism (e.g., a human). There has long been an effort to make this process go backward -- i.e., reprogram a differentiated cell (e.g., a skin cell) to pluripotent status. Recently, this has been achieved by transfecting certain transcription factors into differentiated cells. This method does not use embryonic material and promises the development of patient-specific regenerative medicine, but it is inefficient. The mechanisms that make reprogramming rare, or even possible, are poorly understood. We have developed the first computational model of transcription factor-induced reprogramming. Results obtained from the model are consistent with diverse observations, and identify the rare pathways that allow reprogramming to occur. If validated, our model could be further developed to design optimal strategies for reprogramming and shed light on basic questions in biology.

  7. Comprehensive mRNA Expression Profiling Distinguishes Tauopathies and Identifies Shared Molecular Pathways

    PubMed Central

    Bronner, Iraad F.; Bochdanovits, Zoltán; Rizzu, Patrizia; Kamphorst, Wouter; Ravid, Rivka; van Swieten, John C.; Heutink, Peter

    2009-01-01

    Background Understanding the aetiologies of neurodegenerative diseases such as Alzheimer's disease (AD), Pick's disease (PiD), Progressive Supranuclear Palsy (PSP) and Frontotemporal dementia (FTD) is often hampered by the considerable clinical and molecular overlap between these diseases and normal ageing. The development of high throughput genomic technologies such as microarrays provide a new molecular tool to gain insight in the complexity and relationships between diseases, as they provide data on the simultaneous activity of multiple genes, gene networks and cellular pathways. Methodology/Principal Findings We have constructed genome wide expression profiles from snap frozen post-mortem tissue from the medial temporal lobe of patients with four neurodegenerative disorders (5 AD, 5 PSP, 5 PiD and 5 FTD patients) and 5 control subjects. All patients were matched for age, gender, ApoE-? and MAPT (tau) haplotype. From all groups a total of 790 probes were shown to be differently expressed when compared to control individuals. The results from these experiments were then used to investigate the correlations between clinical, pathological and molecular findings. From the 790 identified probes we extracted a gene set of 166 probes whose expression could discriminate between these disorders and normal ageing. Conclusions/Significance From genome wide expression profiles we extracted a gene set of 166 probes whose expression could discriminate between neurological disorders and normal ageing. This gene set can be further developed into an accurate microarray-based classification test. Furthermore, from this dataset we extracted a disease specific set of genes and identified two aging related transcription factors (FOXO1A and FOXO3A) as possible drug targets related to neurodegenerative disease. PMID:19714246

  8. Analysis of biochemical compounds and differentially expressed genes of the anthocyanin biosynthetic pathway in variegated peach flowers.

    PubMed

    Hassani, D; Liu, H L; Chen, Y N; Wan, Z B; Zhuge, Q; Li, S X

    2015-01-01

    Variegated plants are highly valuable in the floricultural market, yet the genetic mechanism underlying this attractive phenomenon has not been completely elucidated. In this study, we identified and measured different compounds in pink and white flower petals of peach (Prunus persica) by high-performance liquid chromatography and liquid chromatography/mass spectrometry analyses. No cyanidin-based or pelargonidin-based compounds were detected in white petals, but high levels of these compounds were found in pink petals. Additionally, we sequenced and analyzed the expression of six key structural genes in the anthocyanin biosynthesis pathway (CHI, CHS, DFR, F3'H, ANS, and UFGT) in both white and pink petals. Quantitative real-time polymerase chain reaction revealed all six genes to be expressed at greatly reduced levels in white flower petals, relative to pink. No allelic variations were found in the transcribed sequences. However, alignment of transcribed and genomic sequences of the ANS gene detected alternative splicing, resulting in transcripts of 1.071 and 942 bp. Only the longer transcript was observed in white flower petals. Since ANS is the key intermediate enzyme catalyzing the colorless leucopelargonidin and leucocyanidin to substrates required for completion of anthocyanin biosynthesis, the ANS gene is implicated in flower color variegation and should be explored in future studies. This article, together with a previous transcriptome study, elucidates the mechanism underlying peach flower color variegation in terms of the key structural genes involved in anthocyanin biosynthesis. PMID:26535657

  9. Characterization of a novel ?-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of ?-cypermethrin.

    PubMed

    Deng, Weiqin; Lin, Derong; Yao, Kai; Yuan, Huaiyu; Wang, Zhilong; Li, Jianlong; Zou, Likou; Han, Xinfeng; Zhou, Kang; He, Li; Hu, Xinjie; Liu, Shuliang

    2015-10-01

    Aspergillus niger YAT strain was obtained from Chinese brick tea (Collection number: CGMCC 10,568) and identified on the basis of morphological characteristics and internal transcribed spacer (ITS) sequence. The strain could degrade 54.83 % of ?-cypermethrin (?-CY; 50 mg L(-1)) in 7 days and 100 % of 3-phenoxybenzoic acid (3-PBA; 100 mg L(-1)) in 22 h. The half-lives of ?-CY and 3-PBA range from 3.573 to 11.748 days and from 5.635 to 12.160 h, respectively. The degradation of ?-CY and 3-PBA was further described using first-order kinetic models. The pathway and mechanism of ?-CY degraded by YAT were investigated by analyzing the degraded metabolites through high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). Relevant enzymatic activities and substrate utilization were also investigated. ?-CY degradation products were analyzed. Results indicated that YAT strain transformed ?-CY into 3-PBA. 3-PBA was then gradually transformed into permethric acid, protocatechuic acid, 3-hydroxy-5-phenoxy benzoic acid, gallic acid, and phenol gradually. The YAT strain can also effectively degrade these metabolites. The results indicated that YAT strain has potential applications in bioremediation of pyrethroid insecticide (PI)-contaminated environments and fermented food. PMID:26022858

  10. Combinatorial high-throughput experimental and bioinformatic approach identifies molecular pathways linked with the sensitivity to anticancer target drugs.

    PubMed

    Venkova, Larisa; Aliper, Alexander; Suntsova, Maria; Kholodenko, Roman; Shepelin, Denis; Borisov, Nicolas; Malakhova, Galina; Vasilov, Raif; Roumiantsev, Sergey; Zhavoronkov, Alex; Buzdin, Anton

    2015-09-29

    Effective choice of anticancer drugs is important problem of modern medicine. We developed a method termed OncoFinder for the analysis of new type of biomarkers reflecting activation of intracellular signaling and metabolic molecular pathways. These biomarkers may be linked with the sensitivity to anticancer drugs. In this study, we compared the experimental data obtained in our laboratory and in the Genomics of Drug Sensitivity in Cancer (GDS) project for testing response to anticancer drugs and transcriptomes of various human cell lines. The microarray-based profiling of transcriptomes was performed for the cell lines before the addition of drugs to the medium, and experimental growth inhibition curves were built for each drug, featuring characteristic IC50 values. We assayed here four target drugs - Pazopanib, Sorafenib, Sunitinib and Temsirolimus, and 238 different cell lines, of which 11 were profiled in our laboratory and 227 - in GDS project. Using the OncoFinder-processed transcriptomic data on ~600 molecular pathways, we identified pathways showing significant correlation between pathway activation strength (PAS) and IC50 values for these drugs. Correlations reflect relationships between response to drug and pathway activation features. We intersected the results and found molecular pathways significantly correlated in both our assay and GDS project. For most of these pathways, we generated molecular models of their interaction with known molecular target(s) of the respective drugs. For the first time, our study uncovered mechanisms underlying cancer cell response to drugs at the high-throughput molecular interactomic level. PMID:26317900

  11. Dual pathways to endochondral osteoblasts: a novel chondrocyte-derived osteoprogenitor cell identified in hypertrophic cartilage

    PubMed Central

    Park, Jung; Gebhardt, Matthias; Golovchenko, Svitlana; Perez-Branguli, Francesc; Hattori, Takako; Hartmann, Christine; Zhou, Xin; deCrombrugghe, Benoit; Stock, Michael; Schneider, Holm; von der Mark, Klaus

    2015-01-01

    According to the general understanding, the chondrocyte lineage terminates with the elimination of late hypertrophic cells by apoptosis in the growth plate. However, recent cell tracking studies have shown that murine hypertrophic chondrocytes can survive beyond “terminal” differentiation and give rise to a progeny of osteoblasts participating in endochondral bone formation. The question how chondrocytes convert into osteoblasts, however, remained open. Following the cell fate of hypertrophic chondrocytes by genetic lineage tracing using BACCol10;Cre induced YFP-reporter gene expression we show that a progeny of Col10Cre-reporter labelled osteoprogenitor cells and osteoblasts appears in the primary spongiosa and participates – depending on the developmental stage – substantially in trabecular, endosteal, and cortical bone formation. YFP+ trabecular and endosteal cells isolated by FACS expressed Col1a1, osteocalcin and runx2, thus confirming their osteogenic phenotype. In searching for transitory cells between hypertrophic chondrocytes and trabecular osteoblasts we identified by confocal microscopy a novel, small YFP+Osx+ cell type with mitotic activity in the lower hypertrophic zone at the chondro-osseous junction. When isolated from growth plates by fractional enzymatic digestion, these cells termed CDOP (chondrocyte-derived osteoprogenitor) cells expressed bone typical genes and differentiated into osteoblasts in vitro. We propose the Col10Cre-labeled CDOP cells mark the initiation point of a second pathway giving rise to endochondral osteoblasts, alternative to perichondrium derived osteoprogenitor cells. These findings add to current concepts of chondrocyte-osteocyte lineages and give new insight into the complex cartilage-bone transition process in the growth plate. PMID:25882555

  12. Combining affinity proteomics and network context to identify new phosphatase substrates and adapters in growth pathways

    PubMed Central

    Sacco, Francesca; Boldt, Karsten; Calderone, Alberto; Panni, Simona; Paoluzi, Serena; Castagnoli, Luisa; Ueffing, Marius; Cesareni, Gianni

    2014-01-01

    Protein phosphorylation homoeostasis is tightly controlled and pathological conditions are caused by subtle alterations of the cell phosphorylation profile. Altered levels of kinase activities have already been associated to specific diseases. Less is known about the impact of phosphatases, the enzymes that down-regulate phosphorylation by removing the phosphate groups. This is partly due to our poor understanding of the phosphatase-substrate network. Much of phosphatase substrate specificity is not based on intrinsic enzyme specificity with the catalytic pocket recognizing the sequence/structure context of the phosphorylated residue. In addition many phosphatase catalytic subunits do not form a stable complex with their substrates. This makes the inference and validation of phosphatase substrates a non-trivial task. Here, we present a novel approach that builds on the observation that much of phosphatase substrate selection is based on the network of physical interactions linking the phosphatase to the substrate. We first used affinity proteomics coupled to quantitative mass spectrometry to saturate the interactome of eight phosphatases whose down regulations was shown to affect the activation of the RAS-PI3K pathway. By integrating information from functional siRNA with protein interaction information, we develop a strategy that aims at inferring phosphatase physiological substrates. Graph analysis is used to identify protein scaffolds that may link the catalytic subunits to their substrates. By this approach we rediscover several previously described phosphatase substrate interactions and characterize two new protein scaffolds that promote the dephosphorylation of PTPN11 and ERK by DUSP18 and DUSP26, respectively. PMID:24847354

  13. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    EPA Science Inventory

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo a...

  14. CSF Proteomics Identifies Specific and Shared Pathways for Multiple Sclerosis Clinical Subtypes

    PubMed Central

    Avsar, Timucin; Duras?, ?lknur Melis; Uyguno?lu, U?ur; Tütüncü, Melih; Demirci, Nuri Onat; Saip, Sabahattin; Sezerman, O. U?ur; Siva, Aksel; Tahir Turanl?, Eda

    2015-01-01

    Multiple sclerosis (MS) is an immune-mediated, neuro-inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS) with a heterogeneous clinical presentation and course. There is a remarkable phenotypic heterogeneity in MS, and the molecular mechanisms underlying it remain unknown. We aimed to investigate further the etiopathogenesis related molecular pathways in subclinical types of MS using proteomic and bioinformatics approaches in cerebrospinal fluids of patients with clinically isolated syndrome, relapsing remitting MS and progressive MS (n=179). Comparison of disease groups with controls revealed a total of 151 proteins that are differentially expressed in clinically different MS subtypes. KEGG analysis using PANOGA tool revealed the disease related pathways including aldosterone-regulated sodium reabsorption (p=8.02x10-5) which is important in the immune cell migration, renin-angiotensin (p=6.88x10-5) system that induces Th17 dependent immunity, notch signaling (p=1.83x10-10) pathway indicating the activated remyelination and vitamin digestion and absorption pathways (p=1.73x10-5). An emerging theme from our studies is that whilst all MS clinical forms share common biological pathways, there are also clinical subtypes specific and pathophysiology related pathways which may have further therapeutic implications. PMID:25942430

  15. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    PubMed

    Cordell, Heather J; Han, Younghun; Mells, George F; Li, Yafang; Hirschfield, Gideon M; Greene, Casey S; Xie, Gang; Juran, Brian D; Zhu, Dakai; Qian, David C; Floyd, James A B; Morley, Katherine I; Prati, Daniele; Lleo, Ana; Cusi, Daniele; Gershwin, M Eric; Anderson, Carl A; Lazaridis, Konstantinos N; Invernizzi, Pietro; Seldin, Michael F; Sandford, Richard N; Amos, Christopher I; Siminovitch, Katherine A

    2015-01-01

    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist. PMID:26394269

  16. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways

    PubMed Central

    Cordell, Heather J.; Han, Younghun; Mells, George F.; Li, Yafang; Hirschfield, Gideon M.; Greene, Casey S.; Xie, Gang; Juran, Brian D.; Zhu, Dakai; Qian, David C.; Floyd, James A. B.; Morley, Katherine I.; Prati, Daniele; Lleo, Ana; Cusi, Daniele; Schlicht, Erik M; Lammert, Craig; Atkinson, Elizabeth J; Chan, Landon L; de Andrade, Mariza; Balschun, Tobias; Mason, Andrew L; Myers, Robert P; Zhang, Jinyi; Milkiewicz, Piotr; Qu, Jia; Odin, Joseph A; Luketic, Velimir A; Bacon, Bruce R; Bodenheimer Jr, Henry C; Liakina, Valentina; Vincent, Catherine; Levy, Cynthia; Gregersen, Peter K; Almasio, Piero L; Alvaro, Domenico; Andreone, Pietro; Andriulli, Angelo; Barlassina, Cristina; Battezzati, Pier Maria; Benedetti, Antonio; Bernuzzi, Francesca; Bianchi, Ilaria; Bragazzi, Maria Consiglia; Brunetto, Maurizia; Bruno, Savino; Casella, Giovanni; Coco, Barbara; Colli, Agostino; Colombo, Massimo; Colombo, Silvia; Cursaro, Carmela; Crocè, Lory Saveria; Crosignani, Andrea; Donato, Maria Francesca; Elia, Gianfranco; Fabris, Luca; Ferrari, Carlo; Floreani, Annarosa; Foglieni, Barbara; Fontana, Rosanna; Galli, Andrea; Lazzari, Roberta; Macaluso, Fabio; Malinverno, Federica; Marra, Fabio; Marzioni, Marco; Mattalia, Alberto; Montanari, Renzo; Morini, Lorenzo; Morisco, Filomena; Hani S, Mousa; Muratori, Luigi; Muratori, Paolo; Niro, Grazia A; Palmieri, Vincenzo O; Picciotto, Antonio; Podda, Mauro; Portincasa, Piero; Ronca, Vincenzo; Rosina, Floriano; Rossi, Sonia; Sogno, Ilaria; Spinzi, Giancarlo; Spreafico, Marta; Strazzabosco, Mario; Tarallo, Sonia; Tarocchi, Mirko; Tiribelli, Claudio; Toniutto, Pierluigi; Vinci, Maria; Zuin, Massimo; Ch'ng, Chin Lye; Rahman, Mesbah; Yapp, Tom; Sturgess, Richard; Healey, Christopher; Czajkowski, Marek; Gunasekera, Anton; Gyawali, Pranab; Premchand, Purushothaman; Kapur, Kapil; Marley, Richard; Foster, Graham; Watson, Alan; Dias, Aruna; Subhani, Javaid; Harvey, Rory; McCorry, Roger; Ramanaden, David; Gasem, Jaber; Evans, Richard; Mathialahan, Thiriloganathan; Shorrock, Christopher; Lipscomb, George; Southern, Paul; Tibble, Jeremy; Gorard, David; Palegwala, Altaf; Jones, Susan; Carbone, Marco; Dawwas, Mohamed; Alexander, Graeme; Dolwani, Sunil; Prince, Martin; Foxton, Matthew; Elphick, David; Mitchison, Harriet; Gooding, Ian; Karmo, Mazn; Saksena, Sushma; Mendall, Mike; Patel, Minesh; Ede, Roland; Austin, Andrew; Sayer, Joanna; Hankey, Lorraine; Hovell, Christopher; Fisher, Neil; Carter, Martyn; Koss, Konrad; Piotrowicz, Andrzej; Grimley, Charles; Neal, David; Lim, Guan; Levi, Sass; Ala, Aftab; Broad, Andrea; Saeed, Athar; Wood, Gordon; Brown, Jonathan; Wilkinson, Mark; Gordon, Harriet; Ramage, John; Ridpath, Jo; Ngatchu, Theodore; Grover, Bob; Shaukat, Syed; Shidrawi, Ray; Abouda, George; Ali, Faiz; Rees, Ian; Salam, Imroz; Narain, Mark; Brown, Ashley; Taylor-Robinson, Simon; Williams, Simon; Grellier, Leonie; Banim, Paul; Das, Debashis; Chilton, Andrew; Heneghan, Michael; Curtis, Howard; Gess, Markus; Drake, Ian; Aldersley, Mark; Davies, Mervyn; Jones, Rebecca; McNair, Alastair; Srirajaskanthan, Raj; Pitcher, Maxton; Sen, Sambit; Bird, George; Barnardo, Adrian; Kitchen, Paul; Yoong, Kevin; Chirag, Oza; Sivaramakrishnan, Nurani; MacFaul, George; Jones, David; Shah, Amir; Evans, Chris; Saha, Subrata; Pollock, Katharine; Bramley, Peter; Mukhopadhya, Ashis; Fraser, Andrew; Mills, Peter; Shallcross, Christopher; Campbell, Stewart; Bathgate, Andrew; Shepherd, Alan; Dillon, John; Rushbrook, Simon; Przemioslo, Robert; Macdonald, Christopher; Metcalf, Jane; Shmueli, Udi; Davis, Andrew; Naqvi, Asifabbas; Lee, Tom; Ryder, Stephen D; Collier, Jane; Klass, Howard; Ninkovic, Mary; Cramp, Matthew; Sharer, Nicholas; Aspinall, Richard; Goggin, Patrick; Ghosh, Deb; Douds, Andrew; Hoeroldt, Barbara; Booth, Jonathan; Williams, Earl; Hussaini, Hyder; Stableforth, William; Ayres, Reuben; Thorburn, Douglas; Marshall, Eileen; Burroughs, Andrew; Mann, Steven; Lombard, Martin; Richardson, Paul; Patanwala, Imran; Maltby, Julia; Brookes, Matthew; Mathew, Ray; Vyas, Samir; Singhal, Saket; Gleeson, Dermot; Misra, Sharat; Butterworth, Jeff; George, Keith; Harding, Tim; Douglass, Andrew; Panter, Simon; Shearman, Jeremy; Bray, Gary; Butcher, Graham; Forton, Daniel; Mclindon, John; Cowan, Matthew; Whatley, Gregory; Mandal, Aditya; Gupta, Hemant; Sanghi, Pradeep; Jain, Sanjiv; Pereira, Steve; Prasad, Geeta; Watts, Gill; Wright, Mark; Neuberger, James; Gordon, Fiona; Unitt, Esther; Grant, Allister; Delahooke, Toby; Higham, Andrew; Brind, Alison; Cox, Mark; Ramakrishnan, Subramaniam; King, Alistair; Collins, Carole; Whalley, Simon; Li, Andy; Fraser, Jocelyn; Bell, Andrew

    2015-01-01

    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10?8) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine–cytokine pathways, for which relevant therapies exist. PMID:26394269

  17. Pathways Disrupted in Human ALS Motor Neurons Identified Through Genetic Correction of Mutant SOD1

    PubMed Central

    Kiskinis, Evangelos; Sandoe, Jackson; Williams, Luis A.; Boulting, Gabriella L.; Moccia, Rob; Wainger, Brian J.; Han, Steve; Peng, Theodore; Thams, Sebastian; Mikkilineni, Shravani; Mellin, Cassidy; Merkle, Florian T.; Davis-Dusenbery, Brandi N.; Ziller, Michael; Oakley, Derek; Ichida, Justin; Dicostanza, Stefania; Atwater, Nick; Maeder, Morgan L.; Goodwin, Mathew J.; Nemesh, James; Handsaker, Robert E.; Paull, Daniel; Noggle, Scott; McCarroll, Steven A.; Joung, J. Keith; Woolf, Clifford J.; Brown, Robert H; Eggan, Kevin

    2015-01-01

    Summary Although many distinct mutations in a variety of genes are known to cause Amyotrophic Lateral Sclerosis (ALS), it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neuronal degeneration. Here, we have combined reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing to define the transcriptional and functional changes that are induced in human motor neurons by mutant SOD1. Mutant SOD1 protein induced a transcriptional signature indicative of increased oxidative stress, reduced mitochondrial function, altered sub-cellular transport as well as activation of the ER stress and unfolded protein response pathways. Functional studies demonstrated that these pathways were perturbed in a manner dependent on the SOD1 mutation. Finally, interrogation of stem cell-derived motor neurons produced from ALS patients harboring a repeat expansion in C9orf72 indicates at least a subset of these changes are more broadly conserved in ALS. PMID:24704492

  18. Genome-wide association study identifies TH1 pathway genes associated with lung function in asthmatic patients

    PubMed Central

    Li, Xingnan; Hawkins, Gregory A.; Ampleford, Elizabeth J.; Moore, Wendy C.; Li, Huashi; Hastie, Annette T.; Howard, Timothy D.; Boushey, Homer A.; Busse, William W.; Calhoun, William J.; Castro, Mario; Erzurum, Serpil C.; Israel, Elliot; Lemanske, Robert F.; Szefler, Stanley J.; Wasserman, Stephen I.; Wenzel, Sally E.; Peters, Stephen P.; Meyers, Deborah A.; Bleecker, Eugene R.

    2013-01-01

    Background Recent meta-analyses of genome-wide association studies in general populations of European descent have identified 28 loci for lung function. Objective We sought to identify novel lung function loci specifically for asthma and to confirm lung function loci identified in general populations. Methods Genome-wide association studies of lung function (percent predicted FEV1 [ppFEV1], percent predicted forced vital capacity, and FEV1/forced vital capacity ratio) were performed in 4 white populations of European descent (n = 1544), followed by meta-analyses. Results Seven of 28 previously identified lung function loci (HHIP, FAM13A, THSD4, GSTCD, NOTCH4-AGER, RARB, and ZNF323) identified in general populations were confirmed at single nucleotide polymorphism (SNP) levels (P < .05). Four of 32 loci (IL12A, IL12RB1, STAT4, and IRF2) associated with ppFEV1 (P < 10?4) belong to the TH1 or IL-12 cytokine family pathway. By using a linear additive model, these 4 TH1 pathway SNPs cumulatively explained 2.9% to 7.8% of the variance in ppFEV1 values in 4 populations (P = 3 × 10?11). Genetic scores of these 4 SNPs were associated with ppFEV1 values (P = 2 × 10?7) and the American Thoracic Society severe asthma classification (P = .005) in the Severe Asthma Research Program population. TH2 pathway genes (IL13, TSLP, IL33, and IL1RL1) conferring asthma susceptibility were not associated with lung function. Conclusion Genes involved in airway structure/remodeling are associated with lung function in both general populations and asthmatic subjects. TH1 pathway genes involved in anti-virus/bacterial infection and inflammation modify lung function in asthmatic subjects. Genes associated with lung function that might affect asthma severity are distinct from those genes associated with asthma susceptibility. PMID:23541324

  19. Pubertal Effects on Adjustment in Girls: Moving from Demonstrating Effects to Identifying Pathways

    ERIC Educational Resources Information Center

    Graber, Julia A.; Brooks-Gunn, Jeanne; Warren, Michelle P.

    2006-01-01

    The present investigation examines mediated pathways from pubertal development to changes in depressive affect and aggression. Participants were 100 white girls who were between the ages of 10 and 14 (M=12.13, SD=0.80); girls were from well-educated, middle-to upper-middle class families, and attended private schools in a major northeastern urban…

  20. A tumor suppressor is identified as an inhibitor of inflammatory pathways

    Cancer.gov

    Scientists at NCI have found that a protein, FBXW7, which acts as a tumor suppressor, is also important for the reduction in strength of inflammatory pathways. It has long been recognized that a complex interaction exists between cancer causing mechanisms and inflammation.

  1. 876 Biochemical Society Transactions (2013) Volume 41, part 4 RNAi pathways in the recognition of foreign RNA

    E-print Network

    Miska, Eric

    2013-01-01

    of foreign RNA: antiviral responses and host­parasite interactions in nematodes Peter Sarkies1 and Eric A. This could be of potential importance to the life cycle of parasitic nematodes as they ingest RNA from in these various different pathways is therefore Key words: evolution, nematode, parasite, RNA interference (RNAi

  2. Identifying overlapping mutated driver pathways by constructing gene networks in cancer

    PubMed Central

    2015-01-01

    Background Large-scale cancer genomic projects are providing lots of data on genomic, epigenomic and gene expression aberrations in many cancer types. One key challenge is to detect functional driver pathways and to filter out nonfunctional passenger genes in cancer genomics. Vandin et al. introduced the Maximum Weight Sub-matrix Problem to find driver pathways and showed that it is an NP-hard problem. Methods To find a better solution and solve the problem more efficiently, we present a network-based method (NBM) to detect overlapping driver pathways automatically. This algorithm can directly find driver pathways or gene sets de novo from somatic mutation data utilizing two combinatorial properties, high coverage and high exclusivity, without any prior information. We firstly construct gene networks based on the approximate exclusivity between each pair of genes using somatic mutation data from many cancer patients. Secondly, we present a new greedy strategy to add or remove genes for obtaining overlapping gene sets with driver mutations according to the properties of high exclusivity and high coverage. Results To assess the efficiency of the proposed NBM, we apply the method on simulated data and compare results obtained from the NBM, RME, Dendrix and Multi-Dendrix. NBM obtains optimal results in less than nine seconds on a conventional computer and the time complexity is much less than the three other methods. To further verify the performance of NBM, we apply the method to analyze somatic mutation data from five real biological data sets such as the mutation profiles of 90 glioblastoma tumor samples and 163 lung carcinoma samples. NBM detects groups of genes which overlap with known pathways, including P53, RB and RTK/RAS/PI(3)K signaling pathways. New gene sets with p-value less than 1e-3 are found from the somatic mutation data. Conclusions NBM can detect more biologically relevant gene sets. Results show that NBM outperforms other algorithms for detecting driver pathways or gene sets. Further research will be conducted with the use of novel machine learning techniques. PMID:25859819

  3. Integrated Physiological, Biochemical, and Molecular Analysis Identifies Important Traits and Mechanisms Associated with Differential Response of Rice Genotypes to Elevated Temperature

    PubMed Central

    Sailaja, Boghireddy; Subrahmanyam, Desiraju; Neelamraju, Sarla; Vishnukiran, Turaga; Rao, Yadavalli Venkateswara; Vijayalakshmi, Pujarula; Voleti, Sitapati R.; Bhadana, Vijai P.; Mangrauthia, Satendra K.

    2015-01-01

    In changing climatic conditions, heat stress caused by high temperature poses a serious threat to rice cultivation. A multiple organizational analysis at physiological, biochemical, and molecular levels is required to fully understand the impact of elevated temperature in rice. This study was aimed at deciphering the elevated temperature response in 11 popular and mega rice cultivars widely grown in India. Physiological and biochemical traits specifically membrane thermostability (MTS), antioxidants, and photosynthesis were studied at vegetative and reproductive phases, which were used to establish a correlation with grain yield under stress. Several useful traits in different genotypes were identified, which will be an important resource to develop high temperature-tolerant rice cultivars. Interestingly, Nagina22 emerged as the best performer in terms of yield as well as expression of physiological and biochemical traits at elevated temperature. It showed lesser relative injury, lesser reduction in chlorophyll content, increased super oxide dismutase, catalase and peroxidase activities, lesser reduction in net photosynthetic rate (PN), high transpiration rate (E), and other photosynthetic/fluorescence parameters contributing to least reduction in spikelet fertility and grain yield at elevated temperature. Furthermore, expression of 14 genes including heat shock transcription factors and heat shock proteins was analyzed in Nagina22 (tolerant) and Vandana (susceptible) at flowering phase, strengthening the fact that N22 performed better at molecular level also during elevated temperature. This study shows that elevated temperature response is complex and involves multiple biological processes that are needed to be characterized to address the challenges of extreme conditions of future climate. PMID:26640473

  4. Skin biopsy: Identifying and overcoming errors in the skin biopsy pathway.

    PubMed

    Stratman, Erik J; Elston, Dirk M; Miller, Stanley J

    2016-01-01

    The skin biopsy pathway involves numerous communication requirements, technical events, human handoffs, and cognitive decisions. Every step in the process has an error rate >0. To deliver the highest quality care, dermatologists obtaining skin biopsy specimens should implement systems in their office to minimize errors. This includes the prevention of wrong-site surgery, which in most instances involves accurate communication of the correct biopsy location to the performing surgeon. Part II of this continuing medical education article presents techniques for assessing and planning improvement to the skin biopsy pathway in your office, and provides a simple online quality improvement activity that allows Board-certified dermatologists the opportunity to potentially improve aspects of the skin biopsy process in their own practices, and in the process obtain Maintenance of Certification credit. PMID:26702795

  5. Computational Biophysical, Biochemical, and Evolutionary Signature of Human R-Spondin Family Proteins, the Member of Canonical Wnt/?-Catenin Signaling Pathway

    PubMed Central

    Sharma, Ashish Ranjan; Lee, Sang-Soo; Yoon, Jeong Kyo; George Priya Doss, C.; Song, Dong-Keun

    2014-01-01

    In human, Wnt/?-catenin signaling pathway plays a significant role in cell growth, cell development, and disease pathogenesis. Four human (Rspo)s are known to activate canonical Wnt/?-catenin signaling pathway. Presently, (Rspo)s serve as therapeutic target for several human diseases. Henceforth, basic understanding about the molecular properties of (Rspo)s is essential. We approached this issue by interpreting the biochemical and biophysical properties along with molecular evolution of (Rspo)s thorough computational algorithm methods. Our analysis shows that signal peptide length is roughly similar in (Rspo)s family along with similarity in aa distribution pattern. In Rspo3, four N-glycosylation sites were noted. All members are hydrophilic in nature and showed alike GRAVY values, approximately. Conversely, Rspo3 contains the maximum positively charged residues while Rspo4 includes the lowest. Four highly aligned blocks were recorded through Gblocks. Phylogenetic analysis shows Rspo4 is being rooted with Rspo2 and similarly Rspo3 and Rspo1 have the common point of origin. Through phylogenomics study, we developed a phylogenetic tree of sixty proteins (n = 60) with the orthologs and paralogs seed sequences. Protein-protein network was also illustrated. Results demonstrated in our study may help the future researchers to unfold significant physiological and therapeutic properties of (Rspo)s in various disease models. PMID:25276837

  6. Structural and Biochemical Characterization of Chlamydia trachomatis Hypothetical Protein CT263 Supports That Menaquinone Synthesis Occurs through the Futalosine Pathway*

    PubMed Central

    Barta, Michael L.; Thomas, Keisha; Yuan, Hongling; Lovell, Scott; Battaile, Kevin P.; Schramm, Vern L.; Hefty, P. Scott

    2014-01-01

    The obligate intracellular human pathogen Chlamydia trachomatis is the etiological agent of blinding trachoma and sexually transmitted disease. Genomic sequencing of Chlamydia indicated this medically important bacterium was not exclusively dependent on the host cell for energy. In order for the electron transport chain to function, electron shuttling between membrane-embedded complexes requires lipid-soluble quinones (e.g. menaquionone or ubiquinone). The sources or biosynthetic pathways required to obtain these electron carriers within C. trachomatis are poorly understood. The 1.58Å crystal structure of C. trachomatis hypothetical protein CT263 presented here supports a role in quinone biosynthesis. Although CT263 lacks sequence-based functional annotation, the crystal structure of CT263 displays striking structural similarity to 5?-methylthioadenosine nucleosidase (MTAN) enzymes. Although CT263 lacks the active site-associated dimer interface found in prototypical MTANs, co-crystal structures with product (adenine) or substrate (5?-methylthioadenosine) indicate that the canonical active site residues are conserved. Enzymatic characterization of CT263 indicates that the futalosine pathway intermediate 6-amino-6-deoxyfutalosine (kcat/Km = 1.8 × 103 m?1 s?1), but not the prototypical MTAN substrates (e.g. S-adenosylhomocysteine and 5?-methylthioadenosine), is hydrolyzed. Bioinformatic analyses of the chlamydial proteome also support the futalosine pathway toward the synthesis of menaquinone in Chlamydiaceae. This report provides the first experimental support for quinone synthesis in Chlamydia. Menaquinone synthesis provides another target for agents to combat C. trachomatis infection. PMID:25253688

  7. A genomewide overexpression screen identifies genes involved in the phosphatidylinositol 3-kinase pathway in the human protozoan parasite Entamoeba histolytica.

    PubMed

    Koushik, Amrita B; Welter, Brenda H; Rock, Michelle L; Temesvari, Lesly A

    2014-03-01

    Entamoeba histolytica is a protozoan parasite that causes amoebic dysentery and liver abscess. E. histolytica relies on motility, phagocytosis, host cell adhesion, and proteolysis of extracellular matrix for virulence. In eukaryotic cells, these processes are mediated in part by phosphatidylinositol 3-kinase (PI3K) signaling. Thus, PI3K may be critical for virulence. We utilized a functional genomics approach to identify genes whose products may operate in the PI3K pathway in E. histolytica. We treated a population of trophozoites that were overexpressing genes from a cDNA library with a near-lethal dose of the PI3K inhibitor wortmannin. This screen was based on the rationale that survivors would be overexpressing gene products that directly or indirectly function in the PI3K pathway. We sequenced the overexpressed genes in survivors and identified a cDNA encoding a Rap GTPase, a protein previously shown to participate in the PI3K pathway. This supports the validity of our approach. Genes encoding a coactosin-like protein, EhCoactosin, and a serine-rich E. histolytica protein (SREHP) were also identified. Cells overexpressing EhCoactosin or SREHP were also less sensitive to a second PI3K inhibitor, LY294002. This corroborates the link between these proteins and PI3K. Finally, a mutant cell line with an increased level of phosphatidylinositol (3,4,5)-triphosphate, the product of PI3K activity, exhibited increased expression of SREHP and EhCoactosin. This further supports the functional connection between these proteins and PI3K in E. histolytica. To our knowledge, this is the first forward-genetics screen adapted to reveal genes participating in a signal transduction pathway in this pathogen. PMID:24442890

  8. A novel method to identify pathways associated with renal cell carcinoma based on a gene co-expression network

    PubMed Central

    RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG

    2015-01-01

    The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425

  9. Adolescents Can Know Best: Using concept mapping to identify factors and pathways driving adolescent sexuality in Lima, Peru

    PubMed Central

    Bayer, Angela M.; Cabrera, Lilia Z.; Gilman, Robert H.; Hindin, Michelle J.; Tsui, Amy O.

    2011-01-01

    The primary objective of this study was to identify and describe individual- and environmental-level factors that Peruvian adolescents perceive to be related to adolescent sexuality. A series of concept mapping sessions were carried out from January-March 2006 with 63 15–17 year olds from a low-income community near Lima in order for adolescents to (1) brainstorm items that they thought were related to sexuality (2) sort, group and rate items to score their importance for sexuality-related outcomes, and (3) create pathways from the groups of items to engaging in sex. Brainstorming resulted in 61 items, which participants grouped into 11 clusters. The highest rated clusters were personal values, respect and confidence in relationships, future achievements and parent-child communication. The pathway of decision-making about having sex primarily contained items rated as only moderately important. This study identified important understudied factors, new perspectives on previously-recognized factors, and possible pathways to sexual behavior. These interesting, provocative findings underscore the importance of directly integrating adolescent voices into future sexual and reproductive health research, policies and programs that target this population. PMID:20382462

  10. Metabolic, Genomic, and Biochemical Analyses of Glandular Trichomes from the Wild Tomato Species Lycopersicon hirsutum Identify a Key Enzyme in the Biosynthesis of MethylketonesW?

    PubMed Central

    Fridman, Eyal; Wang, Jihong; Iijima, Yoko; Froehlich, John E.; Gang, David R.; Ohlrogge, John; Pichersky, Eran

    2005-01-01

    Medium-length methylketones (C7-C15) are highly effective in protecting plants from numerous pests. We used a biochemical genomics approach to elucidate the pathway leading to synthesis of methylketones in the glandular trichomes of the wild tomato Lycopersicon hirsutum f glabratum (accession PI126449). A comparison of gland EST databases from accession PI126449 and a second L. hirsutum accession, LA1777, whose glands do not contain methylketones, showed that the expression of genes for fatty acid biosynthesis is elevated in PI126449 glands, suggesting de novo biosynthesis of methylketones. A cDNA abundant in the PI126449 gland EST database but rare in the LA1777 database was similar in sequence to plant esterases. This cDNA, designated Methylketone Synthase 1 (MKS1), was expressed in Escherichia coli and the purified protein used to catalyze in vitro reactions in which C12, C14, and C16 ?-ketoacyl–acyl-carrier-proteins (intermediates in fatty acid biosynthesis) were hydrolyzed and decarboxylated to give C11, C13, and C15 methylketones, respectively. Although MKS1 does not contain a classical transit peptide, in vitro import assays showed that it was targeted to the stroma of plastids, where fatty acid biosynthesis occurs. Levels of MKS1 transcript, protein, and enzymatic activity were correlated with levels of methylketones and gland density in a variety of tomato accessions and in different plant organs. PMID:15772286

  11. Structural and Biochemical Studies of the C-Terminal Domain of Mouse Peptide-N-glycanase Identify it as a Mannose-Binding Module

    SciTech Connect

    Zhou,X.; Zhao, G.; Truglio, J.; Wang, L.; Li, G.; Lennarz, W.; Schindelin, H.

    2006-01-01

    The inability of certain N-linked glycoproteins to adopt their native conformation in the endoplasmic reticulum (ER) leads to their retrotranslocation into the cytosol and subsequent degradation by the proteasome. In this pathway the cytosolic peptide-N-glycanase (PNGase) cleaves the N-linked glycan chains off denatured glycoproteins. PNGase is highly conserved in eukaryotes and plays an important role in ER-associated protein degradation. In higher eukaryotes, PNGase has an N-terminal and a C-terminal extension in addition to its central catalytic domain, which is structurally and functionally related to transglutaminases. Although the N-terminal domain of PNGase is involved in protein-protein interactions, the function of the C-terminal domain has not previously been characterized. Here, we describe biophysical, biochemical, and crystallographic studies of the mouse PNGase C-terminal domain, including visualization of a complex between this domain and mannopentaose. These studies demonstrate that the C-terminal domain binds to the mannose moieties of N-linked oligosaccharide chains, and we further show that it enhances the activity of the mouse PNGase core domain, presumably by increasing the affinity of mouse PNGase for the glycan chains of misfolded glycoproteins.

  12. Oxygen and hydrogen peroxide in the early evolution of life on earth: in silico comparative analysis of biochemical pathways.

    PubMed

    Slesak, Ireneusz; Slesak, Halina; Kruk, Jerzy

    2012-08-01

    In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O(2), reactive oxygen species (ROS), among them hydrogen peroxide (H(2)O(2)), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O(2) appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O(2) and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O(2)-and H(2)O(2)-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O(2)-and H(2)O(2)-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H(2)O(2) and O(2) should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O(2)/H(2)O(2) was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment. PMID:22970865

  13. Probing the coagulation pathway with aptamers identifies combinations that synergistically inhibit blood clot formation

    PubMed Central

    Bompiani, Kristin M; Lohrmann, Jens L; Pitoc, George A; Frederiksen, James W; Mackensen, George B; Sullenger, Bruce A

    2014-01-01

    SUMMARY Coordinated enzymatic reactions regulate blood clot generation. To explore the contributions of various coagulation enzymes in this process, we utilized a panel of aptamers against factors VIIa, IXa, Xa, and prothrombin. Each aptamer dose-dependently inhibited clot formation, yet none was able to completely impede this process in highly procoagulant settings. However several combinations of two aptamers synergistically impaired clot formation. One extremely potent aptamer combination was able to maintain human blood fluidity even during extracorporeal circulation, a highly procoagulant setting encountered during cardiopulmonary bypass surgery. Moreover, this aptamer cocktail could be rapidly reversed with antidotes to restore normal hemostasis, indicating that even highly potent aptamer combinations can be rapidly controlled. These studies highlight the potential utility of using sets of aptamers to probe the functions of proteins in molecular pathways for research and therapeutic ends. PMID:25065530

  14. Oxygen and Hydrogen Peroxide in the Early Evolution of Life on Earth: In silico Comparative Analysis of Biochemical Pathways

    PubMed Central

    ?lesak, Halina; Kruk, Jerzy

    2012-01-01

    Abstract In the Universe, oxygen is the third most widespread element, while on Earth it is the most abundant one. Moreover, oxygen is a major constituent of all biopolymers fundamental to living organisms. Besides O2, reactive oxygen species (ROS), among them hydrogen peroxide (H2O2), are also important reactants in the present aerobic metabolism. According to a widely accepted hypothesis, aerobic metabolism and many other reactions/pathways involving O2 appeared after the evolution of oxygenic photosynthesis. In this study, the hypothesis was formulated that the Last Universal Common Ancestor (LUCA) was at least able to tolerate O2 and detoxify ROS in a primordial environment. A comparative analysis was carried out of a number of the O2-and H2O2-involving metabolic reactions that occur in strict anaerobes, facultative anaerobes, and aerobes. The results indicate that the most likely LUCA possessed O2-and H2O2-involving pathways, mainly reactions to remove ROS, and had, at least in part, the components of aerobic respiration. Based on this, the presence of a low, but significant, quantity of H2O2 and O2 should be taken into account in theoretical models of the early Archean atmosphere and oceans and the evolution of life. It is suggested that the early metabolism involving O2/H2O2 was a key adaptation of LUCA to already existing weakly oxic zones in Earth's primordial environment. Key Words: Hydrogen peroxide—Oxygen—Origin of life—Photosynthesis—Superoxide dismutase—Superoxide reductase. Astrobiology 12, 775–784. PMID:22970865

  15. Yeast Chemical Genetics For Identifying Regulators of Late Secretory Traffic Pathways

    E-print Network

    Zhang, Lisha

    2011-04-25

    was to use a yeast chemical genetic strategy to identify components of the exocytic transport machinery, and to generate useful chemical tools that will help us to understand how the machinery functions. I analyzed the effects of small molecules that we...

  16. A hormone-encoding gene identifies a pathway for cardiac but not skeletal muscle gene transcription.

    PubMed Central

    Grépin, C; Dagnino, L; Robitaille, L; Haberstroh, L; Antakly, T; Nemer, M

    1994-01-01

    In contrast to skeletal muscle, the mechanisms responsible for activation and maintenance of tissue-specific transcription in cardiac muscle remain poorly understood. A family of hormone-encoding genes is expressed in a highly specific manner in cardiac but not skeletal myocytes. This includes the A- and B-type natriuretic peptide (ANP and BNP) genes, which encode peptide hormones with crucial roles in the regulation of blood volume and pressure. Since these genes are markers of cardiac cells, we have used them to probe the mechanisms for cardiac muscle-specific transcription. Cloning and functional analysis of the rat BNP upstream sequences revealed unexpected structural resemblance to erythroid but not to muscle-specific promoters and enhancers, including a requirement for regulatory elements containing GATA motifs. A cDNA clone corresponding to a member of the GATA family of transcription factors was isolated from a cardiomyocyte cDNA library. Transcription of this GATA gene is restricted mostly to the heart and is undetectable in skeletal muscle. Within the heart, GATA transcripts are localized in ANP- and BNP-expressing myocytes, and forced expression of the GATA protein in heterologous cells markedly activates transcription from the natural cardiac muscle-specific ANP and BNP promoters. This GATA-dependent pathway defines the first mechanism for cardiac muscle-specific transcription. Moreover, the present findings reveal striking similarities between the mechanisms controlling gene expression in hematopoietic and cardiac cells and may have important implications for studies of cardiogenesis. Images PMID:8164667

  17. Identifying the Causal Pathways from Religiosity to Delayed Adolescent Sexual Behavior

    PubMed Central

    Hull, Shawnika J.; Hennessy, Michael; Bleakley, Amy; Fishbein, Martin; Jordan, Amy

    2015-01-01

    This study used the Integrative Model as a framework to examine whether religiosity delays onset of coitus among a longitudinal sample of virgins, and investigated the causal pathways of this relationship. In addition, this study examined the behavioral beliefs about the consequences of engaging in sex, which distinguishes between youth who vary in level of religiosity. A further analysis was also conducted to examine whether religiosity offers protective effects in terms of progression toward sexual intercourse on a sexual behavior index. The sexual behavior index assumes a progressive nature of sexual behaviors, and includes the following seven behaviors: kissing, having breasts touched (touching for boys), genital touching, receiving oral sex, vaginal intercourse, giving oral sex, and receiving (or giving) anal sex. Religiosity at baseline was negatively associated with sexual debut one year later. This relationship was mediated through attitudes toward personally engaging in sexual intercourse. Religiosity at baseline was also negatively associated with scores on the sexual behavior index one year later. These results suggest that religiosity offers protective effects for both coital and noncoital sexual behaviors. PMID:20960362

  18. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties

    PubMed Central

    2011-01-01

    Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der Waals volume, pK (pK-C, pK-N, pK-COOH and pK-a(RCOOH)), etc. Conclusions The proposed approach Auto-IDPCPs would help designers to investigate informative physicochemical and biochemical properties by considering both prediction accuracy and analysis of binding mechanism simultaneously. The approach Auto-IDPCPs can be also applicable to predict and analyze other protein functions from sequences. PMID:21342579

  19. Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on Phenotype

    PubMed Central

    Gupta, Saumya; Radhakrishnan, Aparna; Raharja-Liu, Pandu; Lin, Gen; Steinmetz, Lars M.; Gagneur, Julien; Sinha, Himanshu

    2015-01-01

    Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants’ effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage of analyzing allele-specific transcriptional dynamics of mediating genes. Applications in higher eukaryotes can be valuable for inferring causal molecular pathways underlying complex dynamic processes, such as development, physiology and disease progression. PMID:26039065

  20. Temporal expression profiling identifies pathways mediating effect of causal variant on phenotype.

    PubMed

    Gupta, Saumya; Radhakrishnan, Aparna; Raharja-Liu, Pandu; Lin, Gen; Steinmetz, Lars M; Gagneur, Julien; Sinha, Himanshu

    2015-06-01

    Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants' effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage of analyzing allele-specific transcriptional dynamics of mediating genes. Applications in higher eukaryotes can be valuable for inferring causal molecular pathways underlying complex dynamic processes, such as development, physiology and disease progression. PMID:26039065

  1. How metal films de-wet substrates—identifying the kinetic pathways and energetic driving forces

    NASA Astrophysics Data System (ADS)

    McCarty, Kevin F.; Hamilton, John C.; Sato, Yu; Saá, Angela; Stumpf, Roland; de la Figuera, Juan; Thürmer, Konrad; Jones, Frank; Schmid, Andreas K.; Talin, A. Alec; Bartelt, Norman C.

    2009-04-01

    We study how single-crystal chromium films of uniform thickness on W(110) substrates are converted to arrays of three-dimensional (3D) Cr islands during annealing. We use low-energy electron microscopy (LEEM) to directly observe a kinetic pathway that produces trenches that expose the wetting layer. Adjacent film steps move simultaneously uphill and downhill relative to the staircase of atomic steps on the substrate. This step motion thickens the film regions where steps advance. Where film steps retract, the film thins, eventually exposing the stable wetting layer. Since our analysis shows that thick Cr films have a lattice constant close to bulk Cr, we propose that surface and interface stress provide a possible driving force for the observed morphological instability. Atomistic simulations and analytic elastic models show that surface and interface stress can cause a dependence of film energy on thickness that leads to an instability to simultaneous thinning and thickening. We observe that de-wetting is also initiated at bunches of substrate steps in two other systems, Ag/W(110) and Ag/Ru(0001). We additionally describe how Cr films are converted into patterns of unidirectional stripes as the trenches that expose the wetting layer lengthen along the W[001] direction. Finally, we observe how 3D Cr islands form directly during film growth at elevated temperature. The Cr mesas (wedges) form as Cr film steps advance down the staircase of substrate steps, another example of the critical role that substrate steps play in 3D island formation.

  2. Cohesion Group Approach for Evolutionary Analysis of Aspartokinase, an Enzyme That Feeds a Branched Network of Many Biochemical Pathways

    PubMed Central

    Lo, Chien-Chi; Bonner, Carol A.; Xie, Gary; D'Souza, Mark; Jensen, Roy A.

    2009-01-01

    Summary: Aspartokinase (Ask) exists within a variable network that supports the synthesis of 9 amino acids and a number of other important metabolites. Lysine, isoleucine, aromatic amino acids, and dipicolinate may arise from the ASK network or from alternative pathways. Ask proteins were subjected to cohesion group analysis, a methodology that sorts a given protein assemblage into groups in which evolutionary continuity is assured. Two subhomology divisions, ASK? and ASK?, have been recognized. The ASK? subhomology division is the most ancient, being widely distributed throughout the Archaea and Eukarya and in some Bacteria. Within an indel region of about 75 amino acids near the N terminus, ASK? sequences differ from ASK? sequences by the possession of a proposed ancient deletion. ASK? sequences are present in most Bacteria and usually exhibit an in-frame internal translational start site that can generate a small Ask subunit that is identical to the C-terminal portion of the larger subunit of a heterodimeric unit. Particularly novel are ask genes embedded in gene contexts that imply specialization for ectoine (osmotic agent) or aromatic amino acids. The cohesion group approach is well suited for the easy recognition of relatively recent lateral gene transfer (LGT) events, and many examples of these are described. Given the current density of genome representation for Proteobacteria, it is possible to reconstruct more ancient landmark LGT events. Thus, a plausible scenario in which the three well-studied and iconic Ask homologs of Escherichia coli are not within the vertical genealogy of Gammaproteobacteria, but rather originated via LGT from a Bacteroidetes donor, is supported. PMID:19946135

  3. Using Ambystoma mexicanum (Mexican axolotl) embryos, chemical genetics, and microarray analysis to identify signaling pathways associated with tissue regeneration.

    PubMed

    Ponomareva, Larissa V; Athippozhy, Antony; Thorson, Jon S; Voss, S Randal

    2015-12-01

    Amphibian vertebrates are important models in regenerative biology because they present exceptional regenerative capabilities throughout life. However, it takes considerable effort to rear amphibians to juvenile and adult stages for regeneration studies, and the relatively large sizes that frogs and salamanders achieve during development make them difficult to use in chemical screens. Here, we introduce a new tail regeneration model using late stage Mexican axolotl embryos. We show that axolotl embryos completely regenerate amputated tails in 7days before they exhaust their yolk supply and begin to feed. Further, we show that axolotl embryos can be efficiently reared in microtiter plates to achieve moderate throughput screening of soluble chemicals to investigate toxicity and identify molecules that alter regenerative outcome. As proof of principle, we identified integration 1 / wingless (Wnt), transforming growth factor beta (Tgf-?), and fibroblast growth factor (Fgf) pathway antagonists that completely block tail regeneration and additional chemicals that significantly affected tail outgrowth. Furthermore, we used microarray analysis to show that inhibition of Wnt signaling broadly affects transcription of genes associated with Wnt, Fgf, Tgf-?, epidermal growth factor (Egf), Notch, nerve growth factor (Ngf), homeotic gene (Hox), rat sarcoma/mitogen-activated protein kinase (Ras/Mapk), myelocytomatosis viral oncogene (Myc), tumor protein 53 (p53), and retinoic acid (RA) pathways. Punctuated changes in the expression of genes known to regulate vertebrate development were observed; this suggests the tail regeneration transcriptional program is hierarchically structured and temporally ordered. Our study establishes the axolotl as a chemical screening model to investigate signaling pathways associated with tissue regeneration. PMID:26092703

  4. Comprehensive RNAi-based screening of human and mouse TLR pathways identifies species-specific preferences in signaling protein use.

    PubMed

    Sun, Jing; Li, Ning; Oh, Kyu-Seon; Dutta, Bhaskar; Vayttaden, Sharat J; Lin, Bin; Ebert, Thomas S; De Nardo, Dominic; Davis, Joie; Bagirzadeh, Rustam; Lounsbury, Nicolas W; Pasare, Chandrashekhar; Latz, Eicke; Hornung, Veit; Fraser, Iain D C

    2016-01-01

    Toll-like receptors (TLRs) are a major class of pattern recognition receptors, which mediate the responses of innate immune cells to microbial stimuli. To systematically determine the roles of proteins in canonical TLR signaling pathways, we conducted an RNA interference (RNAi)-based screen in human and mouse macrophages. We observed a pattern of conserved signaling module dependencies across species, but found notable species-specific requirements at the level of individual proteins. Among these, we identified unexpected differences in the involvement of members of the interleukin-1 receptor-associated kinase (IRAK) family between the human and mouse TLR pathways. Whereas TLR signaling in mouse macrophages depended primarily on IRAK4 and IRAK2, with little or no role for IRAK1, TLR signaling and proinflammatory cytokine production in human macrophages depended on IRAK1, with knockdown of IRAK4 or IRAK2 having less of an effect. Consistent with species-specific roles for these kinases, IRAK4 orthologs failed to rescue signaling in IRAK4-deficient macrophages from the other species, and only mouse macrophages required the kinase activity of IRAK4 to mediate TLR responses. The identification of a critical role for IRAK1 in TLR signaling in humans could potentially explain the association of IRAK1 with several autoimmune diseases. Furthermore, this study demonstrated how systematic screening can be used to identify important characteristics of innate immune responses across species, which could optimize therapeutic targeting to manipulate human TLR-dependent outputs. PMID:26732763

  5. Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms

    PubMed Central

    Rice, K L; Lin, X; Wolniak, K; Ebert, B L; Berkofsky-Fessler, W; Buzzai, M; Sun, Y; Xi, C; Elkin, P; Levine, R; Golub, T; Gilliland, D G; Crispino, J D; Licht, J D; Zhang, W

    2011-01-01

    Polycythemia vera (PV), essential thrombocythemia and primary myelofibrosis, are myeloproliferative neoplasms (MPNs) with distinct clinical features and are associated with the JAK2V617F mutation. To identify genomic anomalies involved in the pathogenesis of these disorders, we profiled 87 MPN patients using Affymetrix 250K single-nucleotide polymorphism (SNP) arrays. Aberrations affecting chr9 were the most frequently observed and included 9pLOH (n=16), trisomy 9 (n=6) and amplifications of 9p13.3–23.3 (n=1), 9q33.1–34.13 (n=1) and 9q34.13 (n=6). Patients with trisomy 9 were associated with elevated JAK2V617F mutant allele burden, suggesting that gain of chr9 represents an alternative mechanism for increasing JAK2V617F dosage. Gene expression profiling of patients with and without chr9 abnormalities (+9, 9pLOH), identified genes potentially involved in disease pathogenesis including JAK2, STAT5B and MAPK14. We also observed recurrent gains of 1p36.31–36.33 (n=6), 17q21.2–q21.31 (n=5) and 17q25.1–25.3 (n=5) and deletions affecting 18p11.31–11.32 (n=8). Combined SNP and gene expression analysis identified aberrations affecting components of a non-canonical PRC2 complex (EZH1, SUZ12 and JARID2) and genes comprising a ‘HSC signature' (MLLT3, SMARCA2 and PBX1). We show that NFIB, which is amplified in 7/87 MPN patients and upregulated in PV CD34+ cells, protects cells from apoptosis induced by cytokine withdrawal. PMID:22829077

  6. Enhanced Sequential Search Methodology for Identifying Cost-Optimal Building Pathways

    SciTech Connect

    Horowitz, S.; Christensen, C.; Brandemuehl, M.; Krarti, M.

