Sample records for identify biochemical pathways

  1. Multiplatform serum metabolic phenotyping combined with pathway mapping to identify biochemical differences in smokers.

    PubMed

    Kaluarachchi, Manuja R; Boulangé, Claire L; Garcia-Perez, Isabel; Lindon, John C; Minet, Emmanuel F

    2016-10-01

    Determining perturbed biochemical functions associated with tobacco smoking should be helpful for establishing causal relationships between exposure and adverse events. A multiplatform comparison of serum of smokers (n = 55) and never-smokers (n = 57) using nuclear magnetic resonance spectroscopy, UPLC-MS and statistical modeling revealed clustering of the classes, distinguished by metabolic biomarkers. The identified metabolites were subjected to metabolic pathway enrichment, modeling adverse biological events using available databases. Perturbation of metabolites involved in chronic obstructive pulmonary disease, cardiovascular diseases and cancer were identified and discussed. Combining multiplatform metabolic phenotyping with knowledge-based mapping gives mechanistic insights into disease development, which can be applied to next-generation tobacco and nicotine products for comparative risk assessment.

  2. Reconstructing biochemical pathways from time course data.

    PubMed

    Srividhya, Jeyaraman; Crampin, Edmund J; McSharry, Patrick E; Schnell, Santiago

    2007-03-01

    Time series data on biochemical reactions reveal transient behavior, away from chemical equilibrium, and contain information on the dynamic interactions among reacting components. However, this information can be difficult to extract using conventional analysis techniques. We present a new method to infer biochemical pathway mechanisms from time course data using a global nonlinear modeling technique to identify the elementary reaction steps which constitute the pathway. The method involves the generation of a complete dictionary of polynomial basis functions based on the law of mass action. Using these basis functions, there are two approaches to model construction, namely the general to specific and the specific to general approach. We demonstrate that our new methodology reconstructs the chemical reaction steps and connectivity of the glycolytic pathway of Lactococcus lactis from time course experimental data.

  3. "Which Pathway Am I?" Using a Game Approach to Teach Students about Biochemical Pathways

    ERIC Educational Resources Information Center

    Ooi, Beng Guat; Sanger, Michael J.

    2009-01-01

    This game was designed to provide students with an alternative way to learn biochemical pathways through an interactive approach. In this game, students worked in pairs to help each other identify pathways taped to each other's backs by asking simple "yes or no" questions related to these pathways. This exercise was conducted after the traditional…

  4. The underlying pathway structure of biochemical reaction networks

    PubMed Central

    Schilling, Christophe H.; Palsson, Bernhard O.

    1998-01-01

    Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712

  5. Metabolomic profiling and genomic analysis of wheat aneuploid lines to identify genes controlling biochemical pathways in mature grain.

    PubMed

    Francki, Michael G; Hayton, Sarah; Gummer, Joel P A; Rawlinson, Catherine; Trengove, Robert D

    2016-02-01

    Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched-chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics-genomics networks. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Biochemical-Pathway Diversity in Archaebacteria

    DTIC Science & Technology

    1990-08-30

    Classification) (U) Biochemical-pathway diversity in Archaebacteria 12 PERSONAL AUTHOR(S) I Jensen, Roy-A. i3o. TYPE OF REN" RT 12b. Tki~ 0’E D-30-9 4...by block numtb.sj FIEL I ROU I SIGRLJP Archaebacteria , biochemical diversity, prephenate 06 03. 1 dehydratase, aromatic amino acid biosynthesis t...1988 RE10SE: lo assess the extent to which the archaebacteria possess unique biochemical features of aromatic amino acid biosynthesis and regulation and

  7. Hierarchical modularization of biochemical pathways using fuzzy-c means clustering.

    PubMed

    de Luis Balaguer, Maria A; Williams, Cranos M

    2014-08-01

    Biological systems that are representative of regulatory, metabolic, or signaling pathways can be highly complex. Mathematical models that describe such systems inherit this complexity. As a result, these models can often fail to provide a path toward the intuitive comprehension of these systems. More coarse information that allows a perceptive insight of the system is sometimes needed in combination with the model to understand control hierarchies or lower level functional relationships. In this paper, we present a method to identify relationships between components of dynamic models of biochemical pathways that reside in different functional groups. We find primary relationships and secondary relationships. The secondary relationships reveal connections that are present in the system, which current techniques that only identify primary relationships are unable to show. We also identify how relationships between components dynamically change over time. This results in a method that provides the hierarchy of the relationships among components, which can help us to understand the low level functional structure of the system and to elucidate potential hierarchical control. As a proof of concept, we apply the algorithm to the epidermal growth factor signal transduction pathway, and to the C3 photosynthesis pathway. We identify primary relationships among components that are in agreement with previous computational decomposition studies, and identify secondary relationships that uncover connections among components that current computational approaches were unable to reveal.

  8. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways

    PubMed Central

    Shao, Zengyi; Zhao, Hua; Zhao, Huimin

    2009-01-01

    The assembly of large recombinant DNA encoding a whole biochemical pathway or genome represents a significant challenge. Here, we report a new method, DNA assembler, which allows the assembly of an entire biochemical pathway in a single step via in vivo homologous recombination in Saccharomyces cerevisiae. We show that DNA assembler can rapidly assemble a functional d-xylose utilization pathway (∼9 kb DNA consisting of three genes), a functional zeaxanthin biosynthesis pathway (∼11 kb DNA consisting of five genes) and a functional combined d-xylose utilization and zeaxanthin biosynthesis pathway (∼19 kb consisting of eight genes) with high efficiencies (70–100%) either on a plasmid or on a yeast chromosome. As this new method only requires simple DNA preparation and one-step yeast transformation, it represents a powerful tool in the construction of biochemical pathways for synthetic biology, metabolic engineering and functional genomics studies. PMID:19074487

  9. Explorations into Chemical Reactions and Biochemical Pathways.

    PubMed

    Gasteiger, Johann

    2016-12-01

    A brief overview of the work in the research group of the present author on extracting knowledge from chemical reaction data is presented. Methods have been developed to calculate physicochemical effects at the reaction site. It is shown that these physicochemical effects can quite favourably be used to derive equations for the calculation of data on gas phase reactions and on reactions in solution such as aqueous acidity of alcohols or carboxylic acids or the hydrolysis of amides. Furthermore, it is shown that these physicochemical effects are quite effective for assigning reactions into reaction classes that correspond to chemical knowledge. Biochemical reactions constitute a particularly interesting and challenging task for increasing our understanding of living species. The BioPath.Database is a rich source of information on biochemical reactions and has been used for a variety of applications of chemical, biological, or medicinal interests. Thus, it was shown that biochemical reactions can be assigned by the physicochemical effects into classes that correspond to the classification of enzymes by the EC numbers. Furthermore, 3D models of reaction intermediates can be used for searching for novel enzyme inhibitors. It was shown in a combined application of chemoinformatics and bioinformatics that essential pathways of diseases can be uncovered. Furthermore, a study showed that bacterial flavor-forming pathways can be discovered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Construction and engineering of large biochemical pathways via DNA assembler

    PubMed Central

    Shao, Zengyi; Zhao, Huimin

    2015-01-01

    Summary DNA assembler enables rapid construction and engineering of biochemical pathways in a one-step fashion by exploitation of the in vivo homologous recombination mechanism in Saccharomyces cerevisiae. It has many applications in pathway engineering, metabolic engineering, combinatorial biology, and synthetic biology. Here we use two examples including the zeaxanthin biosynthetic pathway and the aureothin biosynthetic gene cluster to describe the key steps in the construction of pathways containing multiple genes using the DNA assembler approach. Methods for construct design, pathway assembly, pathway confirmation, and functional analysis are shown. The protocol for fine genetic modifications such as site-directed mutagenesis for engineering the aureothin gene cluster is also illustrated. PMID:23996442

  11. Calculation of biochemical net reactions and pathways by using matrix operations.

    PubMed Central

    Alberty, R A

    1996-01-01

    Pathways for net biochemical reactions can be calculated by using a computer program that solves systems of linear equations. The coefficients in the linear equations are the stoichiometric numbers in the biochemical equations for the system. The solution of the system of linear equations is a vector of the stoichiometric numbers of the reactions in the pathway for the net reaction; this is referred to as the pathway vector. The pathway vector gives the number of times the various reactions have to occur to produce the desired net reaction. Net reactions may involve unknown numbers of ATP, ADP, and Pi molecules. The numbers of ATP, ADP, and Pi in a desired net reaction can be calculated in a two-step process. In the first step, the pathway is calculated by solving the system of linear equations for an abbreviated stoichiometric number matrix without ATP, ADP, Pi, NADred, and NADox. In the second step, the stoichiometric numbers in the desired net reaction, which includes ATP, ADP, Pi, NADred, and NADox, are obtained by multiplying the full stoichiometric number matrix by the calculated pathway vector. PMID:8804633

  12. Using Bioinformatic Approaches to Identify Pathways Targeted by Human Leukemogens

    PubMed Central

    Thomas, Reuben; Phuong, Jimmy; McHale, Cliona M.; Zhang, Luoping

    2012-01-01

    We have applied bioinformatic approaches to identify pathways common to chemical leukemogens and to determine whether leukemogens could be distinguished from non-leukemogenic carcinogens. From all known and probable carcinogens classified by IARC and NTP, we identified 35 carcinogens that were associated with leukemia risk in human studies and 16 non-leukemogenic carcinogens. Using data on gene/protein targets available in the Comparative Toxicogenomics Database (CTD) for 29 of the leukemogens and 11 of the non-leukemogenic carcinogens, we analyzed for enrichment of all 250 human biochemical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The top pathways targeted by the leukemogens included metabolism of xenobiotics by cytochrome P450, glutathione metabolism, neurotrophin signaling pathway, apoptosis, MAPK signaling, Toll-like receptor signaling and various cancer pathways. The 29 leukemogens formed 18 distinct clusters comprising 1 to 3 chemicals that did not correlate with known mechanism of action or with structural similarity as determined by 2D Tanimoto coefficients in the PubChem database. Unsupervised clustering and one-class support vector machines, based on the pathway data, were unable to distinguish the 29 leukemogens from 11 non-leukemogenic known and probable IARC carcinogens. However, using two-class random forests to estimate leukemogen and non-leukemogen patterns, we estimated a 76% chance of distinguishing a random leukemogen/non-leukemogen pair from each other. PMID:22851955

  13. A biochemical approach to identifying microRNA targets

    PubMed Central

    Karginov, Fedor V.; Conaco, Cecilia; Xuan, Zhenyu; Schmidt, Bryan H.; Parker, Joel S.; Mandel, Gail; Hannon, Gregory J.

    2007-01-01

    Identifying the downstream targets of microRNAs (miRNAs) is essential to understanding cellular regulatory networks. We devised a direct biochemical method for miRNA target discovery that combined RNA-induced silencing complex (RISC) purification with microarray analysis of bound mRNAs. Because targets of miR-124a have been analyzed, we chose it as our model. We honed our approach both by examining the determinants of stable binding between RISC and synthetic target RNAs in vitro and by determining the dependency of both repression and RISC coimmunoprecipitation on miR-124a seed sites in two of its well characterized targets in vivo. Examining the complete spectrum of miR-124 targets in 293 cells yielded both a set that were down-regulated at the mRNA level, as previously observed, and a set whose mRNA levels were unaffected by miR-124a. Reporter assays validated both classes, extending the spectrum of mRNA targets that can be experimentally linked to the miRNA pathway. PMID:18042700

  14. Activity-based protein profiling for biochemical pathway discovery in cancer

    PubMed Central

    Nomura, Daniel K.; Dix, Melissa M.; Cravatt, Benjamin F.

    2011-01-01

    Large-scale profiling methods have uncovered numerous gene and protein expression changes that correlate with tumorigenesis. However, determining the relevance of these expression changes and which biochemical pathways they affect has been hindered by our incomplete understanding of the proteome and its myriad functions and modes of regulation. Activity-based profiling platforms enable both the discovery of cancer-relevant enzymes and selective pharmacological probes to perturb and characterize these proteins in tumour cells. When integrated with other large-scale profiling methods, activity-based proteomics can provide insight into the metabolic and signalling pathways that support cancer pathogenesis and illuminate new strategies for disease diagnosis and treatment. PMID:20703252

  15. Multiple Ion Binding Equilibria, Reaction Kinetics, and Thermodynamics in Dynamic Models of Biochemical Pathways

    PubMed Central

    Vinnakota, Kalyan C.; Wu, Fan; Kushmerick, Martin J.; Beard, Daniel A.

    2009-01-01

    The operation of biochemical systems in vivo and in vitro is strongly influenced by complex interactions between biochemical reactants and ions such as H+, Mg2+, K+, and Ca2+. These are important second messengers in metabolic and signaling pathways that directly influence the kinetics and thermodynamics of biochemical systems. Herein we describe the biophysical theory and computational methods to account for multiple ion binding to biochemical reactants and demonstrate the crucial effects of ion binding on biochemical reaction kinetics and thermodynamics. In simulations of realistic systems, the concentrations of these ions change with time due to dynamic buffering and competitive binding. In turn, the effective thermodynamic properties vary as functions of cation concentrations and important environmental variables such as temperature and overall ionic strength. Physically realistic simulations of biochemical systems require incorporating all of these phenomena into a coherent mathematical description. Several applications to physiological systems are demonstrated based on this coherent simulation framework. PMID:19216922

  16. Extending double modulation: combinatorial rules for identifying the modulations necessary for determining elasticities in metabolic pathways.

    PubMed

    Giersch, C; Cornish-Bowden, A

    1996-10-07

    The double modulation method for determining the elasticities of pathway enzymes, originally devised by Kacser & Burns (Biochem. Soc. Trans. 7, 1149-1160, 1979), is extended to pathways of complex topological structure, including branching and feedback loops. An explicit system of linear equations for the unknown elasticities is derived. The constraints imposed on this linear system imply that modulations of more than one enzyme are not necessarily independent. Simple combinatorial rules are described for identifying without using any algebra the set of independent modulations that allow the determination of the elasticities of any enzyme. By repeated application, the minimum numbers of modulations required to determine the elasticities of all enzymes of a given pathway can be determined. The procedure is illustrated with numerous examples.

  17. Gluconeogenesis: An ancient biochemical pathway with a new twist.

    PubMed

    Miyamoto, Tetsuya; Amrein, Hubert

    2017-07-03

    Synthesis of sugars from simple carbon sources is critical for survival of animals under limited nutrient availability. Thus, sugar-synthesizing enzymes should be present across the entire metazoan spectrum. Here, we explore the evolution of glucose and trehalose synthesis using a phylogenetic analysis of enzymes specific for the two pathways. Our analysis reveals that the production of trehalose is the more ancestral biochemical process, found in single cell organisms and primitive metazoans, but also in insects. The gluconeogenic-specific enzyme glucose-6-phosphatase (G6Pase) first appears in Cnidaria, but is also present in Echinodermata, Mollusca and Vertebrata. Intriguingly, some species of nematodes and arthropods possess the genes for both pathways. Moreover, expression data from Drosophila suggests that G6Pase and, hence, gluconeogenesis, initially had a neuronal function. We speculate that in insects-and possibly in some vertebrates-gluconeogenesis may be used as a means of neuronal signaling.

  18. Gluconeogenesis: An ancient biochemical pathway with a new twist

    PubMed Central

    Miyamoto, Tetsuya; Amrein, Hubert

    2017-01-01

    ABSTRACT Synthesis of sugars from simple carbon sources is critical for survival of animals under limited nutrient availability. Thus, sugar-synthesizing enzymes should be present across the entire metazoan spectrum. Here, we explore the evolution of glucose and trehalose synthesis using a phylogenetic analysis of enzymes specific for the two pathways. Our analysis reveals that the production of trehalose is the more ancestral biochemical process, found in single cell organisms and primitive metazoans, but also in insects. The gluconeogenic-specific enzyme glucose-6-phosphatase (G6Pase) first appears in Cnidaria, but is also present in Echinodermata, Mollusca and Vertebrata. Intriguingly, some species of nematodes and arthropods possess the genes for both pathways. Moreover, expression data from Drosophila suggests that G6Pase and, hence, gluconeogenesis, initially had a neuronal function. We speculate that in insects—and possibly in some vertebrates—gluconeogenesis may be used as a means of neuronal signaling. PMID:28121487

  19. Characterizing autism spectrum disorders by key biochemical pathways.

    PubMed

    Subramanian, Megha; Timmerman, Christina K; Schwartz, Joshua L; Pham, Daniel L; Meffert, Mollie K

    2015-01-01

    The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions.

  20. Characterizing autism spectrum disorders by key biochemical pathways

    PubMed Central

    Subramanian, Megha; Timmerman, Christina K.; Schwartz, Joshua L.; Pham, Daniel L.; Meffert, Mollie K.

    2015-01-01

    The genetic and phenotypic heterogeneity of autism spectrum disorders (ASD) presents a substantial challenge for diagnosis, classification, research, and treatment. Investigations into the underlying molecular etiology of ASD have often yielded mixed and at times opposing findings. Defining the molecular and biochemical underpinnings of heterogeneity in ASD is crucial to our understanding of the pathophysiological development of the disorder, and has the potential to assist in diagnosis and the rational design of clinical trials. In this review, we propose that genetically diverse forms of ASD may be usefully parsed into entities resulting from converse patterns of growth regulation at the molecular level, which lead to the correlates of general synaptic and neural overgrowth or undergrowth. Abnormal brain growth during development is a characteristic feature that has been observed both in children with autism and in mouse models of autism. We review evidence from syndromic and non-syndromic ASD to suggest that entities currently classified as autism may fundamentally differ by underlying pro- or anti-growth abnormalities in key biochemical pathways, giving rise to either excessive or reduced synaptic connectivity in affected brain regions. We posit that this classification strategy has the potential not only to aid research efforts, but also to ultimately facilitate early diagnosis and direct appropriate therapeutic interventions. PMID:26483618

  1. IDENTIFYING ESCHERICHIA SPECIES WITH BIOCHEMICAL TEST KITS AND STANDARD BACTERIOLOGICAL TESTS

    EPA Science Inventory

    Two commercially available biochemical test systems were evaluated for their ability to accurately identify speies of the genus Escherichia. Three laboratories participated in the study. The test kits did not always correctly identify species of Escherichia, but only once was a...

  2. Characterization of Changes in Gene Expression and Biochemical Pathways at Low Levels of Benzene Exposure

    PubMed Central

    Thomas, Reuben; Hubbard, Alan E.; McHale, Cliona M.; Zhang, Luoping; Rappaport, Stephen M.; Lan, Qing; Rothman, Nathaniel; Vermeulen, Roel; Guyton, Kathryn Z.; Jinot, Jennifer; Sonawane, Babasaheb R.; Smith, Martyn T.

    2014-01-01

    Benzene, a ubiquitous environmental pollutant, causes acute myeloid leukemia (AML). Recently, through transcriptome profiling of peripheral blood mononuclear cells (PBMC), we reported dose-dependent effects of benzene exposure on gene expression and biochemical pathways in 83 workers exposed across four airborne concentration ranges (from <1 ppm to >10 ppm) compared with 42 subjects with non-workplace ambient exposure levels. Here, we further characterize these dose-dependent effects with continuous benzene exposure in all 125 study subjects. We estimated air benzene exposure levels in the 42 environmentally-exposed subjects from their unmetabolized urinary benzene levels. We used a novel non-parametric, data-adaptive model selection method to estimate the change with dose in the expression of each gene. We describe non-parametric approaches to model pathway responses and used these to estimate the dose responses of the AML pathway and 4 other pathways of interest. The response patterns of majority of genes as captured by mean estimates of the first and second principal components of the dose-response for the five pathways and the profiles of 6 AML pathway response-representative genes (identified by clustering) exhibited similar apparent supra-linear responses. Responses at or below 0.1 ppm benzene were observed for altered expression of AML pathway genes and CYP2E1. Together, these data show that benzene alters disease-relevant pathways and genes in a dose-dependent manner, with effects apparent at doses as low as 100 ppb in air. Studies with extensive exposure assessment of subjects exposed in the low-dose range between 10 ppb and 1 ppm are needed to confirm these findings. PMID:24786086

  3. The fractional diffusion limit of a kinetic model with biochemical pathway

    NASA Astrophysics Data System (ADS)

    Perthame, Benoît; Sun, Weiran; Tang, Min

    2018-06-01

    Kinetic-transport equations that take into account the intracellular pathways are now considered as the correct description of bacterial chemotaxis by run and tumble. Recent mathematical studies have shown their interest and their relations to more standard models. Macroscopic equations of Keller-Segel type have been derived using parabolic scaling. Due to the randomness of receptor methylation or intracellular chemical reactions, noise occurs in the signaling pathways and affects the tumbling rate. Then comes the question to understand the role of an internal noise on the behavior of the full population. In this paper we consider a kinetic model for chemotaxis which includes biochemical pathway with noises. We show that under proper scaling and conditions on the tumbling frequency as well as the form of noise, fractional diffusion can arise in the macroscopic limits of the kinetic equation. This gives a new mathematical theory about how long jumps can be due to the internal noise of the bacteria.

  4. Pathway cross-talk network analysis identifies critical pathways in neonatal sepsis.

    PubMed

    Meng, Yu-Xiu; Liu, Quan-Hong; Chen, Deng-Hong; Meng, Ying

    2017-06-01

    Despite advances in neonatal care, sepsis remains a major cause of morbidity and mortality in neonates worldwide. Pathway cross-talk analysis might contribute to the inference of the driving forces in bacterial sepsis and facilitate a better understanding of underlying pathogenesis of neonatal sepsis. This study aimed to explore the critical pathways associated with the progression of neonatal sepsis by the pathway cross-talk analysis. By integrating neonatal transcriptome data with known pathway data and protein-protein interaction data, we systematically uncovered the disease pathway cross-talks and constructed a disease pathway cross-talk network for neonatal sepsis. Then, attract method was employed to explore the dysregulated pathways associated with neonatal sepsis. To determine the critical pathways in neonatal sepsis, rank product (RP) algorithm, centrality analysis and impact factor (IF) were introduced sequentially, which synthetically considered the differential expression of genes and pathways, pathways cross-talks and pathway parameters in the network. The dysregulated pathways with the highest IF values as well as RP<0.01 were defined as critical pathways in neonatal sepsis. By integrating three kinds of data, only 6919 common genes were included to perform the pathway cross-talk analysis. By statistic analysis, a total of 1249 significant pathway cross-talks were selected to construct the pathway cross-talk network. Moreover, 47 dys-regulated pathways were identified via attract method, 20 pathways were identified under RP<0.01, and the top 10 pathways with the highest IF were also screened from the pathway cross-talk network. Among them, we selected 8 common pathways, i.e. critical pathways. In this study, we systematically tracked 8 critical pathways involved in neonatal sepsis by integrating attract method and pathway cross-talk network. These pathways might be responsible for the host response in infection, and of great value for advancing

  5. Identifying pathways affected by cancer mutations.

    PubMed

    Iengar, Prathima

    2017-12-16

    Mutations in 15 cancers, sourced from the COSMIC Whole Genomes database, and 297 human pathways, arranged into pathway groups based on the processes they orchestrate, and sourced from the KEGG pathway database, have together been used to identify pathways affected by cancer mutations. Genes studied in ≥15, and mutated in ≥10 samples of a cancer have been considered recurrently mutated, and pathways with recurrently mutated genes have been considered affected in the cancer. Novel doughnut plots have been presented which enable visualization of the extent to which pathways and genes, in each pathway group, are targeted, in each cancer. The 'organismal systems' pathway group (including organism-level pathways; e.g., nervous system) is the most targeted, more than even the well-recognized signal transduction, cell-cycle and apoptosis, and DNA repair pathway groups. The important, yet poorly-recognized, role played by the group merits attention. Pathways affected in ≥7 cancers yielded insights into processes affected. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A novel method to identify hub pathways of rheumatoid arthritis based on differential pathway networks.

    PubMed

    Wei, Shi-Tong; Sun, Yong-Hua; Zong, Shi-Hua

    2017-09-01

    The aim of the current study was to identify hub pathways of rheumatoid arthritis (RA) using a novel method based on differential pathway network (DPN) analysis. The present study proposed a DPN where protein‑protein interaction (PPI) network was integrated with pathway‑pathway interactions. Pathway data was obtained from background PPI network and the Reactome pathway database. Subsequently, pathway interactions were extracted from the pathway data by building randomized gene‑gene interactions and a weight value was assigned to each pathway interaction using Spearman correlation coefficient (SCC) to identify differential pathway interactions. Differential pathway interactions were visualized using Cytoscape to construct a DPN. Topological analysis was conducted to identify hub pathways that possessed the top 5% degree distribution of DPN. Modules of DPN were mined according to ClusterONE. A total of 855 pathways were selected to build pathway interactions. By filtrating pathway interactions of weight values >0.7, a DPN with 312 nodes and 791 edges was obtained. Topological degree analysis revealed 15 hub pathways, such as heparan sulfate/heparin‑glycosaminoglycan (HS‑GAG) degradation, HS‑GAG metabolism and keratan sulfate degradation for RA based on DPN. Furthermore, hub pathways were also important in modules, which validated the significance of hub pathways. In conclusion, the proposed method is a computationally efficient way to identify hub pathways of RA, which identified 15 hub pathways that may be potential biomarkers and provide insight to future investigation and treatment of RA.

  7. Bioinformatic and Biochemical Characterizations of C–S Bond Formation and Cleavage Enzymes in the Fungus Neurospora crassa Ergothioneine Biosynthetic Pathway

    PubMed Central

    2015-01-01

    Ergothioneine is a histidine thiol derivative. Its mycobacterial biosynthetic pathway has five steps (EgtA-E catalysis) with two novel reactions: a mononuclear nonheme iron enzyme (EgtB) catalyzed oxidative C–S bond formation and a PLP-mediated C–S lyase (EgtE) reaction. Our bioinformatic and biochemical analyses indicate that the fungus Neurospora crassa has a more concise ergothioneine biosynthetic pathway because its nonheme iron enzyme, Egt1, makes use of cysteine instead of γ-Glu-Cys as the substrate. Such a change of substrate preference eliminates the competition between ergothioneine and glutathione biosyntheses. In addition, we have identified the N. crassa C–S lyase (NCU11365) and reconstituted its activity in vitro, which makes the future ergothioneine production through metabolic engineering feasible. PMID:25275953

  8. Classification and Analysis of Regulatory Pathways Using Graph Property, Biochemical and Physicochemical Property, and Functional Property

    PubMed Central

    Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Given a regulatory pathway system consisting of a set of proteins, can we predict which pathway class it belongs to? Such a problem is closely related to the biological function of the pathway in cells and hence is quite fundamental and essential in systems biology and proteomics. This is also an extremely difficult and challenging problem due to its complexity. To address this problem, a novel approach was developed that can be used to predict query pathways among the following six functional categories: (i) “Metabolism”, (ii) “Genetic Information Processing”, (iii) “Environmental Information Processing”, (iv) “Cellular Processes”, (v) “Organismal Systems”, and (vi) “Human Diseases”. The prediction method was established trough the following procedures: (i) according to the general form of pseudo amino acid composition (PseAAC), each of the pathways concerned is formulated as a 5570-D (dimensional) vector; (ii) each of components in the 5570-D vector was derived by a series of feature extractions from the pathway system according to its graphic property, biochemical and physicochemical property, as well as functional property; (iii) the minimum redundancy maximum relevance (mRMR) method was adopted to operate the prediction. A cross-validation by the jackknife test on a benchmark dataset consisting of 146 regulatory pathways indicated that an overall success rate of 78.8% was achieved by our method in identifying query pathways among the above six classes, indicating the outcome is quite promising and encouraging. To the best of our knowledge, the current study represents the first effort in attempting to identity the type of a pathway system or its biological function. It is anticipated that our report may stimulate a series of follow-up investigations in this new and challenging area. PMID:21980418

  9. Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.

    PubMed

    Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O

    2006-03-01

    The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.

  10. Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway.

    PubMed

    Hagey, Lee R; Møller, Peter R; Hofmann, Alan F; Krasowski, Matthew D

    2010-01-01

    Bile salts are the major end metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates.

  11. Serum Metabolomic Profiling in Acute Alcoholic Hepatitis Identifies Multiple Dysregulated Pathways

    PubMed Central

    Rachakonda, Vikrant; Gabbert, Charles; Raina, Amit; Bell, Lauren N.; Cooper, Sara; Malik, Shahid; Behari, Jaideep

    2014-01-01

    Background and Objectives While animal studies have implicated derangements of global energy homeostasis in the pathogenesis of acute alcoholic hepatitis (AAH), the relevance of these findings to the development of human AAH remains unclear. Using global, unbiased serum metabolomics analysis, we sought to characterize alterations in metabolic pathways associated with severe AAH and identify potential biomarkers for disease prognosis. Methods This prospective, case-control study design included 25 patients with severe AAH and 25 ambulatory patients with alcoholic cirrhosis. Serum samples were collected within 24 hours of the index clinical encounter. Global, unbiased metabolomics profiling was performed. Patients were followed for 180 days after enrollment to determine survival. Results Levels of 234 biochemicals were altered in subjects with severe AAH. Random-forest analysis, principal component analysis, and integrated hierarchical clustering methods demonstrated that metabolomics profiles separated the two cohorts with 100% accuracy. Severe AAH was associated with enhanced triglyceride lipolysis, impaired mitochondrial fatty acid beta oxidation, and upregulated omega oxidation. Low levels of multiple lysolipids and related metabolites suggested decreased plasma membrane remodeling in severe AAH. While most measured bile acids were increased in severe AAH, low deoxycholate and glycodeoxycholate levels indicated intestinal dysbiosis. Several changes in substrate utilization for energy homeostasis were identified in severe AAH, including increased glucose consumption by the pentose phosphate pathway, altered tricarboxylic acid (TCA) cycle activity, and enhanced peptide catabolism. Finally, altered levels of small molecules related to glutathione metabolism and antioxidant vitamin depletion were observed in patients with severe AAH. Univariable logistic regression revealed 15 metabolites associated with 180-day survival in severe AAH. Conclusion Severe AAH is

  12. Benchmarking pathway interaction network for colorectal cancer to identify dysregulated pathways.

    PubMed

    Wang, Q; Shi, C-J; Lv, S-H

    2017-03-30

    Different pathways act synergistically to participate in many biological processes. Thus, the purpose of our study was to extract dysregulated pathways to investigate the pathogenesis of colorectal cancer (CRC) based on the functional dependency among pathways. Protein-protein interaction (PPI) information and pathway data were retrieved from STRING and Reactome databases, respectively. After genes were aligned to the pathways, each pathway activity was calculated using the principal component analysis (PCA) method, and the seed pathway was discovered. Subsequently, we constructed the pathway interaction network (PIN), where each node represented a biological pathway based on gene expression profile, PPI data, as well as pathways. Dysregulated pathways were then selected from the PIN according to classification performance and seed pathway. A PIN including 11,960 interactions was constructed to identify dysregulated pathways. Interestingly, the interaction of mRNA splicing and mRNA splicing-major pathway had the highest score of 719.8167. Maximum change of the activity score between CRC and normal samples appeared in the pathway of DNA replication, which was selected as the seed pathway. Starting with this seed pathway, a pathway set containing 30 dysregulated pathways was obtained with an area under the curve score of 0.8598. The pathway of mRNA splicing, mRNA splicing-major pathway, and RNA polymerase I had the maximum genes of 107. Moreover, we found that these 30 pathways had crosstalks with each other. The results suggest that these dysregulated pathways might be used as biomarkers to diagnose CRC.

  13. Pathway Interaction Network Analysis Identifies Dysregulated Pathways in Human Monocytes Infected by Listeria monocytogenes.

    PubMed

    Fan, Wufeng; Zhou, Yuhan; Li, Hao

    2017-01-01

    In our study, we aimed to extract dysregulated pathways in human monocytes infected by Listeria monocytogenes (LM) based on pathway interaction network (PIN) which presented the functional dependency between pathways. After genes were aligned to the pathways, principal component analysis (PCA) was used to calculate the pathway activity for each pathway, followed by detecting seed pathway. A PIN was constructed based on gene expression profile, protein-protein interactions (PPIs), and cellular pathways. Identifying dysregulated pathways from the PIN was performed relying on seed pathway and classification accuracy. To evaluate whether the PIN method was feasible or not, we compared the introduced method with standard network centrality measures. The pathway of RNA polymerase II pretranscription events was selected as the seed pathway. Taking this seed pathway as start, one pathway set (9 dysregulated pathways) with AUC score of 1.00 was identified. Among the 5 hub pathways obtained using standard network centrality measures, 4 pathways were the common ones between the two methods. RNA polymerase II transcription and DNA replication owned a higher number of pathway genes and DEGs. These dysregulated pathways work together to influence the progression of LM infection, and they will be available as biomarkers to diagnose LM infection.

  14. MetaMapp: mapping and visualizing metabolomic data by integrating information from biochemical pathways and chemical and mass spectral similarity

    PubMed Central

    2012-01-01

    Background Exposure to environmental tobacco smoke (ETS) leads to higher rates of pulmonary diseases and infections in children. To study the biochemical changes that may precede lung diseases, metabolomic effects on fetal and maternal lungs and plasma from rats exposed to ETS were compared to filtered air control animals. Genome- reconstructed metabolic pathways may be used to map and interpret dysregulation in metabolic networks. However, mass spectrometry-based non-targeted metabolomics datasets often comprise many metabolites for which links to enzymatic reactions have not yet been reported. Hence, network visualizations that rely on current biochemical databases are incomplete and also fail to visualize novel, structurally unidentified metabolites. Results We present a novel approach to integrate biochemical pathway and chemical relationships to map all detected metabolites in network graphs (MetaMapp) using KEGG reactant pair database, Tanimoto chemical and NIST mass spectral similarity scores. In fetal and maternal lungs, and in maternal blood plasma from pregnant rats exposed to environmental tobacco smoke (ETS), 459 unique metabolites comprising 179 structurally identified compounds were detected by gas chromatography time of flight mass spectrometry (GC-TOF MS) and BinBase data processing. MetaMapp graphs in Cytoscape showed much clearer metabolic modularity and complete content visualization compared to conventional biochemical mapping approaches. Cytoscape visualization of differential statistics results using these graphs showed that overall, fetal lung metabolism was more impaired than lungs and blood metabolism in dams. Fetuses from ETS-exposed dams expressed lower lipid and nucleotide levels and higher amounts of energy metabolism intermediates than control animals, indicating lower biosynthetic rates of metabolites for cell division, structural proteins and lipids that are critical for in lung development. Conclusions MetaMapp graphs efficiently

  15. Biochemical evidence for Ku-independent backup pathways of NHEJ.

    PubMed

    Wang, Huichen; Perrault, Ange Ronel; Takeda, Yoshihiko; Qin, Wei; Wang, Hongyan; Iliakis, George

    2003-09-15

    Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a non-homologous end joining (NHEJ) apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4 and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with an order of magnitude slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group and frequently joins incorrect ends. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK-dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. The present study investigates the role of Ku in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient, error-free, end joining observed in such in vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite the fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA end joining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing end joining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts in line with the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3' or 5' protruding single strands with similar efficiency, but addition of Ku

  16. Biochemical evidence for Ku-independent backup pathways of NHEJ

    PubMed Central

    Wang, Huichen; Perrault, Ange Ronel; Takeda, Yoshihiko; Qin, Wei; Wang, Hongyan; Iliakis, George

    2003-01-01

    Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a non-homologous end joining (NHEJ) apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4 and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with an order of magnitude slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group and frequently joins incorrect ends. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK-dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. The present study investigates the role of Ku in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient, error-free, end joining observed in such in vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite the fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA end joining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing end joining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts in line with the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3′ or 5′ protruding single strands with similar efficiency, but addition of

  17. Harnessing Intracellular Biochemical Pathways for In Vitro Synthesis of Designer Tellurium Nanorods.

    PubMed

    Xiong, Ling-Hong; Cui, Ran; Zhang, Zhi-Ling; Tu, Jia-Wei; Shi, Yun-Bo; Pang, Dai-Wen

    2015-10-28

    Synthesizing nanomaterials of desired properties is a big challenge, which requires extremely harsh conditions and/or use of toxic materials. More recently developed in vivo methods have brought a different set of problems such as separation and purification of nanomaterials made in vivo. Here, a novel approach that harnesses cellular pathways for in vitro synthesis of high-quality tellurium nanorods with tunable lengths and optical properties is reported. It is first demonstrated that in vivo biochemical pathways could be used to synthesize Te nanorods via the intracellular reduction of TeO3(2-) in living Staphylococcus aureus cells. The pathways to set up a quasi-biological system for Te precursor formation are then utilized, which could further synthesize Te nanorods in vitro. This allows to successfully synthesize in vitro, under routine laboratory conditions, Te nanorods with uniform and tunable lengths, ranging from about 10 to 200 nm, and controllable optical properties with high molar extinction coefficients. The approach here should open new avenues for controllable, facile, and efficient synthesis of designer nanomaterials for diverse industrial and biomedical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simulation studies in biochemical signaling and enzyme reactions

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Vagula, Mary C.

    2014-06-01

    Biochemical pathways characterize various biochemical reaction schemes that involve a set of species and the manner in which they are connected. Determination of schematics that represent these pathways is an important task in understanding metabolism and signal transduction. Examples of these Pathways are: DNA and protein synthesis, and production of several macro-molecules essential for cell survival. A sustained feedback mechanism arises in gene expression and production of mRNA that lead to protein synthesis if the protein so synthesized serves as a transcription factor and becomes a repressor of the gene expression. The cellular regulations are carried out through biochemical networks consisting of reactions and regulatory proteins. Systems biology is a relatively new area that attempts to describe the biochemical pathways analytically and develop reliable mathematical models for the pathways. A complete understanding of chemical reaction kinetics is prohibitively hard thanks to the nonlinear and highly complex mechanisms that regulate protein formation, but attempting to numerically solve some of the governing differential equations seems to offer significant insight about their biochemical picture. To validate these models, one can perform simple experiments in the lab. This paper introduces fundamental ideas in biochemical signaling and attempts to take first steps into the understanding of biochemical oscillations. Initially, the two-pool model of calcium is used to describe the dynamics behind the oscillations. Later we present some elementary results showing biochemical oscillations arising from solving differential equations of Elowitz and Leibler using MATLAB software.

  19. A Novel Method to Identify Differential Pathways in Hippocampus Alzheimer's Disease.

    PubMed

    Liu, Chun-Han; Liu, Lian

    2017-05-08

    BACKGROUND Alzheimer's disease (AD) is the most common type of dementia. The objective of this paper is to propose a novel method to identify differential pathways in hippocampus AD. MATERIAL AND METHODS We proposed a combined method by merging existed methods. Firstly, pathways were identified by four known methods (DAVID, the neaGUI package, the pathway-based co-expressed method, and the pathway network approach), and differential pathways were evaluated through setting weight thresholds. Subsequently, we combined all pathways by a rank-based algorithm and called the method the combined method. Finally, common differential pathways across two or more of five methods were selected. RESULTS Pathways obtained from different methods were also different. The combined method obtained 1639 pathways and 596 differential pathways, which included all pathways gained from the four existing methods; hence, the novel method solved the problem of inconsistent results. Besides, a total of 13 common pathways were identified, such as metabolism, immune system, and cell cycle. CONCLUSIONS We have proposed a novel method by combining four existing methods based on a rank product algorithm, and identified 13 significant differential pathways based on it. These differential pathways might provide insight into treatment and diagnosis of hippocampus AD.

  20. A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer

    DTIC Science & Technology

    2014-04-01

    the Fanconi Anemia Pathway- Regulated Nucleases in Genome Maintenance for Preventing Bone Marrow Failure and Cancer PRINCIPAL INVESTIGATOR...GRANT NUMBER 4. TITLE AND SUBTITLE A Biochemical Approach to Understanding the Fanconi Anemia Pathway-Regulated Nucleases in Genome Maintenance for...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fanconi anemia is the most prevalent inherited BMF syndromes, caused by mutations in

  1. Pathway collages: personalized multi-pathway diagrams.

    PubMed

    Paley, Suzanne; O'Maille, Paul E; Weaver, Daniel; Karp, Peter D

    2016-12-13

    Metabolic pathway diagrams are a classical way of visualizing a linked cascade of biochemical reactions. However, to understand some biochemical situations, viewing a single pathway is insufficient, whereas viewing the entire metabolic network results in information overload. How do we enable scientists to rapidly construct personalized multi-pathway diagrams that depict a desired collection of interacting pathways that emphasize particular pathway interactions? We define software for constructing personalized multi-pathway diagrams called pathway-collages using a combination of manual and automatic layouts. The user specifies a set of pathways of interest for the collage from a Pathway/Genome Database. Layouts for the individual pathways are generated by the Pathway Tools software, and are sent to a Javascript Pathway Collage application implemented using Cytoscape.js. That application allows the user to re-position pathways; define connections between pathways; change visual style parameters; and paint metabolomics, gene expression, and reaction flux data onto the collage to obtain a desired multi-pathway diagram. We demonstrate the use of pathway collages in two application areas: a metabolomics study of pathogen drug response, and an Escherichia coli metabolic model. Pathway collages enable facile construction of personalized multi-pathway diagrams.

  2. Biochemical Characterization of β-Amino Acid Incorporation in Fluvirucin B 2 Biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas, Jesus F.; Zargar, Amin; Pang, Bo

    Naturally occurring lactams, such as the polyketide-derived macrolactams, provide a diverse class of natural products that could enhance existing chemically produced lactams. While β-amino acid loading in the fluvirucin B 2 polyketide pathway has been proposed by a previously identified putative biosynthetic gene cluster, biochemical characterization of the complete loading enzymes has not been described. In this paper, we elucidate the complete biosynthetic pathway of the β-amino acid loading pathway in fluvirucin B 2 biosynthesis. We demonstrate the promiscuity of the loading pathway to utilize a range of amino acids and further illustrate the ability to introduce non-native acyl transferasesmore » to selectively transfer β-amino acids onto a PKS loading platform. The results presented here provide a detailed biochemical description of β-amino acid selection and will further aid in future efforts to develop engineered lactam-producing PKS platforms.« less

  3. Biochemical Characterization of β-Amino Acid Incorporation in Fluvirucin B 2 Biosynthesis

    DOE PAGES

    Barajas, Jesus F.; Zargar, Amin; Pang, Bo; ...

    2018-03-30

    Naturally occurring lactams, such as the polyketide-derived macrolactams, provide a diverse class of natural products that could enhance existing chemically produced lactams. While β-amino acid loading in the fluvirucin B 2 polyketide pathway has been proposed by a previously identified putative biosynthetic gene cluster, biochemical characterization of the complete loading enzymes has not been described. In this paper, we elucidate the complete biosynthetic pathway of the β-amino acid loading pathway in fluvirucin B 2 biosynthesis. We demonstrate the promiscuity of the loading pathway to utilize a range of amino acids and further illustrate the ability to introduce non-native acyl transferasesmore » to selectively transfer β-amino acids onto a PKS loading platform. The results presented here provide a detailed biochemical description of β-amino acid selection and will further aid in future efforts to develop engineered lactam-producing PKS platforms.« less

  4. Microfluidics meets metabolomics to reveal the impact of Campylobacter jejuni infection on biochemical pathways.

    PubMed

    Mortensen, Ninell P; Mercier, Kelly A; McRitchie, Susan; Cavallo, Tammy B; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J

    2016-06-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time.

  5. Microfluidics Meets Metabolomics to Reveal the Impact of Campylobacter jejuni Infection on Biochemical Pathways

    PubMed Central

    Mortensen, Ninell P.; Mercier, Kelly A.; McRitchie, Susan; Cavallo, Tammy B.; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J.

    2016-01-01

    Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 hours. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time. PMID:27231016

  6. Genome-wide pathway-based association analysis identifies risk pathways associated with Parkinson's disease.

    PubMed

    Zhang, Mingming; Mu, Hongbo; Shang, Zhenwei; Kang, Kai; Lv, Hongchao; Duan, Lian; Li, Jin; Chen, Xinren; Teng, Yanbo; Jiang, Yongshuai; Zhang, Ruijie

    2017-01-06

    Parkinson's disease (PD) is the second most common neurodegenerative disease. It is generally believed that it is influenced by both genetic and environmental factors, but the precise pathogenesis of PD is unknown to date. In this study, we performed a pathway analysis based on genome-wide association study (GWAS) to detect risk pathways of PD in three GWAS datasets. We first mapped all SNP markers to autosomal genes in each GWAS dataset. Then, we evaluated gene risk values using the minimum P-value of the tagSNPs. We took a pathway as a unit to identify the risk pathways based on the cumulative risks of the genes in the pathway. Finally, we combine the analysis results of the three datasets to detect the high risk pathways associated with PD. We found there were five same pathways in the three datasets. Besides, we also found there were five pathways which were shared in two datasets. Most of these pathways are associated with nervoussystem. Five pathways had been reported to be PD-related pathways in the previous literature. Our findings also implied that there was a close association between immune response and PD. Continued investigation of these pathways will further help us explain the pathogenesis of PD. Copyright © 2016. Published by Elsevier Ltd.

  7. Training Signaling Pathway Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses to Inflammatory Stimuli

    PubMed Central

    Morris, Melody K.; Saez-Rodriguez, Julio; Clarke, David C.; Sorger, Peter K.; Lauffenburger, Douglas A.

    2011-01-01

    Predictive understanding of cell signaling network operation based on general prior knowledge but consistent with empirical data in a specific environmental context is a current challenge in computational biology. Recent work has demonstrated that Boolean logic can be used to create context-specific network models by training proteomic pathway maps to dedicated biochemical data; however, the Boolean formalism is restricted to characterizing protein species as either fully active or inactive. To advance beyond this limitation, we propose a novel form of fuzzy logic sufficiently flexible to model quantitative data but also sufficiently simple to efficiently construct models by training pathway maps on dedicated experimental measurements. Our new approach, termed constrained fuzzy logic (cFL), converts a prior knowledge network (obtained from literature or interactome databases) into a computable model that describes graded values of protein activation across multiple pathways. We train a cFL-converted network to experimental data describing hepatocytic protein activation by inflammatory cytokines and demonstrate the application of the resultant trained models for three important purposes: (a) generating experimentally testable biological hypotheses concerning pathway crosstalk, (b) establishing capability for quantitative prediction of protein activity, and (c) prediction and understanding of the cytokine release phenotypic response. Our methodology systematically and quantitatively trains a protein pathway map summarizing curated literature to context-specific biochemical data. This process generates a computable model yielding successful prediction of new test data and offering biological insight into complex datasets that are difficult to fully analyze by intuition alone. PMID:21408212

  8. Probabilistic pathway construction.

    PubMed

    Yousofshahi, Mona; Lee, Kyongbum; Hassoun, Soha

    2011-07-01

    Expression of novel synthesis pathways in host organisms amenable to genetic manipulations has emerged as an attractive metabolic engineering strategy to overproduce natural products, biofuels, biopolymers and other commercially useful metabolites. We present a pathway construction algorithm for identifying viable synthesis pathways compatible with balanced cell growth. Rather than exhaustive exploration, we investigate probabilistic selection of reactions to construct the pathways. Three different selection schemes are investigated for the selection of reactions: high metabolite connectivity, low connectivity and uniformly random. For all case studies, which involved a diverse set of target metabolites, the uniformly random selection scheme resulted in the highest average maximum yield. When compared to an exhaustive search enumerating all possible reaction routes, our probabilistic algorithm returned nearly identical distributions of yields, while requiring far less computing time (minutes vs. years). The pathways identified by our algorithm have previously been confirmed in the literature as viable, high-yield synthesis routes. Prospectively, our algorithm could facilitate the design of novel, non-native synthesis routes by efficiently exploring the diversity of biochemical transformations in nature. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. PathFinder: reconstruction and dynamic visualization of metabolic pathways.

    PubMed

    Goesmann, Alexander; Haubrock, Martin; Meyer, Folker; Kalinowski, Jörn; Giegerich, Robert

    2002-01-01

    Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.

  10. Pheochromocytoma-paraganglioma: Biochemical and genetic diagnosis.

    PubMed

    Cano Megías, Marta; Rodriguez Puyol, Diego; Fernández Rodríguez, Loreto; Sención Martinez, Gloria Lisette; Martínez Miguel, Patricia

    Pheochromocytomas and paragangliomas are tumours derived from neural crest cells, which can be diagnosed by biochemical measurement of metanephrine and methoxytyramine. Advances in genetic research have identified many genes involved in the pathogenesis of these tumours, suggesting that up to 35-45% may have an underlying germline mutation. These genes have a singular transcriptional signature and can be grouped into 2 clusters (or groups): cluster 1 (VHL and SHDx), involved in angiogenesis and hypoxia pathways; and cluster 2 (MEN2 and NF1), linked to the kinase signalling pathway. In turn, these genes are associated with a characteristic biochemical phenotype (noradrenergic and adrenergic), and clinical features (location, biological behaviour, age of presentation, etc.) in a large number of cases. Early diagnosis of these tumours, accompanied by a correct genetic diagnosis, should eventually become a priority to enable better treatment, early detection of complications, proper screening of family members and related tumours, as well as an improvement in the overall prognosis of these patients. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  11. Identifying Differentially Abundant Metabolic Pathways in Metagenomic Datasets

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Pop, Mihai

    Enabled by rapid advances in sequencing technology, metagenomic studies aim to characterize entire communities of microbes bypassing the need for culturing individual bacterial members. One major goal of such studies is to identify specific functional adaptations of microbial communities to their habitats. Here we describe a powerful analytical method (MetaPath) that can identify differentially abundant pathways in metagenomic data-sets, relying on a combination of metagenomic sequence data and prior metabolic pathway knowledge. We show that MetaPath outperforms other common approaches when evaluated on simulated datasets. We also demonstrate the power of our methods in analyzing two, publicly available, metagenomic datasets: a comparison of the gut microbiome of obese and lean twins; and a comparison of the gut microbiome of infant and adult subjects. We demonstrate that the subpathways identified by our method provide valuable insights into the biological activities of the microbiome.

  12. Modeling biochemical pathways in the gene ontology

    DOE PAGES

    Hill, David P.; D’Eustachio, Peter; Berardini, Tanya Z.; ...