    2008-06-01

    The BEopt software is a building energy optimization tool that generates a cost-optimal path of building designs from a reference building up to zero-net energy. It employs a sequential search methodology to account for complex energy interactions between building efficiency measures. Enhancement strategies to this search methodology are developed to increase accuracy (ability to identify the true cost-optimal curve) and speed (number of required energy simulations). A test suite of optimizations is used to gauge the effectiveness of each strategy. Combinations of strategies are assembled into packages, ranging from conservative to aggressive, with so up to 71% fewer required simulations are required.

  7. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  8. Structural and Biochemical Characterization of the Salicylyl-acyltranferase SsfX3 from a Tetracycline Biosynthetic Pathway

    SciTech Connect

    Pickens, Lauren B.; Sawaya, Michael R.; Rasool, Huma; Pashkov, Inna; Yeates, Todd O.; Tang, Yi

    2012-03-14

    SsfX3 is a GDSL family acyltransferase that transfers salicylate to the C-4 hydroxyl of a tetracycline intermediate in the penultimate step during biosynthesis of the anticancer natural product SF2575. The C-4 salicylate takes the place of the more common C-4 dimethylamine functionality, making SsfX3 the first acyltransferase identified to act on a tetracycline substrate. The crystal structure of SsfX3 was determined at 2.5 {angstrom}, revealing two distinct domains as follows: an N-terminal {beta}-sandwich domain that resembles a carbohydrate-binding module, and a C-terminal catalytic domain that contains the atypical {alpha}/{beta}-hydrolase fold found in the GDSL hydrolase family of enzymes. The active site lies at one end of a large open binding pocket, which is spatially defined by structural elements from both the N- and C-terminal domains. Mutational analysis in the putative substrate binding pocket identified residues from both domains that are important for binding the acyl donor and acceptor. Furthermore, removal of the N-terminal carbohydrate-binding module-like domain rendered the stand-alone {alpha}/{beta}-hydrolase domain inactive. The additional noncatalytic module is therefore proposed to be required to define the binding pocket and provide sufficient interactions with the spatially extended tetracyclic substrate. SsfX3 was also demonstrated to accept a variety of non-native acyl groups. This relaxed substrate specificity toward the acyl donor allowed the chemoenzymatic biosynthesis of C-4-modified analogs of the immediate precursor to the bioactive SF2575; these were used to assay the structure activity relationships at the C-4 position.

  9. Structural and Biochemical Characterization of the Salicylyl-acyltranferase SsfX3 from a Tetracycline Biosynthetic Pathway*?

    PubMed Central

    Pickens, Lauren B.; Sawaya, Michael R.; Rasool, Huma; Pashkov, Inna; Yeates, Todd O.; Tang, Yi

    2011-01-01

    SsfX3 is a GDSL family acyltransferase that transfers salicylate to the C-4 hydroxyl of a tetracycline intermediate in the penultimate step during biosynthesis of the anticancer natural product SF2575. The C-4 salicylate takes the place of the more common C-4 dimethylamine functionality, making SsfX3 the first acyltransferase identified to act on a tetracycline substrate. The crystal structure of SsfX3 was determined at 2.5 Å, revealing two distinct domains as follows: an N-terminal ?-sandwich domain that resembles a carbohydrate-binding module, and a C-terminal catalytic domain that contains the atypical ?/?-hydrolase fold found in the GDSL hydrolase family of enzymes. The active site lies at one end of a large open binding pocket, which is spatially defined by structural elements from both the N- and C-terminal domains. Mutational analysis in the putative substrate binding pocket identified residues from both domains that are important for binding the acyl donor and acceptor. Furthermore, removal of the N-terminal carbohydrate-binding module-like domain rendered the stand-alone ?/?-hydrolase domain inactive. The additional noncatalytic module is therefore proposed to be required to define the binding pocket and provide sufficient interactions with the spatially extended tetracyclic substrate. SsfX3 was also demonstrated to accept a variety of non-native acyl groups. This relaxed substrate specificity toward the acyl donor allowed the chemoenzymatic biosynthesis of C-4-modified analogs of the immediate precursor to the bioactive SF2575; these were used to assay the structure activity relationships at the C-4 position. PMID:21965680

  10. Proteomic Approaches Identify Members of Cofilin Pathway Involved in Oral Tumorigenesis

    PubMed Central

    Polachini, Giovana M.; Sobral, Lays M.; Mercante, Ana M. C.; Paes-Leme, Adriana F.; Xavier, Flávia C. A.; Henrique, Tiago; Guimarães, Douglas M.; Vidotto, Alessandra; Fukuyama, Erica E.; Góis-Filho, José F.; Cury, Patricia M.; Curioni, Otávio A.; Michaluart Jr, Pedro; Silva, Adriana M. A.; Wünsch-Filho, Victor; Nunes, Fabio D.; Leopoldino, Andréia M.; Tajara, Eloiza H.

    2012-01-01

    The prediction of tumor behavior for patients with oral carcinomas remains a challenge for clinicians. The presence of lymph node metastasis is the most important prognostic factor but it is limited in predicting local relapse or survival. This highlights the need for identifying biomarkers that may effectively contribute to prediction of recurrence and tumor spread. In this study, we used one- and two-dimensional gel electrophoresis, mass spectrometry and immunodetection methods to analyze protein expression in oral squamous cell carcinomas. Using a refinement for classifying oral carcinomas in regard to prognosis, we analyzed small but lymph node metastasis-positive versus large, lymph node metastasis-negative tumors in order to contribute to the molecular characterization of subgroups with risk of dissemination. Specific protein patterns favoring metastasis were observed in the “more-aggressive” group defined by the present study. This group displayed upregulation of proteins involved in migration, adhesion, angiogenesis, cell cycle regulation, anti-apoptosis and epithelial to mesenchymal transition, whereas the “less-aggressive” group was engaged in keratinocyte differentiation, epidermis development, inflammation and immune response. Besides the identification of several proteins not yet described as deregulated in oral carcinomas, the present study demonstrated for the first time the role of cofilin-1 in modulating cell invasion in oral carcinomas. PMID:23227181

  11. Adaptative biochemical pathways and regulatory networks in Klebsiella oxytoca BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation

    PubMed Central

    2012-01-01

    Background A bacterial strain previously isolated from pyrite mine drainage and named BAS-10 was tentatively identified as Klebsiella oxytoca. Unlikely other enterobacteria, BAS-10 is able to grow on Fe(III)-citrate as sole carbon and energy source, yielding acetic acid and CO2 coupled with Fe(III) reduction to Fe(II) and showing unusual physiological characteristics. In fact, under this growth condition, BAS-10 produces an exopolysaccharide (EPS) having a high rhamnose content and metal-binding properties, whose biotechnological applications were proven as very relevant. Results Further phylogenetic analysis, based on 16S rDNA sequence, definitively confirmed that BAS-10 belongs to K. oxytoca species. In order to rationalize the biochemical peculiarities of this unusual enterobacteriun, combined 2D-Differential Gel Electrophoresis (2D-DIGE) analysis and mass spectrometry procedures were used to investigate its proteomic changes: i) under aerobic or anaerobic cultivation with Fe(III)-citrate as sole carbon source; ii) under anaerobic cultivations using Na(I)-citrate or Fe(III)-citrate as sole carbon source. Combining data from these differential studies peculiar levels of outer membrane proteins, key regulatory factors of carbon and nitrogen metabolism and enzymes involved in TCA cycle and sugar biosynthesis or required for citrate fermentation and stress response during anaerobic growth on Fe(III)-citrate were revealed. The protein differential regulation seems to ensure efficient cell growth coupled with EPS production by adapting metabolic and biochemical processes in order to face iron toxicity and to optimize energy production. Conclusion Differential proteomics provided insights on the molecular mechanisms necessary for anaeorobic utilization of Fe(III)-citrate in a biotechnologically promising enterobacteriun, also revealing genes that can be targeted for the rational design of high-yielding EPS producer strains. PMID:23176641

  12. Filaggrin-stratified transcriptomic analysis of pediatric skin identifies mechanistic pathways in patients with atopic dermatitis

    PubMed Central

    Cole, Christian; Kroboth, Karin; Schurch, Nicholas J.; Sandilands, Aileen; Sherstnev, Alexander; O'Regan, Grainne M.; Watson, Rosemarie M.; Irwin McLean, W.H.; Barton, Geoffrey J.; Irvine, Alan D.; Brown, Sara J.

    2014-01-01

    Background Atopic dermatitis (AD; eczema) is characterized by a widespread abnormality in cutaneous barrier function and propensity to inflammation. Filaggrin is a multifunctional protein and plays a key role in skin barrier formation. Loss-of-function mutations in the gene encoding filaggrin (FLG) are a highly significant risk factor for atopic disease, but the molecular mechanisms leading to dermatitis remain unclear. Objective We sought to interrogate tissue-specific variations in the expressed genome in the skin of children with AD and to investigate underlying pathomechanisms in atopic skin. Methods We applied single-molecule direct RNA sequencing to analyze the whole transcriptome using minimal tissue samples. Uninvolved skin biopsy specimens from 26 pediatric patients with AD were compared with site-matched samples from 10 nonatopic teenage control subjects. Cases and control subjects were screened for FLG genotype to stratify the data set. Results Two thousand four hundred thirty differentially expressed genes (false discovery rate, P < .05) were identified, of which 211 were significantly upregulated and 490 downregulated by greater than 2-fold. Gene ontology terms for “extracellular space” and “defense response” were enriched, whereas “lipid metabolic processes” were downregulated. The subset of FLG wild-type cases showed dysregulation of genes involved with lipid metabolism, whereas filaggrin haploinsufficiency affected global gene expression and was characterized by a type 1 interferon–mediated stress response. Conclusion These analyses demonstrate the importance of extracellular space and lipid metabolism in atopic skin pathology independent of FLG genotype, whereas an aberrant defense response is seen in subjects with FLG mutations. Genotype stratification of the large data set has facilitated functional interpretation and might guide future therapy development. PMID:24880632

  13. Novel Host Proteins and Signaling Pathways in Enteropathogenic E. coli Pathogenesis Identified by Global Phosphoproteome Analysis.

    PubMed

    Scholz, Roland; Imami, Koshi; Scott, Nichollas E; Trimble, William S; Foster, Leonard J; Finlay, B Brett

    2015-07-01

    Enteropathogenic Escherichia coli (EPEC) uses a type III secretion system (T3SS) to directly translocate effector proteins into host cells where they play a pivotal role in subverting host cell signaling needed for disease. However, our knowledge of how EPEC affects host protein phosphorylation is limited to a few individual protein studies. We employed a quantitative proteomics approach to globally map alterations in the host phosphoproteome during EPEC infection. By characterizing host phosphorylation events at various time points throughout infection, we examined how EPEC dynamically impacts the host phosphoproteome over time. This experimental setup also enabled identification of T3SS-dependent and -independent changes in host phosphorylation. Specifically, T3SS-regulated events affected various cellular processes that are known EPEC targets, including cytoskeletal organization, immune signaling, and intracellular trafficking. However, the involvement of phosphorylation in these events has thus far been poorly studied. We confirmed the MAPK family as an established key host player, showed its central role in signal transduction during EPEC infection, and extended the repertoire of known signaling hubs with previously unrecognized proteins, including TPD52, CIN85, EPHA2, and HSP27. We identified altered phosphorylation of known EPEC targets, such as cofilin, where the involvement of phosphorylation has so far been undefined, thus providing novel mechanistic insights into the roles of these proteins in EPEC infection. An overlap of regulated proteins, especially those that are cytoskeleton-associated, was observed when compared with the phosphoproteome of Shigella-infected cells. We determined the biological relevance of the phosphorylation of a novel protein in EPEC pathogenesis, septin-9 (SEPT9). Both siRNA knockdown and a phosphorylation-impaired SEPT9 mutant decreased bacterial adherence and EPEC-mediated cell death. In contrast, a phosphorylation-mimicking SEPT9 mutant rescued these effects. Collectively, this study provides the first global analysis of phosphorylation-mediated processes during infection with an extracellular, diarrheagenic bacterial pathogen. PMID:25944883

  14. Transcriptomic Analysis in a Drosophila Model Identifies Previously Implicated and Novel Pathways in the Therapeutic Mechanism in Neuropsychiatric Disorders

    PubMed Central

    Singh, Priyanka; Mohammad, Farhan; Sharma, Abhay

    2011-01-01

    We have taken advantage of a newly described Drosophila model to gain insights into the potential mechanism of antiepileptic drugs (AEDs), a group of drugs that are widely used in the treatment of several neurological and psychiatric conditions besides epilepsy. In the recently described Drosophila model that is inspired by pentylenetetrazole (PTZ) induced kindling epileptogenesis in rodents, chronic PTZ treatment for 7?days causes a decreased climbing speed and an altered CNS transcriptome, with the latter mimicking gene expression alterations reported in epileptogenesis. In the model, an increased climbing speed is further observed 7?days after withdrawal from chronic PTZ. We used this post-PTZ withdrawal regime to identify potential AED mechanism. In this regime, treatment with each of the five AEDs tested, namely, ethosuximide, gabapentin, vigabatrin, sodium valproate, and levetiracetam, resulted in rescuing of the altered climbing behavior. The AEDs also normalized PTZ withdrawal induced transcriptomic perturbation in fly heads; whereas AED untreated flies showed a large number of up- and down-regulated genes which were enriched in several processes including gene expression and cell communication, the AED treated flies showed differential expression of only a small number of genes that did not enrich gene expression and cell communication processes. Gene expression and cell communication related upregulated genes in AED untreated flies overrepresented several pathways – spliceosome, RNA degradation, and ribosome in the former category, and inositol phosphate metabolism, phosphatidylinositol signaling, endocytosis, and hedgehog signaling in the latter. Transcriptome remodeling effect of AEDs was overall confirmed by microarray clustering that clearly separated the profiles of AED treated and untreated flies. Besides being consistent with previously implicated pathways, our results provide evidence for a role of other pathways in psychiatric drug mechanism. Overall, we provide an amenable model to understand neuropsychiatric mechanism in cellular and molecular terms. PMID:21503142

  15. Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection

    PubMed Central

    Rolán, Hortensia G.; Durand, Enrique A.; Mecsas, Joan

    2013-01-01

    Summary Identifying molecular targets of Yersinia virulence effectors, or Yops, during animal infection is challenging because few cells are targeted by Yops in an infected organ and isolating these sparse effector-containing cells is difficult. YopH, a tyrosine phosphatase, is essential for full virulence of Yersinia. Investigating the YopH-targeted signal-transduction pathway(s) in neutrophils during infection of a murine host, we find that several host proteins, including the essential signaling adapter SLP-76, are dephosphorylated in the presence of YopH in neutrophils isolated from infected tissues. YopH inactivated PRAM-1/SKAP-HOM and the SLP-76/Vav/PLC?2 signal-transduction axes, leading to an inhibition of calcium response in isolated neutrophils. Consistent with a failure to mount a calcium response, IL-10 production was reduced in neutrophils containing YopH from infected tissues. Finally, a yopH mutant survived better in the absence of neutrophils, indicating that neutrophil inactivation by YopH by targeting PRAM-1/SKAP-HOM and SLP-76/Vav/PLC?2 signaling hubs may be critical for Yersinia survival. PMID:24034616

  16. What makes the lac-pathway switch: identifying the fluctuations that trigger phenotype switching in gene regulatory systems

    PubMed Central

    Bhogale, Prasanna M.; Sorg, Robin A.; Veening, Jan-Willem; Berg, Johannes

    2014-01-01

    Multistable gene regulatory systems sustain different levels of gene expression under identical external conditions. Such multistability is used to encode phenotypic states in processes including nutrient uptake and persistence in bacteria, fate selection in viral infection, cell-cycle control and development. Stochastic switching between different phenotypes can occur as the result of random fluctuations in molecular copy numbers of mRNA and proteins arising in transcription, translation, transport and binding. However, which component of a pathway triggers such a transition is generally not known. By linking single-cell experiments on the lactose-uptake pathway in E. coli to molecular simulations, we devise a general method to pinpoint the particular fluctuation driving phenotype switching and apply this method to the transition between the uninduced and induced states of the lac-genes. We find that the transition to the induced state is not caused only by the single event of lac-repressor unbinding, but depends crucially on the time period over which the repressor remains unbound from the lac-operon. We confirm this notion in strains with a high expression level of the lac-repressor (leading to shorter periods over which the lac-operon remains unbound), which show a reduced switching rate. Our techniques apply to multistable gene regulatory systems in general and allow to identify the molecular mechanisms behind stochastic transitions in gene regulatory circuits. PMID:25245949

  17. What makes the lac-pathway switch: identifying the fluctuations that trigger phenotype switching in gene regulatory systems.

    PubMed

    Bhogale, Prasanna M; Sorg, Robin A; Veening, Jan-Willem; Berg, Johannes

    2014-10-01

    Multistable gene regulatory systems sustain different levels of gene expression under identical external conditions. Such multistability is used to encode phenotypic states in processes including nutrient uptake and persistence in bacteria, fate selection in viral infection, cell-cycle control and development. Stochastic switching between different phenotypes can occur as the result of random fluctuations in molecular copy numbers of mRNA and proteins arising in transcription, translation, transport and binding. However, which component of a pathway triggers such a transition is generally not known. By linking single-cell experiments on the lactose-uptake pathway in E. coli to molecular simulations, we devise a general method to pinpoint the particular fluctuation driving phenotype switching and apply this method to the transition between the uninduced and induced states of the lac-genes. We find that the transition to the induced state is not caused only by the single event of lac-repressor unbinding, but depends crucially on the time period over which the repressor remains unbound from the lac-operon. We confirm this notion in strains with a high expression level of the lac-repressor (leading to shorter periods over which the lac-operon remains unbound), which show a reduced switching rate. Our techniques apply to multistable gene regulatory systems in general and allow to identify the molecular mechanisms behind stochastic transitions in gene regulatory circuits. PMID:25245949

  18. Long-term consequences of pubertal timing for youth depression: Identifying personal and contextual pathways of risk

    PubMed Central

    RUDOLPH, KAREN D.; TROOP-GORDON, WENDY; LAMBERT, SHARON F.; NATSUAKI, MISAKI N.

    2015-01-01

    This research explored sex differences in the pathways linking pubertal timing to depression across 4 years. A sample of 167 youth (M age = 12.41 years, SD = 1.19) and their caregivers completed measures of puberty and semistructured interviews of interpersonal stress and youth depression. Youth reported on psychological (negative self-focus, anxious arousal) and social–behavioral (coping) characteristics; parents reported on youths’ social–behavioral characteristics (withdrawal/social problems) and deviant peer affiliations. Early maturation predicted stable high trajectories of depression in girls; although early maturing boys showed low initial levels of depression, they did not differ from girls by the final wave of the study. Latent growth curve analyses identified several psychological, social–behavioral, and interpersonal pathways accounting for the contribution of pubertal timing to initial and enduring risk for depression in girls as well as emerging risk for depression in boys. These findings provide novel insight into multilevel processes accounting for sex differences in depression across the adolescent transition. PMID:25422971

  19. Neuronal Expression of the Human Neuropeptide S Receptor NPSR1 Identifies NPS-Induced Calcium Signaling Pathways

    PubMed Central

    Erdmann, Frank; Kügler, Sebastian; Blaesse, Peter; Lange, Maren D.; Skryabin, Boris V.; Pape, Hans-Christian; Jüngling, Kay

    2015-01-01

    The neuropeptide S (NPS) system was discovered as a novel neurotransmitter system a decade ago and has since been identified as a key player in the modulation of fear and anxiety. Genetic variations of the human NPS receptor (NPSR1) have been associated with pathologies like panic disorders. However, details on the molecular fundamentals of NPSR1 activity in neurons remained elusive. We expressed NPSR1 in primary hippocampal cultures. Using single-cell calcium imaging we found that NPSR1 stimulation induced calcium mobilization from the endoplasmic reticulum via activation of IP3 and ryanodine receptors. Store-operated calcium channels were activated in a downstream process mediating entry of extracellular calcium. We provide the first detailed analysis of NPSR1 activity and the underlying intracellular pathways with respect to calcium mobilization in neurons. PMID:25714705

  20. Biochemical characterization and selective inhibition of ?-carotene cis-trans isomerase D27 and carotenoid cleavage dioxygenase CCD8 on the strigolactone biosynthetic pathway.

    PubMed

    Harrison, Peter J; Newgas, Sophie A; Descombes, Flora; Shepherd, Sarah A; Thompson, Andrew J; Bugg, Timothy D H

    2015-10-01

    The first three enzymatic steps of the strigolactone biosynthetic pathway catalysed by ?-carotene cis-trans isomerase Dwarf27 (D27) from Oryza sativa and carotenoid cleavage dioxygenases CCD7 and CCD8 from Arabidopsis thaliana have been reconstituted in vitro, and kinetic assays have been developed for each enzyme, in order to develop selective enzyme inhibitors. Recombinant OsD27 shows a UV-visible ?max at 422 nm and is inactivated by silver(I) acetate, consistent with the presence of an iron-sulfur cluster that is used in catalysis. OsD27 and AtCCD7 are not inhibited by hydroxamic acids that cause shoot branching in planta, but OsD27 is partially inhibited by terpene-like hydroxamic acids. The reaction catalysed by AtCCD8 is shown to be a two-step kinetic mechanism using pre-steady-state kinetic analysis. Kinetic evidence is presented for acid-base catalysis in the CCD8 catalytic cycle and the existence of an essential cysteine residue in the CCD8 active site. AtCCD8 is inhibited in a time-dependent fashion by hydroxamic acids D2, D4, D5 and D6 (> 95% inhibition at 100 ?m) that cause a shoot branching phenotype in A. thaliana, and selective inhibition of CCD8 is observed using hydroxamic acids D13H and D15 (82%, 71% inhibition at 10 ?m). The enzyme inhibition data imply that the biochemical basis of the shoot branching phenotype is due to inhibition of CCD8. PMID:26257333

  1. Mutations in PRDM5 in Brittle Cornea Syndrome Identify a Pathway Regulating Extracellular Matrix Development and Maintenance

    PubMed Central

    Burkitt Wright, Emma M.M.; Spencer, Helen L.; Daly, Sarah B.; Manson, Forbes D.C.; Zeef, Leo A.H.; Urquhart, Jill; Zoppi, Nicoletta; Bonshek, Richard; Tosounidis, Ioannis; Mohan, Meyyammai; Madden, Colm; Dodds, Annabel; Chandler, Kate E.; Banka, Siddharth; Au, Leon; Clayton-Smith, Jill; Khan, Naz; Biesecker, Leslie G.; Wilson, Meredith; Rohrbach, Marianne; Colombi, Marina; Giunta, Cecilia; Black, Graeme C.M.

    2011-01-01

    Extreme corneal fragility and thinning, which have a high risk of catastrophic spontaneous rupture, are the cardinal features of brittle cornea syndrome (BCS), an autosomal-recessive generalized connective tissue disorder. Enucleation is frequently the only management option for this condition, resulting in blindness and psychosocial distress. Even when the cornea remains grossly intact, visual function could also be impaired by a high degree of myopia and keratoconus. Deafness is another common feature and results in combined sensory deprivation. Using autozygosity mapping, we identified mutations in PRDM5 in families with BCS. We demonstrate that regulation of expression of extracellular matrix components, particularly fibrillar collagens, by PRDM5 is a key molecular mechanism that underlies corneal fragility in BCS and controls normal corneal development and maintenance. ZNF469, encoding a zinc finger protein of hitherto undefined function, has been identified as a quantitative trait locus for central corneal thickness, and mutations in this gene have been demonstrated in Tunisian Jewish and Palestinian kindreds with BCS. We show that ZNF469 and PRDM5, two genes that when mutated cause BCS, participate in the same regulatory pathway. PMID:21664999

  2. Mutations in PRDM5 in brittle cornea syndrome identify a pathway regulating extracellular matrix development and maintenance.

    PubMed

    Burkitt Wright, Emma M M; Spencer, Helen L; Daly, Sarah B; Manson, Forbes D C; Zeef, Leo A H; Urquhart, Jill; Zoppi, Nicoletta; Bonshek, Richard; Tosounidis, Ioannis; Mohan, Meyyammai; Madden, Colm; Dodds, Annabel; Chandler, Kate E; Banka, Siddharth; Au, Leon; Clayton-Smith, Jill; Khan, Naz; Biesecker, Leslie G; Wilson, Meredith; Rohrbach, Marianne; Colombi, Marina; Giunta, Cecilia; Black, Graeme C M

    2011-06-10

    Extreme corneal fragility and thinning, which have a high risk of catastrophic spontaneous rupture, are the cardinal features of brittle cornea syndrome (BCS), an autosomal-recessive generalized connective tissue disorder. Enucleation is frequently the only management option for this condition, resulting in blindness and psychosocial distress. Even when the cornea remains grossly intact, visual function could also be impaired by a high degree of myopia and keratoconus. Deafness is another common feature and results in combined sensory deprivation. Using autozygosity mapping, we identified mutations in PRDM5 in families with BCS. We demonstrate that regulation of expression of extracellular matrix components, particularly fibrillar collagens, by PRDM5 is a key molecular mechanism that underlies corneal fragility in BCS and controls normal corneal development and maintenance. ZNF469, encoding a zinc finger protein of hitherto undefined function, has been identified as a quantitative trait locus for central corneal thickness, and mutations in this gene have been demonstrated in Tunisian Jewish and Palestinian kindreds with BCS. We show that ZNF469 and PRDM5, two genes that when mutated cause BCS, participate in the same regulatory pathway. PMID:21664999

  3. Interactome analysis identifies a new paralogue of XRCC4 in non-homologous end joining DNA repair pathway

    PubMed Central

    Xing, Mengtan; Yang, Mingrui; Huo, Wei; Feng, Feng; Wei, Leizhen; Jiang, Wenxia; Ning, Shaokai; Yan, Zhenxin; Li, Wen; Wang, Qingsong; Hou, Mei; Dong, Chunxia; Guo, Rong; Gao, Ge; Ji, Jianguo; Zha, Shan; Lan, Li; Liang, Huanhuan; Xu, Dongyi

    2015-01-01

    Non-homologous end joining (NHEJ) is a major pathway to repair DNA double-strand breaks (DSBs), which can display different types of broken ends. However, it is unclear how NHEJ factors organize to repair diverse types of DNA breaks. Here, through systematic analysis of the human NHEJ factor interactome, we identify PAXX as a direct interactor of Ku. The crystal structure of PAXX is similar to those of XRCC4 and XLF. Importantly, PAXX-deficient cells are sensitive to DSB-causing agents. Moreover, epistasis analysis demonstrates that PAXX functions together with XLF in response to ionizing radiation-induced complex DSBs, whereas they function redundantly in response to Topo2 inhibitor-induced simple DSBs. Consistently, PAXX and XLF coordinately promote the ligation of complex but not simple DNA ends in vitro. Altogether, our data identify PAXX as a new NHEJ factor and provide insight regarding the organization of NHEJ factors responding to diverse types of DSB ends. PMID:25670504

  4. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma

    PubMed Central

    Guichard, Cécile; Amaddeo, Giuliana; Imbeaud, Sandrine; Ladeiro, Yannick; Pelletier, Laura; Maad, Ichrafe Ben; Calderaro, Julien; Bioulac-Sage, Paulette; Letexier, Mélanie; Degos, Françoise; Clément, Bruno; Balabaud, Charles; Chevet, Eric; Laurent, Alexis; Couchy, Gabrielle; Letouzé, Eric; Calvo, Fabien; Zucman-Rossi, Jessica

    2012-01-01

    Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. High-resolution copy number analysis of 125 tumors of which 24 were subjected to whole-exome sequencing identified 135 homozygous deletions and 994 somatic gene mutations with predicted functional consequences. We identified new recurrent alterations in 6 genes (ARID1A, RPS6KA3, NFE2L2, IRF2, CDH8 and PROKR2) not previously described in HCC. Functional analyses demonstrated tumor suppressor properties for IRF2 whose inactivation, exclusively found in hepatitis B virus related tumors, leads to impaired TP53 function. Alternatively, inactivation of proteins involved in chromatin remodeling was frequent and predominant in alcohol related tumors. Moreover, activation of the oxidative stress metabolism and inactivation of RPS6KA3 were new pathways associated with WNT/?-catenin activation, thereby suggesting a cooperative effect in tumorigenesis. This study shows the dramatic somatic genetic diversity in HCC, it reveals interactions between oncogene and tumor suppressor gene mutations markedly related to specific risk factors. PMID:22561517

  5. Systems-Based Analysis of the Sarcocystis neurona Genome Identifies Pathways That Contribute to a Heteroxenous Life Cycle

    PubMed Central

    Blazejewski, Tomasz; Nursimulu, Nirvana; Pszenny, Viviana; Dangoudoubiyam, Sriveny; Namasivayam, Sivaranjani; Chiasson, Melissa A.; Chessman, Kyle; Tonkin, Michelle; Swapna, Lakshmipuram S.; Hung, Stacy S.; Bridgers, Joshua; Ricklefs, Stacy M.; Boulanger, Martin J.; Dubey, Jitender P.; Porcella, Stephen F.; Kissinger, Jessica C.; Howe, Daniel K.

    2015-01-01

    ABSTRACT Sarcocystis neurona is a member of the coccidia, a clade of single-celled parasites of medical and veterinary importance including Eimeria, Sarcocystis, Neospora, and Toxoplasma. Unlike Eimeria, a single-host enteric pathogen, Sarcocystis, Neospora, and Toxoplasma are two-host parasites that infect and produce infectious tissue cysts in a wide range of intermediate hosts. As a genus, Sarcocystis is one of the most successful protozoan parasites; all vertebrates, including birds, reptiles, fish, and mammals are hosts to at least one Sarcocystis species. Here we sequenced Sarcocystis neurona, the causal agent of fatal equine protozoal myeloencephalitis. The S. neurona genome is 127 Mbp, more than twice the size of other sequenced coccidian genomes. Comparative analyses identified conservation of the invasion machinery among the coccidia. However, many dense-granule and rhoptry kinase genes, responsible for altering host effector pathways in Toxoplasma and Neospora, are absent from S. neurona. Further, S. neurona has a divergent repertoire of SRS proteins, previously implicated in tissue cyst formation in Toxoplasma. Systems-based analyses identified a series of metabolic innovations, including the ability to exploit alternative sources of energy. Finally, we present an S. neurona model detailing conserved molecular innovations that promote the transition from a purely enteric lifestyle (Eimeria) to a heteroxenous parasite capable of infecting a wide range of intermediate hosts. PMID:25670772

  6. MelanomaDB: A Web Tool for Integrative Analysis of Melanoma Genomic Information to Identify Disease-Associated Molecular Pathways.

    PubMed

    Trevarton, Alexander J; Mann, Michael B; Knapp, Christoph; Araki, Hiromitsu; Wren, Jonathan D; Stones-Havas, Steven; Black, Michael A; Print, Cristin G

    2013-01-01

    Despite on-going research, metastatic melanoma survival rates remain low and treatment options are limited. Researchers can now access a rapidly growing amount of molecular and clinical information about melanoma. This information is becoming difficult to assemble and interpret due to its dispersed nature, yet as it grows it becomes increasingly valuable for understanding melanoma. Integration of this information into a comprehensive resource to aid rational experimental design and patient stratification is needed. As an initial step in this direction, we have assembled a web-accessible melanoma database, MelanomaDB, which incorporates clinical and molecular data from publically available sources, which will be regularly updated as new information becomes available. This database allows complex links to be drawn between many different aspects of melanoma biology: genetic changes (e.g., mutations) in individual melanomas revealed by DNA sequencing, associations between gene expression and patient survival, data concerning drug targets, biomarkers, druggability, and clinical trials, as well as our own statistical analysis of relationships between molecular pathways and clinical parameters that have been produced using these data sets. The database is freely available at http://genesetdb.auckland.ac.nz/melanomadb/about.html. A subset of the information in the database can also be accessed through a freely available web application in the Illumina genomic cloud computing platform BaseSpace at http://www.biomatters.com/apps/melanoma-profiler-for-research. The MelanomaDB database illustrates dysregulation of specific signaling pathways across 310 exome-sequenced melanomas and in individual tumors and identifies the distribution of somatic variants in melanoma. We suggest that MelanomaDB can provide a context in which to interpret the tumor molecular profiles of individual melanoma patients relative to biological information and available drug therapies. PMID:23875173

  7. Whole blood transcriptomics and urinary metabolomics to define adaptive biochemical pathways of high-intensity exercise in 50-60 year old masters athletes.

    PubMed

    Mukherjee, Kamalika; Edgett, Brittany A; Burrows, Harrison W; Castro, Cecilia; Griffin, Julian L; Schwertani, Adel Giaid; Gurd, Brendon J; Funk, Colin D

    2014-01-01

    Exercise is beneficial for a variety of age-related disorders. However, the molecular mechanisms mediating the beneficial adaptations to exercise in older adults are not well understood. The aim of the current study was to utilize a dual approach to characterize the genetic and metabolic adaptive pathways altered by exercise in veteran athletes and age-matched untrained individuals. Two groups of 50-60 year old males: competitive cyclists (athletes, n?=?9; VO2peak 59.1±5.2 ml·kg(-1)·min(-1); peak aerobic power 383±39 W) and untrained, minimally active individuals (controls, n?=?8; VO2peak 35.9±9.7 ml·kg(-1)·min(-1); peak aerobic power 230±57 W) were examined. All participants completed an acute bout of submaximal endurance exercise, and blood and urine samples pre- and post-exercise were analyzed for gene expression and metabolic changes utilizing genome-wide DNA microarray analysis and NMR spectroscopy-based metabolomics, respectively. Our results indicate distinct differences in gene and metabolite expression involving energy metabolism, lipids, insulin signaling and cardiovascular function between the two groups. These findings may lead to new insights into beneficial signaling pathways of healthy aging and help identify surrogate markers for monitoring exercise and training load. PMID:24643011

  8. Implementation of a High-Throughput Screen for Identifying Small Molecules to Activate the Keap1-Nrf2-ARE Pathway

    PubMed Central

    Liu, Jie Jerry; Chaguturu, Rathnam; Klaassen, Curtis D.

    2012-01-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that induces a battery of cytoprotective genes involved in antioxidant defense through binding to Antioxidant Response Elements (ARE) located in the promoter regions of these genes. To identify Nrf2 activators for the treatment of oxidative/electrophilic stress-induced diseases, the present study developed a high-throughput assay to evaluate Nrf2 activation using AREc32 cells that contain a luciferase gene under the control of ARE promoters. Of the 47,000 compounds screened, 238 (top 0.5% hits) of the chemicals increased the luminescent signal more than 14.4-fold and were re-tested at eleven concentrations in a range of 0.01–30 µM. Of these 238 compounds, 231 (96%) increased the luminescence signal in a concentration-dependent manner. Chemical structure relationship analysis of these 231 compounds indicated enrichment of four chemical scaffolds (diaryl amides and diaryl ureas, oxazoles and thiazoles, pyranones and thiapyranones, and pyridinones and pyridazinones). In addition, 30 of these 231 compounds were highly effective and/or potent in activating Nrf2, with a greater than 80-fold increase in luminescence, or an EC50 lower than 1.6 µM. These top 30 compounds were also screened in Hepa1c1c7 cells for an increase in Nqo1 mRNA, the prototypical Nrf2-target gene. Of these 30 compounds, 17 increased Nqo1 mRNA in a concentration-dependent manner. In conclusion, the present study documents the development, implementation, and validation of a high-throughput screen to identify activators of the Keap1-Nrf2-ARE pathway. Results from this screening identified Nrf2 activators, and provide novel insights into chemical scaffolds that might prevent oxidative/electrophilic stress-induced toxicity and carcinogenesis. PMID:23056183

  9. Biochemical insights from population studies with genetics and metabolomics.

    PubMed

    Suhre, Karsten; Raffler, Johannes; Kastenmüller, Gabi

    2016-01-01

    Genome-wide association studies with concentrations of hundreds of small molecules in samples collected from thousands of individuals (mGWAS) access otherwise inaccessible natural genetic experiments and their influence on the metabolic capacities of the human body. By sampling the natural metabolic and genetic variability that is present in the general population, mGWAS identified over 150 associations between genetic variants and variation in the metabolic composition of human body fluids. Many of these genetic variants were found to be located in enzyme or transporter coding genes, whose functions match the biochemical nature of the associated metabolites. Associations identified by mGWAS can reveal novel biochemical knowledge, such as the function of uncharacterized genes, the biochemical identity of small molecules, and the structure of entire biochemical pathways. Here we review findings of recent mGWAS and discuss concrete examples of how their results can be interpreted in a biochemical context. We describe online resources that are available for mining mGWAS results. In this context, we present two concepts that also find more general applications in the field of metabolomics: strengthening of associations by looking at ratios between metabolite pairs and reconstruction of metabolic pathways by Gaussian graphical modeling. PMID:26432701

  10. The combination of transcriptomics and informatics identifies pathways targeted by miR-204 during neurogenesis and axon guidance.

    PubMed

    Conte, Ivan; Merella, Stefania; Garcia-Manteiga, Jose Manuel; Migliore, Chiara; Lazarevic, Dejan; Carrella, Sabrina; Marco-Ferreres, Raquel; Avellino, Raffaella; Davidson, Nathan Paul; Emmett, Warren; Sanges, Remo; Bockett, Nicholas; Van Heel, David; Meroni, Germana; Bovolenta, Paola; Stupka, Elia; Banfi, Sandro

    2014-07-01

    Vertebrate organogenesis is critically sensitive to gene dosage and even subtle variations in the expression levels of key genes may result in a variety of tissue anomalies. MicroRNAs (miRNAs) are fundamental regulators of gene expression and their role in vertebrate tissue patterning is just beginning to be elucidated. To gain further insight into this issue, we analysed the transcriptomic consequences of manipulating the expression of miR-204 in the Medaka fish model system. We used RNA-Seq and an innovative bioinformatics approach, which combines conventional differential expression analysis with the behavior expected by miR-204 targets after its overexpression and knockdown. With this approach combined with a correlative analysis of the putative targets, we identified a wider set of miR-204 target genes belonging to different pathways. Together, these approaches confirmed that miR-204 has a key role in eye development and further highlighted its putative function in neural differentiation processes, including axon guidance as supported by in vivo functional studies. Together, our results demonstrate the advantage of integrating next-generation sequencing and bioinformatics approaches to investigate miRNA biology and provide new important information on the role of miRNAs in the control of axon guidance and more broadly in nervous system development. PMID:24895435

  11. A Kinetic-Model-Based Approach to Identify Malfunctioning Components in Signal Transduction Pathways from Artificial Clinical Data

    PubMed Central

    Li, Xianhua; Ribaudo, Nicholas; Huang, Zuyi (Jacky)

    2015-01-01

    Detection of malfunctioning reactions or molecules from clinical data is essential for disease treatments. In order to find an alternative to the existing oversimplistic mathematical models, a kinetic model is developed in this work to infer the malfunctioning reactions/molecules by quantifying the similarity between the clinical profile and the output profiles predicted from the model in which certain reactions/molecules malfunction. The new approach was tested in IL-6 and TNF-?/NF-?B signaling pathway, for four abnormal conditions including up/downregulation of single reaction rate constants and up/downregulation of single molecules. Since limited quantitative clinical data were available, the IL-6 ODE model was used to generate artificial clinical data for the abnormal steady-state value shown in two key molecules: nuclear STAT3 and SOCS3. Similarly, the TNF-?/NF-?B model was used to obtain the data in which abnormal oscillation dynamic was shown in the profile of NF-?B. The results show that the approach developed in this study was able to successfully identify the malfunctioning reactions and molecules from the clinical data. It was also found that this new approach was noise-robust and that it managed to reveal unique solution for the faulty components in a network. PMID:26697484

  12. Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome.

    PubMed

    Martínez-Trillos, Alejandra; Pinyol, Magda; Navarro, Alba; Aymerich, Marta; Jares, Pedro; Juan, Manel; Rozman, María; Colomer, Dolors; Delgado, Julio; Giné, Eva; González-Díaz, Marcos; Hernández-Rivas, Jesús M; Colado, Enrique; Rayón, Consolación; Payer, Angel R; Terol, Maria José; Navarro, Blanca; Quesada, Victor; Puente, Xosé S; Rozman, Ciril; López-Otín, Carlos; Campo, Elías; López-Guillermo, Armando; Villamor, Neus

    2014-06-12

    Mutations in Toll-like receptor (TLR) and myeloid differentiation primary response 88 (MYD88) genes have been found in chronic lymphocytic leukemia (CLL) at low frequency. We analyzed the incidence, clinicobiological characteristics, and outcome of patients with TLR/MYD88 mutations in 587 CLL patients. Twenty-three patients (3.9%) had mutations, 19 in MYD88 (one with concurrent IRAK1 mutation), 2 TLR2 (one with concomitant TLR6 mutation), 1 IRAK1, and 1 TLR5. No mutations were found in IRAK2 and IRAK4. TLR/MYD88-mutated CLL overexpressed genes of the nuclear factor ?B pathway. Patients with TLR/MYD88 mutations were significantly younger (83% age ?50 years) than those with no mutations. TLR/MYD88 mutations were the most frequent in young patients. Patients with mutated TLR/MYD88 CLL had a higher frequency of mutated IGHV and low expression of CD38 and ZAP-70. Overall survival (OS) was better in TLR/MYD88-mutated than unmutated patients in the whole series (10-year OS, 100% vs 62%; P = .002), and in the subset of patients age ?50 years (100% vs 70%; P = .02). In addition, relative OS of TLR/MYD88-mutated patients was similar to that in the age- and gender-matched population. In summary, TLR/MYD88 mutations identify a population of young CLL patients with favorable outcome. PMID:24782504

  13. The combination of transcriptomics and informatics identifies pathways targeted by miR-204 during neurogenesis and axon guidance

    PubMed Central

    Conte, Ivan; Merella, Stefania; Garcia-Manteiga, Jose Manuel; Migliore, Chiara; Lazarevic, Dejan; Carrella, Sabrina; Marco-Ferreres, Raquel; Avellino, Raffaella; Davidson, Nathan Paul; Emmett, Warren; Sanges, Remo; Bockett, Nicholas; Van Heel, David; Meroni, Germana; Bovolenta, Paola; Stupka, Elia; Banfi, Sandro

    2014-01-01

    Vertebrate organogenesis is critically sensitive to gene dosage and even subtle variations in the expression levels of key genes may result in a variety of tissue anomalies. MicroRNAs (miRNAs) are fundamental regulators of gene expression and their role in vertebrate tissue patterning is just beginning to be elucidated. To gain further insight into this issue, we analysed the transcriptomic consequences of manipulating the expression of miR-204 in the Medaka fish model system. We used RNA-Seq and an innovative bioinformatics approach, which combines conventional differential expression analysis with the behavior expected by miR-204 targets after its overexpression and knockdown. With this approach combined with a correlative analysis of the putative targets, we identified a wider set of miR-204 target genes belonging to different pathways. Together, these approaches confirmed that miR-204 has a key role in eye development and further highlighted its putative function in neural differentiation processes, including axon guidance as supported by in vivo functional studies. Together, our results demonstrate the advantage of integrating next-generation sequencing and bioinformatics approaches to investigate miRNA biology and provide new important information on the role of miRNAs in the control of axon guidance and more broadly in nervous system development. PMID:24895435

  14. Identifying putative candidate genes and pathways involved in immune responses to porcine reproductive and respiratory syndrome virus (PRRSV) infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Differences in gene expression were compared between RNAs from lungs of high (HR) and low (LR) PRRSV burden pigs using the swine protein-annotated long oligonucleotide microarray, the Pigoligoarray. Pathway analyses were carried out to determine biological processes, pathways and networks that diffe...

  15. Hydrograph Separations can Identify Contaminant-Specific Pathways for Conservation Targeting in a Tile-Drained Watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water quality issues continue to vex agriculture, partly due to perceived tradeoffs among different contaminants. Yet, agricultural water quality is influenced by contaminant-transport pathways unique to each watershed that are not well defined. More accurate information on contaminant pathways coul...

  16. NAViGaTing the Micronome – Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs

    PubMed Central

    Shirdel, Elize A.; Xie, Wing; Mak, Tak W.; Jurisica, Igor

    2011-01-01

    Background MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome – referred to as the micronome – to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal — mirDIP (http://ophid.utoronto.ca/mirDIP). Results mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs. Conclusions Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level. PMID:21364759

  17. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  18. Transcriptome Analysis in Prenatal IGF1-Deficient Mice Identifies Molecular Pathways and Target Genes Involved in Distal Lung Differentiation

    PubMed Central

    Hernández-Porras, Isabel; López, Icíar Paula; De Las Rivas, Javier; Pichel, José García

    2013-01-01

    Background Insulin-like Growth Factor 1 (IGF1) is a multifunctional regulator of somatic growth and development throughout evolution. IGF1 signaling through IGF type 1 receptor (IGF1R) controls cell proliferation, survival and differentiation in multiple cell types. IGF1 deficiency in mice disrupts lung morphogenesis, causing altered prenatal pulmonary alveologenesis. Nevertheless, little is known about the cellular and molecular basis of IGF1 activity during lung development. Methods/Principal Findings Prenatal Igf1?/? mutant mice with a C57Bl/6J genetic background displayed severe disproportional lung hypoplasia, leading to lethal neonatal respiratory distress. Immuno-histological analysis of their lungs showed a thickened mesenchyme, alterations in extracellular matrix deposition, thinner smooth muscles and dilated blood vessels, which indicated immature and delayed distal pulmonary organogenesis. Transcriptomic analysis of Igf1?/? E18.5 lungs using RNA microarrays identified deregulated genes related to vascularization, morphogenesis and cellular growth, and to MAP-kinase, Wnt and cell-adhesion pathways. Up-regulation of immunity-related genes was verified by an increase in inflammatory markers. Increased expression of Nfib and reduced expression of Klf2, Egr1 and Ctgf regulatory proteins as well as activation of ERK2 MAP-kinase were corroborated by Western blot. Among IGF-system genes only IGFBP2 revealed a reduction in mRNA expression in mutant lungs. Immuno-staining patterns for IGF1R and IGF2, similar in both genotypes, correlated to alterations found in specific cell compartments of Igf1?/? lungs. IGF1 addition to Igf1?/? embryonic lungs cultured ex vivo increased airway septa remodeling and distal epithelium maturation, processes accompanied by up-regulation of Nfib and Klf2 transcription factors and Cyr61 matricellular protein. Conclusions/Significance We demonstrated the functional tissue specific implication of IGF1 on fetal lung development in mice. Results revealed novel target genes and gene networks mediators of IGF1 action on pulmonary cellular proliferation, differentiation, adhesion and immunity, and on vascular and distal epithelium maturation during prenatal lung development. PMID:24391734

  19. Global gene expression and functional network analysis of gastric cancer identify extended pathway maps and GPRC5A as a potential biomarker.

    PubMed

    Cheng, Lei; Yang, Sheng; Yang, Yanqing; Zhang, Wen; Xiao, Huasheng; Gao, Hengjun; Deng, Xiaxing; Zhang, Qinghua

    2012-12-29

    To get more understanding of the molecular mechanisms underlying gastric cancer, 25 paired samples were applied to gene expression microarray analysis. Here, expression microarray, quantitative reverse transcription-PCR (qRT-PCR) and immunohistochemical analysis indicated that GPRC5A was significantly elevated in gastric cancer tissues. The integrative network analysis of deregulated genes generated eight subnetworks. We also mapped copy number variations (CNVs) and associated mRNA expression changes into pathways and identified WNT, RTK-Ras-PI3K-AKT, NF-?B, and PLAU-JAK-STAT pathways involved in proliferation, evading apoptosis and sustained angiogenesis, respectively. Taken together, our results reveal several interesting genes including GPRC5A as potential biomarkers for gastric cancer, and highlight more systematical insight of deregulated genes in genetic pathways of gastric carcinogenesis. PMID:22867946

  20. E2F1 identified by promoter and biochemical analysis as a central target of glioblastoma cell-cycle arrest in response to ras inhibition

    E-print Network

    Shamir, Ron

    trigger several common pathways, in particular those leading to activation of Akt and Ras proteins.1 The active GTP-bound Ras proteins, through their downstream effectors, including Raf, phosphatidylinositol-3-cycle arrest in response to ras inhibition Roy Blum1 , Itay Nakdimon1 , Liat Goldberg1 , Ran Elkon2 , Ron

  1. Biochemical Characterization of the O-Linked Glycosylation Pathway in Neisseria gonorrhoeae Responsible for Biosynthesis of Protein Glycans Containing N,N '-Diacetylbacillosamine

    E-print Network

    Hartley, Meredith D.

    The O-linked protein glycosylation pathway in Neisseria gonorrhoeae is responsible for the synthesis of a complex oligosaccharide on undecaprenyl diphosphate and subsequent en bloc transfer of the glycan to serine residues ...

  2. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    SciTech Connect

    Kleinstreuer, N.C.; Smith, A.M.; West, P.R.; Conard, K.R.; Fontaine, B.R.; Weir-Hauptman, A.M.; Palmer, J.A.; Knudsen, T.B.; Dix, D.J.; Donley, E.L.R.; Cezar, G.G.; University of Wisconsin-Madison, Madison, WI 53706

    2011-11-15

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast Trade-Mark-Sign chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox Registered-Sign model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: Black-Right-Pointing-Pointer We tested 11 environmental compounds in a hESC metabolomics platform. Black-Right-Pointing-Pointer Significant changes in secreted small molecule metabolites were observed. Black-Right-Pointing-Pointer Perturbed mass features map to pathways critical for normal development and pregnancy. Black-Right-Pointing-Pointer Arginine, proline, nicotinate, nicotinamide and glutathione pathways were affected.

  3. A Novel Proteomics-Based Clinical Diagnostics Technology Identifies Heterogeneity in Activated Signaling Pathways in Gastric Cancers

    PubMed Central

    Kim, Sung; Liu, Xinjun; Lee, Tani; Kim, Kyoung-Mee; Do, In-Gu; Park, Joon Oh; Park, Se Hoon; Jang, Jiryeon; Hoe, Nicholas; Harvie, Gulia; Kuller, Anne; Jain, Anjali; Meyer, Gary; Leesman, Glen; Park, Young Suk; Choi, Min Gew; Sohn, Tae Sung; Bae, Jae Moon; Lim, Ho Yeong; Singh, Sharat; Kang, Won Ki

    2013-01-01

    Purpose The aim of this study was to utilize the proteomics-based Collaborative Enzyme Enhanced Reactive (CEER) immunoassay to investigate protein tyrosine phosphorylations as diagnostic markers in gastric cancers (GCs). Experimental Design Protein lysates from fresh-frozen 434 advanced stage GCs were analyzed for phosphorylation of HER1, HER2, p95HER2, HER3, cMET, IGF1R and PI3K. The pathway activation patterns were segregated based on the tumor HER2 status. Hierarchical clustering was utilized to determine pathway coactivations in GCs. Prognostic value of pathway activation patterns was determined by correlating disease-free survival times of the various GC subgroups using Kaplan-Meier survival analysis. CEER was also used to determine the presence of tyrosine phosphorylated signaling cascades in circulating tumor cells (CTCs) and ascites tumor cells (ATCs). Results Utilizing a novel diagnostics immunoassay, CEER, we demonstrate the presence of p95HER2 and concomitantly activated signaling pathways in GC tumor tissues, CTCs and ATCs isolated from GC patients for the first time. p95HER2 is expressed in ?77% of HER2(+) GCs. Approximately 54% of GCs have an activated HER1, HER2, HER3, cMET or IGF1R and demonstrate a poorer prognosis than those where these receptor tyrosine kinases (RTKs) are not activated. Hierarchical clustering of RTKs reveals co-clustering of phosphorylated HER1:cMET, HER2:HER3 and IGF1R-PI3K. Coactivation of HER1 with cMET renders GCs with a shorter disease-free survival as compared to only cMET activated GCs. Conclusions Our study highlights the utility of a novel companion diagnostics technology, CEER that has strong implications for drug development and therapeutic monitoring. CEER is used to provide an increased understanding of activated signaling pathways in advanced GCs that can significantly improve their clinical management through accurate patient selection for targeted therapeutics. PMID:23372746

  4. Identifiers Identifiers

    E-print Network

    Brass, Stefan

    , July 1998. . Tim Berners­Lee: Cool URIs don't change. [http://www.w3.org/Provider/Style/URI] . Uniform://archive.ncsa.uiuc.edu/demoweb/url­primer.html] . T. Berners­Lee, R. Fielding, L. Masinter: Uniform Resource Identifiers (URI): Generic Syntax. RFC Names. RFC 1737, December 1994, 7 pages. . T. Berners­Lee, L. Masinter, M. McCahill: Uniform Resource

  5. Identifiers Identifiers

    E-print Network

    Brass, Stefan

    , July 1998. . Tim Berners­Lee: Cool URIs don't change. [http://www.w3.org/Provider/Style/URI] Stefan://archive.ncsa.uiuc.edu/demoweb/url­primer.html] . T. Berners­Lee, R. Fielding, L. Masinter: Uniform Resource Identifiers (URI): Generic Syntax. RFC Names. RFC 1737, December 1994, 7 pages. . T. Berners­Lee, L. Masinter, M. McCahill: Uniform Resource

  6. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    PubMed

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-01

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers. PMID:26401960

  7. Native fluorescence spectroscopy of blood plasma of rats with experimental diabetes: identifying fingerprints of glucose-related metabolic pathways

    NASA Astrophysics Data System (ADS)

    Shirshin, Evgeny; Cherkasova, Olga; Tikhonova, Tatiana; Berlovskaya, Elena; Priezzhev, Alexander; Fadeev, Victor

    2015-05-01

    We present the results of a native fluorescence spectroscopy study of blood plasma of rats with experimental diabetes. It was shown that the fluorescence emission band shape at 320 nm excitation is the most indicative of hyperglycemia in the blood plasma samples. We provide the interpretation of this fact based on the changes in reduced nicotinamide adenine dinucleotide phosphate concentration due to glucose-related metabolic pathways and protein fluorescent cross-linking formation following nonenzymatic glycation.

  8. Perturbation of cellular proteostasis networks identifies pathways that modulate precursor and intermediate but not mature levels of frataxin.

    PubMed

    Nabhan, Joseph F; Gooch, Renea L; Piatnitski Chekler, Eugene L; Pierce, Betsy; Bulawa, Christine E

    2015-01-01

    Friedreich's Ataxia is a genetic disease caused by expansion of an intronic trinucleotide repeat in the frataxin (FXN) gene yielding diminished FXN expression and consequently disease. Since increasing FXN protein levels is desirable to ameliorate pathology, we explored the role of major cellular proteostasis pathways and mitochondrial proteases in FXN processing and turnover. We targeted p97/VCP, the ubiquitin proteasome pathway (UPP), and autophagy with chemical inhibitors in cell lines and patient-derived cells. p97 inhibition by DBeQ increased precursor FXN levels, while UPP and autophagic flux modulators had variable effects predominantly on intermediate FXN. Our data suggest that these pathways cannot be modulated to influence mature functional FXN levels. We also targeted known mitochondrial proteases by RNA interference and discovered a novel protease PITRM1 that regulates intermediate FXN levels. Treatment with the aforementioned chemical and genetic modulators did not have a differential effect in patient cells containing lower amounts of FXN. Interestingly, a number of treatments caused a change in total amount of FXN protein, without an effect on mature FXN. Our results imply that regulation of FXN protein levels is complex and that total amounts can be modulated chemically and genetically without altering the absolute amount of mature FXN protein. PMID:26671574

  9. Perturbation of cellular proteostasis networks identifies pathways that modulate precursor and intermediate but not mature levels of frataxin

    PubMed Central

    Nabhan, Joseph F.; Gooch, Renea L.; Piatnitski Chekler, Eugene L.; Pierce, Betsy; Bulawa, Christine E.

    2015-01-01

    Friedreich’s Ataxia is a genetic disease caused by expansion of an intronic trinucleotide repeat in the frataxin (FXN) gene yielding diminished FXN expression and consequently disease. Since increasing FXN protein levels is desirable to ameliorate pathology, we explored the role of major cellular proteostasis pathways and mitochondrial proteases in FXN processing and turnover. We targeted p97/VCP, the ubiquitin proteasome pathway (UPP), and autophagy with chemical inhibitors in cell lines and patient-derived cells. p97 inhibition by DBeQ increased precursor FXN levels, while UPP and autophagic flux modulators had variable effects predominantly on intermediate FXN. Our data suggest that these pathways cannot be modulated to influence mature functional FXN levels. We also targeted known mitochondrial proteases by RNA interference and discovered a novel protease PITRM1 that regulates intermediate FXN levels. Treatment with the aforementioned chemical and genetic modulators did not have a differential effect in patient cells containing lower amounts of FXN. Interestingly, a number of treatments caused a change in total amount of FXN protein, without an effect on mature FXN. Our results imply that regulation of FXN protein levels is complex and that total amounts can be modulated chemically and genetically without altering the absolute amount of mature FXN protein. PMID:26671574

  10. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics.

    PubMed

    Kleinstreuer, N C; Smith, A M; West, P R; Conard, K R; Fontaine, B R; Weir-Hauptman, A M; Palmer, J A; Knudsen, T B; Dix, D J; Donley, E L R; Cezar, G G

    2011-11-15

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast™ chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox® model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. PMID:21925528

  11. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, R.N.; Boulanger, A.; Bagdonas, E.P.; Xu, L.; He, W.

    1996-12-17

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells. 22 figs.

  12. Method for identifying subsurface fluid migration and drainage pathways in and among oil and gas reservoirs using 3-D and 4-D seismic imaging

    DOEpatents

    Anderson, Roger N. (New York, NY); Boulanger, Albert (New York, NY); Bagdonas, Edward P. (Brookline, MA); Xu, Liqing (New Milford, NJ); He, Wei (New Milford, NJ)

    1996-01-01

    The invention utilizes 3-D and 4-D seismic surveys as a means of deriving information useful in petroleum exploration and reservoir management. The methods use both single seismic surveys (3-D) and multiple seismic surveys separated in time (4-D) of a region of interest to determine large scale migration pathways within sedimentary basins, and fine scale drainage structure and oil-water-gas regions within individual petroleum producing reservoirs. Such structure is identified using pattern recognition tools which define the regions of interest. The 4-D seismic data sets may be used for data completion for large scale structure where time intervals between surveys do not allow for dynamic evolution. The 4-D seismic data sets also may be used to find variations over time of small scale structure within individual reservoirs which may be used to identify petroleum drainage pathways, oil-water-gas regions and, hence, attractive drilling targets. After spatial orientation, and amplitude and frequency matching of the multiple seismic data sets, High Amplitude Event (HAE) regions consistent with the presence of petroleum are identified using seismic attribute analysis. High Amplitude Regions are grown and interconnected to establish plumbing networks on the large scale and reservoir structure on the small scale. Small scale variations over time between seismic surveys within individual reservoirs are identified and used to identify drainage patterns and bypassed petroleum to be recovered. The location of such drainage patterns and bypassed petroleum may be used to site wells.

  13. ReactionFlow: an interactive visualization tool for causality analysis in biological pathways

    PubMed Central

    2015-01-01

    Background Molecular and systems biologists are tasked with the comprehension and analysis of incredibly complex networks of biochemical interactions, called pathways, that occur within a cell. Through interviews with domain experts, we identified four common tasks that require an understanding of the causality within pathways, that is, the downstream and upstream relationships between proteins and biochemical reactions, including: visualizing downstream consequences of perturbing a protein; finding the shortest path between two proteins; detecting feedback loops within the pathway; and identifying common downstream elements from two or more proteins. Results We introduce ReactionFlow, a visual analytics application for pathway analysis that emphasizes the structural and causal relationships amongst proteins, complexes, and biochemical reactions within a given pathway. To support the identified causality analysis tasks, user interactions allow an analyst to filter, cluster, and select pathway components across linked views. Animation is used to highlight the flow of activity through a pathway. Conclusions We evaluated ReactionFlow by providing our application to two domain experts who have significant experience with biomolecular pathways, after which we conducted a series of in-depth interviews focused on each of the four causality analysis tasks. Their feedback leads us to believe that our techniques could be useful to researchers who must be able to understand and analyze the complex nature of biological pathways. ReactionFlow is available at https://github.com/CreativeCodingLab/ReactionFlow. PMID:26361502

  14. Biochem. J. (2015) 466, 401413 (Printed in Great Britain) doi:10.1042/BJ20140878 401 Iron alters cell survival in a mitochondria-dependent pathway in ovarian

    E-print Network

    Lajeunesse, Marc J.

    2015-01-01

    of cancer remains unclear. We previously reported that iron reduces cell survival in a Ras/mitogen-activated protein kinase (MAPK)-dependent manner in ovarian cells; however, the underlying downstream pathway leading to reduced survival was unclear. Although levels of intracellular iron, ferritin/CD71 protein

  15. The awesome power of yeast biochemical genomics.

    PubMed

    Carlson, M

    2000-02-01

    A new genomic strategy for identifying the gene encoding any biochemical activity has recently been developed, in which an array of individual yeast strains expressing a genomic set of open reading frames fused to glutathione S-transferase can be assayed for a biochemical activity of interest. Designated 'biochemical genomics', this approach represents an innovative application of genomic information. PMID:10652525

  16. Identifying viable regulatory and innovation pathways for regenerative medicine: a case study of cultured red blood cells.

    PubMed

    Mittra, J; Tait, J; Mastroeni, M; Turner, M L; Mountford, J C; Bruce, K

    2015-01-25

    The creation of red blood cells for the blood transfusion markets represents a highly innovative application of regenerative medicine with a medium term (5-10 year) prospect for first clinical studies. This article describes a case study analysis of a project to derive red blood cells from human embryonic stem cells, including the systemic challenges arising from (i) the selection of appropriate and viable regulatory protocols and (ii) technological constraints related to stem cell manufacture and scale up to clinical Good Manufacturing Practice (GMP) standard. The method used for case study analysis (Analysis of Life Science Innovation Systems (ALSIS)) is also innovative, demonstrating a new approach to social and natural science collaboration to foresight product development pathways. Issues arising along the development pathway include cell manufacture and scale-up challenges, affected by regulatory demands emerging from the innovation ecosystem (preclinical testing and clinical trials). Our discussion reflects on the efforts being made by regulators to adapt the current pharmaceuticals-based regulatory model to an allogeneic regenerative medicine product and the broader lessons from this case study for successful innovation and translation of regenerative medicine therapies, including the role of methodological and regulatory innovation in future development in the field. PMID:25094050

  17. Evaluation of microbial triglyceride oil purification requirements for the CelTherm process: an efficient biochemical pathway to renewable fuels and chemicals.

    PubMed

    Linnen, Michael; Seames, Wayne; Kubatova, Alena; Menon, Suresh; Alisala, Kashinatham; Hash, Sara

    2014-10-01

    CelTherm is a biochemical process to produce renewable fuels and chemicals from lignocellulosic biomass. The present study's objective was to determine the level of treatment/purity of the microbial triacylglyceride oil (TAG) necessary to facilitate fuel production. After a unique microbe aerobically synthesizes TAG from biomass-derived sugars, the microbes were harvested and dried then crude TAG was chemically extracted from the residual biomass. Some TAGs were further purified to hydrotreating process requirements. Both grades were then noncatalytically cracked into a petroleum-like intermediate characterized by gas chromatography. Experiments were repeated using refined soybean oil for comparison to previous studies. The products from crude microbial TAG cracking were then further refined into a jet fuel product. Fuel tests indicate that this jet fuel corresponds to specifications for JP-8 military turbine fuel. It was thus concluded that the crude microbial TAG is a suitable feedstock with no further purification required, demonstrating CelTherm's commercial potential. PMID:24781206

  18. An Arrayed RNA Interference Genome-Wide Screen Identifies Candidate Genes Involved in the MicroRNA 21 Biogenesis Pathway

    PubMed Central

    Shum, David; Bhinder, Bhavneet; Ramirez, Christina N.; Radu, Constantin; Calder, Paul A.; Beauchamp, Lesslie; Farazi, T.; Landthaler, M.; Tuschi, T.; Magdaleno, Susan

    2013-01-01

    Abstract MicroRNAs (miRNAs) are evolutionary conserved noncoding molecules that regulate gene expression. They influence a number of diverse biological functions, such as development and differentiation. However, their dysregulation has been shown to be associated with disease states, such as cancer. Genes and pathways regulating their biogenesis remain unknown and are highly sought after. For this purpose, we have validated a multiplexed high-content assay strategy to screen for such modulators. Here, we describe its implementation that makes use of a cell-based gain-of-function reporter assay monitoring enhanced green fluorescent protein expression under the control of miRNA 21 (miR-21); combined with measures of both cell metabolic activities through the use of Alamar Blue and cell death through imaged Hoechst-stained nuclei. The strategy was validated using a panel of known genes and enabled us to successfully progress to and complete an arrayed genome-wide short interfering RNA (siRNA) screen against the Ambion Silencer Select v4.0 library containing 64,755 siRNA duplexes covering 21,565 genes. We applied a high-stringency hit analysis method, referred to as the Bhinder–Djaballah analysis method, leading to the nomination of 1,273 genes as candidate inhibitors of the miR-21 biogenesis pathway; after several iterations eliminating those genes with only one active duplex and those enriched in seed sequence mediated off-target effects. Biological classifications revealed four major control junctions among them vesicular transport via clathrin-mediated endocytosis. Altogether, our screen has uncovered a number of novel candidate regulators that are potentially good druggable targets allowing for the discovery and development of small molecules for regulating miRNA function. PMID:23153064

  19. Genomewide RNAi screen identifies protein kinase Cb and new members of mitogen-activated protein kinase pathway as regulators of melanoma cell growth and metastasis.

    PubMed

    Schönherr, Madeleine; Bhattacharya, Animesh; Kottek, Tina; Szymczak, Silke; Köberle, Margarethe; Wickenhauser, Claudia; Siebolts, Udo; Saalbach, Anja; Koczan, Dirk; Magin, Thomas M; Simon, Jan C; Kunz, Manfred

    2014-05-01

    A large-scale RNAi screen was performed for eight different melanoma cell lines using a pooled whole-genome lentiviral shRNA library. shRNAs affecting proliferation of transduced melanoma cells were negatively selected during 10 days of culture. Overall, 617 shRNAs were identified by microarray hybridization. Pathway analyses identified mitogen-activated protein kinase (MAPK) pathway members such as ERK1/2, JNK1/2 and MAP3K7 and protein kinase C ? (PKC?) as candidate genes. Knockdown of PKC? most consistently reduced cellular proliferation, colony formation and migratory capacity of melanoma cells and was selected for further validation. PKC? showed enhanced expression in human primary melanomas and distant metastases as compared with benign melanocytic nevi. Moreover, treatment of melanoma cells with PKC?-specific inhibitor enzastaurin reduced melanoma cell growth but had only small effects on benign fibroblasts. Finally, PKC?-shRNA significantly reduced lung colonization capacity of stably transduced melanoma cells in mice. Taken together, this study identified new candidate genes for melanoma cell growth and proliferation. PKC? seems to play an important role in these processes and might serve as a new target for the treatment of metastatic melanoma. PMID:24406113

  20. Biochemical and genetic characterization of an early step in a novel pathway for the biosynthesis of aromatic amino acids and p-aminobenzoic acid in the archaeon Methanococcus maripaludis.

    PubMed

    Porat, Iris; Sieprawska-Lupa, Magdalena; Teng, Quincy; Bohanon, Fredrick J; White, Robert H; Whitman, William B

    2006-11-01

    Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon and facultative autotroph capable of biosynthesizing all the amino acids and vitamins required for growth. In this work, the novel 6-deoxy-5-ketofructose-1-phosphate (DKFP) pathway for the biosynthesis of aromatic amino acids (AroAAs) and p-aminobenzoic acid (PABA) was demonstrated in M. maripaludis. Moreover, PABA was shown to be derived from an early intermediate in AroAA biosynthesis and not from chorismate. Following metabolic labelling with [U-(13)C]-acetate, the expected enrichments for phenylalanine and arylamine derived from PABA were observed. DKFP pathway activity was reduced following growth with aryl acids, an alternative source of the AroAAs. Lastly, a deletion mutant of aroA', which encodes the first step in the DKFP pathway, required AroAAs and PABA for growth. Complementation of the mutants by an aroA' expression vector restored the wild-type phenotype. In contrast, a deletion of aroB', which encodes the second step in the DKFP pathway, did not require AroAAs or PABA for growth. Presumably, methanococci contain an alternative activity for this step. These results identify the initial reactions of a new pathway for the biosynthesis of PABA in methanococci. PMID:17010158

  1. RNA sequencing identifies upregulated kyphoscoliosis peptidase and phosphatidic acid signaling pathways in muscle hypertrophy generated by transgenic expression of myostatin propeptide.

    PubMed

    Miao, Yuanxin; Yang, Jinzeng; Xu, Zhong; Jing, Lu; Zhao, Shuhong; Li, Xinyun

    2015-01-01

    Myostatin (MSTN), a member of the transforming growth factor-? superfamily, plays a crucial negative role in muscle growth. MSTN mutations or inhibitions can dramatically increase muscle mass in most mammal species. Previously, we generated a transgenic mouse model of muscle hypertrophy via the transgenic expression of the MSTN N-terminal propeptide cDNA under the control of the skeletal muscle-specific MLC1 promoter. Here, we compare the mRNA profiles between transgenic mice and wild-type littermate controls with a high-throughput RNA sequencing method. The results show that 132 genes were significantly differentially expressed between transgenic mice and wild-type control mice; 97 of these genes were up-regulated, and 35 genes were down-regulated in the skeletal muscle. Several genes that had not been reported to be involved in muscle hypertrophy were identified, including up-regulated myosin binding protein H (mybph), and zinc metallopeptidase STE24 (Zmpste24). In addition, kyphoscoliosis peptidase (Ky), which plays a vital role in muscle growth, was also up-regulated in the transgenic mice. Interestingly, a pathway analysis based on grouping the differentially expressed genes uncovered that cardiomyopathy-related pathways and phosphatidic acid (PA) pathways (Dgki, Dgkz, Plcd4) were up-regulated. Increased PA signaling may increase mTOR signaling, resulting in skeletal muscle growth. The findings of the RNA sequencing analysis help to understand the molecular mechanisms of muscle hypertrophy caused by MSTN inhibition. PMID:25860951

  2. Specific inhibitors for identifying pathways for methane production from carbon monoxide by a nonadapted anaerobic mixed culture.

    PubMed

    Navarro, Silvia Sancho; Cimpoia, Ruxandra; Bruant, Guillaume; Guiot, Serge R

    2014-06-01

    Specific inhibitors such as 2-bromoethanesulfonate (BES) and vancomycin were employed in activity batch tests to decipher metabolic pathways that are preferentially used by a mixed anaerobic consortium (sludge from an anaerobic digester) to transform carbon monoxide (CO) into methane (CH4). We first evaluated the inhibitory effect of both BES and vancomycin on the microbial community, as well as the efficiency and stability of vancomycin at 35 °C, over time. The activity tests with CO2-H2, CO, glucose, acetate, formate, propionate, butyrate, methanol, and ethanol showed that vancomycin does not inhibit some Gram-negative bacteria, and 50 mmol/L BES effectively blocks CH4 production in the sludge. However, when sludge was incubated with propionate, butyrate, methanol, or ethanol as the sole energy and carbon source, methanogenesis was only partially inhibited by BES. Separate tests showed that 0.07 mmol/L vancomycin is enough to maintain its inhibitory efficiency and stability in the population for at least 32 days at 35 °C. Using the inhibitors above, it was demonstrated that CO conversion to CH4 is an indirect, 2-step process, in which the CO is converted first to acetate and subsequently to CH4. PMID:24896194

  3. Stromal Transcriptional Profiles Reveal Hierarchies of Anatomical Site, Serum Response and Disease and Identify Disease Specific Pathways

    PubMed Central

    Parsonage, Greg N.; Legault, Holly M.; O’Toole, Margot; Pearson, Mark J.; Thomas, Andrew M.; Scheel-Toellner, Dagmar; Raza, Karim; Buckley, Christopher D.; Falciani, Francesco

    2015-01-01

    Synovial fibroblasts in persistent inflammatory arthritis have been suggested to have parallels with cancer growth and wound healing, both of which involve a stereotypical serum response programme. We tested the hypothesis that a serum response programme can be used to classify diseased tissues, and investigated the serum response programme in fibroblasts from multiple anatomical sites and two diseases. To test our hypothesis we utilized a bioinformatics approach to explore a publicly available microarray dataset including rheumatoid arthritis (RA), osteoarthritis (OA) and normal synovial tissue, then extended those findings in a new microarray dataset representing matched synovial, bone marrow and skin fibroblasts cultured from RA and OA patients undergoing arthroplasty. The classical fibroblast serum response programme discretely classified RA, OA and normal synovial tissues. Analysis of low and high serum treated fibroblast microarray data revealed a hierarchy of control, with anatomical site the most powerful classifier followed by response to serum and then disease. In contrast to skin and bone marrow fibroblasts, exposure of synovial fibroblasts to serum led to convergence of RA and OA expression profiles. Pathway analysis revealed three inter-linked gene networks characterising OA synovial fibroblasts: Cell remodelling through insulin-like growth factors, differentiation and angiogenesis through _3 integrin, and regulation of apoptosis through CD44. We have demonstrated that Fibroblast serum response signatures define disease at the tissue level, and that an OA specific, serum dependent repression of genes involved in cell adhesion, extracellular matrix remodelling and apoptosis is a critical discriminator between cultured OA and RA synovial fibroblasts. PMID:25807374

  4. SFGD: a comprehensive platform for mining functional information from soybean transcriptome data and its use in identifying acyl-lipid metabolism pathways

    PubMed Central

    2014-01-01

    Background Soybean (Glycine max L.) is one of the world’s most important leguminous crops producing high-quality protein and oil. Increasing the relative oil concentration in soybean seeds is many researchers’ goal, but a complete analysis platform of functional annotation for the genes involved in the soybean acyl-lipid pathway is still lacking. Following the success of soybean whole-genome sequencing, functional annotation has become a major challenge for the scientific community. Whole-genome transcriptome analysis is a powerful way to predict genes with biological functions. It is essential to build a comprehensive analysis platform for integrating soybean whole-genome sequencing data, the available transcriptome data and protein information. This platform could also be used to identify acyl-lipid metabolism pathways. Description In this study, we describe our construction of the Soybean Functional Genomics Database (SFGD) using Generic Genome Browser (Gbrowse) as the core platform. We integrated microarray expression profiling with 255 samples from 14 groups’ experiments and mRNA-seq data with 30 samples from four groups’ experiments, including spatial and temporal transcriptome data for different soybean development stages and environmental stresses. The SFGD includes a gene co-expression regulatory network containing 23,267 genes and 1873 miRNA-target pairs, and a group of acyl-lipid pathways containing 221 enzymes and more than 1550 genes. The SFGD also provides some key analysis tools, i.e. BLAST search, expression pattern search and cis-element significance analysis, as well as gene ontology information search and single nucleotide polymorphism display. Conclusion The SFGD is a comprehensive database integrating genome and transcriptome data, and also for soybean acyl-lipid metabolism pathways. It provides useful toolboxes for biologists to improve the accuracy and robustness of soybean functional genomics analysis, further improving understanding of gene regulatory networks for effective crop improvement. The SFGD is publically accessible at http://bioinformatics.cau.edu.cn/SFGD/, with all data available for downloading. PMID:24712981

  5. Structure/function analysis of a type iii polyketide synthase in the brown alga Ectocarpus siliculosus reveals a biochemical pathway in phlorotannin monomer biosynthesis.

    PubMed

    Meslet-Cladière, Laurence; Delage, Ludovic; Leroux, Cédric J-J; Goulitquer, Sophie; Leblanc, Catherine; Creis, Emeline; Gall, Erwan Ar; Stiger-Pouvreau, Valérie; Czjzek, Mirjam; Potin, Philippe

    2013-08-01

    Brown algal phlorotannins are structural analogs of condensed tannins in terrestrial plants and, like plant phenols, they have numerous biological functions. Despite their importance in brown algae, phlorotannin biosynthetic pathways have been poorly characterized at the molecular level. We found that a predicted type III polyketide synthase in the genome of the brown alga Ectocarpus siliculosus, PKS1, catalyzes a major step in the biosynthetic pathway of phlorotannins (i.e., the synthesis of phloroglucinol monomers from malonyl-CoA). The crystal structure of PKS1 at 2.85-Å resolution provided a good quality electron density map showing a modified Cys residue, likely connected to a long chain acyl group. An additional pocket not found in other known type III PKSs contains a reaction product that might correspond to a phloroglucinol precursor. In vivo, we also found a positive correlation between the phloroglucinol content and the PKS III gene expression level in cells of a strain of Ectocarpus adapted to freshwater during its reacclimation to seawater. The evolution of the type III PKS gene family in Stramenopiles suggests a lateral gene transfer event from an actinobacterium. PMID:23983220

  6. Structure/Function Analysis of a Type III Polyketide Synthase in the Brown Alga Ectocarpus siliculosus Reveals a Biochemical Pathway in Phlorotannin Monomer Biosynthesis[W

    PubMed Central

    Meslet-Cladière, Laurence; Delage, Ludovic; Leroux, Cédric J.-J.; Goulitquer, Sophie; Leblanc, Catherine; Creis, Emeline; Gall, Erwan Ar; Stiger-Pouvreau, Valérie; Czjzek, Mirjam; Potin, Philippe

    2013-01-01

    Brown algal phlorotannins are structural analogs of condensed tannins in terrestrial plants and, like plant phenols, they have numerous biological functions. Despite their importance in brown algae, phlorotannin biosynthetic pathways have been poorly characterized at the molecular level. We found that a predicted type III polyketide synthase in the genome of the brown alga Ectocarpus siliculosus, PKS1, catalyzes a major step in the biosynthetic pathway of phlorotannins (i.e., the synthesis of phloroglucinol monomers from malonyl-CoA). The crystal structure of PKS1 at 2.85-Å resolution provided a good quality electron density map showing a modified Cys residue, likely connected to a long chain acyl group. An additional pocket not found in other known type III PKSs contains a reaction product that might correspond to a phloroglucinol precursor. In vivo, we also found a positive correlation between the phloroglucinol content and the PKS III gene expression level in cells of a strain of Ectocarpus adapted to freshwater during its reacclimation to seawater. The evolution of the type III PKS gene family in Stramenopiles suggests a lateral gene transfer event from an actinobacterium. PMID:23983220

  7. Identifying Resistance Mechanisms against Five Tyrosine Kinase Inhibitors Targeting the ERBB/RAS Pathway in 45 Cancer Cell Lines

    PubMed Central

    Szász, A. Marcell; Sztupinszki, Zsófia; Likó, István; Szendr?i, Attila; Schäfer, Reinhold; Gy?rffy, Balázs

    2013-01-01

    Because of the low overall response rates of 10–47% to targeted cancer therapeutics, there is an increasing need for predictive biomarkers. We aimed to identify genes predicting response to five already approved tyrosine kinase inhibitors. We tested 45 cancer cell lines for sensitivity to sunitinib, erlotinib, lapatinib, sorafenib and gefitinib at the clinically administered doses. A resistance matrix was determined, and gene expression profiles of the subsets of resistant vs. sensitive cell lines were compared. Triplicate gene expression signatures were obtained from the caArray project. Significance analysis of microarrays and rank products were applied for feature selection. Ninety-five genes were also measured by RT-PCR. In case of four sunitinib resistance associated genes, the results were validated in clinical samples by immunohistochemistry. A list of 63 top genes associated with resistance against the five tyrosine kinase inhibitors was identified. Quantitative RT-PCR analysis confirmed 45 of 63 genes identified by microarray analysis. Only two genes (ANXA3 and RAB25) were related to sensitivity against more than three inhibitors. The immunohistochemical analysis of sunitinib-treated metastatic renal cell carcinomas confirmed the correlation between RAB17, LGALS8, and EPCAM and overall survival. In summary, we determined predictive biomarkers for five tyrosine kinase inhibitors, and validated sunitinib resistance biomarkers by immunohistochemistry in an independent patient cohort. PMID:23555683

  8. Metabolic Engineering of Light and Dark Biochemical Pathways in Wild-Type and Mutant Strains of Synechocystis PCC 6803 for Maximal, 24-Hour Production of Hydrogen Gas

    SciTech Connect

    Ely, Roger L.; Chaplen, Frank W.R.

    2014-03-11

    This project used the cyanobacterial species Synechocystis PCC 6803 to pursue two lines of inquiry, with each line addressing one of the two main factors affecting hydrogen (H2) production in Synechocystis PCC 6803: NADPH availability and O2 sensitivity. H2 production in Synechocystis PCC 6803 requires a very high NADPH:NADP+ ratio, that is, the NADP pool must be highly reduced, which can be problematic because several metabolic pathways potentially can act to raise or lower NADPH levels. Also, though the [NiFe]-hydrogenase in PCC 6803 is constitutively expressed, it is reversibly inactivated at very low O2 concentrations. Largely because of this O2 sensitivity and the requirement for high NADPH levels, a major portion of overall H2 production occurs under anoxic conditions in the dark, supported by breakdown of glycogen or other organic substrates accumulated during photosynthesis. Also, other factors, such as N or S limitation, pH changes, presence of other substances, or deletion of particular respiratory components, can affect light or dark H2 production. Therefore, in the first line of inquiry, under a number of culture conditions with wild type (WT) Synechocystis PCC 6803 cells and a mutant with impaired type I NADPH-dehydrogenase (NDH-1) function, we used H2 production profiling and metabolic flux analysis, with and without specific inhibitors, to examine systematically the pathways involved in light and dark H2 production. Results from this work provided rational bases for metabolic engineering to maximize photobiological H2 production on a 24-hour basis. In the second line of inquiry, we used site-directed mutagenesis to create mutants with hydrogenase enzymes exhibiting greater O2 tolerance. The research addressed the following four tasks: 1. Evaluate the effects of various culture conditions (N, S, or P limitation; light/dark; pH; exogenous organic carbon) on H2 production profiles of WT cells and an NDH-1 mutant; 2. Conduct metabolic flux analyses for enhanced H2 production profiles using selected culture conditions and inhibitors of specific pathways in WT cells and an NDH-1 mutant; 3. Create Synechocystis PCC 6803 mutant strains with modified hydrogenases exhibiting increased O2 tolerance and greater H2 production; and 4. Integrate enhanced hydrogenase mutants and culture and metabolic factor studies to maximize 24-hour H2 production.

  9. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides... required to support registration of biochemical pesticides. Sections 158.2080 through 158.2084 identify...

  10. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways

    PubMed Central

    Scott, Robert A; Lagou, Vasiliki; Welch, Ryan P; Wheeler, Eleanor; Montasser, May E; Luan, Jian’an; Mägi, Reedik; Strawbridge, Rona J; Rehnberg, Emil; Gustafsson, Stefan; Kanoni, Stavroula; Rasmussen-Torvik, Laura J; Yengo, Loïc; Lecoeur, Cecile; Shungin, Dmitry; Sanna, Serena; Sidore, Carlo; Johnson, Paul C D; Jukema, J Wouter; Johnson, Toby; Mahajan, Anubha; Verweij, Niek; Thorleifsson, Gudmar; Hottenga, Jouke-Jan; Shah, Sonia; Smith, Albert V; Sennblad, Bengt; Gieger, Christian; Salo, Perttu; Perola, Markus; Timpson, Nicholas J; Evans, David M; Pourcain, Beate St; Wu, Ying; Andrews, Jeanette S; Hui, Jennie; Bielak, Lawrence F; Zhao, Wei; Horikoshi, Momoko; Navarro, Pau; Isaacs, Aaron; O’Connell, Jeffrey R; Stirrups, Kathleen; Vitart, Veronique; Hayward, Caroline; Esko, Tönu; Mihailov, Evelin; Fraser, Ross M; Fall, Tove; Voight, Benjamin F; Raychaudhuri, Soumya; Chen, Han; Lindgren, Cecilia M; Morris, Andrew P; Rayner, Nigel W; Robertson, Neil; Rybin, Denis; Liu, Ching-Ti; Beckmann, Jacques S; Willems, Sara M; Chines, Peter S; Jackson, Anne U; Kang, Hyun Min; Stringham, Heather M; Song, Kijoung; Tanaka, Toshiko; Peden, John F; Goel, Anuj; Hicks, Andrew A; An, Ping; Müller-Nurasyid, Martina; Franco-Cereceda, Anders; Folkersen, Lasse; Marullo, Letizia; Jansen, Hanneke; Oldehinkel, Albertine J; Bruinenberg, Marcel; Pankow, James S; North, Kari E; Forouhi, Nita G; Loos, Ruth J F; Edkins, Sarah; Varga, Tibor V; Hallmans, Göran; Oksa, Heikki; Antonella, Mulas; Nagaraja, Ramaiah; Trompet, Stella; Ford, Ian; Bakker, Stephan J L; Kong, Augustine; Kumari, Meena; Gigante, Bruna; Herder, Christian; Munroe, Patricia B; Caulfield, Mark; Antti, Jula; Mangino, Massimo; Small, Kerrin; Miljkovic, Iva; Liu, Yongmei; Atalay, Mustafa; Kiess, Wieland; James, Alan L; Rivadeneira, Fernando; Uitterlinden, Andre G; Palmer, Colin N A; Doney, Alex S F; Willemsen, Gonneke; Smit, Johannes H; Campbell, Susan; Polasek, Ozren; Bonnycastle, Lori L; Hercberg, Serge; Dimitriou, Maria; Bolton, Jennifer L; Fowkes, Gerard R; Kovacs, Peter; Lindström, Jaana; Zemunik, Tatijana; Bandinelli, Stefania; Wild, Sarah H; Basart, Hanneke V; Rathmann, Wolfgang; Grallert, Harald; Maerz, Winfried; Kleber, Marcus E; Boehm, Bernhard O; Peters, Annette; Pramstaller, Peter P; Province, Michael A; Borecki, Ingrid B; Hastie, Nicholas D; Rudan, Igor; Campbell, Harry; Watkins, Hugh; Farrall, Martin; Stumvoll, Michael; Ferrucci, Luigi; Waterworth, Dawn M; Bergman, Richard N; Collins, Francis S; Tuomilehto, Jaakko; Watanabe, Richard M; de Geus, Eco J C; Penninx, Brenda W; Hofman, Albert; Oostra, Ben A; Psaty, Bruce M; Vollenweider, Peter; Wilson, James F; Wright, Alan F; Hovingh, G Kees; Metspalu, Andres; Uusitupa, Matti; Magnusson, Patrik K E; Kyvik, Kirsten O; Kaprio, Jaakko; Price, Jackie F; Dedoussis, George V; Deloukas, Panos; Meneton, Pierre; Lind, Lars; Boehnke, Michael; Shuldiner, Alan R; van Duijn, Cornelia M; Morris, Andrew D; Toenjes, Anke; Peyser, Patricia A; Beilby, John P; Körner, Antje; Kuusisto, Johanna; Laakso, Markku; Bornstein, Stefan R; Schwarz, Peter E H; Lakka, Timo A; Rauramaa, Rainer; Adair, Linda S; Smith, George Davey; Spector, Tim D; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Gudnason, Vilmundur; Kivimaki, Mika; Hingorani, Aroon; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Boomsma, Dorret I; Stefansson, Kari; van der Harst, Pim; Dupuis, Josée; Pedersen, Nancy L; Sattar, Naveed; Harris, Tamara B; Cucca, Francesco; Ripatti, Samuli; Salomaa, Veikko; Mohlke, Karen L; Balkau, Beverley; Froguel, Philippe; Pouta, Anneli; Jarvelin, Marjo-Riitta; Wareham, Nicholas J; Bouatia-Naji, Nabila; McCarthy, Mark I; Franks, Paul W; Meigs, James B; Teslovich, Tanya M; Florez, Jose C; Langenberg, Claudia; Ingelsson, Erik; Prokopenko, Inga; Barroso, Inês

    2012-01-01

    Through genome-wide association meta-analyses of up to 133,010 individuals of European ancestry without diabetes, including individuals newly genotyped using the Metabochip, we have raised the number of confirmed loci influencing glycemic traits to 53, of which 33 also increase type 2 diabetes risk (q < 0.05). Loci influencing fasting insulin showed association with lipid levels and fat distribution, suggesting impact on insulin resistance. Gene-based analyses identified further biologically plausible loci, suggesting that additional loci beyond those reaching genome-wide significance are likely to represent real associations. This conclusion is supported by an excess of directionally consistent and nominally significant signals between discovery and follow-up studies. Functional follow-up of these newly discovered loci will further improve our understanding of glycemic control. PMID:22885924

  11. Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development.

    PubMed

    Joosen, Ronny; Cordewener, Jan; Supena, Ence Darmo Jaya; Vorst, Oscar; Lammers, Michiel; Maliepaard, Chris; Zeilmaker, Tieme; Miki, Brian; America, Twan; Custers, Jan; Boutilier, Kim

    2007-05-01

    Microspore-derived embryo (MDE) cultures are used as a model system to study plant cell totipotency and as an in vitro system to study embryo development. We characterized and compared the transcriptome and proteome of rapeseed (Brassica napus) MDEs from the few-celled stage to the globular/heart stage using two MDE culture systems: conventional cultures in which MDEs initially develop as unorganized clusters that usually lack a suspensor, and a novel suspensor-bearing embryo culture system in which the embryo proper originates from the distal cell of a suspensor-like structure and undergoes the same ordered cell divisions as the zygotic embryo. Improved histodifferentiation of suspensor-bearing MDEs suggests a new role for the suspensor in driving embryo cell identity and patterning. An MDE culture cDNA array and two-dimensional gel electrophoresis and protein sequencing were used to compile global and specific expression profiles for the two types of MDE cultures. Analysis of the identities of 220 candidate embryo markers, as well as the identities of 32 sequenced embryo up-regulated protein spots, indicate general roles for protein synthesis, glycolysis, and ascorbate metabolism in the establishment of MDE development. A collection of 135 robust markers for the transition to MDE development was identified, a number of which may be coregulated at the gene and protein expression level. Comparison of the expression profiles of preglobular-stage conventional MDEs and suspensor-bearing MDEs identified genes whose differential expression may reflect improved histodifferentiation of suspensor-bearing embryos. This collection of early embryo-expressed genes and proteins serves as a starting point for future marker development and gene function studies aimed at understanding the molecular regulation of cell totipotency and early embryo development in plants. PMID:17384159

  12. Robust Selection Algorithm (RSA) for Multi-Omic Biomarker Discovery; Integration with Functional Network Analysis to Identify miRNA Regulated Pathways in Multiple Cancers

    PubMed Central

    Sehgal, Vasudha; Seviour, Elena G.; Moss, Tyler J.; Mills, Gordon B.; Azencott, Robert; Ram, Prahlad T.

    2015-01-01

    MicroRNAs (miRNAs) play a crucial role in the maintenance of cellular homeostasis by regulating the expression of their target genes. As such, the dysregulation of miRNA expression has been frequently linked to cancer. With rapidly accumulating molecular data linked to patient outcome, the need for identification of robust multi-omic molecular markers is critical in order to provide clinical impact. While previous bioinformatic tools have been developed to identify potential biomarkers in cancer, these methods do not allow for rapid classification of oncogenes versus tumor suppressors taking into account robust differential expression, cutoffs, p-values and non-normality of the data. Here, we propose a methodology, Robust Selection Algorithm (RSA) that addresses these important problems in big data omics analysis. The robustness of the survival analysis is ensured by identification of optimal cutoff values of omics expression, strengthened by p-value computed through intensive random resampling taking into account any non-normality in the data and integration into multi-omic functional networks. Here we have analyzed pan-cancer miRNA patient data to identify functional pathways involved in cancer progression that are associated with selected miRNA identified by RSA. Our approach demonstrates the way in which existing survival analysis techniques can be integrated with a functional network analysis framework to efficiently identify promising biomarkers and novel therapeutic candidates across diseases. PMID:26505200

  13. Structural and biochemical studies of SLIP1–SLBP identify DBP5 and eIF3g as SLIP1-binding proteins

    PubMed Central

    von Moeller, Holger; Lerner, Rachel; Ricciardi, Adele; Basquin, Claire; Marzluff, William F.; Conti, Elena

    2013-01-01

    In metazoans, replication-dependent histone mRNAs end in a stem-loop structure instead of the poly(A) tail characteristic of all other mature mRNAs. This specialized 3? end is bound by stem-loop binding protein (SLBP), a protein that participates in the nuclear export and translation of histone mRNAs. The translational activity of SLBP is mediated by interaction with SLIP1, a middle domain of initiation factor 4G (MIF4G)-like protein that connects to translation initiation. We determined the 2.5 Å resolution crystal structure of zebrafish SLIP1 bound to the translation–activation domain of SLBP and identified the determinants of the recognition. We discovered a SLIP1-binding motif (SBM) in two additional proteins: the translation initiation factor eIF3g and the mRNA-export factor DBP5. We confirmed the binding of SLIP1 to DBP5 and eIF3g by pull-down assays and determined the 3.25 Å resolution structure of SLIP1 bound to the DBP5 SBM. The SBM-binding and homodimerization residues of SLIP1 are conserved in the MIF4G domain of CBP80/20-dependent translation initiation factor (CTIF). The results suggest how the SLIP1 homodimer or a SLIP1–CTIF heterodimer can function as platforms to bridge SLBP with SBM-containing proteins involved in different steps of mRNA metabolism. PMID:23804756

  14. Translational research in brain metastasis is identifying molecular pathways that may lead to the development of new therapeutic strategies

    PubMed Central

    Gril, Brunilde; Evans, Lynda; Palmieri, Diane; Steeg, Patricia S.

    2010-01-01

    Central nervous system (CNS) or brain metastasis is an emerging area of interest in organ-specific metastasis research. Lung and breast cancers are the most common types of primary tumors to develop brain metastases. This disease complication contributes significantly to the morbidity and mortality of both of these common cancers; as such, brain metastasis is designated an unmet medical need by the US Food and Drug Administration. Recently, an increase in incidence of CNS disease has been noted in the literature for breast cancer, while it has been an ongoing major complication from lung cancer. Progress in treating brain metastases has been hampered by a lack of model systems, a lack of human tissue samples, and the exclusion of brain metastatic patients from many clinical trials. While each of those is significant, the major impediment to effectively treating brain metastatic disease is the blood–brain barrier (BBB). This barrier excludes most chemotherapeutics from the brain and creates a sanctuary site for metastatic tumors. Recent findings on the biology of this disease and translational leads identified by molecular studies are discussed in this article. PMID:20303257

  15. The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances

    PubMed Central

    Menzel, Ralph; Menzel, Stefanie; Swain, Suresh C.; Pietsch, Kerstin; Tiedt, Sophie; Witczak, Jördis; Stürzenbaum, Stephen R.; Steinberg, Christian E. W.

    2012-01-01

    Low concentrations of the dissolved leonardite humic acid HuminFeed® (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. However, growth was impaired and reproduction delayed, effects which have also been identified in response to other polyphenolic monomers, including Tannic acid, Rosmarinic acid, and Caffeic acid. Moreover, a chemical modification of HF, which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3?days) and old adult (11?days) nematodes exposed to two different concentrations of HF. We also studied several C. elegans mutant strains in respect to HF derived longevity and compared all results with data obtained for the chemically modified HF. The gene expression pattern of young HF-treated nematodes displayed a significant overlap to other conditions known to provoke longevity, including various plant polyphenol monomers. Besides the regulation of parts of the metabolism, transforming growth factor-beta signaling, and Insulin-like signaling, lysosomal activities seem to contribute most to HF’s and modified HF’s lifespan prolonging action. These results support the notion that the phenolic/quinonoid moieties of humic substances are major building blocks that drive the physiological effects observed in C. elegans. PMID:22529848

  16. The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances.

    PubMed

    Menzel, Ralph; Menzel, Stefanie; Swain, Suresh C; Pietsch, Kerstin; Tiedt, Sophie; Witczak, Jördis; Stürzenbaum, Stephen R; Steinberg, Christian E W

    2012-01-01

    Low concentrations of the dissolved leonardite humic acid HuminFeed(®) (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. However, growth was impaired and reproduction delayed, effects which have also been identified in response to other polyphenolic monomers, including Tannic acid, Rosmarinic acid, and Caffeic acid. Moreover, a chemical modification of HF, which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3?days) and old adult (11?days) nematodes exposed to two different concentrations of HF. We also studied several C. elegans mutant strains in respect to HF derived longevity and compared all results with data obtained for the chemically modified HF. The gene expression pattern of young HF-treated nematodes displayed a significant overlap to other conditions known to provoke longevity, including various plant polyphenol monomers. Besides the regulation of parts of the metabolism, transforming growth factor-beta signaling, and Insulin-like signaling, lysosomal activities seem to contribute most to HF's and modified HF's lifespan prolonging action. These results support the notion that the phenolic/quinonoid moieties of humic substances are major building blocks that drive the physiological effects observed in C. elegans. PMID:22529848

  17. Biochemical analysis of a highly specific, pH stable xylanase gene identified from a bovine rumen-derived metagenomic library.

    PubMed

    Gong, X; Gruniniger, R J; Forster, R J; Teather, R M; McAllister, T A

    2013-03-01

    A metagenomic library was generated using microbial DNA extracted from the rumen contents of a grass hay-fed dairy cow using a bacterial artificial chromosome-based vector system. Functional screening of the library identified a gene encoding a potent glycoside hydrolase, xyn10N18, localised within a xylanolytic gene cluster consisting of four open-reading frames (ORFs). The ORF, xyn10N18, encodes an endo-?-1,4-xylanase with a glycosyl hydrolase family 10 (GH10) catalytic domain, adopts a canonical ?8/ß8-fold and possesses conserved catalytic glutamate residues typical of GH10 xylanases. Xyn10N18 exhibits optimal catalytic activity at 35 °C and pH 6.5 and was highly stable to pH changes retaining at least 85 % relative catalytic activity over a broad pH range (4.0-12.0). It retained 25 % of its relative activity at both low (4 °C) and high (55 °C) temperatures, however the stability of the enzyme rapidly decreased at temperatures of >40 °C. The specific activity of Xyn10N18 is enhanced by the divalent cations Mn(2+) and Co(2+) and is dramatically reduced by Hg(2+) and Cu(2+). Interestingly, EDTA had little effect on specific activity indicating that divalent cations do not function mechanistically. The enzyme was highly specific for xylan containing substrates and showed no catalytic activity against cellulose. Analysis of the hydrolysis products indicated that Xyn10N18 was an endoxylanase. Through a combination of structural modelling and in vitro enzyme characterisation this study provides an understanding of the mechanism and the substrate specificity of this enzyme serving as a starting point for directed evolution of Xyn10N18 and subsequent downstream use in industry. PMID:22534823

  18. The Use of Conditional Probability Functions and Potential Source Contribution Functions to Identify Source Regions and Advection Pathways of Hydrocarbon Emissions in Houston, Texas

    SciTech Connect

    Xie, YuLong; Berkowitz, Carl M.

    2007-09-01

    In this study, we demonstrate the utility of conditional probability functions (CPFs), potential source contribution functions (PSCFs), and hierarchical clustering analysis to identify the source region and transport pathways of hydrocarbons measured at five photochemical assessment monitoring stations (PAMS) near the Houston ship channel from June to October 2003. Over 50 volatile organic compound (VOC) concentrations were measured on the hourly collected samples. Routine surface observations of wind directions measured at each of the receptor sites were used extensively. We show that VOCs with similar CPF patterns likely have common transport pathways. This was established with the multivariate technique, which uses the hierarchical clustering analysis to allow clusters of groups of VOCs to form with similar CPF patterns. This method revealed that alkenes, and in particular those with geometric isomers such as cis-/trans-2-butene and cis-/trans-2-pentene, have similar CPF patterns. The alkane isomers often show CPF patterns among themselves, and similarly, aromatic compounds often show similar patterns among themselves too. We also show how trajectory information can be used in conjunction with the PSCF analysis to produce a graphic analysis suggesting specific source areas for a given VOC. The use of these techniques in the chemically and meteorologically complex environment of Houston, Texas, suggests its further utility in other areas with relatively simpler conditions.

  19. High Throughput Sequencing Identifies MicroRNAs Mediating ?-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson's Disease Model

    PubMed Central

    Kong, Yan; Liang, Xijun; Liu, Lin; Zhang, Dongdong; Wan, Chao; Gan, Zhenji; Yuan, Liudi

    2015-01-01

    Parkinson’s disease (PD) is a prevalent neurodegenerative disorder with pathological features including death of dopaminergic neurons in the substantia nigra and intraneuronal accumulations of Lewy bodies. As the main component of Lewy bodies, ?-synuclein is implicated in PD pathogenesis by aggregation into insoluble filaments. However, the detailed mechanisms underlying ?-synuclein induced neurotoxicity in PD are still elusive. MicroRNAs are ~20nt small RNA molecules that fine-tune gene expression at posttranscriptional level. A plethora of miRNAs have been found to be dysregulated in the brain and blood cells of PD patients. Nevertheless, the detailed mechanisms and their in vivo functions in PD still need further investigation. By using Drosophila PD model expressing ?-synuclein A30P, we examined brain miRNA expression with high-throughput small RNA sequencing technology. We found that five miRNAs (dme-miR-133-3p, dme-miR-137-3p, dme-miR-13b-3p, dme-miR-932-5p, dme-miR-1008-5p) were upregulated in PD flies. Among them, miR-13b, miR-133, miR-137 are brain enriched and highly conserved from Drosophila to humans. KEGG pathway analysis using DIANA miR-Path demonstrated that neuroactive-ligand receptor interaction pathway was most likely affected by these miRNAs. Interestingly, miR-137 was predicted to regulate most of the identified targets in this pathway, including dopamine receptor (DopR, D2R), ?-aminobutyric acid (GABA) receptor (GABA-B-R1, GABA-B-R3) and N-methyl-D-aspartate (NMDA) receptor (Nmdar2). The validation experiments showed that the expression of miR-137 and its targets was negatively correlated in PD flies. Further experiments using luciferase reporter assay confirmed that miR-137 could act on specific sites in 3’ UTR region of D2R, Nmdar2 and GABA-B-R3, which downregulated significantly in PD flies. Collectively, our findings indicate that ?-synuclein could induce the dysregulation of miRNAs, which target neuroactive ligand-receptor interaction pathway in vivo. We believe it will help us further understand the contribution of miRNAs to ?-synuclein neurotoxicity and provide new insights into the pathogenesis driving PD. PMID:26361355

  20. Hyperoxia-Induced Protein Alterations in Renal Rat Tissue: A Quantitative Proteomic Approach to Identify Hyperoxia-Induced Effects in Cellular Signaling Pathways

    PubMed Central

    Hinkelbein, Jochen; Böhm, Lennert; Spelten, Oliver; Sander, David; Soltész, Stefan; Braunecker, Stefan

    2015-01-01

    Introduction. In renal tissue as well as in other organs, supranormal oxygen pressure may lead to deleterious consequences on a cellular level. Additionally, hyperoxia-induced effect in cells and related free radicals may potentially contribute to renal failure. The aim of this study was to analyze time-dependent alterations of rat kidney protein expression after short-term normobaric hyperoxia using proteomics and bioinformatic approaches. Material and Methods. N = 36 Wistar rats were randomized into six different groups: three groups with normobaric hyperoxia (exposure to 100% oxygen for 3?h) and three groups with normobaric normoxia (NN; room air). After hyperoxia exposure, kidneys were removed immediately, after 3 days and after 7 days. Kidney lysates were analyzed by two-dimensional gel electrophoresis followed by peptide mass fingerprinting using tandem mass spectrometry. Statistical analysis was performed with DeCyder 2D software (p < 0.01). Biological functions of differential regulated proteins were studied using functional network analysis (Ingenuity Pathways Analysis and PathwayStudio). Results. Expression of 14 proteins was significantly altered (p < 0.01): eight proteins (MEP1A_RAT, RSSA_RAT, F16P1_RAT, STML2_RAT, BPNT1_RAT, LGMN_RAT, ATPA_RAT, and VDAC1_RAT) were downregulated and six proteins (MTUS1_RAT, F16P1_RAT, ACTG_RAT, ACTB_RAT, 2ABA_RAT, and RAB1A_RAT) were upregulated. Bioinformatic analyses revealed an association of regulated proteins with inflammation. Conclusions. Significant alterations in renal protein expression could be demonstrated for up to 7 days even after short-term hyperoxia. The identified proteins indicate an association with inflammation signaling cascades. MEP1A and VDAC1 could be promising candidates to identify hyperoxic injury in kidney cells. PMID:26106253

  1. Expression Microarray Meta-Analysis Identifies Genes Associated with Ras/MAPK and Related Pathways in Progression of Muscle-Invasive Bladder Transition Cell Carcinoma

    PubMed Central

    Ewald, Jonathan A.; Downs, Tracy M.; Cetnar, Jeremy P.; Ricke, William A.

    2013-01-01

    The effective detection and management of muscle-invasive bladder Transition Cell Carcinoma (TCC) continues to be an urgent clinical challenge. While some differences of gene expression and function in papillary (Ta), superficial (T1) and muscle-invasive (?T2) bladder cancers have been investigated, the understanding of mechanisms involved in the progression of bladder tumors remains incomplete. Statistical methods of pathway-enrichment, cluster analysis and text-mining can extract and help interpret functional information about gene expression patterns in large sets of genomic data. The public availability of patient-derived expression microarray data allows open access and analysis of large amounts of clinical data. Using these resources, we investigated gene expression differences associated with tumor progression and muscle-invasive TCC. Gene expression was calculated relative to Ta tumors to assess progression-associated differences, revealing a network of genes related to Ras/MAPK and PI3K signaling pathways with increased expression. Further, we identified genes within this network that are similarly expressed in superficial Ta and T1 stages but altered in muscle-invasive T2 tumors, finding 7 genes (COL3A1, COL5A1, COL11A1, FN1, ErbB3, MAPK10 and CDC25C) whose expression patterns in muscle-invasive tumors are consistent in 5 to 7 independent outside microarray studies. Further, we found increased expression of the fibrillar collagen proteins COL3A1 and COL5A1 in muscle-invasive tumor samples and metastatic T24 cells. Our results suggest that increased expression of genes involved in mitogenic signaling may support the progression of muscle-invasive bladder tumors that generally lack activating mutations in these pathways, while expression changes of fibrillar collagens, fibronectin and specific signaling proteins are associated with muscle-invasive disease. These results identify potential biomarkers and targets for TCC treatments, and provide an integrated systems-level perspective of TCC pathobiology to inform future studies. PMID:23383328

  2. Biological Pathways A pathway to explore diseases mechanism

    E-print Network

    1 Biological Pathways ­ A pathway to explore diseases mechanism Ming Guo Abstract Diseases are increasingly identified with genetic modules, such as molecular pathways. Pathway role in understanding diseases mechanism from genetic studies. This paper is a review of the various

  3. Logic models of pathway biology.

    PubMed

    Watterson, Steven; Marshall, Stephen; Ghazal, Peter

    2008-05-01

    Living systems seamlessly perform complex information processing and control tasks using combinatorially complex sets of biochemical reactions. Drugs that therapeutically modulate the biological processes of disease are developed using single protein target strategies, often with limited knowledge of the complex underlying role of the targets. Approaches that attempt to consider the combinatorial complexity from the outset might help identify any causal relationships that could lead to undesirable or adverse side effects earlier in the development pipeline. Such approaches, in particular logic methodologies, might also aid pathway selection and multiple target strategies during the drug discovery phase. Here, we describe the use of logic as a tractable and informative approach to modelling biological pathways that can allow us to improve our understanding of the dependencies in complex biological processes. PMID:18468563

  4. Genomic and Biochemical Analysis of the Diaminopimelate and Lysine Biosynthesis Pathway in Verrucomicrobium spinosum: Identification and Partial Characterization of L,L-Diaminopimelate Aminotransferase and UDP-N-Acetylmuramoylalanyl-D-glutamyl-2,6-meso-Diaminopimelate Ligase

    PubMed Central

    Nachar, Victoria R.; Savka, Francisco C.; McGroty, Sean E.; Donovan, Katherine A.; North, Rachel A.; Dobson, Renwick C. J.; Buckley, Larry J.; Hudson, André O.