    2016-09-01

    The concept of a biological pathway, an ordered sequence of molecular transformations, is used to collect and represent molecular knowledge for a broad span of organismal biology. Representations of biomedical pathways typically are rich but idiosyncratic presentations of organized knowledge about individual pathways. Meanwhile, biomedical ontologies and associated annotation files are powerful tools that organize molecular information in a logically rigorous form to support computational analysis. The Gene Ontology (GO), representing Molecular Functions, Biological Processes and Cellular Components, incorporates many aspects of biological pathways within its ontological representations. Here we present a methodology for extending and refining the classes inmore » the GO for more comprehensive, consistent and integrated representation of pathways, leveraging knowledge embedded in current pathway representations such as those in the Reactome Knowledgebase and MetaCyc. With carbohydrate metabolic pathways as a use case, we discuss how our representation supports the integration of variant pathway classes into a unified ontological structure that can be used for data comparison and analysis.« less

  13. Pathways-Driven Sparse Regression Identifies Pathways and Genes Associated with High-Density Lipoprotein Cholesterol in Two Asian Cohorts

    PubMed Central

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-01-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune

  14. Pathways-driven sparse regression identifies pathways and genes associated with high-density lipoprotein cholesterol in two Asian cohorts.

    PubMed

    Silver, Matt; Chen, Peng; Li, Ruoying; Cheng, Ching-Yu; Wong, Tien-Yin; Tai, E-Shyong; Teo, Yik-Ying; Montana, Giovanni

    2013-11-01

    Standard approaches to data analysis in genome-wide association studies (GWAS) ignore any potential functional relationships between gene variants. In contrast gene pathways analysis uses prior information on functional structure within the genome to identify pathways associated with a trait of interest. In a second step, important single nucleotide polymorphisms (SNPs) or genes may be identified within associated pathways. The pathways approach is motivated by the fact that genes do not act alone, but instead have effects that are likely to be mediated through their interaction in gene pathways. Where this is the case, pathways approaches may reveal aspects of a trait's genetic architecture that would otherwise be missed when considering SNPs in isolation. Most pathways methods begin by testing SNPs one at a time, and so fail to capitalise on the potential advantages inherent in a multi-SNP, joint modelling approach. Here, we describe a dual-level, sparse regression model for the simultaneous identification of pathways and genes associated with a quantitative trait. Our method takes account of various factors specific to the joint modelling of pathways with genome-wide data, including widespread correlation between genetic predictors, and the fact that variants may overlap multiple pathways. We use a resampling strategy that exploits finite sample variability to provide robust rankings for pathways and genes. We test our method through simulation, and use it to perform pathways-driven gene selection in a search for pathways and genes associated with variation in serum high-density lipoprotein cholesterol levels in two separate GWAS cohorts of Asian adults. By comparing results from both cohorts we identify a number of candidate pathways including those associated with cardiomyopathy, and T cell receptor and PPAR signalling. Highlighted genes include those associated with the L-type calcium channel, adenylate cyclase, integrin, laminin, MAPK signalling and immune

  15. Multi-membership gene regulation in pathway based microarray analysis

    PubMed Central

    2011-01-01

    Background Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. Results We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. Conclusions We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes. PMID:21939531

  16. Multi-membership gene regulation in pathway based microarray analysis.

    PubMed

    Pavlidis, Stelios P; Payne, Annette M; Swift, Stephen M

    2011-09-22

    Gene expression analysis has been intensively researched for more than a decade. Recently, there has been elevated interest in the integration of microarray data analysis with other types of biological knowledge in a holistic analytical approach. We propose a methodology that can be facilitated for pathway based microarray data analysis, based on the observation that a substantial proportion of genes present in biochemical pathway databases are members of a number of distinct pathways. Our methodology aims towards establishing the state of individual pathways, by identifying those truly affected by the experimental conditions based on the behaviour of such genes. For that purpose it considers all the pathways in which a gene participates and the general census of gene expression per pathway. We utilise hill climbing, simulated annealing and a genetic algorithm to analyse the consistency of the produced results, through the application of fuzzy adjusted rand indexes and hamming distance. All algorithms produce highly consistent genes to pathways allocations, revealing the contribution of genes to pathway functionality, in agreement with current pathway state visualisation techniques, with the simulated annealing search proving slightly superior in terms of efficiency. We show that the expression values of genes, which are members of a number of biochemical pathways or modules, are the net effect of the contribution of each gene to these biochemical processes. We show that by manipulating the pathway and module contribution of such genes to follow underlying trends we can interpret microarray results centred on the behaviour of these genes.

  17. Seasonal induction of alternative principal pathway for rose flower scent

    PubMed Central

    Hirata, Hiroshi; Ohnishi, Toshiyuki; Tomida, Kensuke; Ishida, Haruka; Kanda, Momoyo; Sakai, Miwa; Yoshimura, Jin; Suzuki, Hideyuki; Ishikawa, Takamasa; Dohra, Hideo; Watanabe, Naoharu

    2016-01-01

    Ecological adaptations to seasonal changes are often observed in the phenotypic traits of plants and animals, and these adaptations are usually expressed through the production of different biochemical end products. In this study, ecological adaptations are observed in a biochemical pathway without alteration of the end products. We present an alternative principal pathway to the characteristic floral scent compound 2-phenylethanol (2PE) in roses. The new pathway is seasonally induced in summer as a heat adaptation that uses rose phenylpyruvate decarboxylase (RyPPDC) as a novel enzyme. RyPPDC transcript levels and the resulting production of 2PE are increased time-dependently under high temperatures. The novel summer pathway produces levels of 2PE that are several orders of magnitude higher than those produced by the previously known pathway. Our results indicate that the alternative principal pathway identified here is a seasonal adaptation for managing the weakened volatility of summer roses. PMID:26831950

  18. Identification of Genetic Bases of Vibrio fluvialis Species-Specific Biochemical Pathways and Potential Virulence Factors by Comparative Genomic Analysis

    PubMed Central

    Lu, Xin; Liang, Weili; Wang, Yunduan; Xu, Jialiang

    2014-01-01

    Vibrio fluvialis is an important food-borne pathogen that causes diarrheal illness and sometimes extraintestinal infections in humans. In this study, we sequenced the genome of a clinical V. fluvialis strain and determined its phylogenetic relationships with other Vibrio species by comparative genomic analysis. We found that the closest relationship was between V. fluvialis and V. furnissii, followed by those with V. cholerae and V. mimicus. Moreover, based on genome comparisons and gene complementation experiments, we revealed genetic mechanisms of the biochemical tests that differentiate V. fluvialis from closely related species. Importantly, we identified a variety of genes encoding potential virulence factors, including multiple hemolysins, transcriptional regulators, and environmental survival and adaptation apparatuses, and the type VI secretion system, which is indicative of complex regulatory pathways modulating pathogenesis in this organism. The availability of V. fluvialis genome sequences may promote our understanding of pathogenic mechanisms for this emerging pathogen. PMID:24441165

  19. Functional profiling of receptor tyrosine kinases and downstream signaling in human chondrosarcomas identifies pathways for rational targeted therapy.

    PubMed

    Zhang, Yi-Xiang; van Oosterwijk, Jolieke G; Sicinska, Ewa; Moss, Samuel; Remillard, Stephen P; van Wezel, Tom; Bühnemann, Claudia; Hassan, Andrew B; Demetri, George D; Bovée, Judith V M G; Wagner, Andrew J

    2013-07-15

    Chondrosarcomas are notoriously resistant to cytotoxic chemotherapeutic agents. We sought to identify critical signaling pathways that contribute to their survival and proliferation, and which may provide potential targets for rational therapeutic interventions. Activation of receptor tyrosine kinases (RTK) was surveyed using phospho-RTK arrays. S6 phosphorylation and NRAS mutational status were examined in chondrosarcoma primary tumor tissues. siRNA or small-molecule inhibitors against RTKs or downstream signaling proteins were applied to chondrosarcoma cells and changes in biochemical signaling, cell cycle, and cell viability were determined. In vivo antitumor activity of BEZ235, a phosphoinositide 3-kinase (PI3K)/mTOR inhibitor, was evaluated in a chondrosarcoma xenograft model. Several RTKs were identified as critical mediators of cell growth, but the RTK dependencies varied among cell lines. In exploration of downstream signaling pathways, strong S6 phosphorylation was found in 69% of conventional chondrosarcomas and 44% of dedifferentiated chondrosarcomas. Treatment with BEZ235 resulted in dramatic reduction in the growth of all chondrosarcoma cell lines. Tumor growth was similarly inhibited in a xenograft model of chondrosarcoma. In addition, chondrosarcoma cells with an NRAS mutation were sensitive to treatment with a mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) inhibitor. Functional NRAS mutations were found in 12% of conventional central chondrosarcomas. RTKs are commonly activated in chondrosarcoma, but because of their considerable heterogeneity, targeted inhibition of the PI3K/mTOR pathway represents a rational therapeutic strategy. Chondrosarcomas with NRAS mutations may benefit from treatment with MEK inhibitors.

  20. Identifying metabolic pathways for production of extracellular polymeric substances by the diatom Fragilariopsis cylindrus inhabiting sea ice.

    PubMed

    Aslam, Shazia N; Strauss, Jan; Thomas, David N; Mock, Thomas; Underwood, Graham J C

    2018-05-01

    Diatoms are significant primary producers in sea ice, an ephemeral habitat with steep vertical gradients of temperature and salinity characterizing the ice matrix environment. To cope with the variable and challenging conditions, sea ice diatoms produce polysaccharide-rich extracellular polymeric substances (EPS) that play important roles in adhesion, cell protection, ligand binding and as organic carbon sources. Significant differences in EPS concentrations and chemical composition corresponding to temperature and salinity gradients were present in sea ice from the Weddell Sea and Eastern Antarctic regions of the Southern Ocean. To reconstruct the first metabolic pathway for EPS production in diatoms, we exposed Fragilariopsis cylindrus, a key bi-polar diatom species, to simulated sea ice formation. Transcriptome profiling under varying conditions of EPS production identified a significant number of genes and divergent alleles. Their complex differential expression patterns under simulated sea ice formation was aligned with physiological and biochemical properties of the cells, and with field measurements of sea ice EPS characteristics. Thus, the molecular complexity of the EPS pathway suggests metabolic plasticity in F. cylindrus is required to cope with the challenging conditions of the highly variable and extreme sea ice habitat.

  1. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (edited by Gerhard Michal)

    NASA Astrophysics Data System (ADS)

    Voige, Reviewed By William H.

    2000-02-01

    feature to the hyperlinks in an electronic document.) The book's index is comprehensive and useful. Entries for "phenylketonuria" and "sickle cell anemia", for example, lead to commendably concise summaries of these hereditary diseases (and the relevant metabolic pathway, in the former case). Looking up a specific molecule, however, is less helpful. The listing for fumarate hydratase, a citric acid cycle enzyme, directs the reader to the chapter on special bacterial metabolism but not to the section on the citric acid cycle itself. Literature references are included at the end of each section and are mainly from the 1990s, but they could be more useful. A long section on heme proteins, for example, concludes with eight citations, but their titles are not included, so it is impossible to determine what topic each one addresses. This book will be most useful to those with a good understanding of the fundamentals of biochemistry. Some of the information it presents could easily confuse less experienced readers. For example, it classifies selenocysteine as a standard amino acid in a figure but not in the accompanying text. In the diagram of anaerobic glycolysis, a double-headed arrow for the hexokinase reaction reinforces the frustratingly common student misperception that the phosphoryl group of glucose-6-phosphate can be used to phosphorylate ADP. Biochemical Pathways compiles a large amount of information in a single source. Its good index and clear, concise text and diagrams should make it a reliable way of gaining insight into many biochemical topics. With a price similar to that of most textbooks, it merits a place in the libraries of individuals and academic departments that teach biochemistry.

  2. Influence maximization in time bounded network identifies transcription factors regulating perturbed pathways

    PubMed Central

    Jo, Kyuri; Jung, Inuk; Moon, Ji Hwan; Kim, Sun

    2016-01-01

    Motivation: To understand the dynamic nature of the biological process, it is crucial to identify perturbed pathways in an altered environment and also to infer regulators that trigger the response. Current time-series analysis methods, however, are not powerful enough to identify perturbed pathways and regulators simultaneously. Widely used methods include methods to determine gene sets such as differentially expressed genes or gene clusters and these genes sets need to be further interpreted in terms of biological pathways using other tools. Most pathway analysis methods are not designed for time series data and they do not consider gene-gene influence on the time dimension. Results: In this article, we propose a novel time-series analysis method TimeTP for determining transcription factors (TFs) regulating pathway perturbation, which narrows the focus to perturbed sub-pathways and utilizes the gene regulatory network and protein–protein interaction network to locate TFs triggering the perturbation. TimeTP first identifies perturbed sub-pathways that propagate the expression changes along the time. Starting points of the perturbed sub-pathways are mapped into the network and the most influential TFs are determined by influence maximization technique. The analysis result is visually summarized in TF-Pathway map in time clock. TimeTP was applied to PIK3CA knock-in dataset and found significant sub-pathways and their regulators relevant to the PIP3 signaling pathway. Availability and Implementation: TimeTP is implemented in Python and available at http://biohealth.snu.ac.kr/software/TimeTP/. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: sunkim.bioinfo@snu.ac.kr PMID:27307609

  3. Pathway-GPS and SIGORA: identifying relevant pathways based on the over-representation of their gene-pair signatures

    PubMed Central

    Foroushani, Amir B.K.; Brinkman, Fiona S.L.

    2013-01-01

    Motivation. Predominant pathway analysis approaches treat pathways as collections of individual genes and consider all pathway members as equally informative. As a result, at times spurious and misleading pathways are inappropriately identified as statistically significant, solely due to components that they share with the more relevant pathways. Results. We introduce the concept of Pathway Gene-Pair Signatures (Pathway-GPS) as pairs of genes that, as a combination, are specific to a single pathway. We devised and implemented a novel approach to pathway analysis, Signature Over-representation Analysis (SIGORA), which focuses on the statistically significant enrichment of Pathway-GPS in a user-specified gene list of interest. In a comparative evaluation of several published datasets, SIGORA outperformed traditional methods by delivering biologically more plausible and relevant results. Availability. An efficient implementation of SIGORA, as an R package with precompiled GPS data for several human and mouse pathway repositories is available for download from http://sigora.googlecode.com/svn/. PMID:24432194

  4. Xtalk: a path-based approach for identifying crosstalk between signaling pathways

    PubMed Central

    Tegge, Allison N.; Sharp, Nicholas; Murali, T. M.

    2016-01-01

    Motivation: Cells communicate with their environment via signal transduction pathways. On occasion, the activation of one pathway can produce an effect downstream of another pathway, a phenomenon known as crosstalk. Existing computational methods to discover such pathway pairs rely on simple overlap statistics. Results: We present Xtalk, a path-based approach for identifying pairs of pathways that may crosstalk. Xtalk computes the statistical significance of the average length of multiple short paths that connect receptors in one pathway to the transcription factors in another. By design, Xtalk reports the precise interactions and mechanisms that support the identified crosstalk. We applied Xtalk to signaling pathways in the KEGG and NCI-PID databases. We manually curated a gold standard set of 132 crosstalking pathway pairs and a set of 140 pairs that did not crosstalk, for which Xtalk achieved an area under the receiver operator characteristic curve of 0.65, a 12% improvement over the closest competing approach. The area under the receiver operator characteristic curve varied with the pathway, suggesting that crosstalk should be evaluated on a pathway-by-pathway level. We also analyzed an extended set of 658 pathway pairs in KEGG and to a set of more than 7000 pathway pairs in NCI-PID. For the top-ranking pairs, we found substantial support in the literature (81% for KEGG and 78% for NCI-PID). We provide examples of networks computed by Xtalk that accurately recovered known mechanisms of crosstalk. Availability and implementation: The XTALK software is available at http://bioinformatics.cs.vt.edu/~murali/software. Crosstalk networks are available at http://graphspace.org/graphs?tags=2015-bioinformatics-xtalk. Contact: ategge@vt.edu, murali@cs.vt.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26400040

  5. Prediction and Biochemical Demonstration of a Catabolic Pathway for the Osmoprotectant Proline Betaine

    PubMed Central

    Kumar, Ritesh; Zhao, Suwen; Vetting, Matthew W.; Wood, B. McKay; Sakai, Ayano; Cho, Kyuil; Solbiati, José; Almo, Steven C.; Sweedler, Jonathan V.; Jacobson, Matthew P.; Gerlt, John A.; Cronan, John E.

    2014-01-01

    ABSTRACT Through the use of genetic, enzymatic, metabolomic, and structural analyses, we have discovered the catabolic pathway for proline betaine, an osmoprotectant, in Paracoccus denitrificans and Rhodobacter sphaeroides. Genetic and enzymatic analyses showed that several of the key enzymes of the hydroxyproline betaine degradation pathway also function in proline betaine degradation. Metabolomic analyses detected each of the metabolic intermediates of the pathway. The proline betaine catabolic pathway was repressed by osmotic stress and cold stress, and a regulatory transcription factor was identified. We also report crystal structure complexes of the P. denitrificans HpbD hydroxyproline betaine epimerase/proline betaine racemase with l-proline betaine and cis-hydroxyproline betaine. PMID:24520058

  6. Alterations in metabolic pathways and networks in Alzheimer's disease

    PubMed Central

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-01-01

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure. PMID:23571809

  7. Alterations in metabolic pathways and networks in Alzheimer's disease.

    PubMed

    Kaddurah-Daouk, R; Zhu, H; Sharma, S; Bogdanov, M; Rozen, S G; Matson, W; Oki, N O; Motsinger-Reif, A A; Churchill, E; Lei, Z; Appleby, D; Kling, M A; Trojanowski, J Q; Doraiswamy, P M; Arnold, S E

    2013-04-09

    The pathogenic mechanisms of Alzheimer's disease (AD) remain largely unknown and clinical trials have not demonstrated significant benefit. Biochemical characterization of AD and its prodromal phase may provide new diagnostic and therapeutic insights. We used targeted metabolomics platform to profile cerebrospinal fluid (CSF) from AD (n=40), mild cognitive impairment (MCI, n=36) and control (n=38) subjects; univariate and multivariate analyses to define between-group differences; and partial least square-discriminant analysis models to classify diagnostic groups using CSF metabolomic profiles. A partial correlation network was built to link metabolic markers, protein markers and disease severity. AD subjects had elevated methionine (MET), 5-hydroxyindoleacetic acid (5-HIAA), vanillylmandelic acid, xanthosine and glutathione versus controls. MCI subjects had elevated 5-HIAA, MET, hypoxanthine and other metabolites versus controls. Metabolite ratios revealed changes within tryptophan, MET and purine pathways. Initial pathway analyses identified steps in several pathways that appear altered in AD and MCI. A partial correlation network showed total tau most directly related to norepinephrine and purine pathways; amyloid-β (Ab42) was related directly to an unidentified metabolite and indirectly to 5-HIAA and MET. These findings indicate that MCI and AD are associated with an overlapping pattern of perturbations in tryptophan, tyrosine, MET and purine pathways, and suggest that profound biochemical alterations are linked to abnormal Ab42 and tau metabolism. Metabolomics provides powerful tools to map interlinked biochemical pathway perturbations and study AD as a disease of network failure.

  8. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis.

    PubMed

    Stiti, Naim; Missihoun, Tagnon D; Kotchoni, Simeon O; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.

  9. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis

    PubMed Central

    Stiti, Naim; Missihoun, Tagnon D.; Kotchoni, Simeon O.; Kirch, Hans-Hubert; Bartels, Dorothea

    2011-01-01

    Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected Arabidopsis ALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities. PMID:22639603

  10. Soya bean Gα proteins with distinct biochemical properties exhibit differential ability to complement Saccharomyces cerevisiae gpa1 mutant.

    PubMed

    Roy Choudhury, Swarup; Wang, Yuqi; Pandey, Sona

    2014-07-01

    Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.

  11. The use of functional chemical-protein associations to identify multi-pathway renoprotectants.

    PubMed

    Xu, Jia; Meng, Kexin; Zhang, Rui; Yang, He; Liao, Chang; Zhu, Wenliang; Jiao, Jundong

    2014-01-01

    Typically, most nephropathies can be categorized as complex human diseases in which the cumulative effect of multiple minor genes, combined with environmental and lifestyle factors, determines the disease phenotype. Thus, multi-target drugs would be more likely to facilitate comprehensive renoprotection than single-target agents. In this study, functional chemical-protein association analysis was performed to retrieve multi-target drugs of high pathway wideness from the STITCH 3.1 database. Pathway wideness of a drug evaluated the efficiency of regulation of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in quantity. We identified nine experimentally validated renoprotectants that exerted remarkable impact on KEGG pathways by targeting a limited number of proteins. We selected curcumin as an illustrative compound to display the advantage of multi-pathway drugs on renoprotection. We compared curcumin with hemin, an agonist of heme oxygenase-1 (HO-1), which significantly affects only one KEGG pathway, porphyrin and chlorophyll metabolism (adjusted p = 1.5×10-5). At the same concentration (10 µM), both curcumin and hemin equivalently mitigated oxidative stress in H2O2-treated glomerular mesangial cells. The benefit of using hemin was derived from its agonistic effect on HO-1, providing relief from oxidative stress. Selective inhibition of HO-1 completely blocked the action of hemin but not that of curcumin, suggesting simultaneous multi-pathway intervention by curcumin. Curcumin also increased cellular autophagy levels, enhancing its protective effect; however, hemin had no effects. Based on the fact that the dysregulation of multiple pathways is implicated in the etiology of complex diseases, we proposed a feasible method for identifying multi-pathway drugs from compounds with validated targets. Our efforts will help identify multi-pathway agents capable of providing comprehensive protection against renal injuries.

  12. Application of Monte Carlo cross-validation to identify pathway cross-talk in neonatal sepsis.

    PubMed

    Zhang, Yuxia; Liu, Cui; Wang, Jingna; Li, Xingxia

    2018-03-01

    To explore genetic pathway cross-talk in neonates with sepsis, an integrated approach was used in this paper. To explore the potential relationships between differently expressed genes between normal uninfected neonates and neonates with sepsis and pathways, genetic profiling and biologic signaling pathway were first integrated. For different pathways, the score was obtained based upon the genetic expression by quantitatively analyzing the pathway cross-talk. The paired pathways with high cross-talk were identified by random forest classification. The purpose of the work was to find the best pairs of pathways able to discriminate sepsis samples versus normal samples. The results found 10 pairs of pathways, which were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways were identified according to analysis of extensive literature. Impact statement To find the best pairs of pathways able to discriminate sepsis samples versus normal samples, an RF classifier, the DS obtained by DEGs of paired pathways significantly associated, and Monte Carlo cross-validation were applied in this paper. Ten pairs of pathways were probably able to discriminate neonates with sepsis versus normal uninfected neonates. Among them, the best two paired pathways ((7) IL-6 Signaling and Phospholipase C Signaling (PLC); (8) Glucocorticoid Receptor (GR) Signaling and Dendritic Cell Maturation) were identified according to analysis of extensive literature.

  13. The node-weighted Steiner tree approach to identify elements of cancer-related signaling pathways.

    PubMed

    Sun, Yahui; Ma, Chenkai; Halgamuge, Saman

    2017-12-28

    Cancer constitutes a momentous health burden in our society. Critical information on cancer may be hidden in its signaling pathways. However, even though a large amount of money has been spent on cancer research, some critical information on cancer-related signaling pathways still remains elusive. Hence, new works towards a complete understanding of cancer-related signaling pathways will greatly benefit the prevention, diagnosis, and treatment of cancer. We propose the node-weighted Steiner tree approach to identify important elements of cancer-related signaling pathways at the level of proteins. This new approach has advantages over previous approaches since it is fast in processing large protein-protein interaction networks. We apply this new approach to identify important elements of two well-known cancer-related signaling pathways: PI3K/Akt and MAPK. First, we generate a node-weighted protein-protein interaction network using protein and signaling pathway data. Second, we modify and use two preprocessing techniques and a state-of-the-art Steiner tree algorithm to identify a subnetwork in the generated network. Third, we propose two new metrics to select important elements from this subnetwork. On a commonly used personal computer, this new approach takes less than 2 s to identify the important elements of PI3K/Akt and MAPK signaling pathways in a large node-weighted protein-protein interaction network with 16,843 vertices and 1,736,922 edges. We further analyze and demonstrate the significance of these identified elements to cancer signal transduction by exploring previously reported experimental evidences. Our node-weighted Steiner tree approach is shown to be both fast and effective to identify important elements of cancer-related signaling pathways. Furthermore, it may provide new perspectives into the identification of signaling pathways for other human diseases.

  14. Searching whole genome sequences for biochemical identification features of emerging and reemerging pathogenic Corynebacterium species.

    PubMed

    Santos, André S; Ramos, Rommel T; Silva, Artur; Hirata, Raphael; Mattos-Guaraldi, Ana L; Meyer, Roberto; Azevedo, Vasco; Felicori, Liza; Pacheco, Luis G C

    2018-05-11

    Biochemical tests are traditionally used for bacterial identification at the species level in clinical microbiology laboratories. While biochemical profiles are generally efficient for the identification of the most important corynebacterial pathogen Corynebacterium diphtheriae, their ability to differentiate between biovars of this bacterium is still controversial. Besides, the unambiguous identification of emerging human pathogenic species of the genus Corynebacterium may be hampered by highly variable biochemical profiles commonly reported for these species, including Corynebacterium striatum, Corynebacterium amycolatum, Corynebacterium minutissimum, and Corynebacterium xerosis. In order to identify the genomic basis contributing for the biochemical variabilities observed in phenotypic identification methods of these bacteria, we combined a comprehensive literature review with a bioinformatics approach based on reconstruction of six specific biochemical reactions/pathways in 33 recently released whole genome sequences. We used data retrieved from curated databases (MetaCyc, PathoSystems Resource Integration Center (PATRIC), The SEED, TransportDB, UniProtKB) associated with homology searches by BLAST and profile Hidden Markov Models (HMMs) to detect enzymes participating in the various pathways and performed ab initio protein structure modeling and molecular docking to confirm specific results. We found a differential distribution among the various strains of genes that code for some important enzymes, such as beta-phosphoglucomutase and fructokinase, and also for individual components of carbohydrate transport systems, including the fructose-specific phosphoenolpyruvate-dependent sugar phosphotransferase (PTS) and the ribose-specific ATP-binging cassette (ABC) transporter. Horizontal gene transfer plays a role in the biochemical variability of the isolates, as some genes needed for sucrose fermentation were seen to be present in genomic islands. Noteworthy

  15. Integrating virtual screening and biochemical experimental approach to identify potential anti-cancer agents from drug databank.

    PubMed

    Deka, Suman Jyoti; Roy, Ashalata; Manna, Debasis; Trivedi, Vishal

    2018-06-01

    Chemical libraries constitute a reservoir of pharmacophoric molecules to identify potent anti-cancer agents. Virtual screening of heterocyclic compound library in conjugation with the agonist-competition assay, toxicity-carcinogenicity analysis, and string-based structural searches enabled us to identify several drugs as potential anti-cancer agents targeting protein kinase C (PKC) as a target. Molecular modeling study indicates that Cinnarizine fits well within the PKC C2 domain and exhibits extensive interaction with the protein residues. Molecular dynamics simulation of PKC-Cinnarizine complex at different temperatures (300, 325, 350, 375, and 400[Formula: see text]K) confirms that Cinnarizine fits nicely into the C2 domain and forms a stable complex. The drug Cinnarizine was found to bind PKC with a dissociation constant Kd of [Formula: see text]M. The breast cancer cells stimulated with Cinnarizine causes translocation of PKC-[Formula: see text] to the plasma membrane as revealed by immunoblotting and immunofluorescence studies. Cinnarizine also dose dependently reduced the viability of MDAMB-231 and MCF-7 breast cancer cells with an IC[Formula: see text] of [Formula: see text] and [Formula: see text]g/mL, respectively. It is due to the disturbance of cell cycle of breast cancer cells with reduction of S-phase and accumulation of cells in G1-phase. It disturbs mitochondrial membrane potentials to release cytochrome C into the cytosol and activates caspase-3 to induce apoptosis in cancer cells. The cell death was due to induction of apoptosis involving mitochondrial pathway. Hence, the current study has assigned an additional role to Cinnarizine as an activator of PKC and potentials of the approach to identify new molecules for anti-cancer therapy. Thus, in silico screening along with biochemical experimentation is a robust approach to assign additional roles to the drugs present in the databank for anti-cancer therapy.

  16. Biochemical-Pathway Diversity in Archabacteria

    DTIC Science & Technology

    1988-06-28

    8a NAME OF_ FUNDINGISFF0N Gr ... FFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) Office of Naval Researh ONR... BIOLOGY AND EVOLUTION OF MICROORGANISMS (July 24-28. 1989) in a talk entitled "Evolution of Metabolic Pathways". TRAINING ACTIVITIES: Dr. Raj Bhatnagar, a

  17. Enriched pathways for major depressive disorder identified from a genome-wide association study.

    PubMed

    Kao, Chung-Feng; Jia, Peilin; Zhao, Zhongming; Kuo, Po-Hsiu

    2012-11-01

    Major depressive disorder (MDD) has caused a substantial burden of disease worldwide with moderate heritability. Despite efforts through conducting numerous association studies and now, genome-wide association (GWA) studies, the success of identifying susceptibility loci for MDD has been limited, which is partially attributed to the complex nature of depression pathogenesis. A pathway-based analytic strategy to investigate the joint effects of various genes within specific biological pathways has emerged as a powerful tool for complex traits. The present study aimed to identify enriched pathways for depression using a GWA dataset for MDD. For each gene, we estimated its gene-wise p value using combined and minimum p value, separately. Canonical pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and BioCarta were used. We employed four pathway-based analytic approaches (gene set enrichment analysis, hypergeometric test, sum-square statistic, sum-statistic). We adjusted for multiple testing using Benjamini & Hochberg's method to report significant pathways. We found 17 significantly enriched pathways for depression, which presented low-to-intermediate crosstalk. The top four pathways were long-term depression (p⩽1×10-5), calcium signalling (p⩽6×10-5), arrhythmogenic right ventricular cardiomyopathy (p⩽1.6×10-4) and cell adhesion molecules (p⩽2.2×10-4). In conclusion, our comprehensive pathway analyses identified promising pathways for depression that are related to neurotransmitter and neuronal systems, immune system and inflammatory response, which may be involved in the pathophysiological mechanisms underlying depression. We demonstrated that pathway enrichment analysis is promising to facilitate our understanding of complex traits through a deeper interpretation of GWA data. Application of this comprehensive analytic strategy in upcoming GWA data for depression could validate the findings reported in this study.

  18. Pathway-driven gene stability selection of two rheumatoid arthritis GWAS identifies and validates new susceptibility genes in receptor mediated signalling pathways.

    PubMed

    Eleftherohorinou, Hariklia; Hoggart, Clive J; Wright, Victoria J; Levin, Michael; Coin, Lachlan J M

    2011-09-01

    Rheumatoid arthritis (RA) is the commonest chronic, systemic, inflammatory disorder affecting ∼1% of the world population. It has a strong genetic component and a growing number of associated genes have been discovered in genome-wide association studies (GWAS), which nevertheless only account for 23% of the total genetic risk. We aimed to identify additional susceptibility loci through the analysis of GWAS in the context of biological function. We bridge the gap between pathway and gene-oriented analyses of GWAS, by introducing a pathway-driven gene stability-selection methodology that identifies potential causal genes in the top-associated disease pathways that may be driving the pathway association signals. We analysed the WTCCC and the NARAC studies of ∼5000 and ∼2000 subjects, respectively. We examined 700 pathways comprising ∼8000 genes. Ranking pathways by significance revealed that the NARAC top-ranked ∼6% laid within the top 10% of WTCCC. Gene selection on those pathways identified 58 genes in WTCCC and 61 in NARAC; 21 of those were common (P(overlap)< 10(-21)), of which 16 were novel discoveries. Among the identified genes, we validated 10 known RA associations in WTCCC and 13 in NARAC, not discovered using single-SNP approaches on the same data. Gene ontology functional enrichment analysis on the identified genes showed significant over-representation of signalling activity (P< 10(-29)) in both studies. Our findings suggest a novel model of RA genetic predisposition, which involves cell-membrane receptors and genes in second messenger signalling systems, in addition to genes that regulate immune responses, which have been the focus of interest previously.

  19. Large-scale integrative network-based analysis identifies common pathways disrupted by copy number alterations across cancers

    PubMed Central

    2013-01-01

    Background Many large-scale studies analyzed high-throughput genomic data to identify altered pathways essential to the development and progression of specific types of cancer. However, no previous study has been extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data with human protein-protein interaction networks and pathway databases to identify pathways that are commonly disrupted in many different types of cancer. Results We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers for different human cancers. Analysis with independent microarray gene expression datasets confirms that the commonly disrupted pathways can be used to identify patient subgroups with significantly different survival outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect pathways that regulate cell growth, cycle, and differentiation for tumorigenesis. Conclusions In this work, we demonstrated that the network-based integrative analysis can help to identify pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and source code are available at http://compbio.cs.umn.edu/NetPathID/. PMID:23822816

  20. Presenilin-Based Genetic Screens in Drosophila melanogaster Identify Novel Notch Pathway Modifiers

    PubMed Central

    Mahoney, Matt B.; Parks, Annette L.; Ruddy, David A.; Tiong, Stanley Y. K.; Esengil, Hanife; Phan, Alexander C.; Philandrinos, Panos; Winter, Christopher G.; Chatterjee, Runa; Huppert, Kari; Fisher, William W.; L'Archeveque, Lynn; Mapa, Felipa A.; Woo, Wendy; Ellis, Michael C.; Curtis, Daniel

    2006-01-01

    Presenilin is the enzymatic component of γ-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for γ-tubulin in the pathway. PMID:16415372

  1. Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers.

    PubMed

    Mahoney, Matt B; Parks, Annette L; Ruddy, David A; Tiong, Stanley Y K; Esengil, Hanife; Phan, Alexander C; Philandrinos, Panos; Winter, Christopher G; Chatterjee, Runa; Huppert, Kari; Fisher, William W; L'Archeveque, Lynn; Mapa, Felipa A; Woo, Wendy; Ellis, Michael C; Curtis, Daniel

    2006-04-01

    Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.

  2. Lego bricks and the octet rule: Molecular models for biochemical pathways with plastic, interlocking toy bricks.

    PubMed

    Lin, Henry J; Lehoang, Jennifer; Kwan, Isabel; Baghaee, Anita; Prasad, Priya; Ha-Chen, Stephanie J; Moss, Tanesha; Woods, Jeremy D

    2018-01-01

    The 8 studs on a 2 × 4 Lego brick conveniently represent the outer shell of electrons for carbon, nitrogen, and oxygen atoms. We used Lego bricks to model these atoms, which are then joined together to form molecules by following the Lewis octet rule. A variety of small biological molecules can be modeled in this way, such as most amino acids, fatty acids, glucose, and various intermediate metabolites. Model building with these familiar toys can be a helpful, hands-on exercise for learning-or re-learning-biochemical pathways. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):54-57, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  3. ReactPRED: a tool to predict and analyze biochemical reactions.

    PubMed

    Sivakumar, Tadi Venkata; Giri, Varun; Park, Jin Hwan; Kim, Tae Yong; Bhaduri, Anirban

    2016-11-15

    Biochemical pathways engineering is often used to synthesize or degrade target chemicals. In silico screening of the biochemical transformation space allows predicting feasible reactions, constituting these pathways. Current enabling tools are customized to predict reactions based on pre-defined biochemical transformations or reaction rule sets. Reaction rule sets are usually curated manually and tailored to specific applications. They are not exhaustive. In addition, current systems are incapable of regulating and refining data with an aim to tune specificity and sensitivity. A robust and flexible tool that allows automated reaction rule set creation along with regulated pathway prediction and analyses is a need. ReactPRED aims to address the same. ReactPRED is an open source flexible and customizable tool enabling users to predict biochemical reactions and pathways. The tool allows automated reaction rule creation from a user defined reaction set. Additionally, reaction rule degree and rule tolerance features allow refinement of predicted data. It is available as a flexible graphical user interface and a console application. ReactPRED is available at: https://sourceforge.net/projects/reactpred/ CONTACT: anirban.b@samsung.com or ty76.kim@samsung.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations

    PubMed Central

    2009-01-01

    High-altitude environments (>2,500 m) provide scientists with a natural laboratory to study the physiological and genetic effects of low ambient oxygen tension on human populations. One approach to understanding how life at high altitude has affected human metabolism is to survey genome-wide datasets for signatures of natural selection. In this work, we report on a study to identify selection-nominated candidate genes involved in adaptation to hypoxia in one highland group, Andeans from the South American Altiplano. We analysed dense microarray genotype data using four test statistics that detect departures from neutrality. Using a candidate gene, single nucleotide polymorphism-based approach, we identified genes exhibiting preliminary evidence of recent genetic adaptation in this population. These included genes that are part of the hypoxia-inducible transcription factor (HIF) pathway, a biochemical pathway involved in oxygen homeostasis, as well as three other genomic regions previously not known to be associated with high-altitude phenotypes. In addition to identifying selection-nominated candidate genes, we also tested whether the HIF pathway shows evidence of natural selection. Our results indicate that the genes of this biochemical pathway as a group show no evidence of having evolved in response to hypoxia in Andeans. Results from particular HIF-targeted genes, however, suggest that genes in this pathway could play a role in Andean adaptation to high altitude, even if the pathway as a whole does not show higher relative rates of evolution. These data suggest a genetic role in high-altitude adaptation and provide a basis for genotype/phenotype association studies that are necessary to confirm the role of putative natural selection candidate genes and gene regions in adaptation to altitude. PMID:20038496

  5. TGMI: an efficient algorithm for identifying pathway regulators through evaluation of triple-gene mutual interaction

    PubMed Central

    Gunasekara, Chathura; Zhang, Kui; Deng, Wenping; Brown, Laura

    2018-01-01

    Abstract Despite their important roles, the regulators for most metabolic pathways and biological processes remain elusive. Presently, the methods for identifying metabolic pathway and biological process regulators are intensively sought after. We developed a novel algorithm called triple-gene mutual interaction (TGMI) for identifying these regulators using high-throughput gene expression data. It first calculated the regulatory interactions among triple gene blocks (two pathway genes and one transcription factor (TF)), using conditional mutual information, and then identifies significantly interacted triple genes using a newly identified novel mutual interaction measure (MIM), which was substantiated to reflect strengths of regulatory interactions within each triple gene block. The TGMI calculated the MIM for each triple gene block and then examined its statistical significance using bootstrap. Finally, the frequencies of all TFs present in all significantly interacted triple gene blocks were calculated and ranked. We showed that the TFs with higher frequencies were usually genuine pathway regulators upon evaluating multiple pathways in plants, animals and yeast. Comparison of TGMI with several other algorithms demonstrated its higher accuracy. Therefore, TGMI will be a valuable tool that can help biologists to identify regulators of metabolic pathways and biological processes from the exploded high-throughput gene expression data in public repositories. PMID:29579312

  6. Classification of Chemical Compounds to Support Complex Queries in a Pathway Database

    PubMed Central

    Weidemann, Andreas; Kania, Renate; Peiss, Christian; Rojas, Isabel

    2004-01-01

    Data quality in biological databases has become a topic of great discussion. To provide high quality data and to deal with the vast amount of biochemical data, annotators and curators need to be supported by software that carries out part of their work in an (semi-) automatic manner. The detection of errors and inconsistencies is a part that requires the knowledge of domain experts, thus in most cases it is done manually, making it very expensive and time-consuming. This paper presents two tools to partially support the curation of data on biochemical pathways. The tool enables the automatic classification of chemical compounds based on their respective SMILES strings. Such classification allows the querying and visualization of biochemical reactions at different levels of abstraction, according to the level of detail at which the reaction participants are described. Chemical compounds can be classified in a flexible manner based on different criteria. The support of the process of data curation is provided by facilitating the detection of compounds that are identified as different but that are actually the same. This is also used to identify similar reactions and, in turn, pathways. PMID:18629066

  7. Biochemical and Cellular Assessment of Acetabular Chondral Flaps Identified During Hip Arthroscopy.

    PubMed

    Hariri, Sanaz; Truntzer, Jeremy; Smith, Robert Lane; Safran, Marc R

    2015-06-01

    To analyze chondral flaps debrided during hip arthroscopy to determine their biochemical and cellular composition. Thirty-one full-thickness acetabular chondral flaps were collected during hip arthroscopy. Biochemical analysis was undertaken in 21 flaps from 20 patients, and cellular viability was determined in 10 flaps from 10 patients. Biochemical analysis included concentrations of (1) DNA (an indicator of chondrocyte content), (2) hydroxyproline (an indicator of collagen content), and (3) glycosaminoglycan (an indicator of chondrocyte biosynthesis). Higher values for these parameters indicated more healthy tissue. The flaps were examined to determine the percentage of viable chondrocytes. The percentage of acetabular chondral flap specimens that had concentrations within 1 SD of the mean values reported in previous normal cartilage studies was 38% for DNA, 0% for glycosaminoglycan, and 43% for hydroxyproline. The average cellular viability of our acetabular chondral flap specimens was 39% (SD, 14%). Only 2 of the 10 specimens had more than half the cells still viable. There was no correlation between (1) the gross examination of the joint or knowledge of the patient's demographic characteristics and symptoms and (2) biochemical properties and cell viability of the flap, with one exception: a degenerative appearance of the surrounding cartilage correlated with a higher hydroxyproline concentration. Although full-thickness acetabular chondral flaps can appear normal grossly, the biochemical properties and percentage of live chondrocytes in full-thickness chondral flaps encountered in hip arthroscopy show that this tissue is not normal. There has been recent interest in repairing chondral flaps encountered during hip arthroscopy. These data suggest that acetabular chondral flaps are not biochemically and cellularly normal. Although these flaps may still be valuable mechanically and/or as a scaffold in some conductive or inductive capacity, further study is

  8. Target Deconvolution Efforts on Wnt Pathway Screen Reveal Dual Modulation of Oxidative Phosphorylation and SERCA2.

    PubMed

    Casás-Selves, Matias; Zhang, Andrew X; Dowling, James E; Hallén, Stefan; Kawatkar, Aarti; Pace, Nicholas J; Denz, Christopher R; Pontz, Timothy; Garahdaghi, Farzin; Cao, Qing; Sabirsh, Alan; Thakur, Kumar; O'Connell, Nichole; Hu, Jun; Cornella-Taracido, Iván; Weerapana, Eranthie; Zinda, Michael; Goodnow, Robert A; Castaldi, M Paola

    2017-06-21

    Wnt signaling is critical for development, cell proliferation and differentiation, and mutations in this pathway resulting in constitutive signaling have been implicated in various cancers. A pathway screen using a Wnt-dependent reporter identified a chemical series based on a 1,2,3-thiadiazole-5-carboxamide (TDZ) core with sub-micromolar potency. Herein we report a comprehensive mechanism-of-action deconvolution study toward identifying the efficacy target(s) and biological implication of this chemical series involving bottom-up quantitative chemoproteomics, cell biology, and biochemical methods. Through observing the effects of our probes on metabolism and performing confirmatory cellular and biochemical assays, we found that this chemical series inhibits ATP synthesis by uncoupling the mitochondrial potential. Affinity chemoproteomics experiments identified sarco(endo)plasmic reticulum Ca 2+ -dependent ATPase (SERCA2) as a binding partner of the TDZ series, and subsequent validation studies suggest that the TDZ series can act as ionophores through SERCA2 toward Wnt pathway inhibition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Systematic analysis of microarray datasets to identify Parkinson's disease‑associated pathways and genes.

    PubMed

    Feng, Yinling; Wang, Xuefeng

    2017-03-01

    In order to investigate commonly disturbed genes and pathways in various brain regions of patients with Parkinson's disease (PD), microarray datasets from previous studies were collected and systematically analyzed. Different normalization methods were applied to microarray datasets from different platforms. A strategy combining gene co‑expression networks and clinical information was adopted, using weighted gene co‑expression network analysis (WGCNA) to screen for commonly disturbed genes in different brain regions of patients with PD. Functional enrichment analysis of commonly disturbed genes was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Co‑pathway relationships were identified with Pearson's correlation coefficient tests and a hypergeometric distribution‑based test. Common genes in pathway pairs were selected out and regarded as risk genes. A total of 17 microarray datasets from 7 platforms were retained for further analysis. Five gene coexpression modules were identified, containing 9,745, 736, 233, 101 and 93 genes, respectively. One module was significantly correlated with PD samples and thus the 736 genes it contained were considered to be candidate PD‑associated genes. Functional enrichment analysis demonstrated that these genes were implicated in oxidative phosphorylation and PD. A total of 44 pathway pairs and 52 risk genes were revealed, and a risk gene pathway relationship network was constructed. Eight modules were identified and were revealed to be associated with PD, cancers and metabolism. A number of disturbed pathways and risk genes were unveiled in PD, and these findings may help advance understanding of PD pathogenesis.

  10. Whole-Exome Sequencing to Identify Novel Biological Pathways Associated With Infertility After Pelvic Inflammatory Disease.

    PubMed

    Taylor, Brandie D; Zheng, Xiaojing; Darville, Toni; Zhong, Wujuan; Konganti, Kranti; Abiodun-Ojo, Olayinka; Ness, Roberta B; O'Connell, Catherine M; Haggerty, Catherine L

    2017-01-01

    Ideal management of sexually transmitted infections (STI) may require risk markers for pathology or vaccine development. Previously, we identified common genetic variants associated with chlamydial pelvic inflammatory disease (PID) and reduced fecundity. As this explains only a proportion of the long-term morbidity risk, we used whole-exome sequencing to identify biological pathways that may be associated with STI-related infertility. We obtained stored DNA from 43 non-Hispanic black women with PID from the PID Evaluation and Clinical Health Study. Infertility was assessed at a mean of 84 months. Principal component analysis revealed no population stratification. Potential covariates did not significantly differ between groups. Sequencing kernel association test was used to examine associations between aggregates of variants on a single gene and infertility. The results from the sequencing kernel association test were used to choose "focus genes" (P < 0.01; n = 150) for subsequent Ingenuity Pathway Analysis to identify "gene sets" that are enriched in biologically relevant pathways. Pathway analysis revealed that focus genes were enriched in canonical pathways including, IL-1 signaling, P2Y purinergic receptor signaling, and bone morphogenic protein signaling. Focus genes were enriched in pathways that impact innate and adaptive immunity, protein kinase A activity, cellular growth, and DNA repair. These may alter host resistance or immunopathology after infection. Targeted sequencing of biological pathways identified in this study may provide insight into STI-related infertility.

  11. Exploring the combinatorial space of complete pathways to chemicals.

    PubMed

    Wang, Lin; Ng, Chiam Yu; Dash, Satyakam; Maranas, Costas D

    2018-04-06

    Computational pathway design tools often face the challenges of balancing the stoichiometry of co-metabolites and cofactors, and dealing with reaction rule utilization in a single workflow. To this end, we provide an overview of two complementary stoichiometry-based pathway design tools optStoic and novoStoic developed in our group to tackle these challenges. optStoic is designed to determine the stoichiometry of overall conversion first which optimizes a performance criterion (e.g. high carbon/energy efficiency) and ensures a comprehensive search of co-metabolites and cofactors. The procedure then identifies the minimum number of intervening reactions to connect the source and sink metabolites. We also further the pathway design procedure by expanding the search space to include both known and hypothetical reactions, represented by reaction rules, in a new tool termed novoStoic. Reaction rules are derived based on a mixed-integer linear programming (MILP) compatible reaction operator, which allow us to explore natural promiscuous enzymes, engineer candidate enzymes that are not already promiscuous as well as design de novo enzymes. The identified biochemical reaction rules then guide novoStoic to design routes that expand the currently known biotransformation space using a single MILP modeling procedure. We demonstrate the use of the two computational tools in pathway elucidation by designing novel synthetic routes for isobutanol. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    PubMed Central

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  13. Biochemical and structural characterization of Klebsiella pneumoniae oxamate amidohydrolase in the uric acid degradation pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, Katherine A.; Ealick, Steven E.

    HpxW from the ubiquitous pathogenKlebsiella pneumoniaeis involved in a novel uric acid degradation pathway downstream from the formation of oxalurate. Specifically, HpxW is an oxamate amidohydrolase which catalyzes the conversion of oxamate to oxalate and is a member of the Ntn-hydrolase superfamily. HpxW is autoprocessed from an inactive precursor to form a heterodimer, resulting in a 35.5 kDa α subunit and a 20 kDa β subunit. Here, the structure of HpxW is presented and the substrate complex is modeled. In addition, the steady-state kinetics of this enzyme and two active-site variants were characterized. These structural and biochemical studies provide furthermore » insight into this class of enzymes and allow a mechanism for catalysis consistent with other members of the Ntn-hydrolase superfamily to be proposed.« less

  14. Why is intelligence correlated with semen quality?: Biochemical pathways common to sperm and neuron function and their vulnerability to pleiotropic mutations.

    PubMed

    Pierce, Arand; Miller, Geoffrey; Arden, Rosalind; Gottfredson, Linda S

    2009-09-01

    We recently found positive correlations between human general intelligence and three key indices of semen quality, and hypothesized that these correlations arise through a phenotype-wide 'general fitness factor' reflecting overall mutation load. In this addendum we consider some of the biochemical pathways that may act as targets for pleiotropic mutations that disrupt both neuron function and sperm function in parallel. We focus especially on the inter-related roles of polyunsaturated fatty acids, exocytosis and receptor signaling.

  15. Comparative Analysis of Argonaute-dependent Small RNA Pathways in Drosophila

    PubMed Central

    Zhou, Rui; Hotta, Ikuko; Denli, Ahmet M.; Hong, Pengyu; Perrimon, Norbert; Hannon, Gregory J.

    2008-01-01

    Summary The specificity of RNAi pathways is determined by several classes of small RNAs, which include siRNAs, piRNAs, endo-siRNAs, and microRNAs (miRNAs). These small RNAs are invariably incorporated into large Argonaute (Ago)-containing effector complexes known as RNA-induced silencing complexes (RISCs), which they guide to silencing targets. Both genetic and biochemical strategies have yielded conserved molecular components of small RNA biogenesis and effector machineries. However, given the complexity of these pathways, there are likely to be additional components and regulators that remain to be uncovered. We have undertaken a comparative and comprehensive RNAi screen to identify genes that impact three major Ago-dependent small RNA pathways that operate in Drosophila S2 cells. We identify subsets of candidates that act positively or negatively in siRNA, endo-siRNA and miRNA pathways. Our studies indicate that many components are shared among all three Argonaute-dependent silencing pathways, though each is also impacted by discrete sets of genes. PMID:19026789

  16. B-cell Ligand Processing Pathways Detected by Large-scale Comparative Analysis

    PubMed Central

    Towfic, Fadi; Gupta, Shakti; Honavar, Vasant; Subramaniam, Shankar

    2012-01-01

    The initiation of B-cell ligand recognition is a critical step for the generation of an immune response against foreign bodies. We sought to identify the biochemical pathways involved in the B-cell ligand recognition cascade and sets of ligands that trigger similar immunological responses. We utilized several comparative approaches to analyze the gene coexpression networks generated from a set of microarray experiments spanning 33 different ligands. First, we compared the degree distributions of the generated networks. Second, we utilized a pairwise network alignment algorithm, BiNA, to align the networks based on the hubs in the networks. Third, we aligned the networks based on a set of KEGG pathways. We summarized our results by constructing a consensus hierarchy of pathways that are involved in B cell ligand recognition. The resulting pathways were further validated through literature for their common physiological responses. Collectively, the results based on our comparative analyses of degree distributions, alignment of hubs, and alignment based on KEGG pathways provide a basis for molecular characterization of the immune response states of B-cells and demonstrate the power of comparative approaches (e.g., gene coexpression network alignment algorithms) in elucidating biochemical pathways involved in complex signaling events in cells. PMID:22917187

  17. Meta-dimensional data integration identifies critical pathways for susceptibility, tumorigenesis and progression of endometrial cancer.

    PubMed

    Wei, Runmin; De Vivo, Immaculata; Huang, Sijia; Zhu, Xun; Risch, Harvey; Moore, Jason H; Yu, Herbert; Garmire, Lana X

    2016-08-23

    Endometrial Cancer (EC) is one of the most common female cancers. Genome-wide association studies (GWAS) have been investigated to identify genetic polymorphisms that are predictive of EC risks. Here we utilized a meta-dimensional integrative approach to seek genetically susceptible pathways that may be associated with tumorigenesis and progression of EC. We analyzed GWAS data obtained from Connecticut Endometrial Cancer Study (CECS) and identified the top 20 EC susceptible pathways. To further verify the significance of top 20 EC susceptible pathways, we conducted pathway-level multi-omics analyses using EC exome-Seq, RNA-Seq and survival data, all based on The Cancer Genome Atlas (TCGA) samples. We measured the overall consistent rankings of these pathways in all four data types. Some well-studied pathways, such as p53 signaling and cell cycle pathways, show consistently high rankings across different analyses. Additionally, other cell signaling pathways (e.g. IGF-1/mTOR, rac-1 and IL-5 pathway), genetic information processing pathway (e.g. homologous recombination) and metabolism pathway (e.g. sphingolipid metabolism) are also highly associated with EC risks, diagnosis and prognosis. In conclusion, the meta-dimensional integration of EC cohorts has suggested some common pathways that may be associated from predisposition, tumorigenesis to progression.

  18. Predicting hepatocellular carcinoma through cross-talk genes identified by risk pathways

    PubMed Central

    Shao, Zhuo; Huo, Diwei; Zhang, Denan; Xie, Hongbo; Yang, Jingbo; Liu, Qiuqi; Chen, Xiujie

    2018-01-01

    Hepatocellular carcinoma (HCC) is the most frequent type of liver cancer with poor survival rate and high mortality. Despite efforts on the mechanism of HCC, new molecular markers are needed for exact diagnosis, evaluation and treatment. Here, we combined transcriptome of HCC with networks and pathways to identify reliable molecular markers. Through integrating 249 differentially expressed genes with syncretic protein interaction networks, we constructed a HCC-specific network, from which we further extracted 480 pivotal genes. Based on the cross-talk between the enriched pathways of the pivotal genes, we finally identified a HCC signature of 45 genes, which could accurately distinguish HCC patients with normal individuals and reveal the prognosis of HCC patients. Among these 45 genes, 15 showed dysregulated expression patterns and a part have been reported to be associated with HCC and/or other cancers. These findings suggested that our identified 45 gene signature could be potential and valuable molecular markers for diagnosis and evaluation of HCC. PMID:29765536

  19. Quantitative trait loci and metabolic pathways

    PubMed Central

    McMullen, M. D.; Byrne, P. F.; Snook, M. E.; Wiseman, B. R.; Lee, E. A.; Widstrom, N. W.; Coe, E. H.

    1998-01-01

    The interpretation of quantitative trait locus (QTL) studies is limited by the lack of information on metabolic pathways leading to most economic traits. Inferences about the roles of the underlying genes with a pathway or the nature of their interaction with other loci are generally not possible. An exception is resistance to the corn earworm Helicoverpa zea (Boddie) in maize (Zea mays L.) because of maysin, a C-glycosyl flavone synthesized in silks via a branch of the well characterized flavonoid pathway. Our results using flavone synthesis as a model QTL system indicate: (i) the importance of regulatory loci as QTLs, (ii) the importance of interconnecting biochemical pathways on product levels, (iii) evidence for “channeling” of intermediates, allowing independent synthesis of related compounds, (iv) the utility of QTL analysis in clarifying the role of specific genes in a biochemical pathway, and (v) identification of a previously unknown locus on chromosome 9S affecting flavone level. A greater understanding of the genetic basis of maysin synthesis and associated corn earworm resistance should lead to improved breeding strategies. More broadly, the insights gained in relating a defined genetic and biochemical pathway affecting a quantitative trait should enhance interpretation of the biological basis of variation for other quantitative traits. PMID:9482823

  20. ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework.

    PubMed

    Zhang, Kunlin; Chang, Suhua; Cui, Sijia; Guo, Liyuan; Zhang, Liuyan; Wang, Jing

    2011-07-01

    Genome-wide association study (GWAS) is widely utilized to identify genes involved in human complex disease or some other trait. One key challenge for GWAS data interpretation is to identify causal SNPs and provide profound evidence on how they affect the trait. Currently, researches are focusing on identification of candidate causal variants from the most significant SNPs of GWAS, while there is lack of support on biological mechanisms as represented by pathways. Although pathway-based analysis (PBA) has been designed to identify disease-related pathways by analyzing the full list of SNPs from GWAS, it does not emphasize on interpreting causal SNPs. To our knowledge, so far there is no web server available to solve the challenge for GWAS data interpretation within one analytical framework. ICSNPathway is developed to identify candidate causal SNPs and their corresponding candidate causal pathways from GWAS by integrating linkage disequilibrium (LD) analysis, functional SNP annotation and PBA. ICSNPathway provides a feasible solution to bridge the gap between GWAS and disease mechanism study by generating hypothesis of SNP → gene → pathway(s). The ICSNPathway server is freely available at http://icsnpathway.psych.ac.cn/.

  1. An integrative somatic mutation analysis to identify pathways linked with survival outcomes across 19 cancer types

    PubMed Central

    Park, Sunho; Kim, Seung-Jun; Yu, Donghyeon; Peña-Llopis, Samuel; Gao, Jianjiong; Park, Jin Suk; Chen, Beibei; Norris, Jessie; Wang, Xinlei; Chen, Min; Kim, Minsoo; Yong, Jeongsik; Wardak, Zabi; Choe, Kevin; Story, Michael; Starr, Timothy; Cheong, Jae-Ho; Hwang, Tae Hyun

    2016-01-01

    Motivation: Identification of altered pathways that are clinically relevant across human cancers is a key challenge in cancer genomics. Precise identification and understanding of these altered pathways may provide novel insights into patient stratification, therapeutic strategies and the development of new drugs. However, a challenge remains in accurately identifying pathways altered by somatic mutations across human cancers, due to the diverse mutation spectrum. We developed an innovative approach to integrate somatic mutation data with gene networks and pathways, in order to identify pathways altered by somatic mutations across cancers. Results: We applied our approach to The Cancer Genome Atlas (TCGA) dataset of somatic mutations in 4790 cancer patients with 19 different types of tumors. Our analysis identified cancer-type-specific altered pathways enriched with known cancer-relevant genes and targets of currently available drugs. To investigate the clinical significance of these altered pathways, we performed consensus clustering for patient stratification using member genes in the altered pathways coupled with gene expression datasets from 4870 patients from TCGA, and multiple independent cohorts confirmed that the altered pathways could be used to stratify patients into subgroups with significantly different clinical outcomes. Of particular significance, certain patient subpopulations with poor prognosis were identified because they had specific altered pathways for which there are available targeted therapies. These findings could be used to tailor and intensify therapy in these patients, for whom current therapy is suboptimal. Availability and implementation: The code is available at: http://www.taehyunlab.org. Contact: jhcheong@yuhs.ac or taehyun.hwang@utsouthwestern.edu or taehyun.cs@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26635139

  2. Exercise-induced biochemical changes and their potential influence on cancer: a scientific review

    PubMed Central

    Thomas, Robert James; Kenfield, Stacey A; Jimenez, Alfonso

    2017-01-01

    Aim To review and discuss the available international literature regarding the indirect and direct biochemical mechanisms that occur after exercise, which could positively, or negatively, influence oncogenic pathways. Methods The PubMed, MEDLINE, Embase and Cochrane libraries were searched for papers up to July 2016 addressing biochemical changes after exercise with a particular reference to cancer. The three authors independently assessed their appropriateness for inclusion in this review based on their scientific quality and relevance. Results 168 papers were selected and categorised into indirect and direct biochemical pathways. The indirect effects included changes in vitamin D, weight reduction, sunlight exposure and improved mood. The direct effects included insulin-like growth factor, epigenetic effects on gene expression and DNA repair, vasoactive intestinal peptide, oxidative stress and antioxidant pathways, heat shock proteins, testosterone, irisin, immunity, chronic inflammation and prostaglandins, energy metabolism and insulin resistance. Summary Exercise is one of several lifestyle factors known to lower the risk of developing cancer and is associated with lower relapse rates and better survival. This review highlights the numerous biochemical processes, which explain these potential anticancer benefits. PMID:27993842

  3. Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. for Biodiesel Production

    PubMed Central

    Talebi, Ahmad Farhad; Tohidfar, Masoud; Mousavi Derazmahalleh, Seyedeh Mahsa; Sulaiman, Alawi; Baharuddin, Azhari Samsu; Tabatabaei, Meisam

    2015-01-01

    Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200 mg L−1 myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L−1 myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that “there is a there there” for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality. PMID:26146623

  4. Biochemical Modulation of Lipid Pathway in Microalgae Dunaliella sp. for Biodiesel Production.

    PubMed

    Talebi, Ahmad Farhad; Tohidfar, Masoud; Mousavi Derazmahalleh, Seyedeh Mahsa; Sulaiman, Alawi; Baharuddin, Azhari Samsu; Tabatabaei, Meisam

    2015-01-01

    Exploitation of renewable sources of energy such as algal biodiesel could turn energy supplies problem around. Studies on a locally isolated strain of Dunaliella sp. showed that the mean lipid content in cultures enriched by 200 mg L(-1) myoinositol was raised by around 33% (1.5 times higher than the control). Similarly, higher lipid productivity values were achieved in cultures treated by 100 and 200 mg L(-1) myoinositol. Fluorometry analyses (microplate fluorescence and flow cytometry) revealed increased oil accumulation in the Nile red-stained algal samples. Moreover, it was predicted that biodiesel produced from myoinositol-treated cells possessed improved oxidative stability, cetane number, and cloud point values. From the genomic point of view, real-time analyses revealed that myoinositol negatively influenced transcript abundance of AccD gene (one of the key genes involved in lipid production pathway) due to feedback inhibition and that its positive effect must have been exerted through other genes. The findings of the current research are not to interprete that myoinositol supplementation could answer all the challenges faced in microalgal biodiesel production but instead to show that "there is a there there" for biochemical modulation strategies, which we achieved, increased algal oil quantity and enhanced resultant biodiesel quality.

  5. Emerging evidence on the role of the Hippo/YAP pathway in liver physiology and cancer.

    PubMed

    Yimlamai, Dean; Fowl, Brendan H; Camargo, Fernando D

    2015-12-01

    The Hippo pathway and its regulatory target, YAP, has recently emerged as an important biochemical signaling pathway that tightly governs epithelial tissue growth. Initially defined in Drosophilia, this pathway has shown remarkable conservation in vertebrate systems with many components of the Hippo/YAP pathway showing biochemical and functional conservation. The liver is particularly sensitive to changes in Hippo/YAP signaling with rapid increases in liver size becoming manifest on the order of days to weeks after perturbation. The first identified direct targets of Hippo/YAP signaling were pro-proliferative and anti-apoptotic gene programs, but recent work has now implicated this pathway in cell fate choice, stem cell maintenance/renewal, epithelial to mesenchymal transition, and oncogenesis. The mechanisms by which Hippo/YAP signaling is changed endogenously are beginning to come to light as well as how this pathway interacts with other signaling pathways, and important details for designing new therapeutic interventions. This review focuses on the known roles for Hippo/YAP signaling in the liver and promising avenues for future study. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. The Fanconi anaemia pathway: new players and new functions.

    PubMed

    Ceccaldi, Raphael; Sarangi, Prabha; D'Andrea, Alan D

    2016-06-01

    The Fanconi anaemia pathway repairs DNA interstrand crosslinks (ICLs) in the genome. Our understanding of this complex pathway is still evolving, as new components continue to be identified and new biochemical systems are used to elucidate the molecular steps of repair. The Fanconi anaemia pathway uses components of other known DNA repair processes to achieve proper repair of ICLs. Moreover, Fanconi anaemia proteins have functions in genome maintenance beyond their canonical roles of repairing ICLs. Such functions include the stabilization of replication forks and the regulation of cytokinesis. Thus, Fanconi anaemia proteins are emerging as master regulators of genomic integrity that coordinate several repair processes. Here, we summarize our current understanding of the functions of the Fanconi anaemia pathway in ICL repair, together with an overview of its connections with other repair pathways and its emerging roles in genome maintenance.

  7. Additional targets of the Arabidopsis autonomous pathway members, FCA and FY.

    PubMed

    Marquardt, S; Boss, P K; Hadfield, J; Dean, C

    2006-01-01

    A central player in the Arabidopsis floral transition is the floral repressor FLC, the MADS-box transcriptional regulator that inhibits the activity of genes required to switch the meristem from vegetative to floral development. One of the many pathways that regulate FLC expression is the autonomous promotion pathway composed of FCA, FY, FLD, FPA, FVE, LD, and FLK. Rather than a hierarchical set of activities the autonomous promotion pathway comprises sub-pathways of genes with different biochemical functions that all share FLC as a target. One sub-pathway involves FCA and FY, which interact to regulate RNA processing of FLC. Several of the identified components (FY, FVE, and FLD) are homologous to yeast and mammalian proteins with rather generic roles in gene regulation. So why do mutations in these genes specifically show a late-flowering phenotype in Arabidopsis? One reason, found during the analysis of fy alleles, is that the mutant alleles identified in flowering screens can be hypomorphic, they still have partial function. A broader role for the autonomous promotion pathway is supported by a microarray analysis which has identified genes mis-regulated in fca mutants, and whose expression is also altered in fy mutants.

  8. How reliable are thermodynamic feasibility statements of biochemical pathways?

    PubMed

    Maskow, Thomas; von Stockar, Urs

    2005-10-20

    The driving force for organo- or lithotrophic growth as well as for each step in the metabolic network is the Gibbs reaction energy. For each enzymatic step it must be negative. Thermodynamics contributes therefore to the in-silico description of living systems. It may be used for assessing the feasibility of a given pathway because it provides a further constraint for those pathways which are feasible from the point of view of mass balance calculations (metabolic flux analysis) and the genetic potential of an organism. However, when this constraint was applied to lactic acid fermentation according to a method proposed by Mavrovouniotis (1993a, ISMB 93:273-283) it turned out that an unrealistically wide metabolite concentration range had to be assumed to make this well-known glycolytic pathway thermodynamically feasible. During a search for the reasons of this surprising result the insufficient consideration of the activity coefficients was identified as main cause. However, it is shown in the present contribution that the influence of the activity coefficients on Gibbs reaction energy can be easily taken into account based on the intracellular ionic strength. The uncertainty of the tabulated equilibrium constants and of the apparent standard Gibbs energies derived from them was found to be the second most important reason for the erroneous result of the feasibility analysis. Deviations of intracellular pH from the standard value and bad estimations of currency metabolites, e.g., NAD(+) and NADH, were found to be of lesser importance but not negligible. The pH dependency of Gibbs reaction enthalpy was proved to be easily taken into account. Therefore, the application of thermodynamics for a better in-silico prediction of the behavior of living cell factories calls predominantly for better equilibrium data determined under well defined conditions and also for a more detailed knowledge about the intracellular ionic strength and pH value. Copyright 2005 Wiley

  9. PathScore: a web tool for identifying altered pathways in cancer data.

    PubMed

    Gaffney, Stephen G; Townsend, Jeffrey P

    2016-12-01

    PathScore quantifies the level of enrichment of somatic mutations within curated pathways, applying a novel approach that identifies pathways enriched across patients. The application provides several user-friendly, interactive graphic interfaces for data exploration, including tools for comparing pathway effect sizes, significance, gene-set overlap and enrichment differences between projects. Web application available at pathscore.publichealth.yale.edu. Site implemented in Python and MySQL, with all major browsers supported. Source code available at: github.com/sggaffney/pathscore with a GPLv3 license. stephen.gaffney@yale.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. PathwayAccess: CellDesigner plugins for pathway databases.

    PubMed

    Van Hemert, John L; Dickerson, Julie A

    2010-09-15

    CellDesigner provides a user-friendly interface for graphical biochemical pathway description. Many pathway databases are not directly exportable to CellDesigner models. PathwayAccess is an extensible suite of CellDesigner plugins, which connect CellDesigner directly to pathway databases using respective Java application programming interfaces. The process is streamlined for creating new PathwayAccess plugins for specific pathway databases. Three PathwayAccess plugins, MetNetAccess, BioCycAccess and ReactomeAccess, directly connect CellDesigner to the pathway databases MetNetDB, BioCyc and Reactome. PathwayAccess plugins enable CellDesigner users to expose pathway data to analytical CellDesigner functions, curate their pathway databases and visually integrate pathway data from different databases using standard Systems Biology Markup Language and Systems Biology Graphical Notation. Implemented in Java, PathwayAccess plugins run with CellDesigner version 4.0.1 and were tested on Ubuntu Linux, Windows XP and 7, and MacOSX. Source code, binaries, documentation and video walkthroughs are freely available at http://vrac.iastate.edu/~jlv.

  11. Accurate atom-mapping computation for biochemical reactions.

    PubMed

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  12. Metabologenomics of Phaeochromocytoma and Paraganglioma: An Integrated Approach for Personalised Biochemical and Genetic Testing

    PubMed Central

    Eisenhofer, Graeme; Klink, Barbara; Richter, Susan; Lenders, Jacques WM; Robledo, Mercedes

    2017-01-01

    The tremendous advances over the past two decades in both clinical genetics and biochemical testing of chromaffin cell tumours have led to new considerations about how these aspects of laboratory medicine can be integrated to improve diagnosis and management of affected patients. With germline mutations in 15 genes now identified to be responsible for over a third of all cases of phaeochromocytomas and paragangliomas, these tumours are recognised to have one of the richest hereditary backgrounds among all neoplasms. Depending on the mutation, tumours show distinct differences in metabolic pathways that relate to or even directly impact clinical presentation. At the same time, there has been improved understanding about how catecholamines are synthesised, stored, secreted and metabolised by chromaffin cell tumours. Although the tumours may not always secrete catecholamines it has become clear that almost all continuously produce and metabolise catecholamines. This has not only fuelled changes in laboratory medicine, but has also assisted in recognition of genotype-biochemical phenotype relationships important for diagnostics and clinical care. In particular, differences in catecholamine and energy pathway metabolomes can guide genetic testing, assist with test interpretation and provide predictions about the nature, behaviour and imaging characteristics of the tumours. Conversely, results of genetic testing are important for guiding how routine biochemical testing should be employed and interpreted in surveillance programmes for at-risk patients. In these ways there are emerging needs for modern laboratory medicine to seamlessly integrate biochemical and genetic testing into the diagnosis and management of patients with chromaffin cell tumours. PMID:29332973

  13. Gene Expression Profiling Identifies Downregulation of the Neurotrophin-MAPK Signaling Pathway in Female Diabetic Peripheral Neuropathy Patients.

    PubMed

    Luo, Lin; Zhou, Wen-Hua; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei; Xu, Jin; Ji, Lin-Dan

    2017-01-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the "neurotrophin-MAPK signaling pathway" was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment.

  14. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  15. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  16. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  17. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  18. 40 CFR 158.2010 - Biochemical pesticides data requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditions are identified within the test notes. Definitions that apply to all biochemical data requirements... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Biochemical pesticides data...) PESTICIDE PROGRAMS DATA REQUIREMENTS FOR PESTICIDES Biochemical Pesticides § 158.2010 Biochemical pesticides...

  19. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    PubMed

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. genome-wide association and metabolic pathway analysis of corn earworm resistance in maize

    Treesearch

    Marilyn L. Warburton; Erika D. Womack; Juliet D. Tang; Adam Thrash; J. Spencer Smith; Wenwei Xu; Seth C. Murray; W. Paul Williams

    2018-01-01

    Maize (Zea mays mays L.) is a staple crop of economic, industrial, and food security importance. Damage to the growing ears by corn earworm [Helicoverpa zea (Boddie)] is a major economic burden and increases secondary fungal infections and mycotoxin levels. To identify biochemical pathways associated with native resistance mechanisms, a genome-wide...

  1. Gene Expression Profiling Identifies Downregulation of the Neurotrophin-MAPK Signaling Pathway in Female Diabetic Peripheral Neuropathy Patients

    PubMed Central

    Luo, Lin; Zhou, Wen-Hua; Cai, Jiang-Jia; Feng, Mei; Zhou, Mi; Hu, Su-Pei

    2017-01-01

    Diabetic peripheral neuropathy (DPN) is a common complication of diabetes mellitus (DM). It is not diagnosed or managed properly in the majority of patients because its pathogenesis remains controversial. In this study, human whole genome microarrays identified 2898 and 4493 differentially expressed genes (DEGs) in DM and DPN patients, respectively. A further KEGG pathway analysis indicated that DPN and DM share four pathways, including apoptosis, B cell receptor signaling pathway, endocytosis, and Toll-like receptor signaling pathway. The DEGs identified through comparison of DPN and DM were significantly enriched in MAPK signaling pathway, NOD-like receptor signaling pathway, and neurotrophin signaling pathway, while the “neurotrophin-MAPK signaling pathway” was notably downregulated. Seven DEGs from the neurotrophin-MAPK signaling pathway were validated in additional 78 samples, and the results confirmed the initial microarray findings. These findings demonstrated that downregulation of the neurotrophin-MAPK signaling pathway may be the major mechanism of DPN pathogenesis, thus providing a potential approach for DPN treatment. PMID:28900628

  2. Recovering metabolic pathways via optimization.

    PubMed

    Beasley, John E; Planes, Francisco J

    2007-01-01

    A metabolic pathway is a coherent set of enzyme catalysed biochemical reactions by which a living organism transforms an initial (source) compound into a final (target) compound. Some of the different metabolic pathways adopted within organisms have been experimentally determined. In this paper, we show that a number of experimentally determined metabolic pathways can be recovered by a mathematical optimization model.

  3. Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease.

    PubMed

    Eisenberg, Marisa C; Robertson, Suzanne L; Tien, Joseph H

    2013-05-07

    Cholera and many waterborne diseases exhibit multiple characteristic timescales or pathways of infection, which can be modeled as direct and indirect transmission. A major public health issue for waterborne diseases involves understanding the modes of transmission in order to improve control and prevention strategies. An important epidemiological question is: given data for an outbreak, can we determine the role and relative importance of direct vs. environmental/waterborne routes of transmission? We examine whether parameters for a differential equation model of waterborne disease transmission dynamics can be identified, both in the ideal setting of noise-free data (structural identifiability) and in the more realistic setting in the presence of noise (practical identifiability). We used a differential algebra approach together with several numerical approaches, with a particular emphasis on identifiability of the transmission rates. To examine these issues in a practical public health context, we apply the model to a recent cholera outbreak in Angola (2006). Our results show that the model parameters-including both water and person-to-person transmission routes-are globally structurally identifiable, although they become unidentifiable when the environmental transmission timescale is fast. Even for water dynamics within the identifiable range, when noisy data are considered, only a combination of the water transmission parameters can practically be estimated. This makes the waterborne transmission parameters difficult to estimate, leading to inaccurate estimates of important epidemiological parameters such as the basic reproduction number (R0). However, measurements of pathogen persistence time in environmental water sources or measurements of pathogen concentration in the water can improve model identifiability and allow for more accurate estimation of waterborne transmission pathway parameters as well as R0. Parameter estimates for the Angola outbreak suggest

  4. Hydrograph Separations can Identify Contaminant-Specific Pathways for Conservation Targeting in a Tile-Drained Watershed

    USDA-ARS?s Scientific Manuscript database

    Water quality issues continue to vex agriculture. Understanding contaminant-specific pathways could help clarify effective water quality management strategies in watersheds. Hypothesis: If conducted at nested scales, hydrograph separation techniques can identify contaminant-specific pathways that co...

  5. Molecular Pathways

    PubMed Central

    Lok, Benjamin H.; Powell, Simon N.

    2012-01-01

    The Rad52 protein was largely ignored in humans and other mammals when the mouse knockout revealed a largely “no-effect” phenotype. However, using synthetic lethal approaches to investigate context dependent function, new studies have shown that Rad52 plays a key survival role in cells lacking the function of the BRCA1-BRCA2 pathway of homologous recombination. Biochemical studies also showed significant differences between yeast and human Rad52, in which yeast Rad52 can promote strand invasion of RPA-coated single-stranded DNA in the presence of Rad51, but human Rad52 cannot. This results in the paradox of how is human Rad52 providing Rad51 function: presumably there is something missing in the biochemical assays that exists in-vivo, but the nature of this missing factor is currently unknown. Recent studies have suggested that Rad52 provides back-up Rad51 function for all members of the BRCA1-BRCA2 pathway, suggesting that Rad52 may be a target for therapy in BRCA pathway deficient cancers. Screening for ways to inhibit Rad52 would potentially provide a complementary strategy for targeting BRCA-deficient cancers in addition to PARP inhibitors. PMID:23071261

  6. Biodegradation of diethyl terephthalate (DET) and polyethylene terephthalate (PET) by a novel identified degrader Delftia sp. WL-3 and its proposed metabolic pathway.

    PubMed

    Liu, Jiawei; Xu, Guanbao; Dong, Weiliang; Xu, Ning; Xin, Fengxue; Ma, Jiangfeng; Fang, Yan; Zhou, Jie; Jiang, Min

    2018-06-01

    Polyethylene terephthalate (PET), a synthetic polyester material made of diethyl terephthalate (DET) monomers, is widely used in plastic products of daily life and caused serious pollution to the global environment. Microbial metabolism is the major degradation pathway responsible for DET degradation in natural soil; however, the microbial DET-degradation mechanism remains unclear. In this study, the newly isolated strain WL-3, identified as belonging to the genus Delftia, was found to be able to degrade 94% of 5 g·L -1 of DET and utilize it as the sole carbon source for growth within 7 days. Furthermore, strain WL-3 was capable of stable DET degradation under a wide range of pH values (6.0-9.0) and temperatures (20-42°C) with the optimal pH and temperature of 7.0 and 30°C respectively. Furthermore, the biochemical pathway of DET degradation by strain WL-3 was proposed based on the identified degradation intermediates. DET is first transformed into terephthalic acid (TPA) by the hydrolysis of two ester bonds, which is subsequently converted to protocatechuic acid (PCA) and further mineralized. SEM observations revealed obvious cracks on the surface of PET film after inoculation of 2 months with strain WL-3, indicating the strain's potential for the bioremediation of PET-contaminated environments. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6*

    PubMed Central

    Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; McAndrew, Ryan P.; Deng, Kai; Holland, Keefe C.; Donohue, Timothy J.; Noguera, Daniel R.; Simmons, Blake A.; Sale, Kenneth L.; Ralph, John; Adams, Paul D.

    2016-01-01

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. PMID:26940872

  8. A Method for Finding Metabolic Pathways Using Atomic Group Tracking.

    PubMed

    Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways.

  9. A Method for Finding Metabolic Pathways Using Atomic Group Tracking

    PubMed Central

    Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways. PMID:28068354

  10. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome.

    PubMed

    Morine, Melissa J; McMonagle, Jolene; Toomey, Sinead; Reynolds, Clare M; Moloney, Aidan P; Gormley, Isobel C; Gaora, Peadar O; Roche, Helen M

    2010-10-07

    constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease.

  11. Bi-directional gene set enrichment and canonical correlation analysis identify key diet-sensitive pathways and biomarkers of metabolic syndrome

    PubMed Central

    2010-01-01

    -sensitive changes in constituent genes, as well as strong correlations between gene expression and plasma markers of metabolic syndrome independent of the dietary effect. Conclusion Bi-directional gene set enrichment analysis more accurately reflects dynamic regulatory behaviour in biochemical pathways, and as such highlighted biologically relevant changes that were not detected using a traditional approach. In such cases where transcriptomic response to treatment is exceptionally large, canonical correlation analysis in conjunction with Fisher's exact test highlights the subset of pathways showing strongest correlation with the clinical markers of interest. In this case, we have identified selenoamino acid metabolism and steroid biosynthesis as key pathways mediating the observed relationship between metabolic health and high-CLA beef. These results indicate that this type of analysis has the potential to generate novel transcriptome-based biomarkers of disease. PMID:20929581

  12. Distinguishing between biochemical and cellular function: Are there peptide signatures for cellular function of proteins?

    PubMed

    Jain, Shruti; Bhattacharyya, Kausik; Bakshi, Rachit; Narang, Ankita; Brahmachari, Vani

    2017-04-01

    The genome annotation and identification of gene function depends on conserved biochemical activity. However, in the cell, proteins with the same biochemical function can participate in different cellular pathways and cannot complement one another. Similarly, two proteins of very different biochemical functions are put in the same class of cellular function; for example, the classification of a gene as an oncogene or a tumour suppressor gene is not related to its biochemical function, but is related to its cellular function. We have taken an approach to identify peptide signatures for cellular function in proteins with known biochemical function. ATPases as a test case, we classified ATPases (2360 proteins) and kinases (517 proteins) from the human genome into different cellular function categories such as transcriptional, replicative, and chromatin remodelling proteins. Using publicly available tool, MEME, we identify peptide signatures shared among the members of a given category but not between cellular functional categories; for example, no motif sharing is seen between chromatin remodelling and transporter ATPases, similarly between receptor Serine/Threonine Kinase and Receptor Tyrosine Kinase. There are motifs shared within each category with significant E value and high occurrence. This concept of signature for cellular function was applied to developmental regulators, the polycomb and trithorax proteins which led to the prediction of the role of INO80, a chromatin remodelling protein, in development. This has been experimentally validated earlier for its role in homeotic gene regulation and its interaction with regulatory complexes like the Polycomb and Trithorax complex. Proteins 2017; 85:682-693. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Serum Biochemical Phenotypes in the Domestic Dog

    PubMed Central

    Chang, Yu-Mei; Hadox, Erin; Szladovits, Balazs; Garden, Oliver A.

    2016-01-01

    The serum or plasma biochemical profile is essential in the diagnosis and monitoring of systemic disease in veterinary medicine, but current reference intervals typically take no account of breed-specific differences. Breed-specific hematological phenotypes have been documented in the domestic dog, but little has been published on serum biochemical phenotypes in this species. Serum biochemical profiles of dogs in which all measurements fell within the existing reference intervals were retrieved from a large veterinary database. Serum biochemical profiles from 3045 dogs were retrieved, of which 1495 had an accompanying normal glucose concentration. Sixty pure breeds plus a mixed breed control group were represented by at least 10 individuals. All analytes, except for sodium, chloride and glucose, showed variation with age. Total protein, globulin, potassium, chloride, creatinine, cholesterol, total bilirubin, ALT, CK, amylase, and lipase varied between sexes. Neutering status significantly impacted all analytes except albumin, sodium, calcium, urea, and glucose. Principal component analysis of serum biochemical data revealed 36 pure breeds with distinctive phenotypes. Furthermore, comparative analysis identified 23 breeds with significant differences from the mixed breed group in all biochemical analytes except urea and glucose. Eighteen breeds were identified by both principal component and comparative analysis. Tentative reference intervals were generated for breeds with a distinctive phenotype identified by comparative analysis and represented by at least 120 individuals. This is the first large-scale analysis of breed-specific serum biochemical phenotypes in the domestic dog and highlights potential genetic components of biochemical traits in this species. PMID:26919479

  14. Metabolomics for undergraduates: Identification and pathway assignment of mitochondrial metabolites.

    PubMed

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E N; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening approach to identify all the metabolites in a given biological system is called metabolic fingerprinting. Using high-resolution and high-mass accuracy mass spectrometry, large metabolome coverage, sensitivity, and specificity can be attained. Although the theoretical concepts of this methodology are usually provided in life-science programs, hands-on laboratory experiments are not usually accessible to undergraduate students. Even if the instruments are available, there are not simple laboratory protocols created specifically for teaching metabolomics. We designed a straightforward hands-on laboratory experiment to introduce students to this methodology, relating it to biochemical knowledge through metabolic pathway mapping of the identified metabolites. This study focuses on mitochondrial metabolomics since mitochondria have a well-known, medium-sized cellular sub-metabolome. These features facilitate both data processing and pathway mapping. In this experiment, students isolate mitochondria from potatoes, extract the metabolites, and analyze them by high-resolution mass spectrometry (using an FT-ICR mass spectrometer). The resulting mass list is submitted to an online program for metabolite identification, and compounds associated with mitochondrial pathways can be highlighted in a metabolic network map. © 2015 The International Union of Biochemistry and Molecular Biology.

  15. Identifying novel glioma associated pathways based on systems biology level meta-analysis.

    PubMed

    Hu, Yangfan; Li, Jinquan; Yan, Wenying; Chen, Jiajia; Li, Yin; Hu, Guang; Shen, Bairong

    2013-01-01

    With recent advances in microarray technology, including genomics, proteomics, and metabolomics, it brings a great challenge for integrating this "-omics" data to analysis complex disease. Glioma is an extremely aggressive and lethal form of brain tumor, and thus the study of the molecule mechanism underlying glioma remains very important. To date, most studies focus on detecting the differentially expressed genes in glioma. However, the meta-analysis for pathway analysis based on multiple microarray datasets has not been systematically pursued. In this study, we therefore developed a systems biology based approach by integrating three types of omics data to identify common pathways in glioma. Firstly, the meta-analysis has been performed to study the overlapping of signatures at different levels based on the microarray gene expression data of glioma. Among these gene expression datasets, 12 pathways were found in GeneGO database that shared by four stages. Then, microRNA expression profiles and ChIP-seq data were integrated for the further pathway enrichment analysis. As a result, we suggest 5 of these pathways could be served as putative pathways in glioma. Among them, the pathway of TGF-beta-dependent induction of EMT via SMAD is of particular importance. Our results demonstrate that the meta-analysis based on systems biology level provide a more useful approach to study the molecule mechanism of complex disease. The integration of different types of omics data, including gene expression microarrays, microRNA and ChIP-seq data, suggest some common pathways correlated with glioma. These findings will offer useful potential candidates for targeted therapeutic intervention of glioma.

  16. Identification of biochemical adaptations in hyper- or hypocontractile hearts from phospholamban mutant mice by expression proteomics.

    PubMed

    Pan, Yan; Kislinger, Thomas; Gramolini, Anthony O; Zvaritch, Elena; Kranias, Evangelia G; MacLennan, David H; Emili, Andrew

    2004-02-24

    Phospholamban (PLN) is a critical regulator of cardiac contractility through its binding to and regulation of the activity of the sarco(endo)plasmic reticulum Ca2+ ATPase. To uncover biochemical adaptations associated with extremes of cardiac muscle contractility, we used high-throughput gel-free tandem MS to monitor differences in the relative abundance of membrane proteins in standard microsomal fractions isolated from the hearts of PLN-null mice (PLN-KO) with high contractility and from transgenic mice overexpressing a superinhibitory PLN mutant in a PLN-null background (I40A-KO) with diminished contractility. Significant differential expression was detected for a subset of the 782 proteins identified, including known membrane-associated biomarkers, components of signaling pathways, and previously uninvestigated proteins. Proteins involved in fat and carbohydrate metabolism and proteins linked to G protein-signaling pathways activating protein kinase C were enriched in I40A-KO cardiac muscle, whereas proteins linked to enhanced contractile function were enriched in PLN-KO mutant hearts. These data demonstrate that Ca2+ dysregulation, leading to elevated or depressed cardiac contractility, induces compensatory biochemical responses.

  17. Quantitative Proteomics Identifies Activation of Hallmark Pathways of Cancer in Patient Melanoma.

    PubMed

    Byrum, Stephanie D; Larson, Signe K; Avaritt, Nathan L; Moreland, Linley E; Mackintosh, Samuel G; Cheung, Wang L; Tackett, Alan J

    2013-03-01

    Molecular pathways regulating melanoma initiation and progression are potential targets of therapeutic development for this aggressive cancer. Identification and molecular analysis of these pathways in patients has been primarily restricted to targeted studies on individual proteins. Here, we report the most comprehensive analysis of formalin-fixed paraffin-embedded human melanoma tissues using quantitative proteomics. From 61 patient samples, we identified 171 proteins varying in abundance among benign nevi, primary melanoma, and metastatic melanoma. Seventy-three percent of these proteins were validated by immunohistochemistry staining of malignant melanoma tissues from the Human Protein Atlas database. Our results reveal that molecular pathways involved with tumor cell proliferation, motility, and apoptosis are mis-regulated in melanoma. These data provide the most comprehensive proteome resource on patient melanoma and reveal insight into the molecular mechanisms driving melanoma progression.

  18. The HEART Pathway randomized trial: identifying emergency department patients with acute chest pain for early discharge.

    PubMed

    Mahler, Simon A; Riley, Robert F; Hiestand, Brian C; Russell, Gregory B; Hoekstra, James W; Lefebvre, Cedric W; Nicks, Bret A; Cline, David M; Askew, Kim L; Elliott, Stephanie B; Herrington, David M; Burke, Gregory L; Miller, Chadwick D

    2015-03-01

    The HEART Pathway is a decision aid designed to identify emergency department patients with acute chest pain for early discharge. No randomized trials have compared the HEART Pathway with usual care. Adult emergency department patients with symptoms related to acute coronary syndrome without ST-elevation on ECG (n=282) were randomized to the HEART Pathway or usual care. In the HEART Pathway arm, emergency department providers used the HEART score, a validated decision aid, and troponin measures at 0 and 3 hours to identify patients for early discharge. Usual care was based on American College of Cardiology/American Heart Association guidelines. The primary outcome, objective cardiac testing (stress testing or angiography), and secondary outcomes, index length of stay, early discharge, and major adverse cardiac events (death, myocardial infarction, or coronary revascularization), were assessed at 30 days by phone interview and record review. Participants had a mean age of 53 years, 16% had previous myocardial infarction, and 6% (95% confidence interval, 3.6%-9.5%) had major adverse cardiac events within 30 days of randomization. Compared with usual care, use of the HEART Pathway decreased objective cardiac testing at 30 days by 12.1% (68.8% versus 56.7%; P=0.048) and length of stay by 12 hours (9.9 versus 21.9 hours; P=0.013) and increased early discharges by 21.3% (39.7% versus 18.4%; P<0.001). No patients identified for early discharge had major adverse cardiac events within 30 days. The HEART Pathway reduces objective cardiac testing during 30 days, shortens length of stay, and increases early discharges. These important efficiency gains occurred without any patients identified for early discharge suffering MACE at 30 days. URL: http://www.clinicaltrials.gov. Unique Identifier: NCT01665521. © 2015 American Heart Association, Inc.

  19. An Integrated Human/Murine Transcriptome and Pathway Approach To Identify Prenatal Treatments For Down Syndrome.

    PubMed

    Guedj, Faycal; Pennings, Jeroen LA; Massingham, Lauren J; Wick, Heather C; Siegel, Ashley E; Tantravahi, Umadevi; Bianchi, Diana W

    2016-09-02

    Anatomical and functional brain abnormalities begin during fetal life in Down syndrome (DS). We hypothesize that novel prenatal treatments can be identified by targeting signaling pathways that are consistently perturbed in cell types/tissues obtained from human fetuses with DS and mouse embryos. We analyzed transcriptome data from fetuses with trisomy 21, age and sex-matched euploid controls, and embryonic day 15.5 forebrains from Ts1Cje, Ts65Dn, and Dp16 mice. The new datasets were compared to other publicly available datasets from humans with DS. We used the human Connectivity Map (CMap) database and created a murine adaptation to identify FDA-approved drugs that can rescue affected pathways. USP16 and TTC3 were dysregulated in all affected human cells and two mouse models. DS-associated pathway abnormalities were either the result of gene dosage specific effects or the consequence of a global cell stress response with activation of compensatory mechanisms. CMap analyses identified 56 molecules with high predictive scores to rescue abnormal gene expression in both species. Our novel integrated human/murine systems biology approach identified commonly dysregulated genes and pathways. This can help to prioritize therapeutic molecules on which to further test safety and efficacy. Additional studies in human cells are ongoing prior to pre-clinical prenatal treatment in mice.

  20. A probabilistic approach to identify putative drug targets in biochemical networks.

    PubMed

    Murabito, Ettore; Smallbone, Kieran; Swinton, Jonathan; Westerhoff, Hans V; Steuer, Ralf

    2011-06-06

    Network-based drug design holds great promise in clinical research as a way to overcome the limitations of traditional approaches in the development of drugs with high efficacy and low toxicity. This novel strategy aims to study how a biochemical network as a whole, rather than its individual components, responds to specific perturbations in different physiological conditions. Proteins exerting little control over normal cells and larger control over altered cells may be considered as good candidates for drug targets. The application of network-based drug design would greatly benefit from using an explicit computational model describing the dynamics of the system under investigation. However, creating a fully characterized kinetic model is not an easy task, even for relatively small networks, as it is still significantly hampered by the lack of data about kinetic mechanisms and parameters values. Here, we propose a Monte Carlo approach to identify the differences between flux control profiles of a metabolic network in different physiological states, when information about the kinetics of the system is partially or totally missing. Based on experimentally accessible information on metabolic phenotypes, we develop a novel method to determine probabilistic differences in the flux control coefficients between the two observable phenotypes. Knowledge of how differences in flux control are distributed among the different enzymatic steps is exploited to identify points of fragility in one of the phenotypes. Using a prototypical cancerous phenotype as an example, we demonstrate how our approach can assist researchers in developing compounds with high efficacy and low toxicity. © 2010 The Royal Society

  1. Meta-Analysis of Placental Transcriptome Data Identifies a Novel Molecular Pathway Related to Preeclampsia.

    PubMed

    van Uitert, Miranda; Moerland, Perry D; Enquobahrie, Daniel A; Laivuori, Hannele; van der Post, Joris A M; Ris-Stalpers, Carrie; Afink, Gijs B

    2015-01-01

    Studies using the placental transcriptome to identify key molecules relevant for preeclampsia are hampered by a relatively small sample size. In addition, they use a variety of bioinformatics and statistical methods, making comparison of findings challenging. To generate a more robust preeclampsia gene expression signature, we performed a meta-analysis on the original data of 11 placenta RNA microarray experiments, representing 139 normotensive and 116 preeclamptic pregnancies. Microarray data were pre-processed and analyzed using standardized bioinformatics and statistical procedures and the effect sizes were combined using an inverse-variance random-effects model. Interactions between genes in the resulting gene expression signature were identified by pathway analysis (Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, Graphite) and protein-protein associations (STRING). This approach has resulted in a comprehensive list of differentially expressed genes that led to a 388-gene meta-signature of preeclamptic placenta. Pathway analysis highlights the involvement of the previously identified hypoxia/HIF1A pathway in the establishment of the preeclamptic gene expression profile, while analysis of protein interaction networks indicates CREBBP/EP300 as a novel element central to the preeclamptic placental transcriptome. In addition, there is an apparent high incidence of preeclampsia in women carrying a child with a mutation in CREBBP/EP300 (Rubinstein-Taybi Syndrome). The 388-gene preeclampsia meta-signature offers a vital starting point for further studies into the relevance of these genes (in particular CREBBP/EP300) and their concomitant pathways as biomarkers or functional molecules in preeclampsia. This will result in a better understanding of the molecular basis of this disease and opens up the opportunity to develop rational therapies targeting the placental dysfunction causal to preeclampsia.

  2. Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks.

    PubMed

    Adalsteinsson, David; McMillen, David; Elston, Timothy C

    2004-03-08

    Intrinsic fluctuations due to the stochastic nature of biochemical reactions can have large effects on the response of biochemical networks. This is particularly true for pathways that involve transcriptional regulation, where generally there are two copies of each gene and the number of messenger RNA (mRNA) molecules can be small. Therefore, there is a need for computational tools for developing and investigating stochastic models of biochemical networks. We have developed the software package Biochemical Network Stochastic Simulator (BioNetS) for efficiently and accurately simulating stochastic models of biochemical networks. BioNetS has a graphical user interface that allows models to be entered in a straightforward manner, and allows the user to specify the type of random variable (discrete or continuous) for each chemical species in the network. The discrete variables are simulated using an efficient implementation of the Gillespie algorithm. For the continuous random variables, BioNetS constructs and numerically solves the appropriate chemical Langevin equations. The software package has been developed to scale efficiently with network size, thereby allowing large systems to be studied. BioNetS runs as a BioSpice agent and can be downloaded from http://www.biospice.org. BioNetS also can be run as a stand alone package. All the required files are accessible from http://x.amath.unc.edu/BioNetS. We have developed BioNetS to be a reliable tool for studying the stochastic dynamics of large biochemical networks. Important features of BioNetS are its ability to handle hybrid models that consist of both continuous and discrete random variables and its ability to model cell growth and division. We have verified the accuracy and efficiency of the numerical methods by considering several test systems.

  3. Integrated Analysis of Mutation Data from Various Sources Identifies Key Genes and Signaling Pathways in Hepatocellular Carcinoma

    PubMed Central

    Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Background Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. Principal Findings In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Conclusions Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers. PMID:24988079

  4. Integrated analysis of mutation data from various sources identifies key genes and signaling pathways in hepatocellular carcinoma.

    PubMed

    Zhang, Yuannv; Qiu, Zhaoping; Wei, Lin; Tang, Ruqi; Lian, Baofeng; Zhao, Yingjun; He, Xianghuo; Xie, Lu

    2014-01-01

    Recently, a number of studies have performed genome or exome sequencing of hepatocellular carcinoma (HCC) and identified hundreds or even thousands of mutations in protein-coding genes. However, these studies have only focused on a limited number of candidate genes, and many important mutation resources remain to be explored. In this study, we integrated mutation data obtained from various sources and performed pathway and network analysis. We identified 113 pathways that were significantly mutated in HCC samples and found that the mutated genes included in these pathways contained high percentages of known cancer genes, and damaging genes and also demonstrated high conservation scores, indicating their important roles in liver tumorigenesis. Five classes of pathways that were mutated most frequently included (a) proliferation and apoptosis related pathways, (b) tumor microenvironment related pathways, (c) neural signaling related pathways, (d) metabolic related pathways, and (e) circadian related pathways. Network analysis further revealed that the mutated genes with the highest betweenness coefficients, such as the well-known cancer genes TP53, CTNNB1 and recently identified novel mutated genes GNAL and the ADCY family, may play key roles in these significantly mutated pathways. Finally, we highlight several key genes (e.g., RPS6KA3 and PCLO) and pathways (e.g., axon guidance) in which the mutations were associated with clinical features. Our workflow illustrates the increased statistical power of integrating multiple studies of the same subject, which can provide biological insights that would otherwise be masked under individual sample sets. This type of bioinformatics approach is consistent with the necessity of making the best use of the ever increasing data provided in valuable databases, such as TCGA, to enhance the speed of deciphering human cancers.

  5. Energy transport pathway in proteins: Insights from non-equilibrium molecular dynamics with elastic network model.

    PubMed

    Wang, Wei Bu; Liang, Yu; Zhang, Jing; Wu, Yi Dong; Du, Jian Jun; Li, Qi Ming; Zhu, Jian Zhuo; Su, Ji Guo

    2018-06-22

    Intra-molecular energy transport between distant functional sites plays important roles in allosterically regulating the biochemical activity of proteins. How to identify the specific intra-molecular signaling pathway from protein tertiary structure remains a challenging problem. In the present work, a non-equilibrium dynamics method based on the elastic network model (ENM) was proposed to simulate the energy propagation process and identify the specific signaling pathways within proteins. In this method, a given residue was perturbed and the propagation of energy was simulated by non-equilibrium dynamics in the normal modes space of ENM. After that, the simulation results were transformed from the normal modes space to the Cartesian coordinate space to identify the intra-protein energy transduction pathways. The proposed method was applied to myosin and the third PDZ domain (PDZ3) of PSD-95 as case studies. For myosin, two signaling pathways were identified, which mediate the energy transductions form the nucleotide binding site to the 50 kDa cleft and the converter subdomain, respectively. For PDZ3, one specific signaling pathway was identified, through which the intra-protein energy was transduced from ligand binding site to the distant opposite side of the protein. It is also found that comparing with the commonly used cross-correlation analysis method, the proposed method can identify the anisotropic energy transduction pathways more effectively.

  6. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6.

    PubMed

    Pereira, Jose Henrique; Heins, Richard A; Gall, Daniel L; McAndrew, Ryan P; Deng, Kai; Holland, Keefe C; Donohue, Timothy J; Noguera, Daniel R; Simmons, Blake A; Sale, Kenneth L; Ralph, John; Adams, Paul D

    2016-05-06

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50-70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less

  8. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6

    DOE PAGES

    Pereira, Jose Henrique; Heins, Richard A.; Gall, Daniel L.; ...