    2012-01-01

    The Gram-negative bacterium Verrucomicrobium spinosum has attracted interest in recent years following the sequencing and annotation of its genome. Comparative genomic analysis of V. spinosum using diaminopimelate/lysine metabolic genes from Chlamydia trachomatis suggests that V. spinosum employs the L,L-diaminopimelate aminotransferase (DapL) pathway for diaminopimelate/lysine biosynthesis. The open reading frame corresponding to the putative dapL ortholog was cloned and the recombinant enzyme was shown to possess L,L-diaminopimelate aminotransferase activity in vitro. In vivo analysis using functional complementation confirmed that the dapL ortholog was able to functionally complement an E. coli mutant that confers auxotrophy for diaminopimelate and lysine. In addition to its role in lysine biosynthesis, the intermediate diaminopimelate has an integral role in peptidoglycan biosynthesis. To this end, the UDP-N-acetylmuramoylalanyl-d-glutamyl-2,6-meso-diaminopimelate ligase ortholog was also identified, cloned, and was shown to possess meso-diaminopimelate ligase activity in vivo. The L,L-diaminopimelate aminotransferase pathway has been experimentally confirmed in several bacteria, some of which are deemed pathogenic to animals. Since animals, and particularly humans, lack the genetic machinery for the synthesis of diaminopimelate/lysine de novo, the enzymes involved in this pathway are attractive targets for development of antibiotics. Whether dapL is an essential gene in any bacteria is currently not known. V. spinosum is an excellent candidate to investigate the essentiality of dapL, since the bacterium employs the DapL pathway for lysine and cell wall biosynthesis, is non-pathogenic to humans, facile to grow, and can be genetically manipulated. PMID:22783236

  5. Integrated RNA-Seq and sRNA-Seq Analysis Identifies Chilling and Freezing Responsive Key Molecular Players and Pathways in Tea Plant (Camellia sinensis)

    PubMed Central

    Zheng, Chao; Zhao, Lei; Wang, Yu; Shen, Jiazhi; Zhang, Yinfei; Jia, Sisi; Li, Yusheng; Ding, Zhaotang

    2015-01-01

    Tea [Camellia sinensis (L) O. Kuntze, Theaceae] is one of the most popular non-alcoholic beverages worldwide. Cold stress is one of the most severe abiotic stresses that limit tea plants’ growth, survival and geographical distribution. However, the genetic regulatory network and signaling pathways involved in cold stress responses in tea plants remain unearthed. Using RNA-Seq, DGE and sRNA-Seq technologies, we performed an integrative analysis of miRNA and mRNA expression profiling and their regulatory network of tea plants under chilling (4?) and freezing (-5?) stress. Differentially expressed (DE) miRNA and mRNA profiles were obtained based on fold change analysis, miRNAs and target mRNAs were found to show both coherent and incoherent relationships in the regulatory network. Furthermore, we compared several key pathways (e.g., ‘Photosynthesis’), GO terms (e.g., ‘response to karrikin’) and transcriptional factors (TFs, e.g., DREB1b/CBF1) which were identified as involved in the early chilling and/or freezing response of tea plants. Intriguingly, we found that karrikins, a new group of plant growth regulators, and ?-primeverosidase (BPR), a key enzyme functionally relevant with the formation of tea aroma might play an important role in both early chilling and freezing response of tea plants. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-Seq and sRNA-Seq analysis. This is the first study to simultaneously profile the expression patterns of both miRNAs and mRNAs on a genome-wide scale to elucidate the molecular mechanisms of early responses of tea plants to cold stress. In addition to gaining a deeper insight into the cold resistant characteristics of tea plants, we provide a good case study to analyse mRNA/miRNA expression and profiling of non-model plant species using next-generation sequencing technology. PMID:25901577

  6. Enumerating Minimal Active Metabolic Pathways by Model Generation

    NASA Astrophysics Data System (ADS)

    Soh, Takehide; Inoue, Katsumi

    In systems biology, identifying vital functions like glycolysis from a given metabolic pathway is important to understand living organisms. In this paper, we particularly focus on the problem of enumerating minimal active pathways producing target metabolites from source metabolites. We represent the problem in propositional formulas and solve it through minimal model generation. An advantage of our method is that each solution satisfies qualitative laws of biochemical reactions. Moreover, we can calculate such solutions for a cellular scale metabolic pathway within a few seconds. In experiments, we have applied our method to a whole Escherichia coli metabolic pathway. As a result, we found a minimal set of reactions corresponding to the conventional glycolysis pathway described in a biological database EcoCyc.

  7. Simulation studies in biochemical signaling and enzyme reactions

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Vagula, Mary C.

    2014-06-01

    Biochemical pathways characterize various biochemical reaction schemes that involve a set of species and the manner in which they are connected. Determination of schematics that represent these pathways is an important task in understanding metabolism and signal transduction. Examples of these Pathways are: DNA and protein synthesis, and production of several macro-molecules essential for cell survival. A sustained feedback mechanism arises in gene expression and production of mRNA that lead to protein synthesis if the protein so synthesized serves as a transcription factor and becomes a repressor of the gene expression. The cellular regulations are carried out through biochemical networks consisting of reactions and regulatory proteins. Systems biology is a relatively new area that attempts to describe the biochemical pathways analytically and develop reliable mathematical models for the pathways. A complete understanding of chemical reaction kinetics is prohibitively hard thanks to the nonlinear and highly complex mechanisms that regulate protein formation, but attempting to numerically solve some of the governing differential equations seems to offer significant insight about their biochemical picture. To validate these models, one can perform simple experiments in the lab. This paper introduces fundamental ideas in biochemical signaling and attempts to take first steps into the understanding of biochemical oscillations. Initially, the two-pool model of calcium is used to describe the dynamics behind the oscillations. Later we present some elementary results showing biochemical oscillations arising from solving differential equations of Elowitz and Leibler using MATLAB software.

  8. ChIP-Seq and RNA-Seq Analyses Identify Components of the Wnt and Fgf Signaling Pathways as Prep1 Target Genes in Mouse Embryonic Stem Cells

    PubMed Central

    Laurent, Audrey; Calabrese, Manuela; Warnatz, Hans-Jörg; Yaspo, Marie-Laure; Tkachuk, Vsevolod; Torres, Miguel; Blasi, Francesco; Penkov, Dmitry

    2015-01-01

    The Prep1 (Pknox1) homeodomain transcription factor is essential at multiple stages of embryo development. In the E11.5 embryo trunk, we previously estimated that Prep1 binds about 3,300 genomic sites at a highly specific decameric consensus sequence, mainly governing basal cellular functions. We now show that in embryonic stem (ES) cells Prep1 binding pattern only partly overlaps that of the embryo trunk, with about 2,000 novel sites. Moreover, in ES cells Prep1 still binds mostly to promoters, as in total embryo trunk but, among the peaks bound exclusively in ES cells, the percentage of enhancers was three-fold higher. RNA-seq identifies about 1800 genes down-regulated in Prep1-/- ES cells which belong to gene ontology categories not enriched in the E11.5 Prep1i/i differentiated embryo, including in particular essential components of the Wnt and Fgf pathways. These data agree with aberrant Wnt and Fgf expression levels in the Prep1-/- ES cells with a deficient embryoid bodies (EBs) formation and differentiation. Re-establishment of the Prep1 level rescues the phenotype. PMID:25875616

  9. eIF5A1/RhoGDI? pathway: a novel therapeutic target for treatment of spinal cord injury identified by a proteomics approach

    PubMed Central

    Liu, Wei; Shang, Fei-Fei; Xu, Yang; Belegu, Visar; Xia, Lei; Zhao, Wei; Liu, Ran; Wang, Wei; Liu, Jin; Li, Chen-Yun; Wang, Ting-Hua

    2015-01-01

    Spinal cord injury (SCI) is frequently accompanied by a degree of spontaneous functional recovery. The underlying mechanisms through which such recovery is generated remain elusive. In this study, we observed a significant spontaneous motor function recovery 14 to 28 days after spinal cord transection (SCT) in rats. Using a comparative proteomics approach, caudal to the injury, we detected difference in 20 proteins. Two of these proteins, are eukaryotic translation initiation factor 5A1 (eIF5A1) that is involved in cell survival and proliferation, and Rho GDP dissociation inhibitor alpha (RhoGDI?), a member of Rho GDI family that is involved in cytoskeletal reorganization. After confirming the changes in expression levels of these two proteins following SCT, we showed that in vivo eIF5A1 up-regulation and down-regulation significantly increased and decreased, respectively, motor function recovery. In vitro, eIF5A1 overexpression in primary neurons increased cell survival and elongated neurite length while eIF5A1 knockdown reversed these results. We found that RhoGDI? up-regulation and down-regulation rescues the effect of eIF5A1 down-regulation and up-regulation both in vivo and in vitro. Therefore, we have identified eIF5A1/RhoGDI? pathway as a new therapeutic target for treatment of spinal cord injured patients. PMID:26593060

  10. eIF5A1/RhoGDI? pathway: a novel therapeutic target for treatment of spinal cord injury identified by a proteomics approach.

    PubMed

    Liu, Wei; Shang, Fei-Fei; Xu, Yang; Belegu, Visar; Xia, Lei; Zhao, Wei; Liu, Ran; Wang, Wei; Liu, Jin; Li, Chen-Yun; Wang, Ting-Hua

    2015-01-01

    Spinal cord injury (SCI) is frequently accompanied by a degree of spontaneous functional recovery. The underlying mechanisms through which such recovery is generated remain elusive. In this study, we observed a significant spontaneous motor function recovery 14 to 28 days after spinal cord transection (SCT) in rats. Using a comparative proteomics approach, caudal to the injury, we detected difference in 20 proteins. Two of these proteins, are eukaryotic translation initiation factor 5A1 (eIF5A1) that is involved in cell survival and proliferation, and Rho GDP dissociation inhibitor alpha (RhoGDI?), a member of Rho GDI family that is involved in cytoskeletal reorganization. After confirming the changes in expression levels of these two proteins following SCT, we showed that in vivo eIF5A1 up-regulation and down-regulation significantly increased and decreased, respectively, motor function recovery. In vitro, eIF5A1 overexpression in primary neurons increased cell survival and elongated neurite length while eIF5A1 knockdown reversed these results. We found that RhoGDI? up-regulation and down-regulation rescues the effect of eIF5A1 down-regulation and up-regulation both in vivo and in vitro. Therefore, we have identified eIF5A1/RhoGDI? pathway as a new therapeutic target for treatment of spinal cord injured patients. PMID:26593060

  11. Regulation of biochemical pathways involved in neurodegeneration

    E-print Network

    Pooler, Amy Melissa

    2005-01-01

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory loss. Although much is known about how AD affects the brain, the cause of this disease remains elusive. Current AD ...

  12. Converging biochemical pathways in psychiatric disorders

    E-print Network

    Soda, Takahiro

    2012-01-01

    According to the World Health Organization, neuropsychiatric diseases account for approximately one third of years lost to disability. Yet, despite this huge disease burden, there is a lack of new treatments under development: ...

  13. Microarray gene expression analysis of the Fob3b obesity QTL identifies positional candidate gene Sqle and perturbed cholesterol and glycolysis pathways

    E-print Network

    Keightley, Peter

    Sqle and perturbed cholesterol and glycolysis pathways Ioannis M. Stylianou,1,4 Michael Clinton,1 Peter candidate gene Sqle and perturbed cholesterol and glycolysis pathways. Physiol Genomics 20: 224­232, 2005 containing only the Fob3b QTL (Fob3b- line). Our study suggests squalene epoxidase (Sqle), a cholesterol

  14. THE PHYTOCHROMES: A BIOCHEMICAL MECHANISM OF SIGNALING IN SIGHT?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biochemical mechanism by which the phytochrome family of plant sensory photoreceptors transmit perceived informational light signals downstream to transduction pathway components is undetermined. However, the recent sequencing of the entire genome of the cyanobacterium Synechocystis has reveale...

  15. The Leaf Epidermome of Catharanthus roseus Reveals Its Biochemical Specialization[W][OA

    PubMed Central

    Murata, Jun; Roepke, Jonathon; Gordon, Heather; De Luca, Vincenzo

    2008-01-01

    Catharanthus roseus is the sole commercial source of the monoterpenoid indole alkaloids (MIAs), vindoline and catharanthine, components of the commercially important anticancer dimers, vinblastine and vincristine. Carborundum abrasion technique was used to extract leaf epidermis–enriched mRNA, thus sampling the epidermome, or complement, of proteins expressed in the leaf epidermis. Random sequencing of the derived cDNA library established 3655 unique ESTs, composed of 1142 clusters and 2513 singletons. Virtually all known MIA pathway genes were found in this remarkable set of ESTs, while only four known genes were found in the publicly available Catharanthus EST data set. Several novel MIA pathway candidate genes were identified, as demonstrated by the cloning and functional characterization of loganic acid O-methyltransferase involved in secologanin biosynthesis. The pathways for triterpene biosynthesis were also identified, and metabolite analysis showed that oleanane-type triterpenes were localized exclusively to the cuticular wax layer. The pathways for flavonoid and very-long-chain fatty acid biosynthesis were also located in this cell type. The results illuminate the biochemical specialization of Catharanthus leaf epidermis for the production of multiple classes of metabolites. The value and versatility of this EST data set for biochemical and biological analysis of leaf epidermal cells is also discussed. PMID:18326827

  16. A Global Genomic and Genetic Strategy to Identify, Validate and Use Gene Signatures of Xenobiotic-Responsive Transcription Factors in Prediction of Pathway Activation in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobiotic-responsive transcription factors. Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening as well as their involvement in disease states. ...

  17. Proteomics and pathway analysis identifies JNK signaling as critical for high linear energy transfer radiation-induced apoptosis in non-small lung cancer cells.

    PubMed

    Ståhl, Sara; Fung, Eva; Adams, Christopher; Lengqvist, Johan; Mörk, Birgitta; Stenerlöw, Bo; Lewensohn, Rolf; Lehtiö, Janne; Zubarev, Roman; Viktorsson, Kristina

    2009-05-01

    During the past decade, we have witnessed an explosive increase in generation of large proteomics data sets, not least in cancer research. There is a growing need to extract and correctly interpret information from such data sets to generate biologically relevant hypotheses. A pathway search engine (PSE) has recently been developed as a novel tool intended to meet these requirements. Ionizing radiation (IR) is an anticancer treatment modality that triggers multiple signal transduction networks. In this work, we show that high linear energy transfer (LET) IR induces apoptosis in a non-small cell lung cancer cell line, U-1810, whereas low LET IR does not. PSE was applied to study changes in pathway status between high and low LET IR to find pathway candidates of importance for high LET-induced apoptosis. Such pathways are potential clinical targets, and they were further validated in vitro. We used an unsupervised shotgun proteomics approach where high resolution mass spectrometry coupled to nanoflow liquid chromatography determined the identity and relative abundance of expressed proteins. Based on the proteomics data, PSE suggested the JNK pathway (p = 6.10(-6)) as a key event in response to high LET IR. In addition, the Fas pathway was found to be activated (p = 3.10(-5)) and the p38 pathway was found to be deactivated (p = 0.001) compared with untreated cells. Antibody-based analyses confirmed that high LET IR caused an increase in phosphorylation of JNK. Moreover pharmacological inhibition of JNK blocked high LET-induced apoptotic signaling. In contrast, neither an activation of p38 nor a role for p38 in high LET IR-induced apoptotic signaling was found. We conclude that, in contrast to conventional low LET IR, high LET IR can trigger activation of the JNK pathway, which in turn is critical for induction of apoptosis in these cells. Thus PSE predictions were largely confirmed, and PSE was proven to be a useful hypothesis-generating tool. PMID:19168796

  18. Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample.

    PubMed

    Illeghems, Koen; Weckx, Stefan; De Vuyst, Luc

    2015-09-01

    A high-resolution functional metagenomic analysis of a representative single sample of a Brazilian spontaneous cocoa bean fermentation process was carried out to gain insight into its bacterial community functioning. By reconstruction of microbial meta-pathways based on metagenomic data, the current knowledge about the metabolic capabilities of bacterial members involved in the cocoa bean fermentation ecosystem was extended. Functional meta-pathway analysis revealed the distribution of the metabolic pathways between the bacterial members involved. The metabolic capabilities of the lactic acid bacteria present were most associated with the heterolactic fermentation and citrate assimilation pathways. The role of Enterobacteriaceae in the conversion of substrates was shown through the use of the mixed-acid fermentation and methylglyoxal detoxification pathways. Furthermore, several other potential functional roles for Enterobacteriaceae were indicated, such as pectinolysis and citrate assimilation. Concerning acetic acid bacteria, metabolic pathways were partially reconstructed, in particular those related to responses toward stress, explaining their metabolic activities during cocoa bean fermentation processes. Further, the in-depth metagenomic analysis unveiled functionalities involved in bacterial competitiveness, such as the occurrence of CRISPRs and potential bacteriocin production. Finally, comparative analysis of the metagenomic data with bacterial genomes of cocoa bean fermentation isolates revealed the applicability of the selected strains as functional starter cultures. PMID:25998815

  19. Heterologous protein production using the twin arginine translocation pathway

    DOEpatents

    Pohlschroder, Mechtild (Philadelphia, PA); Kissinger, Jessica C (Athens, GA); Rose, R. Wesley (Glenside, PA); Brueser, Thomas (Halle, DE); Dilks, Kieran (Collingswood, NJ)

    2008-11-04

    Provided are means for evaluating and identifying putative substrates of the twin arginine translocation (Tat) secretory pathway in Streptomyces and other bacterial species. Also provided, therefore, are simple ways to express, secrete and purify correctly folded heterologous proteins on a large scale using host microorganisms, such as, Streptomyces and the Tat pathway therein. Many of the thus-produced proteins are of significant therapeutic value in the pharmaceutical and biochemical industries, particularly when they can be secreted from the host in fully-folded active form. Accordingly, there are further provided the heterologous proteins produced by the Tat secretion pathway using the foregoing methods, and the computer algorithm used to identify the Tat signal sequence and putative substrates.

  20. Exchange reactions catalyzed by group-transferring enzymes oppose the quantitation and the unravelling of the identify of the pentose pathway.

    PubMed

    Flanigan, I; Collins, J G; Arora, K K; MacLeod, J K; Williams, J F

    1993-04-01

    1. The distributions and rates of transfer of carbon isotopes from a selection of specifically labelled ketosugar-phosphate substrates by exchange reactions catalyzed by the pentose and photosynthetic carbon-reduction-pathway group-transferring enzymes transketolase, transaldolase and aldolase have been measured using 13C-NMR spectroscopy. 2. The rates of these exchange reactions were 5, 4 and 1.5 mumol min-1 mg-1 for transketolase exchange, transaldolase exchange and aldolase exchange, respectively. 3. A comparison of the exchange capacities contributed by the activities of these enzymes in three in vitro liver preparations with the maximum non-oxidative pentose pathway flux rates of the preparations shows that transketolase and aldolase exchanges exceeded flux by 9-19 times in liver cytosol and acetone powder enzyme preparations and by 5 times in hepatocytes. Transaldolase was less effective in the comparison of exchange versus flux rates: transaldolase exchange exceeded flux by 1.6 and 5 in catalysis by liver cytosol and acetone powder preparations, respectively, but was only 0.6 times the flux in hepatocytes. 4. Values of group enzyme exchange and pathway flux rates in the above three preparations are important because of the feature role of liver and of these particular preparations in the establishment, elucidation and measurement of a proposed reaction scheme for the fat-cell-type pentose pathway in biochemistry. 5. It is the claim of this paper that the excess of exchange rate activity (particularly transketolase exchange) over pathway flux will overturn attempts to unravel, using isotopically labelled sugar substrates, the identity, reaction sequence and quantitative contribution of the pentose pathway to glucose metabolism. 6. The transketolase exchange reactions relative to the pentose pathway flux rates in normal, regenerating and foetal liver, Morris hepatomas, mammary carcinoma, melanoma, colonic epithelium, spinach chloroplasts and epididymal fat tissue show that transketolase exchange may exceed flux in these tissues by factors ranging over 5-600 times. 7. The confusion of pentose pathway theory by the effects of transketolase exchange action is illustrated by the 13C-NMR spectrum of the hexose 6-phosphate products of ribose 5-phosphate dissimilation, formed after 30 min of liver enzyme action, and shows 13C-labelling in carbons 1 and 3 of glucose 6-phosphate with ratios which range over 2.1-6.4 rather than the mandatory value of 2 which is imposed by the theoretical mechanism of the pathway. PMID:8477719

  1. Metabolomic profile of glycolysis and the pentose phosphate pathway identifies the central role of glucose-6-phosphate dehydrogenase in clear cell-renal cell carcinoma

    PubMed Central

    Sanguedolce, Francesca; Cagiano, Simona; Bufo, Pantaleo; Lastilla, Gaetano; Maiorano, Eugenio; Ribatti, Domenico; Giglio, Andrea; Serino, Grazia; Vavallo, Antonio; Bettocchi, Carlo; Selvaggi, Francesco Paolo; Battaglia, Michele; Ditonno, Pasquale

    2015-01-01

    The analysis of cancer metabolome has shown that proliferating tumor cells require a large quantities of different nutrients in order to support their high rate of proliferation. In this study we analyzed the metabolic profile of glycolysis and the pentose phosphate pathway (PPP) in human clear cell-renal cell carcinoma (ccRCC) and evaluate the role of these pathways in sustaining cell proliferation, maintenance of NADPH levels, and production of reactive oxygen species (ROS). Metabolomic analysis showed a clear signature of increased glucose uptake and utilization in ccRCC tumor samples. Elevated levels of glucose-6-phosphate dehydrogenase (G6PDH) in association with higher levels of PPP-derived metabolites, suggested a prominent role of this pathway in RCC-associated metabolic alterations. G6PDH inhibition, caused a significant decrease in cancer cell survival, a decrease in NADPH levels, and an increased production of ROS, suggesting that the PPP plays an important role in the regulation of ccRCC redox homeostasis. Patients with high levels of glycolytic enzymes had reduced progression-free and cancer-specific survivals as compared to subjects with low levels. Our data suggest that oncogenic signaling pathways may promote ccRCC through rerouting the sugar metabolism. Blocking the flux through this pathway may serve as a novel therapeutic target. PMID:25945836

  2. Symptoms of major depressive disorder subsequent to child maltreatment: Examining change across multiple levels of analysis to identify transdiagnostic risk pathways.

    PubMed

    Shenk, Chad E; Griffin, Amanda M; O'Donnell, Kieran J

    2015-11-01

    Major depressive disorder (MDD) is a prevalent psychiatric condition in the child maltreatment population. However, not all children who have been maltreated will develop MDD or MDD symptoms, suggesting the presence of unique risk pathways that explain how certain children develop MDD symptoms when others do not. The current study tested several candidate risk pathways to MDD symptoms following child maltreatment: neuroendocrine, autonomic, affective, and emotion regulation. Female adolescents (N = 110; age range = 14-19) were recruited into a substantiated child maltreatment or comparison condition and completed a laboratory stressor, saliva samples, and measures of emotion regulation, negative affect, and MDD symptoms. MDD symptoms were reassessed 18 months later. Mediational modeling revealed that emotion regulation was the only significant indirect effect of the relationship between child maltreatment and subsequent MDD symptoms, demonstrating that children exposed to maltreatment had greater difficulties managing affective states that in turn led to more severe MDD symptoms. These results highlight the importance of emotion dysregulation as a central risk pathway to MDD following child maltreatment. Areas of future research and implications for optimizing prevention and clinical intervention through the direct targeting of transdiagnostic risk pathways are discussed. PMID:26535940

  3. Pathways of the North Pacific Intermediate Water identified through the tangent linear and adjoint models of an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Fujii, Y.; Nakano, T.; Usui, N.; Matsumoto, S.; Tsujino, H.; Kamachi, M.

    2014-12-01

    This study develops a strategy for tracing a target water mass, and applies it to analyzing the pathway of the North Pacific Intermediate Water (NPIW) from the subarctic gyre to the northwestern part of the subtropical gyre south of Japan in a simulation of an ocean general circulation model. This strategy estimates the pathway of the water mass that travels from an origin to a destination area during a specific period using a conservation property concerning tangent linear and adjoint models. In our analysis, a large fraction of the low salinity origin water mass of NPIW initially comes from the Okhotsk or Bering Sea, flows through the southeastern side of the Kuril Islands, and is advected to the Mixed Water Region (MWR) by the Oyashio current. It then enters the Kuroshio Extension (KE) at the first KE ridge, and is advected eastward by the KE current. However, it deviates southward from the KE axis around 158°E over the Shatsky Rise, or around 170ºE on the western side of the Emperor Seamount Chain, and enters the subtropical gyre. It is finally transported westward by the recirculation flow. This pathway corresponds well to the shortcut route of NPIW from MWR to the region south of Japan inferred from analysis of the long-term freshening trend of NPIW observation.

  4. Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization

    PubMed Central

    Huang, Bingru

    2014-01-01

    Salinity is a major abiotic stress limiting growth and productivity of plants in many areas of the world due to increasing use of poor quality of water for irrigation and soil salinization. Plant adaptation or tolerance to salinity stress involves complex physiological traits, metabolic pathways, and molecular or gene networks. A comprehensive understanding on how plants respond to salinity stress at different levels and an integrated approach of combining molecular tools with physiological and biochemical techniques are imperative for the development of salt-tolerant varieties of plants in salt-affected areas. Recent research has identified various adaptive responses to salinity stress at molecular, cellular, metabolic, and physiological levels, although mechanisms underlying salinity tolerance are far from being completely understood. This paper provides a comprehensive review of major research advances on biochemical, physiological, and molecular mechanisms regulating plant adaptation and tolerance to salinity stress. PMID:24804192

  5. Lower glycolysis carries a higher flux than any biochemically possible alternative.

    PubMed

    Court, Steven J; Waclaw, Bartlomiej; Allen, Rosalind J

    2015-01-01

    The universality of many pathways of core metabolism suggests a strong role for evolutionary selection, but it remains unclear whether existing pathways have been selected from a large or small set of biochemical possibilities. To address this question, we construct in silico all possible biochemically feasible alternatives to the trunk pathway of glycolysis and gluconeogenesis, one of the most highly conserved pathways in metabolism. We show that, even though a large number of alternative pathways exist, the alternatives carry lower flux than the real pathway under typical physiological conditions. We also find that if physiological conditions were different, different pathways could outperform those found in nature. Together, our results demonstrate how thermodynamic and biophysical constraints restrict the biochemical alternatives that are open to evolution, and suggest that the existing trunk pathway of glycolysis and gluconeogenesis may represent a maximal flux solution. PMID:26416228

  6. Lower glycolysis carries a higher flux than any biochemically possible alternative

    PubMed Central

    Court, Steven J.; Waclaw, Bartlomiej; Allen, Rosalind J.

    2015-01-01

    The universality of many pathways of core metabolism suggests a strong role for evolutionary selection, but it remains unclear whether existing pathways have been selected from a large or small set of biochemical possibilities. To address this question, we construct in silico all possible biochemically feasible alternatives to the trunk pathway of glycolysis and gluconeogenesis, one of the most highly conserved pathways in metabolism. We show that, even though a large number of alternative pathways exist, the alternatives carry lower flux than the real pathway under typical physiological conditions. We also find that if physiological conditions were different, different pathways could outperform those found in nature. Together, our results demonstrate how thermodynamic and biophysical constraints restrict the biochemical alternatives that are open to evolution, and suggest that the existing trunk pathway of glycolysis and gluconeogenesis may represent a maximal flux solution. PMID:26416228

  7. Adverse Outcome Pathways: From Definition to Application

    EPA Science Inventory

    A challenge for both human health and ecological toxicologists is the transparent application of mechanistic (e.g., molecular, biochemical, histological) data to risk assessments. The adverse outcome pathway (AOP) is a conceptual framework designed to meet this need. Specifical...

  8. Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer.

    PubMed

    Yimlamai, Dean; Fowl, Brendan H; Camargo, Fernando D

    2015-12-01

    The Hippo pathway and its regulatory target, YAP, has recently emerged as an important biochemical signaling pathway that tightly governs epithelial tissue growth. Initially defined in Drosophilia, this pathway has shown remarkable conservation in vertebrate systems with many components of the Hippo/YAP pathway showing biochemical and functional conservation. The liver is particularly sensitive to changes in Hippo/YAP signaling with rapid increases in liver size becoming manifest on the order of days to weeks after perturbation. The first identified direct targets of Hippo/YAP signaling were pro-proliferative and anti-apoptotic gene programs, but recent work has now implicated this pathway in cell fate choice, stem cell maintenance/renewal, epithelial to mesenchymal transition, and oncogenesis. The mechanisms by which Hippo/YAP signaling is changed endogenously are beginning to come to light as well as how this pathway interacts with other signaling pathways, and important details for designing new therapeutic interventions. This review focuses on the known roles for Hippo/YAP signaling in the liver and promising avenues for future study. PMID:26226451

  9. Combined miRNA and mRNA signature identifies key molecular players and pathways involved in chikungunya virus infection in human cells.

    PubMed

    Saxena, Tanvi; Tandon, Bhavna; Sharma, Shivani; Chameettachal, Shibu; Ray, Pratima; Ray, Alok R; Kulshreshtha, Ritu

    2013-01-01

    Since its discovery, Chikungunya fever caused by a virus (CHIKV) has ravaged most of Africa and Southeast Asia. Despite there being more than a million reported cases in India alone and the seriousness of the disease in the chronic phase, a clear understanding of the disease pathogenesis and host response remains elusive. Here, we use microarray technology and quantitative PCR method to establish the complete miRNA, snoRNA and mRNA signature of host response upon CHIKV infection in human cell line infection model, HEK293T. The results were further validated in human primary cells (dermal fibroblasts). miRNA expression profiling revealed regulation of 152 miRNAs post CHIKV infection. An interesting overlap in miRNA signature was seen majorly with HCV, HPV and HIV1 virus. The microarray data further validated by qRT-PCR revealed induction of miR-744, miR-638, miR-503 and others among the top upregulated miRNAs. Notably, we found induction of snoRNAs belonging to C/D cluster including close paralogs of U3, U44, U76 and U78 snoRNAs. Genes were found to be differentially expressed along 3 major pathways; TGF-?, endocytosis and the cell cycle pathways. qRT-PCR data confirmed strong induction of TGF-? (SMAD6, JUN, SKIL) and endocytosis pathway (CXCR4, HSPA8, ADRB1) genes while downregulation of cell cycle genes (CDC27 and CDC23). Interestingly, use of TGF-? inhibitor, SB-431542, increased CHIKV mediated cell death. Overall, this study aims at providing the first complete transcriptome signature of host response upon CHIKV infection to aid identification of possible biomarkers and therapeutic targets. PMID:24278205

  10. Biochemical transformation of coals

    DOEpatents

    Lin, Mow S. (Rocky Point, NY); Premuzic, Eugene T. (East Moriches, NY)

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  11. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  12. Compound library screening identified Akt/PKB kinase pathway inhibitors as potential key molecules for the development of new chemotherapeutics against schistosomiasis

    PubMed Central

    Morel, Marion; Vanderstraete, Mathieu; Cailliau, Katia; Lescuyer, Arlette; Lancelot, Julien; Dissous, Colette

    2014-01-01

    Protein kinases (PKs) are one of the largest protein families in most eukaryotic organisms. These enzymes are involved in the control of cell proliferation, differentiation and metabolism and a large number of the anticancer drugs currently used are directed against PKs. The structure and function of PKs are well conserved throughout evolution. In schistosome parasites, PKs were shown to be involved in essential functions at every stage of the parasite life cycle, making these enzymes promising anti-parasite drug targets. In this study, we tested a panel of commercial inhibitors for various PKs and analyzed their effects on pairing and egg production by schistosomes as well as their toxicity towards schistosomula larvae. Results obtained confirmed the deleterious effect of PK targeting on Schistosoma mansoni physiology and the important function of different tyrosine and serine/threonine kinases in the biology and reproduction of this parasite. They also indicated for the first time that the Protein kinase B (also called Akt) which is a major downstream target of many receptor tyrosine kinases and a central player at the crossroads of signal transduction pathways activated in response to growth factors and insulin, can constitute a novel target for anti-schistosome chemotherapy. Structural and functional studies have shown that SmAkt is a conserved kinase and that its activity can be inhibited by commercially available Akt inhibitors. In treated adult worms, Akt/PKB kinase pathway inhibitors induced profound alterations in pairing and egg laying and they also greatly affected the viability of schistosomula larvae. PMID:25516836

  13. Caspase pathways, neuronal apoptosis, and CNS injury.

    PubMed

    Eldadah, B A; Faden, A I

    2000-10-01

    Caspases are a family of mammalian proteases related to the ced-3 gene of Caenorhabditis elegans. They mediate many of the morphological and biochemical features of apoptosis, including structural dismantling of cell bodies and nuclei, fragmentation of genomic DNA, destruction of regulatory proteins, and propagation of other pro-apoptotic molecules. Based on their substrate specificities and DNA sequence homologies, the 14 currently identified caspases may be divided into three groups: apoptotic initiators, apoptotic executioners, and inflammatory mediators. Caspases are activated through two principal pathways, known as the "extrinsic pathway," which is initiated by cell surface death receptor ligation, and the intrinsic pathway, which arises from mitochondria. Endogenous inhibitors, such as the inhibitors of apoptosis (IAP) family, modulate caspase activity at various points within these pathways. Upon activation, caspases appear to play an important role in sequelae of traumatic brain injury, spinal cord injury, and cerebral ischemia. In addition, they may also play a role in mediating cell death in chronic neurodegenerative conditions such as Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. This article reviews the current literature on the role of caspases in acute and chronic CNS injury, and provides evidence for the potential therapeutic use of caspase inhibitors in the setting of these conditions. PMID:11063050

  14. Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration identifies multiple pathways potentially involved in metastatic invasion

    PubMed Central

    Gallardo, Viviana E.; Varshney, Gaurav K.; Lee, Minnkyong; Bupp, Sujata; Xu, Lisha; Shinn, Paul; Crawford, Nigel P.; Inglese, James; Burgess, Shawn M.

    2015-01-01

    ABSTRACT In the last decade, high-throughput chemical screening has become the dominant approach for discovering novel compounds with therapeutic properties. Automated screening using in vitro or cultured cell assays have yielded thousands of candidate drugs for a variety of biological targets, but these approaches have not resulted in an increase in drug discovery despite major increases in expenditures. In contrast, phenotype-driven screens have shown a much stronger success rate, which is why we developed an in vivo assay using transgenic zebrafish with a GFP-marked migrating posterior lateral line primordium (PLLp) to identify compounds that influence collective cell migration. We then conducted a high-throughput screen using a compound library of 2160 annotated bioactive synthetic compounds and 800 natural products to identify molecules that block normal PLLp migration. We identified 165 compounds that interfere with primordium migration without overt toxicity in vivo. Selected compounds were confirmed in their migration-blocking activity by using additional assays for cell migration. We then proved the screen to be successful in identifying anti-metastatic compounds active in vivo by performing orthotopic tumor implantation assays in mice. We demonstrated that the Src inhibitor SU6656, identified in our screen, can be used to suppress the metastatic capacity of a highly aggressive mammary tumor cell line. Finally, we used CRISPR/Cas9-targeted mutagenesis in zebrafish to genetically validate predicted targets of compounds. This approach demonstrates that the migrating PLLp in zebrafish can be used for large-scale, high-throughput screening for compounds that inhibit collective cell migration and, potentially, anti-metastatic compounds. PMID:25810455

  15. Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration identifies multiple pathways potentially involved in metastatic invasion.

    PubMed

    Gallardo, Viviana E; Varshney, Gaurav K; Lee, Minnkyong; Bupp, Sujata; Xu, Lisha; Shinn, Paul; Crawford, Nigel P; Inglese, James; Burgess, Shawn M

    2015-06-01

    In the last decade, high-throughput chemical screening has become the dominant approach for discovering novel compounds with therapeutic properties. Automated screening using in vitro or cultured cell assays have yielded thousands of candidate drugs for a variety of biological targets, but these approaches have not resulted in an increase in drug discovery despite major increases in expenditures. In contrast, phenotype-driven screens have shown a much stronger success rate, which is why we developed an in vivo assay using transgenic zebrafish with a GFP-marked migrating posterior lateral line primordium (PLLp) to identify compounds that influence collective cell migration. We then conducted a high-throughput screen using a compound library of 2160 annotated bioactive synthetic compounds and 800 natural products to identify molecules that block normal PLLp migration. We identified 165 compounds that interfere with primordium migration without overt toxicity in vivo. Selected compounds were confirmed in their migration-blocking activity by using additional assays for cell migration. We then proved the screen to be successful in identifying anti-metastatic compounds active in vivo by performing orthotopic tumor implantation assays in mice. We demonstrated that the Src inhibitor SU6656, identified in our screen, can be used to suppress the metastatic capacity of a highly aggressive mammary tumor cell line. Finally, we used CRISPR/Cas9-targeted mutagenesis in zebrafish to genetically validate predicted targets of compounds. This approach demonstrates that the migrating PLLp in zebrafish can be used for large-scale, high-throughput screening for compounds that inhibit collective cell migration and, potentially, anti-metastatic compounds. PMID:25810455

  16. Genome-wide analysis of microRNAs identifies the lipid metabolism pathway to be a defining factor in adipose tissue from different sheep.

    PubMed

    Miao, Xiangyang; Luo, Qingmiao; Qin, Xiaoyu; Guo, Yuntao

    2015-01-01

    MicroRNAs are short (17-24?nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. In recent years, deep sequencing of the transcriptome is increasingly being utilized with the promise of higher sensitivity for the identification of differential expression patterns as well as the opportunity to discover new transcripts, including new alternative isoforms and miRNAs. Here, we utilized RNA-seq technology to perform a genome-wide analysis of miRNAs from the adipose tissue of the two species of sheep to look for clues that might explain the fat deposition differences between the sheep. The RNA-seq analysis detected 3132 miRNAs from the adipose tissue of the Small-tail Han and Dorset sheep, of which 2893 were defined as potential new miRNAs. In addition, 54 miRNAs were differentially expressed between the two breeds of sheep. Gene ontology and pathway analyses of the predicted target genes that negatively associated with the differentially expressed miRNAs revealed that there was less active lipid metabolism in the adipose tissue of Small Tail Han sheep. This study can help understand the underling mechanisms responsible for the morphological differences related to fat deposition between two breeds of sheep. PMID:26690086

  17. Genome-wide analysis of microRNAs identifies the lipid metabolism pathway to be a defining factor in adipose tissue from different sheep

    PubMed Central

    Miao, Xiangyang; Luo, Qingmiao; Qin, Xiaoyu; Guo, Yuntao

    2015-01-01

    MicroRNAs are short (17–24?nt) non-coding RNAs that are involved in post-transcriptional regulation of gene expression in multicellular organisms by affecting both the stability and translation of mRNAs. In recent years, deep sequencing of the transcriptome is increasingly being utilized with the promise of higher sensitivity for the identification of differential expression patterns as well as the opportunity to discover new transcripts, including new alternative isoforms and miRNAs. Here, we utilized RNA-seq technology to perform a genome-wide analysis of miRNAs from the adipose tissue of the two species of sheep to look for clues that might explain the fat deposition differences between the sheep. The RNA-seq analysis detected 3132 miRNAs from the adipose tissue of the Small-tail Han and Dorset sheep, of which 2893 were defined as potential new miRNAs. In addition, 54 miRNAs were differentially expressed between the two breeds of sheep. Gene ontology and pathway analyses of the predicted target genes that negatively associated with the differentially expressed miRNAs revealed that there was less active lipid metabolism in the adipose tissue of Small Tail Han sheep. This study can help understand the underling mechanisms responsible for the morphological differences related to fat deposition between two breeds of sheep. PMID:26690086

  18. Binding of SEC11 Indicates Its Role in SNARE Recycling after Vesicle Fusion and Identifies Two Pathways for Vesicular Traffic to the Plasma Membrane[OPEN

    PubMed Central

    Karnik, Rucha; Zhang, Ben; Waghmare, Sakharam; Aderhold, Christin; Grefen, Christopher; Blatt, Michael R.

    2015-01-01

    SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins drive vesicle fusion in all eukaryotes and contribute to homeostasis, pathogen defense, cell expansion, and growth in plants. Two homologous SNAREs, SYP121 (=SYR1/PEN1) and SYP122, dominate secretory traffic to the Arabidopsis thaliana plasma membrane. Although these proteins overlap functionally, differences between SYP121 and SYP122 have surfaced, suggesting that they mark two discrete pathways for vesicular traffic. The SNAREs share primary cognate partners, which has made separating their respective control mechanisms difficult. Here, we show that the regulatory protein SEC11 (=KEULE) binds selectively with SYP121 to affect secretory traffic mediated by this SNARE. SEC11 rescued traffic block by dominant-negative (inhibitory) fragments of both SNAREs, but only in plants expressing the native SYP121. Traffic and its rescue were sensitive to mutations affecting SEC11 interaction with the N terminus of SYP121. Furthermore, the domain of SEC11 that bound the SYP121 N terminus was itself able to block secretory traffic in the wild type and syp122 but not in syp121 mutant Arabidopsis. Thus, SEC11 binds and selectively regulates secretory traffic mediated by SYP121 and is important for recycling of the SNARE and its cognate partners. PMID:25747882

  19. BIOCHEMICAL AND GENETIC CHARACTERIZATION OF AN EARLY STEP IN A NOVEL PATHWAY FOR THE BIOSYNTHESIS OF AROMATIC AMINO ACIDS AND P-AMINOBENZOIC ACID IN THE ARCHAEON METHANOCOCCUS MARIPALUDIS

    EPA Science Inventory

    Methanococcus maripaludis is a strictly anaerobic, methane-producing archaeon and facultative autotroph capable of biosynthesizing all the amino acids and vitamins required for growth. In this work, the novel 6-deoxy-5-ketofructose-1-phosphate (DKFP) pathway for the biosynthesis ...

  20. Genetic analysis of photoreceptor action pathways in Arabidopsis thaliana

    SciTech Connect

    Not Available

    1991-01-01

    The specific strategies and long-term goals of this proposal remain intact relative to the original proposal. We continue to isolate and characterize photomorphogenic mutants of Arabidopsis thaliana. The molecular and biochemical characterization of one of these mutants, det1, has led to one publication of original data and to one Society for Experimental Biology Symposium paper (see below). The phenotype of a second mutant, det2, has also been studied during this funding period. In addition, we have continued work on a general strategy to isolate mutations in trans-acting regulatory factors that mediate light-regulated gene expression, and have identified several potentially interesting regulatory mutants. In the third funding period, we will concentrate on the genetical, biochemical, and molecular characterization of these new mutants. Construction of double mutants between the new mutants and the previously characterized morphological mutants should allow us to construct a pathway for light-regulated seedling development in Arabidopsis.

  1. Constructing de novo biosynthetic pathways for chemical synthesis inside living cells†

    PubMed Central

    Weeks, Amy M.; Chang, Michelle C. Y.

    2011-01-01

    Living organisms have evolved a vast array of catalytic functions that make them ideally suited for the production of medicinally and industrially relevant small-molecule targets. Indeed, native metabolic pathways in microbial hosts have long been exploited and optimized for the scalable production of both fine and commodity chemicals. Our increasing capacity for DNA sequencing and synthesis has revealed the molecular basis for the biosynthesis of a variety of complex and useful metabolites and enables the de novo construction of novel metabolic pathways for the production of new and exotic molecular targets in genetically tractable microbes. However, the development of commercially viable processes for these engineered pathways is currently limited by our ability to quickly identify or engineer enzymes with the correct reaction and substrate selectivity as well as the speed by which metabolic bottlenecks can be determined and corrected. Efforts in understanding the relationship between sequence, structure, and function in the basic biochemical sciences can advance these goals for synthetic biology applications while also serving as an experimental platform to elucidate the in vivo specificity and function of enzymes and to reconstitute complex biochemical traits for study in a living model organism. Furthermore, the continuing discovery of natural mechanisms for the regulation of metabolic pathways has revealed new principles for the design of high-flux pathways with minimized metabolic burden and has inspired the development of new tools and approaches to engineer synthetic pathways in microbial hosts for chemical production. PMID:21591680

  2. Private Selective Sweeps Identified from Next-Generation Pool-Sequencing Reveal Convergent Pathways under Selection in Two Inbred Schistosoma mansoni Strains

    PubMed Central

    Clément, Julie A. J.; Toulza, Eve; Gautier, Mathieu; Parrinello, Hugues; Roquis, David; Boissier, Jérôme; Rognon, Anne; Moné, Hélène; Mouahid, Gabriel; Buard, Jérôme; Mitta, Guillaume; Grunau, Christoph

    2013-01-01

    Background The trematode flatworms of the genus Schistosoma, the causative agents of schistosomiasis, are among the most prevalent parasites in humans, affecting more than 200 million people worldwide. In this study, we focused on two well-characterized strains of S. mansoni, to explore signatures of selection. Both strains are highly inbred and exhibit differences in life history traits, in particular in their compatibility with the intermediate host Biomphalaria glabrata. Methodology/Principal Findings We performed high throughput sequencing of DNA from pools of individuals of each strain using Illumina technology and identified single nucleotide polymorphisms (SNP) and copy number variations (CNV). In total, 708,898 SNPs were identified and roughly 2,000 CNVs. The SNPs revealed low nucleotide diversity (??=?2×10?4) within each strain and a high differentiation level (Fst?=?0.73) between them. Based on a recently developed in-silico approach, we further detected 12 and 19 private (i.e. specific non-overlapping) selective sweeps among the 121 and 151 sweeps found in total for each strain. Conclusions/Significance Functional annotation of transcripts lying in the private selective sweeps revealed specific selection for functions related to parasitic interaction (e.g. cell-cell adhesion or redox reactions). Despite high differentiation between strains, we identified evolutionary convergence of genes related to proteolysis, known as a key virulence factor and a potential target of drug and vaccine development. Our data show that pool-sequencing can be used for the detection of selective sweeps in parasite populations and enables one to identify biological functions under selection. PMID:24349597

  3. Cross-talk between Wnt/?-catenin and Hippo signaling pathways: a brief review

    PubMed Central

    Kim, Minseong; Jho, Eek-hoon

    2014-01-01

    Department of Life Science, The University of Seoul, Seoul 130-743, Korea Balanced cell growth is crucial in animal development as well as tissue homeostasis. Concerted cross-regulation of multiple signaling pathways is essential for those purposes, and the dysregulation of signaling may lead to a variety of human diseases such as cancer. The time-honored Wnt/?-catenin and recently identified Hippo signaling pathways are evolutionarily conserved in both Drosophila and mammals, and are generally considered as having positive and negative roles in cell proliferation, respectively. While most mainstream regulators of the Wnt/?-catenin signaling pathway have been fairly well identified, the regulators of the Hippo pathway need to be more defined. The Hippo pathway controls organ size primarily by regulating cell contact inhibition. Recently, several crossregulations occurring between the Wnt/?-catenin and Hippo signaling pathways were determined through biochemical and genetic approaches. In the present mini-review, we mainly discuss the signal transduction mechanism of the Hippo signaling pathway, along with cross-talk between the regulators of the Wnt/?-catenin and Hippo signaling pathways. [BMB Reports 2014; 47(10): 540-545] PMID:25154721

  4. Comparison of the Gene Expression Profiles of Human Fetal Cortical Astrocytes with Pluripotent Stem Cell Derived Neural Stem Cells Identifies Human Astrocyte Markers and Signaling Pathways and Transcription Factors Active in Human Astrocytes

    PubMed Central

    Malik, Nasir; Wang, Xiantao; Shah, Sonia; Efthymiou, Anastasia G.; Yan, Bin; Heman-Ackah, Sabrina; Zhan, Ming; Rao, Mahendra

    2014-01-01

    Astrocytes are the most abundant cell type in the central nervous system (CNS) and have a multitude of functions that include maintenance of CNS homeostasis, trophic support of neurons, detoxification, and immune surveillance. It has only recently been appreciated that astrocyte dysfunction is a primary cause of many neurological disorders. Despite their importance in disease very little is known about global gene expression for human astrocytes. We have performed a microarray expression analysis of human fetal astrocytes to identify genes and signaling pathways that are important for astrocyte development and maintenance. Our analysis confirmed that the fetal astrocytes express high levels of the core astrocyte marker GFAP and the transcription factors from the NFI family which have been shown to play important roles in astrocyte development. A group of novel markers were identified that distinguish fetal astrocytes from pluripotent stem cell-derived neural stem cells (NSCs) and NSC-derived neurons. As in murine astrocytes, the Notch signaling pathway appears to be particularly important for cell fate decisions between the astrocyte and neuronal lineages in human astrocytes. These findings unveil the repertoire of genes expressed in human astrocytes and serve as a basis for further studies to better understand astrocyte biology, especially as it relates to disease. PMID:24848099

  5. Genomic encyclopedia of sugar utilization pathways in the Shewanella genus

    PubMed Central

    2010-01-01

    Background Carbohydrates are a primary source of carbon and energy for many bacteria. Accurate projection of known carbohydrate catabolic pathways across diverse bacteria with complete genomes constitutes a substantial challenge due to frequent variations in components of these pathways. To address a practically and fundamentally important challenge of reconstruction of carbohydrate utilization machinery in any microorganism directly from its genomic sequence, we combined a subsystems-based comparative genomic approach with experimental validation of selected bioinformatic predictions by a combination of biochemical, genetic and physiological experiments. Results We applied this integrated approach to systematically map carbohydrate utilization pathways in 19 genomes from the Shewanella genus. The obtained genomic encyclopedia of sugar utilization includes ~170 protein families (mostly metabolic enzymes, transporters and transcriptional regulators) spanning 17 distinct pathways with a mosaic distribution across Shewanella species providing insights into their ecophysiology and adaptive evolution. Phenotypic assays revealed a remarkable consistency between predicted and observed phenotype, an ability to utilize an individual sugar as a sole source of carbon and energy, over the entire matrix of tested strains and sugars. Comparison of the reconstructed catabolic pathways with E. coli identified multiple differences that are manifested at various levels, from the presence or absence of certain sugar catabolic pathways, nonorthologous gene replacements and alternative biochemical routes to a different organization of transcription regulatory networks. Conclusions The reconstructed sugar catabolome in Shewanella spp includes 62 novel isofunctional families of enzymes, transporters, and regulators. In addition to improving our knowledge of genomics and functional organization of carbohydrate utilization in Shewanella, this study led to a substantial expansion of our current version of the Genomic Encyclopedia of Carbohydrate Utilization. A systematic and iterative application of this approach to multiple taxonomic groups of bacteria will further enhance it, creating a knowledge base adequate for the efficient analysis of any newly sequenced genome as well as of the emerging metagenomic data. PMID:20836887

  6. Components of complex lipid biosynthetic pathways in developing castor (Ricinus communis) seeds identified by MudPIT analysis of enriched endoplasmic reticulum.

    PubMed

    Brown, Adrian P; Kroon, Johan T M; Topping, Jennifer F; Robson, Joanne L; Simon, William J; Slabas, Antoni R

    2011-08-01

    Ricinoleic acid is a feedstock for nylon-11 (N11) synthesis which is currently obtained from castor (Ricinus communis) oil. Production of this fatty acid in a temperate oilseed crop is of great commercial interest, but the highest reported level in transgenic plant oils is 30%, below the 90% observed in castor and insufficient for commercial exploitation. To identify castor oil-biosynthetic enzymes and inform strategies to improve ricinoleic acid yields, we performed MudPIT analysis on endoplasmic reticulum (ER) purified from developing castor bean endosperm. Candidate enzymes for all steps of triacylglycerol synthesis were identified among 72 proteins in the data set related to complex-lipid metabolism. Previous reported proteomic data from oilseeds had not included any membrane-bound enzyme that might incorporate ricinoleic acid into oil. Analysis of enriched ER enabled determination of which protein isoforms for these enzymes were in developing castor seed. To complement this data, quantitative RT-PCR experiments with castor seed and leaf RNA were performed for orthologues of Arabidopsis oil-synthetic enzymes, determining which were highly expressed in the seed. These data provide important information for further manipulation of ricinoleic acid content in oilseeds and peptide data for future quantification strategies. PMID:21657795

  7. Network Quantitative Trait Loci Mapping of Circadian Clock Outputs Identifies Metabolic Pathway-to-Clock Linkages in Arabidopsis[C][W

    PubMed Central

    Kerwin, Rachel E.; Jimenez-Gomez, Jose M.; Fulop, Daniel; Harmer, Stacey L.; Maloof, Julin N.; Kliebenstein, Daniel J.

    2011-01-01

    Modern systems biology permits the study of complex networks, such as circadian clocks, and the use of complex methodologies, such as quantitative genetics. However, it is difficult to combine these approaches due to factorial expansion in experiments when networks are examined using complex methods. We developed a genomic quantitative genetic approach to overcome this problem, allowing us to examine the function(s) of the plant circadian clock in different populations derived from natural accessions. Using existing microarray data, we defined 24 circadian time phase groups (i.e., groups of genes with peak phases of expression at particular times of day). These groups were used to examine natural variation in circadian clock function using existing single time point microarray experiments from a recombinant inbred line population. We identified naturally variable loci that altered circadian clock outputs and linked these circadian quantitative trait loci to preexisting metabolomics quantitative trait loci, thereby identifying possible links between clock function and metabolism. Using single-gene isogenic lines, we found that circadian clock output was altered by natural variation in Arabidopsis thaliana secondary metabolism. Specifically, genetic manipulation of a secondary metabolic enzyme led to altered free-running rhythms. This represents a unique and valuable approach to the study of complex networks using quantitative genetics. PMID:21343415

  8. Biochemical adaptation to ocean acidification.

    PubMed

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the external environment, such as epithelial tissues, may be susceptible to changes in external pH. Such biochemical systems could be adapted to a reduced pH environment by adjustment of weak bonds in an analogous fashion to biochemical adaptation to temperature. Whether such biochemical adaptation to OA exists remains to be discovered. PMID:26085671

  9. Identifying Calcium Channels and Porters in Plant Membranes

    SciTech Connect

    Sze, Heven

    1998-04-01

    The overall objectives of the proposal submitted in 6/90 was to understand how Ca was transported across plant membranes, and how these transport pathways were regulated. Ca participates in many cellular processes, including the transduction of hormonal and environmental signals, secretion, and protein folding. These processes depend on the coordination of passive Ca fluxes via channels and active Ca pumps; however these transport pathways are poorly understood in plants. We had, therefore, proposed to identify and characterize Ca transport proteins, such as the inositol-1 ,4,5-trisphosphate (IP3)-sensitive Ca channels and Ca pumps. We have had difficulties characterizing and cloning the IP3-sensitive Ca channel, but have made considerable progress on the biochemical characterization, and partial purification of a 120 kD Ca-pumping ATPase. We have begun to determine the structure of Ca pumps by molecular cloning and have already obtained a partial cDNA with features characteristic of Ca pumps.