    2016-03-03

    There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding tomore » 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.« less

  9. Integrated pathway-based approach identifies association between genomic regions at CTCF and CACNB2 and schizophrenia.

    PubMed

    Juraeva, Dilafruz; Haenisch, Britta; Zapatka, Marc; Frank, Josef; Witt, Stephanie H; Mühleisen, Thomas W; Treutlein, Jens; Strohmaier, Jana; Meier, Sandra; Degenhardt, Franziska; Giegling, Ina; Ripke, Stephan; Leber, Markus; Lange, Christoph; Schulze, Thomas G; Mössner, Rainald; Nenadic, Igor; Sauer, Heinrich; Rujescu, Dan; Maier, Wolfgang; Børglum, Anders; Ophoff, Roel; Cichon, Sven; Nöthen, Markus M; Rietschel, Marcella; Mattheisen, Manuel; Brors, Benedikt

    2014-06-01

    In the present study, an integrated hierarchical approach was applied to: (1) identify pathways associated with susceptibility to schizophrenia; (2) detect genes that may be potentially affected in these pathways since they contain an associated polymorphism; and (3) annotate the functional consequences of such single-nucleotide polymorphisms (SNPs) in the affected genes or their regulatory regions. The Global Test was applied to detect schizophrenia-associated pathways using discovery and replication datasets comprising 5,040 and 5,082 individuals of European ancestry, respectively. Information concerning functional gene-sets was retrieved from the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and the Molecular Signatures Database. Fourteen of the gene-sets or pathways identified in the discovery dataset were confirmed in the replication dataset. These include functional processes involved in transcriptional regulation and gene expression, synapse organization, cell adhesion, and apoptosis. For two genes, i.e. CTCF and CACNB2, evidence for association with schizophrenia was available (at the gene-level) in both the discovery study and published data from the Psychiatric Genomics Consortium schizophrenia study. Furthermore, these genes mapped to four of the 14 presently identified pathways. Several of the SNPs assigned to CTCF and CACNB2 have potential functional consequences, and a gene in close proximity to CACNB2, i.e. ARL5B, was identified as a potential gene of interest. Application of the present hierarchical approach thus allowed: (1) identification of novel biological gene-sets or pathways with potential involvement in the etiology of schizophrenia, as well as replication of these findings in an independent cohort; (2) detection of genes of interest for future follow-up studies; and (3) the highlighting of novel genes in previously reported candidate regions for schizophrenia.

  10. A Whole-Cell Phenotypic Screening Platform for Identifying Methylerythritol Phosphate Pathway-Selective Inhibitors as Novel Antibacterial Agents

    PubMed Central

    Johnson, L. Jeffrey

    2012-01-01

    Isoprenoid biosynthesis is essential for survival of all living organisms. More than 50,000 unique isoprenoids occur naturally, with each constructed from two simple five-carbon precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Two pathways for the biosynthesis of IPP and DMAPP are found in nature. Humans exclusively use the mevalonate (MVA) pathway, while most bacteria, including all Gram-negative and many Gram-positive species, use the unrelated methylerythritol phosphate (MEP) pathway. Here we report the development of a novel, whole-cell phenotypic screening platform to identify compounds that selectively inhibit the MEP pathway. Strains of Salmonella enterica serovar Typhimurium were engineered to have separately inducible MEP (native) and MVA (nonnative) pathways. These strains, RMC26 and CT31-7d, were then used to differentiate MVA pathway- and MEP pathway-specific perturbation. Compounds that inhibit MEP pathway-dependent bacterial growth but leave MVA-dependent growth unaffected represent MEP pathway-selective antibacterials. This screening platform offers three significant results. First, the compound is antibacterial and is therefore cell permeant, enabling access to the intracellular target. Second, the compound inhibits one or more MEP pathway enzymes. Third, the MVA pathway is unaffected, suggesting selectivity for targeting the bacterial versus host pathway. The cell lines also display increased sensitivity to two reported MEP pathway-specific inhibitors, further biasing the platform toward inhibitors selective for the MEP pathway. We demonstrate development of a robust, high-throughput screening platform that combines phenotypic and target-based screening that can identify MEP pathway-selective antibacterials simply by monitoring optical density as the readout for cell growth/inhibition. PMID:22777049

  11. An improved hybrid of particle swarm optimization and the gravitational search algorithm to produce a kinetic parameter estimation of aspartate biochemical pathways.

    PubMed

    Ismail, Ahmad Muhaimin; Mohamad, Mohd Saberi; Abdul Majid, Hairudin; Abas, Khairul Hamimah; Deris, Safaai; Zaki, Nazar; Mohd Hashim, Siti Zaiton; Ibrahim, Zuwairie; Remli, Muhammad Akmal

    2017-12-01

    Mathematical modelling is fundamental to understand the dynamic behavior and regulation of the biochemical metabolisms and pathways that are found in biological systems. Pathways are used to describe complex processes that involve many parameters. It is important to have an accurate and complete set of parameters that describe the characteristics of a given model. However, measuring these parameters is typically difficult and even impossible in some cases. Furthermore, the experimental data are often incomplete and also suffer from experimental noise. These shortcomings make it challenging to identify the best-fit parameters that can represent the actual biological processes involved in biological systems. Computational approaches are required to estimate these parameters. The estimation is converted into multimodal optimization problems that require a global optimization algorithm that can avoid local solutions. These local solutions can lead to a bad fit when calibrating with a model. Although the model itself can potentially match a set of experimental data, a high-performance estimation algorithm is required to improve the quality of the solutions. This paper describes an improved hybrid of particle swarm optimization and the gravitational search algorithm (IPSOGSA) to improve the efficiency of a global optimum (the best set of kinetic parameter values) search. The findings suggest that the proposed algorithm is capable of narrowing down the search space by exploiting the feasible solution areas. Hence, the proposed algorithm is able to achieve a near-optimal set of parameters at a fast convergence speed. The proposed algorithm was tested and evaluated based on two aspartate pathways that were obtained from the BioModels Database. The results show that the proposed algorithm outperformed other standard optimization algorithms in terms of accuracy and near-optimal kinetic parameter estimation. Nevertheless, the proposed algorithm is only expected to work well in

  12. Metabolic PathFinding: inferring relevant pathways in biochemical networks.

    PubMed

    Croes, Didier; Couche, Fabian; Wodak, Shoshana J; van Helden, Jacques

    2005-07-01

    Our knowledge of metabolism can be represented as a network comprising several thousands of nodes (compounds and reactions). Several groups applied graph theory to analyse the topological properties of this network and to infer metabolic pathways by path finding. This is, however, not straightforward, with a major problem caused by traversing irrelevant shortcuts through highly connected nodes, which correspond to pool metabolites and co-factors (e.g. H2O, NADP and H+). In this study, we present a web server implementing two simple approaches, which circumvent this problem, thereby improving the relevance of the inferred pathways. In the simplest approach, the shortest path is computed, while filtering out the selection of highly connected compounds. In the second approach, the shortest path is computed on the weighted metabolic graph where each compound is assigned a weight equal to its connectivity in the network. This approach significantly increases the accuracy of the inferred pathways, enabling the correct inference of relatively long pathways (e.g. with as many as eight intermediate reactions). Available options include the calculation of the k-shortest paths between two specified seed nodes (either compounds or reactions). Multiple requests can be submitted in a queue. Results are returned by email, in textual as well as graphical formats (available in http://www.scmbb.ulb.ac.be/pathfinding/).

  13. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer’s disease

    PubMed Central

    Li, Xinzhong; Long, Jintao; He, Taigang; Belshaw, Robert; Scott, James

    2015-01-01

    Previous studies have evaluated gene expression in Alzheimer’s disease (AD) brains to identify mechanistic processes, but have been limited by the size of the datasets studied. Here we have implemented a novel meta-analysis approach to identify differentially expressed genes (DEGs) in published datasets comprising 450 late onset AD (LOAD) brains and 212 controls. We found 3124 DEGs, many of which were highly correlated with Braak stage and cerebral atrophy. Pathway Analysis revealed the most perturbed pathways to be (a) nitric oxide and reactive oxygen species in macrophages (NOROS), (b) NFkB and (c) mitochondrial dysfunction. NOROS was also up-regulated, and mitochondrial dysfunction down-regulated, in healthy ageing subjects. Upstream regulator analysis predicted the TLR4 ligands, STAT3 and NFKBIA, for activated pathways and RICTOR for mitochondrial genes. Protein-protein interaction network analysis emphasised the role of NFKB; identified a key interaction of CLU with complement; and linked TYROBP, TREM2 and DOK3 to modulation of LPS signalling through TLR4 and to phosphatidylinositol metabolism. We suggest that NEUROD6, ZCCHC17, PPEF1 and MANBAL are potentially implicated in LOAD, with predicted links to calcium signalling and protein mannosylation. Our study demonstrates a highly injurious combination of TLR4-mediated NFKB signalling, NOROS inflammatory pathway activation, and mitochondrial dysfunction in LOAD. PMID:26202100

  14. Characterization of the biochemical-pathway of uranium (VI) reduction in facultative anaerobic bacteria.

    PubMed

    Mtimunye, Phalazane J; Chirwa, Evans M N

    2014-10-01

    Cultures of U(VI) reducing bacteria sourced from abandoned uranium mine tailing dam were evaluated for their ability to reduce U(VI) to U(IV). The species in the cultures reduced U(VI) in solutions with initial U(VI) concentration up to 400mgL(-)(1) under a near neutral pH of 6.5. The electron flow pathway and fate of reduced species was also analysed in the individual species in order to evaluate the potential for control and optimisation of the reduction potential at the biochemical level. The results showed that U(VI) reduction in live cells was completely blocked by the NADH-dehydrogenase inhibitor, rotenone (C23H22O6), and thioredoxin inhibitor, cadmium chloride (CdCl2), showing that U(VI) reduction involves the electron flow through NADH-dehydrogenase, a primary electron donor to the electron transport respiratory (ETR) system. Mass balance analysis of uranium species aided by visual and electron microscopy suggest that most U(VI) reduction occurred on the cell surface of the isolated species. This finding indicates the possibility of easy uranium recovery for beneficial use through biological remediation. Should the U(VI) be reduced inside the cell, recovery would require complete disruption of the cells and therefore would be difficult. The study contributes new knowledge on the underlying mechanisms in the U(VI) reduction in facultative anaerobes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Biochemical Basis of Sestrin Physiological Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Allison; Cho, Chun-Seok; Namkoong, Sim

    Excessive accumulation of reactive oxygen species (ROS) and chronic activation of mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) are well-characterized promoters of aging and age-associated degenerative pathologies. Sestrins, a family of highly conserved stress-inducible proteins, are important negative regulators of both ROS and mTORC1 signaling pathways; however, the mechanistic basis of how Sestrins suppress these pathways remains elusive. In the past couple of years, breakthrough discoveries about Sestrin signaling and its molecular nature have markedly increased our biochemical understanding of Sestrin function. These discoveries have also uncovered new potential therapeutic strategies that may eventually enable us to attenuate agingmore » and age-associated diseases.« less

  16. Identifying Differences Between Biochemical Failure and Cure: Incidence Rates and Predictors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vicini, Frank A., E-mail: fvicini@beaumont.edu; Shah, Chirag; Kestin, Larry

    2011-11-15

    Background: Patients treated with radiation therapy (RT) for prostate cancer were evaluated to estimate the length of time required to document biochemical cure (BC) after treatment and the variables associated with long-term treatment efficacy. Patients and Methods: 2,100 patients received RT alone for localized prostate carcinoma (external-beam RT, n = 1,504; brachytherapy alone, n = 241; or brachytherapy + pelvic radiation, n = 355). The median external-beam dose was 68.4 Gy, and the median follow-up time was 8.6 years. Biochemical failure (BF) was defined according to the Phoenix definition. Results: Biochemical failure was experienced by 685 patients (32.6%). The medianmore » times to BF for low-, intermediate-, and high-risk groups were 6.0, 5.6, and 4.5 years respectively (p < 0.001). The average annual incidence rates of BF for years 1-5, 5-10,11-15, and 16-20 in low-risk patients were 2.0%, 2.0%, 0.3%, and 0.06% (p < 0.001); for intermediate-risk patients, 4%, 3%, 0.3%, and 0% (p < 0.001); and for high-risk patients, 10.0%, 5.0%, 0.3%, and 0.3% (p < 0.001). After 5 years of treatment, 36.9% of all patients experienced BF. The percentage of total failures occurring during years 1-5, 5-10, 11-15, and 16-20 were 48.7%, 43.5%, 6.5%, and 1.3% for low-risk patients; 64.0%, 32.2%, 3.8%, and 0% for intermediate-risk patients; and 71.9%, 25.9%, 1.1%, and 1.1% for high-risk patients, respectively. Increasing time to nadir was associated with increased time to BF. On multivariate analysis, factors significantly associated with 10-year BC included prostate-specific antigen nadir and time to nadir. Conclusions: The incidence rates for BF did not plateau until later than 10 years after treatment, suggesting that extended follow-up time is required to monitor patients after treatment. Prostate-specific antigen nadir and time to nadir have the strongest association with long-term BC.« less

  17. Novel Myopia Genes and Pathways Identified From Syndromic Forms of Myopia

    PubMed Central

    Loughman, James; Wildsoet, Christine F.; Williams, Cathy; Guggenheim, Jeremy A.

    2018-01-01

    Purpose To test the hypothesis that genes known to cause clinical syndromes featuring myopia also harbor polymorphisms contributing to nonsyndromic refractive errors. Methods Clinical phenotypes and syndromes that have refractive errors as a recognized feature were identified using the Online Mendelian Inheritance in Man (OMIM) database. One hundred fifty-four unique causative genes were identified, of which 119 were specifically linked with myopia and 114 represented syndromic myopia (i.e., myopia and at least one other clinical feature). Myopia was the only refractive error listed for 98 genes and hyperopia and the only refractive error noted for 28 genes, with the remaining 28 genes linked to phenotypes with multiple forms of refractive error. Pathway analysis was carried out to find biological processes overrepresented within these sets of genes. Genetic variants located within 50 kb of the 119 myopia-related genes were evaluated for involvement in refractive error by analysis of summary statistics from genome-wide association studies (GWAS) conducted by the CREAM Consortium and 23andMe, using both single-marker and gene-based tests. Results Pathway analysis identified several biological processes already implicated in refractive error development through prior GWAS analyses and animal studies, including extracellular matrix remodeling, focal adhesion, and axon guidance, supporting the research hypothesis. Novel pathways also implicated in myopia development included mannosylation, glycosylation, lens development, gliogenesis, and Schwann cell differentiation. Hyperopia was found to be linked to a different pattern of biological processes, mostly related to organogenesis. Comparison with GWAS findings further confirmed that syndromic myopia genes were enriched for genetic variants that influence refractive errors in the general population. Gene-based analyses implicated 21 novel candidate myopia genes (ADAMTS18, ADAMTS2, ADAMTSL4, AGK, ALDH18A1, ASXL1, COL4A1

  18. A new screening pathway for identifying asymptomatic patients using dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Hayashi, Tatsuro; Matsumoto, Takuya; Sawagashira, Tsuyoshi; Tagami, Motoki; Katsumata, Akitoshi; Hayashi, Yoshinori; Muramatsu, Chisako; Zhou, Xiangrong; Iida, Yukihiro; Matsuoka, Masato; Katagi, Kiyoji; Fujita, Hiroshi

    2012-03-01

    To identify asymptomatic patients is the challenging task and the essential first step in diagnosis. Findings of dental panoramic radiographs include not only dental conditions but also radiographic signs that are suggestive of possible systemic diseases such as osteoporosis, arteriosclerosis, and maxillary sinusitis. Detection of such signs on panoramic radiographs has a potential to provide supplemental benefits for patients. However, it is not easy for general dental practitioners to pay careful attention to such signs. We addressed the development of a computer-aided detection (CAD) system that detects radiographic signs of pathology on panoramic images, and the design of the framework of new screening pathway by cooperation of dentists and our CAD system. The performance evaluation of our CAD system showed the sensitivity and specificity in the identification of osteoporotic patients were 92.6 % and 100 %, respectively, and those of the maxillary sinus abnormality were 89.6 % and 73.6 %, respectively. The detection rate of carotid artery calcifications that suggests the need for further medical evaluation was approximately 93.6 % with 4.4 false-positives per image. To validate the utility of the new screening pathway, preliminary clinical trials by using our CAD system were conducted. To date, 223 panoramic images were processed and 4 asymptomatic patients with suspected osteoporosis, 7 asymptomatic patients with suspected calcifications, and 40 asymptomatic patients with suspected maxillary sinusitis were detected in our initial trial. It was suggested that our new screening pathway could be useful to identify asymptomatic patients with systemic diseases.

  19. Metabolomic strategies to map functions of metabolic pathways

    PubMed Central

    Mulvihill, Melinda M.

    2014-01-01

    Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. PMID:24918200

  20. Synergizing 13C Metabolic Flux Analysis and Metabolic Engineering for Biochemical Production.

    PubMed

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    Metabolic engineering of industrial microorganisms to produce chemicals, fuels, and drugs has attracted increasing interest as it provides an environment-friendly and renewable route that does not depend on depleting petroleum sources. However, the microbial metabolism is so complex that metabolic engineering efforts often have difficulty in achieving a satisfactory yield, titer, or productivity of the target chemical. To overcome this challenge, 13 C Metabolic Flux Analysis ( 13 C-MFA) has been developed to investigate rigorously the cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, 13 C-MFA has been widely used in academic labs and the biotechnology industry to pinpoint the key issues related to microbial-based chemical production and to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this chapter we introduce the basics of 13 C-MFA and illustrate how 13 C-MFA has been applied to synergize with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production.

  1. Walking the C4 pathway: past, present, and future.

    PubMed

    Furbank, Robert T

    2017-01-01

    The year 2016 marks 50 years since the publication of the seminal paper by Hatch and Slack describing the biochemical pathway we now know as C 4 photosynthesis. This review provides insight into the initial discovery of this pathway, the clues which led Hatch and Slack and others to these definitive experiments, some of the intrigue which surrounds the international activities which led up to the discovery, and personal insights into the future of this research field. While the biochemical understanding of the basic pathways came quickly, the role of the bundle sheath intermediate CO 2 pool was not understood for a number of years, and the nature of C 4 as a biochemical CO 2 pump then linked the unique Kranz anatomy of C 4 plants to their biochemical specialization. Decades of "grind and find biochemistry" and leaf physiology fleshed out the regulation of the pathway and the differences in physiological response to the environment between C 3 and C 4 plants. The more recent advent of plant transformation then high-throughput RNA and DNA sequencing and synthetic biology has allowed us both to carry out biochemical experiments and test hypotheses in planta and to better understand the evolution-driven molecular and genetic changes which occurred in the genomes of plants in the transition from C 3 to C 4 Now we are using this knowledge in attempts to engineer C 4 rice and improve the C 4 engine itself for enhanced food security and to provide novel biofuel feedstocks. The next 50 years of photosynthesis will no doubt be challenging, stimulating, and a drawcard for the best young minds in plant biology. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Walking the C4 pathway: past, present, and future.

    PubMed

    Furbank, Robert T

    2016-07-01

    The year 2016 marks 50 years since the publication of the seminal paper by Hatch and Slack describing the biochemical pathway we now know as C4 photosynthesis. This review provides insight into the initial discovery of this pathway, the clues which led Hatch and Slack and others to these definitive experiments, some of the intrigue which surrounds the international activities which led up to the discovery, and personal insights into the future of this research field. While the biochemical understanding of the basic pathways came quickly, the role of the bundle sheath intermediate CO2 pool was not understood for a number of years, and the nature of C4 as a biochemical CO2 pump then linked the unique Kranz anatomy of C4 plants to their biochemical specialization. Decades of "grind and find biochemistry" and leaf physiology fleshed out the regulation of the pathway and the differences in physiological response to the environment between C3 and C4 plants. The more recent advent of plant transformation then high-throughput RNA and DNA sequencing and synthetic biology has allowed us both to carry out biochemical experiments and test hypotheses in planta and to better understand the evolution-driven molecular and genetic changes which occurred in the genomes of plants in the transition from C3 to C4 Now we are using this knowledge in attempts to engineer C4 rice and improve the C4 engine itself for enhanced food security and to provide novel biofuel feedstocks. The next 50 years of photosynthesis will no doubt be challenging, stimulating, and a drawcard for the best young minds in plant biology. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Multidimensional biochemical information processing of dynamical patterns

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  4. Multidimensional biochemical information processing of dynamical patterns.

    PubMed

    Hasegawa, Yoshihiko

    2018-02-01

    Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.

  5. Genomes of rumen bacteria encode atypical pathways for fermenting hexoses to short-chain fatty acids.

    PubMed

    Hackmann, Timothy J; Ngugi, David Kamanda; Firkins, Jeffrey L; Tao, Junyi

    2017-11-01

    Bacteria have been thought to follow only a few well-recognized biochemical pathways when fermenting glucose or other hexoses. These pathways have been chiseled in the stone of textbooks for decades, with most sources rendering them as they appear in the classic 1986 text by Gottschalk. Still, it is unclear how broadly these pathways apply, given that they were established and delineated biochemically with only a few model organisms. Here, we show that well-recognized pathways often cannot explain fermentation products formed by bacteria. In the most extensive analysis of its kind, we reconstructed pathways for glucose fermentation from genomes of 48 species and subspecies of bacteria from one environment (the rumen). In total, 44% of these bacteria had atypical pathways, including several that are completely unprecedented for bacteria or any organism. In detail, 8% of bacteria had an atypical pathway for acetate formation; 21% of bacteria had an atypical pathway for propionate or succinate formation; 6% of bacteria had an atypical pathway for butyrate formation and 33% of bacteria had an atypical or incomplete Embden-Meyerhof-Parnas pathway. This study shows that reconstruction of metabolic pathways - a common goal of omics studies - could be incorrect if well-recognized pathways are used for reference. Furthermore, it calls for renewed efforts to delineate fermentation pathways biochemically. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Transcriptome profiling identified differentially expressed genes and pathways associated with tamoxifen resistance in human breast cancer

    PubMed Central

    Men, Xin; Ma, Jun; Wu, Tong; Pu, Junyi; Wen, Shaojia; Shen, Jianfeng; Wang, Xun; Wang, Yamin; Chen, Chao; Dai, Penggao

    2018-01-01

    Tamoxifen (TAM) resistance is an important clinical problem in the treatment of breast cancer. In order to identify the mechanism of TAM resistance for estrogen receptor (ER)-positive breast cancer, we screened the transcriptome using RNA-seq and compared the gene expression profiles between the MCF-7 mamma carcinoma cell line and the TAM-resistant cell line TAMR/MCF-7, 52 significant differential expression genes (DEGs) were identified including SLIT2, ROBO, LHX, KLF, VEGFC, BAMBI, LAMA1, FLT4, PNMT, DHRS2, MAOA and ALDH. The DEGs were annotated in the GO, COG and KEGG databases. Annotation of the function of the DEGs in the KEGG database revealed the top three pathways enriched with the most DEGs, including pathways in cancer, the PI3K-AKT pathway, and focal adhesion. Then we compared the gene expression profiles between the Clinical progressive disease (PD) and the complete response (CR) from the cancer genome altas (TCGA). 10 common DEGs were identified through combining the clinical and cellular analysis results. Protein-protein interaction network was applied to analyze the association of ER signal pathway with the 10 DEGs. 3 significant genes (GFRA3, NPY1R and PTPRN2) were closely related to ER related pathway. These significant DEGs regulated many biological activities such as cell proliferation and survival, motility and migration, and tumor cell invasion. The interactions between these DEGs and drug resistance phenomenon need to be further elucidated at a functional level in further studies. Based on our findings, we believed that these DEGs could be therapeutic targets, which can be explored to develop new treatment options. PMID:29423105

  7. Hypomagnesemia predicts postoperative biochemical hypocalcemia after thyroidectomy.

    PubMed

    Luo, Han; Yang, Hongliu; Zhao, Wanjun; Wei, Tao; Su, Anping; Wang, Bin; Zhu, Jingqiang

    2017-05-25

    To investigate the role of magnesium in biochemical and symptomatic hypocalcemia, a retrospective study was conducted. Less-than-total thyroidectomy patients were excluded from the final analysis. Identified the risk factors of biochemical and symptomatic hypocalcemia, and investigated the correlation by logistic regression and correlation test respectively. A total of 304 patients were included in the final analysis. General incidence of hypomagnesemia was 23.36%. Logistic regression showed that gender (female) (OR = 2.238, p = 0.015) and postoperative hypomagnesemia (OR = 2.010, p = 0.017) were independent risk factors for biochemical hypocalcemia. Both Pearson and partial correlation tests indicated there was indeed significant relation between calcium and magnesium. However, relative decreasing of iPTH (>70%) (6.691, p < 0.001) and hypocalcemia (2.222, p = 0.046) were identified as risk factors of symptomatic hypocalcemia. The difference remained significant even in normoparathyroidism patients. Postoperative hypomagnesemia was independent risk factor of biochemical hypocalcemia. Relative decline of iPTH was predominating in predicting symptomatic hypocalcemia.

  8. A method for integrating and ranking the evidence for biochemical pathways by mining reactions from text

    PubMed Central

    Miwa, Makoto; Ohta, Tomoko; Rak, Rafal; Rowley, Andrew; Kell, Douglas B.; Pyysalo, Sampo; Ananiadou, Sophia

    2013-01-01

    Motivation: To create, verify and maintain pathway models, curators must discover and assess knowledge distributed over the vast body of biological literature. Methods supporting these tasks must understand both the pathway model representations and the natural language in the literature. These methods should identify and order documents by relevance to any given pathway reaction. No existing system has addressed all aspects of this challenge. Method: We present novel methods for associating pathway model reactions with relevant publications. Our approach extracts the reactions directly from the models and then turns them into queries for three text mining-based MEDLINE literature search systems. These queries are executed, and the resulting documents are combined and ranked according to their relevance to the reactions of interest. We manually annotate document-reaction pairs with the relevance of the document to the reaction and use this annotation to study several ranking methods, using various heuristic and machine-learning approaches. Results: Our evaluation shows that the annotated document-reaction pairs can be used to create a rule-based document ranking system, and that machine learning can be used to rank documents by their relevance to pathway reactions. We find that a Support Vector Machine-based system outperforms several baselines and matches the performance of the rule-based system. The success of the query extraction and ranking methods are used to update our existing pathway search system, PathText. Availability: An online demonstration of PathText 2 and the annotated corpus are available for research purposes at http://www.nactem.ac.uk/pathtext2/. Contact: makoto.miwa@manchester.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23813008

  9. Integrated metabolomics and proteomics highlight altered nicotinamide and polyamine pathways in lung adenocarcinoma

    PubMed Central

    Fahrmann, Johannes F.; Grapov, Dmitry; Wanichthanarak, Kwanjeera; DeFelice, Brian C.; Salemi, Michelle R.; Rom, William N.; Gandara, David R.; Phinney, Brett S.; Fiehn, Oliver; Pass, Harvey

    2017-01-01

    Abstract Lung cancer is the leading cause of cancer mortality in the United States with non-small cell lung cancer adenocarcinoma being the most common histological type. Early perturbations in cellular metabolism are a hallmark of cancer, but the extent of these changes in early stage lung adenocarcinoma remains largely unknown. In the current study, an integrated metabolomics and proteomics approach was utilized to characterize the biochemical and molecular alterations between malignant and matched control tissue from 27 subjects diagnosed with early stage lung adenocarcinoma. Differential analysis identified 71 metabolites and 1102 proteins that delineated tumor from control tissue. Integrated results indicated four major metabolic changes in early stage adenocarcinoma (1): increased glycosylation and glutaminolysis (2); elevated Nrf2 activation (3); increase in nicotinic and nicotinamide salvaging pathways and (4) elevated polyamine biosynthesis linked to differential regulation of the s-adenosylmethionine/nicotinamide methyl-donor pathway. Genomic data from publicly available databases were included to strengthen proteomic findings. Our findings provide insight into the biochemical and molecular biological reprogramming that may accompany early stage lung tumorigenesis and highlight potential therapeutic targets. PMID:28049629

  10. Metabolomic strategies to map functions of metabolic pathways.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2014-08-01

    Genome sequencing efforts have revealed a strikingly large number of unannotated and uncharacterized genes that fall into metabolic enzymes classes, likely indicating that our current knowledge of biochemical pathways in normal physiology, let alone in disease states, remains largely incomplete. This realization presents a daunting challenge for post-genomic-era scientists in deciphering the biochemical and (patho)physiological roles of these enzymes and their metabolites and metabolic networks. This is further complicated by many recent studies showing a rewiring of normal metabolic networks in disease states to give rise to unique pathophysiological functions of enzymes, metabolites, and metabolic pathways. This review focuses on recent discoveries made using metabolic mapping technologies to uncover novel pathways and metabolite-mediated posttranslational modifications and epigenetic alterations and their impact on physiology and disease. Copyright © 2014 the American Physiological Society.

  11. FamNet: A Framework to Identify Multiplied Modules Driving Pathway Expansion in Plants1

    PubMed Central

    Tohge, Takayuki; Klie, Sebastian; Fernie, Alisdair R.

    2016-01-01

    Gene duplications generate new genes that can acquire similar but often diversified functions. Recent studies of gene coexpression networks have indicated that, not only genes, but also pathways can be multiplied and diversified to perform related functions in different parts of an organism. Identification of such diversified pathways, or modules, is needed to expand our knowledge of biological processes in plants and to understand how biological functions evolve. However, systematic explorations of modules remain scarce, and no user-friendly platform to identify them exists. We have established a statistical framework to identify modules and show that approximately one-third of the genes of a plant’s genome participate in hundreds of multiplied modules. Using this framework as a basis, we implemented a platform that can explore and visualize multiplied modules in coexpression networks of eight plant species. To validate the usefulness of the platform, we identified and functionally characterized pollen- and root-specific cell wall modules that multiplied to confer tip growth in pollen tubes and root hairs, respectively. Furthermore, we identified multiplied modules involved in secondary metabolite synthesis and corroborated them by metabolite profiling of tobacco (Nicotiana tabacum) tissues. The interactive platform, referred to as FamNet, is available at http://www.gene2function.de/famnet.html. PMID:26754669

  12. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in Flavonoid Biosynthetic Pathway

    PubMed Central

    Sun, Wei; Meng, Xiangyu; Liang, Lingjie; Jiang, Wangshu; Huang, Yafei; He, Jing; Hu, Haiyan; Almqvist, Jonas; Gao, Xiang; Wang, Li

    2015-01-01

    Chalcone synthase (CHS) catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1) encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants. PMID:25742495

  13. Molecular and Biochemical Analysis of Chalcone Synthase from Freesia hybrid in flavonoid biosynthetic pathway.

    PubMed

    Sun, Wei; Meng, Xiangyu; Liang, Lingjie; Jiang, Wangshu; Huang, Yafei; He, Jing; Hu, Haiyan; Almqvist, Jonas; Gao, Xiang; Wang, Li

    2015-01-01

    Chalcone synthase (CHS) catalyzes the first committed step in the flavonoid biosynthetic pathway. In this study, the cDNA (FhCHS1) encoding CHS from Freesia hybrida was successfully isolated and analyzed. Multiple sequence alignments showed that both the conserved CHS active site residues and CHS signature sequence were found in the deduced amino acid sequence of FhCHS1. Meanwhile, crystallographic analysis revealed that protein structure of FhCHS1 is highly similar to that of alfalfa CHS2, and the biochemical analysis results indicated that it has an enzymatic role in naringenin biosynthesis. Moreover, quantitative real-time PCR was performed to detect the transcript levels of FhCHS1 in flowers and different tissues, and patterns of FhCHS1 expression in flowers showed significant correlation to the accumulation patterns of anthocyanin during flower development. To further characterize the functionality of FhCHS1, its ectopic expression in Arabidopsis thaliana tt4 mutants and Petunia hybrida was performed. The results showed that overexpression of FhCHS1 in tt4 mutants fully restored the pigmentation phenotype of the seed coats, cotyledons and hypocotyls, while transgenic petunia expressing FhCHS1 showed flower color alteration from white to pink. In summary, these results suggest that FhCHS1 plays an essential role in the biosynthesis of flavonoid in Freesia hybrida and may be used to modify the components of flavonoids in other plants.

  14. A LATS biosensor screen identifies VEGFR as a regulator of the Hippo pathway in angiogenesis.

    PubMed

    Azad, T; Janse van Rensburg, H J; Lightbody, E D; Neveu, B; Champagne, A; Ghaffari, A; Kay, V R; Hao, Y; Shen, H; Yeung, B; Croy, B A; Guan, K L; Pouliot, F; Zhang, J; Nicol, C J B; Yang, X

    2018-03-13

    The Hippo pathway is a central regulator of tissue development and homeostasis, and has been reported to have a role during vascular development. Here we develop a bioluminescence-based biosensor that monitors the activity of the Hippo core component LATS kinase. Using this biosensor and a library of small molecule kinase inhibitors, we perform a screen for kinases modulating LATS activity and identify VEGFR as an upstream regulator of the Hippo pathway. We find that VEGFR activation by VEGF triggers PI3K/MAPK signaling, which subsequently inhibits LATS and activates the Hippo effectors YAP and TAZ. We further show that the Hippo pathway is a critical mediator of VEGF-induced angiogenesis and tumor vasculogenic mimicry. Thus, our work offers a biosensor tool for the study of the Hippo pathway and suggests a role for Hippo signaling in regulating blood vessel formation in physiological and pathological settings.

  15. Pathway Design, Engineering, and Optimization.

    PubMed

    Garcia-Ruiz, Eva; HamediRad, Mohammad; Zhao, Huimin

    The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.

  16. A Powerful Procedure for Pathway-Based Meta-analysis Using Summary Statistics Identifies 43 Pathways Associated with Type II Diabetes in European Populations

    PubMed Central

    Zhang, Han; Wheeler, William; Hyland, Paula L.; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai

    2016-01-01

    Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs. PMID:27362418

  17. A Powerful Procedure for Pathway-Based Meta-analysis Using Summary Statistics Identifies 43 Pathways Associated with Type II Diabetes in European Populations.

    PubMed

    Zhang, Han; Wheeler, William; Hyland, Paula L; Yang, Yifan; Shi, Jianxin; Chatterjee, Nilanjan; Yu, Kai

    2016-06-01

    Meta-analysis of multiple genome-wide association studies (GWAS) has become an effective approach for detecting single nucleotide polymorphism (SNP) associations with complex traits. However, it is difficult to integrate the readily accessible SNP-level summary statistics from a meta-analysis into more powerful multi-marker testing procedures, which generally require individual-level genetic data. We developed a general procedure called Summary based Adaptive Rank Truncated Product (sARTP) for conducting gene and pathway meta-analysis that uses only SNP-level summary statistics in combination with genotype correlation estimated from a panel of individual-level genetic data. We demonstrated the validity and power advantage of sARTP through empirical and simulated data. We conducted a comprehensive pathway-based meta-analysis with sARTP on type 2 diabetes (T2D) by integrating SNP-level summary statistics from two large studies consisting of 19,809 T2D cases and 111,181 controls with European ancestry. Among 4,713 candidate pathways from which genes in neighborhoods of 170 GWAS established T2D loci were excluded, we detected 43 T2D globally significant pathways (with Bonferroni corrected p-values < 0.05), which included the insulin signaling pathway and T2D pathway defined by KEGG, as well as the pathways defined according to specific gene expression patterns on pancreatic adenocarcinoma, hepatocellular carcinoma, and bladder carcinoma. Using summary data from 8 eastern Asian T2D GWAS with 6,952 cases and 11,865 controls, we showed 7 out of the 43 pathways identified in European populations remained to be significant in eastern Asians at the false discovery rate of 0.1. We created an R package and a web-based tool for sARTP with the capability to analyze pathways with thousands of genes and tens of thousands of SNPs.

  18. Cartography of Pathway Signal Perturbations Identifies Distinct Molecular Pathomechanisms in Malignant and Chronic Lung Diseases

    PubMed Central

    Arakelyan, Arsen; Nersisyan, Lilit; Petrek, Martin; Löffler-Wirth, Henry; Binder, Hans

    2016-01-01

    Lung diseases are described by a wide variety of developmental mechanisms and clinical manifestations. Accurate classification and diagnosis of lung diseases are the bases for development of effective treatments. While extensive studies are conducted toward characterization of various lung diseases at molecular level, no systematic approach has been developed so far. Here we have applied a methodology for pathway-centered mining of high throughput gene expression data to describe a wide range of lung diseases in the light of shared and specific pathway activity profiles. We have applied an algorithm combining a Pathway Signal Flow (PSF) algorithm for estimation of pathway activity deregulation states in lung diseases and malignancies, and a Self Organizing Maps algorithm for classification and clustering of the pathway activity profiles. The analysis results allowed clearly distinguish between cancer and non-cancer lung diseases. Lung cancers were characterized by pathways implicated in cell proliferation, metabolism, while non-malignant lung diseases were characterized by deregulations in pathways involved in immune/inflammatory response and fibrotic tissue remodeling. In contrast to lung malignancies, chronic lung diseases had relatively heterogeneous pathway deregulation profiles. We identified three groups of interstitial lung diseases and showed that the development of characteristic pathological processes, such as fibrosis, can be initiated by deregulations in different signaling pathways. In conclusion, this paper describes the pathobiology of lung diseases from systems viewpoint using pathway centered high-dimensional data mining approach. Our results contribute largely to current understanding of pathological events in lung cancers and non-malignant lung diseases. Moreover, this paper provides new insight into molecular mechanisms of a number of interstitial lung diseases that have been studied to a lesser extent. PMID:27200087

  19. Biochemical phenotypes to discriminate microbial subpopulations and improve outbreak detection.

    PubMed

    Galar, Alicia; Kulldorff, Martin; Rudnick, Wallis; O'Brien, Thomas F; Stelling, John

    2013-01-01

    Clinical microbiology laboratories worldwide constitute an invaluable resource for monitoring emerging threats and the spread of antimicrobial resistance. We studied the growing number of biochemical tests routinely performed on clinical isolates to explore their value as epidemiological markers. Microbiology laboratory results from January 2009 through December 2011 from a 793-bed hospital stored in WHONET were examined. Variables included patient location, collection date, organism, and 47 biochemical and 17 antimicrobial susceptibility test results reported by Vitek 2. To identify biochemical tests that were particularly valuable (stable with repeat testing, but good variability across the species) or problematic (inconsistent results with repeat testing), three types of variance analyses were performed on isolates of K. pneumonia: descriptive analysis of discordant biochemical results in same-day isolates, an average within-patient variance index, and generalized linear mixed model variance component analysis. 4,200 isolates of K. pneumoniae were identified from 2,485 patients, 32% of whom had multiple isolates. The first two variance analyses highlighted SUCT, TyrA, GlyA, and GGT as "nuisance" biochemicals for which discordant within-patient test results impacted a high proportion of patient results, while dTAG had relatively good within-patient stability with good heterogeneity across the species. Variance component analyses confirmed the relative stability of dTAG, and identified additional biochemicals such as PHOS with a large between patient to within patient variance ratio. A reduced subset of biochemicals improved the robustness of strain definition for carbapenem-resistant K. pneumoniae. Surveillance analyses suggest that the reduced biochemical profile could improve the timeliness and specificity of outbreak detection algorithms. The statistical approaches explored can improve the robust recognition of microbial subpopulations with routinely available

  20. Biochemical Phenotypes to Discriminate Microbial Subpopulations and Improve Outbreak Detection

    PubMed Central

    Galar, Alicia; Kulldorff, Martin; Rudnick, Wallis; O'Brien, Thomas F.; Stelling, John

    2013-01-01

    Background Clinical microbiology laboratories worldwide constitute an invaluable resource for monitoring emerging threats and the spread of antimicrobial resistance. We studied the growing number of biochemical tests routinely performed on clinical isolates to explore their value as epidemiological markers. Methodology/Principal Findings Microbiology laboratory results from January 2009 through December 2011 from a 793-bed hospital stored in WHONET were examined. Variables included patient location, collection date, organism, and 47 biochemical and 17 antimicrobial susceptibility test results reported by Vitek 2. To identify biochemical tests that were particularly valuable (stable with repeat testing, but good variability across the species) or problematic (inconsistent results with repeat testing), three types of variance analyses were performed on isolates of K. pneumonia: descriptive analysis of discordant biochemical results in same-day isolates, an average within-patient variance index, and generalized linear mixed model variance component analysis. Results: 4,200 isolates of K. pneumoniae were identified from 2,485 patients, 32% of whom had multiple isolates. The first two variance analyses highlighted SUCT, TyrA, GlyA, and GGT as “nuisance” biochemicals for which discordant within-patient test results impacted a high proportion of patient results, while dTAG had relatively good within-patient stability with good heterogeneity across the species. Variance component analyses confirmed the relative stability of dTAG, and identified additional biochemicals such as PHOS with a large between patient to within patient variance ratio. A reduced subset of biochemicals improved the robustness of strain definition for carbapenem-resistant K. pneumoniae. Surveillance analyses suggest that the reduced biochemical profile could improve the timeliness and specificity of outbreak detection algorithms. Conclusions The statistical approaches explored can improve the

  1. Identifying Pathways of Teachers' PCK Development

    ERIC Educational Resources Information Center

    Wongsopawiro, Dirk S.; Zwart, Rosanne C.; van Driel, Jan H.

    2017-01-01

    This paper describes a method of analysing teacher growth in the context of science education. It focuses on the identification of pathways in the development of secondary school teachers' pedagogical content knowledge (PCK) by the use of the interconnected model of teachers' professional growth (IMTPG).The teachers (n = 12) participated in a…

  2. Analyzing the genes related to Alzheimer's disease via a network and pathway-based approach.

    PubMed

    Hu, Yan-Shi; Xin, Juncai; Hu, Ying; Zhang, Lei; Wang, Ju

    2017-04-27

    Our understanding of the molecular mechanisms underlying Alzheimer's disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes. Pathway crosstalk analysis then revealed that the significantly enriched pathways could be grouped into three interlinked modules-neuronal and metabolic module, cell growth/survival and neuroendocrine pathway module, and immune response-related module-indicating an AD-specific immune-endocrine-neuronal regulatory network. Furthermore, an AD-specific protein network was inferred and novel genes potentially associated with AD were identified. By

  3. Molecular and biochemical characterization of tomato farnesyl-protein transferase.

    PubMed

    Schmitt, D; Callan, K; Gruissem, W

    1996-10-01

    The prenylation of membrane-associated proteins involved in the regulation of eukaryotic cell growth and signal transduction is critically important for their subcellular localization and biological activity. In contrast to mammalian cells and yeast, however, the function of protein prenylation in plants is not well understood and only a few prenylated proteins have been identified. We partially purified and characterized farnesyl-protein transferase from tomato (Lycopersicon esculentum, LeFTase) to analyze its biochemical and molecular properties. Using Ras- and G gamma-specific peptide substrates and competition assays we showed that tomato protein extracts have both farnesyl-protein transferase and geranylgeranyl-protein transferase 1 activities. Compared with the heterologous synthetic peptide substrates, the plant-specific CaaX sequence of the ANJ1 protein is a less efficient substrate for LeFTase in vitro. LeFTase activity profiles and LeFTase beta-subunit protein (LeFTB) levels differ significantly in various tissues and are regulated during fruit development. Partially purified LeFTase requires Zn2+ and Mg2+ for enzymatic activity and has an apparent molecular mass of 100 kD Immunoprecipitation experiments using anti-alpha LeFTB antibodies confirmed that LeFTB is a component of LeFTase but not of tomato geranylgeranyl-protein transferase 1. Based on their conserved bio-chemical activities, we expect that prenyltransferases are likely integrated with the sterol biosynthesis pathway in the control of plant cell growth.

  4. Suppressors of systemin signaling identify genes in the tomato wound response pathway.

    PubMed Central

    Howe, G A; Ryan, C A

    1999-01-01

    In tomato plants, systemic induction of defense genes in response to herbivory or mechanical wounding is regulated by an 18-amino-acid peptide signal called systemin. Transgenic plants that overexpress prosystemin, the systemin precursor, from a 35S::prosystemin (35S::prosys) transgene exhibit constitutive expression of wound-inducible defense proteins including proteinase inhibitors and polyphenol oxidase. To study further the role of (pro)systemin in the wound response pathway, we isolated and characterized mutations that suppress 35S::prosys-mediated phenotypes. Ten recessive, extragenic suppressors were identified. Two of these define new alleles of def-1, a previously identified mutation that blocks both wound- and systemin-induced gene expression and renders plants susceptible to herbivory. The remaining mutants defined four loci designated Spr-1, Spr-2, Spr-3, and Spr-4 (for Suppressed in 35S::prosystemin-mediated responses). spr-3 and spr-4 mutants were not significantly affected in their response to either systemin or mechanical wounding. In contrast, spr-1 and spr-2 plants lacked systemic wound responses and were insensitive to systemin. These results confirm the function of (pro)systemin in the transduction of systemic wound signals and further establish that wounding, systemin, and 35S::prosys induce defensive gene expression through a common signaling pathway defined by at least three genes (Def-1, Spr-1, and Spr-2). PMID:10545469

  5. Biochemical Characterization of Prion Strains in Bank Voles

    PubMed Central

    Pirisinu, Laura; Marcon, Stefano; Di Bari, Michele Angelo; D’Agostino, Claudia; Agrimi, Umberto; Nonno, Romolo

    2013-01-01

    Prions exist as different strains exhibiting distinct disease phenotypes. Currently, the identification of prion strains is still based on biological strain typing in rodents. However, it has been shown that prion strains may be associated with distinct PrPSc biochemical types. Taking advantage of the availability of several prion strains adapted to a novel rodent model, the bank vole, we investigated if any prion strain was actually associated with distinctive PrPSc biochemical characteristics and if it was possible to univocally identify strains through PrPSc biochemical phenotypes. We selected six different vole-adapted strains (three human-derived and three animal-derived) and analyzed PrPSc from individual voles by epitope mapping of protease resistant core of PrPSc (PrPres) and by conformational stability and solubility assay. Overall, we discriminated five out of six prion strains, while two different scrapie strains showed identical PrPSc types. Our results suggest that the biochemical strain typing approach here proposed was highly discriminative, although by itself it did not allow us to identify all prion strains analyzed. PMID:25437201

  6. Identifying mutant pathways in the histiocytoses.

    PubMed

    Prince, H Miles

    2014-11-06

    In this issue of Blood, the findings of Chakraborty et al and Emile et al support a model in which the mitogen-activated protein kinase (MAPK) and PI3K/AKT pathways are critical in the pathogenesis of 2 of the most common histiocytoses—Langerhans cell histiocytosis (LCH) and Erdheim-Chester disease (ECD)—whereas their respective mutational profiles demonstrate important similarities and differences.

  7. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea (Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV).

    PubMed

    Varela, Anna Lidia N; Komatsu, Setsuko; Wang, Xin; Silva, Rodolpho G G; Souza, Pedro Filho N; Lobo, Ana Karla M; Vasconcelos, Ilka M; Silveira, Joaquim A G; Oliveira, Jose T A

    2017-06-23

    Cowpea severe mosaic virus (CPSMV) causes significant losses in cowpea (Vigna unguiculata) production. In this present study biochemical, physiological, and proteomic analysis were done to identify pathways and defense proteins that are altered during the incompatible interaction between the cowpea genotype BRS-Marataoã and CPSMV. The leaf protein extracts from mock- (MI) and CPSMV-inoculated plantlets (V) were evaluated at 2 and 6days post-inoculation (DPI). Data support the assumptions that increases in biochemical (high hydrogen peroxide, antioxidant enzymes, and secondary compounds) and physiological responses (high photosynthesis index and chlorophyll content), confirmed by label-free comparative proteomic approach, in which quantitative changes in proteasome proteins, proteins related to photosynthesis, redox homeostasis, regulation factors/RNA processing proteins were observed may be implicated in the resistance of BRS-Marataoã to CPSMV. This pioneering study provides information for the selection of specific pathways and proteins, altered in this incompatible relationship, which could be chosen as targets for detailed studies to advance our understanding of the molecular, physiological, and biochemistry basis of the resistance mechanism of cowpea and design approachs to engineer plants that are more productive. This is a pioneering study in which an incompatible relationship between a resistant cowpea and Cowpea severe mosaic virus (CPSMV) was conducted to comparatively evaluate proteomic profiles by Gel-free/label-free methodology and some physiological and biochemical parameters to shed light on how a resistant cowpea cultivar deals with the virus attack. Specific proteins and associated pathways were altered in the cowpea plants challenged with CPSMV and will contribute to our knowledge on the biological process tailored by cowpea in response to CPSMV. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses

    PubMed Central

    Gilbert, Jessica L.; Guthart, Matthew J.; Gezan, Salvador A.; Pisaroglo de Carvalho, Melissa; Schwieterman, Michael L.; Colquhoun, Thomas A.; Bartoshuk, Linda M.; Sims, Charles A.; Clark, David G.; Olmstead, James W.

    2015-01-01

    Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids) genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (P<0.001) were found with sweetness (R2 = 0.70), texture (R2 = 0.68), and flavor (R2 = 0.63). Sourness had a significantly negative relationship with overall liking (R2 = 0.55). The relationship between flavor and texture liking was also linear (R2 = 0.73, P<0.0001) demonstrating interaction between olfaction and somatosensation. Partial least squares analysis was used to identify sugars, acids, and volatile compounds contributing to liking and sensory intensities, and revealed strong effects of fructose, pH, and several volatile compounds upon all sensory parameters measured. To assess the feasibility of breeding for flavor components, a three year study was conducted to compare genetic and environmental influences on flavor biochemistry. Panelists could discern genotypic variation in blueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, β-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their breeding is

  9. Identifying Breeding Priorities for Blueberry Flavor Using Biochemical, Sensory, and Genotype by Environment Analyses.

    PubMed

    Gilbert, Jessica L; Guthart, Matthew J; Gezan, Salvador A; Pisaroglo de Carvalho, Melissa; Schwieterman, Michael L; Colquhoun, Thomas A; Bartoshuk, Linda M; Sims, Charles A; Clark, David G; Olmstead, James W

    2015-01-01

    Breeding for a subjective goal such as flavor is challenging, as many blueberry cultivars are grown worldwide, and identifying breeding targets relating to blueberry flavor biochemistry that have a high degree of genetic control and low environmental variability are priorities. A variety of biochemical compounds and physical characters induce the sensory responses of taste, olfaction, and somatosensation, all of which interact to create what is perceived flavor. The goal of this study was to identify the flavor compounds with a larger genetic versus environmental component regulating their expression over an array of cultivars, locations, and years. Over the course of three years, consumer panelists rated overall liking, texture, sweetness, sourness, and flavor intensity of 19 southern highbush blueberry (Vaccinium corymbosum hybrids) genotypes in 30 sensory panels. Significant positive correlations to overall liking of blueberry fruit (P<0.001) were found with sweetness (R2 = 0.70), texture (R2 = 0.68), and flavor (R2 = 0.63). Sourness had a significantly negative relationship with overall liking (R2 = 0.55). The relationship between flavor and texture liking was also linear (R2 = 0.73, P<0.0001) demonstrating interaction between olfaction and somatosensation. Partial least squares analysis was used to identify sugars, acids, and volatile compounds contributing to liking and sensory intensities, and revealed strong effects of fructose, pH, and several volatile compounds upon all sensory parameters measured. To assess the feasibility of breeding for flavor components, a three year study was conducted to compare genetic and environmental influences on flavor biochemistry. Panelists could discern genotypic variation in blueberry sensory components, and many of the compounds affecting consumer favor of blueberries, such as fructose, pH, β-caryophyllene oxide and 2-heptanone, were sufficiently genetically controlled that allocating resources for their breeding is

  10. Knowledge-Assisted Approach to Identify Pathways with Differential Dependencies | Office of Cancer Genomics

    Cancer.gov

    We have previously developed a statistical method to identify gene sets enriched with condition-specific genetic dependencies. The method constructs gene dependency networks from bootstrapped samples in one condition and computes the divergence between distributions of network likelihood scores from different conditions. It was shown to be capable of sensitive and specific identification of pathways with phenotype-specific dysregulation, i.e., rewiring of dependencies between genes in different conditions.

  11. Whole-exome sequencing in obsessive-compulsive disorder identifies rare mutations in immunological and neurodevelopmental pathways

    PubMed Central

    Cappi, C; Brentani, H; Lima, L; Sanders, S J; Zai, G; Diniz, B J; Reis, V N S; Hounie, A G; Conceição do Rosário, M; Mariani, D; Requena, G L; Puga, R; Souza-Duran, F L; Shavitt, R G; Pauls, D L; Miguel, E C; Fernandez, T V

    2016-01-01

    Studies of rare genetic variation have identified molecular pathways conferring risk for developmental neuropsychiatric disorders. To date, no published whole-exome sequencing studies have been reported in obsessive-compulsive disorder (OCD). We sequenced all the genome coding regions in 20 sporadic OCD cases and their unaffected parents to identify rare de novo (DN) single-nucleotide variants (SNVs). The primary aim of this pilot study was to determine whether DN variation contributes to OCD risk. To this aim, we evaluated whether there is an elevated rate of DN mutations in OCD, which would justify this approach toward gene discovery in larger studies of the disorder. Furthermore, to explore functional molecular correlations among genes with nonsynonymous DN SNVs in OCD probands, a protein–protein interaction (PPI) network was generated based on databases of direct molecular interactions. We applied Degree-Aware Disease Gene Prioritization (DADA) to rank the PPI network genes based on their relatedness to a set of OCD candidate genes from two OCD genome-wide association studies (Stewart et al., 2013; Mattheisen et al., 2014). In addition, we performed a pathway analysis with genes from the PPI network. The rate of DN SNVs in OCD was 2.51 × 10−8 per base per generation, significantly higher than a previous estimated rate in unaffected subjects using the same sequencing platform and analytic pipeline. Several genes harboring DN SNVs in OCD were highly interconnected in the PPI network and ranked high in the DADA analysis. Nearly all the DN SNVs in this study are in genes expressed in the human brain, and a pathway analysis revealed enrichment in immunological and central nervous system functioning and development. The results of this pilot study indicate that further investigation of DN variation in larger OCD cohorts is warranted to identify specific risk genes and to confirm our preliminary finding with regard to PPI network enrichment for particular

  12. Use of RNA-seq to identify cardiac genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy

    PubMed Central

    Friedenberg, Steven G.; Chdid, Lhoucine; Keene, Bruce; Sherry, Barbara; Motsinger-Reif, Alison; Meurs, Kathryn M.

    2017-01-01

    OBJECTIVE To identify cardiac tissue genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy (DCM). ANIMALS 8 dogs with and 5 dogs without DCM. PROCEDURES Following euthanasia, samples of left ventricular myocardium were collected from each dog. Total RNA was extracted from tissue samples, and RNA sequencing was performed on each sample. Samples from dogs with and without DCM were grouped to identify genes that were differentially regulated between the 2 populations. Overrepresentation analysis was performed on upregulated and downregulated gene sets to identify altered molecular pathways in dogs with DCM. RESULTS Genes involved in cellular energy metabolism, especially metabolism of carbohydrates and fats, were significantly downregulated in dogs with DCM. Expression of cardiac structural proteins was also altered in affected dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that RNA sequencing may provide important insights into the pathogenesis of DCM in dogs and highlight pathways that should be explored to identify causative mutations and develop novel therapeutic interventions. PMID:27347821

  13. Use of RNA-seq to identify cardiac genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy.

    PubMed

    Friedenberg, Steven G; Chdid, Lhoucine; Keene, Bruce; Sherry, Barbara; Motsinger-Reif, Alison; Meurs, Kathryn M

    2016-07-01

    OBJECTIVE To identify cardiac tissue genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy (DCM). ANIMALS 8 dogs with and 5 dogs without DCM. PROCEDURES Following euthanasia, samples of left ventricular myocardium were collected from each dog. Total RNA was extracted from tissue samples, and RNA sequencing was performed on each sample. Samples from dogs with and without DCM were grouped to identify genes that were differentially regulated between the 2 populations. Overrepresentation analysis was performed on upregulated and downregulated gene sets to identify altered molecular pathways in dogs with DCM. RESULTS Genes involved in cellular energy metabolism, especially metabolism of carbohydrates and fats, were significantly downregulated in dogs with DCM. Expression of cardiac structural proteins was also altered in affected dogs. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that RNA sequencing may provide important insights into the pathogenesis of DCM in dogs and highlight pathways that should be explored to identify causative mutations and develop novel therapeutic interventions.

  14. Computational Approaches for Identifying Adverse Outcome Pathways

    EPA Science Inventory

    Adverse Outcome Pathways (AOPs) provide a framework for organizing toxicity information to improve predictions of the potential adverse impact of environment stressors on humans or wildlife populations, but these benefits are currently limited by the small number of AOPs currentl...

  15. Computational biophysical, biochemical, and evolutionary signature of human R-spondin family proteins, the member of canonical Wnt/β-catenin signaling pathway.

    PubMed

    Sharma, Ashish Ranjan; Chakraborty, Chiranjib; Lee, Sang-Soo; Sharma, Garima; Yoon, Jeong Kyo; George Priya Doss, C; Song, Dong-Keun; Nam, Ju-Suk

    2014-01-01

    In human, Wnt/β-catenin signaling pathway plays a significant role in cell growth, cell development, and disease pathogenesis. Four human (Rspo)s are known to activate canonical Wnt/β-catenin signaling pathway. Presently, (Rspo)s serve as therapeutic target for several human diseases. Henceforth, basic understanding about the molecular properties of (Rspo)s is essential. We approached this issue by interpreting the biochemical and biophysical properties along with molecular evolution of (Rspo)s thorough computational algorithm methods. Our analysis shows that signal peptide length is roughly similar in (Rspo)s family along with similarity in aa distribution pattern. In Rspo3, four N-glycosylation sites were noted. All members are hydrophilic in nature and showed alike GRAVY values, approximately. Conversely, Rspo3 contains the maximum positively charged residues while Rspo4 includes the lowest. Four highly aligned blocks were recorded through Gblocks. Phylogenetic analysis shows Rspo4 is being rooted with Rspo2 and similarly Rspo3 and Rspo1 have the common point of origin. Through phylogenomics study, we developed a phylogenetic tree of sixty proteins (n = 60) with the orthologs and paralogs seed sequences. Protein-protein network was also illustrated. Results demonstrated in our study may help the future researchers to unfold significant physiological and therapeutic properties of (Rspo)s in various disease models.

  16. Computational Biophysical, Biochemical, and Evolutionary Signature of Human R-Spondin Family Proteins, the Member of Canonical Wnt/β-Catenin Signaling Pathway

    PubMed Central

    Sharma, Ashish Ranjan; Lee, Sang-Soo; Yoon, Jeong Kyo; George Priya Doss, C.; Song, Dong-Keun

    2014-01-01

    In human, Wnt/β-catenin signaling pathway plays a significant role in cell growth, cell development, and disease pathogenesis. Four human (Rspo)s are known to activate canonical Wnt/β-catenin signaling pathway. Presently, (Rspo)s serve as therapeutic target for several human diseases. Henceforth, basic understanding about the molecular properties of (Rspo)s is essential. We approached this issue by interpreting the biochemical and biophysical properties along with molecular evolution of (Rspo)s thorough computational algorithm methods. Our analysis shows that signal peptide length is roughly similar in (Rspo)s family along with similarity in aa distribution pattern. In Rspo3, four N-glycosylation sites were noted. All members are hydrophilic in nature and showed alike GRAVY values, approximately. Conversely, Rspo3 contains the maximum positively charged residues while Rspo4 includes the lowest. Four highly aligned blocks were recorded through Gblocks. Phylogenetic analysis shows Rspo4 is being rooted with Rspo2 and similarly Rspo3 and Rspo1 have the common point of origin. Through phylogenomics study, we developed a phylogenetic tree of sixty proteins (n = 60) with the orthologs and paralogs seed sequences. Protein-protein network was also illustrated. Results demonstrated in our study may help the future researchers to unfold significant physiological and therapeutic properties of (Rspo)s in various disease models. PMID:25276837

  17. Adverse Outcome Pathways: From Definition to Application

    EPA Science Inventory

    A challenge for both human health and ecological toxicologists is the transparent application of mechanistic (e.g., molecular, biochemical, histological) data to risk assessments. The adverse outcome pathway (AOP) is a conceptual framework designed to meet this need. Specifical...

  18. Elucidation of an Alternate Isoleucine Biosynthesis Pathway in Geobacter sulfurreducens▿

    PubMed Central

    Risso, Carla; Van Dien, Stephen J.; Orloff, Amber; Lovley, Derek R.; Coppi, Maddalena V.

    2008-01-01

    The central metabolic model for Geobacter sulfurreducens included a single pathway for the biosynthesis of isoleucine that was analogous to that of Escherichia coli, in which the isoleucine precursor 2-oxobutanoate is generated from threonine. 13C labeling studies performed in G. sulfurreducens indicated that this pathway accounted for a minor fraction of isoleucine biosynthesis and that the majority of isoleucine was instead derived from acetyl-coenzyme A and pyruvate, possibly via the citramalate pathway. Genes encoding citramalate synthase (GSU1798), which catalyzes the first dedicated step in the citramalate pathway, and threonine ammonia-lyase (GSU0486), which catalyzes the conversion of threonine to 2-oxobutanoate, were identified and knocked out. Mutants lacking both of these enzymes were auxotrophs for isoleucine, whereas single mutants were capable of growth in the absence of isoleucine. Biochemical characterization of the single mutants revealed deficiencies in citramalate synthase and threonine ammonia-lyase activity. Thus, in G. sulfurreducens, 2-oxobutanoate can be synthesized either from citramalate or threonine, with the former being the main pathway for isoleucine biosynthesis. The citramalate synthase of G. sulfurreducens constitutes the first characterized member of a phylogenetically distinct clade of citramalate synthases, which contains representatives from a wide variety of microorganisms. PMID:18245290

  19. The chemokine receptor CCR1 is identified in mast cell-derived exosomes

    PubMed Central

    Liang, Yuting; Qiao, Longwei; Peng, Xia; Cui, Zelin; Yin, Yue; Liao, Huanjin; Jiang, Min; Li, Li

    2018-01-01

    Mast cells are important effector cells of the immune system, and mast cell-derived exosomes carrying RNAs play a role in immune regulation. However, the molecular function of mast cell-derived exosomes is currently unknown, and here, we identify differentially expressed genes (DEGs) in mast cells and exosomes. We isolated mast cells derived exosomes through differential centrifugation and screened the DEGs from mast cell-derived exosomes, using the GSE25330 array dataset downloaded from the Gene Expression Omnibus database. Biochemical pathways were analyzed by Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the online tool DAVID. DEGs-associated protein-protein interaction networks (PPIs) were constructed using the STRING database and Cytoscape software. The genes identified from these bioinformatics analyses were verified by qRT-PCR and Western blot in mast cells and exosomes. We identified 2121 DEGs (843 up and 1278 down-regulated genes) in HMC-1 cell-derived exosomes and HMC-1 cells. The up-regulated DEGs were classified into two significant modules. The chemokine receptor CCR1 was screened as a hub gene and enriched in cytokine-mediated signaling pathway in module one. Seven genes, including CCR1, CD9, KIT, TGFBR1, TLR9, TPSAB1 and TPSB2 were screened and validated through qRT-PCR analysis. We have achieved a comprehensive view of the pivotal genes and pathways in mast cells and exosomes and identified CCR1 as a hub gene in mast cell-derived exosomes. Our results provide novel clues with respect to the biological processes through which mast cell-derived exosomes modulate immune responses. PMID:29511430

  20. The chemokine receptor CCR1 is identified in mast cell-derived exosomes.

    PubMed

    Liang, Yuting; Qiao, Longwei; Peng, Xia; Cui, Zelin; Yin, Yue; Liao, Huanjin; Jiang, Min; Li, Li

    2018-01-01

    Mast cells are important effector cells of the immune system, and mast cell-derived exosomes carrying RNAs play a role in immune regulation. However, the molecular function of mast cell-derived exosomes is currently unknown, and here, we identify differentially expressed genes (DEGs) in mast cells and exosomes. We isolated mast cells derived exosomes through differential centrifugation and screened the DEGs from mast cell-derived exosomes, using the GSE25330 array dataset downloaded from the Gene Expression Omnibus database. Biochemical pathways were analyzed by Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the online tool DAVID. DEGs-associated protein-protein interaction networks (PPIs) were constructed using the STRING database and Cytoscape software. The genes identified from these bioinformatics analyses were verified by qRT-PCR and Western blot in mast cells and exosomes. We identified 2121 DEGs (843 up and 1278 down-regulated genes) in HMC-1 cell-derived exosomes and HMC-1 cells. The up-regulated DEGs were classified into two significant modules. The chemokine receptor CCR1 was screened as a hub gene and enriched in cytokine-mediated signaling pathway in module one. Seven genes, including CCR1, CD9, KIT, TGFBR1, TLR9, TPSAB1 and TPSB2 were screened and validated through qRT-PCR analysis. We have achieved a comprehensive view of the pivotal genes and pathways in mast cells and exosomes and identified CCR1 as a hub gene in mast cell-derived exosomes. Our results provide novel clues with respect to the biological processes through which mast cell-derived exosomes modulate immune responses.

  1. Organization of biogeochemical nitrogen pathways with switch-like adjustment in fluctuating soil redox conditions

    PubMed Central

    Lamba, Sanjay; Bera, Soumen; Rashid, Mubasher; Medvinsky, Alexander B.; Acquisti, Claudia; Li, Bai-Lian

    2017-01-01

    Nitrogen is cycled throughout ecosystems by a suite of biogeochemical processes. The high complexity of the nitrogen cycle resides in an intricate interplay between reversible biochemical pathways alternatively and specifically activated in response to diverse environmental cues. Despite aggressive research, how the fundamental nitrogen biochemical processes are assembled and maintained in fluctuating soil redox conditions remains elusive. Here, we address this question using a kinetic modelling approach coupled with dynamical systems theory and microbial genomics. We show that alternative biochemical pathways play a key role in keeping nitrogen conversion and conservation properties invariant in fluctuating environments. Our results indicate that the biochemical network holds inherent adaptive capacity to stabilize ammonium and nitrate availability, and that the bistability in the formation of ammonium is linked to the transient upregulation of the amo-hao mediated nitrification pathway. The bistability is maintained by a pair of complementary subsystems acting as either source or sink type systems in response to soil redox fluctuations. It is further shown how elevated anthropogenic pressure has the potential to break down the stability of the system, altering substantially ammonium and nitrate availability in the soil, with dramatic effects on biodiversity. PMID:28280580

  2. Pathway of Glycine Betaine Biosynthesis in Aspergillus fumigatus

    PubMed Central

    Lambou, Karine; Pennati, Andrea; Valsecchi, Isabel; Tada, Rui; Sherman, Stephen; Sato, Hajime; Beau, Remi

    2013-01-01

    The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD+ to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom. PMID:23563483

  3. Pathway of glycine betaine biosynthesis in Aspergillus fumigatus.

    PubMed

    Lambou, Karine; Pennati, Andrea; Valsecchi, Isabel; Tada, Rui; Sherman, Stephen; Sato, Hajime; Beau, Remi; Gadda, Giovanni; Latgé, Jean-Paul

    2013-06-01

    The choline oxidase (CHOA) and betaine aldehyde dehydrogenase (BADH) genes identified in Aspergillus fumigatus are present as a cluster specific for fungal genomes. Biochemical and molecular analyses of this cluster showed that it has very specific biochemical and functional features that make it unique and different from its plant and bacterial homologs. A. fumigatus ChoAp catalyzed the oxidation of choline to glycine betaine with betaine aldehyde as an intermediate and reduced molecular oxygen to hydrogen peroxide using FAD as a cofactor. A. fumigatus Badhp oxidized betaine aldehyde to glycine betaine with reduction of NAD(+) to NADH. Analysis of the AfchoAΔ::HPH and AfbadAΔ::HPH single mutants and the AfchoAΔAfbadAΔ::HPH double mutant showed that AfChoAp is essential for the use of choline as the sole nitrogen, carbon, or carbon and nitrogen source during the germination process. AfChoAp and AfBadAp were localized in the cytosol of germinating conidia and mycelia but were absent from resting conidia. Characterization of the mutant phenotypes showed that glycine betaine in A. fumigatus functions exclusively as a metabolic intermediate in the catabolism of choline and not as a stress protectant. This study in A. fumigatus is the first molecular, cellular, and biochemical characterization of the glycine betaine biosynthetic pathway in the fungal kingdom.

  4. Mutations in a signal sequence for the thylakoid membrane identify multiple protein transport pathways and nuclear suppressors

    PubMed Central

    1994-01-01

    The apparatus that permits protein translocation across the internal thylakoid membranes of chloroplasts is completely unknown, even though these membranes have been the subject of extensive biochemical analysis. We have used a genetic approach to characterize the translocation of Chlamydomonas cytochrome f, a chloroplast-encoded protein that spans the thylakoid once. Mutations in the hydrophobic core of the cytochrome f signal sequence inhibit the accumulation of cytochrome f, lead to an accumulation of precursor, and impair the ability of Chlamydomonas cells to grow photosynthetically. One hydrophobic core mutant also reduces the accumulation of other thylakoid membrane proteins, but not those that translocate completely across the membrane. These results suggest that the signal sequence of cytochrome f is required and is involved in one of multiple insertion pathways. Suppressors of two signal peptide mutations describe at least two nuclear genes whose products likely describe the translocation apparatus, and selected second-site chloroplast suppressors further define regions of the cytochrome f signal peptide. PMID:8034740

  5. An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge.

    PubMed

    Nassif, Houssam; Al-Ali, Hassan; Khuri, Sawsan; Keirouz, Walid; Page, David

    2010-01-01

    Hexoses are simple sugars that play a key role in many cellular pathways, and in the regulation of development and disease mechanisms. Current protein-sugar computational models are based, at least partially, on prior biochemical findings and knowledge. They incorporate different parts of these findings in predictive black-box models. We investigate the empirical support for biochemical findings by comparing Inductive Logic Programming (ILP) induced rules to actual biochemical results. We mine the Protein Data Bank for a representative data set of hexose binding sites, non-hexose binding sites and surface grooves. We build an ILP model of hexose-binding sites and evaluate our results against several baseline machine learning classifiers. Our method achieves an accuracy similar to that of other black-box classifiers while providing insight into the discriminating process. In addition, it confirms wet-lab findings and reveals a previously unreported Trp-Glu amino acids dependency.

  6. A novel method to identify pathways associated with renal cell carcinoma based on a gene co-expression network

    PubMed Central

    RUAN, XIYUN; LI, HONGYUN; LIU, BO; CHEN, JIE; ZHANG, SHIBAO; SUN, ZEQIANG; LIU, SHUANGQING; SUN, FAHAI; LIU, QINGYONG

    2015-01-01

    The aim of the present study was to develop a novel method for identifying pathways associated with renal cell carcinoma (RCC) based on a gene co-expression network. A framework was established where a co-expression network was derived from the database as well as various co-expression approaches. First, the backbone of the network based on differentially expressed (DE) genes between RCC patients and normal controls was constructed by the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The differentially co-expressed links were detected by Pearson’s correlation, the empirical Bayesian (EB) approach and Weighted Gene Co-expression Network Analysis (WGCNA). The co-expressed gene pairs were merged by a rank-based algorithm. We obtained 842; 371; 2,883 and 1,595 co-expressed gene pairs from the co-expression networks of the STRING database, Pearson’s correlation EB method and WGCNA, respectively. Two hundred and eighty-one differentially co-expressed (DC) gene pairs were obtained from the merged network using this novel method. Pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the network enrichment analysis (NEA) method were performed to verify feasibility of the merged method. Results of the KEGG and NEA pathway analyses showed that the network was associated with RCC. The suggested method was computationally efficient to identify pathways associated with RCC and has been identified as a useful complement to traditional co-expression analysis. PMID:26058425

  7. Biochemical Characterization of Prions.

    PubMed

    Fiorini, Michele; Bongianni, Matilde; Monaco, Salvatore; Zanusso, Gianluigi

    2017-01-01

    Prion disease or transmissible spongiform encephalopathies are characterized by the presence of the abnormal form of the prion protein (PrP Sc ). The pathological and transmissible properties of PrP Sc are enciphered in its secondary and tertiary structures. Since it's well established that different strains of prions are linked to different conformations of PrP Sc , biochemical characterization of prions seems a preliminary but reliable approach to detect, analyze, and compare prion strains. Experimental biochemical procedures might be helpful in distinguishing PrP Sc physicochemical properties and include resistance to proteinase K (PK) digestion, insolubility in nonionic detergents, PK-resistance under denaturing conditions and sedimentation properties in sucrose gradients. This biochemical approach has been extensively applied in human prion disorders and subsequently expanded for PrP Sc characterization in animals. In particular, in sporadic Creutzfedlt-Jakob disease (sCJD) PrP Sc is characterized by two main glycotypes conventionally named Type 1 and Type 2, based on the apparent gel migration at 21 and 19kDa of the PrP Sc PK-resistant fragment. An additional PrP Sc type was identified in sCJD characterized by an unglycosylated dominant glycoform pattern and in 2010 a variably protease-sensitive prionopathy (VPSPr) was reported showing a PrP Sc with an electrophoretic ladder like pattern. Additionally, the presence of PrP Sc truncated fragments completes the electrophoretic characterization of different prion strains. By two-dimensional (2D) electrophoretic analysis additional PrP Sc pattern was identified, since this procedure provides information about the isoelectric point and the different peptides length related to PK cleavage, as well as to glycosylation extent or GPI anchor presence. We here provide and extensive review on PrP Sc biochemical analysis in human and animal prion disorders. Further, we show that PrP Sc glycotypes observed in CJD share

  8. Diverse exocytic pathways for mast cell mediators.

    PubMed

    Xu, Hao; Bin, Na-Ryum; Sugita, Shuzo

    2018-04-17

    Mast cells play pivotal roles in innate and adaptive immunities but are also culprits in allergy, autoimmunity, and cardiovascular diseases. Mast cells respond to environmental changes by initiating regulated exocytosis/secretion of various biologically active compounds called mediators (e.g. proteases, amines, and cytokines). Many of these mediators are stored in granules/lysosomes and rely on intricate degranulation processes for release. Mast cell stabilizers (e.g. sodium cromoglicate), which prevent such degranulation processes, have therefore been clinically employed to treat asthma and allergic rhinitis. However, it has become increasingly clear that different mast cell diseases often involve multiple mediators that rely on overlapping but distinct mechanisms for release. This review illustrates existing evidence that highlights the diverse exocytic pathways in mast cells. We also discuss strategies to delineate these pathways so as to identify unique molecular components which could serve as new drug targets for more effective and specific treatments against mast cell-related diseases. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. Model-Based Design of Biochemical Microreactors

    PubMed Central

    Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M.; Voll, Lars M.; Leugering, Günter; Knabner, Peter

    2016-01-01

    Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P

  10. Drosophila insulin and target of rapamycin (TOR) pathways regulate GSK3 beta activity to control Myc stability and determine Myc expression in vivo.

    PubMed

    Parisi, Federica; Riccardo, Sara; Daniel, Margaret; Saqcena, Mahesh; Kundu, Nandini; Pession, Annalisa; Grifoni, Daniela; Stocker, Hugo; Tabak, Esteban; Bellosta, Paola

    2011-09-27

    Genetic studies in Drosophila melanogaster reveal an important role for Myc in controlling growth. Similar studies have also shown how components of the insulin and target of rapamycin (TOR) pathways are key regulators of growth. Despite a few suggestions that Myc transcriptional activity lies downstream of these pathways, a molecular mechanism linking these signaling pathways to Myc has not been clearly described. Using biochemical and genetic approaches we tried to identify novel mechanisms that control Myc activity upon activation of insulin and TOR signaling pathways. Our biochemical studies show that insulin induces Myc protein accumulation in Drosophila S2 cells, which correlates with a decrease in the activity of glycogen synthase kinase 3-beta (GSK3β ) a kinase that is responsible for Myc protein degradation. Induction of Myc by insulin is inhibited by the presence of the TOR inhibitor rapamycin, suggesting that insulin-induced Myc protein accumulation depends on the activation of TOR complex 1. Treatment with amino acids that directly activate the TOR pathway results in Myc protein accumulation, which also depends on the ability of S6K kinase to inhibit GSK3β activity. Myc upregulation by insulin and TOR pathways is a mechanism conserved in cells from the wing imaginal disc, where expression of Dp110 and Rheb also induces Myc protein accumulation, while inhibition of insulin and TOR pathways result in the opposite effect. Our functional analysis, aimed at quantifying the relative contribution of Myc to ommatidial growth downstream of insulin and TOR pathways, revealed that Myc activity is necessary to sustain the proliferation of cells from the ommatidia upon Dp110 expression, while its contribution downstream of TOR is significant to control the size of the ommatidia. Our study presents novel evidence that Myc activity acts downstream of insulin and TOR pathways to control growth in Drosophila. At the biochemical level we found that both these pathways

  11. MetaMapR: pathway independent metabolomic network analysis incorporating unknowns.

    PubMed

    Grapov, Dmitry; Wanichthanarak, Kwanjeera; Fiehn, Oliver

    2015-08-15

    Metabolic network mapping is a widely used approach for integration of metabolomic experimental results with biological domain knowledge. However, current approaches can be limited by biochemical domain or pathway knowledge which results in sparse disconnected graphs for real world metabolomic experiments. MetaMapR integrates enzymatic transformations with metabolite structural similarity, mass spectral similarity and empirical associations to generate richly connected metabolic networks. This open source, web-based or desktop software, written in the R programming language, leverages KEGG and PubChem databases to derive associations between metabolites even in cases where biochemical domain or molecular annotations are unknown. Network calculation is enhanced through an interface to the Chemical Translation System, which allows metabolite identifier translation between >200 common biochemical databases. Analysis results are presented as interactive visualizations or can be exported as high-quality graphics and numerical tables which can be imported into common network analysis and visualization tools. Freely available at http://dgrapov.github.io/MetaMapR/. Requires R and a modern web browser. Installation instructions, tutorials and application examples are available at http://dgrapov.github.io/MetaMapR/. ofiehn@ucdavis.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Peroxisomal biogenesis is genetically and biochemically linked to carbohydrate metabolism in Drosophila and mouse

    PubMed Central

    Chao, Yu-Hsin; Giagtzoglou, Nikolaos; Putluri, Nagireddy; Coarfa, Cristian; Donti, Taraka; Faust, Joseph E.; McNew, James A.; Sardiello, Marco; Baes, Myriam; Bellen, Hugo J.

    2017-01-01

    Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD. PMID:28640802

  13. International genome-wide meta-analysis identifies new primary biliary cirrhosis risk loci and targetable pathogenic pathways.

    PubMed

    Cordell, Heather J; Han, Younghun; Mells, George F; Li, Yafang; Hirschfield, Gideon M; Greene, Casey S; Xie, Gang; Juran, Brian D; Zhu, Dakai; Qian, David C; Floyd, James A B; Morley, Katherine I; Prati, Daniele; Lleo, Ana; Cusi, Daniele; Gershwin, M Eric; Anderson, Carl A; Lazaridis, Konstantinos N; Invernizzi, Pietro; Seldin, Michael F; Sandford, Richard N; Amos, Christopher I; Siminovitch, Katherine A

    2015-09-22

    Primary biliary cirrhosis (PBC) is a classical autoimmune liver disease for which effective immunomodulatory therapy is lacking. Here we perform meta-analyses of discovery data sets from genome-wide association studies of European subjects (n=2,764 cases and 10,475 controls) followed by validation genotyping in an independent cohort (n=3,716 cases and 4,261 controls). We discover and validate six previously unknown risk loci for PBC (Pcombined<5 × 10(-8)) and used pathway analysis to identify JAK-STAT/IL12/IL27 signalling and cytokine-cytokine pathways, for which relevant therapies exist.

  14. Morphological covariance in anatomical MRI scans can identify discrete neural pathways in the brain and their disturbances in persons with neuropsychiatric disorders.

    PubMed

    Bansal, Ravi; Hao, Xuejun; Peterson, Bradley S

    2015-05-01

    We hypothesize that coordinated functional activity within discrete neural circuits induces morphological organization and plasticity within those circuits. Identifying regions of morphological covariation that are independent of morphological covariation in other regions therefore may therefore allow us to identify discrete neural systems within the brain. Comparing the magnitude of these variations in individuals who have psychiatric disorders with the magnitude of variations in healthy controls may allow us to identify aberrant neural pathways in psychiatric illnesses. We measured surface morphological features by applying nonlinear, high-dimensional warping algorithms to manually defined brain regions. We transferred those measures onto the surface of a unit sphere via conformal mapping and then used spherical wavelets and their scaling coefficients to simplify the data structure representing these surface morphological features of each brain region. We used principal component analysis (PCA) to calculate covariation in these morphological measures, as represented by their scaling coefficients, across several brain regions. We then assessed whether brain subregions that covaried in morphology, as identified by large eigenvalues in the PCA, identified specific neural pathways of the brain. To do so, we spatially registered the subnuclei for each eigenvector into the coordinate space of a Diffusion Tensor Imaging dataset; we used these subnuclei as seed regions to track and compare fiber pathways with known fiber pathways identified in neuroanatomical atlases. We applied these procedures to anatomical MRI data in a cohort of 82 healthy participants (42 children, 18 males, age 10.5 ± 2.43 years; 40 adults, 22 males, age 32.42 ± 10.7 years) and 107 participants with Tourette's Syndrome (TS) (71 children, 59 males, age 11.19 ± 2.2 years; 36 adults, 21 males, age 37.34 ± 10.9 years). We evaluated the construct validity of the identified covariation in morphology

  15. Genomic, proteomic, and biochemical analysis of the organohalide respiratory pathway in Desulfitobacterium dehalogenans.

    PubMed

    Kruse, Thomas; van de Pas, Bram A; Atteia, Ariane; Krab, Klaas; Hagen, Wilfred R; Goodwin, Lynne; Chain, Patrick; Boeren, Sjef; Maphosa, Farai; Schraa, Gosse; de Vos, Willem M; van der Oost, John; Smidt, Hauke; Stams, Alfons J M

    2015-03-01

    Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1(T) consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Genomic, Proteomic, and Biochemical Analysis of the Organohalide Respiratory Pathway in Desulfitobacterium dehalogenans

    PubMed Central

    van de Pas, Bram A.; Atteia, Ariane; Krab, Klaas; Hagen, Wilfred R.; Goodwin, Lynne; Chain, Patrick; Boeren, Sjef; Maphosa, Farai; Schraa, Gosse; de Vos, Willem M.; van der Oost, John; Smidt, Hauke

    2014-01-01

    Desulfitobacterium dehalogenans is able to grow by organohalide respiration using 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA) as an electron acceptor. We used a combination of genome sequencing, biochemical analysis of redox active components, and shotgun proteomics to study elements of the organohalide respiratory electron transport chain. The genome of Desulfitobacterium dehalogenans JW/IU-DC1T consists of a single circular chromosome of 4,321,753 bp with a GC content of 44.97%. The genome contains 4,252 genes, including six rRNA operons and six predicted reductive dehalogenases. One of the reductive dehalogenases, CprA, is encoded by a well-characterized cprTKZEBACD gene cluster. Redox active components were identified in concentrated suspensions of cells grown on formate and Cl-OHPA or formate and fumarate, using electron paramagnetic resonance (EPR), visible spectroscopy, and high-performance liquid chromatography (HPLC) analysis of membrane extracts. In cell suspensions, these components were reduced upon addition of formate and oxidized after addition of Cl-OHPA, indicating involvement in organohalide respiration. Genome analysis revealed genes that likely encode the identified components of the electron transport chain from formate to fumarate or Cl-OHPA. Data presented here suggest that the first part of the electron transport chain from formate to fumarate or Cl-OHPA is shared. Electrons are channeled from an outward-facing formate dehydrogenase via menaquinones to a fumarate reductase located at the cytoplasmic face of the membrane. When Cl-OHPA is the terminal electron acceptor, electrons are transferred from menaquinones to outward-facing CprA, via an as-yet-unidentified membrane complex, and potentially an extracellular flavoprotein acting as an electron shuttle between the quinol dehydrogenase membrane complex and CprA. PMID:25512312

  17. Insights into the TOR-S6K signaling pathway in maize (Zea mays L.). pathway activation by effector-receptor interaction.

    PubMed

    Garrocho-Villegas, Verónica; Aguilar C, Raúl; Sánchez de Jiménez, Estela

    2013-12-23

    The primordial TOR pathway, known to control growth and cell proliferation, has still not been fully described for plants. Nevertheless, in maize, an insulin-like growth factor (ZmIGF) peptide has been reported to stimulate this pathway. This research provides further insight into the TOR pathway in maize, using a biochemical approach in cultures of fast-growing (FG) and slow-growing (SG) calli, as a model system. Our results revealed that addition of either ZmIGF or insulin to SG calli stimulated DNA synthesis and increased the growth rate through cell proliferation and increased the rate of ribosomal protein (RP) synthesis by the selective mobilization of RP mRNAs into polysomes. Furthermore, analysis of the phosphorylation status of the main TOR and S6K kinases from the TOR pathway revealed stimulation by ZmIGF or insulin, whereas rapamycin inhibited its activation. Remarkably, a putative maize insulin-like receptor was recognized by a human insulin receptor antibody, as demonstrated by immunoprecipitation from membrane protein extracts of maize callus. Furthermore, competition experiments between ZmIGF and insulin for the receptor site on maize protoplasts suggested structural recognition of the putative receptor by either effector. These data were confirmed by confocal immunolocalization within the cell membrane of callus cells. Taken together, these data indicate that cell growth and cell proliferation in maize depend on the activation of the TOR-S6K pathway through the interaction of an insulin-like growth factor and its receptor. This evidence suggests that higher plants as well as metazoans have conserved this biochemical pathway to regulate their growth, supporting the conclusion that it is a highly evolved conserved pathway.

  18. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa.

    PubMed

    Nag, Ambarish; Karpinets, Tatiana V; Chang, Christopher H; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can

  19. Enhancing a Pathway-Genome Database (PGDB) to capture subcellular localization of metabolites and enzymes: the nucleotide-sugar biosynthetic pathways of Populus trichocarpa

    PubMed Central

    Nag, Ambarish; Karpinets, Tatiana V.; Chang, Christopher H.; Bar-Peled, Maor

    2012-01-01

    Understanding how cellular metabolism works and is regulated requires that the underlying biochemical pathways be adequately represented and integrated with large metabolomic data sets to establish a robust network model. Genetically engineering energy crops to be less recalcitrant to saccharification requires detailed knowledge of plant polysaccharide structures and a thorough understanding of the metabolic pathways involved in forming and regulating cell-wall synthesis. Nucleotide-sugars are building blocks for synthesis of cell wall polysaccharides. The biosynthesis of nucleotide-sugars is catalyzed by a multitude of enzymes that reside in different subcellular organelles, and precise representation of these pathways requires accurate capture of this biological compartmentalization. The lack of simple localization cues in genomic sequence data and annotations however leads to missing compartmentalization information for eukaryotes in automatically generated databases, such as the Pathway-Genome Databases (PGDBs) of the SRI Pathway Tools software that drives much biochemical knowledge representation on the internet. In this report, we provide an informal mechanism using the existing Pathway Tools framework to integrate protein and metabolite sub-cellular localization data with the existing representation of the nucleotide-sugar metabolic pathways in a prototype PGDB for Populus trichocarpa. The enhanced pathway representations have been successfully used to map SNP abundance data to individual nucleotide-sugar biosynthetic genes in the PGDB. The manually curated pathway representations are more conducive to the construction of a computational platform that will allow the simulation of natural and engineered nucleotide-sugar precursor fluxes into specific recalcitrant polysaccharide(s). Database URL: The curated Populus PGDB is available in the BESC public portal at http://cricket.ornl.gov/cgi-bin/beocyc_home.cgi and the nucleotide-sugar biosynthetic pathways can

  20. Biodegradation of phthalate esters by newly isolated Rhizobium sp. LMB-1 and its biochemical pathway of di-n-butyl phthalate.

    PubMed

    Tang, W-J; Zhang, L-S; Fang, Y; Zhou, Y; Ye, B-C

    2016-07-01

    To isolate a novel strain that could degrade many kinds PAEs efficiently and investigate the DBP-degrading pathway in this strain. Based on its 16S rRNA gene sequence, the strain was identified as Rhizobium sp. This strain, named LMB-1, can also utilize phthalates, such as DEHP, DMP, DBP and DEP. During the degradation of DBP, six possible metabolites, diethyl phthalate, mono-ethyl phthalate, di-methyl phthalate, mono-methyl phthalate, phthalic acid and tartaric acid, were identified by gas chromatography-mass spectrometry (GC-MS) analysis, and the degradation pathway of DBP was also identified in this study. In summary, strain LMB-1, identified as Rhizobium sp., was found to be capable of efficiently degrading PAEs, and it was determined that the strain degraded DMP completely within 45 h. DEP, DMP, MEP, MMP, PA and tartaric acid were detected during the course of DBP degradation by LMB-1. We propose that this strain could completely degrade DBP or other PAEs. Our results offer a novel and potential candidate, Rhizobium sp. LMB-1, for use in the bioremediation of cultivated soil contaminated by PAEs. This is the first report concerning the complete degradation of phthalate esters by Rhizobium sp. © 2016 The Society for Applied Microbiology.

  1. Biosynthetic pathways of ergot alkaloids.

    PubMed

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-12-10

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes.

  2. Protein Design for Pathway Engineering

    PubMed Central

    Eriksen, Dawn T.; Lian, Jiazhang; Zhao, Huimin

    2013-01-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. PMID:23558037

  3. Protein design for pathway engineering.

    PubMed

    Eriksen, Dawn T; Lian, Jiazhang; Zhao, Huimin

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway.

    PubMed

    Zhao, Huanhuan; Xu, Jun; Dong, Fengshou; Liu, Xingang; Wu, Yanbing; Wu, Xiaohu; Zheng, Yongquan

    2016-08-01

    Persistent use of the diphenyl ether herbicides oxyfluorfen may seriously increase the health risks and ecological safety problems. A newly bacterium R-21 isolated from active soil was able to degrade and utilize oxyfluorfen as the sole carbon source. R-21 was identified as Chryseobacterium aquifrigidense by morphology, physiobiochemical characteristics, and genetic analysis. Under the optimum cultural conditions (pH 6.9, temperature 33.4 °C, and inoculum size 0.2 g L(-1)), R-21 could degrade 92.1 % of oxyfluorfen at 50 mg L(-1) within 5 days. During oxyfluorfen degradation, six metabolites were detected and identified by atmospheric pressure gas chromatography coupled to quadrupole-time of flight mass spectrometry and ultra-performance liquid chromatography coupled to quadrupole-time of flight mass spectrometry, and a plausible degradation pathway was deduced. Strain R-21 is a promising potential in bioremediation of oxyfluorfen-contaminated environments.

  5. Stress and DNA repair biology of the Fanconi anemia pathway

    PubMed Central

    Longerich, Simonne; Li, Jian; Xiong, Yong; Sung, Patrick

    2014-01-01

    Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care. PMID:25237197

  6. 13C-Metabolic Flux Analysis: An Accurate Approach to Demystify Microbial Metabolism for Biochemical Production

    PubMed Central

    Guo, Weihua; Sheng, Jiayuan; Feng, Xueyang

    2015-01-01

    Metabolic engineering of various industrial microorganisms to produce chemicals, fuels, and drugs has raised interest since it is environmentally friendly, sustainable, and independent of nonrenewable resources. However, microbial metabolism is so complex that only a few metabolic engineering efforts have been able to achieve a satisfactory yield, titer or productivity of the target chemicals for industrial commercialization. In order to overcome this challenge, 13C Metabolic Flux Analysis (13C-MFA) has been continuously developed and widely applied to rigorously investigate cell metabolism and quantify the carbon flux distribution in central metabolic pathways. In the past decade, many 13C-MFA studies have been performed in academic labs and biotechnology industries to pinpoint key issues related to microbe-based chemical production. Insightful information about the metabolic rewiring has been provided to guide the development of the appropriate metabolic engineering strategies for improving the biochemical production. In this review, we will introduce the basics of 13C-MFA and illustrate how 13C-MFA has been applied via integration with metabolic engineering to identify and tackle the rate-limiting steps in biochemical production for various host microorganisms PMID:28952565

  7. Biochemical analysis of force-sensitive responses using a large-scale cell stretch device.

    PubMed

    Renner, Derrick J; Ewald, Makena L; Kim, Timothy; Yamada, Soichiro

    2017-09-03

    Physical force has emerged as a key regulator of tissue homeostasis, and plays an important role in embryogenesis, tissue regeneration, and disease progression. Currently, the details of protein interactions under elevated physical stress are largely missing, therefore, preventing the fundamental, molecular understanding of mechano-transduction. This is in part due to the difficulty isolating large quantities of cell lysates exposed to force-bearing conditions for biochemical analysis. We designed a simple, easy-to-fabricate, large-scale cell stretch device for the analysis of force-sensitive cell responses. Using proximal biotinylation (BioID) analysis or phospho-specific antibodies, we detected force-sensitive biochemical changes in cells exposed to prolonged cyclic substrate stretch. For example, using promiscuous biotin ligase BirA* tagged α-catenin, the biotinylation of myosin IIA increased with stretch, suggesting the close proximity of myosin IIA to α-catenin under a force bearing condition. Furthermore, using phospho-specific antibodies, Akt phosphorylation was reduced upon stretch while Src phosphorylation was unchanged. Interestingly, phosphorylation of GSK3β, a downstream effector of Akt pathway, was also reduced with stretch, while the phosphorylation of other Akt effectors was unchanged. These data suggest that the Akt-GSK3β pathway is force-sensitive. This simple cell stretch device enables biochemical analysis of force-sensitive responses and has potential to uncover molecules underlying mechano-transduction.

  8. A high throughput screening for TLR3-IRF3 signaling pathway modulators identifies several antipsychotic drugs as TLR inhibitors1

    PubMed Central

    Zhu, Jianzhong; Smith, Kevin; Hsieh, Paishiun N.; Mburu, Yvonne K.; Chattopadhyay, Saurabh; Sen, Ganes C.; Sarkar, Saumendra N.

    2010-01-01

    Toll-like Receptor 3 (TLR3) is one of the major innate immune sensors of double stranded RNA (dsRNA). The signal transduction pathway activated by TLR3, upon binding to dsRNA, leads to the activation of two major transcription factors: NF-κB and IRF3. In an effort to identify specific chemical modulators of TLR3-IRF3 signal transduction pathway we developed a cell-based read out system. Using the interferon stimulated gene 56 (ISG56) promoter driven firefly luciferase gene stably integrated in a TLR3 expressing HEK293 cell line, we were able to generate a cell line where treatment with dsRNA resulted in a dose dependent induction of luciferase activity. A screen of two pharmacologically active compound libraries using this system, identified a number of TLR3-IRF3 signaling pathway modulators. Among them we focused on a subset of inhibitors and characterized their mode of action. Several antipsychotic drugs, such as Sertraline, Trifluoperazine and Fluphenazine were found to be direct inhibitors of the innate immune signaling pathway. These inhibitors also showed the ability to inhibit ISG56 induction mediated by TLR4 and TLR7/8 pathways. Interestingly, they did not show significant effect on TLR3, TLR7 and TLR8 mediated NF-κB activation. Detailed analysis of the signaling pathway indicated that these drugs may be exerting their inhibitory effects on IRF3 via PI3K signaling pathway. The data presented here provides mechanistic explanation of possible anti-inflammatory roles of some antipsychotic drugs. PMID:20382888

  9. Comparative life cycle assessment of lignocellulosic ethanol production: biochemical versus thermochemical conversion.

    PubMed

    Mu, Dongyan; Seager, Thomas; Rao, P Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  10. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    NASA Astrophysics Data System (ADS)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  11. Use of a bovine genome chip to identify new biological pathways for beef quality in cattle.

    PubMed

    Guifen, Liu; Xiaomu, Liu; Fachun, Wan; Xiuwen, Tan; Haijian, Cheng; Enliang, Song

    2012-12-01

    The accumulation of muscle is largely influenced by the genetic background of cattle. Muscle tissue was collected from the longissimus muscle of Lilu beef cattle at 12, 18, 24 and 30 months old. Using meat quality analysis, we found that the Lilu beef cattle have good production and slaughter performance, the performance meets the criterion of beef cattle. Microarray analysis was able to identify a total of 4,219 genes that are differentially expressed (P ≤ 0.01) between the two groups of cattle (12 vs 18; 18 vs 24; 24 vs 30). Bioinformatics analysis results suggested that most of the differentially expressed genes are involved in the metabolic pathways and neuroactive ligand-receptor interaction pathways. In the future study that aims to look for genes relating to growth and meat quality, we will focus on the genes that have been shown to have a significant variation between groups and are involved in the two pathways.

  12. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways.

    PubMed

    Atkinson, Joshua T; Campbell, Ian; Bennett, George N; Silberg, Jonathan J

    2016-12-27

    The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.

  13. Correlations between female breast density and biochemical markers.

    PubMed

    Kim, Ji-Hye; Lee, Hae-Kag; Cho, Jae-Hwan; Park, Hyong-Keun; Yang, Han-Jun

    2015-07-01

    [Purpose] The aim of this study was to identify biochemical markers related to breast density. The study was performed with 200 patients who received mammography and biochemical marker testing between March 1, 2014 to October 1, 2014. [Subjects and Methods] Following the American College of Radiology, Breast Imaging Reporting and Data System (ACR BI-RADS), breast parenchymal pattern density from mammography was categorized into four grades: grade 1, almost entirely fat; grade 2, fibroglandular densities; grade 3, heterogeneously dense; and grade 4, extremely dense. Regarding biochemical markers, subjects underwent blood and urine tests after a 12-h fast. We analyzed correlations among breast density, general characteristics, and biochemical markers. [Results] Breast density-related factors were age, height, weight, body mass index (BMI), hematocrit, MCH, RDW, AST, ALT, ALP, uric acid, γGT, triglycerides, total cholesterol, HDL-cholesterol, and LDL-cholesterol. [Conclusion] The results can be used as basic and comparative data for the prevention and early control of breast cancer.

  14. Identification of differential pathways in papillary thyroid carcinoma utilizing pathway co-expression analysis.

    PubMed

    Qiu, Wei-Hai; Chen, Gui-Yan; Cui, Lu; Zhang, Ting-Ming; Wei, Feng; Yang, Yong

    2016-01-01

    To identify differential pathways between papillary thyroid carcinoma (PTC) patients and normal controls utilizing a novel method which combined pathway with co-expression network. The proposed method included three steps. In the first step, we conducted pretreatments for background pathways and gained representative pathways in PTC. Subsequently, a co-expression network for representative pathways was constructed using empirical Bayes (EB) approach to assign a weight value for each pathway. Finally, random model was extracted to set the thresholds of identifying differential pathways. We obtained 1267 representative pathways and their weight values based on the co-expressed pathway network, and then by meeting the criterion (Weight > 0.0296), 87 differential pathways in total across PTC patients and normal controls were identified. The top three ranked differential pathways were CREB phosphorylation, attachment of GPI anchor to urokinase plasminogen activator receptor (uPAR) and loss of function of SMAD2/3 in cancer. In conclusion, we successfully identified differential pathways (such as CREB phosphorylation, attachment of GPI anchor to uPAR and post-translational modification: synthesis of GPI-anchored proteins) for PTC using the proposed pathway co-expression method, and these pathways might be potential biomarkers for target therapy and detection of PTC.

  15. Biosynthetic Pathways of Ergot Alkaloids

    PubMed Central

    Gerhards, Nina; Neubauer, Lisa; Tudzynski, Paul; Li, Shu-Ming

    2014-01-01

    Ergot alkaloids are nitrogen-containing natural products belonging to indole alkaloids. The best known producers are fungi of the phylum Ascomycota, e.g., Claviceps, Epichloë, Penicillium and Aspergillus species. According to their structures, ergot alkaloids can be divided into three groups: clavines, lysergic acid amides and peptides (ergopeptines). All of them share the first biosynthetic steps, which lead to the formation of the tetracyclic ergoline ring system (except the simplest, tricyclic compound: chanoclavine). Different modifications on the ergoline ring by specific enzymes result in an abundance of bioactive natural products, which are used as pharmaceutical drugs or precursors thereof. From the 1950s through to recent years, most of the biosynthetic pathways have been elucidated. Gene clusters from several ergot alkaloid producers have been identified by genome mining and the functions of many of those genes have been demonstrated by knock-out experiments or biochemical investigations of the overproduced enzymes. PMID:25513893

  16. Adolescents Can Know Best: Using concept mapping to identify factors and pathways driving adolescent sexuality in Lima, Peru

    PubMed Central

    Bayer, Angela M.; Cabrera, Lilia Z.; Gilman, Robert H.; Hindin, Michelle J.; Tsui, Amy O.