  10. Biochemical Applications in the Analytical Chemistry Lab

    ERIC Educational Resources Information Center

    Strong, Cynthia; Ruttencutter, Jeffrey

    2004-01-01

    An HPLC and a UV-visible spectrophotometer are identified as instruments that helps to incorporate more biologically-relevant experiments into the course, in order to increase the students understanding of selected biochemistry topics and enhances their ability to apply an analytical approach to biochemical problems. The experiment teaches…

  11. Acute myocardial infarction activates distinct inflammation and proliferation pathways in circulating monocytes, prior to recruitment, and identified through conserved transcriptional responses in mice and humans

    PubMed Central

    Ruparelia, Neil; Godec, Jernej; Lee, Regent; Chai, Joshua T.; Dall'Armellina, Erica; McAndrew, Debra; Digby, Janet E.; Forfar, J. Colin; Prendergast, Bernard D.; Kharbanda, Rajesh K.; Banning, Adrian P.; Neubauer, Stefan; Lygate, Craig A.; Channon, Keith M.; Haining, Nicholas W.; Choudhury, Robin P.

    2015-01-01

    Aims Monocytes play critical roles in tissue injury and repair following acute myocardial infarction (AMI). Specifically targeting inflammatory monocytes in experimental models leads to reduced infarct size and improved healing. However, data from humans are sparse, and it remains unclear whether monocytes play an equally important role in humans. The aim of this study was to investigate whether the monocyte response following AMI is conserved between humans and mice and interrogate patterns of gene expression to identify regulated functions. Methods and results Thirty patients (AMI) and 24 control patients (stable coronary atherosclerosis) were enrolled. Female C57BL/6J mice (n = 6/group) underwent AMI by surgical coronary ligation. Myocardial injury was quantified by magnetic resonance imaging (human) and echocardiography (mice). Peripheral monocytes were isolated at presentation and at 48 h. RNA from separated monocytes was hybridized to Illumina beadchips. Acute myocardial infarction resulted in a significant peripheral monocytosis in both species that positively correlated with the extent of myocardial injury. Analysis of the monocyte transcriptome following AMI demonstrated significant conservation and identified inflammation and mitosis as central processes to this response. These findings were validated in both species. Conclusions Our findings show that the monocyte transcriptome is conserved between mice and humans following AMI. Patterns of gene expression associated with inflammation and proliferation appear to be switched on prior to their infiltration of injured myocardium suggesting that the specific targeting of inflammatory and proliferative processes in these immune cells in humans are possible therapeutic strategies. Importantly, they could be effective in the hours after AMI. PMID:25982896

  12. Global expression analysis of ECL cells in Mastomys natalensis gastric mucosa identifies alterations in the AP-1 pathway induced by gastrin-mediated transformation.

    PubMed

    Kidd, M; Hinoue, T; Eick, G; Lye, K D; Mane, S M; Wen, Y; Modlin, I M

    2004-12-15

    Enterochromaffin-like (ECL) cell hyperplasia and then irreversible neoplasia can be generated in the African rodent Mastomys natalensis using the H2 receptor blocker, loxtidine, for 8-16 wk. We used a GeneChip approach complemented by standard technologies to identify gene expression alterations in the gastric mucosa during gastrin-mediated ECL cell transformation. Gastric mucosa (mucosal scrapping) and ECL cell-enriched fractions were obtained from untreated Mastomys (controls) and from animals treated with loxtidine for 8 wk (hyperplasia). Tumor ECL cells were obtained by hand-dissection of gastric ECL cell nodules from animals treated with loxtidine for >16 wk and from a spontaneously developed ECL cell tumor. RNA was isolated, examined on rat U34A GeneChips, and comparison analysis was performed to identify altered gene expression. Alterations in gene expressions were examined further by immunohistochemistry, quantitative RT-PCR (Q-RT-PCR), sequencing and Western blot. GeneSpring analysis demonstrated alterations in few genes (<20) in hyperplastic and tumor mucosa. The histamine H1 receptor was consistently increased in proliferating mucosa. This gene change was confirmed by Q-RT-PCR. Other genes showing alterations included neural-(chromogranin A and somatostatin), cell-cycle-, and AP-1-associated genes. Immunostaining confirmed alterations in neural markers. Cluster analysis of ECL cell-enriched samples demonstrated that c-fos and junD were differently regulated. Q-RT-PCR and Western blot in prospectively collected gastric mucosal samples confirmed the differential expression of Fos and Jun. The negative regulators of AP-1, JunD, and Menin were decreased in tumor mucosa. A missense of unknown function was noted in the menin gene. Hypergastrinemia in an animal model of gastric carcinoids differentially altered the histamine type 1 receptor and gene expression and protein composition of AP-1. These results suggest that expression of this receptor and an altered composition of AP-1 with a loss of inhibition play a role in ECL cell transformation. PMID:15602048

  13. Meta-Analysis of Arabidopsis KANADI1 Direct Target Genes Identifies a Basic Growth-Promoting Module Acting Upstream of Hormonal Signaling Pathways.

    PubMed

    Xie, Yakun; Straub, Daniel; Eguen, Tenai; Brandt, Ronny; Stahl, Mark; Martínez-García, Jaime F; Wenkel, Stephan

    2015-10-01

    An intricate network of antagonistically acting transcription factors mediates the formation of a flat leaf lamina of Arabidopsis (Arabidopsis thaliana) plants. In this context, members of the class III homeodomain leucine zipper (HD-ZIPIII) transcription factor family specify the adaxial domain (future upper side) of the leaf, while antagonistically acting KANADI transcription factors determine the abaxial domain (future lower side). Here, we used a messenger RNA sequencing approach to identify genes regulated by KANADI1 (KAN1) and subsequently performed a meta-analysis combining our data sets with published genome-wide data sets. Our analysis revealed that KAN1 acts upstream of several genes encoding auxin biosynthetic enzymes. When exposed to shade, we found three YUCCA genes, YUC2, YUC5, and YUC8, to be transcriptionally up-regulated, which correlates with an increase in the levels of free auxin. When ectopically expressed, KAN1 is able to transcriptionally repress these three YUC genes and thereby block shade-induced auxin biosynthesis. Consequently, KAN1 is able to strongly suppress shade-avoidance responses. Taken together, we hypothesize that HD-ZIPIII/KAN form the basis of a basic growth-promoting module. Hypocotyl extension in the shade and outgrowth of new leaves both involve auxin synthesis and signaling, which are under the direct control of HD-ZIPIII/KAN. PMID:26246448

  14. Meta-Analysis of Arabidopsis KANADI1 Direct Target Genes Identifies a Basic Growth-Promoting Module Acting Upstream of Hormonal Signaling Pathways1[OPEN

    PubMed Central

    Xie, Yakun; Straub, Daniel; Eguen, Tenai; Brandt, Ronny; Stahl, Mark; Martínez-García, Jaime F.; Wenkel, Stephan

    2015-01-01

    An intricate network of antagonistically acting transcription factors mediates the formation of a flat leaf lamina of Arabidopsis (Arabidopsis thaliana) plants. In this context, members of the class III homeodomain leucine zipper (HD-ZIPIII) transcription factor family specify the adaxial domain (future upper side) of the leaf, while antagonistically acting KANADI transcription factors determine the abaxial domain (future lower side). Here, we used a messenger RNA sequencing approach to identify genes regulated by KANADI1 (KAN1) and subsequently performed a meta-analysis combining our data sets with published genome-wide data sets. Our analysis revealed that KAN1 acts upstream of several genes encoding auxin biosynthetic enzymes. When exposed to shade, we found three YUCCA genes, YUC2, YUC5, and YUC8, to be transcriptionally up-regulated, which correlates with an increase in the levels of free auxin. When ectopically expressed, KAN1 is able to transcriptionally repress these three YUC genes and thereby block shade-induced auxin biosynthesis. Consequently, KAN1 is able to strongly suppress shade-avoidance responses. Taken together, we hypothesize that HD-ZIPIII/KAN form the basis of a basic growth-promoting module. Hypocotyl extension in the shade and outgrowth of new leaves both involve auxin synthesis and signaling, which are under the direct control of HD-ZIPIII/KAN. PMID:26246448

  15. Microfilament-mediated surface change in starfish oocytes in response to 1-methyladenine: implications for identifying the pathway and receptor sites for maturation-inducing hormones.

    PubMed

    Schroeder, T E

    1981-08-01

    Oocytes of the starfish Pisaster ochraceus exhibit an early response to 1-methyladenine (the maturation-inducing hormone), which is described for the first time. In this response approximately 6,500 spikelike surface projections, much larger than microvilli, emerge transiently from oocytes stripped of their follicle cells and then treated with the hormone in vitro. Each spike contains a prominent bundle of microfilaments, possibly composed of actin. The distribution of spikes when follicle cells are only partially removed and the morphological details of the normal junctional association between follicle cells and oocytes suggest that 1-methyladenine-sensitive sites (receptor sites) can be identified with the approximately 6,500 postjunctional specializations that are part of the oocyte surface. This finding in turn is employed to construct a set of hypotheses concerning the route that 1-methyladenine normally takes from the follicle cells to an oocyte during stimulation of maturation; it is postulated that, for each oocyte, 1-methyladenine is transported along approximately 6,500 thin follicle-cell processes, it is transmitted across the junctional gaps of an equivalent number of junctions between follicle cells and an oocyte, and then interacts with the postjunctional sites where 1-methyladenine receptors are thought to be clustered. Comparative aspects of this mode of intercellular communication are discussed. PMID:6270153

  16. Microfilament-mediated surface change in starfish oocytes in response to 1-methyladenine: implications for identifying the pathway and receptor sites for maturation-inducing hormones

    PubMed Central

    1981-01-01

    Oocytes of the starfish Pisaster ochraceus exhibit an early response to 1-methyladenine (the maturation-inducing hormone), which is described for the first time. In this response approximately 6,500 spikelike surface projections, much larger than microvilli, emerge transiently from oocytes stripped of their follicle cells and then treated with the hormone in vitro. Each spike contains a prominent bundle of microfilaments, possibly composed of actin. The distribution of spikes when follicle cells are only partially removed and the morphological details of the normal junctional association between follicle cells and oocytes suggest that 1-methyladenine-sensitive sites (receptor sites) can be identified with the approximately 6,500 postjunctional specializations that are part of the oocyte surface. This finding in turn is employed to construct a set of hypotheses concerning the route that 1-methyladenine normally takes from the follicle cells to an oocyte during stimulation of maturation; it is postulated that, for each oocyte, 1-methyladenine is transported along approximately 6,500 thin follicle-cell processes, it is transmitted across the junctional gaps of an equivalent number of junctions between follicle cells and an oocyte, and then interacts with the postjunctional sites where 1- methyladenine receptors are thought to be clustered. Comparative aspects of this mode of intercellular communication are discussed. PMID:6270153

  17. Functional, chemical genomic, and super-enhancer screening identify sensitivity to cyclin D1/CDK4 pathway inhibition in Ewing sarcoma.

    PubMed

    Kennedy, Alyssa L; Vallurupalli, Mounica; Chen, Liying; Crompton, Brian; Cowley, Glenn; Vazquez, Francisca; Weir, Barbara A; Tsherniak, Aviad; Parasuraman, Sudha; Kim, Sunkyu; Alexe, Gabriela; Stegmaier, Kimberly

    2015-10-01

    Ewing sarcoma is an aggressive bone and soft tissue tumor in children and adolescents, with treatment remaining a clinical challenge. This disease is mediated by somatic chromosomal translocations of the EWS gene and a gene encoding an ETS transcription factor, most commonly, FLI1. While direct targeting of aberrant transcription factors remains a pharmacological challenge, identification of dependencies incurred by EWS/FLI1 expression would offer a new therapeutic avenue. We used a combination of super-enhancer profiling, near-whole genome shRNA-based and small-molecule screening to identify cyclin D1 and CDK4 as Ewing sarcoma-selective dependencies. We revealed that super-enhancers mark Ewing sarcoma specific expression signatures and EWS/FLI1 target genes in human Ewing sarcoma cell lines. Particularly, a super-enhancer regulates cyclin D1 and promotes its expression in Ewing sarcoma. We demonstrated that Ewing sarcoma cells require CDK4 and cyclin D1 for survival and anchorage-independent growth. Additionally, pharmacologic inhibition of CDK4 with selective CDK4/6 inhibitors led to cytostasis and cell death of Ewing sarcoma cell lines in vitro and growth delay in an in vivo Ewing sarcoma xenograft model. These results demonstrated a dependency in Ewing sarcoma on CDK4 and cyclin D1 and support exploration of CDK4/6 inhibitors as a therapeutic approach for patients with this disease. PMID:26337082

  18. Methods to identify molecular expression of mTOR pathway: a rationale approach to stratify patients affected by clear cell renal cell carcinoma for more likely response to mTOR inhibitors

    PubMed Central

    Fiorini, Claudia; Massari, Francesco; Pedron, Serena; Sanavio, Sara; Ciccarese, Chiara; Porcaro, Antonio Benito; Artibani, Walter; Bertoldo, Francesco; Zampini, Claudia; Sava, Teodoro; Ficial, Miriam; Caliò, Anna; Chilosi, Marco; D’Amuri, Alessandro; Sanguedolce, Francesca; Tortora, Giampaolo; Scarpa, Aldo; Delahunt, Brett; Porta, Camillo; Martignoni, Guido; Brunelli, Matteo

    2014-01-01

    Since target therapy with mTOR inhibitors plays an important role in the current management of clear cell renal cell carcinoma (RCC), there is an increasing demand for predictive biomarkers, which may help to select patients that are most likely to benefit from personalized treatment. When dealing with formalin-fixed paraffin-embedded (FFPE) cancer tissue specimens, several techniques may be used to identify potential molecular markers, yielding different outcome in terms of accuracy. We sought to investigate and compare the capability of three main techniques to detect molecules performing an active function in mTOR pathway in RCC. Immunohistochemistry (IHC), Western blot (WB) and immunofluorescence (IF) analyses were performed on FFPE RCC tissue specimens from 16 patients by using the following mTOR pathway-related: mTOR (Ser235/236), phospho-mTOR (p-mTOR/Ser2448), phospho-p70S6k (p-p70S6k/Thr389), both monoclonal and polyclonal, phospho-S6Rb (p-S6Rb) and phospho-4EBP1 (p-4EBP1/Thr37/46). No single molecule was simultaneously revealed by all three techniques. Only p-p70S6k was detected by two methods (IHC and IF) using a monoclonal antibody. The other molecules were detected exclusively by one technique, as follows: p-mTOR and polyclonal p-p70S6K by IHC, p70S6K, p-S6Rb and p-4EBP1 by WB, and, finally, mTOR by IF. We found significant differences in detecting mTOR pathway-related active biomarkers by using three common techniques such as IHC, WB and IF on RCC samples. Such results have important implications in terms of predictive biomarker testing, and need to be related to clinical end-points such as responsiveness to targeted drugs by prospective studies. PMID:25520878

  19. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations

    PubMed Central

    2009-01-01

    High-altitude environments (>2,500 m) provide scientists with a natural laboratory to study the physiological and genetic effects of low ambient oxygen tension on human populations. One approach to understanding how life at high altitude has affected human metabolism is to survey genome-wide datasets for signatures of natural selection. In this work, we report on a study to identify selection-nominated candidate genes involved in adaptation to hypoxia in one highland group, Andeans from the South American Altiplano. We analysed dense microarray genotype data using four test statistics that detect departures from neutrality. Using a candidate gene, single nucleotide polymorphism-based approach, we identified genes exhibiting preliminary evidence of recent genetic adaptation in this population. These included genes that are part of the hypoxia-inducible transcription factor (HIF) pathway, a biochemical pathway involved in oxygen homeostasis, as well as three other genomic regions previously not known to be associated with high-altitude phenotypes. In addition to identifying selection-nominated candidate genes, we also tested whether the HIF pathway shows evidence of natural selection. Our results indicate that the genes of this biochemical pathway as a group show no evidence of having evolved in response to hypoxia in Andeans. Results from particular HIF-targeted genes, however, suggest that genes in this pathway could play a role in Andean adaptation to high altitude, even if the pathway as a whole does not show higher relative rates of evolution. These data suggest a genetic role in high-altitude adaptation and provide a basis for genotype/phenotype association studies that are necessary to confirm the role of putative natural selection candidate genes and gene regions in adaptation to altitude. PMID:20038496

  20. Stress and DNA repair biology of the Fanconi anemia pathway

    PubMed Central

    Longerich, Simonne; Li, Jian; Xiong, Yong; Sung, Patrick

    2014-01-01

    Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care. PMID:25237197

  1. Measures of Biochemical Sociology

    ERIC Educational Resources Information Center

    Snell, Joel; Marsh, Mitchell

    2008-01-01

    In a previous article, the authors introduced a new sub field in sociology that we labeled "biochemical sociology." We introduced the definition of a sociology that encompasses sociological measures, psychological measures, and biological indicators Snell & Marsh (2003). In this article, we want to demonstrate a research strategy that would assess…

  2. Biochemical upgrading of oils

    DOEpatents

    Premuzic, E.T.; Lin, M.S.

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed. 121 figs.

  3. Biochemical upgrading of oils

    DOEpatents

    Premuzic, Eugene T. (East Moriches, NY); Lin, Mow S. (Rocky Point, NY)

    1999-01-12

    A process for biochemical conversion of heavy crude oils is provided. The process includes contacting heavy crude oils with adapted biocatalysts. The resulting upgraded oil shows, a relative increase in saturated hydrocarbons, emulsions and oxygenates and a decrease in compounds containing in organic sulfur, organic nitrogen and trace metals. Adapted microorganisms which have been modified under challenged growth processes are also disclosed.

  4. Nanoparticles as biochemical sensors

    PubMed Central

    El-Ansary, Afaf; Faddah, Layla M

    2010-01-01

    There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body. PMID:24198472

  5. Diversity of hydrolases from hydrothermal vent sediments of the Levante Bay, Vulcano Island (Aeolian archipelago) identified by activity-based metagenomics and biochemical characterization of new esterases and an arabinopyranosidase.

    PubMed

    Placido, Antonio; Hai, Tran; Ferrer, Manuel; Chernikova, Tatyana N; Distaso, Marco; Armstrong, Dale; Yakunin, Alexander F; Toshchakov, Stepan V; Yakimov, Michail M; Kublanov, Ilya V; Golyshina, Olga V; Pesole, Graziano; Ceci, Luigi R; Golyshin, Peter N

    2015-12-01

    A metagenomic fosmid expression library established from environmental DNA (eDNA) from the shallow hot vent sediment sample collected from the Levante Bay, Vulcano Island (Aeolian archipelago) was established in Escherichia coli. Using activity-based screening assays, we have assessed 9600 fosmid clones corresponding to approximately 350 Mbp of the cloned eDNA, for the lipases/esterases/lactamases, haloalkane and haloacid dehalogenases, and glycoside hydrolases. Thirty-four positive fosmid clones were selected from the total of 120 positive hits and sequenced to yield ca. 1360 kbp of high-quality assemblies. Fosmid inserts were attributed to the members of ten bacterial phyla, including Proteobacteria, Bacteroidetes, Acidobateria, Firmicutes, Verrucomicrobia, Chloroflexi, Spirochaetes, Thermotogae, Armatimonadetes, and Planctomycetes. Of ca. 200 proteins with high biotechnological potential identified therein, we have characterized in detail three distinct ?/?-hydrolases (LIPESV12_9, LIPESV12_24, LIPESV12_26) and one new ?-arabinopyranosidase (GLV12_5). All LIPESV12 enzymes revealed distinct substrate specificities tested against 43 structurally diverse esters and 4 p-nitrophenol carboxyl esters. Of 16 different glycosides tested, the GLV12_5 hydrolysed only p-nitrophenol-?-(L)-arabinopyranose with a high specific activity of about 2.7 kU/mg protein. Most of the ?/?-hydrolases were thermophilic and revealed a high tolerance to, and high activities in the presence of, numerous heavy metal ions. Among them, the LIPESV12_24 was the best temperature-adapted, retaining its activity after 40 min of incubation at 90 °C. Furthermore, enzymes were active in organic solvents (e.g., >30 % methanol). Both LIPESV12_24 and LIPESV12_26 had the GXSXG pentapeptides and the catalytic triads Ser-Asp-His typical to the representatives of carboxylesterases of EC 3.1.1.1. PMID:26266751

  6. PathwayMatrix: visualizing binary relationships between proteins in biological pathways

    PubMed Central

    2015-01-01

    Background Molecular activation pathways are inherently complex, and understanding relations across many biochemical reactions and reaction types is difficult. Visualizing and analyzing a pathway is a challenge due to the network size and the diversity of relations between proteins and molecules. Results In this paper, we introduce PathwayMatrix, a visualization tool that presents the binary relations between proteins in the pathway via the use of an interactive adjacency matrix. We provide filtering, lensing, clustering, and brushing and linking capabilities in order to present relevant details about proteins within a pathway. Conclusions We evaluated PathwayMatrix by conducting a series of in-depth interviews with domain experts who provided positive feedback, leading us to believe that our visualization technique could be helpful for the larger community of researchers utilizing pathway visualizations. PathwayMatrix is freely available at https://github.com/CreativeCodingLab/PathwayMatrix. PMID:26361499

  7. Biochemical Phenotypes to Discriminate Microbial Subpopulations and Improve Outbreak Detection

    PubMed Central

    Galar, Alicia; Kulldorff, Martin; Rudnick, Wallis; O'Brien, Thomas F.; Stelling, John

    2013-01-01

    Background Clinical microbiology laboratories worldwide constitute an invaluable resource for monitoring emerging threats and the spread of antimicrobial resistance. We studied the growing number of biochemical tests routinely performed on clinical isolates to explore their value as epidemiological markers. Methodology/Principal Findings Microbiology laboratory results from January 2009 through December 2011 from a 793-bed hospital stored in WHONET were examined. Variables included patient location, collection date, organism, and 47 biochemical and 17 antimicrobial susceptibility test results reported by Vitek 2. To identify biochemical tests that were particularly valuable (stable with repeat testing, but good variability across the species) or problematic (inconsistent results with repeat testing), three types of variance analyses were performed on isolates of K. pneumonia: descriptive analysis of discordant biochemical results in same-day isolates, an average within-patient variance index, and generalized linear mixed model variance component analysis. Results: 4,200 isolates of K. pneumoniae were identified from 2,485 patients, 32% of whom had multiple isolates. The first two variance analyses highlighted SUCT, TyrA, GlyA, and GGT as “nuisance” biochemicals for which discordant within-patient test results impacted a high proportion of patient results, while dTAG had relatively good within-patient stability with good heterogeneity across the species. Variance component analyses confirmed the relative stability of dTAG, and identified additional biochemicals such as PHOS with a large between patient to within patient variance ratio. A reduced subset of biochemicals improved the robustness of strain definition for carbapenem-resistant K. pneumoniae. Surveillance analyses suggest that the reduced biochemical profile could improve the timeliness and specificity of outbreak detection algorithms. Conclusions The statistical approaches explored can improve the robust recognition of microbial subpopulations with routinely available biochemical test results, of value in the timely detection of outbreak clones and evolutionarily important genetic events. PMID:24391936

  8. Genome-Wide siRNA Screen Identifies Complementary Signaling Pathways Involved in Listeria Infection and Reveals Different Actin Nucleation Mechanisms during Listeria Cell Invasion and Actin Comet Tail Formation

    PubMed Central

    Kühbacher, Andreas; Emmenlauer, Mario; Rämo, Pauli; Kafai, Natasha; Dehio, Christoph

    2015-01-01

    ABSTRACT Listeria monocytogenes enters nonphagocytic cells by a receptor-mediated mechanism that is dependent on a clathrin-based molecular machinery and actin rearrangements. Bacterial intra- and intercellular movements are also actin dependent and rely on the actin nucleating Arp2/3 complex, which is activated by host-derived nucleation-promoting factors downstream of the cell receptor Met during entry and by the bacterial nucleation-promoting factor ActA during comet tail formation. By genome-wide small interfering RNA (siRNA) screening for host factors involved in bacterial infection, we identified diverse cellular signaling networks and protein complexes that support or limit these processes. In addition, we could precise previously described molecular pathways involved in Listeria invasion. In particular our results show that the requirements for actin nucleators during Listeria entry and actin comet tail formation are different. Knockdown of several actin nucleators, including SPIRE2, reduced bacterial invasion while not affecting the generation of comet tails. Most interestingly, we observed that in contrast to our expectations, not all of the seven subunits of the Arp2/3 complex are required for Listeria entry into cells or actin tail formation and that the subunit requirements for each of these processes differ, highlighting a previously unsuspected versatility in Arp2/3 complex composition and function. PMID:25991686

  9. An introductory review of parallel independent component analysis (p-ICA) and a guide to applying p-ICA to genetic data and imaging phenotypes to identify disease-associated biological pathways and systems in common complex disorders

    PubMed Central

    Pearlson, Godfrey D.; Liu, Jingyu; Calhoun, Vince D.

    2015-01-01

    Complex inherited phenotypes, including those for many common medical and psychiatric diseases, are most likely underpinned by multiple genes contributing to interlocking molecular biological processes, along with environmental factors (Owen et al., 2010). Despite this, genotyping strategies for complex, inherited, disease-related phenotypes mostly employ univariate analyses, e.g., genome wide association. Such procedures most often identify isolated risk-related SNPs or loci, not the underlying biological pathways necessary to help guide the development of novel treatment approaches. This article focuses on the multivariate analysis strategy of parallel (i.e., simultaneous combination of SNP and neuroimage information) independent component analysis (p-ICA), which typically yields large clusters of functionally related SNPs statistically correlated with phenotype components, whose overall molecular biologic relevance is inferred subsequently using annotation software suites. Because this is a novel approach, whose details are relatively new to the field we summarize its underlying principles and address conceptual questions regarding interpretation of resulting data and provide practical illustrations of the method. PMID:26442095

  10. Rescue of an In Vitro Neuron Phenotype Identified in Niemann-Pick Disease, Type C1 Induced Pluripotent Stem Cell-Derived Neurons by Modulating the WNT Pathway and Calcium Signaling

    PubMed Central

    Efthymiou, Anastasia G.; Steiner, Joe; Pavan, William J.; Wincovitch, Stephen; Larson, Denise M.; Porter, Forbes D.; Rao, Mahendra S.

    2015-01-01

    Niemann-Pick disease, type C1 (NPC1) is a familial disorder that has devastating consequences on postnatal development with multisystem effects, including neurodegeneration. There is no Food and Drug Administration-approved treatment option for NPC1; however, several potentially therapeutic compounds have been identified in assays using yeast, rodent models, and NPC1 human fibroblasts. Although these discoveries were made in fibroblasts from NPC1 subjects and were in some instances validated in animal models of the disease, testing these drugs on a cell type more relevant for NPC1 neurological disease would greatly facilitate both study of the disease and identification of more relevant therapeutic compounds. Toward this goal, we have generated an induced pluripotent stem cell line from a subject homozygous for the most frequent NPC1 mutation (p.I1061T) and subsequently created a stable line of neural stem cells (NSCs). These NSCs were then used to create neurons as an appropriate disease model. NPC1 neurons display a premature cell death phenotype, and gene expression analysis of these cells suggests dysfunction of important signaling pathways, including calcium and WNT. The clear readout from these cells makes them ideal candidates for high-throughput screening and will be a valuable tool to better understand the development of NPC1 in neural cells, as well as to develop better therapeutic options for NPC1. PMID:25637190

  11. Plant B vitamin pathways and their compartmentation: a guide for the perplexed.

    PubMed

    Gerdes, Svetlana; Lerma-Ortiz, Claudia; Frelin, Océane; Seaver, Samuel M D; Henry, Christopher S; de Crécy-Lagard, Valérie; Hanson, Andrew D

    2012-09-01

    The B vitamins and the cofactors derived from them are essential for life. B vitamin synthesis in plants is consequently as crucial to plants themselves as it is to humans and animals, whose B vitamin nutrition depends largely on plants. The synthesis and salvage pathways for the seven plant B vitamins are now broadly known, but certain enzymes and many transporters have yet to be identified, and the subcellular locations of various reactions are unclear. Although very substantial, what is not known about plant B vitamin pathways is regrettably difficult to discern from the literature or from biochemical pathway databases. Nor do databases accurately represent all that is known about B vitamin pathways-above all their compartmentation-because the facts are scattered throughout the literature, and thus hard to piece together. These problems (i) deter discoveries because newcomers to B vitamins cannot see which mysteries still need solving; and (ii) impede metabolic reconstruction and modelling of B vitamin pathways because genes for reactions or transport steps are missing. This review therefore takes a fresh approach to capture current knowledge of B vitamin pathways in plants. The synthesis pathways, key salvage routes, and their subcellular compartmentation are surveyed in depth, and encoded in the SEED database (http://pubseed.theseed.org/seedviewer.cgi?page=PlantGateway) for Arabidopsis and maize. The review itself and the encoded pathways specifically identify enigmatic or missing reactions, enzymes, and transporters. The SEED-encoded B vitamin pathway collection is a publicly available, expertly curated, one-stop resource for metabolic reconstruction and modeling. PMID:22915736

  12. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals.

    PubMed

    Su, Fei; Xu, Ping

    2014-01-01

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species. PMID:24473268

  13. Electron-tunneling pathways in proteins

    SciTech Connect

    Beratan, D.N. ); Onuchic, J.N. ); Winkler, J.R.; Gray, H.B. )

    1992-12-11

    Electron-transfer (ET) reactions are key steps in photosynthisis, respiration, drug metabolism, and many other biochemical processes. The ETs are remarkably fast and proceeded with high specificity. Theoreticians have been intensely interested in long-range protein ET reactions for many years. This perspective paper discusses the tunneling-pathway model for protein ET coupling, giving the example Cytochrome c. Different coupling strength in different pathway families are mentioned and a brief overview of the future of understanding ET reactions is given.

  14. Genetic analysis of photoreceptor action pathways in Arabidopsis thaliana. Progress report

    SciTech Connect

    Not Available

    1991-12-31

    The specific strategies and long-term goals of this proposal remain intact relative to the original proposal. We continue to isolate and characterize photomorphogenic mutants of Arabidopsis thaliana. The molecular and biochemical characterization of one of these mutants, det1, has led to one publication of original data and to one Society for Experimental Biology Symposium paper (see below). The phenotype of a second mutant, det2, has also been studied during this funding period. In addition, we have continued work on a general strategy to isolate mutations in trans-acting regulatory factors that mediate light-regulated gene expression, and have identified several potentially interesting regulatory mutants. In the third funding period, we will concentrate on the genetical, biochemical, and molecular characterization of these new mutants. Construction of double mutants between the new mutants and the previously characterized morphological mutants should allow us to construct a pathway for light-regulated seedling development in Arabidopsis.

  15. Graphics processing units as tools to predict mechanisms of biological signaling pathway regulation

    NASA Astrophysics Data System (ADS)

    McCarter, Patrick; Elston, Timothy; Nagiek, Michal; Dohlman, Henrik

    2013-04-01

    Biochemical and genomic studies have revealed protein components of S. cerevisiae (yeast) signal transduction networks. These networks allow the transmission of extracellular signals to the cell nucleus through coordinated biochemical interactions, resulting in direct responses to specific external stimuli. The coordination and regulation mechanisms of proteins in these networks have not been fully characterized. Thus, in this work we develop systems of ordinary differential equations to characterize processes that regulate signaling pathways. We employ graphics processing units (GPUs) in high performance computing environments to search in parallel through substantially more comprehensive parameter sets than allowed by personal computers. As a result, we are able to parameterize larger models with experimental data, leading to an increase in our model prediction capabilities. Thus far these models have helped to identify specific mechanisms such as positive and negative feedback loops that control network protein activity. We ultimately believe that the use of GPUs in biochemical signal transduction pathway modeling will help to discern how regulation mechanisms allow cells to respond to multiple external stimuli.

  16. Quantitative trait loci and metabolic pathways

    PubMed Central

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  17. Biochemical Education in Nigerian Universities.

    ERIC Educational Resources Information Center

    Josefsson, Lars

    1987-01-01

    Reports on a conference on Biochemical Education and National Development held at the University of Lagos (Nigeria). Includes the author's personal impressions on biochemical education at Nigerian universities. Summarizes the sessions held at the conference regarding undergraduate, graduate, and research programs in those universities. (TW)

  18. Protein design for pathway engineering

    SciTech Connect

    Eriksen, DT; Lian, JZ; Zhao, HM

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. (C) 2013 Elsevier Inc. All rights reserved.

  19. Insights into Ongoing Evolution of the Hexachlorocyclohexane Catabolic Pathway from Comparative Genomics of Ten Sphingomonadaceae Strains.

    PubMed

    Pearce, Stephen L; Oakeshott, John G; Pandey, Gunjan

    2015-06-01

    Hexachlorocyclohexane (HCH), a synthetic organochloride, was first used as a broad-acre insecticide in the 1940s, and many HCH-degrading bacterial strains have been isolated from around the globe during the last 20 years. To date, the same degradation pathway (the lin pathway) has been implicated in all strains characterized, although the pathway has only been characterized intensively in two strains and for only a single HCH isomer. To further elucidate the evolution of the lin pathway, we have biochemically and genetically characterized three HCH-degrading strains from the Czech Republic and compared the genomes of these and seven other HCH-degrading bacterial strains. The three new strains each yielded a distinct set of metabolites during their degradation of HCH isomers. Variable assembly of the pathway is a common feature across the 10 genomes, eight of which (including all three Czech strains) were either missing key lin genes or containing duplicate copies of upstream lin genes (linA-F). The analysis also confirmed the important role of horizontal transfer mediated by insertion sequence IS6100 in the acquisition of the pathway, with a stronger association of IS6100 to the lin genes in the new strains. In one strain, a linA variant was identified that likely caused a novel degradation phenotype involving a shift in isomer preference. This study identifies a number of strains that are in the early stages of lin pathway acquisition and shows that the state of the pathway can explain the degradation patterns observed. PMID:25850427

  20. Insights into Ongoing Evolution of the Hexachlorocyclohexane Catabolic Pathway from Comparative Genomics of Ten Sphingomonadaceae Strains

    PubMed Central

    Pearce, Stephen L.; Oakeshott, John G.; Pandey, Gunjan

    2015-01-01

    Hexachlorocyclohexane (HCH), a synthetic organochloride, was first used as a broad-acre insecticide in the 1940s, and many HCH-degrading bacterial strains have been isolated from around the globe during the last 20 years. To date, the same degradation pathway (the lin pathway) has been implicated in all strains characterized, although the pathway has only been characterized intensively in two strains and for only a single HCH isomer. To further elucidate the evolution of the lin pathway, we have biochemically and genetically characterized three HCH-degrading strains from the Czech Republic and compared the genomes of these and seven other HCH-degrading bacterial strains. The three new strains each yielded a distinct set of metabolites during their degradation of HCH isomers. Variable assembly of the pathway is a common feature across the 10 genomes, eight of which (including all three Czech strains) were either missing key lin genes or containing duplicate copies of upstream lin genes (linA-F). The analysis also confirmed the important role of horizontal transfer mediated by insertion sequence IS6100 in the acquisition of the pathway, with a stronger association of IS6100 to the lin genes in the new strains. In one strain, a linA variant was identified that likely caused a novel degradation phenotype involving a shift in isomer preference. This study identifies a number of strains that are in the early stages of lin pathway acquisition and shows that the state of the pathway can explain the degradation patterns observed. PMID:25850427

  1. Efficient Validation of Metabolic Pathway Databases Liliana Flix Gabriel Valiente

    E-print Network

    Valiente, Gabriel

    such as KEGG contain information on thousands of enzymatic reactions drawn from the biomedical literature, and test the method on the latest release of the KEGG LIGAND database. Keywords: metabolic pathway, enzymatic reaction, classification, consistency, validation, KEGG. 1. Introduction Biochemical pathways

  2. Integrative data mining of high-throughput in vitro screens, in vivo data, and disease information to identify Adverse Outcome Pathway (AOP) signatures:ToxCast high-throughput screening data and Comparative Toxicogenomics Database (CTD) as a case study.

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework provides a systematic way to describe linkages between molecular and cellular processes and organism or population level effects. The current AOP assembly methods however, are inefficient. Our goal is to generate computationally-pr...

  3. Biochemical genetic markers in sugarcane.

    PubMed

    Glaszmann, J C; Fautret, A; Noyer, J L; Feldmann, P; Lanaud, C

    1989-10-01

    Isozyme variation was used to identify biochemical markers of potential utility in sugarcane genetics and breeding. Electrophoretic polymorphism was surveyed for nine enzymes among 39 wild and noble sugarcane clones, belonging to the species most closely related to modern varieties. Up to 114 distinct bands showing presence versus absence type of variation were revealed and used for qualitative characterization of the materials. Multivariate analysis of the data isolated the Erianthus clone sampled and separated the Saccharum spontaneum clones from the S. robustum and S. officinarum clones; the latter two were not differentiated from one another. The analysis of self-progenies of a 2n=112 S. spontaneum and of a commercial variety showed examples of mono- and polyfactorial segregations. Within the progeny of the variety, co-segregation of two isozymes frequent in S. spontaneum led to them being assigned to a single chromosome initially contributed by a S. spontaneum donor. This illustrates how combined survey of ancestral species and segregation analysis in modern breeding materials should permit using the lack of interspecific cross-over to establish linkage groups in a sugarcane genome. PMID:24225682

  4. Biochemical and Genetic Tests for Inhibitors of Leishmania Pteridine Pathways

    E-print Network

    Beverley, Stephen M.

    , sulfa drugs, and trimethoprim have enjoyed success (Ferone 1984; Grossman and Remington 1979; Mc drugs. Leishmania possess a novel alternative pteridine reductase (PTR1) which is relatively insensitive to methotrexate. We have proposed that the ability of PTR1 to serve as a metabolic bypass and thus modulate drug

  5. Analysis of common bean expressed sequence tags identifies sulfur metabolic pathways active in seed and sulfur-rich proteins highly expressed in the absence of phaseolin and major lectins

    PubMed Central

    2011-01-01

    Background A deficiency in phaseolin and phytohemagglutinin is associated with a near doubling of sulfur amino acid content in genetically related lines of common bean (Phaseolus vulgaris), particularly cysteine, elevated by 70%, and methionine, elevated by 10%. This mostly takes place at the expense of an abundant non-protein amino acid, S-methyl-cysteine. The deficiency in phaseolin and phytohemagglutinin is mainly compensated by increased levels of the 11S globulin legumin and residual lectins. Legumin, albumin-2, defensin and albumin-1 were previously identified as contributing to the increased sulfur amino acid content in the mutant line, on the basis of similarity to proteins from other legumes. Results Profiling of free amino acid in developing seeds of the BAT93 reference genotype revealed a biphasic accumulation of gamma-glutamyl-S-methyl-cysteine, the main soluble form of S-methyl-cysteine, with a lag phase occurring during storage protein accumulation. A collection of 30,147 expressed sequence tags (ESTs) was generated from four developmental stages, corresponding to distinct phases of gamma-glutamyl-S-methyl-cysteine accumulation, and covering the transitions to reserve accumulation and dessication. Analysis of gene ontology categories indicated the occurrence of multiple sulfur metabolic pathways, including all enzymatic activities responsible for sulfate assimilation, de novo cysteine and methionine biosynthesis. Integration of genomic and proteomic data enabled the identification and isolation of cDNAs coding for legumin, albumin-2, defensin D1 and albumin-1A and -B induced in the absence of phaseolin and phytohemagglutinin. Their deduced amino acid sequences have a higher content of cysteine than methionine, providing an explanation for the preferential increase of cysteine in the mutant line. Conclusion The EST collection provides a foundation to further investigate sulfur metabolism and the differential accumulation of sulfur amino acids in seed of common bean. Identification of sulfur-rich proteins whose levels are elevated in seed lacking phaseolin and phytohemagglutinin and sulfur metabolic genes may assist the improvement of protein quality. PMID:21615926

  6. Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo

    PubMed Central

    2011-01-01

    Background Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Results Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3? ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3? activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Conclusions Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways converge at GSK3? to control Myc protein stability, while our genetic analysis shows that insulin and TOR pathways have different requirements for Myc activity during development of the eye, suggesting that Myc might be differentially induced by these pathways during growth or proliferation of cells that make up the ommatidia. PMID:21951762

  7. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation.

    PubMed

    Könneke, Martin; Schubert, Daniel M; Brown, Philip C; Hügler, Michael; Standfest, Sonja; Schwander, Thomas; Schada von Borzyskowski, Lennart; Erb, Tobias J; Stahl, David A; Berg, Ivan A

    2014-06-01

    Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments. PMID:24843170

  8. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation

    PubMed Central

    Könneke, Martin; Schubert, Daniel M.; Brown, Philip C.; Hügler, Michael; Standfest, Sonja; Schwander, Thomas; Schada von Borzyskowski, Lennart; Erb, Tobias J.; Stahl, David A.; Berg, Ivan A.

    2014-01-01

    Archaea of the phylum Thaumarchaeota are among the most abundant prokaryotes on Earth and are widely distributed in marine, terrestrial, and geothermal environments. All studied Thaumarchaeota couple the oxidation of ammonia at extremely low concentrations with carbon fixation. As the predominant nitrifiers in the ocean and in various soils, ammonia-oxidizing archaea contribute significantly to the global nitrogen and carbon cycles. Here we provide biochemical evidence that thaumarchaeal ammonia oxidizers assimilate inorganic carbon via a modified version of the autotrophic hydroxypropionate/hydroxybutyrate cycle of Crenarchaeota that is far more energy efficient than any other aerobic autotrophic pathway. The identified genes of this cycle were found in the genomes of all sequenced representatives of the phylum Thaumarchaeota, indicating the environmental significance of this efficient CO2-fixation pathway. Comparative phylogenetic analysis of proteins of this pathway suggests that the hydroxypropionate/hydroxybutyrate cycle emerged independently in Crenarchaeota and Thaumarchaeota, thus supporting the hypothesis of an early evolutionary separation of both archaeal phyla. We conclude that high efficiency of anabolism exemplified by this autotrophic cycle perfectly suits the lifestyle of ammonia-oxidizing archaea, which thrive at a constantly low energy supply, thus offering a biochemical explanation for their ecological success in nutrient-limited environments. PMID:24843170

  9. An inventory of peroxisomal proteins and pathways in Drosophila melanogaster

    PubMed Central

    Faust, Joseph E.; Verma, Avani; Peng, Chengwei; McNew, James A.

    2012-01-01

    Peroxisomes are ubiquitous organelles housing a variety of essential biochemical pathways. Peroxisome dysfunction causes a spectrum of human diseases known as peroxisome biogenesis disorders (PBD). While much is known regarding the mechanism of peroxisome biogenesis, it is still unclear how peroxisome dysfunction leads to the disease state. Several recent studies have shown that mutations in Drosophila peroxin genes cause phenotypes similar to those seen in humans with PBDs suggesting that Drosophila might be a useful system to model PBDs. We have analyzed the proteome of Drosophila to identify the proteins involved in peroxisomal biogenesis and homeostasis as well as metabolic enzymes that function within the organelle. The subcellular localization of five of these predicted peroxisomal proteins was confirmed. Similar to C. elegans, Drosophila appears to only utilize the peroxisome targeting signal (PTS) type 1 system for matrix protein import. This work will further our understanding of peroxisomes in Drosophila and add to the usefulness of this emerging model system. PMID:22758915

  10. A Course in... Biochemical Engineering.

    ERIC Educational Resources Information Center

    Ng, Terry K-L.; And Others

    1988-01-01

    Describes a chemical engineering course for senior undergraduates and first year graduate students in biochemical engineering. Discusses five experiments used in the course: aseptic techniques, dissolved oxygen measurement, oxygen uptake by yeast, continuous sterilization, and cultivation of microorganisms. (MVL)

  11. Tethering complexes in the endocytic pathway: CORVET and HOPS.

    PubMed

    Solinger, Jachen A; Spang, Anne

    2013-06-01

    Endocytosis describes the processes by which proteins, peptides and solutes, and also pathogens, enter the cell. Endocytosed material progresses to endosomes. Genetic studies in yeast, worms, flies and mammals have identified a set of universally conserved proteins that are essential for early-to-late endosome transition and lysosome biogenesis, and for endolysosomal trafficking pathways, including autophagy. The two Vps-C complexes CORVET (class C core vacuole/endosome tethering) and HOPS (homotypic fusion and vacuole protein sorting) perform diverse biochemical functions in endocytosis: they tether membranes, interact with Rab GTPases, activate and proof-read SNARE assembly to drive membrane fusion, and possibly attach endosomes to the cytoskeleton. In addition, several of the CORVET and HOPS subunits have diversified in metazoans, and probably form additional specialized complexes to accomodate the higher complexity of trafficking pathways in these cells. Recent studies offer new insights into the complex relationships between CORVET and HOPS complexes and other factors of the endolysosomal pathway. Interactions with V-ATPase, the ESCRT machinery, phosphoinositides, the cytoskeleton and the Rab switch suggest an intricate cooperative network for endosome maturation. Accumulating evidence supports the view that endosomal tethering complexes implement a regulatory logic that governs endomembrane identity and dynamics. PMID:23351085

  12. Accurate atom-mapping computation for biochemical reactions.

    PubMed

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012. PMID:22963657

  13. Algebraic Methods for Inferring Biochemical Networks: a Maximum Likelihood Approach

    PubMed Central

    Craciun, Gheorghe; Pantea, Casian; Rempala, Grzegorz A.

    2009-01-01

    We present a novel method for identifying a biochemical reaction network based on multiple sets of estimated reaction rates in the corresponding reaction rate equations arriving from various (possibly different) experiments. The current method, unlike some of the graphical approaches proposed in the literature, uses the values of the experimental measurements only relative to the geometry of the biochemical reactions under the assumption that the underlying reaction network is the same for all the experiments. The proposed approach utilizes algebraic statistical methods in order to parametrize the set of possible reactions so as to identify the most likely network structure, and is easily scalable to very complicated biochemical systems involving a large number of species and reactions. The method is illustrated with a numerical example of a hypothetical network arising form a “mass transfer”-type model. PMID:19709932

  14. Neuritogenic Militarinone-Inspired 4-Hydroxypyridones Target the Stress Pathway Kinase MAP4K4.

    PubMed

    Schröder, Peter; Förster, Tim; Kleine, Stefan; Becker, Christian; Richters, André; Ziegler, Slava; Rauh, Daniel; Kumar, Kamal; Waldmann, Herbert

    2015-10-12

    Progressive loss and impaired restoration of neuronal activity are hallmarks of neurological diseases, and new small molecules with neurotrophic activity are in high demand. The militarinone alkaloids and structurally simplified analogues with 4-hydroxy-2-pyridone core structure induce pronounced neurite outgrowth, but their protein target has not been identified. Reported herein is the synthesis of a militarinone-inspired 4-hydroxy-2-pyridone collection, its investigation for enhancement of neurite outgrowth, and the discovery of the stress pathway kinase MAP4K4 as a target of the discovered neuritogenic pyridones. The most potent 4-hydroxy-2-pyridone is a selective ATP-competitive inhibitor of MAP4K4 but not of the other stress pathway related kinases, as proven by biochemical analysis and by a crystal structure of the inhibitor in complex with MAP4K4. The findings support the notion that MAP4K4 may be a new target for the treatment of neurodegenerative diseases. PMID:25908259

  15. Induced biochemical interactions in crude oils

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.

    1996-08-01

    In the evolution of oil from sedimentary to reservoir conditions, the hydrogen to carbon ratios decrease while the oxygen, nitrogen, and sulfur to carbon ratios increase. During this process, the oils become heavier and richer in asphaltenes. In terms of chemical composition, the oils become enriched in resins, asphaltenes, and polar compounds containing the heteroatoms and metals. Over the geological periods of time, the chemical and physical changes have been brought about by chemical, biological (biochemical) and physical (temperature and pressure) means as well as by the catalytic effects of the sedimentary matrices, migration, flooding, and other physical processes. Therefore, different types of oils are the end products of a given set of such interactions which were brought about by multiple and simultaneous physicochemical processes involving electron transfer, free radical, and chemical reactions. A biocatalyst introduced into a reaction mixture of the type produced by such reactions will seek available chemical reaction sites and react at the most favorable ones. The rates and the chemical pathways by which the biocatalytic reactions will proceed will depend on the oil type and the biocatalyst(s). Some of the possible reaction pathways that may occur in such complex mixtures are discussed.

  16. MATLAB-Based Teaching Modules in Biochemical Engineering

    ERIC Educational Resources Information Center

    Lee, Kilho; Comolli, Noelle K.; Kelly, William J.; Huang, Zuyi

    2015-01-01

    Mathematical models play an important role in biochemical engineering. For example, the models developed in the field of systems biology have been used to identify drug targets to treat pathogens such as Pseudomonas aeruginosa in biofilms. In addition, competitive binding models for chromatography processes have been developed to predict expanded…

  17. Professor Doug Brutlag Biochem 118Q, Winter 2011

    E-print Network

    Brutlag, Doug

    ://www.google.com/imghp?hl=en&tab=wi #12; Identify the mechanism for FGF and receptors Pituitary dwarfism (i.e. growth hormone deficiencyJustin Lee Professor Doug Brutlag Biochem 118Q, Winter 2011 #12; Dwarfism Achondroplasia FGFR, Tall Stature, Scoliosis, and Hearing Loss Syndrome Cervical or bladder cancer FGFR1, FGFR2, FGF8

  18. Biochemical methods for studying kinetic regulation of Arf1 activation by Sec7

    PubMed Central

    Richardson, Brian C.; Fromme, J. Christopher

    2015-01-01

    The Arf family of small GTPases regulates vesicular transport at several locations within the cell, and is in turn regulated by guanine nucleotide exchange factors (GEFs) via a conserved catalytic domain, termed the Sec7 domain. The catalytic activity of the Sec7 domain is well characterized in the context of a few GEFs acting at the periphery of the cell. This chapter describes techniques used to extend biochemical analysis of activity to the much larger GEFs acting on the Arf family in the core secretory pathway, using the activity of S. cerevisiae Sec7 on Arf1, regulating export from the trans-Golgi network (TGN), as a model. Complete methods for purification to near-homogeneity of all proteins required, including several Sec7 constructs and multiple relevant small GTPases, are detailed. These are followed by methods for quantification of the nucleotide exchange activity of Sec7 in a physiologically relevant context, including modifications required to dissect the signal integration functions of Sec7 as an effector of several other small GTPases, and methods for identifying stable Sec7-small GTPase interactions in the presence of membranes. These techniques may be extended to analysis of similar members of the Sec7 GEF subfamily in other species and acting elsewhere in the secretory pathway. PMID:26360031

  19. Exploring Biological Electron Transfer Pathway Dynamics with the Pathways Plugin for VMD

    PubMed Central

    Balabin, Ilya A.; Hu, Xiangqian; Beratan, David N.

    2012-01-01

    We describe the new Pathways plugin for the molecular visualization program VMD. The plugin identifies and visualizes tunneling pathways and pathway families in biomolecules and calculates relative electronic couplings. The plugin includes unique features to estimate the importance of individual atoms for mediating the coupling, to analyze the coupling sensitivity to thermal motion, and to visualize pathway fluctuations. The Pathways plugin is open source software distributed under the terms of the GNU public license. PMID:22298319

  20. Biochemical Markers of Spontaneous Preterm Birth in Asymptomatic Women

    PubMed Central

    Chan, Ronna L.

    2014-01-01

    Preterm birth is a delivery that occurs at less than 37 completed weeks of gestation and it is associated with perinatal morbidity and mortality. Spontaneous preterm birth accounts for up to 75% of all preterm births. A number of maternal or fetal characteristics have been associated with preterm birth, but the use of individual or group biochemical markers have advanced some of the understanding on the mechanisms leading to spontaneous preterm birth. This paper provides a summary on the current literature on the use of biochemical markers in predicting spontaneous preterm birth in asymptomatic women. Evidence from the literature suggests fetal fibronectin, cervical interleukin-6, and ?-fetoprotein as promising biochemical markers in predicting spontaneous preterm birth in asymptomatic women. The role of gene-gene and gene-environment interactions, as well as epigenetics, has the potential to further elucidate and improve understanding of the underlying mechanisms or pathways of spontaneous preterm birth. Refinement in study design and methodology is needed in future research for the development and validation of individual or group biochemical marker(s) for use independently or in conjunction with other potential risk factors such as genetic variants and environmental and behavioral factors in predicting spontaneous preterm birth across diverse populations. PMID:24551837

  1. CONSTRICTOR: Constraint Modification Provides Insight into Design of Biochemical Networks

    PubMed Central

    Erickson, Keesha E.; Gill, Ryan T.; Chatterjee, Anushree

    2014-01-01

    Advances in computational methods that allow for exploration of the combinatorial mutation space are needed to realize the potential of synthetic biology based strain engineering efforts. Here, we present Constrictor, a computational framework that uses flux balance analysis (FBA) to analyze inhibitory effects of genetic mutations on the performance of biochemical networks. Constrictor identifies engineering interventions by classifying the reactions in the metabolic model depending on the extent to which their flux must be decreased to achieve the overproduction target. The optimal inhibition of various reaction pathways is determined by restricting the flux through targeted reactions below the steady state levels of a baseline strain. Constrictor generates unique in silico strains, each representing an “expression state”, or a combination of gene expression levels required to achieve the overproduction target. The Constrictor framework is demonstrated by studying overproduction of ethylene in Escherichia coli network models iAF1260 and iJO1366 through the addition of the heterologous ethylene-forming enzyme from Pseudomonas syringae. Targeting individual reactions as well as combinations of reactions reveals in silico mutants that are predicted to have as high as 25% greater theoretical ethylene yields than the baseline strain during simulated exponential growth. Altering the degree of restriction reveals a large distribution of ethylene yields, while analysis of the expression states that return lower yields provides insight into system bottlenecks. Finally, we demonstrate the ability of Constrictor to scan networks and provide targets for a range of possible products. Constrictor is an adaptable technique that can be used to generate and analyze disparate populations of in silico mutants, select gene expression levels and provide non-intuitive strategies for metabolic engineering. PMID:25422896

  2. Biochemical characterization of cell-death via Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kunapareddy, Nagapratima; Carpenter, Susan; Freyer, James P.; Mourant, Judith R.