    2011-01-01

    The primary objective of this study was to identify and describe individual- and environmental-level factors that Peruvian adolescents perceive to be related to adolescent sexuality. A series of concept mapping sessions were carried out from January-March 2006 with 63 15–17 year olds from a low-income community near Lima in order for adolescents to (1) brainstorm items that they thought were related to sexuality (2) sort, group and rate items to score their importance for sexuality-related outcomes, and (3) create pathways from the groups of items to engaging in sex. Brainstorming resulted in 61 items, which participants grouped into 11 clusters. The highest rated clusters were personal values, respect and confidence in relationships, future achievements and parent-child communication. The pathway of decision-making about having sex primarily contained items rated as only moderately important. This study identified important understudied factors, new perspectives on previously-recognized factors, and possible pathways to sexual behavior. These interesting, provocative findings underscore the importance of directly integrating adolescent voices into future sexual and reproductive health research, policies and programs that target this population. PMID:20382462

  17. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma

    PubMed Central

    Weiser, Keith C.; Liu, Bin; Hansen, Gwenn M.; Skapura, Darlene; Hentges, Kathryn E.; Yarlagadda, Sujatha; Morse III, Herbert C.

    2007-01-01

    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFκB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision. PMID:17926094

  18. Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma.

    PubMed

    Weiser, Keith C; Liu, Bin; Hansen, Gwenn M; Skapura, Darlene; Hentges, Kathryn E; Yarlagadda, Sujatha; Morse Iii, Herbert C; Justice, Monica J

    2007-10-01

    AKXD recombinant inbred (RI) strains develop a variety of leukemias and lymphomas due to somatically acquired insertions of retroviral DNA into the genome of hematopoetic cells that can mutate cellular proto-oncogenes and tumor suppressor genes. We generated a new set of tumors from nine AKXD RI strains selected for their propensity to develop B-cell tumors, the most common type of human hematopoietic cancers. We employed a PCR technique called viral insertion site amplification (VISA) to rapidly isolate genomic sequence at the site of provirus insertion. Here we describe 550 VISA sequence tags (VSTs) that identify 74 common insertion sites (CISs), of which 21 have not been identified previously. Several suspected proto-oncogenes and tumor suppressor genes lie near CISs, providing supportive evidence for their roles in cancer. Furthermore, numerous previously uncharacterized genes lie near CISs, providing a pool of candidate disease genes for future research. Pathway analysis of candidate genes identified several signaling pathways as common and powerful routes to blood cancer, including Notch, E-protein, NFkappaB, and Ras signaling. Misregulation of several Notch signaling genes was confirmed by quantitative RT-PCR. Our data suggest that analyses of insertional mutagenesis on a single genetic background are biased toward the identification of cooperating mutations. This tumor collection represents the most comprehensive study of the genetics of B-cell leukemia and lymphoma development in mice. We have deposited the VST sequences, CISs in a genome viewer, histopathology, and molecular tumor typing data in a public web database called VISION (Viral Insertion Sites Identifying Oncogenes), which is located at http://www.mouse-genome.bcm.tmc.edu/vision .

  19. Tyrosine kinase Btk regulates E-selectin-mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) gamma2 and PI3Kgamma pathways.

    PubMed

    Mueller, Helena; Stadtmann, Anika; Van Aken, Hugo; Hirsch, Emilio; Wang, Demin; Ley, Klaus; Zarbock, Alexander

    2010-04-15

    Selectins mediate leukocyte rolling, trigger beta(2)-integrin activation, and promote leukocyte recruitment into inflamed tissue. E-selectin binding to P-selectin glycoprotein ligand 1 (PSGL-1) leads to activation of an immunoreceptor tyrosine-based activation motif (ITAM)-dependent pathway, which in turn activates the spleen tyrosine kinase (Syk). However, the signaling pathway linking Syk to integrin activation after E-selectin engagement is unknown. To identify the pathway, we used different gene-deficient mice in autoperfused flow chamber, intravital microscopy, peritonitis, and biochemical studies. We report here that the signaling pathway downstream of Syk divides into a phospholipase C (PLC) gamma2- and phosphoinositide 3-kinase (PI3K) gamma-dependent pathway. The Tec family kinase Bruton tyrosine kinase (Btk) is required for activating both pathways, generating inositol-3,4,5-trisphosphate (IP(3)), and inducing E-selectin-mediated slow rolling. Inhibition of this signal-transduction pathway diminished Galpha(i)-independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster. Galpha(i)-independent neutrophil recruitment into the inflamed peritoneal cavity was reduced in Btk(-/-) and Plcg2(-/-) mice. Our data demonstrate the functional importance of this newly identified signaling pathway mediated by E-selectin engagement.

  20. A novel dysregulated pathway-identification analysis based on global influence of within-pathway effects and crosstalk between pathways

    PubMed Central

    Han, Junwei; Li, Chunquan; Yang, Haixiu; Xu, Yanjun; Zhang, Chunlong; Ma, Jiquan; Shi, Xinrui; Liu, Wei; Shang, Desi; Yao, Qianlan; Zhang, Yunpeng; Su, Fei; Feng, Li; Li, Xia

    2015-01-01

    Identifying dysregulated pathways from high-throughput experimental data in order to infer underlying biological insights is an important task. Current pathway-identification methods focus on single pathways in isolation; however, consideration of crosstalk between pathways could improve our understanding of alterations in biological states. We propose a novel method of pathway analysis based on global influence (PAGI) to identify dysregulated pathways, by considering both within-pathway effects and crosstalk between pathways. We constructed a global gene–gene network based on the relationships among genes extracted from a pathway database. We then evaluated the extent of differential expression for each gene, and mapped them to the global network. The random walk with restart algorithm was used to calculate the extent of genes affected by global influence. Finally, we used cumulative distribution functions to determine the significance values of the dysregulated pathways. We applied the PAGI method to five cancer microarray datasets, and compared our results with gene set enrichment analysis and five other methods. Based on these analyses, we demonstrated that PAGI can effectively identify dysregulated pathways associated with cancer, with strong reproducibility and robustness. We implemented PAGI using the freely available R-based and Web-based tools (http://bioinfo.hrbmu.edu.cn/PAGI). PMID:25551156

  1. Novel Angiogenic Domains: Use in Identifying Unique Transforming and Tumor Promoting Pathways in Human Breast Cancer

    DTIC Science & Technology

    2004-10-01

    Cancer PRINCIPAL INVESTIGATOR: Thomas F. Deuel, M.D. CONTRACTING ORGANIZATION: The Scripps Research Institute...NUMBER Novel Angiogenic Domains: Use in Identifying Unique Transforming and Tumor Promoting Pathways in Human Breast Cancer 5b. GRANT NUMBER DAMD17...SUPPLEMENTARY NOTES 14. ABSTRACT Breast cancers in humans often grow slowly or even remain undetectable for long periods of time only to

  2. Targeting the Hippo signalling pathway for cancer treatment.

    PubMed

    Nakatani, Keisuke; Maehama, Tomohiko; Nishio, Miki; Goto, Hiroki; Kato, Wakako; Omori, Hirofumi; Miyachi, Yosuke; Togashi, Hideru; Shimono, Yohei; Suzuki, Akira

    2017-03-01

    The Hippo signalling pathway monitors cell-cell contact and external factors that shape tissue structure. In mice, tumourigenesis and developmental abnormalities are common consequences of dysregulated Hippo signalling. Expression of Hippo pathway components is also frequently altered in human tumours and correlates with poor prognosis and reduced patient survival. Thus, the Hippo pathway is an attractive anti-cancer target. Here, we provide an overview of the function and regulation of Hippo signalling components and summarize progress to date on the development of agents able to regulate Hippo signalling for cancer therapy. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  3. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways.

    PubMed

    Cirulli, Elizabeth T; Lasseigne, Brittany N; Petrovski, Slavé; Sapp, Peter C; Dion, Patrick A; Leblond, Claire S; Couthouis, Julien; Lu, Yi-Fan; Wang, Quanli; Krueger, Brian J; Ren, Zhong; Keebler, Jonathan; Han, Yujun; Levy, Shawn E; Boone, Braden E; Wimbish, Jack R; Waite, Lindsay L; Jones, Angela L; Carulli, John P; Day-Williams, Aaron G; Staropoli, John F; Xin, Winnie W; Chesi, Alessandra; Raphael, Alya R; McKenna-Yasek, Diane; Cady, Janet; Vianney de Jong, J M B; Kenna, Kevin P; Smith, Bradley N; Topp, Simon; Miller, Jack; Gkazi, Athina; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan; Silani, Vincenzo; Ticozzi, Nicola; Shaw, Christopher E; Baloh, Robert H; Appel, Stanley; Simpson, Ericka; Lagier-Tourenne, Clotilde; Pulst, Stefan M; Gibson, Summer; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Grossman, Murray; Shneider, Neil A; Chung, Wendy K; Ravits, John M; Glass, Jonathan D; Sims, Katherine B; Van Deerlin, Vivianna M; Maniatis, Tom; Hayes, Sebastian D; Ordureau, Alban; Swarup, Sharan; Landers, John; Baas, Frank; Allen, Andrew S; Bedlack, Richard S; Harper, J Wade; Gitler, Aaron D; Rouleau, Guy A; Brown, Robert; Harms, Matthew B; Cooper, Gregory M; Harris, Tim; Myers, Richard M; Goldstein, David B

    2015-03-27

    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention. Copyright © 2015, American Association for the Advancement of Science.

  4. Predicting and analyzing DNA-binding domains using a systematic approach to identifying a set of informative physicochemical and biochemical properties

    PubMed Central

    2011-01-01

    Background Existing methods of predicting DNA-binding proteins used valuable features of physicochemical properties to design support vector machine (SVM) based classifiers. Generally, selection of physicochemical properties and determination of their corresponding feature vectors rely mainly on known properties of binding mechanism and experience of designers. However, there exists a troublesome problem for designers that some different physicochemical properties have similar vectors of representing 20 amino acids and some closely related physicochemical properties have dissimilar vectors. Results This study proposes a systematic approach (named Auto-IDPCPs) to automatically identify a set of physicochemical and biochemical properties in the AAindex database to design SVM-based classifiers for predicting and analyzing DNA-binding domains/proteins. Auto-IDPCPs consists of 1) clustering 531 amino acid indices in AAindex into 20 clusters using a fuzzy c-means algorithm, 2) utilizing an efficient genetic algorithm based optimization method IBCGA to select an informative feature set of size m to represent sequences, and 3) analyzing the selected features to identify related physicochemical properties which may affect the binding mechanism of DNA-binding domains/proteins. The proposed Auto-IDPCPs identified m=22 features of properties belonging to five clusters for predicting DNA-binding domains with a five-fold cross-validation accuracy of 87.12%, which is promising compared with the accuracy of 86.62% of the existing method PSSM-400. For predicting DNA-binding sequences, the accuracy of 75.50% was obtained using m=28 features, where PSSM-400 has an accuracy of 74.22%. Auto-IDPCPs and PSSM-400 have accuracies of 80.73% and 82.81%, respectively, applied to an independent test data set of DNA-binding domains. Some typical physicochemical properties discovered are hydrophobicity, secondary structure, charge, solvent accessibility, polarity, flexibility, normalized Van Der

  5. Using Smoke Injection in Drains to Identify Potential Preferential Pathways in a Drained Arable Field

    NASA Astrophysics Data System (ADS)

    Nielsen, M. H.; Petersen, C. T.; Hansen, S.

    2014-12-01

    Macropores forming a continuous pathway between the soil surface and subsurface drains favour the transport of many contaminants from agricultural fields to surface waters. The smoke injection method presented by Shipitalo and Gibbs (2000) used for demonstrating and quantifying such pathways has been further developed and used on a drained Danish sandy loam. In order to identify the preferential pathways to drains, smoke was injected in three 1.15 m deep tile drains (total drain length 93 m), and smoke emitting macropores (SEMP) at the soil surface were counted and characterized as producing either strong or weak plumes compared to reference plumes from 3 and 6 mm wide tubes. In the two situations investigated in the present study - an early spring and an autumn situation, smoke only penetrated the soil surface layer via earthworm burrows located in a 1.0 m wide belt directly above the drain lines. However, it is known from previous studies that desiccation fractures in a dry summer situation also can contribute to the smoke pattern. The distance between SEMP measured along the drain lines was on average 0.46 m whereas the average spacing between SEMP with strong plumes was 2.3 m. Ponded water was applied in 6 cm wide rings placed above 52 burrows including 17 reference burrows which did not emit smoke. Thirteen pathways in the soil were examined using dye tracer and profile excavation. SEMP with strong plumes marked the entrance of highly efficient transport pathways conducting surface applied water and dye tracer into the drain. However, no single burrow was traced all the way from the surface into the drain, the dye patterns branched off in a network of other macropores. Water infiltration rates were significantly higher (P < 0.05) in SEMP with strong plumes (average rate: 247 mL min-1 n = 19) compared to SEMP with weak plumes (average rate: 87 mL min-1 n = 16) and no plumes (average rate: 56 mL min-1 n = 17). The results suggest that the smoke injection method

  6. Identification of altered pathways in breast cancer based on individualized pathway aberrance score.

    PubMed

    Shi, Sheng-Hong; Zhang, Wei; Jiang, Jing; Sun, Long

    2017-08-01

    The objective of the present study was to identify altered pathways in breast cancer based on the individualized pathway aberrance score (iPAS) method combined with the normal reference (nRef). There were 4 steps to identify altered pathways using the iPAS method: Data preprocessing conducted by the robust multi-array average (RMA) algorithm; gene-level statistics based on average Z ; pathway-level statistics according to iPAS; and a significance test dependent on 1 sample Wilcoxon test. The altered pathways were validated by calculating the changed percentage of each pathway in tumor samples and comparing them with pathways from differentially expressed genes (DEGs). A total of 688 altered pathways with P<0.01 were identified, including kinesin (KIF)- and polo-like kinase (PLK)-mediated events. When the percentage of change reached 50%, 310 pathways were involved in the total 688 altered pathways, which may validate the present results. In addition, there were 324 DEGs and 155 common genes between DEGs and pathway genes. DEGs and common genes were enriched in the same 9 significant terms, which also were members of altered pathways. The iPAS method was suitable for identifying altered pathways in breast cancer. Altered pathways (such as KIF and PLK mediated events) were important for understanding breast cancer mechanisms and for the future application of customized therapeutic decisions.

  7. A Novel MiRNA-Based Predictive Model for Biochemical Failure Following Post-Prostatectomy Salvage Radiation Therapy

    PubMed Central

    Stegmaier, Petra; Drendel, Vanessa; Mo, Xiaokui; Ling, Stella; Fabian, Denise; Manring, Isabel; Jilg, Cordula A.; Schultze-Seemann, Wolfgang; McNulty, Maureen; Zynger, Debra L.; Martin, Douglas; White, Julia; Werner, Martin; Grosu, Anca L.; Chakravarti, Arnab

    2015-01-01

    Purpose To develop a microRNA (miRNA)-based predictive model for prostate cancer patients of 1) time to biochemical recurrence after radical prostatectomy and 2) biochemical recurrence after salvage radiation therapy following documented biochemical disease progression post-radical prostatectomy. Methods Forty three patients who had undergone salvage radiation therapy following biochemical failure after radical prostatectomy with greater than 4 years of follow-up data were identified. Formalin-fixed, paraffin-embedded tissue blocks were collected for all patients and total RNA was isolated from 1mm cores enriched for tumor (>70%). Eight hundred miRNAs were analyzed simultaneously using the nCounter human miRNA v2 assay (NanoString Technologies; Seattle, WA). Univariate and multivariate Cox proportion hazards regression models as well as receiver operating characteristics were used to identify statistically significant miRNAs that were predictive of biochemical recurrence. Results Eighty eight miRNAs were identified to be significantly (p<0.05) associated with biochemical failure post-prostatectomy by multivariate analysis and clustered into two groups that correlated with early (≤ 36 months) versus late recurrence (>36 months). Nine miRNAs were identified to be significantly (p<0.05) associated by multivariate analysis with biochemical failure after salvage radiation therapy. A new predictive model for biochemical recurrence after salvage radiation therapy was developed; this model consisted of miR-4516 and miR-601 together with, Gleason score, and lymph node status. The area under the ROC curve (AUC) was improved to 0.83 compared to that of 0.66 for Gleason score and lymph node status alone. Conclusion miRNA signatures can distinguish patients who fail soon after radical prostatectomy versus late failures, giving insight into which patients may need adjuvant therapy. Notably, two novel miRNAs (miR-4516 and miR-601) were identified that significantly improve

  8. MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer.

    PubMed

    Theodorou, Vassiliki; Kimm, Melanie A; Boer, Mandy; Wessels, Lodewyk; Theelen, Wendy; Jonkers, Jos; Hilkens, John

    2007-06-01

    We performed a high-throughput retroviral insertional mutagenesis screen in mouse mammary tumor virus (MMTV)-induced mammary tumors and identified 33 common insertion sites, of which 17 genes were previously not known to be associated with mammary cancer and 13 had not previously been linked to cancer in general. Although members of the Wnt and fibroblast growth factors (Fgf) families were frequently tagged, our exhaustive screening for MMTV insertion sites uncovered a new repertoire of candidate breast cancer oncogenes. We validated one of these genes, Rspo3, as an oncogene by overexpression in a p53-deficient mammary epithelial cell line. The human orthologs of the candidate oncogenes were frequently deregulated in human breast cancers and associated with several tumor parameters. Computational analysis of all MMTV-tagged genes uncovered specific gene families not previously associated with cancer and showed a significant overrepresentation of protein domains and signaling pathways mainly associated with development and growth factor signaling. Comparison of all tagged genes in MMTV and Moloney murine leukemia virus-induced malignancies showed that both viruses target mostly different genes that act predominantly in distinct pathways.

  9. Investigating multiple dysregulated pathways in rheumatoid arthritis based on pathway interaction network.

    PubMed

    Song, Xian-Dong; Song, Xian-Xu; Liu, Gui-Bo; Ren, Chun-Hui; Sun, Yuan-Bo; Liu, Ke-Xin; Liu, Bo; Liang, Shuang; Zhu, Zhu

    2018-03-01

    The traditional methods of identifying biomarkers in rheumatoid arthritis (RA) have focussed on the differentially expressed pathways or individual pathways, which however, neglect the interactions between pathways. To better understand the pathogenesis of RA, we aimed to identify dysregulated pathway sets using a pathway interaction network (PIN), which considered interactions among pathways. Firstly, RA-related gene expression profile data, protein-protein interactions (PPI) data and pathway data were taken up from the corresponding databases. Secondly, principal component analysis method was used to calculate the pathway activity of each of the pathway, and then a seed pathway was identified using data gleaned from the pathway activity. A PIN was then constructed based on the gene expression profile, pathway data, and PPI information. Finally, the dysregulated pathways were extracted from the PIN based on the seed pathway using the method of support vector machines and an area under the curve (AUC) index. The PIN comprised of a total of 854 pathways and 1064 pathway interactions. The greatest change in the activity score between RA and control samples was observed in the pathway of epigenetic regulation of gene expression, which was extracted and regarded as the seed pathway. Starting with this seed pathway, one maximum pathway set containing 10 dysregulated pathways was extracted from the PIN, having an AUC of 0.8249, and the result indicated that this pathway set could distinguish RA from the controls. These 10 dysregulated pathways might be potential biomarkers for RA diagnosis and treatment in the future.

  10. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    EPA Science Inventory

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo a...

  11. Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome.

    PubMed

    Chang, Alice Y; Lalia, Antigoni Z; Jenkins, Gregory D; Dutta, Tumpa; Carter, Rickey E; Singh, Ravinder J; Nair, K Sreekumaran

    2017-06-01

    Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. This multiethnic, obese sample was matched by age (PCOS, 37±6; MetS, 40±6years) and body mass index (BMI) (PCOS, 34.6±5.1; MetS, 33.7±5.2kg/m 2 ). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P=.02), essential amino acids (P=.03), the essential amino acid lysine (P=.02), and the lysine metabolite α-aminoadipic acid (P=.02) in models adjusted for surrogate variables representing technical variation in metabolites. No significant differences between

  12. Combining a Nontargeted and Targeted Metabolomics Approach to Identify Metabolic Pathways Significantly Altered in Polycystic Ovary Syndrome

    PubMed Central

    Chang, Alice Y.; Lalia, Antigoni Z.; Jenkins, Gregory D.; Dutta, Tumpa; Carter, Rickey E.; Singh, Ravinder J.; Sreekumaran Nair, K.

    2017-01-01

    Objective Polycystic ovary syndrome (PCOS) is a condition of androgen excess and chronic anovulation frequently associated with insulin resistance. We combined a nontargeted and targeted metabolomics approach to identify pathways and metabolites that distinguished PCOS from metabolic syndrome (MetS). Methods Twenty obese women with PCOS were compared with 18 obese women without PCOS. Both groups met criteria for MetS but could not have diabetes mellitus or take medications that treat PCOS or affect lipids or insulin sensitivity. Insulin sensitivity was derived from the frequently sampled intravenous glucose tolerance test. A nontargeted metabolomics approach was performed on fasting plasma samples to identify differentially expressed metabolites, which were further evaluated by principal component and pathway enrichment analysis. Quantitative targeted metabolomics was then applied on candidate metabolites. Measured metabolites were tested for associations with PCOS and clinical variables by logistic and linear regression analyses. Results This multiethnic, obese sample was matched by age (PCOS, 37 ± 6; MetS, 40 ± 6 years) and body mass index (BMI) (PCOS, 34.6 ± 5.1; MetS, 33.7 ± 5.2 kg/m2). Principal component analysis of the nontargeted metabolomics data showed distinct group separation of PCOS from MetS controls. From the subset of 385 differentially expressed metabolites, 22% were identified by accurate mass, resulting in 19 canonical pathways significantly altered in PCOS, including amino acid, lipid, steroid, carbohydrate, and vitamin D metabolism. Targeted metabolomics identified many essential amino acids, including branched-chain amino acids (BCAA) that were elevated in PCOS compared with MetS. PCOS was most associated with BCAA (P = .02), essential amino acids (P = .03), the essential amino acid lysine (P = .02), and the lysine metabolite α-aminoadipic acid (P = .02) in models adjusted for surrogate variables representing technical variation in

  13. mom identifies a receptor for the Drosophila JAK/STAT signal transduction pathway and encodes a protein distantly related to the mammalian cytokine receptor family

    PubMed Central

    Chen, Hua-Wei; Chen, Xiu; Oh, Su-Wan; Marinissen, Maria J.; Gutkind, J. Silvio; Hou, Steven X.

    2002-01-01

    The JAK/STAT signal transduction pathway controls numerous events in Drosophila melanogaster development. Receptors for the pathway have yet to be identified. Here we have identified a Drosophila gene that shows embryonic mutant phenotypes identical to those in the hopscotch (hop)/JAK kinase and marelle (mrl)/Stat92e mutations. We named this gene master of marelle (mom). Genetic analyses place mom's function between upd (the ligand) and hop. We further show that cultured cells transfected with the mom gene bind UPD and activate the HOP/STAT92E signal transduction pathway. mom encodes a protein distantly related to the mammalian cytokine receptor family. These data show that mom functions as a receptor of the Drosophila JAK/STAT signal transduction pathway. PMID:11825879

  14. Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states.

    PubMed

    Carlson, Ross; Srienc, Friedrich

    2004-04-20

    We have previously shown that the metabolism for most efficient cell growth can be realized by a combination of two types of elementary modes. One mode produces biomass while the second mode generates only energy. The identity of the four most efficient biomass and energy pathway pairs changes, depending on the degree of oxygen limitation. The identification of such pathway pairs for different growth conditions offers a pathway-based explanation of maintenance energy generation. For a given growth rate, experimental aerobic glucose consumption rates can be used to estimate the contribution of each pathway type to the overall metabolic flux pattern. All metabolic fluxes are then completely determined by the stoichiometries of involved pathways defining all nutrient consumption and metabolite secretion rates. We present here equations that permit computation of network fluxes on the basis of unique pathways for the case of optimal, glucose-limited Escherichia coli growth under varying levels of oxygen stress. Predicted glucose and oxygen uptake rates and some metabolite secretion rates are in remarkable agreement with experimental observations supporting the validity of the presented approach. The entire most efficient, steady-state, metabolic rate structure is explicitly defined by the developed equations without need for additional computer simulations. The approach should be generally useful for analyzing and interpreting genomic data by predicting concise, pathway-based metabolic rate structures. Copyright 2004 Wiley Periodicals, Inc.

  15. Discovery and Biochemical Characterization of the UDP-Xylose Biosynthesis Pathway in Sphaerobacter thermophilus.

    PubMed

    Gu, Bin; Laborda, Pedro; Wei, Shuang; Duan, Xu-Chu; Song, Hui-Bo; Liu, Li; Voglmeir, Josef

    2016-01-01

    The biosynthesis of UDP-xylose requires the stepwise oxidation/ decarboxylation of UDP-glucose, which is catalyzed by the enzymes UDPglucuronic acid dehydrogenase (UGD) and UDP-xylose synthase (UXS). UDPxylose biosynthesis is ubiquitous in animals and plants. However, only a few UGD and UXS isoforms of bacterial origin have thus far been biochemically characterized. Sphaerobacter thermophilus DSM 20745 is a bacterium isolated from heated sewage sludge, and therefore can be a valuable source of thermostable enzymes of biotechnological interest. However, no biochemical characterizations of any S. thermophilus enzymes have yet been reported. Herein, we describe the cloning and characterization of putative UGD (StUGD) and UXS (StUXS) isoforms from this organism. HPLC- and plate reader-based activity tests of the recombinantly expressed StUGD and StUXS showed that they are indeed active enzymes. Both StUGD and StUXS showed a temperature optimum of 70°C, and a reasonable thermal stability up to 60°C. No metal ions were required for enzymatic activities. StUGD had a higher pH optimum than StUXS. The simple purification procedures and the thermotolerance of StUGD and StUXS make them valuable biocatalysts for the synthesis of UDP-glucuronic acid and UDP-xylose at elevated temperatures. The biosynthetic potential of StUGD was further exemplified in a coupled enzymatic reaction with an UDP-glucuronosyltransferase, allowing the glucuronylation of the natural model substrate bilirubin.

  16. Whole genome association study identifies regions of the bovine genome and biological pathways involved in carcass trait performance in Holstein-Friesian cattle.

    PubMed

    Doran, Anthony G; Berry, Donagh P; Creevey, Christopher J

    2014-10-01

    Four traits related to carcass performance have been identified as economically important in beef production: carcass weight, carcass fat, carcass conformation of progeny and cull cow carcass weight. Although Holstein-Friesian cattle are primarily utilized for milk production, they are also an important source of meat for beef production and export. Because of this, there is great interest in understanding the underlying genomic structure influencing these traits. Several genome-wide association studies have identified regions of the bovine genome associated with growth or carcass traits, however, little is known about the mechanisms or underlying biological pathways involved. This study aims to detect regions of the bovine genome associated with carcass performance traits (employing a panel of 54,001 SNPs) using measures of genetic merit (as predicted transmitting abilities) for 5,705 Irish Holstein-Friesian animals. Candidate genes and biological pathways were then identified for each trait under investigation. Following adjustment for false discovery (q-value < 0.05), 479 quantitative trait loci (QTL) were associated with at least one of the four carcass traits using a single SNP regression approach. Using a Bayesian approach, 46 QTL were associated (posterior probability > 0.5) with at least one of the four traits. In total, 557 unique bovine genes, which mapped to 426 human orthologs, were within 500kbs of QTL found associated with a trait using the Bayesian approach. Using this information, 24 significantly over-represented pathways were identified across all traits. The most significantly over-represented biological pathway was the peroxisome proliferator-activated receptor (PPAR) signaling pathway. A large number of genomic regions putatively associated with bovine carcass traits were detected using two different statistical approaches. Notably, several significant associations were detected in close proximity to genes with a known role in animal growth

  17. Biochemical Defense Response: Characterizing the Plasticity of Source and Sink in Spring Wheat under Terminal Heat Stress.

    PubMed

    Kumar, Ranjeet R; Goswami, Suneha; Shamim, Mohammed; Mishra, Upama; Jain, Monika; Singh, Khushboo; Singh, Jyoti P; Dubey, Kavita; Singh, Shweta; Rai, Gyanendra K; Singh, Gyanendra P; Pathak, Himanshu; Chinnusamy, Viswanathan; Praveen, Shelly

    2017-01-01

    Wheat is highly prone to terminal heat stress (HS) under late-sown conditions. Delayed- sowing is one of the preferred methods to screen the genotypes for thermotolerance under open field conditions. We investigated the effect of terminal HS on the thermotolerance of four popular genotypes of wheat i.e. WR544, HD2967, HD2932, and HD2285 under field condition. We observed significant variations in the biochemical parameters like protein content, antioxidant activity, proline and total reducing sugar content in leaf, stem, and spike under normal (26 ± 2°C) and terminal HS (36 ± 2°C) conditions. Maximum protein, sugars and proline was observed in HD2967, as compared to other cultivars under terminal HS. Wheat cv. HD2967 showed more adaptability to the terminal HS. Differential protein-profiling in leaves, stem and spike of HD2967 under normal (26 ± 2°C) and terminal HS (36 ± 2°C) showed expression of some unique protein spots. MALDI-TOF/MS analysis showed the DEPs as RuBisCO (Rub), RuBisCO activase (Rca), oxygen evolving enhancer protein (OEEP), hypothetical proteins, etc. Expression analysis of genes associated with photosynthesis ( Rub and Rca ) and starch biosynthesis pathway ( AGPase, SSS and SBE ) showed significant variations in the expression under terminal HS. HD2967 showed better performance, as compared to other cultivars under terminal HS. SSS activity observed in HD2967 showed more stability under terminal HS, as compared with other cultivars. Triggering of different biochemical parameters in response to terminal HS was observed to modulate the plasticity of carbon assimilatory pathway. The identified DEPs will enrich the proteomic resources of wheat and will provide a potential biochemical marker for screening wheat germplasm for thermotolerance. The model hypothesized will help the researchers to work in a more focused way to develop terminal heat tolerant wheat without compromising with the quality and quantity of grains.

  18. Proteome-wide association studies identify biochemical modules associated with a wing-size phenotype in Drosophila melanogaster.

    PubMed

    Okada, Hirokazu; Ebhardt, H Alexander; Vonesch, Sibylle Chantal; Aebersold, Ruedi; Hafen, Ernst

    2016-09-01

    The manner by which genetic diversity within a population generates individual phenotypes is a fundamental question of biology. To advance the understanding of the genotype-phenotype relationships towards the level of biochemical processes, we perform a proteome-wide association study (PWAS) of a complex quantitative phenotype. We quantify the variation of wing imaginal disc proteomes in Drosophila genetic reference panel (DGRP) lines using SWATH mass spectrometry. In spite of the very large genetic variation (1/36 bp) between the lines, proteome variability is surprisingly small, indicating strong molecular resilience of protein expression patterns. Proteins associated with adult wing size form tight co-variation clusters that are enriched in fundamental biochemical processes. Wing size correlates with some basic metabolic functions, positively with glucose metabolism but negatively with mitochondrial respiration and not with ribosome biogenesis. Our study highlights the power of PWAS to filter functional variants from the large genetic variability in natural populations.

  19. Identifying alternate pathways for climate change to impact inland recreational fishers

    USGS Publications Warehouse

    Hunt, Len M.; Fenichel, Eli P.; Fulton, David C.; Mendelsohn, Robert; Smith, Jordan W.; Tunney, Tyler D.; Lynch, Abigail J.; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Fisheries and human dimensions literature suggests that climate change influences inland recreational fishers in North America through three major pathways. The most widely recognized pathway suggests that climate change impacts habitat and fish populations (e.g., water temperature impacting fish survival) and cascades to impact fishers. Climate change also impacts recreational fishers by influencing environmental conditions that directly affect fishers (e.g., increased temperatures in northern climates resulting in extended open water fishing seasons and increased fishing effort). The final pathway occurs from climate change mitigation and adaptation efforts (e.g., refined energy policies result in higher fuel costs, making distant trips more expensive). To address limitations of past research (e.g., assessing climate change impacts for only one pathway at a time and not accounting for climate variability, extreme weather events, or heterogeneity among fishers), we encourage researchers to refocus their efforts to understand and document climate change impacts to inland fishers.

  20. Major carcinogenic pathways identified by gene expression analysis of peritoneal mesotheliomas following chemical treatment in F344 rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yongbaek; Thai-Vu Ton; De Angelo, Anthony B.

    2006-07-15

    This study was performed to characterize the gene expression profile and to identify the major carcinogenic pathways involved in rat peritoneal mesothelioma (RPM) formation following treatment of Fischer 344 rats with o-nitrotoluene (o-NT) or bromochloracetic acid (BCA). Oligo arrays, with over 20,000 target genes, were used to evaluate o-NT- and BCA-induced RPMs, when compared to a non-transformed mesothelial cell line (Fred-PE). Analysis using Ingenuity Pathway Analysis software revealed 169 cancer-related genes that were categorized into binding activity, growth and proliferation, cell cycle progression, apoptosis, and invasion and metastasis. The microarray data were validated by positive correlation with quantitative real-time RT-PCRmore » on 16 selected genes including igf1, tgfb3 and nov. Important carcinogenic pathways involved in RPM formation included insulin-like growth factor 1 (IGF-1), p38 MAPkinase, Wnt/{beta}-catenin and integrin signaling pathways. This study demonstrated that mesotheliomas in rats exposed to o-NT- and BCA were similar to mesotheliomas in humans, at least at the cellular and molecular level.« less

  1. Soldier, civilian, criminal: identifying pathways to offending of ex-armed forces personnel in prison

    PubMed Central

    Wainwright, Verity; McDonnell, Sharon; Lennox, Charlotte; Shaw, Jenny; Senior, Jane

    2016-01-01

    ABSTRACT Little is known about why some ex-armed forces personnel become involved in the criminal justice system, however, they represent the largest known occupational group in prison. In-depth interviews were employed to explore possible pathways to offending. Twenty ex-armed forces personnel in prison were recruited from five prisons in England. Data were analysed using a combination of thematic analysis and constant comparison methods rooted in grounded theory. Four predominant themes were identified: experiences of trauma and adversity; belonging; impulsivity and creating a soldier. Participants had experienced a number of traumatic incidents and adversity in their lives, encompassing pre, during and post-service but felt a sense of belonging in the armed forces. Participants demonstrated impulsivity in a number of areas with links to both their service in the armed forces and offending behaviour. The creation of the identity of ‘soldier’ was perceived to impact participants’ lives in a number of ways, including their offending, alcohol use and coping with trauma. The interplay of these themes and their potential impact on participants’ pathways to offending are discussed. PMID:27570440

  2. Characterization of a Pyrethroid-Degrading Pseudomonas fulva Strain P31 and Biochemical Degradation Pathway of D-Phenothrin.

    PubMed

    Yang, Jingjing; Feng, Yanmei; Zhan, Hui; Liu, Jie; Yang, Fang; Zhang, Kaiyang; Zhang, Lianhui; Chen, Shaohua

    2018-01-01

    D-phenothrin is one of the most popular pyrethroid insecticides for its broad spectrum and high insecticidal activity. However, continuous use of D-phenothrin has resulted in serious environmental contamination and raised public concern about its impact on human health. Biodegradation of D-phenothrin has never been investigated and its metabolic behaviors remain unknown. Here, a novel bacterial strain P31 was isolated from active sludge, which completely degraded (100%) D-phenothrin at 50 mg⋅L -1 in 72 h. Based on the morphology, 16S rRNA gene and Biolog tests, the strain was identified as Pseudomonas fulva . Biodegradation conditions were optimized as 29.5°C and pH 7.3 by utilizing response surface methodology. Strain P31 depicted high tolerance and strong D-phenothrin degradation ability through hydrolysis pathway. Strain P31 degraded D-phenothrin at inhibition constant ( K i ) of 482.1673 mg⋅L -1 and maximum specific degradation constant ( q max ) of 0.0455 h -1 whereas critical inhibitor concentration remained as 41.1189 mg⋅L -1 . The 3-Phenoxybenzaldehyde and 1,2-benzenedicarboxylic butyl dacyl ester were identified as the major intermediate metabolites of D-phenothrin degradation pathway through high-performance liquid chromatography and gas chromatography-mass spectrometry. Bioaugmentation of D-phenothrin-contaminated soils with strain P31 dramatically enhanced its degradation, and over 75% of D-phenothrin was removed from soils within 10 days. Moreover, the strain illustrated a remarkable capacity to degrade other synthetic pyrethroids, including permethrin, cyhalothrin, β-cypermethrin, deltamethrin, fenpropathrin, and bifenthrin, exhibiting great potential in bioremediation of pyrethroid-contaminated environment.

  3. The JAK/STAT pathway in obesity and diabetes.

    PubMed

    Gurzov, Esteban N; Stanley, William J; Pappas, Evan G; Thomas, Helen E; Gough, Daniel J

    2016-08-01

    Diabetes mellitus are complex, multi-organ metabolic pathologies characterized by hyperglycemia. Emerging evidence shows that the highly conserved and potent JAK/STAT signaling pathway is required for normal homeostasis, and, when dysregulated, contributes to the development of obesity and diabetes. In this review, we analyze the role of JAK/STAT activation in the brain, liver, muscle, fat and pancreas, and how this affects the course of the disease. We also consider the therapeutic implications of targeting the JAK/STAT pathway in treatment of obesity and diabetes. © 2016 Federation of European Biochemical Societies.

  4. Combinatory annotation of cell membrane receptors and signalling pathways of Bombyx mori prothoracic glands

    PubMed Central

    Moulos, Panagiotis; Samiotaki, Martina; Panayotou, George; Dedos, Skarlatos G.

    2016-01-01

    The cells of prothoracic glands (PG) are the main site of synthesis and secretion of ecdysteroids, the biochemical products of cholesterol conversion to steroids that shape the morphogenic development of insects. Despite the availability of genome sequences from several insect species and the extensive knowledge of certain signalling pathways that underpin ecdysteroidogenesis, the spectrum of signalling molecules and ecdysteroidogenic cascades is still not fully comprehensive. To fill this gap and obtain the complete list of cell membrane receptors expressed in PG cells, we used combinatory bioinformatic, proteomic and transcriptomic analysis and quantitative PCR to annotate and determine the expression profiles of genes identified as putative cell membrane receptors of the model insect species, Bombyx mori, and subsequently enrich the repertoire of signalling pathways that are present in its PG cells. The genome annotation dataset we report here highlights modules and pathways that may be directly involved in ecdysteroidogenesis and aims to disseminate data and assist other researchers in the discovery of the role of such receptors and their ligands. PMID:27576083

  5. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John J. Kilbane II

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been themore » focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.« less

  6. Barcode Sequencing Screen Identifies SUB1 as a Regulator of Yeast Pheromone Inducible Genes

    PubMed Central

    Sliva, Anna; Kuang, Zheng; Meluh, Pamela B.; Boeke, Jef D.

    2016-01-01

    The yeast pheromone response pathway serves as a valuable model of eukaryotic mitogen-activated protein kinase (MAPK) pathways, and transcription of their downstream targets. Here, we describe application of a screening method combining two technologies: fluorescence-activated cell sorting (FACS), and barcode analysis by sequencing (Bar-Seq). Using this screening method, and pFUS1-GFP as a reporter for MAPK pathway activation, we readily identified mutants in known mating pathway components. In this study, we also include a comprehensive analysis of the FUS1 induction properties of known mating pathway mutants by flow cytometry, featuring single cell analysis of each mutant population. We also characterized a new source of false positives resulting from the design of this screen. Additionally, we identified a deletion mutant, sub1Δ, with increased basal expression of pFUS1-GFP. Here, in the first ChIP-Seq of Sub1, our data shows that Sub1 binds to the promoters of about half the genes in the genome (tripling the 991 loci previously reported), including the promoters of several pheromone-inducible genes, some of which show an increase upon pheromone induction. Here, we also present the first RNA-Seq of a sub1Δ mutant; the majority of genes have no change in RNA, but, of the small subset that do, most show decreased expression, consistent with biochemical studies implicating Sub1 as a positive transcriptional regulator. The RNA-Seq data also show that certain pheromone-inducible genes are induced less in the sub1Δ mutant relative to the wild type, supporting a role for Sub1 in regulation of mating pathway genes. The sub1Δ mutant has increased basal levels of a small subset of other genes besides FUS1, including IMD2 and FIG1, a gene encoding an integral membrane protein necessary for efficient mating. PMID:26837954

  7. NAViGaTing the Micronome – Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs

    PubMed Central

    Shirdel, Elize A.; Xie, Wing; Mak, Tak W.; Jurisica, Igor

    2011-01-01

    Background MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome – referred to as the micronome – to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal — mirDIP (http://ophid.utoronto.ca/mirDIP). Results mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs. Conclusions Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level. PMID

  8. A hierarchical approach employing metabolic and gene expression profiles to identify the pathways that confer cytotoxicity in HepG2 cells

    PubMed Central

    Li, Zheng; Srivastava, Shireesh; Yang, Xuerui; Mittal, Sheenu; Norton, Paul; Resau, James; Haab, Brian; Chan, Christina

    2007-01-01

    Background Free fatty acids (FFA) and tumor necrosis factor alpha (TNF-α) have been implicated in the pathogenesis of many obesity-related metabolic disorders. When human hepatoblastoma cells (HepG2) were exposed to different types of FFA and TNF-α, saturated fatty acid was found to be cytotoxic and its toxicity was exacerbated by TNF-α. In order to identify the processes associated with the toxicity of saturated FFA and TNF-α, the metabolic and gene expression profiles were measured to characterize the cellular states. A computational model was developed to integrate these disparate data to reveal the underlying pathways and mechanisms involved in saturated fatty acid toxicity. Results A hierarchical framework consisting of three stages was developed to identify the processes and genes that regulate the toxicity. First, discriminant analysis identified that fatty acid oxidation and intracellular triglyceride accumulation were the most relevant in differentiating the cytotoxic phenotype. Second, gene set enrichment analysis (GSEA) was applied to the cDNA microarray data to identify the transcriptionally altered pathways and processes. Finally, the genes and gene sets that regulate the metabolic responses identified in step 1 were identified by integrating the expression of the enriched gene sets and the metabolic profiles with a multi-block partial least squares (MBPLS) regression model. Conclusion The hierarchical approach suggested potential mechanisms involved in mediating the cytotoxic and cytoprotective pathways, as well as identified novel targets, such as NADH dehydrogenases, aldehyde dehydrogenases 1A1 (ALDH1A1) and endothelial membrane protein 3 (EMP3) as modulator of the toxic phenotypes. These predictions, as well as, some specific targets that were suggested by the analysis were experimentally validated. PMID:17498300

  9. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis

    PubMed Central

    Moriarity, Branden S; Otto, George M; Rahrmann, Eric P; Rathe, Susan K; Wolf, Natalie K; Weg, Madison T; Manlove, Luke A; LaRue, Rebecca S; Temiz, Nuri A; Molyneux, Sam D; Choi, Kwangmin; Holly, Kevin J; Sarver, Aaron L; Scott, Milcah C; Forster, Colleen L; Modiano, Jaime F; Khanna, Chand; Hewitt, Stephen M; Khokha, Rama; Yang, Yi; Gorlick, Richard; Dyer, Michael A; Largaespada, David A

    2016-01-01

    Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma. PMID:25961939

  10. Biochemical Applications in the Analytical Chemistry Lab

    ERIC Educational Resources Information Center

    Strong, Cynthia; Ruttencutter, Jeffrey

    2004-01-01

    An HPLC and a UV-visible spectrophotometer are identified as instruments that helps to incorporate more biologically-relevant experiments into the course, in order to increase the students understanding of selected biochemistry topics and enhances their ability to apply an analytical approach to biochemical problems. The experiment teaches…

  11. A limit cycle oscillator model for cycling mood variations of bipolar disorder patients derived from cellular biochemical reaction equations

    NASA Astrophysics Data System (ADS)

    Frank, T. D.

    2013-08-01

    We derive a nonlinear limit cycle model for oscillatory mood variations as observed in patients with cycling bipolar disorder. To this end, we consider two signaling pathways leading to the activation of two enzymes that play a key role for cellular and neural processes. We model pathway cross-talk in terms of an inhibitory impact of the first pathway on the second and an excitatory impact of the second on the first. The model also involves a negative feedback loop (inhibitory self-regulation) for the first pathway and a positive feedback loop (excitatory self-regulation) for the second pathway. We demonstrate that due to the cross-talk the biochemical dynamics is described by an oscillator equation. Under disease-free conditions the oscillatory system exhibits a stable fixed point. The breakdown of the self-inhibition of the first pathway at higher concentration levels is studied by means of a scalar control parameter ξ, where ξ equal to zero refers to intact self-inhibition at all concentration levels. Under certain conditions, stable limit cycle solutions emerge at critical parameter values of ξ larger than zero. These oscillations mimic pathological cycling mood variations that emerge due to a disease-induced bifurcation. Consequently, our modeling analysis supports the notion of bipolar disorder as a dynamical disease. In addition, our study establishes a connection between mechanistic biochemical modeling of bipolar disorder and phenomenological nonlinear oscillator approaches to bipolar disorder suggested in the literature.

  12. Systematic bacterialization of yeast genes identifies a near-universally swappable pathway

    PubMed Central

    Kachroo, Aashiq H; Laurent, Jon M; Akhmetov, Azat; Szilagyi-Jones, Madelyn; McWhite, Claire D; Zhao, Alice; Marcotte, Edward M

    2017-01-01

    Eukaryotes and prokaryotes last shared a common ancestor ~2 billion years ago, and while many present-day genes in these lineages predate this divergence, the extent to which these genes still perform their ancestral functions is largely unknown. To test principles governing retention of ancient function, we asked if prokaryotic genes could replace their essential eukaryotic orthologs. We systematically replaced essential genes in yeast by their 1:1 orthologs from Escherichia coli. After accounting for mitochondrial localization and alternative start codons, 31 out of 51 bacterial genes tested (61%) could complement a lethal growth defect and replace their yeast orthologs with minimal effects on growth rate. Replaceability was determined on a pathway-by-pathway basis; codon usage, abundance, and sequence similarity contributed predictive power. The heme biosynthesis pathway was particularly amenable to inter-kingdom exchange, with each yeast enzyme replaceable by its bacterial, human, or plant ortholog, suggesting it as a near-universally swappable pathway. DOI: http://dx.doi.org/10.7554/eLife.25093.001 PMID:28661399

  13. Global Phosphoproteomics Identifies a Major Role for AKT and 14-3-3 in Regulating EDC3*

    PubMed Central

    Larance, Mark; Rowland, Alexander F.; Hoehn, Kyle L.; Humphreys, David T.; Preiss, Thomas; Guilhaus, Michael; James, David E.

    2010-01-01

    Insulin plays an essential role in metabolic homeostasis in mammals, and many of the underlying biochemical pathways are regulated via the canonical phosphatidylinositol 3-kinase/AKT pathway. To identify novel metabolic actions of insulin, we conducted a quantitative proteomics analysis of insulin-regulated 14-3-3-binding proteins in muscle cells. These studies revealed a novel role for insulin in the post-transcriptional regulation of mRNA expression. EDC3, a component of the mRNA decay and translation repression pathway associated with mRNA processing bodies, was shown to be phosphorylated by AKT downstream of insulin signaling. The major insulin-regulated site was mapped to Ser-161, and phosphorylation at this site led to increased 14-3-3 binding. Functional studies indicated that induction of 14-3-3 binding to EDC3 causes morphological changes in processing body structures, inhibition of microRNA-mediated mRNA post-transcriptional regulation, and alterations in the protein- protein interactions of EDC3. These data highlight an important new arm of the insulin signaling cascade in the regulation of mRNA utilization. PMID:20051463

  14. MATLAB-Based Teaching Modules in Biochemical Engineering

    ERIC Educational Resources Information Center

    Lee, Kilho; Comolli, Noelle K.; Kelly, William J.; Huang, Zuyi

    2015-01-01

    Mathematical models play an important role in biochemical engineering. For example, the models developed in the field of systems biology have been used to identify drug targets to treat pathogens such as Pseudomonas aeruginosa in biofilms. In addition, competitive binding models for chromatography processes have been developed to predict expanded…

  15. Methotrexate Is a JAK/STAT Pathway Inhibitor

    PubMed Central

    Thomas, Sally; Fisher, Katherine H.; Snowden, John A.; Danson, Sarah J.; Brown, Stephen; Zeidler, Martin P.

    2015-01-01

    Background The JAK/STAT pathway transduces signals from multiple cytokines and controls haematopoiesis, immunity and inflammation. In addition, pathological activation is seen in multiple malignancies including the myeloproliferative neoplasms (MPNs). Given this, drug development efforts have targeted the pathway with JAK inhibitors such as ruxolitinib. Although effective, high costs and side effects have limited its adoption. Thus, a need for effective low cost treatments remains. Methods & Findings We used the low-complexity Drosophila melanogaster pathway to screen for small molecules that modulate JAK/STAT signalling. This screen identified methotrexate and the closely related aminopterin as potent suppressors of STAT activation. We show that methotrexate suppresses human JAK/STAT signalling without affecting other phosphorylation-dependent pathways. Furthermore, methotrexate significantly reduces STAT5 phosphorylation in cells expressing JAK2 V617F, a mutation associated with most human MPNs. Methotrexate acts independently of dihydrofolate reductase (DHFR) and is comparable to the JAK1/2 inhibitor ruxolitinib. However, cells treated with methotrexate still retain their ability to respond to physiological levels of the ligand erythropoietin. Conclusions Aminopterin and methotrexate represent the first chemotherapy agents developed and act as competitive inhibitors of DHFR. Methotrexate is also widely used at low doses to treat inflammatory and immune-mediated conditions including rheumatoid arthritis. In this low-dose regime, folate supplements are given to mitigate side effects by bypassing the biochemical requirement for DHFR. Although independent of DHFR, the mechanism-of-action underlying the low-dose effects of methotrexate is unknown. Given that multiple pro-inflammatory cytokines signal through the pathway, we suggest that suppression of the JAK/STAT pathway is likely to be the principal anti-inflammatory and immunosuppressive mechanism-of-action of low

  16. Biochemical and genetic analysis of Leigh syndrome patients in Korea.

    PubMed

    Chae, Jong-Hee; Lee, Jin Sook; Kim, Ki Joong; Hwang, Yong Seung; Hirano, Michio

    2008-06-01

    Sixteen Korean patients with Leigh syndrome were identified at the Seoul National University Children's Hospital in 2001-2006. Biochemical or molecular defects were identified in 14 patients (87.5%). Thirteen patients had respiratory chain enzyme defects; 9 had complex I deficiency, and 4 had combined defects of complex I+III+IV. Based on the biochemical defects, targeted genetic studies in 4 patients with complex I deficiency revealed two heteroplasmic mitochondrial DNA mutations in ND genes. One patient had the mitochondrial DNA T8993G point mutation. No mitochondrial DNA defects were identified in 11 (68.7%) of our LS patients, who probably have mutations in nuclear DNA. Although a limited study based in a single tertiary medical center, our findings suggest that isolated complex I deficiency may be the most common cause of Leigh syndrome in Korea.

  17. The biochemical properties of antibodies and their fragments

    USDA-ARS?s Scientific Manuscript database

    Immunoglobulins (Ig) or antibodies are a powerful molecular recognition tools that can be used to identify minute quantities of a given target analyte. Their antigen binding properties define both the sensitivity and selectivity of an immunoassay. Understanding the biochemical properties of this c...

  18. Linear analysis near a steady-state of biochemical networks: control analysis, correlation metrics and circuit theory.

    PubMed

    Heuett, William J; Beard, Daniel A; Qian, Hong

    2008-05-15

    Several approaches, including metabolic control analysis (MCA), flux balance analysis (FBA), correlation metric construction (CMC), and biochemical circuit theory (BCT), have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS) biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RTBS and STBS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA).

  19. Development of a one-pot assay for screening and identification of Mur pathway inhibitors in Mycobacterium tuberculosis

    PubMed Central

    Eniyan, Kandasamy; Kumar, Anuradha; Rayasam, Geetha Vani; Perdih, Andrej; Bajpai, Urmi

    2016-01-01

    The cell wall of Mycobacterium tuberculosis (Mtb) consists of peptidoglycan, arabinogalactan and mycolic acids. The cytoplasmic steps in the peptidoglycan biosynthetic pathway, catalyzed by the Mur (A-F) enzymes, involve the synthesis of UDP-n-acetylmuramyl pentapeptide, a key precursor molecule required for the formation of the peptidoglycan monomeric building blocks. Mur enzymes are indispensable for cell integrity and their lack of counterparts in eukaryotes suggests them to be promising Mtb drug targets. However, the caveat is that most of the current assays utilize a single Mur enzyme, thereby identifying inhibitors against only one of the enzymes. Here, we report development of a one-pot assay that reconstructs the entire Mtb Mur pathway in vitro and has the advantage of eliminating the requirement for nucleotide intermediates in the pathway as substrates. The MurA-MurF enzymes were purified and a one-pot assay was developed through optimization of successive coupled enzyme assays using UDP-n-acetylglucosamine as the initial sugar substrate. The assay is biochemically characterized and optimized for high-throughput screening of molecules that could disrupt multiple targets within the pathway. Furthermore, we have validated the assay by performing it to identify D-Cycloserine and furan-based benzene-derived compounds with known Mur ligase inhibition as inhibitors of Mtb MurE and MurF. PMID:27734910

  20. Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus.

    PubMed

    Kundu, Subrata; Chakraborty, Dipjyoti; Kundu, Anirban; Pal, Amita

    2013-01-01

    Vigna mungo, a tropical leguminous plant, highly susceptible to yellow mosaic disease caused by Mungbean Yellow Mosaic India Virus (MYMIV) resulting in high yield penalty. The molecular events occurring during compatible and incompatible interactions between V. mungo and MYMIV pathosystem are yet to be explored. In this study biochemical analyses in conjunction with proteomics of MYMIV-susceptible and -resistant V. mungo genotypes were executed to get an insight in the molecular events during compatible and incompatible plant-virus interactions. Biochemical analysis revealed an increase in phenolics, hydrogen peroxide and carbohydrate contents in both compatible and incompatible interactions; but the magnitudes were higher during incompatible interaction. In the resistant genotype the activities of superoxide dismutase and ascorbate peroxidase increased significantly, while catalase activity decreased. Comparative proteome analyses using two-dimensional gel electrophoresis coupled with mass spectrometry identified 109 differentially abundant proteins at 3, 7 and 14 days post MYMIV-inoculation. Proteins of several functional categories were differentially changed in abundance during both compatible and incompatible interactions. Among these, photosynthesis related proteins were mostly affected in the susceptible genotype resulting in reduced photosynthesis rate under MYMIV-stress. Differential intensities of chlorophyll fluorescence and chlorophyll contents are in congruence with proteomics data. It was revealed that Photosystem II electron transports are the primary targets of MYMIV during pathogenesis. Quantitative real time PCR analyses of selected genes corroborates with respective protein abundance during incompatible interaction. The network of various cellular pathways that are involved in inducing defense response contains several conglomerated cores of nodal proteins, of which ascorbate peroxidase, rubisco activase and serine/glycine hydroxymethyl

  1. Identifying biological pathways that underlie primordial short stature using network analysis.

    PubMed

    Hanson, Dan; Stevens, Adam; Murray, Philip G; Black, Graeme C M; Clayton, Peter E

    2014-06-01

    Mutations in CUL7, OBSL1 and CCDC8, leading to disordered ubiquitination, cause one of the commonest primordial growth disorders, 3-M syndrome. This condition is associated with i) abnormal p53 function, ii) GH and/or IGF1 resistance, which may relate to failure to recycle signalling molecules, and iii) cellular IGF2 deficiency. However the exact molecular mechanisms that may link these abnormalities generating growth restriction remain undefined. In this study, we have used immunoprecipitation/mass spectrometry and transcriptomic studies to generate a 3-M 'interactome', to define key cellular pathways and biological functions associated with growth failure seen in 3-M. We identified 189 proteins which interacted with CUL7, OBSL1 and CCDC8, from which a network including 176 of these proteins was generated. To strengthen the association to 3-M syndrome, these proteins were compared with an inferred network generated from the genes that were differentially expressed in 3-M fibroblasts compared with controls. This resulted in a final 3-M network of 131 proteins, with the most significant biological pathway within the network being mRNA splicing/processing. We have shown using an exogenous insulin receptor (INSR) minigene system that alternative splicing of exon 11 is significantly changed in HEK293 cells with altered expression of CUL7, OBSL1 and CCDC8 and in 3-M fibroblasts. The net result is a reduction in the expression of the mitogenic INSR isoform in 3-M syndrome. From these preliminary data, we hypothesise that disordered ubiquitination could result in aberrant mRNA splicing in 3-M; however, further investigation is required to determine whether this contributes to growth failure. © 2014 The authors.

  2. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).

    PubMed

    Li, Chun-Fang; Xu, Yan-Xia; Ma, Jian-Qiang; Jin, Ji-Qiang; Huang, Dan-Juan; Yao, Ming-Zhe; Ma, Chun-Lei; Chen, Liang

    2016-09-08

    The new shoots of the albino tea cultivar 'Anji Baicha' are yellow or white at low temperatures and turn green as the environmental temperatures increase during the early spring. 'Anji Baicha' metabolite profiles exhibit considerable variability over three color and developmental stages, especially regarding the carotenoid, chlorophyll, and theanine concentrations. Previous studies focused on physiological characteristics, gene expression differences, and variations in metabolite abundances in albino tea plant leaves at specific growth stages. However, the molecular mechanisms regulating metabolite biosynthesis in various color and developmental stages in albino tea leaves have not been fully characterized. We used RNA-sequencing to analyze 'Anji Baicha' leaves at the yellow-green, albescent, and re-greening stages. The leaf transcriptomes differed considerably among the three stages. Functional classifications based on Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed unigenes were mainly related to metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and carbon fixation in photosynthetic organisms. Chemical analyses revealed higher β-carotene and theanine levels, but lower chlorophyll a levels, in the albescent stage than in the green stage. Furthermore, unigenes involved in carotenoid, chlorophyll, and theanine biosyntheses were identified, and the expression patterns of the differentially expressed unigenes in these biosynthesis pathways were characterized. Through co-expression analyses, we identified the key genes in these pathways. These genes may be responsible for the metabolite biosynthesis differences among the different leaf color and developmental stages of 'Anji Baicha' tea plants. Our study presents the results of transcriptomic and biochemical analyses of 'Anji Baicha' tea plants at various stages. The distinct transcriptome profiles

  3. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals.

    PubMed

    Su, Fei; Xu, Ping

    2014-01-29

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species.

  4. Genomic analysis of thermophilic Bacillus coagulans strains: efficient producers for platform bio-chemicals

    PubMed Central

    Su, Fei; Xu, Ping

    2014-01-01

    Microbial strains with high substrate efficiency and excellent environmental tolerance are urgently needed for the production of platform bio-chemicals. Bacillus coagulans has these merits; however, little genetic information is available about this species. Here, we determined the genome sequences of five B. coagulans strains, and used a comparative genomic approach to reconstruct the central carbon metabolism of this species to explain their fermentation features. A novel xylose isomerase in the xylose utilization pathway was identified in these strains. Based on a genome-wide positive selection scan, the selection pressure on amino acid metabolism may have played a significant role in the thermal adaptation. We also researched the immune systems of B. coagulans strains, which provide them with acquired resistance to phages and mobile genetic elements. Our genomic analysis provides comprehensive insights into the genetic characteristics of B. coagulans and paves the way for improving and extending the uses of this species. PMID:24473268

  5. Untargeted Metabolomic Analysis of Rat Neuroblastoma Cells as a Model System to Study the Biochemical Effects of the Acute Administration of Methamphetamine.

    PubMed

    Maker, Garth L; Green, Tobias; Mullaney, Ian; Trengove, Robert D

    2018-06-07

    Methamphetamine is an illicit psychostimulant drug that is linked to a number of diseases of the nervous system. The downstream biochemical effects of its primary mechanisms are not well understood, and the objective of this study was to investigate whether untargeted metabolomic analysis of an in vitro model could generate data relevant to what is already known about this drug. Rat B50 neuroblastoma cells were treated with 1 mM methamphetamine for 48 h, and both intracellular and extracellular metabolites were profiled using gas chromatography⁻mass spectrometry. Principal component analysis of the data identified 35 metabolites that contributed most to the difference in metabolite profiles. Of these metabolites, the most notable changes were in amino acids, with significant increases observed in glutamate, aspartate and methionine, and decreases in phenylalanine and serine. The data demonstrated that glutamate release and, subsequently, excitotoxicity and oxidative stress were important in the response of the neuronal cell to methamphetamine. Following this, the cells appeared to engage amino acid-based mechanisms to reduce glutamate levels. The potential of untargeted metabolomic analysis has been highlighted, as it has generated biochemically relevant data and identified pathways significantly affected by methamphetamine. This combination of technologies has clear uses as a model for the study of neuronal toxicology.

  6. Possible Roles of Fluoride and Carbonate in Biochemical Carbonated Apatite Formation

    NASA Astrophysics Data System (ADS)

    Meouch, Orysia; Omelon, Sidney

    2016-04-01

    Marine phosphorites are predominantly composed of carbonated fluorapatite (CFA = Ca10-a-b-cNaaMgb(PO4)6-x(CO3)x-y-z(CO3.F)y(SO4)zF2, where x=y+a+2c, and c represents the number of Ca vacancies, with a P2O5 content that ranges from 18-40 %. Sulphur-oxidizing bacteria of the Beggiatoa genus concentration phosphorous as intracellular polyphosphate ((PO3-)n) which is depolymerized into inorganic orthophosphate (Pi). Consequently, an increase in pore water Pi concentration favours carbonated apatite precipitation. The carbonate and fluoride that is characteristic of phosphorite CFA is also located in the vertebrate skeleton. This similarity suggests a biochemical pathway for CFA precipitation. Preliminary Raman spectroscopy and powder x-ray diffraction results that suggest a role for fluoride, and possibly carbonate, in the biochemical depolymerisation of polyphosphates with alkaline phosphatase will be presented.

  7. Extreme Outlier Analysis Identifies Occult Mitogen-Activated Protein Kinase Pathway Mutations in Patients With Low-Grade Serous Ovarian Cancer

    PubMed Central

    Grisham, Rachel N.; Sylvester, Brooke E.; Won, Helen; McDermott, Gregory; DeLair, Deborah; Ramirez, Ricardo; Yao, Zhan; Shen, Ronglai; Dao, Fanny; Bogomolniy, Faina; Makker, Vicky; Sala, Evis; Soumerai, Tara E.; Hyman, David M.; Socci, Nicholas D.; Viale, Agnes; Gershenson, David M.; Farley, John; Levine, Douglas A.; Rosen, Neal; Berger, Michael F.; Spriggs, David R.; Aghajanian, Carol A.; Solit, David B.; Iyer, Gopa

    2015-01-01

    Purpose No effective systemic therapy exists for patients with metastatic low-grade serous (LGS) ovarian cancers. BRAF and KRAS mutations are common in serous borderline (SB) and LGS ovarian cancers, and MEK inhibition has been shown to induce tumor regression in a minority of patients; however, no correlation has been observed between mutation status and clinical response. With the goal of identifying biomarkers of sensitivity to MEK inhibitor treatment, we performed an outlier analysis of a patient who experienced a complete, durable, and ongoing (> 5 years) response to selumetinib, a non-ATP competitive MEK inhibitor. Patients and Methods Next-generation sequencing was used to analyze this patient's tumor as well as an additional 28 SB/LGS tumors. Functional characterization of an identified novel alteration of interest was performed. Results Analysis of the extraordinary responder's tumor identified a 15-nucleotide deletion in the negative regulatory helix of the MAP2K1 gene encoding for MEK1. Functional characterization demonstrated that this mutant induced extracellular signal-regulated kinase pathway activation, promoted anchorage-independent growth and tumor formation in mice, and retained sensitivity to selumetinib. Analysis of additional LGS/SB tumors identified mutations predicted to induce extracellular signal-regulated kinase pathway activation in 82% (23 of 28), including two patients with BRAF fusions, one of whom achieved an ongoing complete response to MEK inhibitor–based combination therapy. Conclusion Alterations affecting the mitogen-activated protein kinase pathway are present in the majority of patients with LGS ovarian cancer. Next-generation sequencing analysis revealed deletions and fusions that are not detected by older sequencing approaches. These findings, coupled with the observation that a subset of patients with recurrent LGS ovarian cancer experienced dramatic and durable responses to MEK inhibitor therapy, support additional

  8. Label-Free LC-MS/MS Proteomic Analysis of Cerebrospinal Fluid Identifies Protein/Pathway Alterations and Candidate Biomarkers for Amyotrophic Lateral Sclerosis.

    PubMed

    Collins, Mahlon A; An, Jiyan; Hood, Brian L; Conrads, Thomas P; Bowser, Robert P

    2015-11-06

    Analysis of the cerebrospinal fluid (CSF) proteome has proven valuable to the study of neurodegenerative disorders. To identify new protein/pathway alterations and candidate biomarkers for amyotrophic lateral sclerosis (ALS), we performed comparative proteomic profiling of CSF from sporadic ALS (sALS), healthy control (HC), and other neurological disease (OND) subjects using label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1712 CSF proteins were detected and relatively quantified by spectral counting. Levels of several proteins with diverse biological functions were significantly altered in sALS samples. Enrichment analysis was used to link these alterations to biological pathways, which were predominantly related to inflammation, neuronal activity, and extracellular matrix regulation. We then used our CSF proteomic profiles to create a support vector machines classifier capable of discriminating training set ALS from non-ALS (HC and OND) samples. Four classifier proteins, WD repeat-containing protein 63, amyloid-like protein 1, SPARC-like protein 1, and cell adhesion molecule 3, were identified by feature selection and externally validated. The resultant classifier distinguished ALS from non-ALS samples with 83% sensitivity and 100% specificity in an independent test set. Collectively, our results illustrate the utility of CSF proteomic profiling for identifying ALS protein/pathway alterations and candidate disease biomarkers.

  9. Evidence for the Existence in Arabidopsis thaliana of the Proteasome Proteolytic Pathway

    PubMed Central

    Polge, Cécile; Jaquinod, Michel; Holzer, Frances; Bourguignon, Jacques; Walling, Linda; Brouquisse, Renaud

    2009-01-01

    Heavy metals are known to generate reactive oxygen species that lead to the oxidation and fragmentation of proteins, which become toxic when accumulated in the cell. In this study, we investigated the role of the proteasome during cadmium stress in the leaves of Arabidopsis thaliana plants. Using biochemical and proteomics approaches, we present the first evidence of an active proteasome pathway in plants. We identified and characterized the peptidases acting sequentially downstream from the proteasome in animal cells as follows: tripeptidyl-peptidase II, thimet oligopeptidase, and leucine aminopeptidase. We investigated the proteasome proteolytic pathway response in the leaves of 6-week-old A. thaliana plants grown hydroponically for 24, 48, and 144 h in the presence or absence of 50 μm cadmium. The gene expression and proteolytic activity of the proteasome and the different proteases of the pathway were found to be up-regulated in response to cadmium. In an in vitro assay, oxidized bovine serum albumin and lysozyme were more readily degraded in the presence of 20 S proteasome and tripeptidyl-peptidase II than their nonoxidized form, suggesting that oxidized proteins are preferentially degraded by the Arabidopsis 20 S proteasome pathway. These results show that, in response to cadmium, the 20 S proteasome proteolytic pathway is up-regulated at both RNA and activity levels in Arabidopsis leaves and may play a role in degrading oxidized proteins generated by the stress. PMID:19822524

  10. An adaptation to life in acid through a novel mevalonate pathway

    DOE PAGES

    Vinokur, Jeffrey M.; Cummins, Matthew C.; Korman, Tyler P.; ...

    2016-12-22

    Here, extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previouslymore » identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.« less

  11. An adaptation to life in acid through a novel mevalonate pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinokur, Jeffrey M.; Cummins, Matthew C.; Korman, Tyler P.

    Here, extreme acidophiles are capable of growth at pH values near zero. Sustaining life in acidic environments requires extensive adaptations of membranes, proton pumps, and DNA repair mechanisms. Here we describe an adaptation of a core biochemical pathway, the mevalonate pathway, in extreme acidophiles. Two previously known mevalonate pathways involve ATP dependent decarboxylation of either mevalonate 5-phosphate or mevalonate 5-pyrophosphate, in which a single enzyme carries out two essential steps: (1) phosphorylation of the mevalonate moiety at the 3-OH position and (2) subsequent decarboxylation. We now demonstrate that in extreme acidophiles, decarboxylation is carried out by two separate steps: previouslymore » identified enzymes generate mevalonate 3,5-bisphosphate and a new decarboxylase we describe here, mevalonate 3,5-bisphosphate decarboxylase, produces isopentenyl phosphate. Why use two enzymes in acidophiles when one enzyme provides both functionalities in all other organisms examined to date? We find that at low pH, the dual function enzyme, mevalonate 5-phosphate decarboxylase is unable to carry out the first phosphorylation step, yet retains its ability to perform decarboxylation. We therefore propose that extreme acidophiles had to replace the dual-purpose enzyme with two specialized enzymes to efficiently produce isoprenoids in extremely acidic environments.« less

  12. Increase in furfural tolerance by combinatorial overexpression of NAD salvage pathway enzymes in engineered isobutanol-producing E. coli.

    PubMed

    Song, Hun-Suk; Jeon, Jong-Min; Kim, Hyun-Joong; Bhatia, Shashi Kant; Sathiyanarayanan, Ganesan; Kim, Junyoung; Won Hong, Ju; Gi Hong, Yoon; Young Choi, Kwon; Kim, Yun-Gon; Kim, Wooseong; Yang, Yung-Hun

    2017-12-01

    To reduce the furfural toxicity for biochemical production in E. coli, a new strategy was successfully applied by supplying NAD(P)H through the nicotine amide salvage pathway. To alleviate the toxicity, nicotinamide salvage pathway genes were overexpressed in recombinant, isobutanol-producing E. coli. Gene expression of pncB and nadE respectively showed increased tolerance to furfural among these pathways. The combined expression of pncB and nadE was the most effective in increasing the tolerance of the cells to toxic aldehydes. By comparing noxE- and fdh-harbouring strains, the form of NADH, rather than NAD + , was the major effector of furfural tolerance. Overall, this study is the application of the salvage pathway to isobutanol production in the presence of furfural, and this system seems to be applicable to alleviate furfural toxicity in the production of other biochemical. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Incidence of Abnormal Liver Biochemical Tests in Hyperthyroidism

    PubMed Central

    Lin, Tiffany Y.; Shekar, Anshula O.; Li, Ning; Yeh, Michael W.; Saab, Sammy; Wilson, Mark; Leung, Angela M.

    2017-01-01

    Objective Abnormal serum liver function tests are common in patients with untreated thyrotoxicosis, even prior to the initiation of antithyroidal medications that may worsen their severity. There is a wide range of the incidence of these abnormalities in the published literature. The aim of this study was to assess the risks factors and threshold of thyrotoxicosis severity for developing an abnormal liver biochemical test upon the diagnosis of new thyrotoxicosis. Design Single-institution retrospective cohort study. Patients Patients ≥18 years old receiving medical care at a large, academic, urban U.S. medical center between 2002–2016. Measurements Inclusion criteria were a serum thyroid stimulating hormone [TSH] concentration < 0.3 mIU/L or ICD-9 code for thyrotoxicosis, with thyrotoxicosis confirmed by either a concurrent elevated serum triiodothyronine (T3) and/or thyroxine (T4) concentration [total or free] within 3 months), and an available liver biochemical test(s) within 6 months of thyrotoxicosis. The biochemical liver tests assessed were serum aspartate transaminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), gamma-glutamyltransferase (GGT), total bilirubin, and conjugated bilirubin concentrations. Results In this cohort of 1,514 subjects, the overall incidence of any biochemical liver test abnormality within 6 months of thyrotoxicosis was 39%. An initial serum TSH concentration <0.02 mIU/L, male gender, and African-American race were significant predictors of an abnormal serum liver biochemical test within 6 months of the diagnosis of new-onset untreated thyrotoxicosis. Conclusions This study identifies risk factors for patients who develop an abnormal serum liver biochemical test result within 6 months of a diagnosis of untreated thyrotoxicosis. PMID:28199740

  14. Incidence of abnormal liver biochemical tests in hyperthyroidism.

    PubMed

    Lin, Tiffany Y; Shekar, Anshula O; Li, Ning; Yeh, Michael W; Saab, Sammy; Wilson, Mark; Leung, Angela M

    2017-05-01

    Abnormal serum liver function tests are common in patients with untreated thyrotoxicosis, even prior to the initiation of antithyroidal medications that may worsen the severity of the abnormal serum liver biochemistries. There is a wide range of the incidence of these abnormalities in the published literature. The aim of this study was to assess the risks factors and threshold of thyrotoxicosis severity for developing an abnormal liver biochemical test upon the diagnosis of new thyrotoxicosis. Single-institution retrospective cohort study. Patients of ≥18 years old receiving medical care at a large, academic, urban US medical centre between 2002-2016. Inclusion criteria were a serum thyroid stimulating hormone (TSH) concentration of <0·3 mIU/l or ICD-9 code for thyrotoxicosis, with thyrotoxicosis confirmed by either a concurrent elevated serum triiodothyronine (T3) or thyroxine (T4) concentration ([total or free] within 3 months), and an available liver biochemical test(s) within 6 months of thyrotoxicosis. The biochemical liver tests assessed were serum aspartate transaminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AP), gamma-glutamyltransferase (GGT), total bilirubin, and conjugated bilirubin concentrations. In this cohort of 1514 subjects, the overall incidence of any biochemical liver test abnormality within 6 months of thyrotoxicosis was 39%. An initial serum TSH concentration <0·02 mIU/l, male gender, and African-American race were significant predictors of an abnormal serum liver biochemical test within 6 months of the diagnosis of new-onset untreated thyrotoxicosis. This study identifies risk factors for patients who develop an abnormal serum liver biochemical test result within 6 months of a diagnosis of untreated thyrotoxicosis. © 2017 John Wiley & Sons Ltd.

  15. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes.

    PubMed

    Katare, Rajesh; Oikawa, Atsuhiko; Cesselli, Daniela; Beltrami, Antonio P; Avolio, Elisa; Muthukrishnan, Deepti; Munasinghe, Pujika Emani; Angelini, Gianni; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1(pos) CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105(pos) progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity.

  16. Evolution of a flipped pathway creates metabolic innovation in tomato trichomes through BAHD enzyme promiscuity.

    PubMed

    Fan, Pengxiang; Miller, Abigail M; Liu, Xiaoxiao; Jones, A Daniel; Last, Robert L

    2017-12-12

    Plants produce hundreds of thousands of structurally diverse specialized metabolites via multistep biosynthetic networks, including compounds of ecological and therapeutic importance. These pathways are restricted to specific plant groups, and are excellent systems for understanding metabolic evolution. Tomato and other plants in the nightshade family synthesize protective acylated sugars in the tip cells of glandular trichomes on stems and leaves. We describe a metabolic innovation in wild tomato species that contributes to acylsucrose structural diversity. A small number of amino acid changes in two acylsucrose acyltransferases alter their acyl acceptor preferences, resulting in reversal of their order of reaction and increased product diversity. This study demonstrates how small numbers of amino acid changes in multiple pathway enzymes can lead to diversification of specialized metabolites in plants. It also highlights the power of a combined genetic, genomic and in vitro biochemical approach to identify the evolutionary mechanisms leading to metabolic novelty.

  17. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making.

    PubMed

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha; Zhou, Xiaolin

    2017-09-01

    The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. © The Author (2017). Published by Oxford University Press.

  18. Identifying new susceptibility genes on dopaminergic and serotonergic pathways for the framing effect in decision-making

    PubMed Central

    Gao, Xiaoxue; Liu, Jinting; Gong, Pingyuan; Wang, Junhui; Fang, Wan; Yan, Hongming; Zhu, Lusha

    2017-01-01

    Abstract The framing effect refers the tendency to be risk-averse when options are presented positively but be risk-seeking when the same options are presented negatively during decision-making. This effect has been found to be modulated by the serotonin transporter gene (SLC6A4) and the catechol-o-methyltransferase gene (COMT) polymorphisms, which are on the dopaminergic and serotonergic pathways and which are associated with affective processing. The current study aimed to identify new genetic variations of genes on dopaminergic and serotonergic pathways that may contribute to individual differences in the susceptibility to framing. Using genome-wide association data and the gene-based principal components regression method, we examined genetic variations of 26 genes on the pathways in 1317 Chinese Han participants. Consistent with previous studies, we found that the genetic variations of the SLC6A4 gene and the COMT gene were associated with the framing effect. More importantly, we demonstrated that the genetic variations of the aromatic-L-amino-acid decarboxylase (DDC) gene, which is involved in the synthesis of both dopamine and serotonin, contributed to individual differences in the susceptibility to framing. Our findings shed light on the understanding of the genetic basis of affective decision-making. PMID:28431168

  19. Accuracy of simple biochemical tests in identifying liver fibrosis in patients co-infected with human immunodeficiency virus and hepatitis C virus.

    PubMed

    Tural, Cristina; Tor, Jordi; Sanvisens, Arantza; Pérez-Alvarez, Núria; Martínez, Elisenda; Ojanguren, Isabel; García-Samaniego, Javier; Rockstroh, Juergen; Barluenga, Eva; Muga, Robert; Planas, Ramon; Sirera, Guillem; Rey-Joly, Celestino; Clotet, Bonaventura

    2009-03-01

    We assessed the ability of 3 simple biochemical tests to stage liver fibrosis in patients co-infected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). We analyzed liver biopsy samples from 324 consecutive HIV/HCV-positive patients (72% men; mean age, 38 y; mean CD4+ T-cell counts, 548 cells/mm(3)). Scheuer fibrosis scores were as follows: 30% had F0, 22% had F1, 19% had F2, 23% had F3, and 6% had F4. Logistic regression analyses were used to predict the probability of significant (>or=F2) or advanced (>or=F3) fibrosis, based on numeric scores from the APRI, FORNS, or FIB-4 tests (alone and in combination). Area under the receiver operating characteristic curves were analyzed to assess diagnostic performance. Area under the receiver operating characteristic curves analyses indicated that the 3 tests had similar abilities to identify F2 and F3; the ability of APRI, FORNS, and FIB-4 were as follows: F2 or greater: 0.72, 0.67, and 0.72, respectively; F3 or greater: 0.75, 0.73, and 0.78, respectively. The accuracy of each test in predicting which samples were F3 or greater was significantly higher than for F2 or greater (APRI, FORNS, and FIB-4: >or=F3: 75%, 76%, and 76%, respectively; >or=F2: 66%, 62%, and 68%, respectively). By using the lowest cut-off values for all 3 tests, F3 or greater was ruled out with sensitivity and negative predictive values of 79% to 94% and 87% to 91%, respectively, and 47% to 70% accuracy. Advanced liver fibrosis (>or=F3) was identified using the highest cut-off value, with specificity and positive predictive values of 90% to 96% and 63% to 73%, respectively, and 75% to 77% accuracy. Simple biochemical tests accurately predicted liver fibrosis in more than half the HIV/HCV co-infected patients. The absence and presence of liver fibrosis are predicted fairly using the lowest and highest cut-off levels, respectively.

  20. Use of an activated beta-catenin to identify Wnt pathway target genes in caenorhabditis elegans, including a subset of collagen genes expressed in late larval development.

    PubMed

    Jackson, Belinda M; Abete-Luzi, Patricia; Krause, Michael W; Eisenmann, David M

    2014-04-16

    The Wnt signaling pathway plays a fundamental role during metazoan development, where it regulates diverse processes, including cell fate specification, cell migration, and stem cell renewal. Activation of the beta-catenin-dependent/canonical Wnt pathway up-regulates expression of Wnt target genes to mediate a cellular response. In the nematode Caenorhabditis elegans, a canonical Wnt signaling pathway regulates several processes during larval development; however, few target genes of this pathway have been identified. To address this deficit, we used a novel approach of conditionally activated Wnt signaling during a defined stage of larval life by overexpressing an activated beta-catenin protein, then used microarray analysis to identify genes showing altered expression compared with control animals. We identified 166 differentially expressed genes, of which 104 were up-regulated. A subset of the up-regulated genes was shown to have altered expression in mutants with decreased or increased Wnt signaling; we consider these genes to be bona fide C. elegans Wnt pathway targets. Among these was a group of six genes, including the cuticular collagen genes, bli-1 col-38, col-49, and col-71. These genes show a peak of expression in the mid L4 stage during normal development, suggesting a role in adult cuticle formation. Consistent with this finding, reduction of function for several of the genes causes phenotypes suggestive of defects in cuticle function or integrity. Therefore, this work has identified a large number of putative Wnt pathway target genes during larval life, including a small subset of Wnt-regulated collagen genes that may function in synthesis of the adult cuticle.

  1. A Competitive Stapled Peptide Screen Identifies a Selective Small Molecule that Overcomes MCL-1-dependent Leukemia Cell Survival

    PubMed Central

    Cohen, Nicole A.; Stewart, Michelle L.; Gavathiotis, Evripidis; Tepper, Jared L.; Bruekner, Susanne R.; Koss, Brian; Opferman, Joseph T.; Walensky, Loren D.

    2012-01-01

    SUMMARY Cancer cells hijack BCL-2 family survival proteins to suppress the death effectors and thereby enforce an immortal state. This is accomplished biochemically by an anti-apoptotic surface groove that neutralizes the pro-apoptotic BH3 α-helix of death proteins. Anti-apoptotic MCL-1 in particular has emerged as a ubiquitous resistance factor in cancer. Whereas targeting the BCL-2 anti-apoptotic subclass effectively restores the death pathway in BCL-2-dependent cancer, the development of molecules tailored to the binding specificity of MCL-1 has lagged. We previously discovered that a hydrocarbon-stapled MCL-1 BH3 helix is an exquisitely selective MCL-1 antagonist. By deploying this unique reagent in a competitive screen, we identified an MCL-1 inhibitor molecule that selectively targets the BH3-binding groove of MCL-1, neutralizes its biochemical lockhold on apoptosis, and induces caspase activation and leukemia cell death in the specific context of MCL-1 dependence. PMID:22999885

  2. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation

    PubMed Central

    Viader, Andreu; Ogasawara, Daisuke; Joslyn, Christopher M; Sanchez-Alavez, Manuel; Mori, Simone; Nguyen, William; Conti, Bruno; Cravatt, Benjamin F

    2016-01-01

    Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 PMID:26779719

  3. First biochemical and crystallographic characterization of a fast-performing ferritin from a marine invertebrate.

    PubMed

    De Meulenaere, Evelien; Bailey, Jake Brian; Tezcan, Faik Akif; Deheyn, Dimitri Dominique

    2017-12-11

    Ferritin, a multimeric cage-like enzyme, is integral to iron metabolism across all phyla through the sequestration and storage of iron through efficient ferroxidase activity. While ferritin sequences from ∼900 species have been identified, crystal structures from only 50 species have been reported, the majority from bacterial origin. We recently isolated a secreted ferritin from the marine invertebrate Chaetopterus sp. (parchment tube worm), which resides in muddy coastal seafloors. Here, we present the first ferritin from a marine invertebrate to be crystallized and its biochemical characterization. The initial ferroxidase reaction rate of recombinant Chaetopterus ferritin (ChF) is 8-fold faster than that of recombinant human heavy-chain ferritin (HuHF). To our knowledge, this protein exhibits the fastest catalytic performance ever described for a ferritin variant. In addition to the high-velocity ferroxidase activity, ChF is unique in that it is secreted by Chaetopterus in a bioluminescent mucus. Previous work has linked the availability of Fe 2+ to this long-lived bioluminescence, suggesting a potential function for the secreted ferritin. Comparative biochemical analyses indicated that both ChF and HuHF showed similar behavior toward changes in pH, temperature, and salt concentration. Comparison of their crystal structures shows no significant differences in the catalytic sites. Notable differences were found in the residues that line both 3-fold and 4-fold pores, potentially leading to increased flexibility, reduced steric hindrance, or a more efficient pathway for Fe 2+ transportation to the ferroxidase site. These suggested residues could contribute to the understanding of iron translocation through the ferritin shell to the ferroxidase site. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  4. Biochemical functionalization of peptide nanotubes with phage displayed peptides

    NASA Astrophysics Data System (ADS)

    Swaminathan, Swathi; Cui, Yue

    2016-09-01

    The development of a general approach for the biochemical functionalization of peptide nanotubes (PNTs) could open up existing opportunities in both fundamental studies as well as a variety of applications. PNTs are spontaneously assembled organic nanostructures made from peptides. Phage display has emerged as a powerful approach for identifying selective peptide binding motifs. Here, we demonstrate for the first time the biochemical functionalization of PNTs via peptides identified from a phage display peptide library. The phage-displayed peptides are shown to recognize PNTs. These advances further allow for the development of bifunctional peptides for the capture of bacteria and the self-assembly of silver particles onto PNTs. We anticipate that these results could provide significant opportunities for using PNTs in both fundamental studies and practical applications, including sensors and biosensors nanoelectronics, energy storage devices, drug delivery, and tissue engineering.

  5. CLINICAL FACTORS ASSOCIATED WITH BIOCHEMICAL ADRENAL-CORTISOL INSUFFICIENCY IN HOSPITALIZED PATIENTS

    PubMed Central

    Ben-Shlomo, Anat; Mirocha, James; Liu, Ning-Ai; Sheinin, Renee C.; Melmed, Shlomo

    2014-01-01

    Background Diagnosis of adrenal-cortisol insufficiency is often misleading in hospitalized patients as clinical and biochemical features overlap with co-morbidities. We analyzed clinical determinants associated with a biochemical diagnosis of adrenal-cortisol insufficiency in non-ICU hospitalized patients. Methods In a retrospective cohort study we reviewed 4668 inpatients with random morning cortisol levels ≤15 μg/dL hospitalized in our center between 2003 and 2010. Using serum cortisol threshold level of 18 μg/dL 30 and/or 60 minutes after cortrosyn (250 μg) injection to define biochemical adrenal-cortisol status, we characterized and compared insufficient (n=108, serum cortisol ≤18 μg/dL) and sufficient ( n=394; serum cortisol >18 μg/dL) non-ICU hospitalized patients. Results Commonly reported clinical and routine biochemical adrenal-cortisol insufficiency features were similar between insufficient and sufficient inpatients. Biochemical adrenal-cortisol insufficiency was associated with increased frequency of liver disease, specifically hepatitis C (p=0.01) and prior orthotopic liver transplantation (p<0.001), HIV (p=0.005) and reported preexisting male hypogonadism (p<0.001) as compared to biochemical adrenal-cortisol sufficiency group. Forty percent of insufficient inpatients were not treated with glucocorticoids after diagnosis. Multivariable logistic analysis demonstrated that inpatients with higher cortisol levels (p=0.0001), higher diastolic blood pressure (p=0.05) and females (p=0.009) were more likely not to be treated, while those with previous short-term glucocorticoid treatment (p=0.002), had other co-existing endocrine diseases (p=0.005) or received an inhospital endocrinology consultation (p<0.0001) were more likely to be replaced with glucocorticoids. Conclusions Commonly reported adrenal-cortisol insufficiency features do not reliably identify hospitalized patients biochemically confirmed to have this disorder. Co-morbidities including

  6. Biochemical adaptation to ocean acidification.

    PubMed

    Stillman, Jonathon H; Paganini, Adam W

    2015-06-01

    The change in oceanic carbonate chemistry due to increased atmospheric PCO2  has caused pH to decline in marine surface waters, a phenomenon known as ocean acidification (OA). The effects of OA on organisms have been shown to be widespread among diverse taxa from a wide range of habitats. The majority of studies of organismal response to OA are in short-term exposures to future levels of PCO2 . From such studies, much information has been gathered on plastic responses organisms may make in the future that are beneficial or harmful to fitness. Relatively few studies have examined whether organisms can adapt to negative-fitness consequences of plastic responses to OA. We outline major approaches that have been used to study the adaptive potential for organisms to OA, which include comparative studies and experimental evolution. Organisms that inhabit a range of pH environments (e.g. pH gradients at volcanic CO2 seeps or in upwelling zones) have great potential for studies that identify adaptive shifts that have occurred through evolution. Comparative studies have advanced our understanding of adaptation to OA by linking whole-organism responses with cellular mechanisms. Such optimization of function provides a link between genetic variation and adaptive evolution in tuning optimal function of rate-limiting cellular processes in different pH conditions. For example, in experimental evolution studies of organisms with short generation times (e.g. phytoplankton), hundreds of generations of growth under future conditions has resulted in fixed differences in gene expression related to acid-base regulation. However, biochemical mechanisms for adaptive responses to OA have yet to be fully characterized, and are likely to be more complex than simply changes in gene expression or protein modification. Finally, we present a hypothesis regarding an unexplored area for biochemical adaptation to ocean acidification. In this hypothesis, proteins and membranes exposed to the

  7. Physiological, biochemical, and proteome profiling reveals key pathways underlying the drought stress responses of Hippophae rhamnoides.

    PubMed

    He, Cai Y; Zhang, Guo Y; Zhang, Jian G; Duan, Ai G; Luo, Hong M

    2016-10-01

    The effects of drought on plant growth and development are occurring as a result of climate change and the growing scarcity of water resources. Hippophae rhamnoides has been exploited for soil and water conservation for many years. However, the outstanding drought-resistance mechanisms possessed by this species remain unclear. The protein, physiological, and biochemical responses to medium and severe drought stresses in H. rhamnoides seedlings are analyzed. Linear decreases in photosynthesis rate, transpiration rate, and the content of indole acetic acid in roots, as well as a linear increase in the contents of abscisic acid, superoxide dismutase, glutathione reductase, and zeatin riboside in leaves are observed as water potential decreased. At the same time, cell membrane permeability, malondialdehyde, stomatal conductance, water use efficiency, and contents of zeatin riboside in roots and indole acetic acid in leaves showed nonconsistent changes. DIGE and MS/MS analysis identified 51 differently expressed protein spots in leaves with functions related to epigenetic modification and PTM in addition to normal metabolism, photosynthesis, signal transduction, antioxidative systems, and responses to stimuli. This study provides new insights into the responses and adaptations in this drought-resistant species and may benefit future agricultural production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Predicting pathway cross-talks in ankylosing spondylitis through investigating the interactions among pathways.

    PubMed

    Gu, Xiang; Liu, Cong-Jian; Wei, Jian-Jie

    2017-11-13

    Given that the pathogenesis of ankylosing spondylitis (AS) remains unclear, the aim of this study was to detect the potentially functional pathway cross-talk in AS to further reveal the pathogenesis of this disease. Using microarray profile of AS and biological pathways as study objects, Monte Carlo cross-validation method was used to identify the significant pathway cross-talks. In the process of Monte Carlo cross-validation, all steps were iterated 50 times. For each run, detection of differentially expressed genes (DEGs) between two groups was conducted. The extraction of the potential disrupted pathways enriched by DEGs was then implemented. Subsequently, we established a discriminating score (DS) for each pathway pair according to the distribution of gene expression levels. After that, we utilized random forest (RF) classification model to screen out the top 10 paired pathways with the highest area under the curve (AUCs), which was computed using 10-fold cross-validation approach. After 50 bootstrap, the best pairs of pathways were identified. According to their AUC values, the pair of pathways, antigen presentation pathway and fMLP signaling in neutrophils, achieved the best AUC value of 1.000, which indicated that this pathway cross-talk could distinguish AS patients from normal subjects. Moreover, the paired pathways of SAPK/JNK signaling and mitochondrial dysfunction were involved in 5 bootstraps. Two paired pathways (antigen presentation pathway and fMLP signaling in neutrophil, as well as SAPK/JNK signaling and mitochondrial dysfunction) can accurately distinguish AS and control samples. These paired pathways may be helpful to identify patients with AS for early intervention.

  9. Investigating dysregulated pathways in Staphylococcus aureus (SA) exposed macrophages based on pathway interaction network.

    PubMed

    Zhou, Wei; Zhang, Yan; Li, Yue-Hua; Wang, Shuang; Zhang, Jing-Jing; Zhang, Cui-Xia; Zhang, Zhi-Sheng

    2017-02-01

    This work aimed to identify dysregulated pathways for Staphylococcus aureus (SA) exposed macrophages based on pathway interaction network (PIN). The inference of dysregulated pathways was comprised of four steps: preparing gene expression data, protein-protein interaction (PPI) data and pathway data; constructing a PIN dependent on the data and Pearson correlation coefficient (PCC); selecting seed pathway from PIN by computing activity score for each pathway according to principal component analysis (PCA) method; and investigating dysregulated pathways in a minimum set of pathways (MSP) utilizing seed pathway and the area under the receiver operating characteristics curve (AUC) index implemented in support vector machines (SVM) model. A total of 20,545 genes, 449,833 interactions and 1189 pathways were obtained in the gene expression data, PPI data and pathway data, respectively. The PIN was consisted of 8388 interactions and 1189 nodes, and Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins was identified as the seed pathway. Finally, 15 dysregulated pathways in MSP (AUC=0.999) were obtained for SA infected samples, such as Respiratory electron transport and DNA Replication. We have identified 15 dysregulated pathways for SA infected macrophages based on PIN. The findings might provide potential biomarkers for early detection and therapy of SA infection, and give insights to reveal the molecular mechanism underlying SA infections. However, how these dysregulated pathways worked together still needs to be studied. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Linear analysis near a steady-state of biochemical networks: Control analysis, correlation metrics and circuit theory

    PubMed Central

    Heuett, William J; Beard, Daniel A; Qian, Hong

    2008-01-01

    Background Several approaches, including metabolic control analysis (MCA), flux balance analysis (FBA), correlation metric construction (CMC), and biochemical circuit theory (BCT), have been developed for the quantitative analysis of complex biochemical networks. Here, we present a comprehensive theory of linear analysis for nonequilibrium steady-state (NESS) biochemical reaction networks that unites these disparate approaches in a common mathematical framework and thermodynamic basis. Results In this theory a number of relationships between key matrices are introduced: the matrix A obtained in the standard, linear-dynamic-stability analysis of the steady-state can be decomposed as A = SRT where R and S are directly related to the elasticity-coefficient matrix for the fluxes and chemical potentials in MCA, respectively; the control-coefficients for the fluxes and chemical potentials can be written in terms of RTBS and STBS respectively where matrix B is the inverse of A; the matrix S is precisely the stoichiometric matrix in FBA; and the matrix eAt plays a central role in CMC. Conclusion One key finding that emerges from this analysis is that the well-known summation theorems in MCA take different forms depending on whether metabolic steady-state is maintained by flux injection or concentration clamping. We demonstrate that if rate-limiting steps exist in a biochemical pathway, they are the steps with smallest biochemical conductances and largest flux control-coefficients. We hypothesize that biochemical networks for cellular signaling have a different strategy for minimizing energy waste and being efficient than do biochemical networks for biosynthesis. We also discuss the intimate relationship between MCA and biochemical systems analysis (BSA). PMID:18482450

  11. Behavioural and biochemical responses following activation of midbrain dopamine pathways by receptor selective neurokinin agonists.

    PubMed

    Elliott, P J; Mason, G S; Stephens-Smith, M; Hagan, R M

    1991-06-01

    Preferential activation of mesolimbic and nigro-striatal dopamine (DA) pathways by receptor-selective and peptidase-resistant neurokinin (NK) agonists is reported. The DA cell body region of the mesolimbic pathway appears to be activated by NK agonists selective for NK-1 and NK-3 receptors whereas the DA cell bodies in the substantia nigra are under an excitatory NK-2 receptor-mediated influence. Stimulation of the mesolimbic DA pathway by NK-1 (Ava[L-Pro9,N-Me-Leu10]SP (7-11) [GR73632]) or NK-3 (Senktide) agonists increase locomotor activity. Additional studies showed that this elevated motor response observed after intra-VTA infusion of GR73632 was accompanied by a corresponding increase in DA turnover in the terminal fields of this pathway. Similarly, unilateral activation of the nigro-striatal DA pathway by NK-2 selective agonists (Ava (D-Pro9) SP (7-11) [GR51667] or [Lys3,Gly8,R-Lac-Leu9]NKA (3-10) [GR64349]) elicit contralateral rotational activity and an increase in DA turnover in the ipsilateral striatum. The rotational response was attenuated by prior administration of an NK-2 antagonist (cyclo (Gln, Trp, Phe, Gly, Leu, Met)] L-659877]) into the nigra. Peripheral injection of haloperidol, a DA antagonist, also blocked the NK-2 agonist induced rotations.

  12. Long-term consequences of pubertal timing for youth depression: Identifying personal and contextual pathways of risk

    PubMed Central

    RUDOLPH, KAREN D.; TROOP-GORDON, WENDY; LAMBERT, SHARON F.; NATSUAKI, MISAKI N.

    2015-01-01

    This research explored sex differences in the pathways linking pubertal timing to depression across 4 years. A sample of 167 youth (M age = 12.41 years, SD = 1.19) and their caregivers completed measures of puberty and semistructured interviews of interpersonal stress and youth depression. Youth reported on psychological (negative self-focus, anxious arousal) and social–behavioral (coping) characteristics; parents reported on youths’ social–behavioral characteristics (withdrawal/social problems) and deviant peer affiliations. Early maturation predicted stable high trajectories of depression in girls; although early maturing boys showed low initial levels of depression, they did not differ from girls by the final wave of the study. Latent growth curve analyses identified several psychological, social–behavioral, and interpersonal pathways accounting for the contribution of pubertal timing to initial and enduring risk for depression in girls as well as emerging risk for depression in boys. These findings provide novel insight into multilevel processes accounting for sex differences in depression across the adolescent transition. PMID:25422971

  13. Combining Flux Balance and Energy Balance Analysis for Large-Scale Metabolic Network: Biochemical Circuit Theory for Analysis of Large-Scale Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.

  14. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD+ salvage from nicotinamide

    PubMed Central

    2014-01-01

    Background In an effort to reconstitute the NAD+ synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD+de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD+de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD+ metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD+ biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD+ salvage pathway from nicotinamide. Results Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation. Conclusions Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD+ salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD+ salvage pathway might be significant in some bacteria lacking NAD+de novo and NAD+ salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD+. However, this speculation needs to be experimentally tested. PMID:24506841

  15. New function for Escherichia coli xanthosine phophorylase (xapA): genetic and biochemical evidences on its participation in NAD(+) salvage from nicotinamide.

    PubMed

    Dong, Wei-Ren; Sun, Cen-Cen; Zhu, Guan; Hu, Shi-Hua; Xiang, Li-Xin; Shao, Jian-Zhong

    2014-02-08

    In an effort to reconstitute the NAD(+) synthetic pathway in Escherichia coli (E. coli), we produced a set of gene knockout mutants with deficiencies in previously well-defined NAD(+)de novo and salvage pathways. Unexpectedly, the mutant deficient in NAD(+) de novo and salvage pathway I could grow in M9/nicotinamide medium, which was contradictory to the proposed classic NAD(+) metabolism of E. coli. Such E. coli mutagenesis assay suggested the presence of an undefined machinery to feed nicotinamide into the NAD(+) biosynthesis. We wanted to verify whether xanthosine phophorylase (xapA) contributed to a new NAD(+) salvage pathway from nicotinamide. Additional knockout of xapA further slowed down the bacterial growth in M9/nicotinamide medium, whereas the complementation of xapA restored the growth phenotype. To further validate the new function of xapA, we cloned and expressed E. coli xapA as a recombinant soluble protein. Biochemical assay confirmed that xapA was capable of using nicotinamide as a substrate for nicotinamide riboside formation. Both the genetic and biochemical evidences indicated that xapA could convert nicotinamide to nicotinamide riboside in E. coli, albeit with relatively weak activity, indicating that xapA may contribute to a second NAD(+) salvage pathway from nicotinamide. We speculate that this xapA-mediated NAD(+) salvage pathway might be significant in some bacteria lacking NAD(+) de novo and NAD(+) salvage pathway I or II, to not only use nicotinamide riboside, but also nicotinamide as precursors to synthesize NAD(+). However, this speculation needs to be experimentally tested.