    2006-02-01

    Necrosis is the dominant form of cell-death that results from several modalities of cancer treatment. An estimate of post-treatment necrosis serves as an useful indicator of treatment efficacy and tumor response. A non-invasive means of identifying necrosis would serve as a useful clinical tool. In this study, we use Raman spectroscopy for the biochemical characterization of necrosis. Necrosis formation in tissue has been modeled in vitro by the use of multicellular spheroids. The relative amounts of various biochemical components have been estimated and correlated with quantitative estimates of necrosis.

  3. Pathways and Networks-Based Analysis of Candidate Genes Associated with Nicotine Addiction

    PubMed Central

    Liu, Meng; Fan, Rui; Liu, Xinhua; Cheng, Feng; Wang, Ju

    2015-01-01

    Nicotine is the addictive substance in tobacco and it has a broad impact on both the central and peripheral nervous systems. Over the past decades, an increasing number of genes potentially involved in nicotine addiction have been identified by different technical approaches. However, the molecular mechanisms underlying nicotine addiction remain largely unclear. Under such situation, a comprehensive analysis focusing on the overall functional characteristics of these genes, as well as how they interact with each other will provide us valuable information to understand nicotine addiction. In this study, we presented a systematic analysis on nicotine addiction-related genes to identify the major underlying biological themes. Functional analysis revealed that biological processes and biochemical pathways related to neurodevelopment, immune system and metabolism were significantly enriched in the nicotine addiction-related genes. By extracting the nicotine addiction-specific subnetwork, a number of novel genes associated with addiction were identified. Moreover, we constructed a schematic molecular network for nicotine addiction via integrating the pathways and network, providing an intuitional view to understand the development of nicotine addiction. Pathway and network analysis indicated that the biological processes related to nicotine addiction were complex. Results from our work may have important implications for understanding the molecular mechanism underlying nicotine addiction. PMID:25965070

  4. Self-organization in a biochemical-neuron network

    NASA Astrophysics Data System (ADS)

    Okamoto, Masahiro; Maki, Yukihiro; Sekiguchi, Tatsuya; Yoshida, Satoshi

    Mimicking the switching property of cyclic enzyme systems in metabolic pathways, we have proposed a different type of molecular switching device (post-synaptic neuron) whose mechanism can be represented by a threshold-logic function capable of storing short-term memory. We have named this system “biochemical-neuron” and have already developed the board-leveled analog circuit. In the present study, building the integrated artificial neural network system composed of biochemical-neurons, we have investigated the relationship between network responses and time-variant excited stimuli to the network, especially focusing on the examination of some neurophysiological experiments such as “selective elimination of synapses” and “associative long-term depression”. Furthermore we shall discuss the information processing where the time-variant external analog signals are received and transduced to impulse signals.

  5. 13. Phenolics and Lignin p. 1 Lignin and the General Phenylpropanoid Pathway

    E-print Network

    Constabel, Peter

    13. Phenolics and Lignin p. 1 Lignin and the General Phenylpropanoid Pathway Introduction and Importance: phenolic: a compound consisting of an aromatic ring from such a compound. Phenylpropanoids and phenolics are a major biochemical

  6. Pathway Analysis

    Cancer.gov

    Projects such as The Cancer Genome Atlas have gathered enormous quantities of data from human tumor samples. Informaticians at the National Lab are looking within such data for insights about the influence of mutant RAS genes on signaling pathways in cancers. On a smaller scale, the RAS Initiative will use numerous experimental platforms to interrogate cell lines expressing mutant RAS genes.

  7. Phosphate-responsive signaling pathway is a novel component of NAD+ metabolism in Saccharomyces cerevisiae.

    PubMed

    Lu, Shu-Ping; Lin, Su-Ju

    2011-04-22

    Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor involved in various cellular biochemical reactions. To date the signaling pathways that regulate NAD(+) metabolism remain unclear due to the dynamic nature and complexity of the NAD(+) metabolic pathways and the difficulty of determining the levels of the interconvertible pyridine nucleotides. Nicotinamide riboside (NmR) is a key pyridine metabolite that is excreted and re-assimilated by yeast and plays important roles in the maintenance of NAD(+) pool. In this study we establish a NmR-specific reporter system and use it to identify yeast mutants with altered NmR/NAD(+) metabolism. We show that the phosphate-responsive signaling (PHO) pathway contributes to control NAD(+) metabolism. Yeast strains with activated PHO pathway show increases in both the release rate and internal concentration of NmR. We further identify Pho8, a PHO-regulated vacuolar phosphatase, as a potential NmR production factor. We also demonstrate that Fun26, a homolog of human ENT (equilibrative nucleoside transporter), localizes to the vacuolar membrane and establishes the size of the vacuolar and cytosolic NmR pools. In addition, the PHO pathway responds to depletion of cellular nicotinic acid mononucleotide (NaMN) and mediates nicotinamide mononucleotide (NMN) catabolism, thereby contributing to both NmR salvage and phosphate acquisition. Therefore, NaMN is a putative molecular link connecting the PHO signaling and NAD(+) metabolic pathways. Our findings may contribute to the understanding of the molecular basis and regulation of NAD(+) metabolism in higher eukaryotes. PMID:21349851

  8. The biochemical and structural basis for trans-to-cis isomerization of

    E-print Network

    Palczewski, Krzysztof

    The biochemical and structural basis for trans-to-cis isomerization of retinoids in the chemistry research across evolutionary bound- aries. An enzymatic pathway of chromophore trans-to-cis isomerization is intrinsic to animal vision A cycle of cis-to-trans isomerization of the visual chromo- phore is an intrinsic

  9. Biochem 118 March 8, 1999

    E-print Network

    Brutlag, Doug

    ; the genes #12;Eric Tan Biochem 118 March 8, 1999 for Prader-Willi syndrome are activated after passing and physical development. Detection Prader-Willi syndrome is also important in that it is was the first detection has become much more accurate with the use of fluorescence in situ hybridization (FISH). Current

  10. Bayesian modeling of complex metabolic pathways.

    PubMed

    Conti, David V; Cortessis, Victoria; Molitor, John; Thomas, Duncan C

    2003-01-01

    Many chronic diseases are the result of a complex sequence of biochemical reactions involving exposures to various environmental agents, metabolized by a number of different genes. Routine epidemiologic analyses of such associations have tended to rely on standard contingency table or logistic regression methods, typically focusing on one variable at a time or pairwise combinations. We consider two statistical alternatives to this approach, one based on Bayesian model averaging, one based on pharmacokinetic modeling of the biochemical pathways. These approaches are illustrated using data from a case-control study of colorectal polyps in relation to tobacco smoking and consumption of well done red meat, both viewed as sources of heterocyclic amines and polycyclic aromatic hydrocarbons. The new analyses are structured in a manner that attempts to take advantage of prior knowledge of the metabolism of these classes of compounds and the various genes that regulate these pathways. PMID:14614242

  11. Phylobiochemical Characterization of Class-Ib Aspartate/Prephenate Aminotransferases Reveals Evolution of the Plant Arogenate Phenylalanine Pathway[W

    PubMed Central

    Dornfeld, Camilla; Weisberg, Alexandra J.; K C, Ritesh; Dudareva, Natalia; Jelesko, John G.; Maeda, Hiroshi A.

    2014-01-01

    The aromatic amino acid Phe is required for protein synthesis and serves as the precursor of abundant phenylpropanoid plant natural products. While Phe is synthesized from prephenate exclusively via a phenylpyruvate intermediate in model microbes, the alternative pathway via arogenate is predominant in plant Phe biosynthesis. However, the molecular and biochemical evolution of the plant arogenate pathway is currently unknown. Here, we conducted phylogenetically informed biochemical characterization of prephenate aminotransferases (PPA-ATs) that belong to class-Ib aspartate aminotransferases (AspAT Ibs) and catalyze the first committed step of the arogenate pathway in plants. Plant PPA-ATs and succeeding arogenate dehydratases (ADTs) were found to be most closely related to homologs from Chlorobi/Bacteroidetes bacteria. The Chlorobium tepidum PPA-AT and ADT homologs indeed efficiently converted prephenate and arogenate into arogenate and Phe, respectively. A subset of AspAT Ib enzymes exhibiting PPA-AT activity was further identified from both Plantae and prokaryotes and, together with site-directed mutagenesis, showed that Thr-84 and Lys-169 play key roles in specific recognition of dicarboxylic keto (prephenate) and amino (aspartate) acid substrates. The results suggest that, along with ADT, a gene encoding prephenate-specific PPA-AT was transferred from a Chlorobi/Bacteroidetes ancestor to a eukaryotic ancestor of Plantae, allowing efficient Phe and phenylpropanoid production via arogenate in plants today. PMID:25070637

  12. Biochemical Engineering. Part II: Process Design

    ERIC Educational Resources Information Center

    Atkinson, B.

    1972-01-01

    Describes types of industrial techniques involving biochemical products, specifying the advantages and disadvantages of batch and continuous processes, and contrasting biochemical and chemical engineering. See SE 506 318 for Part I. (AL)

  13. Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production.

    PubMed

    Lai, Martin C; Lan, Ethan I

    2015-01-01

    Engineering cyanobacteria into photosynthetic microbial cell factories for the production of biochemicals and biofuels is a promising approach toward sustainability. Cyanobacteria naturally grow on light and carbon dioxide, bypassing the need of fermentable plant biomass and arable land. By tapping into the central metabolism and rerouting carbon flux towards desirable compound production, cyanobacteria are engineered to directly convert CO? into various chemicals. This review discusses the diversity of bioproducts synthesized by engineered cyanobacteria, the metabolic pathways used, and the current engineering strategies used for increasing their titers. PMID:26516923

  14. Advances in Metabolic Engineering of Cyanobacteria for Photosynthetic Biochemical Production

    PubMed Central

    Lai, Martin C.; Lan, Ethan I.

    2015-01-01

    Engineering cyanobacteria into photosynthetic microbial cell factories for the production of biochemicals and biofuels is a promising approach toward sustainability. Cyanobacteria naturally grow on light and carbon dioxide, bypassing the need of fermentable plant biomass and arable land. By tapping into the central metabolism and rerouting carbon flux towards desirable compound production, cyanobacteria are engineered to directly convert CO2 into various chemicals. This review discusses the diversity of bioproducts synthesized by engineered cyanobacteria, the metabolic pathways used, and the current engineering strategies used for increasing their titers. PMID:26516923

  15. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    SciTech Connect

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  16. Biodegradation of nitrobenzene through a hybrid pathway in Pseudomonas putida

    SciTech Connect

    Jung, K.H.; Lee, J.Y.; Kim, H.S.

    1995-12-20

    The biodegradation of nitrobenzene was attempted by using Pseudomonas putida TB 103 which possesses the hybrid pathway combining the tod and the tol pathways. Analysis of the metabolic flux of nitrobenzene through the hybrid pathway indicated that nitrobenzene was initially oxidized to cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene by toluene dioxygenase in the tod pathway and then channeled into the tol pathway, leading to the complete biodegradation of nitrobenzene. A crucial metabolic step redirecting the metabolic flux of nitrobenzene from the tod to the tol pathway was determined from the genetic and biochemical studies on the enzymes involved in the tol pathway. From these results, it was found that toluate-cis-glycol dehydrogenase could convert cis-1,2-dihydroxy-3-nitrocyclohexa-3,5-diene to catechol in the presence of NAD{sup +} with liberation of nitrite and the reduced form of NAD{sup +} (NADH) into the medium.

  17. MAPKs in development: insights from Dictyostelium signaling pathways

    PubMed Central

    Hadwiger, Jeffrey A.; Nguyen, Hoai-Nghia

    2011-01-01

    Mitogen activated protein kinases (MAPKs) play important roles in the development of eukaryotic organisms through the regulation of signal transduction pathways stimulated by external signals. MAPK signaling pathways have been associated with the regulation of cell growth, differentiation, and chemotaxis, indicating MAPKs contribute to a diverse set of developmental processes. In most eukaryotes, the diversity of external signals is likely to far exceed the diversity of MAPKs, suggesting that multiple signaling pathways might share MAPKs. Do different signaling pathways converge before MAPK function or can MAPKs maintain signaling specificity through interactions with specific proteins? The genetic and biochemical analysis of MAPK pathways in simple eukaryotes such as Dictyostelium offers opportunities to investigate functional specificity of MAPKs in G protein-mediated signal transduction pathways. This review considers the regulation and specificity of MAPK function in pathways that control Dictyostelium growth and development. PMID:21666837

  18. Trim65: A cofactor for regulation of the microRNA pathway

    PubMed Central

    Li, Shitao; Wang, Lingyan; Fu, Bishi; Dorf, Martin E

    2014-01-01

    MicroRNA (miRNA) comprise a large family of non-protein coding transcripts which regulate gene expression in diverse biological pathways of both plants and animals. We recently used a systematic proteomic approach to generate a protein interactome map of the human miRNA pathway involved in miRNA biogenesis and processing. The interactome expands the number of candidate proteins in the miRNA pathway and connects the network to other cellular processes. Functional analyses identified TRIM65 and at least 3 other proteins as novel regulators of the miRNA pathway. Biochemical studies established that TRIM65 forms stable complexes with TNRC6 proteins and these molecules co-localize in P-body-like structures. Gain of function and RNAi analyses reveal that TRIM65 negatively regulates miRNA-driven suppression of mRNA translation by targeting TNRC6 proteins for ubiquitination and degradation. The potential molecular mechanisms which regulate TRIM65 catalytic activity are discussed. PMID:25483047

  19. Genome-Wide RNAi Screening to Dissect the TGF-? Signal Transduction Pathway.

    PubMed

    Chen, Xiaochu; Xu, Lan

    2016-01-01

    Thetransforming growth factor-? (TGF-?) family of cytokines figures prominently in regulation of embryonic development and adult tissue homeostasis from Drosophila to mammals. Genetic defects affecting TGF-? signaling underlie developmental disorders and diseases such as cancer in human. Therefore, delineating the molecular mechanism by which TGF-? regulates cell biology is critical for understanding normal biology and disease mechanisms. Forward genetic screens in model organisms and biochemical approaches in mammalian tissue culture were instrumental in initial characterization of the TGF-? signal transduction pathway. With complete sequence information of the genomes and the advent of RNA interference (RNAi) technology, genome-wide RNAi screening emerged as a powerful functional genomics approach to systematically delineate molecular components of signal transduction pathways. Here, we describe a protocol for image-based whole-genome RNAi screening aimed at identifying molecules required for TGF-? signaling into the nucleus. Using this protocol we examined >90 % of annotated Drosophila open reading frames (ORF) individually and successfully uncovered several novel factors serving critical roles in the TGF-? pathway. Thus cell-based high-throughput functional genomics can uncover new mechanistic insights on signaling pathways beyond what the classical genetics had revealed. PMID:26520138

  20. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  1. A Revolution in Plant Metabolism: Genome-Enabled Pathway Discovery.

    PubMed

    Kim, Jeongwoon; Buell, C Robin

    2015-11-01

    Genome-enabled discoveries are the hallmark of 21st century biology, including major discoveries in the biosynthesis and regulation of plant metabolic pathways. Access to next generation sequencing technologies has enabled research on the biosynthesis of diverse plant metabolites, especially secondary metabolites, resulting in a broader understanding of not only the structural and regulatory genes involved in metabolite biosynthesis but also in the evolution of chemical diversity in the plant kingdom. Several paradigms that govern secondary metabolism have emerged, including that (1) gene family expansion and diversification contribute to the chemical diversity found in the plant kingdom, (2) genes encoding biochemical pathway components are frequently transcriptionally coregulated, and (3) physical clustering of nonhomologous genes that encode components of secondary metabolic pathways can occur. With an increasing knowledge base that is coupled with user-friendly and inexpensive technologies, biochemists are poised to accelerate the annotation of biochemical pathways relevant to human health, agriculture, and the environment. PMID:26224805

  2. Biochemical and Genetic Insights into Asukamycin Biosynthesis*

    PubMed Central

    Rui, Zhe; Pet?í?ková, Kate?ina; Škanta, František; Pospíšil, Stanislav; Yang, Yanling; Chen, Chung-Yung; Tsai, Shih-Feng; Floss, Heinz G.; Pet?í?ek, Miroslav; Yu, Tin-Wein

    2010-01-01

    Asukamycin, a member of the manumycin family metabolites, is an antimicrobial and potential antitumor agent isolated from Streptomyces nodosus subsp. asukaensis. The entire asukamycin biosynthetic gene cluster was cloned, assembled, and expressed heterologously in Streptomyces lividans. Bioinformatic analysis and mutagenesis studies elucidated the biosynthetic pathway at the genetic and biochemical level. Four gene sets, asuA–D, govern the formation and assembly of the asukamycin building blocks: a 3-amino-4-hydroxybenzoic acid core component, a cyclohexane ring, two triene polyketide chains, and a 2-amino-3-hydroxycyclopent-2-enone moiety to form the intermediate protoasukamycin. AsuE1 and AsuE2 catalyze the conversion of protoasukamycin to 4-hydroxyprotoasukamycin, which is epoxidized at C5–C6 by AsuE3 to the final product, asukamycin. Branched acyl CoA starter units, derived from Val, Leu, and Ile, can be incorporated by the actions of the polyketide synthase III (KSIII) AsuC3/C4 as well as the cellular fatty acid synthase FabH to produce the asukamycin congeners A2–A7. In addition, the type II thioesterase AsuC15 limits the cellular level of ?-cyclohexyl fatty acids and likely maintains homeostasis of the cellular membrane. PMID:20522559

  3. External physical and biochemical stimulation to enhance skeletal muscle bioengineering

    PubMed Central

    Plock, Jan; Eberli, Daniel

    2015-01-01

    Purpose of review Cell based muscle tissue engineering carries the potential to revert the functional loss of muscle tissue caused by disease and trauma. Although muscle tissue can be bioengineered using various precursor cells, major limitations still remain. Recent findings In the last decades several cellular pathways playing a crucial role in muscle tissue regeneration have been described. These pathways can be influenced by external stimuli and they not only orchestrate the regenerative process after physiologic wear and muscle trauma, but they also play an important part in aging and maintaining the stem cell niche, which is required to maintain long-term muscle function. Summary In this review article we will highlight possible new avenues using external physical and biochemical stimulation in order to optimize muscle bioengineering. PMID:25453267

  4. Scorpion peptide LqhIT2 activates phenylpropanoid pathways via jasmonate to increase rice resistance to rice leafrollers.

    PubMed

    Tianpei, Xiuzi; Li, Dong; Qiu, Ping; Luo, Jie; Zhu, Yingguo; Li, Shaoqing

    2015-01-01

    LqhIT2 is an insect-specific toxin peptide identified in Leiurus quinquestriatus hebraeus that can be toxic to lepidoptera pests. However, whether LqhIT2 induces insect resistance in rice, and how the LqhIT2 influences the biochemical metabolism of rice plants remains unknown. Here, purified LqhIT2-GST fusion protein had toxicity to rice leafrollers. Meanwhile, in vitro and field trials showed that LqhIT2 transgenic rice plants were less damaged by rice leafrollers compared to the wild type plants. Introducing LqhIT2 primed the elevated expression of lipoxygenase, a key component of the jasmonic acid biosynthetic pathway, together with enhanced linolenic acid, cis-(+)-12-oxophytodienoic acid, jasmonic acid, and jasmonic acid-isoleucine levels. In addition, phenylalanine ammonia-lyase, a key gene of the phenylpropanoid pathway, was up-regulated. Correspondingly, the contents of downstream products of the phenylpropanoid pathway such as flavonoids and lignins, were also increased in LqhIT2 transgenic plants. These changes were paralleled by decreased starch, glucose, and glucose-6-phosphate accumulation, the key metabolites of glycolysis pathway that supplies the raw material and intermediate carbon products for phenylpropanoids biosyntheses. These findings suggest that, in addition to its own toxicity against pests, LqhIT2 activate the phenylpropanoid pathway via jasmonate-mediated priming, which subsequently increases flavonoid and lignin content and improves insect resistance in rice. PMID:25480003

  5. Occurrence of bacteria and biochemical markers on public surfaces.

    PubMed

    Reynolds, Kelly A; Watt, Pamela M; Boone, Stephanie A; Gerba, Charles P

    2005-06-01

    From 1999-2003, the hygiene of 1061 environmental surfaces from shopping, daycare, and office environments, personal items, and miscellaneous activities (i.e., gymnasiums, airports, movie theaters, restaurants, etc.), in four US cities, was monitored. Samples were analyzed for fecal and total coliform bacteria, protein, and biochemical markers. Biochemical markers, i.e., hemoglobin (blood marker), amylase (mucus, saliva, sweat, and urine marker), and urea (urine and sweat marker) were detected on 3% (26/801); 15% (120/801), and 6% (48/801) of the surfaces, respectively. Protein (general hygiene marker) levels > or = 200 microg/10 cm2 were present on 26% (200/801) of the surfaces tested. Surfaces from children's playground equipment and daycare centers were the most frequently contaminated (biochemical markers on 36%; 15/42 and 46%; 25/54, respectively). Surfaces from the shopping, miscellaneous activities, and office environments were positive for biochemical markers with a frequency of 21% (69/333), 21% (66/308), and 11% (12/105), respectively). Sixty samples were analyzed for biochemical markers and bacteria. Total and fecal coliforms were detected on 20% (12/60) and 7% (4/ 60) of the surfaces, respectively. Half and one-third of the sites positive for biochemical markers were also positive for total and fecal coliforms, respectively. Artificial contamination of public surfaces with an invisible fluorescent tracer showed that contamination from outside surfaces was transferred to 86% (30/ 35) of exposed individual's hands and 82% (29/35) tracked the tracer to their home or personal belongings hours later. Results provide information on the relative hygiene of commonly encountered public surfaces and aid in the identification of priority environments where contaminant occurrence and risk of exposure may be greatest. Children's playground equipment is identified as a priority surface for additional research on the occurrence of and potential exposure to infectious disease causing agents. PMID:16134485

  6. Dentin phosphophoryn in the matrix activates AKT and mTOR signaling pathway to promote preodontoblast survival and differentiation

    PubMed Central

    Eapen, Asha; George, Anne

    2015-01-01

    Dentin phosphophoryn (DPP) is an extracellular matrix protein synthesized by odontoblasts. It is highly acidic and the phosphorylated protein possesses a strong affinity for calcium ions. Therefore, DPP in the extracellular matrix can promote hydroxyapatite nucleation and can regulate the size of the growing crystal. Besides its calcium binding property, DPP can initiate signaling functions from the ECM (Extracellular matrix). The signals that promote the cytodifferentiation of preodontoblasts to fully functional odontoblasts are not known. In this study, we demonstrate that preodontoblasts on a DPP matrix, generates mechanical and biochemical signals. This is initiated by the ligation of the integrins with the RGD containing DPP. The downstream biochemical response observed is the activation of the AKT(protein kinase B) and mTOR (mammalian target of rapamycin) signaling pathways leading to the activation of the transcription factor NF-?B (Nuclear factor ?B). Terminal differentiation of the preodontoblasts was assessed by identifying phosphate and calcium deposits in the matrix using von Kossa and Alizarin red staining respectively. Identifying the signaling pathways initiated by DPP in the dentin matrix would help in devising strategies for dentin tissue engineering. PMID:26300786

  7. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway.

    PubMed

    Pino Del Carpio, Dunia; Basnet, Ram Kumar; Arends, Danny; Lin, Ke; De Vos, Ric C H; Muth, Dorota; Kodde, Jan; Boutilier, Kim; Bucher, Johan; Wang, Xiaowu; Jansen, Ritsert; Bonnema, Guusje

    2014-01-01

    Brassica rapa studies towards metabolic variation have largely been focused on the profiling of the diversity of metabolic compounds in specific crop types or regional varieties, but none aimed to identify genes with regulatory function in metabolite composition. Here we followed a genetical genomics approach to identify regulatory genes for six biosynthetic pathways of health-related phytochemicals, i.e carotenoids, tocopherols, folates, glucosinolates, flavonoids and phenylpropanoids. Leaves from six weeks-old plants of a Brassica rapa doubled haploid population, consisting of 92 genotypes, were profiled for their secondary metabolite composition, using both targeted and LC-MS-based untargeted metabolomics approaches. Furthermore, the same population was profiled for transcript variation using a microarray containing EST sequences mainly derived from three Brassica species: B. napus, B. rapa and B. oleracea. The biochemical pathway analysis was based on the network analyses of both metabolite QTLs (mQTLs) and transcript QTLs (eQTLs). Co-localization of mQTLs and eQTLs lead to the identification of candidate regulatory genes involved in the biosynthesis of carotenoids, tocopherols and glucosinolates. We subsequently focused on the well-characterized glucosinolate pathway and revealed two hotspots of co-localization of eQTLs with mQTLs in linkage groups A03 and A09. Our results indicate that such a large-scale genetical genomics approach combining transcriptomics and metabolomics data can provide new insights into the genetic regulation of metabolite composition of Brassica vegetables. PMID:25222144

  8. Biochemical Requirements for Two Dicer-Like Activities from Wheat Germ

    PubMed Central

    Shivaprasad, Padubidri V.; Hohn, Thomas; Akbergenov, Rashid

    2015-01-01

    RNA silencing pathways were first discovered in plants. Through genetic analysis, it has been established that the key silencing components called Dicer-like (DCL) genes have been shown to cooperatively process RNA substrates of multiple origin into distinct 21, 22 and 24 nt small RNAs. However, only few detailed biochemical analysis of the corresponding complexes has been carried out in plants, mainly due to the large unstable complexes that are hard to obtain or reconstitute in heterologous systems. Reconstitution of activity needs thorough understanding of all protein partners in the complex, something that is still an ongoing process in plant systems. Here, we use biochemical analysis to uncover properties of two previously identified native dicer-like activities from wheat germ. We find that standard wheat germ extract contains Dicer-like enzymes that convert double-stranded RNA (dsRNA) into two classes of small interfering RNAs of 21 and 24 nt in size. The 21 nt dicing activity, likely an siRNA producing complex known as DCL4, is 950 kDa-1.2 mDa in size and is highly unstable during purification processes but has a rather vast range for activity. On the contrary, the 24 nt dicing complex, likely the DCL3 activity, is relatively stable and comparatively smaller in size, but has stricter conditions for effective processing of dsRNA substrates. While both activities could process completely complementary dsRNA albeit with varying abilities, we show that DCL3-like 24 nt producing activity is equally good in processing incompletely complementary RNAs. PMID:25615604

  9. Methotrexate Is a JAK/STAT Pathway Inhibitor

    PubMed Central

    Thomas, Sally; Fisher, Katherine H.; Snowden, John A.; Danson, Sarah J.; Brown, Stephen; Zeidler, Martin P.

    2015-01-01

    Background The JAK/STAT pathway transduces signals from multiple cytokines and controls haematopoiesis, immunity and inflammation. In addition, pathological activation is seen in multiple malignancies including the myeloproliferative neoplasms (MPNs). Given this, drug development efforts have targeted the pathway with JAK inhibitors such as ruxolitinib. Although effective, high costs and side effects have limited its adoption. Thus, a need for effective low cost treatments remains. Methods & Findings We used the low-complexity Drosophila melanogaster pathway to screen for small molecules that modulate JAK/STAT signalling. This screen identified methotrexate and the closely related aminopterin as potent suppressors of STAT activation. We show that methotrexate suppresses human JAK/STAT signalling without affecting other phosphorylation-dependent pathways. Furthermore, methotrexate significantly reduces STAT5 phosphorylation in cells expressing JAK2 V617F, a mutation associated with most human MPNs. Methotrexate acts independently of dihydrofolate reductase (DHFR) and is comparable to the JAK1/2 inhibitor ruxolitinib. However, cells treated with methotrexate still retain their ability to respond to physiological levels of the ligand erythropoietin. Conclusions Aminopterin and methotrexate represent the first chemotherapy agents developed and act as competitive inhibitors of DHFR. Methotrexate is also widely used at low doses to treat inflammatory and immune-mediated conditions including rheumatoid arthritis. In this low-dose regime, folate supplements are given to mitigate side effects by bypassing the biochemical requirement for DHFR. Although independent of DHFR, the mechanism-of-action underlying the low-dose effects of methotrexate is unknown. Given that multiple pro-inflammatory cytokines signal through the pathway, we suggest that suppression of the JAK/STAT pathway is likely to be the principal anti-inflammatory and immunosuppressive mechanism-of-action of low-dose methotrexate. In addition, we suggest that patients with JAK/STAT-associated haematological malignancies may benefit from low-dose methotrexate treatments. While the JAK1/2 inhibitor ruxolitinib is effective, a £43,200 annual cost precludes widespread adoption. With an annual methotrexate cost of around £32, our findings represent an important development with significant future potential. PMID:26131691

  10. Global Metabolomic and Isobaric Tagging Capillary Liquid Chromatography–Tandem Mass Spectrometry Approaches for Uncovering Pathway Dysfunction in Diabetic Mouse Aorta

    PubMed Central

    2015-01-01

    Despite the prevalence of diabetes and the global health risks it poses, the biochemical pathogenesis of diabetic complications remains poorly understood with few effective therapies. This study employs capillary liquid chromatography (capLC) and tandem mass spectrometry (MS/MS) in conjunction with both global metabolomics and isobaric tags specific to amines and carbonyls to probe aortic metabolic content in diabetic mice with hyperglycemia, hyperlipidemia, hypertension, and stenotic vascular damage. Using these combined techniques, metabolites well-characterized in diabetes as well as novel pathways were investigated. A total of 53?986 features were detected, 719 compounds were identified as having significant fold changes (thresholds ?2 or ?0.5), and 48 metabolic pathways were found to be altered with at least 2 metabolite hits in diabetic samples. Pathways related to carbonyl stress, carbohydrate metabolism, and amino acid metabolism showed the greatest number of metabolite changes. Three novel pathways with previously limited or undescribed roles in diabetic complications—vitamin B6, propanoate, and butanoate metabolism—were also shown to be altered in multiple points along the pathway. These discoveries support the theory that diabetic vascular complications arise from the interplay of a myriad of metabolic pathways in conjunction with oxidative and carbonyl stress, which may provide not only new and much needed biomarkers but also insights into novel therapeutic targets. PMID:25368974

  11. Global metabolomic and isobaric tagging capillary liquid chromatography-tandem mass spectrometry approaches for uncovering pathway dysfunction in diabetic mouse aorta.

    PubMed

    Filla, Laura A; Yuan, Wei; Feldman, Eva L; Li, Shuwei; Edwards, James L

    2014-12-01

    Despite the prevalence of diabetes and the global health risks it poses, the biochemical pathogenesis of diabetic complications remains poorly understood with few effective therapies. This study employs capillary liquid chromatography (capLC) and tandem mass spectrometry (MS/MS) in conjunction with both global metabolomics and isobaric tags specific to amines and carbonyls to probe aortic metabolic content in diabetic mice with hyperglycemia, hyperlipidemia, hypertension, and stenotic vascular damage. Using these combined techniques, metabolites well-characterized in diabetes as well as novel pathways were investigated. A total of 53,986 features were detected, 719 compounds were identified as having significant fold changes (thresholds ? 2 or ? 0.5), and 48 metabolic pathways were found to be altered with at least 2 metabolite hits in diabetic samples. Pathways related to carbonyl stress, carbohydrate metabolism, and amino acid metabolism showed the greatest number of metabolite changes. Three novel pathways with previously limited or undescribed roles in diabetic complications--vitamin B6, propanoate, and butanoate metabolism--were also shown to be altered in multiple points along the pathway. These discoveries support the theory that diabetic vascular complications arise from the interplay of a myriad of metabolic pathways in conjunction with oxidative and carbonyl stress, which may provide not only new and much needed biomarkers but also insights into novel therapeutic targets. PMID:25368974

  12. Correlations between female breast density and biochemical markers

    PubMed Central

    Kim, Ji-Hye; Lee, Hae-Kag; Cho, Jae-Hwan; Park, Hyong-Keun; Yang, Han-Jun

    2015-01-01

    [Purpose] The aim of this study was to identify biochemical markers related to breast density. The study was performed with 200 patients who received mammography and biochemical marker testing between March 1, 2014 to October 1, 2014. [Subjects and Methods] Following the American College of Radiology, Breast Imaging Reporting and Data System (ACR BI-RADS), breast parenchymal pattern density from mammography was categorized into four grades: grade 1, almost entirely fat; grade 2, fibroglandular densities; grade 3, heterogeneously dense; and grade 4, extremely dense. Regarding biochemical markers, subjects underwent blood and urine tests after a 12-h fast. We analyzed correlations among breast density, general characteristics, and biochemical markers. [Results] Breast density-related factors were age, height, weight, body mass index (BMI), hematocrit, MCH, RDW, AST, ALT, ALP, uric acid, ?GT, triglycerides, total cholesterol, HDL-cholesterol, and LDL-cholesterol. [Conclusion] The results can be used as basic and comparative data for the prevention and early control of breast cancer. PMID:26310489

  13. A molecular structure matching approach to efficient identification of endogenous mammalian biochemical structures.

    PubMed

    Hamdalla, Mai A; Ammar, Reda A; Rajasekaran, Sanguthevar

    2015-01-01

    Metabolomics is the study of small molecules, called metabolites, of a cell, tissue or organism. It is of particular interest as endogenous metabolites represent the phenotype resulting from gene expression. A major challenge in metabolomics research is the structural identification of unknown biochemical compounds in complex biofluids. In this paper we present an efficient cheminformatics tool, BioSMXpress that uses known endogenous mammalian biochemicals and graph matching methods to identify endogenous mammalian biochemical structures in chemical structure space. The results of a comprehensive set of empirical experiments suggest that BioSMXpress identifies endogenous mammalian biochemical structures with high accuracy. BioSMXpress is 8 times faster than our previous work BioSM without compromising the accuracy of the predictions made. BioSMXpress is freely available at http://engr.uconn.edu/~rajasek/BioSMXpress.zip. PMID:25859612

  14. Thermodynamic analysis of lignocellulosic biofuel production via a biochemical process: guiding technology selection and research focus.

    PubMed

    Sohel, M Imroz; Jack, Michael W

    2011-02-01

    The aim of this paper is to present an exergy analysis of bioethanol production process from lignocellulosic feedstock via a biochemical process to asses the overall thermodynamic efficiency and identify the main loss processes. The thermodynamic efficiency of the biochemical process was found to be 35% and the major inefficiencies of this process were identified as: the combustion of lignin for process heat and power production and the simultaneous scarification and co-fermentation process accounting for 67% and 27% of the lost exergy, respectively. These results were also compared with a previous analysis of a thermochemical process for producing biofuel. Despite fundamental differences, the biochemical and thermochemical processes considered here had similar levels of thermodynamic efficiency. Process heat and power production was the major contributor to exergy loss in both of the processes. Unlike the thermochemical process, the overall efficiency of the biochemical process largely depends on how the lignin is utilized. PMID:21036607

  15. Biochemical Pharmacology of the Sigma-1 Receptor.

    PubMed

    Chu, Uyen B; Ruoho, Arnold E

    2016-01-01

    The sigma-1 receptor (S1R) is a 223 amino acid two transmembrane (TM) pass protein. It is a non-ATP-binding nonglycosylated ligand-regulated molecular chaperone of unknown three-dimensional structure. The S1R is resident to eukaryotic mitochondrial-associated endoplasmic reticulum and plasma membranes with broad functions that regulate cellular calcium homeostasis and reduce oxidative stress. Several multitasking functions of the S1R are underwritten by chaperone-mediated direct (and indirect) interactions with ion channels, G-protein coupled receptors and cell-signaling molecules involved in the regulation of cell growth. The S1R is a promising drug target for the treatment of several neurodegenerative diseases related to cellular stress. In vitro and in vivo functional and molecular characteristics of the S1R and its interactions with endogenous and synthetic small molecules have been discovered by the use of pharmacologic, biochemical, biophysical, and molecular biology approaches. The S1R exists in monomer, dimer, tetramer, hexamer/octamer, and higher oligomeric forms that may be important determinants in defining the pharmacology and mechanism(s) of action of the S1R. A canonical GXXXG in putative TM2 is important for S1R oligomerization. The ligand-binding regions of S1R have been identified and include portions of TM2 and the TM proximal regions of the C terminus. Some client protein chaperone functions and interactions with the cochaperone 78-kDa glucose-regulated protein (binding immunoglobulin protein) involve the C terminus. Based on its biochemical features and mechanisms of chaperone action the possibility that the S1R is a member of the small heat shock protein family is discussed. PMID:26560551

  16. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, W.; Anderson, R.N.

    1998-08-25

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management. 20 figs.

  17. Method for inverting reflection trace data from 3-D and 4-D seismic surveys and identifying subsurface fluid and pathways in and among hydrocarbon reservoirs based on impedance models

    DOEpatents

    He, Wei (New Milford, NJ); Anderson, Roger N. (New York, NY)

    1998-01-01

    A method is disclosed for inverting 3-D seismic reflection data obtained from seismic surveys to derive impedance models for a subsurface region, and for inversion of multiple 3-D seismic surveys (i.e., 4-D seismic surveys) of the same subsurface volume, separated in time to allow for dynamic fluid migration, such that small scale structure and regions of fluid and dynamic fluid flow within the subsurface volume being studied can be identified. The method allows for the mapping and quantification of available hydrocarbons within a reservoir and is thus useful for hydrocarbon prospecting and reservoir management. An iterative seismic inversion scheme constrained by actual well log data which uses a time/depth dependent seismic source function is employed to derive impedance models from 3-D and 4-D seismic datasets. The impedance values can be region grown to better isolate the low impedance hydrocarbon bearing regions. Impedance data derived from multiple 3-D seismic surveys of the same volume can be compared to identify regions of dynamic evolution and bypassed pay. Effective Oil Saturation or net oil thickness can also be derived from the impedance data and used for quantitative assessment of prospective drilling targets and reservoir management.

  18. Oncogenic Pathway Combinations Predict Clinical Prognosis in Gastric Cancer

    E-print Network

    Ooi, Chia Huey

    Many solid cancers are known to exhibit a high degree of heterogeneity in their deregulation of different oncogenic pathways. We sought to identify major oncogenic pathways in gastric cancer (GC) with significant relationships ...

  19. Biochemical Basis of Asthma Therapy*

    PubMed Central

    Barnes, Peter J.

    2011-01-01

    Current therapy for asthma is highly effective. ?2-Adrenergic receptor (?2AR) agonists are the most effective bronchodilators and relax airway smooth muscle cells through increased cAMP concentrations and directly opening large conductance Ca2+ channels. ?2AR may also activate alternative signaling pathways that may have detrimental effects in asthma. Glucocorticoids are the most effective anti-inflammatory treatments and switch off multiple activated inflammatory genes through recruitment of histone deacetylase-2, activating anti-inflammatory genes, and through increasing mRNA stability of inflammatory genes. There are beneficial molecular interactions between ?2AR and glucocorticoid-activated pathways. Understanding these signaling pathways may lead to even more effective therapies in the future. PMID:21799015

  20. Identification and prioritization of novel uncharacterized peptidases for biochemical characterization

    PubMed Central

    Rawlings, Neil D.

    2013-01-01

    Genome sequencing projects are generating enormous amounts of biological data that require analysis, which in turn identifies genes and proteins that require characterization. Enzymes that act on proteins are especially difficult to characterize because of the time required to distinguish one from another. This is particularly true of peptidases, the enzymes that activate, inactivate and degrade proteins. This article aims to identify clusters of sequences each of which represents the species variants of a single putative peptidase that is widely distributed and is thus merits biochemical characterization. The MEROPS database maintains large collections of sequences, references, substrate cleavage positions and inhibitor interactions of peptidases and their homologues. MEROPS also maintains a hierarchical classification of peptidase homologues, in which sequences are clustered as species variants of a single peptidase; homologous sequences are assembled into a family; and families are clustered into a clan. For each family, an alignment and a phylogenetic tree are generated. By assigning an identifier to a peptidase that has been biochemically characterized from a particular species (called a holotype), the identifier can be automatically extended to sequences from other species that cluster with the holotype. This permits transference of annotation from the holotype to other members of the cluster. By extending this concept to all peptidase homologues (including those of unknown function that have not been characterized) from model organisms representing all the major divisions of cellular life, clusters of sequences representing putative peptidases can also be identified. The 42 most widely distributed of these putative peptidases have been identified and discussed here and are prioritized as ideal candidates for biochemical characterization. Database URL: http://merops.sanger.ac.uk PMID:23584835

  1. Biochemical Validation of the Glyoxylate Cycle in the Cyanobacterium Chlorogloeopsis fritschii Strain PCC 9212.

    PubMed

    Zhang, Shuyi; Bryant, Donald A

    2015-05-29

    Cyanobacteria are important photoautotrophic bacteria with extensive but variable metabolic capacities. The existence of the glyoxylate cycle, a variant of the TCA cycle, is still poorly documented in cyanobacteria. Previous studies reported the activities of isocitrate lyase and malate synthase, the key enzymes of the glyoxylate cycle in some cyanobacteria, but other studies concluded that these enzymes are missing. In this study the genes encoding isocitrate lyase and malate synthase from Chlorogloeopsis fritschii PCC 9212 were identified, and the recombinant enzymes were biochemically characterized. Consistent with the presence of the enzymes of the glyoxylate cycle, C. fritschii could assimilate acetate under both light and dark growth conditions. Transcript abundances for isocitrate lyase and malate synthase increased, and C. fritschii grew faster, when the growth medium was supplemented with acetate. Adding acetate to the growth medium also increased the yield of poly-3-hydroxybutyrate. When the genes encoding isocitrate lyase and malate synthase were expressed in Synechococcus sp. PCC 7002, the acetate assimilation capacity of the resulting strain was greater than that of wild type. Database searches showed that the genes for the glyoxylate cycle exist in only a few other cyanobacteria, all of which are able to fix nitrogen. This study demonstrates that the glyoxylate cycle exists in a few cyanobacteria, and that this pathway plays an important role in the assimilation of acetate for growth in one of those organisms. The glyoxylate cycle might play a role in coordinating carbon and nitrogen metabolism under conditions of nitrogen fixation. PMID:25869135

  2. Structural and biochemical insights into the activation mechanisms of germinal center kinase OSR1.

    PubMed

    Li, Chuanchuan; Feng, Miao; Shi, Zhubing; Hao, Qian; Song, Xiaomin; Wang, Wenjia; Zhao, Yun; Jiao, Shi; Zhou, Zhaocai

    2014-12-26

    The oxidative stress-responsive 1 (OSR1) kinase belongs to the mammalian STE20-like kinase family. OSR1 is activated by with no lysine [K] (WNKs) kinases, and then it phosphorylates cation-coupled Cl-cotransporters, regulating ion homeostasis and cell volume in mammalian cells. However, the specific mechanisms of OSR1 activation remains poorly defined, largely due to its extremely low basal activity. Here, we dissect in detail the regulatory mechanisms of OSR1 activation from the aspects of autoinhibition, upstream kinase WNK, and the newly identified master regulator mouse protein-25 (MO25). Based on our structural and biochemical studies, we propose a "double lock" model, accounting for the tight autoinhibition of OSR1, an effect that has to be removed by WNK before MO25 further activates OSR1. Particularly, the conserved C-terminal (CCT) domain and ?AL helix act together to strongly suppress OSR1 basal activity. WNKs bind to the CCT and trigger its conformational rearrangement to release the kinase domain of OSR1, allowing for MO25 binding and full activation. Finally, the regulatory mechanisms of OSR1 activation were further corroborated by cellular studies of OSR1-regulated cell volume control through WNK-OSR1 signaling pathway. Collectively, these results provide insights into the OSR1 kinase activation to facilitate further functional study. PMID:25389294

  3. Environmental, biochemical and genetic drivers of DMSP degradation and DMS production in the Sargasso Sea.

    PubMed

    Levine, Naomi Marcil; Varaljay, Vanessa A; Toole, Dierdre A; Dacey, John W H; Doney, Scott C; Moran, Mary Ann

    2012-05-01

    Dimethylsulfide (DMS) is a climatically relevant trace gas produced and cycled by the surface ocean food web. Mechanisms driving intraannual variability in DMS production and dimethylsulfoniopropionate (DMSP) degradation in open-ocean, oligotrophic regions were investigated during a 10-month time-series at the Bermuda Atlantic Time-series Study site in the Sargasso Sea. Abundance and transcription of bacterial DMSP degradation genes, DMSP lyase enzyme activity, and DMS and DMSP concentrations, consumption rates and production rates were quantified over time and depth. This interdisciplinary data set was used to test current hypotheses of the role of light and carbon supply in regulating upper-ocean sulfur cycling. Findings supported UV-A-dependent phytoplankton DMS production. Bacterial DMSP degraders may also contribute significantly to DMS production when temperatures are elevated and UV-A dose is moderate, but may favour DMSP demethylation under low UV-A doses. Three groups of bacterial DMSP degraders with distinct intraannual variability were identified and niche differentiation was indicated. The combination of genetic and biochemical data suggest a modified 'bacterial switch' hypothesis where the prevalence of different bacterial DMSP degradation pathways is regulated by a complex set of factors including carbon supply, temperature and UV-A dose. PMID:22324779

  4. Efficient CO2 Fixation Pathways: Energy Plant: High Efficiency Photosynthetic Organisms

    SciTech Connect

    2012-01-01

    PETRO Project: UCLA is redesigning the carbon fixation pathways of plants to make them more efficient at capturing the energy in sunlight. Carbon fixation is the key process that plants use to convert carbon dioxide (CO2) from the atmosphere into higher energy molecules (such as sugars) using energy from the sun. UCLA is addressing the inefficiency of the process through an alternative biochemical pathway that uses 50% less energy than the pathway used by all land plants. In addition, instead of producing sugars, UCLA’s designer pathway will produce pyruvate, the precursor of choice for a wide variety of liquid fuels. Theoretically, the new biochemical pathway will allow a plant to capture 200% as much CO2 using the same amount of light. The pathways will first be tested on model photosynthetic organisms and later incorporated into other plants, thus dramatically improving the productivity of both food and fuel crops.

  5. Oxidative biodegradation pathways of PAHs

    SciTech Connect

    Cerniglia, C.E.

    1993-12-31

    Polycyclic aromatic hydrocarbons (PAHs) constitute a class of hazardous organic chemical consisting of three of more fused benzene rings in linear, angular and cluster arrangements. PAHs mostly occur as a result of fossil fuel combustion, as by-product of industrial processing and during the cooking of foods. A catabolically diverse microbial community, consisting of bacteria, fungi and algae, metabolizes aromatic compounds. Molecular oxygen is essential for the initial hydroxylation of polycyclic aromatic hydrocarbons by microorganisms. In contrast to bacteria, filamentous fungi use hydroxylation as a prelude to detoxification rather than to catabolism and assimilation. The biochemical principles underlying the degradation of polycyclic aromatic hydrocarbons will be discussed. The oxidative pathways of polycyclic aromatic hydrocarbon catabolism will be discussed. Studies will be presented on the relationship between the chemical structure of the polycyclic aromatic hydrocarbon and the rate of polycyclic aromatic hydrocarbon biodegradation in aquatic and terrestrial ecosystems.

  6. Structural and biochemical investigation of two Arabidopsis shikimate kinases: The heat-inducible isoform is thermostable

    PubMed Central

    Fucile, Geoffrey; Garcia, Christel; Carlsson, Jonas; Sunnerhagen, Maria; Christendat, Dinesh

    2011-01-01

    The expression of plant shikimate kinase (SK; EC 2.7.1.71), an intermediate step in the shikimate pathway to aromatic amino acid biosynthesis, is induced under specific conditions of environmental stress and developmental requirements in an isoform-specific manner. Despite their important physiological role, experimental structures of plant SKs have not been determined and the biochemical nature of plant SK regulation is unknown. The Arabidopsis thaliana genome encodes two SKs, AtSK1 and AtSK2. We demonstrate that AtSK2 is highly unstable and becomes inactivated at 37°C whereas the heat-induced isoform, AtSK1, is thermostable and fully active under identical conditions at this temperature. We determined the crystal structure of AtSK2, the first SK structure from the plant kingdom, and conducted biophysical characterizations of both AtSK1 and AtSK2 towards understanding this mechanism of thermal regulation. The crystal structure of AtSK2 is generally conserved with bacterial SKs with the addition of a putative regulatory phosphorylation motif forming part of the adenosine triphosphate binding site. The heat-induced isoform, AtSK1, forms a homodimer in solution, the formation of which facilitates its relative thermostability compared to AtSK2. In silico analyses identified AtSK1 site variants that may contribute to AtSK1 stability. Our findings suggest that AtSK1 performs a unique function under heat stress conditions where AtSK2 could become inactivated. We discuss these findings in the context of regulating metabolic flux to competing downstream pathways through SK-mediated control of steady state concentrations of shikimate. PMID:21520319

  7. Structural and biochemical investigation of two Arabidopsis shikimate kinases: The heat-inducible isoform is thermostable

    SciTech Connect

    Fucile, Geoffrey; Garcia, Christel; Carlsson, Jonas; Sunnerhagen, Maria; Christendat, Dinesh

    2011-10-27

    The expression of plant shikimate kinase (SK; EC 2.7.1.71), an intermediate step in the shikimate pathway to aromatic amino acid biosynthesis, is induced under specific conditions of environmental stress and developmental requirements in an isoform-specific manner. Despite their important physiological role, experimental structures of plant SKs have not been determined and the biochemical nature of plant SK regulation is unknown. The Arabidopsis thaliana genome encodes two SKs, AtSK1 and AtSK2. We demonstrate that AtSK2 is highly unstable and becomes inactivated at 37 C whereas the heat-induced isoform, AtSK1, is thermostable and fully active under identical conditions at this temperature. We determined the crystal structure of AtSK2, the first SK structure from the plant kingdom, and conducted biophysical characterizations of both AtSK1 and AtSK2 towards understanding this mechanism of thermal regulation. The crystal structure of AtSK2 is generally conserved with bacterial SKs with the addition of a putative regulatory phosphorylation motif forming part of the adenosine triphosphate binding site. The heat-induced isoform, AtSK1, forms a homodimer in solution, the formation of which facilitates its relative thermostability compared to AtSK2. In silico analyses identified AtSK1 site variants that may contribute to AtSK1 stability. Our findings suggest that AtSK1 performs a unique function under heat stress conditions where AtSK2 could become inactivated. We discuss these findings in the context of regulating metabolic flux to competing downstream pathways through SK-mediated control of steady state concentrations of shikimate.

  8. Physiological, biochemical and transcriptional analysis of onion bulbs during storage

    PubMed Central

    Chope, Gemma A.; Cools, Katherine; Hammond, John P.; Thompson, Andrew J.; Terry, Leon A.

    2012-01-01

    Background and Aims During the transition from endo-dormancy to eco-dormancy and subsequent growth, the onion bulb undergoes the transition from sink organ to source, to sustain cell division in the meristematic tissue. The mechanisms controlling these processes are not fully understood. Here, a detailed analysis of whole onion bulb physiological, biochemical and transcriptional changes in response to sprouting is reported, enabling a better knowledge of the mechanisms regulating post-harvest onion sprout development. Methods Biochemical and physiological analyses were conducted on different cultivars (‘Wellington’, ‘Sherpa’ and ‘Red Baron’) grown at different sites over 3 years, cured at different temperatures (20, 24 and 28 °C) and stored under different regimes (1, 3, 6 and 6 ? 1 °C). In addition, the first onion oligonucleotide microarray was developed to determine differential gene expression in onion during curing and storage, so that transcriptional changes could support biochemical and physiological analyses. Key Results There were greater transcriptional differences between samples at harvest and before sprouting than between the samples taken before and after sprouting, with some significant changes occurring during the relatively short curing period. These changes are likely to represent the transition from endo-dormancy to sprout suppression, and suggest that endo-dormancy is a relatively short period ending just after curing. Principal component analysis of biochemical and physiological data identified the ratio of monosaccharides (fructose and glucose) to disaccharide (sucrose), along with the concentration of zeatin riboside, as important factors in discriminating between sprouting and pre-sprouting bulbs. Conclusions These detailed analyses provide novel insights into key regulatory triggers for sprout dormancy release in onion bulbs and provide the potential for the development of biochemical or transcriptional markers for sprout initiation. Evidence presented herein also suggests there is no detrimental effect on bulb storage life and quality caused by curing at 20 °C, producing a considerable saving in energy and costs. PMID:22234560

  9. The HEART Pathway Randomized Trial

    PubMed Central

    Mahler, Simon A.; Riley, Robert F.; Hiestand, Brian C.; Russell, Gregory B.; Hoekstra, James W.; Lefebvre, Cedric W.; Nicks, Bret A.; Cline, David M.; Askew, Kim L.; Elliott, Stephanie B.; Herrington, David M.; Burke, Gregory L.; Miller, Chadwick D.

    2015-01-01

    Background The HEART Pathway is a decision aid designed to identify emergency department patients with acute chest pain for early discharge. No randomized trials have compared the HEART Pathway with usual care. Methods and Results Adult emergency department patients with symptoms related to acute coronary syndrome without ST-elevation on ECG (n=282) were randomized to the HEART Pathway or usual care. In the HEART Pathway arm, emergency department providers used the HEART score, a validated decision aid, and troponin measures at 0 and 3 hours to identify patients for early discharge. Usual care was based on American College of Cardiology/American Heart Association guidelines. The primary outcome, objective cardiac testing (stress testing or angiography), and secondary outcomes, index length of stay, early discharge, and major adverse cardiac events (death, myocardial infarction, or coronary revascularization), were assessed at 30 days by phone interview and record review. Participants had a mean age of 53 years, 16% had previous myocardial infarction, and 6% (95% confidence interval, 3.6%–9.5%) had major adverse cardiac events within 30 days of randomization. Compared with usual care, use of the HEART Pathway decreased objective cardiac testing at 30 days by 12.1% (68.8% versus 56.7%; P=0.048) and length of stay by 12 hours (9.9 versus 21.9 hours; P=0.013) and increased early discharges by 21.3% (39.7% versus 18.4%; P<0.001). No patients identified for early discharge had major adverse cardiac events within 30 days. Conclusions The HEART Pathway reduces objective cardiac testing during 30 days, shortens length of stay, and increases early discharges. These important efficiency gains occurred without any patients identified for early discharge suffering MACE at 30 days. PMID:25737484

  10. Metabolomic strategies to map functions of metabolic pathways.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2014-08-01

    Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. PMID:24918200

  11. Improving College System Pathways: Project Highlights Reports

    ERIC Educational Resources Information Center

    Colleges Ontario, 2008

    2008-01-01

    In 2006, Ontario's colleges received funding from the Ministry of Training, Colleges and Universities for the Improving College System Pathways Project. The project goals were to significantly increase educational pathways within and between colleges by developing a clearer understanding of student mobility within the system; to identify the scope…

  12. SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS

    E-print Network

    California at Davis, University of

    SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson #12;SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS #12;SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS A Research Summary for Decision Makers Edited by Joan Ogden and Lorraine Anderson

  13. Growth hormone activity in mitochondria depends on GH receptor Box 1 and involves caveolar pathway targeting

    SciTech Connect

    Perret-Vivancos, Cecile; Abbate, Aude; Ardail, Dominique; Raccurt, Mireille; Usson, Yves; Lobie, Peter E.; Morel, Gerard . E-mail: gerard.morel@univ-lyon1.fr

    2006-02-01

    Growth hormone (GH) binding to its receptor (GHR) initiates GH-dependent signal transduction and internalization pathways to generate the biological effects. The precise role and way of action of GH on mitochondrial function are not yet fully understood. We show here that GH can stimulate cellular oxygen consumption in CHO cells transfected with cDNA coding for the full-length GHR. By using different GHR cDNA constructs, we succeeded in determining the different parts of the GHR implicated in the mitochondrial response to GH. Polarography and two-photon excitation fluorescence microscopy analysis showed that the Box 1 of the GHR intracellular domain was required for an activation of the mitochondrial respiration in response to a GH exposure. However, confocal laser scanning microscopy demonstrated that cells lacking the GHR Box 1 could efficiently internalize the hormone. We demonstrated that internalization mediated either by clathrin-coated pits or by caveolae was able to regulate GH mitochondrial effect: these two pathways are both essential to obtain the GH stimulatory action on mitochondrial function. Moreover, electron microscopic and biochemical approaches allowed us to identify the caveolar pathway as essential for targeting GH and GHR to mitochondria.

  14. The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing

    PubMed Central

    Saleh, Maria-Carla; van Rij, Ronald P.; Hekele, Armin; Gillis, Amethyst; Foley, Edan; O’Farrell, Patrick H.; Andino, Raul

    2009-01-01

    Many metazoan cells can take up exogenous double-stranded (ds) RNA and use it to initiate an RNA silencing response, however, the mechanism for this uptake is ill-defined. Here, we identify the pathway for dsRNA uptake in Drosophila melanogaster S2 cells. Biochemical and cell biological analyses, and a genome-wide screen for components of the dsRNA-uptake machinery, indicated that dsRNA is taken up by an active process involving receptor-mediated endocytosis. Pharmacological inhibition of endocytic pathways disrupted exogenous dsRNA entry and the induction of gene silencing. This dsRNA uptake mechanism seems to be evolutionarily conserved, as knockdown of orthologues in Caenorhabditis elegans inactivated the RNA interference response in worms. Thus, this entry pathway is required for systemic RNA silencing in whole organisms. In Drosophila cells, pharmacological evidence suggests that dsRNA entry is mediated by pattern-recognition receptors. The possible role of these receptors in dsRNA entry may link RNA interference (RNAi) silencing to other innate immune responses. PMID:16862146

  15. Luteolin and gefitinib regulation of EGF Signaling Pathway and Cell Cycle Pathway genes in PC-3 human prostate cancer cells

    PubMed Central

    Markaverich, Barry M.; Vijjeswarapu, Mary; Shoulars, Kevin; Rodriguez, Mary

    2010-01-01

    cRNA microarray and real-time PCR (qPCR) studies from our lab identified five Cell Cycle Pathway (CCP) genes (CCNA2, CCNE2, CDC25A, CDKN1B, PLK-1) as targets for luteolin in PC-3 prostate cancer cells (Shoulars et. al, J Steroid Biochem Mol Biol, 118: 41–50, 2010). In this paper, Ingenuity Pathway Analysis of the microarray data identified 7 luteolin-regulated genes (EGFR, c-Fos, SOS, GRB2, JNK1, MKK4 and RasGAP) in the Epidermal Growth Factor Signaling Pathway (EGFSP) potentially involved in luteolin regulation of CCP genes and cell proliferation. To address these possibilities, we compared the response profiles (RNA and protein) of these EGFSP and CCP genes to luteolin and gefitinib by real-time PCR (qPCR) and Western blot analyses. Luteolin and gefitinib are known antagonists of EGFR-associated tyrosine protein kinase. Thus, the response profiles of EGFR regulated EGFSP or CCP genes should be very similar if genes in both pathways are controlled through this common mechanism of action. Treatment of PC-3 cell with luteolin for 24 hours caused a 4-fold stimulation of c-Fos gene expression, significant inhibition (p<0.001) of the CCP genes and G2/M arrest. Treatment of PC-3 cells with gefitinib also inhibited most of the CCP genes in a fashion similar to that of luteolin, however, the EGFR antagonist inhibited c-Fos gene expression, stimulated CDKN1B (p27) and arrested the cells in G0/G1. Thus, although the response patterns of most of the CCP genes to luteolin or gefitinib were similar, the effects of the two compounds on EGFSP gene expression and cell cycle arrest were clearly different. Combination studies revealed that the response of EGFSP genes to luteolin was not affected by gefitinib, even though the two compounds were additive with respect to their abilities to inhibit CCNA2, CCNE2, CDC25A and PCNA. These findings suggest that luteolin and gefitinib regulate CCP gene expression through a common mechanism involving EGFR-associated tyrosine kinase. Conversely, luteolin regulates PC-3 cell proliferation through an EGFR-tyrosine kinase independent mechanism(s), likely involving the epigenetic control of gene EGFSP gene expression through histone H4 binding interactions resulting in the upregulation of c-FOS and p21 gene expression. PMID:20558290

  16. Biochemical transformation of solid carbonaceous material

    DOEpatents

    Lin, Mow S. (Rocky Point, NY); Premuzic, Eugene T. (East Moriches, NY)

    2001-09-25

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  17. Computing Resources at Chemical and Biochemical Engineering

    E-print Network

    Muzzio, Fernando J.

    Computing Resources at Chemical and Biochemical Engineering Note that use of all Rutgers University) consists of 18 Windows NT Workstations and is primarily reserved for classroom use for Chemical Engineering at Chemical and Biochemical Engineering. DSV Lab. The DSV lab consists of 60 Sun UltraSparc 10 computers. Each

  18. Biochemical nature of Russell Bodies

    PubMed Central

    Francesca Mossuto, Maria; Ami, Diletta; Anelli, Tiziana; Fagioli, Claudio; Maria Doglia, Silvia; Sitia, Roberto

    2015-01-01

    Professional secretory cells produce and release abundant proteins. Particularly in case of mutations and/or insufficient chaperoning, these can aggregate and become toxic within or amongst cells. Immunoglobulins (Ig) are no exception. In the extracellular space, certain Ig-L chains form fibrils causing systemic amyloidosis. On the other hand, Ig variants lacking the first constant domain condense in dilated cisternae of the early secretory compartment, called Russell Bodies (RB), frequently observed in plasma cell dyscrasias, autoimmune diseases and chronic infections. RB biogenesis can be recapitulated in lymphoid and non-lymphoid cells by expressing mutant Ig-?, providing powerful models to investigate the pathophysiology of endoplasmic reticulum storage disorders. Here we analyze the aggregation propensity and the biochemical features of the intra- and extra-cellular Ig deposits in human cells, revealing ?-aggregated features for RB. PMID:26223695

  19. Comparative genomics and functional analysis of rhamnose catabolic pathways and regulons in bacteria

    PubMed Central

    Rodionova, Irina A.; Li, Xiaoqing; Thiel, Vera; Stolyar, Sergey; Stanton, Krista; Fredrickson, James K.; Bryant, Donald A.; Osterman, Andrei L.; Best, Aaron A.; Rodionov, Dmitry A.

    2013-01-01

    L-rhamnose (L-Rha) is a deoxy-hexose sugar commonly found in nature. L-Rha catabolic pathways were previously characterized in various bacteria including Escherichia coli. Nevertheless, homology searches failed to recognize all the genes for the complete L-Rha utilization pathways in diverse microbial species involved in biomass decomposition. Moreover, the regulatory mechanisms of L-Rha catabolism have remained unclear in most species. A comparative genomics approach was used to reconstruct the L-Rha catabolic pathways and transcriptional regulons in the phyla Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Proteobacteria, and Thermotogae. The reconstructed pathways include multiple novel enzymes and transporters involved in the utilization of L-Rha and L-Rha-containing polymers. Large-scale regulon inference using bioinformatics revealed remarkable variations in transcriptional regulators for L-Rha utilization genes among bacteria. A novel bifunctional enzyme, L-rhamnulose-phosphate aldolase (RhaE) fused to L-lactaldehyde dehydrogenase (RhaW), which is not homologous to previously characterized L-Rha catabolic enzymes, was identified in diverse bacteria including Chloroflexi, Bacilli, and Alphaproteobacteria. By using in vitro biochemical assays we validated both enzymatic activities of the purified recombinant RhaEW proteins from Chloroflexus aurantiacus and Bacillus subtilis. Another novel enzyme of the L-Rha catabolism, L-lactaldehyde reductase (RhaZ), was identified in Gammaproteobacteria and experimentally validated by in vitro enzymatic assays using the recombinant protein from Salmonella typhimurium. C. aurantiacus induced transcription of the predicted L-Rha utilization genes when L-Rha was present in the growth medium and consumed L-Rha from the medium. This study provided comprehensive insights to L-Rha catabolism and its regulation in diverse Bacteria. PMID:24391637

  20. Benzoate Metabolism Intermediate Benzoyl Coenzyme A Affects Gentisate Pathway Regulation in Comamonas testosteroni

    PubMed Central

    Chen, Dong-Wei; Zhang, Yun; Jiang, Cheng-Ying

    2014-01-01

    A previous study showed that benzoate was catabolized via a coenzyme A (CoA)-dependent epoxide pathway in Azoarcus evansii (R. Niemetz, U. Altenschmidt, S. Brucker, and G. Fuchs, Eur. J. Biochem. 227:161-168, 1995), but gentisate 1,2-dioxygenase was induced. Similarly, we found that the Comamonas testosteroni strain CNB-1 degraded benzoate via a CoA-dependent epoxide pathway and that gentisate 1,2-dioxygenase (GenA) was also induced when benzoate or 3-hydroxybenzoate served as a carbon source for growth. Genes encoding the CoA-dependent epoxide (box genes) and gentisate (gen genes) pathways were identified. Genetic disruption revealed that the gen genes were not involved in benzoate and 3-hydroxybenzoate degradation. Hence, we investigated gen gene regulation in the CNB-1 strain. The PgenA promoter, a MarR-type regulator (GenR), and the GenR binding site were identified. We found that GenR took gentisate, 3-hydroxybenzoate, and benzoyl-CoA as effectors and that binding of GenR to its target DNA sequence was prohibited when these effectors were present. In vivo studies showed that the CNB-1 mutant that lost benzoyl-CoA synthesis was not able to activate PgenA promoter, while transcription of genA was upregulated in another CNB-1 mutant that lost the ability to degrade benzoyl-CoA. The finding that benzoyl-CoA (a metabolic intermediate of benzoate degradation) and 3-hydroxybenzoate function as GenR effectors explains why GenA was induced when CNB-1 grew on benzoate or 3-hydroxybenzoate. Regulation of gentisate pathways by MarR-, LysR-, and IclR-type regulators in diverse bacterial groups is discussed in detail. PMID:24771026

  1. High-throughput metabolomic approach revealed the acupuncture exerting intervention effects by perturbed signatures and pathways.

    PubMed

    Zhang, Yingzhi; Zhang, Aihua; Yan, Guangli; Cheng, Weiping; Sun, Hui; Meng, Xiangcai; Liu, Li; Xie, Ning; Wang, Xijun

    2014-01-01

    Metabolomics can capture global changes and the overall physiological status in biochemical networks and pathways in order to elucidate sites of perturbations. High-throughput metabolomics and acupuncturology have similar characteristics such as entirety, comprehensiveness and dynamic changes, and can identify potential candidates for acupuncture effects and provide valuable information towards understanding therapy mechanisms. Saliva has recently gained popularity as a potential tool for biomarker monitoring, as its composition may potentially reflect plasma metabolite levels and, therefore, may be used as an indicator of the physiological state. However, the underlying mechanism of acupuncture, remains largely unknown, which hinders its widespread use. Acupuncture would produce unique characterization of metabolic perturbations. In this study, UPLC/ESI-HDMS in high-accuracy mode coupled with pattern recognition analysis was carried out to investigate the mechanism and saliva metabolite biomarkers for acupuncture treatment at 'Zusanli' acupoint (ST-36) as a case study. Putative metabolite identifications for these ions were obtained through a mass-based database search. As a result, the top canonical pathways including phenylalanine metabolism, alanine, aspartate and glutamate metabolism, d-glutamine and d-glutamate metabolism, and steroid hormone biosynthesis pathways were acutely perturbed. 26 differential metabolites were identified by chemical profiling, and may be useful to clarify the physiological basis and mechanism of ST-36. More importantly, network construction has led to the integration of metabolites associated with the multiple perturbation pathways. These results provide useful insights into biomarker discovery utilizing metabolomics as an efficient and cost effective platform. This study opens new possibilities for the selection of saliva as a source of metabolite biomarkers representative of specific disorders. PMID:24150485

  2. Causal correlation of foliar biochemical concentrations with AVIRIS spectra using forced entry linear regression

    NASA Technical Reports Server (NTRS)

    Dawson, Terence P.; Curran, Paul J.; Kupiec, John A.

    1995-01-01

    A major goal of airborne imaging spectrometry is to estimate the biochemical composition of vegetation canopies from reflectance spectra. Remotely-sensed estimates of foliar biochemical concentrations of forests would provide valuable indicators of ecosystem function at regional and eventually global scales. Empirical research has shown a relationship exists between the amount of radiation reflected from absorption features and the concentration of given biochemicals in leaves and canopies (Matson et al., 1994, Johnson et al., 1994). A technique commonly used to determine which wavelengths have the strongest correlation with the biochemical of interest is unguided (stepwise) multiple regression. Wavelengths are entered into a multivariate regression equation, in their order of importance, each contributing to the reduction of the variance in the measured biochemical concentration. A significant problem with the use of stepwise regression for determining the correlation between biochemical concentration and spectra is that of 'overfitting' as there are significantly more wavebands than biochemical measurements. This could result in the selection of wavebands which may be more accurately attributable to noise or canopy effects. In addition, there is a real problem of collinearity in that the individual biochemical concentrations may covary. A strong correlation between the reflectance at a given wavelength and the concentration of a biochemical of interest, therefore, may be due to the effect of another biochemical which is closely related. Furthermore, it is not always possible to account for potentially suitable waveband omissions in the stepwise selection procedure. This concern about the suitability of stepwise regression has been identified and acknowledged in a number of recent studies (Wessman et al., 1988, Curran, 1989, Curran et al., 1992, Peterson and Hubbard, 1992, Martine and Aber, 1994, Kupiec, 1994). These studies have pointed to the lack of a physical link between wavelengths chosen by stepwise regression and the biochemical of interest, and this in turn has cast doubts on the use of imaging spectrometry for the estimation of foliar biochemical concentrations at sites distant from the training sites. To investigate this problem, an analysis was conducted on the variation in canopy biochemical concentrations and reflectance spectra using forced entry linear regression.

  3. Global Regulatory Pathways in the Alphaproteobacteria

    SciTech Connect

    2007-04-27

    A major goal for microbiologists in the twenty-first century is to develop an understanding of the microbial cell in all its complexity. In addition to understanding the function of individual gene products we need to focus on how the cell regulates gene expression at a global level to respond to different environmental parameters. Development of genomic technologies such as complete genome sequencing, proteomics, and global comparisons of mRNA expression patterns allows us to begin to address this issue. This proposal focuses on a number of phylogenetically related bacteria that are involved in environmentally important processes such as carbon sequestration and bioremediation. Genome sequencing projects of a number of these bacteria have revealed the presence of a small family of regulatory genes found thus far only in the alpha-proteobacteria. These genes encode proteins that are related to the global regulatory protein RosR in Rhizobium etli, which is involved in determining nodulation competitiveness in this bacterium. Our goal is to examine the function of the proteins encoded by this gene family in several of the bacteria containing homologs to RosR. We will construct gene disruption mutations in a number of these bacteria and characterize the resulting mutant strains using two-dimensional gel electrophoresis and genetic and biochemical techniques. We will thus determine if the other proteins also function as global regulators of gene expression. Using proteomics methods we will identify the specific proteins whose expression varies depending on the presence or absence of the RosR homolog. Over fifty loci regulated by RosR have been identified in R. etli using transposon mutagenesis; this will serve as out benchmark to which we will compare the other regulons. We expect to identify genes regulated by RosR homologs in several bacterial species, including, but not limited to Rhodopseudomonas palustris and Sphingomonas aromaticivorans. In this way we will provide valuable information on gene regulation in this group of bacteria, expand our understanding of the evolution of global regulatory pathways, and develop methods for comparative regulon analysis among microbes.

  4. Characterization of a SAM-dependent fluorinase from a latent biosynthetic pathway for fluoroacetate and 4-fluorothreonine formation in Nocardia brasiliensis

    PubMed Central

    Qu, Xudong

    2014-01-01

    Fluorination has been widely used in chemical synthesis, but is rare in nature. The only known biological fluorination scope is represented by the fl pathway from Streptomyces cattleya that produces fluoroacetate (FAc) and 4-fluorothreonine (4-FT). Here we report the identification of a novel pathway for FAc and 4-FT biosynthesis from the actinomycetoma-causing pathogen Nocardia brasiliensis ATCC 700358. The new pathway shares overall conservation with the fl pathway in S. cattleya. Biochemical characterization of the conserved domains revealed a novel fluorinase NobA that can biosynthesize 5’-fluoro-5’-deoxyadenosine (5’-FDA) from inorganic fluoride and S-adenosyl-l-methionine (SAM). The NobA shows similar halide specificity and characteristics to the fluorination enzyme FlA of the fl pathway. Kinetic parameters for fluoride ( K m 4153 ?M, k cat 0.073 min -1) and SAM ( K m 416 ?M, k cat 0.139 min -1) have been determined, revealing that NobA is slightly (2.3 fold) slower than FlA. Upon sequence comparison, we finally identified a distinct loop region in the fluorinases that probably accounts for the disparity of fluorination activity. PMID:24795808

  5. De novo pyrimidine nucleotide synthesis mainly occurs outside of plastids, but a previously undiscovered nucleobase importer provides substrates for the essential salvage pathway in Arabidopsis.

    PubMed

    Witz, Sandra; Jung, Benjamin; Fürst, Sarah; Möhlmann, Torsten

    2012-04-01

    Nucleotide de novo synthesis is highly conserved among organisms and represents an essential biochemical pathway. In plants, the two initial enzymatic reactions of de novo pyrimidine synthesis occur in the plastids. By use of green fluorescent protein fusions, clear support is provided for a localization of the remaining reactions in the cytosol and mitochondria. This implies that carbamoyl aspartate, an intermediate of this pathway, must be exported and precursors of pyrimidine salvage (i.e., nucleobases or nucleosides) are imported into plastids. A corresponding uracil transport activity could be measured in intact plastids isolated from cauliflower (Brassica oleracea) buds. PLUTO (for plastidic nucleobase transporter) was identified as a member of the Nucleobase:Cation-Symporter1 protein family from Arabidopsis thaliana, capable of transporting purine and pyrimidine nucleobases. A PLUTO green fluorescent protein fusion was shown to reside in the plastid envelope after expression in Arabidopsis protoplasts. Heterologous expression of PLUTO in an Escherichia coli mutant lacking the bacterial uracil permease uraA allowed a detailed biochemical characterization. PLUTO transports uracil, adenine, and guanine with apparent affinities of 16.4, 0.4, and 6.3 ?M, respectively. Transport was markedly inhibited by low concentrations of a proton uncoupler, indicating that PLUTO functions as a proton-substrate symporter. Thus, a protein for the absolutely required import of pyrimidine nucleobases into plastids was identified. PMID:22474184

  6. Pathways for virus assembly around nucleic acids

    E-print Network

    Perlmutter, Jason D; Hagan, Michael F

    2014-01-01

    Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single molecule fluorescence correlation spectroscopy or bulk time resolved sma...

  7. Pathways for virus assembly around nucleic acids

    E-print Network

    Jason D Perlmutter; Matthew R Perkett; Michael F Hagan

    2014-05-13

    Understanding the pathways by which viral capsid proteins assemble around their genomes could identify key intermediates as potential drug targets. In this work we use computer simulations to characterize assembly over a wide range of capsid protein-protein interaction strengths and solution ionic strengths. We find that assembly pathways can be categorized into two classes, in which intermediates are either predominantly ordered or disordered. Our results suggest that estimating the protein-protein and the protein-genome binding affinities may be sufficient to predict which pathway occurs. Furthermore, the calculated phase diagrams suggest that knowledge of the dominant assembly pathway and its relationship to control parameters could identify optimal strategies to thwart or redirect assembly to block infection. Finally, analysis of simulation trajectories suggests that the two classes of assembly pathways can be distinguished in single molecule fluorescence correlation spectroscopy or bulk time resolved small angle x-ray scattering experiments.

  8. Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals

    PubMed Central

    Ruiz, Jimena A.; de Almeida, Alejandra; Godoy, Manuel S.; Mezzina, Mariela P.; Bidart, Gonzalo N.; Méndez, Beatriz S.; Pettinari, M. Julia; Nikel, Pablo I.

    2013-01-01

    Bioprocesses conducted under conditions with restricted O2 supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative aerobe Escherichia coli, the microbial cell factory par excellence, has elaborate sensing and signal transduction mechanisms that respond to the availability of electron acceptors and alternative carbon sources in the surrounding environment. In particular, the ArcBA and CreBC two-component signal transduction systems are largely responsible for the metabolic regulation of redox control in response to O2 availability and carbon source utilization, respectively. Significant advances in the understanding of the biochemical, genetic, and physiological duties of these regulatory systems have been achieved in recent years. This situation allowed to rationally-design novel engineering approaches that ensure optimal carbon and energy flows within central metabolism, as well as to manipulate redox homeostasis, in order to optimize the production of industrially-relevant metabolites. In particular, metabolic flux analysis provided new clues to understand the metabolic regulation mediated by the ArcBA and CreBC systems. Genetic manipulation of these regulators proved useful for designing microbial cells factories tailored for the synthesis of reduced biochemicals with added value, such as poly(3-hydroxybutyrate), under conditions with restricted O2 supply. This network-wide strategy is in contrast with traditional metabolic engineering approaches, that entail direct modification of the pathway(s) at stake, and opens new avenues for the targeted modulation of central catabolic pathways at the transcriptional level. PMID:24688679

  9. Targeting TopBP1 at a convergent point of multiple oncogenic pathways for cancer therapy

    PubMed Central

    Chowdhury, Pinki; Lin, Gregory E.; Liu, Kang; Song, Yongcheng; Lin, Fang-Tsyr; Lin, Weei-Chin

    2014-01-01

    The progression of many solid tumors is driven by de-regulation of multiple common pathways, particularly Rb, PI (3) K/Akt and p53. Prior studies identified TopBP1as a key mediator for the oncogenic gain-of-function activities of mutant p53 (mutp53) in cancer. In Akt-hyperactive cancer, TopBP1 forms oligomers and represses E2F1-dependent apoptosis. Here we perform a molecular docking screening and identify a lead compound, calcein, capable of blocking TopBP1 oligomerization and p53 binding, resulting in re-activation of E2F1-dependent apoptosis and blockade of mutp53 gain-of-function. Calcein AM, the cell permeable derivative of calcein, shows significant anti-tumor activity in a wide-spectrum of cultured cancer cells harboring high TopBP1 levels. These biochemical findings are recapitulated in breast cancer xenograft models. Thus, our study provides proof-of-concept evidence for targeting TopBP1, a convergent point of multiple pathways, as a cancer therapy. PMID:25400145

  10. Biochemical Characterization of Human Gluconokinase and the Proposed Metabolic Impact of Gluconic Acid as Determined by Constraint Based Metabolic Network Analysis

    PubMed Central

    Rohatgi, Neha; Nielsen, Tine Kragh; Bjørn, Sara Petersen; Axelsson, Ivar; Paglia, Giuseppe; Voldborg, Bjørn Gunnar; Palsson, Bernhard O.; Rolfsson, Óttar

    2014-01-01

    The metabolism of gluconate is well characterized in prokaryotes where it is known to be degraded following phosphorylation by gluconokinase. Less is known of gluconate metabolism in humans. Human gluconokinase activity was recently identified proposing questions about the metabolic role of gluconate in humans. Here we report the recombinant expression, purification and biochemical characterization of isoform I of human gluconokinase alongside substrate specificity and kinetic assays of the enzyme catalyzed reaction. The enzyme, shown to be a dimer, had ATP dependent phosphorylation activity and strict specificity towards gluconate out of 122 substrates tested. In order to evaluate the metabolic impact of gluconate in humans we modeled gluconate metabolism using steady state metabolic network analysis. The results indicate that significant metabolic flux changes in anabolic pathways linked to the hexose monophosphate shunt (HMS) are induced through a small increase in gluconate concentration. We argue that the enzyme takes part in a context specific carbon flux route into the HMS that, in humans, remains incompletely explored. Apart from the biochemical description of human gluconokinase, the results highlight that little is known of the mechanism of gluconate metabolism in humans despite its widespread use in medicine and consumer products. PMID:24896608

  11. Lignification in Sugarcane: Biochemical Characterization, Gene Discovery, and Expression Analysis in Two Genotypes Contrasting for Lignin Content1[W

    PubMed Central

    Bottcher, Alexandra; Cesarino, Igor; Brombini dos Santos, Adriana; Vicentini, Renato; Mayer, Juliana Lischka Sampaio; Vanholme, Ruben; Morreel, Kris; Goeminne, Geert; Moura, Jullyana Cristina Magalhães Silva; Nobile, Paula Macedo; Carmello-Guerreiro, Sandra Maria; Antonio dos Anjos, Ivan; Creste, Silvana; Boerjan, Wout; Landell, Marcos Guimarães de Andrade; Mazzafera, Paulo

    2013-01-01

    Sugarcane (Saccharum spp.) is currently one of the most efficient crops in the production of first-generation biofuels. However, the bagasse represents an additional abundant lignocellulosic resource that has the potential to increase the ethanol production per plant. To achieve a more efficient conversion of bagasse into ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Because several studies have shown a negative effect of lignin on saccharification yield, the characterization of lignin biosynthesis, structure, and deposition in sugarcane is an important goal. Here, we present, to our knowledge, the first systematic study of lignin deposition during sugarcane stem development, using histological, biochemical, and transcriptional data derived from two sugarcane genotypes with contrasting lignin contents. Lignin amount and composition were determined in rind (outer) and pith (inner) tissues throughout stem development. In addition, the phenolic metabolome was analyzed by ultra-high-performance liquid chromatography-mass spectrometry, which allowed the identification of 35 compounds related to the phenylpropanoid pathway and monolignol biosynthesis. Furthermore, the Sugarcane EST Database was extensively surveyed to identify lignin biosynthetic gene homologs, and the expression of all identified genes during stem development was determined by quantitative reverse transcription-polymerase chain reaction. Our data provide, to our knowledge, the first in-depth characterization of lignin biosynthesis in sugarcane and form the baseline for the rational metabolic engineering of sugarcane feedstock for bioenergy purposes. PMID:24144790

  12. Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content.

    PubMed

    Bottcher, Alexandra; Cesarino, Igor; Santos, Adriana Brombini dos; Vicentini, Renato; Mayer, Juliana Lischka Sampaio; Vanholme, Ruben; Morreel, Kris; Goeminne, Geert; Moura, Jullyana Cristina Magalhães Silva; Nobile, Paula Macedo; Carmello-Guerreiro, Sandra Maria; Anjos, Ivan Antonio dos; Creste, Silvana; Boerjan, Wout; Landell, Marcos Guimarães de Andrade; Mazzafera, Paulo

    2013-12-01

    Sugarcane (Saccharum spp.) is currently one of the most efficient crops in the production of first-generation biofuels. However, the bagasse represents an additional abundant lignocellulosic resource that has the potential to increase the ethanol production per plant. To achieve a more efficient conversion of bagasse into ethanol, a better understanding of the main factors affecting biomass recalcitrance is needed. Because several studies have shown a negative effect of lignin on saccharification yield, the characterization of lignin biosynthesis, structure, and deposition in sugarcane is an important goal. Here, we present, to our knowledge, the first systematic study of lignin deposition during sugarcane stem development, using histological, biochemical, and transcriptional data derived from two sugarcane genotypes with contrasting lignin contents. Lignin amount and composition were determined in rind (outer) and pith (inner) tissues throughout stem development. In addition, the phenolic metabolome was analyzed by ultra-high-performance liquid chromatography-mass spectrometry, which allowed the identification of 35 compounds related to the phenylpropanoid pathway and monolignol biosynthesis. Furthermore, the Sugarcane EST Database was extensively surveyed to identify lignin biosynthetic gene homologs, and the expression of all identified genes during stem development was determined by quantitative reverse transcription-polymerase chain reaction. Our data provide, to our knowledge, the first in-depth characterization of lignin biosynthesis in sugarcane and form the baseline for the rational metabolic engineering of sugarcane feedstock for bioenergy purposes. PMID:24144790

  13. Genome-Wide Expression Analysis Reveals Diverse Effects of Acute Nicotine Exposure on Neuronal Function-Related Genes and Pathways

    PubMed Central

    Wang, Ju; Cui, Wenyan; Wei, Jinxue; Sun, Dongxiao; Gutala, Ramana; Gu, Jun; Li, Ming D.

    2011-01-01

    Previous human and animal studies demonstrate that acute nicotine exposure has complicated influences on the function of the nervous system, which may lead to long-lasting effects on the behavior and physiology of the subject. To determine the genes and pathways that might account for long-term changes after acute nicotine exposure, a pathway-focused oligoarray specifically designed for drug addiction research was used to assess acute nicotine effect on gene expression in the neuron-like SH-SY5Y cells. Our results showed that 295 genes involved in various biological functions were differentially regulated by 1?h of nicotine treatment. Among these genes, the expression changes of 221 were blocked by mecamylamine, indicating that the majority of nicotine-modulated genes were altered through the nicotinic acetylcholine receptors (nAChRs)-mediated signaling process. We further identified 14 biochemical pathways enriched among the nicotine-modulated genes, among which were those involved in neural development/synaptic plasticity, neuronal survival/death, immune response, or cellular metabolism. In the genes significantly regulated by nicotine but blocked by mecamylamine, 13 enriched pathways were detected. Nine of these pathways were shared with those enriched in the genes regulated by nicotine, including neuronal function-related pathways such as glucocorticoid receptor signaling, p38 MAPK signaling, PI3K/AKT signaling, and PTEN signaling, implying that nAChRs play important roles in the regulation of these biological processes. Together, our results not only provide insights into the mechanism underlying the acute response of neuronal cells to nicotine but also provide clues to how acute nicotine exposure exerts long-term effects on the nervous system. PMID:21556275

  14. Comparison of biochemical microbial effects in enhanced oil recovery (MEOR)

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Manowitz, B.

    1992-11-01

    Experimental data dealing with the interactions between certain microbial species and crude oils indicates that these interactions are selective and occur via biochemical pathways which can be characterized by the chemical composition of the initial crude oil and that of the end products. In the studies discussed in this paper, the microbial species used were thermophilic and/or thermoadapted microorganisms which thrive in harsh environments (e.g., pH, temperature, pressure, salinity). Crude oils chosen for biotreatment represented a wide range of oils, which varied from relatively light oils to heavy, high sulfur content oils. The crude oils used have also been distinguished in terms of their geological history, i.e., heavy, because they are immature or heavy, because they have been biodegraded. The significance of ``biodegraded`` vs. ``biotreated`` crude oil in MEOR also discussed.

  15. Comparison of biochemical microbial effects in enhanced oil recovery (MEOR)

    SciTech Connect

    Premuzic, E.T.; Lin, M.S.; Manowitz, B.

    1992-11-01

    Experimental data dealing with the interactions between certain microbial species and crude oils indicates that these interactions are selective and occur via biochemical pathways which can be characterized by the chemical composition of the initial crude oil and that of the end products. In the studies discussed in this paper, the microbial species used were thermophilic and/or thermoadapted microorganisms which thrive in harsh environments (e.g., pH, temperature, pressure, salinity). Crude oils chosen for biotreatment represented a wide range of oils, which varied from relatively light oils to heavy, high sulfur content oils. The crude oils used have also been distinguished in terms of their geological history, i.e., heavy, because they are immature or heavy, because they have been biodegraded. The significance of biodegraded'' vs. biotreated'' crude oil in MEOR also discussed.

  16. Microbial degradation of organophosphorus xenobiotics: metabolic pathways and molecular basis.

    PubMed

    Karpouzas, Dimitrios G; Singh, Brajesh K

    2006-01-01

    Organophosphorus (OP) xenobiotics are used worldwide as pesticides and petroleum additives. OP compounds share the major portion of the pesticide market globally. Owing to large-scale use of OP compounds, contaminations of soil and water systems have been reported from all parts of the world. OP compounds possess very high mammalian toxicity and therefore early detection and subsequent decontamination and detoxification of the polluted environment is essential. Additionally, about 200,000 tons of extremely toxic OP chemical warfare agents are required to be destroyed by 2007 under Chemical Warfare Convention (1993). Chemical and physical methods of decontamination are not only expensive and time-consuming, but also in most cases they do not provide a complete solution. These approaches convert compounds from toxic into less toxic states, which in some cases can accumulate in the environment and still be toxic to a range of organisms. Bioremediation provides a suitable way to remove contaminants from the environment as, in most of the cases, OP compounds are totally mineralized by the microorganisms. Most OP compounds are degraded by microorganisms in the environment as a source of phosphorus or carbon or both. Several soil bacteria have been isolated and characterized, which can degrade OP compounds in laboratory cultures and in the field. The biochemical and genetic basis of microbial degradation has received considerable attention. Several genes/enzymes, which provide microorganisms with the ability to degrade OP compounds, have been identified and characterized. Some of these genes and enzymes have been engineered for better efficacy. Bacteria capable of complete mineralization are constructed by transferring the complete degradation pathway for specific compounds to one bacterium. In the present article, we review microbial degradation and metabolic pathways for some OP compounds. The biochemical and molecular basis of OP degradation by microbes and the evolution and distribution of genes/enzymes are also reviewed. This article also examines applications and future use of OP-degrading microbes and enzymes for bioremediation, treatment of OP poisoning, and as biosensors. PMID:17091564

  17. Bioinformatic approaches for functional annotation and pathway inference in metagenomics data

    PubMed Central

    De Filippo, Carlotta; Ramazzotti, Matteo; Fontana, Paolo; Cavalieri, Duccio

    2012-01-01

    Metagenomic approaches are increasingly recognized as a baseline for understanding the ecology and evolution of microbial ecosystems. The development of methods for pathway inference from metagenomics data is of paramount importance to link a phenotype to a cascade of events stemming from a series of connected sets of genes or proteins. Biochemical and regulatory pathways have until recently been thought and modelled within one cell type, one organism, one species. This vision is being dramatically changed by the advent of whole microbiome sequencing studies, revealing the role of symbiotic microbial populations in fundamental biochemical functions. The new landscape we face requires a clear picture of the potentialities of existing tools and development of new tools to characterize, reconstruct and model biochemical and regulatory pathways as the result of integration of function in complex symbiotic interactions of ontologically and evolutionary distinct cell types. PMID:23175748

  18. Structural Organization of Enzymes of the Phenylacetate Catabolic Hybrid Pathway

    PubMed Central

    Grishin, Andrey M.; Cygler, Miroslaw

    2015-01-01

    Aromatic compounds are the second most abundant class of molecules on the earth and frequent environmental pollutants. They are difficult to metabolize due to an inert chemical structure, and of all living organisms, only microbes have evolved biochemical pathways that can open an aromatic ring and catabolize thus formed organic molecules. In bacterial genomes, the phenylacetate (PA) utilization pathway is abundant and represents the central route for degradation of a variety of organic compounds, whose degradation reactions converge at this pathway. The PA pathway is a hybrid pathway and combines the dual features of aerobic metabolism, i.e., usage of both oxygen to open the aromatic ring and of anaerobic metabolism—coenzyme A derivatization of PA. This allows the degradation process to be adapted to fluctuating oxygen conditions. In this review we focus on the structural and functional aspects of enzymes and their complexes involved in the PA degradation by the catabolic hybrid pathway. We discuss the ability of the central PaaABCE monooxygenase to reversibly oxygenate PA, the controlling mechanisms of epoxide concentration by the pathway enzymes, and the similarity of the PA utilization pathway to the benzoate utilization Box pathway and ?-oxidation of fatty acids. PMID:26075354

  19. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  20. Single-molecule detection: applications to ultrasensitive biochemical analysis

    NASA Astrophysics Data System (ADS)

    Castro, Alonso; Shera, E. Brooks

    1995-06-01

    Recent developments in laser-based detection of fluorescent molecules have made possible the implementation of very sensitive techniques for biochemical analysis. We present and discuss our experiments on the applications of our recently developed technique of single-molecule detection to the analysis of molecules of biological interest. These newly developed methods are capable of detecting and identifying biomolecules at the single-molecule level of sensitivity. In one case, identification is based on measuring fluorescence brightness from single molecules. In another, molecules are classified by determining their electrophoretic velocities.

  1. Biochemical Analysis of Supramolecular Muscle Protein Complexes

    E-print Network

    Duffy, Ken

    from skeletal muscle fibres. Venue: PCT Lecture Theatre, 1st Floor, Science Building, NUI Maynooth TimeBiochemical Analysis of Supramolecular Muscle Protein Complexes Professor Kay Ohlendieck Head indicate that many skeletal muscle proteins exist in large complexes, exhibit multi

  2. Design guidelines for optical resonator biochemical sensors

    E-print Network

    Kimerling, Lionel C.

    In this paper, we propose a design tool for dielectric optical resonator-based biochemical refractometry sensors. Analogous to the widely accepted photodetector figure of merit, the detectivity D*, we introduce a new sensor ...

  3. Machine learning approaches to biochemical knowledge discovery 

    E-print Network

    Hofle, Michael David

    2001-01-01

    the conformation of a disulfide based on the biochemical composition of its surrounding contact environment. Finally, we outline how this methodology could be used to potentially help protein engineers create more stable disulfide bonds in proteins....

  4. Enhancing a Pathway-Genome Database (PGDB) to Capture Subcellular Localization of Metabolites and Enzymes: The Nucleotide-Sugar Biosynthetic Pathways of Populus trichocarpa

    SciTech Connect

    Nag, A.; Karpinets, T. V.; Chang, C. H.; Bar-Peled, M.

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s).

  5. Autoantibody Profiling of Glioma Serum Samples to Identify Biomarkers Using Human Proteome Arrays

    PubMed Central

    Syed, Parvez; Gupta, Shabarni; Choudhary, Saket; Pandala, Narendra Goud; Atak, Apurva; Richharia, Annie; KP, Manubhai; Zhu, Heng; Epari, Sridhar; Noronha, Santosh B.; Moiyadi, Aliasgar; Srivastava, Sanjeeva

    2015-01-01

    The heterogeneity and poor prognosis associated with gliomas, makes biomarker identification imperative. Here, we report autoantibody signatures across various grades of glioma serum samples and sub-categories of glioblastoma multiforme using Human Proteome chips containing ~17000 full-length human proteins. The deduced sets of classifier proteins helped to distinguish Grade II, III and IV samples from the healthy subjects with 88, 89 and 94% sensitivity and 87, 100 and 73% specificity, respectively. Proteins namely, SNX1, EYA1, PQBP1 and IGHG1 showed dysregulation across various grades. Sub-classes of GBM, based on its proximity to the sub-ventricular zone, have been reported to have different prognostic outcomes. To this end, we identified dysregulation of NEDD9, a protein involved in cell migration, with probable prognostic potential. Another subcategory of patients where the IDH1 gene is mutated, are known to have better prognosis as compared to patients carrying the wild type gene. On a comparison of these two cohorts, we found STUB1 and YWHAH proteins dysregulated in Grade II glioma patients. In addition to common pathways associated with tumourigenesis, we found enrichment of immunoregulatory and cytoskeletal remodelling pathways, emphasizing the need to explore biochemical alterations arising due to autoimmune responses in glioma. PMID:26370624

  6. Alcohol beverages and biochemical changes in blood.

    PubMed

    Gorinstein, Shela; Trakhtenberg, Simon

    2003-12-01

    Coronary atherosclerosis is the major cause of death in western civilization: one of every three in men as well as in women. It was shown that diets supplemented with moderate quantities of alcoholic beverages could lead to positive biochemical changes in blood of the consumers, which are regarded widely as indicators of improved prevention of atherosclerosis. This review summarizes the recent epidemiological, experimental and clinical investigations concerning mainly the plasma biochemical changes in lipid levels, anticoagulant and antioxidant activities. PMID:14690881

  7. Associative learning in biochemical networks

    E-print Network

    Nikhil Ghandi; Gonen Ashkenasy; Emmanuel Tannenbaum

    2007-01-04

    We develop a simple, chemostat-based model illustrating how a process analogous to associative learning can occur in a biochemical network. Associative learning is a form of learning whereby a system "learns" to associate two stimuli with one another. In our model, two types of replicating molecules, denoted A and B, are present in some initial concentration in the chemostat. Molecules A and B are stimulated to replicate by some growth factors, denoted GA and GB, respectively. It is also assumed that A and B can covalently link, and that the conjugated molecule can be stimulated by either the GA or GB growth factors (and can be degraded). We show that, if the chemostat is stimulated by both growth factors for a certain time, followed by a time gap during which the chemostat is not stimulated at all, and if the chemostat is then stimulated again by only one of the growth factors, then there will be a transient increase in the number of molecules activated by the other growth factor. Therefore, the chemostat bears the imprint of earlier, simultaneous stimulation with both growth factors, which is indicative of associative learning. It is interesting to note that the dynamics of our model is consistent with various aspects of Pavlov's original series of associative learning experiments in dogs. We discuss how associative learning can potentially be performed in vitro within RNA, DNA, or peptide networks. We also highlight how such a mechanism could potentially be involved in genomic evolution, and suggest bioinformatics studies that could be used to find evidence for associative learning processes at work inside living cells.

  8. 40 CFR 158.2000 - Biochemical pesticides definition and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides definition and...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2000 Biochemical pesticides definition and applicability. This subpart applies to all biochemical pesticides as defined in paragraphs...

  9. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis in sensory hair cells in the mouse inner ear

    PubMed Central

    Tao, Litao; Segil, Neil

    2015-01-01

    Aminoglycoside antibiotics are “the drug of choice” for treating many bacterial infections, but their administration results in hearing loss in up to one fourth of the patients who receive them. Several biochemical pathways have been implicated in aminoglycoside antibiotic ototoxicity; however, little is known about how hair cells respond to aminoglycoside antibiotics at the transcriptome level. Here we have investigated the genome-wide response to the aminoglycoside antibiotic gentamicin. Using organotypic cultures of the perinatal organ of Corti, we performed RNA sequencing using cDNA libraries obtained from FACS-purified hair cells. Within 3 h of gentamicin treatment, the messenger RNA level of more than three thousand genes in hair cells changed significantly. Bioinformatic analysis of these changes highlighted several known signal transduction pathways, including the JNK pathway and the NF-?B pathway, in addition to genes involved in the stress response, apoptosis, cell cycle control, and DNA damage repair. In contrast, only 698 genes, mainly involved in cell cycle and metabolite biosynthetic processes, were significantly affected in the non-hair cell population. The gene expression profiles of hair cells in response to gentamicin share a considerable similarity with those previously observed in gentamicin-induced nephrotoxicity. Our findings suggest that previously observed early responses to gentamicin in hair cells in specific signaling pathways are reflected in changes in gene expression. Additionally, the observed changes in gene expression of cell cycle regulatory genes indicate a disruption of the postmitotic state, which may suggest an alternate pathway regulating gentamicin-induced apoptotic hair cell death. This work provides a more comprehensive view of aminoglycoside antibiotic ototoxicity, and thus contributes to identifying potential pathways or therapeutic targets to alleviate this important side effect of aminoglycoside antibiotics. PMID:26052268

  10. Identification of Catalysts and Materials for a High-Energy Density Biochemical Fuel Cell: Cooperative Research and Development Final Report, CRADA Number CRD-09-345

    SciTech Connect

    Ghirardi, M.; Svedruzic, D.

    2013-07-01

    The proposed research attempted to identify novel biochemical catalysts, catalyst support materials, high-efficiency electron transfer agents between catalyst active sites and electrodes, and solid-phase electrolytes in order to maximize the current density of biochemical fuel cells that utilize various alcohols as substrates.

  11. Working Together for Children: Strengthening Transition Pathways

    ERIC Educational Resources Information Center

    Collie, Louise; Willis, Felicity; Paine, Crystal; Windsor, Corina

    2007-01-01

    The "Working Together for Children: Strengthening Transition Pathways" Team has identified that there is a gap between the Early Childhood settings and schools within the Dubbo area. Through meetings with early childhood professionals within Dubbo the authors have identified that the current landscape of care and education within their community…

  12. NCI DTP Pathways Services

    Cancer.gov

    Pathways to Development Services Home Discovery Development Pathways Grants/Contracts Books/Publications Site Search Data Search What's New Section under development. Please direct inquiries to NCIDTPINFO@mail.nih.gov

  13. Manipulating Natural Product Biosynthetic Pathways via DNA Assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2014-01-01

    DNA assembler is an efficient synthetic biology method for constructing and manipulating biochemical pathways. The rapidly increasing number of sequenced genomes provides a rich source for discovery of gene clusters involved in synthesizing new natural products. However, both discovery and economical production are hampered by our limited knowledge in manipulating most organisms and the corresponding pathways. By taking advantage of yeast in vivo homologous recombination, DNA assembler synthesizes an entire expression vector containing the target biosynthetic pathway and the genetic elements needed for DNA maintenance and replication. Here we use the spectinabilin clusters originated from two hosts as examples to illustrate the guidelines of using DNA assembler for cluster characterization and silent cluster activation. Such strategies offer unprecedented versatility in cluster manipulation, bypass the traditional laborious strategies to elicit pathway expression, and provide a new platform for de novo cluster assembly and genome mining for discovering new natural products. PMID:24903884

  14. Compartmentalizing metabolic pathway in Candida glabrata for acetoin production.

    PubMed

    Li, Shubo; Liu, Liming; Chen, Jian

    2015-03-01

    Acetoin, a valuable compound, has high potential as a biochemical building block. In this study, subcellular metabolic engineering was applied to engineer the mitochondrion of Candida glabrata for acetoin production. With the aid of mitochondrial targeting sequences, a heterologous acetoin pathway was targeted into the mitochondria to increase the enzyme concentrations and level of intermediate, followed by coupling with the mitochondrial pyruvate carrier (MPC) to increase the availability of mitochondrial pyruvate. As a result, the strain comprising the combination of the mitochondrial pathway and MPC could yield approximately 3.26 g/L of acetoin, which was about 59.8% higher than that produced by the cytoplasmic pathway. These results provided a new insight into the metabolic engineering of C. glabrata for acetoin production, and offered a potential platform to improve the performance of engineered pathways. PMID:25479455

  15. Biochemical thermodynamics: applications of Mathematica.

    PubMed

    Alberty, Robert A

    2006-01-01

    The most efficient way to store thermodynamic data on enzyme-catalyzed reactions is to use matrices of species properties. Since equilibrium in enzyme-catalyzed reactions is reached at specified pH values, the thermodynamics of the reactions is discussed in terms of transformed thermodynamic properties. These transformed thermodynamic properties are complicated functions of temperature, pH, and ionic strength that can be calculated from the matrices of species values. The most important of these transformed thermodynamic properties is the standard transformed Gibbs energy of formation of a reactant (sum of species). It is the most important because when this function of temperature, pH, and ionic strength is known, all the other standard transformed properties can be calculated by taking partial derivatives. The species database in this package contains data matrices for 199 reactants. For 94 of these reactants, standard enthalpies of formation of species are known, and so standard transformed Gibbs energies, standard transformed enthalpies, standard transformed entropies, and average numbers of hydrogen atoms can be calculated as functions of temperature, pH, and ionic strength. For reactions between these 94 reactants, the changes in these properties can be calculated over a range of temperatures, pHs, and ionic strengths, and so can apparent equilibrium constants. For the other 105 reactants, only standard transformed Gibbs energies of formation and average numbers of hydrogen atoms at 298.15 K can be calculated. The loading of this package provides functions of pH and ionic strength at 298.15 K for standard transformed Gibbs energies of formation and average numbers of hydrogen atoms for 199 reactants. It also provides functions of temperature, pH, and ionic strength for the standard transformed Gibbs energies of formation, standard transformed enthalpies of formation, standard transformed entropies of formation, and average numbers of hydrogen atoms for 94 reactants. Thus loading this package makes available 774 mathematical functions for these properties. These functions can be added and subtracted to obtain changes in these properties in biochemical reactions and apparent equilibrium constants. PMID:16878778

  16. Genomic encyclopedia of sugar utilization pathways in the Shewanella genus

    SciTech Connect

    Rodionov, Dmitry A.; Yang, Chen; Li, Xiaoqing; Rodionova, Irina A.; Wang, Yanbing; Obraztsova, Anna; Zagnitko, Olga P.; Overbeek, Ross; Romine, Margaret F.; Reed, Samantha B.; Fredrickson, Jim K.; Nealson, Kenneth H.; Osterman, Andrei L.

    2010-09-13

    To address a practically and fundamentally important challenge of reconstruction of carbohydrate utilization machinery in any microorganism directly from its genomic sequence, we have established a subsystems-based comparative approach and applied it to 19 genomes from the Shewanella genus. The key stages of our approach include: (i) a homology-based identification of gene candidates using a genomic compilation of ~500 known components of sugar catabolic pathways; (ii) functional assignment of orthologs and prediction of alternative genes and pathway variants based on genomic (operons, regulons) and functional (subsystems, pathways) context analysis; (iii) validation of bioinformatic predictions by a combination of biochemical, genetic and physiological experiments. The obtained genomic encyclopedia of sugar utilization includes ~170 protein families (mostly metabolic enzymes, transporters and transcriptional regulators) spanning 17 distinct pathways with a mosaic distribution across Shewanella species providing insights into their ecophysiology and adaptive evolution. The reconstructed catabolic pathways are significantly enriched by nonorthologous gene replacements and alternative biochemical routes. Phenotypic assays revealed a remarkable consistency between predicted and observed phenotype, an ability to utilize an individual sugar as a sole source of carbon and energy, over the entire matrix of tested strains and sugars. In addition to improving our knowledge of genomics, functional organization and evolution of the sugar catabolome, this study confirmed the efficiency of the established approach, which is scalable and applicable to other groups of microorganisms.

  17. Host Glycan Sugar-Specific Pathways in Streptococcus pneumonia: Galactose as a Key Sugar in Colonisation and Infection

    PubMed Central

    Paixão, Laura; Oliveira, Joana; Veríssimo, André; Vinga, Susana; Lourenço, Eva C.; Ventura, M. Rita; Kjos, Morten; Veening, Jan-Willem; Fernandes, Vitor E.; Andrew, Peter W.; Yesilkaya, Hasan; Neves, Ana Rute

    2015-01-01

    The human pathogen Streptococcus pneumoniae is a strictly fermentative organism that relies on glycolytic metabolism to obtain energy. In the human nasopharynx S. pneumoniae encounters glycoconjugates composed of a variety of monosaccharides, which can potentially be used as nutrients once depolymerized by glycosidases. Therefore, it is reasonable to hypothesise that the pneumococcus would rely on these glycan-derived sugars to grow. Here, we identified the sugar-specific catabolic pathways used by S. pneumoniae during growth on mucin. Transcriptome analysis of cells grown on mucin showed specific upregulation of genes likely to be involved in deglycosylation, transport and catabolism of galactose, mannose and N acetylglucosamine. In contrast to growth on mannose and N-acetylglucosamine, S. pneumoniae grown on galactose re-route their metabolic pathway from homolactic fermentation to a truly mixed acid fermentation regime. By measuring intracellular metabolites, enzymatic activities and mutant analysis, we provide an accurate map of the biochemical pathways for galactose, mannose and N-acetylglucosamine catabolism in S. pneumoniae. Intranasal mouse infection models of pneumococcal colonisation and disease showed that only mutants in galactose catabolic genes were attenuated. Our data pinpoint galactose as a key nutrient for growth in the respiratory tract and highlights the importance of central carbon metabolism for pneumococcal pathogenesis. PMID:25826206

  18. A Direct Link between Abscisic Acid Sensing and the Chromatin-Remodeling ATPase BRAHMA via Core ABA Signaling Pathway Components.

    PubMed

    Peirats-Llobet, Marta; Han, Soon-Ki; Gonzalez-Guzman, Miguel; Jeong, Cheol Woong; Rodriguez, Lesia; Belda-Palazon, Borja; Wagner, Doris; Rodriguez, Pedro L

    2016-01-01

    Optimal response to drought is critical for plant survival and will affect biodiversity and crop performance during climate change. Mitotically heritable epigenetic or dynamic chromatin state changes have been implicated in the plant response to the drought stress hormone abscisic acid (ABA). The Arabidopsis SWI/SNF chromatin-remodeling ATPase BRAHMA (BRM) modulates response to ABA by preventing premature activation of stress response pathways during germination. We show that core ABA signaling pathway components physically interact with BRM and post-translationally modify BRM by phosphorylation/dephosphorylation. Genetic evidence suggests that BRM acts downstream of SnRK2.2/2.3 kinases, and biochemical studies identified phosphorylation sites in the C-terminal region of BRM at SnRK2 target sites that are evolutionarily conserved. Finally, the phosphomimetic BRM(S1760D S1762D) mutant displays ABA hypersensitivity. Prior studies showed that BRM resides at target loci in the ABA pathway in the presence and absence of the stimulus, but is only active in the absence of ABA. Our data suggest that SnRK2-dependent phosphorylation of BRM leads to its inhibition, and PP2CA-mediated dephosphorylation of BRM restores the ability of BRM to repress ABA response. These findings point to the presence of a rapid phosphorylation-based switch to control BRM activity; this property could be potentially harnessed to improve drought tolerance in plants. PMID:26499068

  19. An atypical orthologue of 6-pyruvoyltetrahydropterin synthase can provide the missing link in the folate biosynthesis pathway of malaria parasites

    PubMed Central

    Dittrich, Sabine; Mitchell, Sarah L; Blagborough, Andrew M; Wang, Qi; Wang, Ping; Sims, Paul F G; Hyde, John E

    2008-01-01

    Folate metabolism in malaria parasites is a long-standing, clinical target for chemotherapy and prophylaxis. However, despite determination of the complete genome sequence of the lethal species Plasmodium falciparum, the pathway of de novo folate biosynthesis remains incomplete, as no candidate gene for dihydroneopterin aldolase (DHNA) could be identified. This enzyme catalyses the third step in the well-characterized pathway of plants, bacteria, and those eukaryotic microorganisms capable of synthesizing their own folate. Utilizing bioinformatics searches based on both primary and higher protein structures, together with biochemical assays, we demonstrate that P. falciparum cell extracts lack detectable DHNA activity, but that the parasite possesses an unusual orthologue of 6-pyruvoyltetrahydropterin synthase (PTPS), which simultaneously gives rise to two products in comparable amounts, the predominant of which is 6-hydroxymethyl-7,8-dihydropterin, the substrate for the fourth step in folate biosynthesis (catalysed by 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase; PPPK). This can provide a bypass for the missing DHNA activity and thus a means of completing the biosynthetic pathway from GTP to dihydrofolate. Supported by site-directed mutagenesis experiments, we ascribe the novel catalytic activity of the malarial PTPS to a Cys to Glu change at its active site relative to all previously characterized PTPS molecules, including that of the human host. PMID:18093090

  20. Convergent Evolution of Syringyl Lignin Biosynthesis via Distinct Pathways in the Lycophyte Selaginella and Flowering Plants[C][W

    PubMed Central

    Weng, Jing-Ke; Akiyama, Takuya; Bonawitz, Nicholas D.; Li, Xu; Ralph, John; Chapple, Clint

    2010-01-01

    Phenotypic convergence in unrelated lineages arises when different organisms adapt similarly under comparable selective pressures. In an apparent example of this process, syringyl lignin, a fundamental building block of plant cell walls, occurs in two major plant lineages, lycophytes and angiosperms, which diverged from one another more than 400 million years ago. Here, we show that this convergence resulted from independent recruitment of lignin biosynthetic cytochrome P450-dependent monooxygenases that route cell wall monomers through related but distinct pathways in the two lineages. In contrast with angiosperms, in which syringyl lignin biosynthesis requires two phenylpropanoid meta-hydroxylases C3?H and F5H, the lycophyte Selaginella employs one phenylpropanoid dual meta-hydroxylase to bypass several steps of the canonical lignin biosynthetic pathway. Transgenic expression of the Selaginella hydroxylase in Arabidopsis thaliana dramatically reroutes its endogenous lignin biosynthetic pathway, yielding a novel lignin composition not previously identified in nature. Our findings demonstrate a unique case of convergent evolution via distinct biochemical strategies and suggest a new way to genetically reconstruct lignin biosynthesis in higher plants. PMID:20371642

  1. Benchmark data for identifying DNA methylation sites via pseudo trinucleotide composition

    PubMed Central

    Liu, Zi; Xiao, Xuan; Qiu, Wang-Ren; Chou, Kuo-Chen

    2015-01-01

    This data article contains three benchmark datasets for training and testing iDNA-Methyl, a web-server predictor for identifying DNA methylation sites [Liu et al. Anal. Biochem. 474 (2015) 69–79]. PMID:26217768

  2. Biochemical and structural characterization of a novel ubiquitin-conjugating enzyme E2 from Agrocybe aegeria reveals Ube2w family-specific properties

    PubMed Central

    Qi, Chao; Li, De-Feng; Feng, Lei; Hou, Yanjie; Sun, Hui; Wang, Da-Cheng; Liu, Wei

    2015-01-01

    Ubiquitination is a post-translational modification that is involved in myriad cellar regulation and disease pathways. The ubiquitin-conjugating enzyme (E2) is an important player in the ubiquitin transfer pathway. Although many E2 structures are available, not all E2 families have known structures, and three-dimensional structures from fungal organisms other than yeast are lacking. We report here the crystal structure of UbcA1, which is a novel ubiquitin-conjugating enzyme identified from the edible and medicinal mushroom Agrocybe aegerita and displays potential antitumor properties. The protein belongs to the Ube2w family and shows similar biochemical characteristics to human Ube2w, including monomer-dimer equilibrium in solution, ?-NH2 ubiquitin-transfer activity and a mechanism to recognize backbone atoms of intrinsically disordered N-termini in substrates. Its structure displays a unique C-terminal conformation with an orientation of helix ?3 that is completely different from the reported E2 structures but similar to a recently reported NMR ensemble of Ube2w. A mutagenesis study on this novel enzyme revealed that an intact C-terminus is significant for protein dimerization and enzymatic activity. As the first crystallized full-length protein of this family, UbcA1 may supersede the truncated X-ray structure of Ube2w (PDB entry 2A7L) as the representative structure of the Ube2w family. PMID:26525192

  3. Understanding the Constitutive and Induced Biosynthesis of Mono- and Sesquiterpenes in Grapes (Vitis vinifera): A Key to Unlocking the Biochemical Secrets of Unique Grape Aroma Profiles.

    PubMed

    Schwab, Wilfried; Wüst, Matthias

    2015-12-16

    The present review integrates current knowledge on mono- and sesquiterpenes in grapes with a special focus on biochemical and physiological aspects. Recent research has impressively shown the prominence of terpenoid metabolism in grapevine (Vitis sp). The 69 putatively functional mono- and sesquiterpene synthases that were identified by the analysis of the updated 12-fold sequencing and assembly of the grapevine genome deliver the scaffolds for structural diversity and display a surprising expansion of the terpene synthase (TPS) gene family in grapevine when compared to other plants like Arabidopsis thaliana (32 TPS). While monoterpenes occur as highly functionalized compounds and are stored as their corresponding glycoconjugates in berry tissues, sesquiterpenes are mainly present as unsaturated hydrocarbons and accumulate in the epicuticular wax layer of intact berries. Interestingly, both groups of terpenes appear to be involved as volatile organic compounds in plant defense and their biosynthesis is enhanced via the jasmonic acid signaling pathway. These novel aspects will help to understand how environmental cues affect the genes and enzymes of various metabolic pathways of relevant wine aroma compounds with numerous links to enology and wine flavor chemistry. PMID:26592256

  4. Reactive Simulations for Biochemical Processes

    NASA Astrophysics Data System (ADS)

    Boero, M.

    After a brief review of the hybrid QM/MM molecular dynamics scheme and its coupling to the metadynamics method, I will show how such a combination of computational tools can be used to study chemical reactions of general biological interest. Specifically, by using such a reactive hybrid paradigm, where the QM driver is a Car-Parrinello Lagrangian dynamics, we have inspected the ATP hydrolysis reaction in the anti-freezing protein known as heat shock cognate protein (Hsc70) and the unconventional propagation of protons across peptide groups in the H-path of the bovine cytochrome c oxidase. While the former represents a fundamental reaction operated by all living beings in a wealth of processes and functions, the second one is involved in cell respiration. For both systems accurate X-ray data are available, yet the actual reaction mechanism escapes experimental probes. The simulations presented here provide the complementary information missing in experiments, offer a direct insight into the reaction mechanisms at a molecular level, and allow to understand which pathways nature can follow to realize these processes fundamental to living organisms.

  5. Biochemical systems identification by a random drift particle swarm optimization approach

    PubMed Central

    2014-01-01

    Background Finding an efficient method to solve the parameter estimation problem (inverse problem) for nonlinear biochemical dynamical systems could help promote the functional understanding at the system level for signalling pathways. The problem is stated as a data-driven nonlinear regression problem, which is converted into a nonlinear programming problem with many nonlinear differential and algebraic constraints. Due to the typical ill conditioning and multimodality nature of the problem, it is in general difficult for gradient-based local optimization methods to obtain satisfactory solutions. To surmount this limitation, many stochastic optimization methods have been employed to find the global solution of the problem. Results This paper presents an effective search strategy for a particle swarm optimization (PSO) algorithm that enhances the ability of the algorithm for estimating the parameters of complex dynamic biochemical pathways. The proposed algorithm is a new variant of random drift particle swarm optimization (RDPSO), which is used to solve the above mentioned inverse problem and compared with other well known stochastic optimization methods. Two case studies on estimating the parameters of two nonlinear biochemical dynamic models have been taken as benchmarks, under both the noise-free and noisy simulation data scenarios. Conclusions The experimental results show that the novel variant of RDPSO algorithm is able to successfully solve the problem and obtain solutions of better quality than other global optimization methods used for finding the solution to the inverse problems in this study. PMID:25078435

  6. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast

    PubMed Central

    Qu, Yang; Easson, Michael L. A. E.; Froese, Jordan; Simionescu, Razvan; Hudlicky, Tomas; De Luca, Vincenzo

    2015-01-01

    Antitumor substances related to vinblastine and vincristine are exclusively found in the Catharanthus roseus (Madagascar periwinkle), a member of the Apocynaceae plant family, and continue to be extensively used in cancer chemotherapy. Although in high demand, these valuable compounds only accumulate in trace amounts in C. roseus leaves. Vinblastine and vincristine are condensed from the monoterpenoid indole alkaloid (MIA) precursors catharanthine and vindoline. Although catharanthine biosynthesis remains poorly characterized, the biosynthesis of vindoline from the MIA precursor tabersonine is well understood at the molecular and biochemical levels. This study uses virus-induced gene silencing (VIGS) to identify a cytochrome P450 [CYP71D1V2; tabersonine 3-oxygenase (T3O)] and an alcohol dehydrogenase [ADHL1; tabersonine 3-reductase (T3R)] as candidate genes involved in the conversion of tabersonine or 16-methoxytabersonine to 3-hydroxy-2,3-dihydrotabersonine or 3-hydroxy-16-methoxy-2,3-dihydrotabersonine, which are intermediates in the vindorosine and vindoline pathways, respectively. Biochemical assays with recombinant enzymes confirm that product formation is only possible by the coupled action of T3O and T3R, as the reaction product of T3O is an epoxide that is not used as a substrate by T3R. The T3O and T3R transcripts were identified in a C. roseus database representing genes preferentially expressed in leaf epidermis and suggest that the subsequent reaction products are transported from the leaf epidermis to specialized leaf mesophyll idioblast and laticifer cells to complete the biosynthesis of these MIAs. With these two genes, the complete seven-gene pathway was engineered in yeast to produce vindoline from tabersonine. PMID:25918424

  7. MicroRNA-221 and -222 Regulate Radiation Sensitivity by Targeting the PTEN Pathway

    SciTech Connect

    Zhang Chunzhi; Kang Chunsheng; Wang Ping; Cao Yongzhen; Lv Zhonghong; Yu Shizhu; Wang Guangxiu; Zhang Anling; Jia Zhifan; Han Lei; Yang Chunying; Ishiyama, Hiromichi; Teh, Bin S.; Xu Bo; Pu Peiyu

    2011-05-01

    Purpose: MicroRNAs (miRNAs) are noncoding RNAs inhibiting expression of numerous target genes by posttranscriptional regulation. miRNA-221 and miRNA-222 (miRNA-221/-222) expression is elevated in radioresistant tumor cell lines; however, it is not known whether and how miRNAs control cellular responses to ionizing irradiation. Methods and Materials: We used bioinformatic analyses, luciferase reporter assay, and genetic knockdown and biochemical assays to characterize the regulation pathways of miRNA-221/-222 in response to radiation treatment. Results: We identified the PTEN gene as a target of miRNA-221/-222. Furthermore, we found that knocking down miRNA-221/-222 by antisense oligonucleotides upregulated PTEN expression. Upregulated PTEN expression suppressed AKT activity and increased radiation-induced apoptosis, resulting in enhancement of radiosensitivity in tumor cells. Conclusions: miRNA-221/-222 control radiation sensitivity by regulating the PTEN/AKT pathway and can be explored as novel targets for radiosensitization.

  8. Syngas Upgrading to Hydrocarbon Fuels Technology Pathway

    SciTech Connect

    Talmadge, M.; Biddy, M.; Dutta, A.; Jones, S.; Meyer, A.

    2013-03-01

    This technology pathway case investigates the upgrading of woody biomass derived synthesis gas (syngas) to hydrocarbon biofuels. While this specific discussion focuses on the conversion of syngas via a methanol intermediate to hydrocarbon blendstocks, there are a number of alternative conversion routes for production of hydrocarbons through a wide array of intermediates from syngas. Future work will also consider the variations to this pathway to determine the most economically viable and lowest risk conversion route. Technical barriers and key research needs have been identified that should be pursued for the syngas-to-hydrocarbon pathway to be competitive with petroleum-derived gasoline-, diesel- and jet-range hydrocarbon blendstocks.

  9. A simple separation method for downstream biochemical analysis of aquatic microbes.

    PubMed

    Garrison, Cody E; Bochdansky, Alexander B

    2015-04-01

    In order to study the chemical composition of aquatic microbes it is necessary to obtain completely separated fractions of subpopulations. Size separation by filtration is usually unsuccessful because the smaller group of organisms contaminates the larger fractions due to being trapped on filter surfaces of nominally much larger pore sizes. Here we demonstrate that a simple sucrose density separation method allowed us to separate microorganisms of even subtle size differences and to determine their bulk biochemical composition (proteins, polysaccharides+nucleic acids, and lipids). Both autotrophs and heterotrophs (through anaplerotic pathways) were labeled with (14)C-bicarbonate for biochemical fractionation. We provided proof of concept that eukaryotic microbes could be cleanly separated from prokaryotes in cultures and in field samples, enabling detection of differences in their biochemical makeup. We explored methodological issues regarding separation mechanisms, fixation, and pre-concentration via tangential flow filtration of oligotrophic marine waters where abundances of microorganisms are comparably low. By selecting an appropriate centrifugal force, two processes (i.e., isopycnal and rate-zonal separation) can be exploited simultaneously resulting in finely-separated density fractions, which also resulted in size separation. Future applications of this method include exploration of the stoichiometric, biochemical and genetic differences among subpopulations of microbes in a wide variety of aquatic environments. PMID:25655777

  10. Reverse Engineering Adverse Outcome Pathways

    SciTech Connect

    Perkins, Edward; Chipman, J.K.; Edwards, Stephen; Habib, Tanwir; Falciani, Francesco; Taylor, Ronald C.; Van Aggelen, Graham; Vulpe, Chris; Antczak, Philipp; Loguinov, Alexandre

    2011-01-30

    The toxicological effects of many stressors are mediated through unknown, or poorly characterized, mechanisms of action. We describe the application of reverse engineering complex interaction networks from high dimensional omics data (gene, protein, metabolic, signaling) to characterize adverse outcome pathways (AOPs) for chemicals that disrupt the hypothalamus-pituitary-gonadal endocrine axis in fathead minnows. Gene expression changes in fathead minnow ovaries in response to 7 different chemicals, over different times, doses, and in vivo versus in vitro conditions were captured in a large data set of 868 arrays. We examined potential AOPs of the antiandrogen flutamide using two mutual information theory methods, ARACNE and CLR to infer gene regulatory networks and potential adverse outcome pathways. Representative networks from these studies were used to predict a network path from stressor to adverse outcome as a candidate AOP. The relationship of individual chemicals to an adverse outcome can be determined by following perturbations through the network in response to chemical treatment leading to the nodes associated with the adverse outcome. Identification of candidate pathways allows for formation of testable hypotheses about key biologic processes, biomarkers or alternative endpoints, which could be used to monitor an adverse outcome pathway. Finally, we identify the unique challenges facing the application of this approach in ecotoxicology, and attempt to provide a road map for the utilization of these tools. Key Words: mechanism of action, toxicology, microarray, network inference

  11. Linear analysis near a steady-state of biochemical networks: Control analysis, correlation metrics and circuit theory

    PubMed Central

    Heuett, William J; Beard, Daniel A; Qian, Hong

    2008-01-01

    Background Several approaches, including metabolic control analysis (MCA), flux balance analysis (FBA), correlation metric construction (CMC), and biochemical circuit theory (BCT), have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS) biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. Results In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RTBS and STBS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. Conclusion One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA). PMID:18482450

  12. Zinc finger oxidation of Fpg/Nei DNA glycosylases by 2-thioxanthine: biochemical and X-ray structural characterization

    PubMed Central

    Biela, Artur; Coste, Franck; Culard, Françoise; Guerin, Martine; Goffinont, Stéphane; Gasteiger, Karola; Cie?la, Jaros?aw; Winczura, Alicja; Kazimierczuk, Zygmunt; Gasparutto, Didier; Carell, Thomas; Tudek, Barbara; Castaing, Bertrand

    2014-01-01

    DNA glycosylases from the Fpg/Nei structural superfamily are base excision repair enzymes involved in the removal of a wide variety of mutagen and potentially lethal oxidized purines and pyrimidines. Although involved in genome stability, the recent discovery of synthetic lethal relationships between DNA glycosylases and other pathways highlights the potential of DNA glycosylase inhibitors for future medicinal chemistry development in cancer therapy. By combining biochemical and structural approaches, the physical target of 2-thioxanthine (2TX), an uncompetitive inhibitor of Fpg, was identified. 2TX interacts with the zinc finger (ZnF) DNA binding domain of the enzyme. This explains why the zincless hNEIL1 enzyme is resistant to 2TX. Crystal structures of the enzyme bound to DNA in the presence of 2TX demonstrate that the inhibitor chemically reacts with cysteine thiolates of ZnF and induces the loss of zinc. The molecular mechanism by which 2TX inhibits Fpg may be generalized to all prokaryote and eukaryote ZnF-containing Fpg/Nei-DNA glycosylases. Cell experiments show that 2TX can operate in cellulo on the human Fpg/Nei DNA glycosylases. The atomic elucidation of the determinants for the interaction of 2TX to Fpg provides the foundation for the future design and synthesis of new inhibitors with high efficiency and selectivity. PMID:25143530

  13. Plant Pathway Databases.

    PubMed

    Jaiswal, Pankaj; Usadel, Björn

    2016-01-01

    Pathway databases provide information about the role of chemicals, genes, and gene products in the form of protein or RNA, their interactions leading to the formulation of metabolic, transport, regulatory, and signaling reactions. The reactions can then be tethered by the principle of inputs and outputs of one or more reaction to create pathways. This chapter provides a list of various online databases that carry information about plant pathways and provides a brief overview of how to use the pathway databases such as WikiPathways Plants Portal, MapMan and the cereal crop pathway databases like RiceCyc and MaizeCyc, that were developed using the Pathway Tools software. PMID:26519401

  14. Inferring pathway activity toward precise disease classification.

    PubMed

    Lee, Eunjung; Chuang, Han-Yu; Kim, Jong-Won; Ideker, Trey; Lee, Doheon

    2008-11-01

    The advent of microarray technology has made it possible to classify disease states based on gene expression profiles of patients. Typically, marker genes are selected by measuring the power of their expression profiles to discriminate among patients of different disease states. However, expression-based classification can be challenging in complex diseases due to factors such as cellular heterogeneity within a tissue sample and genetic heterogeneity across patients. A promising technique for coping with these challenges is to incorporate pathway information into the disease classification procedure in order to classify disease based on the activity of entire signaling pathways or protein complexes rather than on the expression levels of individual genes or proteins. We propose a new classification method based on pathway activities inferred for each patient. For each pathway, an activity level is summarized from the gene expression levels of its condition-responsive genes (CORGs), defined as the subset of genes in the pathway whose combined expression delivers optimal discriminative power for the disease phenotype. We show that classifiers using pathway activity achieve better performance than classifiers based on individual gene expression, for both simple and complex case-control studies including differentiation of perturbed from non-perturbed cells and subtyping of several different kinds of cancer. Moreover, the new method outperforms several previous approaches that use a static (i.e., non-conditional) definition of pathways. Within a pathway, the identified CORGs may facilitate the development of better diagnostic markers and the discovery of core alterations in human disease. PMID:18989396

  15. Biochemical Removal of HAP Precursors From Coal

    SciTech Connect

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  16. Biochemical and cultural characteristics of "JK" coryneforms.

    PubMed Central

    Bayston, R; Higgins, J

    1986-01-01

    Antibiotic resistant coryneforms (group JK) have increasingly been reported as causes of serious sepsis in the immunosuppressed and in patients with implants. Their cultural and biochemical characteristics were examined in an attempt to provide a simple scheme for their recognition in the clinical laboratory. Their susceptibilities to a range of antimicrobials were determined, and an enriched selective medium was developed for their isolation from normally non-sterile sites. The JK coryneforms fell into a fairly homogeneous group, producing colonial morphology and biochemical profiles identical with reference strains, which allowed their recognition and differentiation from other coryneforms. All strains were resistant to penicillin and susceptible to vancomycin, but there was considerable variation with respect to other antimicrobials. There is scope for further rationalisation of biochemical tests for the recognition of these organisms. Images PMID:3088064

  17. Biochemical Diagnosis of Coenzyme Q10 Deficiency

    PubMed Central

    Yubero, Delia; Montero, Raquel; Artuch, Rafael; Land, John M.; Heales, Simon J.R.; Hargreaves, Iain P.

    2014-01-01

    Coenzyme Q10 (CoQ10) deficiency appears to have a particularly heterogeneous clinical presentation. However, there appear to be 5 recognisable clinical phenotypes: encephalomyopathy, severe infantile multisystemic disease, nephropathy, cerebellar ataxia, and isolated myopathy. However, although useful, clinical symptoms alone are insufficient for the definitive diagnosis of CoQ10 deficiency which relies upon biochemical assessment of tissue CoQ10 status. In this article, we review the biochemical methods used in the diagnosis of human CoQ10 deficiency and indicate the most appropriate tissues for this evaluation. PMID:25126047

  18. Biochemical and clinical features of hereditary hyperprolinemia.

    PubMed

    Mitsubuchi, Hiroshi; Nakamura, Kimitoshi; Matsumoto, Shirou; Endo, Fumio

    2014-08-01

    There are two classifications of hereditary hyperprolinemia: type I (HPI) and type II (HPII). Each type is caused by an autosomal recessive inborn error of the proline metabolic pathway. HPI is caused by an abnormality in the proline-oxidizing enzyme (POX). HPII is caused by a deficiency of ?-1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDh). The clinical features of HPI are unclear. Nephropathy, uncontrolled seizures, mental retardation or schizophrenia have been reported in HPI, but a benign phenotype without neurological problems has also been reported. The clinical features of HPII are also unclear. In addition, the precise incidences of HPI and HPII are unknown. Only two cases of HPI and one case of HPII have been identified in Japan through a questionnaire survey and by a study of previous reports. This suggests that hyperprolinemia is a very rare disease in Japan, consistent with earlier reports in Western countries. The one case of HPII found in Japan was diagnosed in an individual with influenza-associated encephalopathy. This suggests that HPII might reduce the threshold for convulsions, thereby increasing the sensitivity of individuals with influenza-associated encephalopathy. The current study presents diagnostic criteria for HPI and HPII, based on plasma proline level, with or without measurements of urinary P5C. In the future, screening for HPI and HPII in healthy individuals, or patients with relatively common diseases such as developmental disabilities, epilepsy, schizophrenia or behavioral problems will be important. PMID:24931297

  19. Biochemical and clinical features of hereditary hyperprolinemia

    PubMed Central

    Mitsubuchi, Hiroshi; Nakamura, Kimitoshi; Matsumoto, Shirou; Endo, Fumio

    2014-01-01

    There are two classifications of hereditary hyperprolinemia: type I (HPI) and type II (HPII). Each type is caused by an autosomal recessive inborn error of the proline metabolic pathway. HPI is caused by an abnormality in the proline-oxidizing enzyme (POX). HPII is caused by a deficiency of ?-1-pyrroline-5-carboxylate (P5C) dehydrogenase (P5CDh). The clinical features of HPI are unclear. Nephropathy, uncontrolled seizures, mental retardation or schizophrenia have been reported in HPI, but a benign phenotype without neurological problems has also been reported. The clinical features of HPII are also unclear. In addition, the precise incidences of HPI and HPII are unknown. Only two cases of HPI and one case of HPII have been identified in Japan through a questionnaire survey and by a study of previous reports. This suggests that hyperprolinemia is a very rare disease in Japan, consistent with earlier reports in Western countries. The one case of HPII found in Japan was diagnosed in an individual with influenza-associated encephalopathy. This suggests that HPII might reduce the threshold for convulsions, thereby increasing the sensitivity of individuals with influenza-associated encephalopathy. The current study presents diagnostic criteria for HPI and HPII, based on plasma proline level, with or without measurements of urinary P5C. In the future, screening for HPI and HPII in healthy individuals, or patients with relatively common diseases such as developmental disabilities, epilepsy, schizophrenia or behavioral problems will be important. PMID:24931297

  20. Biochemical and genetic investigation of initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1.

    PubMed

    Birkenmaier, Antoinette; Holert, Johannes; Erdbrink, Henrike; Moeller, Heiko M; Friemel, Anke; Schoenenberger, René; Suter, Marc J-F; Klebensberger, Janosch; Philipp, Bodo

    2007-10-01

    Bile acids are surface-active steroid compounds with toxic effects for bacteria. Recently, the isolation and characterization of a bacterium, Pseudomonas sp. strain Chol1, growing with bile acids as the carbon and energy source was reported. In this study, initial reactions of the aerobic degradation pathway for the bile acid cholate were investigated on the biochemical and genetic level in strain Chol1. These reactions comprised A-ring oxidation, activation with coenzyme A (CoA), and beta-oxidation of the acyl side chain with the C(19)-steroid dihydroxyandrostadienedione as the end product. A-ring oxidizing enzyme activities leading to Delta(1,4)-3-ketocholyl-CoA were detected in cell extracts and confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cholate activation with CoA was demonstrated in cell extracts and confirmed with a chemically synthesized standard by LC-MS/MS. A transposon mutant with a block in oxidation of the acyl side chain accumulated a steroid compound in culture supernatants which was identified as 7alpha,12alpha-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC) by nuclear magnetic resonance spectroscopy. The interrupted gene was identified as encoding a putative acyl-CoA-dehydrogenase (ACAD). DHOPDC activation with CoA in cell extracts of strain Chol1 was detected by LC-MS/MS. The growth defect of the transposon mutant could be complemented by the wild-type ACAD gene located on the plasmid pBBR1MCS-5. Based on these results, the initiating reactions of the cholate degradation pathway leading from cholate to dihydroxyandrostadienedione could be reconstructed. In addition, the first bacterial gene encoding an enzyme for a specific reaction step in side chain degradation of steroid compounds was identified, and it showed a high degree of similarity to genes in other steroid-degrading bacteria. PMID:17693490

  1. Biochemical and Genetic Investigation of Initial Reactions in Aerobic Degradation of the Bile Acid Cholate in Pseudomonas sp. Strain Chol1?

    PubMed Central

    Birkenmaier, Antoinette; Holert, Johannes; Erdbrink, Henrike; Moeller, Heiko M.; Friemel, Anke; Schoenenberger, René; Suter, Marc J.-F.; Klebensberger, Janosch; Philipp, Bodo

    2007-01-01

    Bile acids are surface-active steroid compounds with toxic effects for bacteria. Recently, the isolation and characterization of a bacterium, Pseudomonas sp. strain Chol1, growing with bile acids as the carbon and energy source was reported. In this study, initial reactions of the aerobic degradation pathway for the bile acid cholate were investigated on the biochemical and genetic level in strain Chol1. These reactions comprised A-ring oxidation, activation with coenzyme A (CoA), and ?-oxidation of the acyl side chain with the C19-steroid dihydroxyandrostadienedione as the end product. A-ring oxidizing enzyme activities leading to ?1,4-3-ketocholyl-CoA were detected in cell extracts and confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cholate activation with CoA was demonstrated in cell extracts and confirmed with a chemically synthesized standard by LC-MS/MS. A transposon mutant with a block in oxidation of the acyl side chain accumulated a steroid compound in culture supernatants which was identified as 7?,12?-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC) by nuclear magnetic resonance spectroscopy. The interrupted gene was identified as encoding a putative acyl-CoA-dehydrogenase (ACAD). DHOPDC activation with CoA in cell extracts of strain Chol1 was detected by LC-MS/MS. The growth defect of the transposon mutant could be complemented by the wild-type ACAD gene located on the plasmid pBBR1MCS-5. Based on these results, the initiating reactions of the cholate degradation pathway leading from cholate to dihydroxyandrostadienedione could be reconstructed. In addition, the first bacterial gene encoding an enzyme for a specific reaction step in side chain degradation of steroid compounds was identified, and it showed a high degree of similarity to genes in other steroid-degrading bacteria. PMID:17693490

  2. A Geometric Method for Model Reduction of Biochemical Networks with Polynomial Rate Functions.

    PubMed

    Samal, Satya Swarup; Grigoriev, Dima; Fröhlich, Holger; Weber, Andreas; Radulescu, Ovidiu

    2015-12-01

    Model reduction of biochemical networks relies on the knowledge of slow and fast variables. We provide a geometric method, based on the Newton polytope, to identify slow variables of a biochemical network with polynomial rate functions. The gist of the method is the notion of tropical equilibration that provides approximate descriptions of slow invariant manifolds. Compared to extant numerical algorithms such as the intrinsic low-dimensional manifold method, our approach is symbolic and utilizes orders of magnitude instead of precise values of the model parameters. Application of this method to a large collection of biochemical network models supports the idea that the number of dynamical variables in minimal models of cell physiology can be small, in spite of the large number of molecular regulatory actors. PMID:26597097

  3. Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells

    PubMed Central

    Ferrara, Maria Antonietta; Di Caprio, Giuseppe; Managò, Stefano; De Angelis, Annalisa; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara

    2015-01-01

    A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols. PMID:25836358

  4. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    SciTech Connect

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G.

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeast and parasitic protozoa.

  5. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step

    PubMed Central

    Shestov, Alexander A; Liu, Xiaojing; Ser, Zheng; Cluntun, Ahmad A; Hung, Yin P; Huang, Lei; Kim, Dongsung; Le, Anne; Yellen, Gary; Albeck, John G; Locasale, Jason W

    2014-01-01

    Aerobic glycolysis or the Warburg Effect (WE) is characterized by the increased metabolism of glucose to lactate. It remains unknown what quantitative changes to the activity of metabolism are necessary and sufficient for this phenotype. We developed a computational model of glycolysis and an integrated analysis using metabolic control analysis (MCA), metabolomics data, and statistical simulations. We identified and confirmed a novel mode of regulation specific to aerobic glycolysis where flux through GAPDH, the enzyme separating lower and upper glycolysis, is the rate-limiting step in the pathway and the levels of fructose (1,6) bisphosphate (FBP), are predictive of the rate and control points in glycolysis. Strikingly, negative flux control was found and confirmed for several steps thought to be rate-limiting in glycolysis. Together, these findings enumerate the biochemical determinants of the WE and suggest strategies for identifying the contexts in which agents that target glycolysis might be most effective. DOI: http://dx.doi.org/10.7554/eLife.03342.001 PMID:25009227

  6. The Plant-Like C2 Glycolate Cycle and the Bacterial-Like Glycerate Pathway Cooperate in Phosphoglycolate Metabolism in Cyanobacteria1

    PubMed Central

    Eisenhut, Marion; Kahlon, Shira; Hasse, Dirk; Ewald, Ralph; Lieman-Hurwitz, Judy; Ogawa, Teruo; Ruth, Wolfgang; Bauwe, Hermann; Kaplan, Aaron; Hagemann, Martin

    2006-01-01

    The occurrence of a photorespiratory 2-phosphoglycolate metabolism in cyanobacteria is not clear. In the genome of the cyanobacterium Synechocystis sp. strain PCC 6803, we have identified open reading frames encoding enzymes homologous to those forming the plant-like C2 cycle and the bacterial-type glycerate pathway. To study the route and importance of 2-phosphoglycolate metabolism, the identified genes were systematically inactivated by mutagenesis. With a few exceptions, most of these genes could be inactivated without leading to a high-CO2-requiring phenotype. Biochemical characterization of recombinant proteins verified that Synechocystis harbors an active serine hydroxymethyltransferase, and, contrary to higher plants, expresses a glycolate dehydrogenase instead of an oxidase to convert glycolate to glyoxylate. The mutation of this enzymatic step, located prior to the branching of phosphoglycolate metabolism into the plant-like C2 cycle and the bacterial-like glycerate pathway, resulted in glycolate accumulation and a growth depression already at high CO2. Similar growth inhibitions were found for a single mutant in the plant-type C2 cycle and more pronounced for a double mutant affected in both the C2 cycle and the glycerate pathway after cultivation at low CO2. These results suggested that cyanobacteria metabolize phosphoglycolate by the cooperative action of the C2 cycle and the glycerate pathway. When exposed to low CO2, glycine decarboxylase knockout mutants accumulated far more glycine and lysine than wild-type cells or mutants with inactivated glycerate pathway. This finding and the growth data imply a dominant, although not exclusive, role of the C2 route in cyanobacterial phosphoglycolate metabolism. PMID:16877700

  7. Biochemical identification and crystal structure of kynurenine formamidase from Drosophila melanogaster

    PubMed Central

    Han, Qian; Robinson, Howard; Li, Jianyong

    2013-01-01

    KFase (kynurenine formamidase), also known as arylformamidase and formylkynurenine formamidase, efficiently catalyses the hydrolysis of NFK (N-formyl-L-kynurenine) to kynurenine. KFase is the second enzyme in the kynurenine pathway of tryptophan metabolism. A number of intermediates formed in the kynurenine pathway are biologically active and implicated in an assortment of medical conditions, including cancer, schizophrenia and neurodegenerative diseases. Consequently, enzymes involved in the kynurenine pathway have been considered potential regulatory targets. In the present study, we report, for the first time, the biochemical characterization and crystal structures of Drosophila melanogaster KFase conjugated with an inhibitor, PMSF. The protein architecture of KFase reveals that it belongs to the ?/? hydrolase fold family. The PMSF-binding information of the solved conjugated crystal structure was used to obtain a KFase and NFK complex using molecular docking. The complex is useful for understanding the catalytic mechanism of KFase. The present study provides a molecular basis for future efforts in maintaining or regulating kynurenine metabolism through the molecular and biochemical regulation of KFase. PMID:22690733

  8. Biochemical Mechanisms Controlling Terminal Electron Transfer in Geobacter sulfurreducens

    NASA Astrophysics Data System (ADS)

    Helmus, R.; Liermann, L. J.; Brantley, S. L.; Tien, M.

    2009-04-01

    The ability of Geobacter sulfurreducens to use a variety of metals as terminal electron acceptors (TEAs) for cellular respiration makes it attractive for use in bioremediation and implies its importance to mineral cycling in the environment. This study is aimed at understanding the biochemical mechanisms that allow Geobacter sulfurreducens to use soluble and insoluble iron and manganese forms as TEAs for cellular respiration and is the first of its kind to address the kinetics of manganese use as a TEA by G. sulfurreducens. First, G. sulfurreducens was conditioned to grow on various soluble and insoluble iron and manganese forms. G. sulfurreducens demonstrated enhanced growth rates when cultured using soluble TEAs compared with insoluble TEAs. However, the lower growth rate on insoluble iron compared with soluble iron was observed concomitantly with a 1-2 log lower cell density in stationary phase in insoluble iron cultures and a lower growth yield per electron donor used in log growth phase. Furthermore, the growth yield per electron was similar with both soluble and insoluble iron. These results suggest that the net amount of energy available for biomass production achieved from reducing insoluble iron is lower than with soluble iron, which may be due to a different biochemical mechanism catalyzing the electron transfer to TEA dependent upon the solubility of the TEA. One scenario consistent with this notion is that protein(s) in the outer membrane of G. sulfurreducens that transfers electrons to insoluble TEAs does so in a manner that uncouples electron flow from the proton pump in the cellular membrane, similar to what we have observed with Shewanella oneidensis MR-1. Both the growth rate and growth yield of G. sulfurreducens on insoluble manganese were higher than on insoluble iron, indicating that there is a difference in the flow of electrons to the TEA in these two situations. While the different redox potentials of these elements may affect these values, it is also possible that differential protein expression occurs when G. sulfurreducens is grown with insoluble iron versus insoluble iron. These initial results indicate that G. sulfurreducens allocates energy to unique cellular functions depending on the type of TEA used, suggesting that novel mechanisms are used to enable use of various metal forms for respiration. Follow-up protein expression studies were then conducted and are now being used to begin to delineate what biochemical mechanisms and cellular pathways are involved in these processes.

  9. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    NASA Astrophysics Data System (ADS)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production.

  10. Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion.

    PubMed

    Mu, Dongyan; Seager, Thomas; Rao, P Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle assessment model that facilitates effective decision-making regarding lignocellulosic ethanol production. PMID:20440495

  11. PATHWAYS - ELECTRON TUNNELING PATHWAYS IN PROTEINS

    NASA Technical Reports Server (NTRS)

    Beratan, D. N.

    1994-01-01

    The key to understanding the mechanisms of many important biological processes such as photosynthesis and respiration is a better understanding of the electron transfer processes which take place between metal atoms (and other groups) fixed within large protein molecules. Research is currently focused on the rate of electron transfer and the factors that influence it, such as protein composition and the distance between metal atoms. Current models explain the swift transfer of electrons over considerable distances by postulating bridge-mediated tunneling, or physical tunneling pathways, made up of interacting bonds in the medium around and between donor and acceptor sites. The program PATHWAYS is designed to predict the route along which electrons travel in the transfer processes. The basic strategy of PATHWAYS is to begin by recording each possible path element on a connectivity list, including in each entry which two atoms are connected and what contribution the connection would make to the overall rate if it were included in a pathway. The list begins with the bonded molecular structure (including the backbone sequence and side chain connectivity), and then adds probable hydrogen bond links and through-space contacts. Once this list is completed, the program runs a tree search from the donor to the acceptor site to find the dominant pathways. The speed and efficiency of the computer search offers an improvement over manual techniques. PATHWAYS is written in FORTRAN 77 for execution on DEC VAX series computers running VMS. The program inputs data from four data sets and one structure file. The software was written to input BIOGRAF (old format) structure files based on x-ray crystal structures and outputs ASCII files listing the best pathways and BIOGRAF vector files containing the paths. Relatively minor changes could be made in the input format statements for compatibility with other graphics software. The executable and source code are included with the distribution. The main memory requirement for execution is 2.6 Mb. This program is available in DEC VAX BACKUP format on a 9-track 1600 BPI magnetic tape (standard distribution) or on a TK50 tape cartridge. PATHWAYS was developed in 1988. PATHWAYS is a copyrighted work with all copyright vested in NASA. DEC, VAX, VMS, and TK50 are trademarks of Digital Equipment Corporation. BIOGRAF is a trademark of Molecular Simulations, Inc., Sunnyvale, CA.

  12. Autonomous bio-chemical decontaminator (ABCD) against weapons of mass destruction

    NASA Astrophysics Data System (ADS)

    Hyacinthe, Berg P.

    2006-05-01

    The proliferation of weapons of mass destruction (WMD) and the use of such elements pose an eminent asymmetric threat with disastrous consequences to the national security of any nation. In particular, the use of biochemical warfare agents against civilians and unprotected troops in international conflicts or by terrorists against civilians is considered as a very peculiar threat. Accordingly, taking a quarantine-before-inhalation approach to biochemical warfare, the author introduces the notion of autonomous biochemical decontamination against WMD. In the unfortunate event of a biochemical attack, the apparatus proposed herein is intended to automatically detect, identify, and more importantly neutralize a biochemical threat. Along with warnings concerning a cyber-WMD nexus, various sections cover discussions on human senses and computer sensors, corroborating evidence related to detection and neutralization of chemical toxins, and cyber-assisted olfaction in stand alone, peer-to-peer, and network settings. In essence, the apparatus can be used in aviation and mass transit security to initiate mass decontamination by dispersing a decontaminant aerosol or to protect the public water supply against a potential bioterrorist attack. Future effort may involve a system-on-chip (SoC) embodiment of this apparatus that allows a safer environment for the emerging phenomenon of cyber-assisted olfaction and morph cell phones into ubiquitous sensors/decontaminators. Although this paper covers mechanisms and protocols to avail a neutralizing substance, further research will need to explore the substance's various pharmacological profiles and potential side effects.

  13. BioCluster: Tool for Identification and Clustering of Enterobacteriaceae Based on Biochemical Data

    PubMed Central

    Abdullah, Ahmed; Sabbir Alam, S.M.; Sultana, Munawar; Hossain, M. Anwar

    2015-01-01

    Presumptive identification of different Enterobacteriaceae species is routinely achieved based on biochemical properties. Traditional practice includes manual comparison of each biochemical property of the unknown sample with known reference samples and inference of its identity based on the maximum similarity pattern with the known samples. This process is labor-intensive, time-consuming, error-prone, and subjective. Therefore, automation of sorting and similarity in calculation would be advantageous. Here we present a MATLAB-based graphical user interface (GUI) tool named BioCluster. This tool was designed for automated clustering and identification of Enterobacteriaceae based on biochemical test results. In this tool, we used two types of algorithms, i.e., traditional hierarchical clustering (HC) and the Improved Hierarchical Clustering (IHC), a modified algorithm that was developed specifically for the clustering and identification of Enterobacteriaceae species. IHC takes into account the variability in result of 1–47 biochemical tests within this Enterobacteriaceae family. This tool also provides different options to optimize the clustering in a user-friendly way. Using computer-generated synthetic data and some real data, we have demonstrated that BioCluster has high accuracy in clustering and identifying enterobacterial species based on biochemical test data. This tool can be freely downloaded at http://microbialgen.du.ac.bd/biocluster/. PMID:26216453

  14. The nucleolar detention pathway

    PubMed Central

    Audas, Timothy E.; Jacob, Mathieu D.; Lee, Stephen

    2012-01-01

    Molecular dynamics ensures that proteins and other factors reach their site of action in a timely and efficient manner. This is essential to the formation of molecular complexes, as they require an ever-changing framework of specific interactions to facilitate a model of self-assembly. Therefore, the absence or reduced availability of any key component would significantly impair complex formation and disrupt all downstream molecular networks. Recently, we identified a regulatory mechanism that modulates protein mobility through the inducible expression of a novel family of long noncoding RNA. In response to diverse environmental stimuli, the nucleolar detention pathway (NoDP) captures and immobilizes essential cellular factors within the nucleolus away from their effector molecules. The vast array of putative NoDP targets, including DNA (cytosine-5)-methyltransferase 1 (DNMT1) and the delta catalytic subunit of DNA polymerase (POLD1), suggests that this may be a common and significant regulatory mechanism. Here, we discuss the implications of this new posttranslational strategy for regulating molecular networks. PMID:22580471

  15. Formaldehyde-Detoxifying Role of the Tetrahydromethanopterin-Linked Pathway in Methylobacterium extorquens AM1

    PubMed Central

    Marx, Christopher J.; Chistoserdova, Ludmila; Lidstrom, Mary E.

    2003-01-01

    The facultative methylotroph Methylobacterium extorquens AM1 possesses two pterin-dependent pathways for C1 transfer between formaldehyde and formate, the tetrahydrofolate (H4F)-linked pathway and the tetrahydromethanopterin (H4MPT)-linked pathway. Both pathways are required for growth on C1 substrates; however, mutants defective for the H4MPT pathway reveal a unique phenotype of being inhibited by methanol during growth on multicarbon compounds such as succinate. It has been previously proposed that this methanol-sensitive phenotype is due to the inability to effectively detoxify formaldehyde produced from methanol. Here we present a comparative physiological characterization of four mutants defective in the H4MPT pathway and place them into three different phenotypic classes that are concordant with the biochemical roles of the respective enzymes. We demonstrate that the analogous H4F pathway present in M. extorquens AM1 cannot fulfill the formaldehyde detoxification function, while a heterologously expressed pathway linked to glutathione and NAD+ can successfully substitute for the H4MPT pathway. Additionally, null mutants were generated in genes previously thought to be essential, indicating that the H4MPT pathway is not absolutely required during growth on multicarbon compounds. These results define the role of the H4MPT pathway as the primary formaldehyde oxidation and detoxification pathway in M. extorquens AM1. PMID:14645276

  16. Characterizing Multistationarity Regimes in Biochemical Reaction Networks

    PubMed Central

    Otero-Muras, Irene; Banga, Julio R.; Alonso, Antonio A.

    2012-01-01

    Switch like responses appear as common strategies in the regulation of cellular systems. Here we present a method to characterize bistable regimes in biochemical reaction networks that can be of use to both direct and reverse engineering of biological switches. In the design of a synthetic biological switch, it is important to study the capability for bistability of the underlying biochemical network structure. Chemical Reaction Network Theory (CRNT) may help at this level to decide whether a given network has the capacity for multiple positive equilibria, based on their structural properties. However, in order to build a working switch, we also need to ensure that the bistability property is robust, by studying the conditions leading to the existence of two different steady states. In the reverse engineering of biological switches, knowledge collected about the bistable regimes of the underlying potential model structures can contribute at the model identification stage to a drastic reduction of the feasible region in the parameter space of search. In this work, we make use and extend previous results of the CRNT, aiming not only to discriminate whether a biochemical reaction network can exhibit multiple steady states, but also to determine the regions within the whole space of parameters capable of producing multistationarity. To that purpose we present and justify a condition on the parameters of biochemical networks for the appearance of multistationarity, and propose an efficient and reliable computational method to check its satisfaction through the parameter space. PMID:22802936

  17. BIOCHEMICAL AND BIOLOGICAL MARKERS: IMPLICATIONS FOR EPIDEMIOLOGY

    EPA Science Inventory

    Given that a major task for environmental epidemiology is to provide evidence of long-term health risks early enough so that appropriate preventive measures can be taken, biochemical and biological markers of potentially harmful environmental exposures are of great interest and p...

  18. COMMUNICATION Computational and Biochemical Identification of a

    E-print Network

    Lichtarge, Olivier

    of Medicine, Houston, TX 77030 USA Nuclear transport carriers interact with proteins of the nuclear poreCOMMUNICATION Computational and Biochemical Identification of a Nuclear Pore Complex Binding Site on the Nuclear Transport Carrier NTF2 Ian Cushman1 *, Brian R. Bowman2 , Mathew E. Sowa3 , Olivier Lichtarge4

  19. Final Paper BioChem 118Q

    E-print Network

    Brutlag, Doug

    Dana Neel Final Paper BioChem 118Q Due March 16, 2009 Personalized Medicine: Cancer Prevention doors for targeted drug development and personalized, or tailored, medicine. Personalized medicine population would benefit from these new treatments.i Personalized medicine would not only provide doctors

  20. Biochemical Relationship Between Otolith and Somatic

    E-print Network

    Biochemical Relationship Between Otolith and Somatic Growth in the Rainbow Trout Oncorhynchus- ination of otolith growth-somatic growth relationship was conducted in rainbow trout Oncorhynchu.s my- kiss. The rate of otolith growth was defined by calcium deposition on oto- liths in an in 11it

  1. The Biochemical Basis of Minimal Brain Dysfunction

    ERIC Educational Resources Information Center

    Shaywitz, Sally E.; And Others

    1978-01-01

    Available from: C. V. Mosby Company 11830 Westline Industrial Drive St. Louis, Missouri 63141 The research review examines evidence suggesting a biochemical basis for minimal brain dysfunction (MBD), which includes both a relationship between MBD and metabolic abnormalities and a significant genetic influence on the disorder in children. (IM)

  2. Elaine De Leon BIOCHEM 118Q

    E-print Network

    Brutlag, Doug

    De Leon 1 Elaine De Leon BIOCHEM 118Q Douglas Brutlag 6/4/2008 Newborn Genetic Screening: Changing genetic screening could provide several life-long benefits for infants, several societal inadequacies appear when considering an increase in newborn genetic screening. The individual child may benefit

  3. 2009 Biochemical Conversion Platform Review Report

    SciTech Connect

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Biochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  4. Survey of Biochemical Education in Japanese Universities.

    ERIC Educational Resources Information Center

    Kagawa, Yasuo

    1995-01-01

    Reports findings of questionnaires sent to faculty in charge of biochemical education in medical schools and other programs from dentistry to agriculture. Total class hours have declined since 1984. New trends include bioethics and computer-assisted learning. Tables show trends in lecture hours, lecture content, laboratory hours, core subject…

  5. Biochemical Approaches to Improved Nitrogen Fixation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving symbiotic nitrogen fixation by legumes has emerged again as an important topic on the world scene due to the energy crisis and lack of access to nitrogen fertilizer in developing countries. We have taken a biochemical genomics approach to improving symbiotic nitrogen fixation in legumes. L...

  6. Biochemical Thermodynamics under near Physiological Conditions

    ERIC Educational Resources Information Center

    Mendez, Eduardo

    2008-01-01

    The recommendations for nomenclature and tables in Biochemical Thermodynamics approved by IUBMB and IUPAC in 1994 can be easily introduced after the chemical thermodynamic formalism. Substitution of the usual standard thermodynamic properties by the transformed ones in the thermodynamic equations, and the use of appropriate thermodynamic tables…

  7. Structure and Biochemical Activities of Escherichia coli MgsA

    SciTech Connect

    Page, Asher N.; George, Nicholas P.; Marceau, Aimee H.; Cox, Michael M.; Keck, James L.

    2012-02-27

    Bacterial 'maintenance of genome stability protein A' (MgsA) and related eukaryotic enzymes play important roles in cellular responses to stalled DNA replication processes. Sequence information identifies MgsA enzymes as members of the clamp loader clade of AAA{sup +} proteins, but structural information defining the family has been limited. Here, the x-ray crystal structure of Escherichia coli MgsA is described, revealing a homotetrameric arrangement for the protein that distinguishes it from other clamp loader clade AAA{sup +} proteins. Each MgsA protomer is composed of three elements as follows: ATP-binding and helical lid domains (conserved among AAA{sup +} proteins) and a tetramerization domain. Although the tetramerization domains bury the greatest amount of surface area in the MgsA oligomer, each of the domains participates in oligomerization to form a highly intertwined quaternary structure. Phosphate is bound at each AAA{sup +} ATP-binding site, but the active sites do not appear to be in a catalytically competent conformation due to displacement of Arg finger residues. E. coli MgsA is also shown to form a complex with the single-stranded DNA-binding protein through co-purification and biochemical studies. MgsA DNA-dependent ATPase activity is inhibited by single-stranded DNA-binding protein. Together, these structural and biochemical observations provide insights into the mechanisms of MgsA family AAA{sup +} proteins.

  8. Biochemical responses to fibropapilloma and captivity in the green turtle.

    PubMed

    Swimmer, J Y

    2000-01-01

    Blood biochemical parameters were compared for green turtles (Chelonia mydas) with and without green turtle fibropapillomatosis (GTFP) from both captive and wild populations in Hawaii (USA) and from a captive population from California (USA), during the period between 1994 and 1996. Statistical analysis did not detect an influence of disease in any of the blood parameters for free-ranging turtles; however, captive turtles in Hawaii with GTFP had significantly higher levels of alkaline phosphatase and significantly lower levels of lactate compared to non-tumored captive turtles. Multivariate analysis found that biochemical profiles could be used to accurately predict if turtles were healthy or afflicted with GTFP. Discriminant function analysis correctly classified turtles as being with or without GTFP in 89% of cases, suggesting that diseased animals had a distinct signature of plasma biochemistries. Measurements of blood parameters identified numerous differences between captive and wild green turtles in Hawaii. Levels of corticosterone, lactate, triglyceride, glucose, and calcium were significantly higher in wild green turtles as compared to captive turtles, while uric acid levels were significantly lower in wild turtles as compared to captive turtles. Additionally, turtles from Sea World of California (San Diego, California, USA), which had been in captivity the longest, had higher levels of alanine aminotransferase and triglycerides as compared to nearly all other groups. Differences in diet, sampling methods, environmental conditions, and turtle size, help to interpret these results. PMID:10682751

  9. The endosomal pathway in Parkinson's disease.

    PubMed

    Perrett, Rebecca M; Alexopoulou, Zoi; Tofaris, George K

    2015-05-01

    Parkinson's disease is primarily a movement disorder with predilection for the nigral dopaminergic neurons and is often associated with widespread neurodegeneration and diffuse Lewy body deposition. Recent advances in molecular genetics and studies in model organisms have transformed our understanding of Parkinson's pathogenesis and suggested unifying biochemical pathways despite the clinical heterogeneity of the disease. In this review, we summarized the evidence that a number of Parkinson's associated genetic mutations or polymorphisms (LRRK2, VPS35, GBA, ATP13A2, ATP6AP2, DNAJC13/RME-8, RAB7L1, GAK) disrupt protein trafficking and degradation via the endosomal pathway and discussed how such defects could arise from or contribute to the accumulation and misfolding of ?-synuclein in Lewy bodies. We propose that an age-related pathological depletion of functional endolysosomes due to neuromelanin deposition in dopaminergic neurons may increase their susceptibility to stochastic molecular defects in this pathway and we discuss how enzymes that regulate ubiquitin signaling, as exemplified by the ubiquitin ligase Nedd4, could provide the missing link between genetic and acquired defects in endosomal trafficking. This article is part of a Special Issue entitled 'Neuronal Protein'. PMID:25701813

  10. Production of bioenergy and biochemicals from industrial and

    E-print Network

    Angenent, Lars T.

    Production of bioenergy and biochemicals from industrial and agricultural wastewater Largus T biological processing strat- egies that produce bioenergy or biochemicals while treating industrial on wastewater treatment from pollution control to resource exploitation. Many bioprocesses can provide bioenergy

  11. 40 CFR 158.2000 - Biochemical pesticides definition and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...2014-07-01 2014-07-01 false Biochemical pesticides definition and applicability. 158.2000...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides §...

  12. 40 CFR 158.2000 - Biochemical pesticides definition and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Biochemical pesticides definition and applicability. 158.2000...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides §...

  13. 40 CFR 158.2000 - Biochemical pesticides definition and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...2013-07-01 2013-07-01 false Biochemical pesticides definition and applicability. 158.2000...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides §...

  14. 40 CFR 158.2000 - Biochemical pesticides definition and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...2012-07-01 2012-07-01 false Biochemical pesticides definition and applicability. 158.2000...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides §...

  15. 40 CFR 158.2000 - Biochemical pesticides definition and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Biochemical pesticides definition and applicability. 158.2000...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides §...

  16. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Biochemical pesticides data requirements. 158.2010 Section...ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides §...

  17. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.

    2009-01-01

    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  18. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    SciTech Connect

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum. Aromatic compounds such as carbazole are representative of the difficult-to-treat organonitrogen compounds most commonly encountered in petroleum. There are two C-N bonds in carbazole and the construction of a metabolic pathway for the removal of nitrogen from carbazole will require enzymes capable cleaving both C-N bonds. A multi-component enzyme, carbazole dioxygenase, which can selectively cleave the first C-N bond has been identified and the genes that encode this enzyme have been cloned, sequenced, and are being expressed in Rhodococcus erythropolis, a bacterial culture that tolerates exposure to petroleum. An enzyme capable of selectivel