  16. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats.

    PubMed

    Reddy, Paduru Yadagiri; Giridharan, Nappan Veettil; Reddy, Geereddy Bhanuprakash

    2012-01-01

    Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%-20% of these rats develop cataracts spontaneously as they reach 12-15 months of age. We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these findings.

  17. A MicroRNA Screen Identifies the Wnt Signaling Pathway as a Regulator of the Interferon Response during Flavivirus Infection

    PubMed Central

    Smith, Jessica L.; Jeng, Sophia; McWeeney, Shannon K.

    2017-01-01

    ABSTRACT The impact of mosquito-borne flavivirus infections worldwide is significant, and many critical aspects of these viruses' biology, including virus-host interactions, host cell requirements for replication, and how virus-host interactions impact pathology, remain to be fully understood. The recent reemergence and spread of flaviviruses, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV), highlight the importance of performing basic research on this important group of pathogens. MicroRNAs (miRNAs) are small, noncoding RNAs that modulate gene expression posttranscriptionally and have been demonstrated to regulate a broad range of cellular processes. Our research is focused on identifying pro- and antiflaviviral miRNAs as a means of characterizing cellular pathways that support or limit viral replication. We have screened a library of known human miRNA mimics for their effect on the replication of three flaviviruses, DENV, WNV, and Japanese encephalitis virus (JEV), using a high-content immunofluorescence screen. Several families of miRNAs were identified as inhibiting multiple flaviviruses, including the miRNA miR-34, miR-15, and miR-517 families. Members of the miR-34 family, which have been extensively characterized for their ability to repress Wnt/β-catenin signaling, demonstrated strong antiflaviviral effects, and this inhibitory activity extended to other viruses, including ZIKV, alphaviruses, and herpesviruses. Previous research suggested a possible link between the Wnt and type I interferon (IFN) signaling pathways. Therefore, we investigated the role of type I IFN induction in the antiviral effects of the miR-34 family and confirmed that these miRNAs potentiate interferon regulatory factor 3 (IRF3) phosphorylation and translocation to the nucleus, the induction of IFN-responsive genes, and the release of type I IFN from transfected cells. We further demonstrate that the intersection between the Wnt and IFN signaling pathways

  18. A MicroRNA Screen Identifies the Wnt Signaling Pathway as a Regulator of the Interferon Response during Flavivirus Infection.

    PubMed

    Smith, Jessica L; Jeng, Sophia; McWeeney, Shannon K; Hirsch, Alec J

    2017-04-15

    The impact of mosquito-borne flavivirus infections worldwide is significant, and many critical aspects of these viruses' biology, including virus-host interactions, host cell requirements for replication, and how virus-host interactions impact pathology, remain to be fully understood. The recent reemergence and spread of flaviviruses, including dengue virus (DENV), West Nile virus (WNV), and Zika virus (ZIKV), highlight the importance of performing basic research on this important group of pathogens. MicroRNAs (miRNAs) are small, noncoding RNAs that modulate gene expression posttranscriptionally and have been demonstrated to regulate a broad range of cellular processes. Our research is focused on identifying pro- and antiflaviviral miRNAs as a means of characterizing cellular pathways that support or limit viral replication. We have screened a library of known human miRNA mimics for their effect on the replication of three flaviviruses, DENV, WNV, and Japanese encephalitis virus (JEV), using a high-content immunofluorescence screen. Several families of miRNAs were identified as inhibiting multiple flaviviruses, including the miRNA miR-34, miR-15, and miR-517 families. Members of the miR-34 family, which have been extensively characterized for their ability to repress Wnt/β-catenin signaling, demonstrated strong antiflaviviral effects, and this inhibitory activity extended to other viruses, including ZIKV, alphaviruses, and herpesviruses. Previous research suggested a possible link between the Wnt and type I interferon (IFN) signaling pathways. Therefore, we investigated the role of type I IFN induction in the antiviral effects of the miR-34 family and confirmed that these miRNAs potentiate interferon regulatory factor 3 (IRF3) phosphorylation and translocation to the nucleus, the induction of IFN-responsive genes, and the release of type I IFN from transfected cells. We further demonstrate that the intersection between the Wnt and IFN signaling pathways occurs at

  19. Mining pathway associations for disease-related pathway activity analysis based on gene expression and methylation data.

    PubMed

    Lee, Hyeonjeong; Shin, Miyoung

    2017-01-01

    The problem of discovering genetic markers as disease signatures is of great significance for the successful diagnosis, treatment, and prognosis of complex diseases. Even if many earlier studies worked on identifying disease markers from a variety of biological resources, they mostly focused on the markers of genes or gene-sets (i.e., pathways). However, these markers may not be enough to explain biological interactions between genetic variables that are related to diseases. Thus, in this study, our aim is to investigate distinctive associations among active pathways (i.e., pathway-sets) shown each in case and control samples which can be observed from gene expression and/or methylation data. The pathway-sets are obtained by identifying a set of associated pathways that are often active together over a significant number of class samples. For this purpose, gene expression or methylation profiles are first analyzed to identify significant (active) pathways via gene-set enrichment analysis. Then, regarding these active pathways, an association rule mining approach is applied to examine interesting pathway-sets in each class of samples (case or control). By doing so, the sets of associated pathways often working together in activity profiles are finally chosen as our distinctive signature of each class. The identified pathway-sets are aggregated into a pathway activity network (PAN), which facilitates the visualization of differential pathway associations between case and control samples. From our experiments with two publicly available datasets, we could find interesting PAN structures as the distinctive signatures of breast cancer and uterine leiomyoma cancer, respectively. Our pathway-set markers were shown to be superior or very comparable to other genetic markers (such as genes or gene-sets) in disease classification. Furthermore, the PAN structure, which can be constructed from the identified markers of pathway-sets, could provide deeper insights into

  20. MARCKS promotes invasion and is associated with biochemical recurrence in prostate cancer

    PubMed Central

    Dorris, Emma; O'Neill, Amanda; Hanrahan, Karen; Treacy, Ann; Watson, R. William

    2017-01-01

    Background Overtreatment of low-grade prostate cancer is a recognised problem for clinicians and patients. However, under-treatment runs the risk of missing the opportunity for cure in those who could benefit. Identification of new biomarkers of disease progression, including metastases, is required to better stratify and appropriately treat these patients. The ability to predict if prostate cancer will recur is an important clinical question that would impact treatment options for patients. Studies in other cancers have associated MARCKS with metastasis. Methods Tissue microarrays of local prostatectomy samples from a cohort of biochemical recurrent and non-biochemical recurrent tumours were assayed for MARCKS protein expression. Prostate cancer cell lines were transfected with siRNA targeting MARCKS or a control and functional endpoints of migration, invasion, proliferation, viability and apoptosis were measured. Actin was visualised by fluorescent microscopy and evidence of a cadherin switch and activation of the AKT pathway were assayed. Results MARCKS was upregulated in biochemical recurrent patients compared to non-biochemical recurrent. Knockdown of MARCKS reduced migration and invasion of prostate cancer cells, reduced MMP9 mRNA expression, as well as decreasing cell spreading and increased cell:cell adhesion in prostate cancer cell colonies. Knockdown of MARCKS had no effect on proliferation, viability or apoptosis of the prostate cancer cells. Conclusions In conclusion, MARCKS promotes migration and invasion and is associated with biochemical recurrence in localised prostate cancer tumours. The mechanisms by which this occurs have yet to be fully elucidated but lack of a cadherin switch indicates it is not via epithelial-to-mesenchymal transition. Actin rearrangement indicates that MARCKS promotes invasion through regulating the architecture of the cell. PMID:29069765

  1. Molecular and Biochemical Basis for Stress-Induced Accumulation of Free and Bound p-Coumaraldehyde in Cucumber1[W][OA

    PubMed Central

    Varbanova, Marina; Porter, Katie; Lu, Fachuang; Ralph, John; Hammerschmidt, Ray; Jones, A. Daniel; Day, Brad

    2011-01-01

    To elucidate the genetic and biochemical regulation of elicitor-induced p-coumaraldehyde accumulation in plants, we undertook a multifaceted approach to characterize the metabolic flux through the phenylpropanoid pathway via the characterization and chemical analysis of the metabolites in the p-coumaryl, coniferyl, and sinapyl alcohol branches of this pathway. Here, we report the identification and characterization of four cinnamyl alcohol dehydrogenases (CADs) from cucumber (Cucumis sativus) with low activity toward p-coumaraldehyde yet exhibiting significant activity toward other phenylpropanoid hydroxycinnamaldehydes. As part of this analysis, we identified and characterized the activity of a hydroxycinnamoyl-coenzyme A:shikimate hydroxycinnamoyl transferase (HCT) capable of utilizing shikimate and p-coumaroyl-coenzyme A to generate p-coumaroyl shikimate. Following pectinase treatment of cucumber, we observed the rapid accumulation of p-coumaraldehyde, likely the result of low aldehyde reductase activity (i.e. alcohol dehydrogenase in the reverse reaction) of CsCAD enzymes on p-coumaraldehyde. In parallel, we noted a concomitant reduction in the activity of CsHCT. Taken together, our findings support the hypothesis that the up-regulation of the phenylpropanoid pathway upon abiotic stress greatly enhances the overall p-coumaryl alcohol branch of the pathway. The data presented here point to a role for CsHCT (as well as, presumably, p-coumarate 3-hydroxylase) as a control point in the regulation of the coniferyl and sinapyl alcohol branches of this pathway. This mechanism represents a potentially evolutionarily conserved process to efficiently and quickly respond to biotic and abiotic stresses in cucurbit plants, resulting in the rapid lignification of affected tissues. PMID:21940999

  2. Frequency of biochemical hypoglycaemia in adults with Type 1 diabetes with and without impaired awareness of hypoglycaemia: no identifiable differences using continuous glucose monitoring.

    PubMed

    Choudhary, P; Geddes, J; Freeman, J V; Emery, C J; Heller, S R; Frier, B M

    2010-06-01

    Impaired awareness of hypoglycaemia (IAH) is a major risk factor for severe hypoglycaemia in Type 1 diabetes. Although biochemical hypoglycaemia is asserted to be more frequent in IAH, this has not been estimated accurately. The aim of this study was to use Continuous Glucose Monitoring (CGM) to quantify hypoglycaemia in IAH and evaluate its use in identifying impaired awareness of hypoglycaemia. Ninety-five patients with Type 1 diabetes were classified as having normal (n = 74) or impaired awareness (n = 21) using an established method of assessing hypoglycaemia awareness. Hypoglycaemia exposure was assessed prospectively over 9-12 months using weekly 4-point capillary home blood glucose monitoring (HBGM), 5 days of CGM and prospective reporting of severe hypoglycaemia. The frequencies of biochemical and severe hypoglycaemia were compared in patients with normal and impaired awareness of hypoglycaemia. Patients with impaired awareness had a 3-fold higher incidence of severe hypoglycaemia than those with normal awareness [incidence rate ratio (IRR) 3.37 (95% CI 1.30-8.7); P = 0.01] and 1.6-fold higher incidence of hypoglycaemia on weekly HBGM [IRR 1.63 (95% CI 1.09-2.44); P = 0.02]. No significant differences were observed with CGM [IRR for sensor glucose < or = 3.0 mmol/l 1.47 (95% CI 0.91-2.39); P = 0.12; IRR for sensor glucose < or = 2.2 mmol/l 1.23 (95% CI 0.76-1.98); P = 0.40]. Patients with Type 1 diabetes with impaired awareness had a 3-fold higher risk of severe hypoglycaemia and 1.6-fold higher incidence of biochemical hypoglycaemia measured with weekly glucose monitoring compared with normal awareness, but 5 days of CGM did not differentiate those with impaired from those with normal awareness.

  3. Biotinidase deficiency: Genotype-biochemical phenotype association in Brazilian patients

    PubMed Central

    Borsatto, Taciane; Sperb-Ludwig, Fernanda; Lima, Samyra E.; S. Carvalho, Maria R.; S. Fonseca, Pablo A.; S. Camelo, José; M. Ribeiro, Erlane; F. V. de Medeiros, Paula; M. Lourenço, Charles; F. M. de Souza, Carolina; Boy, Raquel; Félix, Têmis M.; M. Bittar, Camila; L. C. Pinto, Louise; C. Neto, Eurico; J. Blom, Henk; D. Schwartz, Ida V.

    2017-01-01

    Introduction The association between the BTD genotype and biochemical phenotype [profound biotinidase deficiency (BD), partial BD or heterozygous activity] is not always consistent. This study aimed to investigate the genotype-biochemical phenotype association in patients with low biotinidase activity. Methods All exons, the 5'UTR and the promoter of the BTD gene were sequenced in 72 Brazilian individuals who exhibited low biotinidase activity. For each patient, the expected biochemical phenotype based on the known genotype was compared with the observed biochemical phenotype. Additional non-genetic factors that could affect the biotinidase activity were also analysed. Results Most individuals were identified by neonatal screening (n = 66/72). When consecutive results for the same patient were compared, age, prematurity and neonatal jaundice appeared to affect the level of biotinidase activity. The biochemical phenotype at the time of the second blood collection changed in 11/22 patients compared to results from the first sample. Three novel variants were found: c.1337T>C (p.L446P), c.1466A>G (p.N489S) and c.962G>A (p.W321*). Some patients with the same genotype presented different biochemical phenotypes. The expected and observed biochemical phenotypes agreed in 68.5% of cases (concordant patients). The non-coding variants c.-183G>A, c.-315A>G and c.-514C>T were present in heterozygosis in 5/17 discordant patients. In addition, c.-183G>A and c.-514C>T were also present in 10/37 concordant patients. Conclusions The variants found in the promoter region do not appear to have a strong impact on biotinidase activity. Since there is a disparity between the BTD genotype and biochemical phenotype, and biotinidase activity may be affected by both genetic and non-genetic factors, we suggest that the diagnosis of BD should be based on more than one measurement of plasma biotinidase activity. DNA analysis can be of additional relevance to differentiate between partial BD and

  4. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  5. Characterization of a SAM-dependent fluorinase from a latent biosynthetic pathway for fluoroacetate and 4-fluorothreonine formation in Nocardia brasiliensis

    PubMed Central

    Qu, Xudong

    2014-01-01

    Fluorination has been widely used in chemical synthesis, but is rare in nature. The only known biological fluorination scope is represented by the fl pathway from Streptomyces cattleya that produces fluoroacetate (FAc) and 4-fluorothreonine (4-FT). Here we report the identification of a novel pathway for FAc and 4-FT biosynthesis from the actinomycetoma-causing pathogen Nocardia brasiliensis ATCC 700358. The new pathway shares overall conservation with the fl pathway in S. cattleya. Biochemical characterization of the conserved domains revealed a novel fluorinase NobA that can biosynthesize 5’-fluoro-5’-deoxyadenosine (5’-FDA) from inorganic fluoride and S-adenosyl-l-methionine (SAM). The NobA shows similar halide specificity and characteristics to the fluorination enzyme FlA of the fl pathway. Kinetic parameters for fluoride ( K m 4153 μM, k cat 0.073 min -1) and SAM ( K m 416 μM, k cat 0.139 min -1) have been determined, revealing that NobA is slightly (2.3 fold) slower than FlA. Upon sequence comparison, we finally identified a distinct loop region in the fluorinases that probably accounts for the disparity of fluorination activity. PMID:24795808

  6. Genetic variants in two pathways influence serum urate levels and gout risk: a systematic pathway analysis.

    PubMed

    Dong, Zheng; Zhou, Jingru; Xu, Xia; Jiang, Shuai; Li, Yuan; Zhao, Dongbao; Yang, Chengde; Ma, Yanyun; Wang, Yi; He, Hongjun; Ji, Hengdong; Zhang, Juan; Yuan, Ziyu; Yang, Yajun; Wang, Xiaofeng; Pang, Yafei; Jin, Li; Zou, Hejian; Wang, Jiucun

    2018-03-01

    The aims of this study were to identify candidate pathways associated with serum urate and to explore the genetic effect of those pathways on the risk of gout. Pathway analysis of the loci identified in genome-wide association studies (GWASs) showed that the ion transmembrane transporter activity pathway (GO: 0015075) and the secondary active transmembrane transporter activity pathway (GO: 0015291) were both associated with serum urate concentrations, with P FDR values of 0.004 and 0.007, respectively. In a Chinese population of 4,332 individuals, the two pathways were also found to be associated with serum urate (P FDR  = 1.88E-05 and 3.44E-04, separately). In addition, these two pathways were further associated with the pathogenesis of gout (P FDR  = 1.08E-08 and 2.66E-03, respectively) in the Chinese population and a novel gout-associated gene, SLC17A2, was identified (OR = 0.83, P FDR  = 0.017). The mRNA expression of candidate genes also showed significant differences among different groups at pathway level. The present study identified two transmembrane transporter activity pathways (GO: 0015075 and GO: 0015291) were associations with serum urate concentrations and the risk of gout. SLC17A2 was identified as a novel gene that influenced the risk of gout.

  7. Patient-Level DNA Damage and Repair Pathway Profiles and Prognosis After Prostatectomy for High-Risk Prostate Cancer

    PubMed Central

    Evans, Joseph R.; Zhao, Shuang G.; Chang, S. Laura; Tomlins, Scott A.; Erho, Nicholas; Sboner, Andrea; Schiewer, Matthew J.; Spratt, Daniel E.; Kothari, Vishal; Klein, Eric A.; Den, Robert B.; Dicker, Adam P.; Karnes, R. Jeffrey; Yu, Xiaochun; Nguyen, Paul L.; Rubin, Mark A.; de Bono, Johann; Knudsen, Karen E.; Davicioni, Elai; Feng, Felix Y.

    2017-01-01

    IMPORTANCE A substantial number of patients diagnosed with high-risk prostate cancer are at risk for metastatic progression after primary treatment. Better biomarkers are needed to identify patients at the highest risk to guide therapy intensification. OBJECTIVE To create a DNA damage and repair (DDR) pathway profiling method for use as a prognostic signature biomarker in high-risk prostate cancer. DESIGN, SETTING, AND PARTICIPANTS A cohort of 1090 patients with high-risk prostate cancer who underwent prostatectomy and were treated at 3 different academic institutions were divided into a training cohort (n = 545) and 3 pooled validation cohorts (n = 232, 130, and 183) assembled for case-control or case-cohort studies. Profiling of 9 DDR pathways using 17 gene sets for GSEA (Gene Set Enrichment Analysis) of high-density microarray gene expression data from formalin-fixed paraffin-embedded prostatectomy samples with median 10.3 years follow-up was performed. Prognostic signature development from DDR pathway profiles was studied, and DDR pathway gene mutation in published cohorts was analyzed. MAIN OUTCOMES AND MEASURES Biochemical recurrence-free, metastasis-free, and overall survival. RESULTS Across the training cohort and pooled validation cohorts, 1090 men were studied; mean (SD) age at diagnosis was 65.3 (6.4) years. We found that there are distinct clusters of DDR pathways within the cohort, and DDR pathway enrichment is only weakly correlated with clinical variables such as age (Spearman ρ [ρ], range, −0.07 to 0.24), Gleason score (ρ, range, 0.03 to 0.20), prostate-specific antigen level (ρ, range, −0.07 to 0.10), while 13 of 17 DDR gene sets are strongly correlated with androgen receptor pathway enrichment (ρ, range, 0.33 to 0.82). In published cohorts, DDR pathway genes are rarely mutated. A DDR pathway profile prognostic signature built in the training cohort was significantly associated with biochemical recurrence-free, metastasis-free, and overall

  8. Patient-Level DNA Damage and Repair Pathway Profiles and Prognosis After Prostatectomy for High-Risk Prostate Cancer.

    PubMed

    Evans, Joseph R; Zhao, Shuang G; Chang, S Laura; Tomlins, Scott A; Erho, Nicholas; Sboner, Andrea; Schiewer, Matthew J; Spratt, Daniel E; Kothari, Vishal; Klein, Eric A; Den, Robert B; Dicker, Adam P; Karnes, R Jeffrey; Yu, Xiaochun; Nguyen, Paul L; Rubin, Mark A; de Bono, Johann; Knudsen, Karen E; Davicioni, Elai; Feng, Felix Y

    2016-04-01

    A substantial number of patients diagnosed with high-risk prostate cancer are at risk for metastatic progression after primary treatment. Better biomarkers are needed to identify patients at the highest risk to guide therapy intensification. To create a DNA damage and repair (DDR) pathway profiling method for use as a prognostic signature biomarker in high-risk prostate cancer. A cohort of 1090 patients with high-risk prostate cancer who underwent prostatectomy and were treated at 3 different academic institutions were divided into a training cohort (n = 545) and 3 pooled validation cohorts (n = 232, 130, and 183) assembled for case-control or case-cohort studies. Profiling of 9 DDR pathways using 17 gene sets for GSEA (Gene Set Enrichment Analysis) of high-density microarray gene expression data from formalin-fixed paraffin-embedded prostatectomy samples with median 10.3 years follow-up was performed. Prognostic signature development from DDR pathway profiles was studied, and DDR pathway gene mutation in published cohorts was analyzed. Biochemical recurrence-free, metastasis-free, and overall survival. Across the training cohort and pooled validation cohorts, 1090 men were studied; mean (SD) age at diagnosis was 65.3 (6.4) years. We found that there are distinct clusters of DDR pathways within the cohort, and DDR pathway enrichment is only weakly correlated with clinical variables such as age (Spearman ρ [ρ], range, -0.07 to 0.24), Gleason score (ρ, range, 0.03 to 0.20), prostate-specific antigen level (ρ, range, -0.07 to 0.10), while 13 of 17 DDR gene sets are strongly correlated with androgen receptor pathway enrichment (ρ, range, 0.33 to 0.82). In published cohorts, DDR pathway genes are rarely mutated. A DDR pathway profile prognostic signature built in the training cohort was significantly associated with biochemical recurrence-free, metastasis-free, and overall survival in the pooled validation cohorts independent of standard clinicopathological

  9. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  10. A Fat-Facets-Dscam1-JNK Pathway Enhances Axonal Growth in Development and after Injury

    PubMed Central

    Koch, Marta; Nicolas, Maya; Zschaetzsch, Marlen; de Geest, Natalie; Claeys, Annelies; Yan, Jiekun; Morgan, Matthew J.; Erfurth, Maria-Luise; Holt, Matthew; Schmucker, Dietmar; Hassan, Bassem A.

    2018-01-01

    Injury to the adult central nervous systems (CNS) can result in severe long-term disability because damaged CNS connections fail to regenerate after trauma. Identification of regulators that enhance the intrinsic growth capacity of severed axons is a first step to restore function. Here, we conducted a gain-of-function genetic screen in Drosophila to identify strong inducers of axonal growth after injury. We focus on a novel axis the Down Syndrome Cell Adhesion Molecule (Dscam1), the de-ubiquitinating enzyme Fat Facets (Faf)/Usp9x and the Jun N-Terminal Kinase (JNK) pathway transcription factor Kayak (Kay)/Fos. Genetic and biochemical analyses link these genes in a common signaling pathway whereby Faf stabilizes Dscam1 protein levels, by acting on the 3′-UTR of its mRNA, and Dscam1 acts upstream of the growth-promoting JNK signal. The mammalian homolog of Faf, Usp9x/FAM, shares both the regenerative and Dscam1 stabilizing activities, suggesting a conserved mechanism. PMID:29472843

  11. Balanced Biochemical Reactions: A New Approach to Unify Chemical and Biochemical Thermodynamics

    PubMed Central

    Sabatini, Antonio; Vacca, Alberto; Iotti, Stefano

    2012-01-01

    A novel procedure is presented which, by balancing elements and electric charge of biochemical reactions which occur at constant pH and pMg, allows assessing the thermodynamics properties of reaction ΔrG ′0, ΔrH ′0, ΔrS ′0 and the change in binding of hydrogen and magnesium ions of these reactions. This procedure of general applicability avoids the complex calculations required by the use of the Legendre transformed thermodynamic properties of formation ΔfG ′0, ΔfH ′0 and ΔfS ′0 hitherto considered an obligatory prerequisite to deal with the thermodynamics of biochemical reactions. As a consequence, the term “conditional” is proposed in substitution of “Legendre transformed” to indicate these thermodynamics properties. It is also shown that the thermodynamic potential G is fully adequate to give a criterion of spontaneous chemical change for all biochemical reactions and then that the use of the Legendre transformed G′ is unnecessary. The procedure proposed can be applied to any biochemical reaction, making possible to re-unify the two worlds of chemical and biochemical thermodynamics, which so far have been treated separately. PMID:22247780

  12. Influence of Biochemical Features of Burkholderia pseudomallei Strains on Identification Reliability by Vitek 2 System.

    PubMed

    Zakharova, Irina B; Lopasteyskaya, Yana A; Toporkov, Andrey V; Viktorov, Dmitry V

    2018-01-01

    Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium that causes melioidosis, a potentially fatal disease endemic in wet tropical areas. The currently available biochemical identification systems can misidentify some strains of B. pseudomallei . The aim of the present study was to identify the biochemical features of B. pseudomallei , which can affect its correct identification by Vitek 2 system. The biochemical patterns of 40 B. pseudomallei strains were obtained using Vitek 2 GN cards. The average contribution of biochemical tests in overall dissimilarities between correctly and incorrectly identified strains was assessed using nonmetric multidimensional scaling. It was found ( R statistic of 0.836, P = 0.001) that a combination of negative N-acetyl galactosaminidase, β-N-acetyl glucosaminidase, phosphatase, and positive D-cellobiase (dCEL), tyrosine arylamidase (TyrA), and L-proline arylamidase (ProA) tests leads to low discrimination of B. pseudomallei , whereas a set of positive dCEL and negative N-acetyl galactosaminidase, TyrA, and ProA determines the wrong identification of B. pseudomallei as Burkholderia cepacia complex. The further expansion of the Vitek 2 identification keys is needed for correct identification of atypical or regionally distributed biochemical profiles of B. pseudomallei .

  13. Pathway Distiller - multisource biological pathway consolidation.

    PubMed

    Doderer, Mark S; Anguiano, Zachry; Suresh, Uthra; Dashnamoorthy, Ravi; Bishop, Alexander J R; Chen, Yidong

    2012-01-01

    One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/PathwayDistiller), is established to allow

  14. De novo pyrimidine nucleotide synthesis mainly occurs outside of plastids, but a previously undiscovered nucleobase importer provides substrates for the essential salvage pathway in Arabidopsis.

    PubMed

    Witz, Sandra; Jung, Benjamin; Fürst, Sarah; Möhlmann, Torsten

    2012-04-01

    Nucleotide de novo synthesis is highly conserved among organisms and represents an essential biochemical pathway. In plants, the two initial enzymatic reactions of de novo pyrimidine synthesis occur in the plastids. By use of green fluorescent protein fusions, clear support is provided for a localization of the remaining reactions in the cytosol and mitochondria. This implies that carbamoyl aspartate, an intermediate of this pathway, must be exported and precursors of pyrimidine salvage (i.e., nucleobases or nucleosides) are imported into plastids. A corresponding uracil transport activity could be measured in intact plastids isolated from cauliflower (Brassica oleracea) buds. PLUTO (for plastidic nucleobase transporter) was identified as a member of the Nucleobase:Cation-Symporter1 protein family from Arabidopsis thaliana, capable of transporting purine and pyrimidine nucleobases. A PLUTO green fluorescent protein fusion was shown to reside in the plastid envelope after expression in Arabidopsis protoplasts. Heterologous expression of PLUTO in an Escherichia coli mutant lacking the bacterial uracil permease uraA allowed a detailed biochemical characterization. PLUTO transports uracil, adenine, and guanine with apparent affinities of 16.4, 0.4, and 6.3 μM, respectively. Transport was markedly inhibited by low concentrations of a proton uncoupler, indicating that PLUTO functions as a proton-substrate symporter. Thus, a protein for the absolutely required import of pyrimidine nucleobases into plastids was identified.

  15. Design principles for enhancing phase sensitivity and suppressing phase fluctuations simultaneously in biochemical oscillatory systems.

    PubMed

    Fei, Chenyi; Cao, Yuansheng; Ouyang, Qi; Tu, Yuhai

    2018-04-12

    Biological systems need to function accurately in the presence of strong noise and at the same time respond sensitively to subtle external cues. Here we study design principles in biochemical oscillatory circuits to achieve these two seemingly incompatible goals. We show that energy dissipation can enhance phase sensitivity linearly by driving the phase-amplitude coupling and increase timing accuracy by suppressing phase diffusion. Two general design principles in the key underlying reaction loop formed by two antiparallel pathways are found to optimize oscillation performance with a given energy budget: balancing the forward-to-backward flux ratio between the two pathways to reduce phase diffusion and maximizing the net flux of the phase-advancing pathway relative to that of the phase-retreating pathway to enhance phase sensitivity. Experimental evidences consistent with these design principles are found in the circadian clock of cyanobacteria. Future experiments to test the predicted dependence of phase sensitivity on energy dissipation are proposed.

  16. Boosting the pentose phosphate pathway restores cardiac progenitor cell availability in diabetes

    PubMed Central

    Katare, Rajesh; Oikawa, Atsuhiko; Cesselli, Daniela; Beltrami, Antonio P.; Avolio, Elisa; Muthukrishnan, Deepti; Munasinghe, Pujika Emani; Angelini, Gianni; Emanueli, Costanza; Madeddu, Paolo

    2013-01-01

    Aims Diabetes impinges upon mechanisms of cardiovascular repair. However, the biochemical adaptation of cardiac stem cells to sustained hyperglycaemia remains largely unknown. Here, we investigate the molecular targets of high glucose-induced damage in cardiac progenitor cells (CPCs) from murine and human hearts and attempt safeguarding CPC viability and function through reactivation of the pentose phosphate pathway. Methods and results Type-1 diabetes was induced by streptozotocin. CPC abundance was determined by flow cytometry. Proliferating CPCs were identified in situ by immunostaining for the proliferation marker Ki67. Diabetic hearts showed marked reduction in CPC abundance and proliferation when compared with controls. Moreover, Sca-1pos CPCs isolated from hearts of diabetic mice displayed reduced activity of key enzymes of the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD), and transketolase, increased levels of superoxide and advanced glucose end-products (AGE), and inhibition of the Akt/Pim-1/Bcl-2 signalling pathway. Similarly, culture of murine CPCs or human CD105pos progenitor cells in high glucose inhibits the pentose phosphate and pro-survival signalling pathways, leading to the activation of apoptosis. In vivo and in vitro supplementation with benfotiamine reactivates the pentose phosphate pathway and rescues CPC availability and function. This benefit is abrogated by either G6PD silencing by small interfering RNA (siRNA) or Akt inhibition by dominant-negative Akt. Conclusion We provide new evidence of the negative impact of diabetes and high glucose on mechanisms controlling CPC redox state and survival. Boosting the pentose phosphate pathway might represent a novel mechanistic target for protection of CPC integrity. PMID:22997160

  17. Investigation on biochemical compositional changes during the microbial fermentation process of Fu brick tea by LC-MS based metabolomics.

    PubMed

    Xu, Jie; Hu, Feng-Lin; Wang, Wei; Wan, Xiao-Chun; Bao, Guan-Hu

    2015-11-01

    Fu brick tea (FBT) is a unique post-fermented tea product which is fermented with fungi during the manufacturing process. In this study, we investigated the biochemical compositional changes occurring during the microbial fermentation process (MFP) of FBT based on non-targeted LC-MS, which was a comprehensive and unbiased methodology. Our data analysis took a two-phase approach: (1) comparison of FBT with other tea products using PCA analysis to exhibit the characteristic effect of MFP on the formation of Fu brick tea and (2) comparison of tea samples throughout the MFP of FBT to elucidate the possible key metabolic pathways produced by the fungi. Non-targeted LC-MS analysis clearly distinguished FBT with other tea samples and highlighted some interesting metabolic pathways during the MFP including B ring fission catechin. Our study demonstrated that those fungi had a significant influence on the biochemical profiles in the FBT and consequently contributed to its unique quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: a review of proteomics analyses.

    PubMed

    Wang, Ju; Yuan, Wenji; Li, Ming D

    2011-12-01

    Drug addiction is a chronic neuronal disease. In recent years, proteomics technology has been widely used to assess the protein expression in the brain tissues of both animals and humans exposed to addictive drugs. Through this approach, a large number of proteins potentially involved in the etiology of drug addictions have been identified, which provide a valuable resource to study protein function, biochemical pathways, and networks related to the molecular mechanisms underlying drug dependence. In this article, we summarize the recent application of proteomics to profiling protein expression patterns in animal or human brain tissues after the administration of alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine/heroin/butorphanol, or nicotine. From available reports, we compiled a list of 497 proteins associated with exposure to one or more addictive drugs, with 160 being related to exposure to at least two abused drugs. A number of biochemical pathways and biological processes appear to be enriched among these proteins, including synaptic transmission and signaling pathways related to neuronal functions. The data included in this work provide a summary and extension of the proteomics studies on drug addiction. Furthermore, the proteins and biological processes highlighted here may provide valuable insight into the cellular activities and biological processes in neurons in the development of drug addiction.

  19. Pederin-type pathways of uncultivated bacterial symbionts: analysis of o-methyltransferases and generation of a biosynthetic hybrid.

    PubMed

    Zimmermann, Katrin; Engeser, Marianne; Blunt, John W; Munro, Murray H G; Piel, Jörn

    2009-03-04

    The complex polyketide pederin is a potent antitumor agent isolated from Paederus spp. rove beetles. We have previously isolated a set of genes from a bacterial endosymbiont that are good candidates for pederin biosynthesis. To biochemically study this pathway, we expressed three methyltransferases from the putative pederin pathway and used the partially unmethylated analogue mycalamide A from the marine sponge Mycale hentscheli as test substrate. Analysis by high-resolution MS/MS and NMR revealed that PedO regiospecifically methylates the marine compound to generate the nonnatural hybrid compound 18-O-methylmycalamide A with increased cytotoxicity. To our knowledge, this is the first biochemical evidence that invertebrates can obtain defensive complex polyketides from bacterial symbionts.

  20. A thermochemical-biochemical hybrid processing of lignocellulosic biomass for producing fuels and chemicals.

    PubMed

    Shen, Yanwen; Jarboe, Laura; Brown, Robert; Wen, Zhiyou

    2015-12-01

    Thermochemical-biological hybrid processing uses thermochemical decomposition of lignocellulosic biomass to produce a variety of intermediate compounds that can be converted into fuels and chemicals through microbial fermentation. It represents a unique opportunity for biomass conversion as it mitigates some of the deficiencies of conventional biochemical (pretreatment-hydrolysis-fermentation) and thermochemical (pyrolysis or gasification) processing. Thermochemical-biological hybrid processing includes two pathways: (i) pyrolysis/pyrolytic substrate fermentation, and (ii) gasification/syngas fermentation. This paper provides a comprehensive review of these two hybrid processing pathways, including the characteristics of fermentative substrates produced in the thermochemical stage and microbial utilization of these compounds in the fermentation stage. The current challenges of these two biomass conversion pathways include toxicity of the crude pyrolytic substrates, the inhibition of raw syngas contaminants, and the mass-transfer limitations in syngas fermentation. Possible approaches for mitigating substrate toxicities are discussed. The review also provides a summary of the current efforts to commercialize hybrid processing. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Morphogenetic Pathway of Spore Wall Assembly in Saccharomyces cerevisiae

    PubMed Central

    Coluccio, Alison; Bogengruber, Edith; Conrad, Michael N.; Dresser, Michael E.; Briza, Peter; Neiman, Aaron M.

    2004-01-01

    The Saccharomyces cerevisiae spore is protected from environmental damage by a multilaminar extracellular matrix, the spore wall, which is assembled de novo during spore formation. A set of mutants defective in spore wall assembly were identified in a screen for mutations causing sensitivity of spores to ether vapor. The spore wall defects in 10 of these mutants have been characterized in a variety of cytological and biochemical assays. Many of the individual mutants are defective in the assembly of specific layers within the spore wall, leading to arrests at discrete stages of assembly. The localization of several of these gene products has been determined and distinguishes between proteins that likely are involved directly in spore wall assembly and probable regulatory proteins. The results demonstrate that spore wall construction involves a series of dependent steps and provide the outline of a morphogenetic pathway for assembly of a complex extracellular structure. PMID:15590821

  2. FNV: light-weight flash-based network and pathway viewer.

    PubMed

    Dannenfelser, Ruth; Lachmann, Alexander; Szenk, Mariola; Ma'ayan, Avi

    2011-04-15

    Network diagrams are commonly used to visualize biochemical pathways by displaying the relationships between genes, proteins, mRNAs, microRNAs, metabolites, regulatory DNA elements, diseases, viruses and drugs. While there are several currently available web-based pathway viewers, there is still room for improvement. To this end, we have developed a flash-based network viewer (FNV) for the visualization of small to moderately sized biological networks and pathways. Written in Adobe ActionScript 3.0, the viewer accepts simple Extensible Markup Language (XML) formatted input files to display pathways in vector graphics on any web-page providing flexible layout options, interactivity with the user through tool tips, hyperlinks and the ability to rearrange nodes on the screen. FNV was utilized as a component in several web-based systems, namely Genes2Networks, Lists2Networks, KEA, ChEA and PathwayGenerator. In addition, FVN can be used to embed pathways inside pdf files for the communication of pathways in soft publication materials. FNV is available for use and download along with the supporting documentation and sample networks at http://www.maayanlab.net/FNV. avi.maayan@mssm.edu.

  3. The C-Terminal Sequence of RhoB Directs Protein Degradation through an Endo-Lysosomal Pathway

    PubMed Central

    Ramos, Irene; Herrera, Mónica; Stamatakis, Konstantinos

    2009-01-01

    Background Protein degradation is essential for cell homeostasis. Targeting of proteins for degradation is often achieved by specific protein sequences or posttranslational modifications such as ubiquitination. Methodology/Principal Findings By using biochemical and genetic tools we have monitored the localization and degradation of endogenous and chimeric proteins in live primary cells by confocal microscopy and ultra-structural analysis. Here we identify an eight amino acid sequence from the C-terminus of the short-lived GTPase RhoB that directs the rapid degradation of both RhoB and chimeric proteins bearing this sequence through a lysosomal pathway. Elucidation of the RhoB degradation pathway unveils a mechanism dependent on protein isoprenylation and palmitoylation that involves sorting of the protein into multivesicular bodies, mediated by the ESCRT machinery. Moreover, RhoB sorting is regulated by late endosome specific lipid dynamics and is altered in human genetic lipid traffic disease. Conclusions/Significance Our findings characterize a short-lived cytosolic protein that is degraded through a lysosomal pathway. In addition, we define a novel motif for protein sorting and rapid degradation, which allows controlling protein levels by means of clinically used drugs. PMID:19956591

  4. Renewable Fuel Pathways II Final Rule to Identify Additional Fuel Pathways under Renewable Fuel Standard Program

    EPA Pesticide Factsheets

    This final rule describes EPA’s evaluation of biofuels derived from biogas fuel pathways under the RFS program and other minor amendments related to survey requirements associated with ULSD program and misfueling mitigation regulations for E15.

  5. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila.

    PubMed

    Raabe, T; Olivier, J P; Dickson, B; Liu, X; Gish, G D; Pawson, T; Hafen, E

    1995-06-01

    The Drk SH3-SH2-SH3 adaptor protein has been genetically identified in a screen for rate-limiting components acting downstream of the Sevenless (Sev) receptor tyrosine kinase in the developing eye of Drosophila. It provides a link between the activated Sev receptor and Sos, a guanine nucleotide release factor that activates Ras1. We have used a combined biochemical and genetic approach to study the interactions between Sev, Drk and Sos. We show that Tyr2546 in the cytoplasmic tail of Sev is required for Drk binding, probably because it provides a recognition site for the Drk SH2 domain. Interestingly, a mutation at this site does not completely block Sev function in vivo. This may suggest that Sev can signal in a Drk-independent, parallel pathway or that Drk can also bind to an intermediate docking protein. Analysis of the Drk-Sos interaction has identified a high affinity binding site for Drk SH3 domains in the Sos tail. We show that the N-terminal Drk SH3 domain is primarily responsible for binding to the tail of Sos in vitro, and for signalling to Ras in vivo.

  6. De Novo Pyrimidine Nucleotide Synthesis Mainly Occurs outside of Plastids, but a Previously Undiscovered Nucleobase Importer Provides Substrates for the Essential Salvage Pathway in Arabidopsis[W

    PubMed Central

    Witz, Sandra; Jung, Benjamin; Fürst, Sarah; Möhlmann, Torsten

    2012-01-01

    Nucleotide de novo synthesis is highly conserved among organisms and represents an essential biochemical pathway. In plants, the two initial enzymatic reactions of de novo pyrimidine synthesis occur in the plastids. By use of green fluorescent protein fusions, clear support is provided for a localization of the remaining reactions in the cytosol and mitochondria. This implies that carbamoyl aspartate, an intermediate of this pathway, must be exported and precursors of pyrimidine salvage (i.e., nucleobases or nucleosides) are imported into plastids. A corresponding uracil transport activity could be measured in intact plastids isolated from cauliflower (Brassica oleracea) buds. PLUTO (for plastidic nucleobase transporter) was identified as a member of the Nucleobase:Cation-Symporter1 protein family from Arabidopsis thaliana, capable of transporting purine and pyrimidine nucleobases. A PLUTO green fluorescent protein fusion was shown to reside in the plastid envelope after expression in Arabidopsis protoplasts. Heterologous expression of PLUTO in an Escherichia coli mutant lacking the bacterial uracil permease uraA allowed a detailed biochemical characterization. PLUTO transports uracil, adenine, and guanine with apparent affinities of 16.4, 0.4, and 6.3 μM, respectively. Transport was markedly inhibited by low concentrations of a proton uncoupler, indicating that PLUTO functions as a proton-substrate symporter. Thus, a protein for the absolutely required import of pyrimidine nucleobases into plastids was identified. PMID:22474184

  7. Feeding and Fasting Signals Converge on the LKB1-SIK3 Pathway to Regulate Lipid Metabolism in Drosophila

    PubMed Central

    Choi, Sekyu; Lim, Dae-Sik; Chung, Jongkyeong

    2015-01-01

    LKB1 plays important roles in governing energy homeostasis by regulating AMP-activated protein kinase (AMPK) and other AMPK-related kinases, including the salt-inducible kinases (SIKs). However, the roles and regulation of LKB1 in lipid metabolism are poorly understood. Here we show that Drosophila LKB1 mutants display decreased lipid storage and increased gene expression of brummer, the Drosophila homolog of adipose triglyceride lipase (ATGL). These phenotypes are consistent with those of SIK3 mutants and are rescued by expression of constitutively active SIK3 in the fat body, suggesting that SIK3 is a key downstream kinase of LKB1. Using genetic and biochemical analyses, we identify HDAC4, a class IIa histone deacetylase, as a lipolytic target of the LKB1-SIK3 pathway. Interestingly, we found that the LKB1-SIK3-HDAC4 signaling axis is modulated by dietary conditions. In short-term fasting, the adipokinetic hormone (AKH) pathway, related to the mammalian glucagon pathway, inhibits the kinase activity of LKB1 as shown by decreased SIK3 Thr196 phosphorylation, and consequently induces HDAC4 nuclear localization and brummer gene expression. However, under prolonged fasting conditions, AKH-independent signaling decreases the activity of the LKB1-SIK3 pathway to induce lipolytic responses. We also identify that the Drosophila insulin-like peptides (DILPs) pathway, related to mammalian insulin pathway, regulates SIK3 activity in feeding conditions independently of increasing LKB1 kinase activity. Overall, these data suggest that fasting stimuli specifically control the kinase activity of LKB1 and establish the LKB1-SIK3 pathway as a converging point between feeding and fasting signals to control lipid homeostasis in Drosophila. PMID:25996931

  8. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death

    PubMed Central

    Garg, Abhishek D; Krysko, Dmitri V; Verfaillie, Tom; Kaczmarek, Agnieszka; Ferreira, Gabriela B; Marysael, Thierry; Rubio, Noemi; Firczuk, Malgorzata; Mathieu, Chantal; Roebroek, Anton J M; Annaert, Wim; Golab, Jakub; de Witte, Peter; Vandenabeele, Peter; Agostinis, Patrizia

    2012-01-01

    Surface-exposed calreticulin (ecto-CRT) and secreted ATP are crucial damage-associated molecular patterns (DAMPs) for immunogenic apoptosis. Inducers of immunogenic apoptosis rely on an endoplasmic reticulum (ER)-based (reactive oxygen species (ROS)-regulated) pathway for ecto-CRT induction, but the ATP secretion pathway is unknown. We found that after photodynamic therapy (PDT), which generates ROS-mediated ER stress, dying cancer cells undergo immunogenic apoptosis characterized by phenotypic maturation (CD80high, CD83high, CD86high, MHC-IIhigh) and functional stimulation (NOhigh, IL-10absent, IL-1βhigh) of dendritic cells as well as induction of a protective antitumour immune response. Intriguingly, early after PDT the cancer cells displayed ecto-CRT and secreted ATP before exhibiting biochemical signatures of apoptosis, through overlapping PERK-orchestrated pathways that require a functional secretory pathway and phosphoinositide 3-kinase (PI3K)-mediated plasma membrane/extracellular trafficking. Interestingly, eIF2α phosphorylation and caspase-8 signalling are dispensable for this ecto-CRT exposure. We also identified LRP1/CD91 as the surface docking site for ecto-CRT and found that depletion of PERK, PI3K p110α and LRP1 but not caspase-8 reduced the immunogenicity of the cancer cells. These results unravel a novel PERK-dependent subroutine for the early and simultaneous emission of two critical DAMPs following ROS-mediated ER stress. PMID:22252128

  9. In Vitro Reconstitution of Metabolic Pathways: Insights into Nature’s Chemical Logic

    PubMed Central

    Lowry, Brian; Walsh, Christopher T.

    2015-01-01

    In vitro analysis of metabolic pathways is becoming a powerful method to gain a deeper understanding of Nature’s core biochemical transformations. With astounding advancements in biotechnology, purification of a metabolic pathway’s constitutive enzymatic components is becoming a tractable problem, and such in vitro studies allow scientists to capture the finer details of enzymatic reaction mechanisms, kinetics, and the identity of organic product molecules. In this review, we present eleven metabolic pathways that have been the subject of in vitro reconstitution studies in the literature in recent years. In addition, we have selected and analyzed subset of four case studies within these eleven examples that exemplify remarkable organic chemistry occurring within biology. These examples serves as tangible reminders that Nature’s biochemical routes obey the fundamental principles of organic chemistry, and the chemical mechanisms are reminiscent of those featured in traditional synthetic organic routes. The illustrations of biosynthetic chemistry depicted in this review may inspire the development of biomimetic chemistries via abiotic chemical techniques. PMID:26207083

  10. Kombucha tea fermentation: Microbial and biochemical dynamics.

    PubMed

    Chakravorty, Somnath; Bhattacharya, Semantee; Chatzinotas, Antonis; Chakraborty, Writachit; Bhattacharya, Debanjana; Gachhui, Ratan

    2016-03-02

    Kombucha tea, a non-alcoholic beverage, is acquiring significant interest due to its claimed beneficial properties. The microbial community of Kombucha tea consists of bacteria and yeast which thrive in two mutually non-exclusive compartments: the soup or the beverage and the biofilm floating on it. The microbial community and the biochemical properties of the beverage have so far mostly been described in separate studies. This, however, may prevent understanding the causal links between the microbial communities and the beneficial properties of Kombucha tea. Moreover, an extensive study into the microbial and biochemical dynamics has also been missing. In this study, we thus explored the structure and dynamics of the microbial community along with the biochemical properties of Kombucha tea at different time points up to 21 days of fermentation. We hypothesized that several biochemical properties will change during the course of fermentation along with the shifts in the yeast and bacterial communities. The yeast community of the biofilm did not show much variation over time and was dominated by Candida sp. (73.5-83%). The soup however, showed a significant shift in dominance from Candida sp. to Lachancea sp. on the 7th day of fermentation. This is the first report showing Candida as the most dominating yeast genus during Kombucha fermentation. Komagateibacter was identified as the single largest bacterial genus present in both the biofilm and the soup (~50%). The bacterial diversity was higher in the soup than in the biofilm with a peak on the seventh day of fermentation. The biochemical properties changed with the progression of the fermentation, i.e., beneficial properties of the beverage such as the radical scavenging ability increased significantly with a maximum increase at day 7. We further observed a significantly higher D-saccharic acid-1,4-lactone content and caffeine degradation property compared to previously described Kombucha tea fermentations. Our

  11. Design of experiments for identification of complex biochemical systems with applications to mitochondrial bioenergetics.

    PubMed

    Vinnakota, Kalyan C; Beard, Daniel A; Dash, Ranjan K

    2009-01-01

    Identification of a complex biochemical system model requires appropriate experimental data. Models constructed on the basis of data from the literature often contain parameters that are not identifiable with high sensitivity and therefore require additional experimental data to identify those parameters. Here we report the application of a local sensitivity analysis to design experiments that will improve the identifiability of previously unidentifiable model parameters in a model of mitochondrial oxidative phosphorylation and tricaboxylic acid cycle. Experiments were designed based on measurable biochemical reactants in a dilute suspension of purified cardiac mitochondria with experimentally feasible perturbations to this system. Experimental perturbations and variables yielding the most number of parameters above a 5% sensitivity level are presented and discussed.

  12. Estrogen Degraders and Estrogen Degradation Pathway Identified in an Activated Sludge.

    PubMed

    Chen, Yi-Lung; Fu, Han-Yi; Lee, Tzong-Huei; Shih, Chao-Jen; Huang, Lina; Wang, Yu-Sheng; Ismail, Wael; Chiang, Yin-Ru

    2018-05-15

    The environmental release and fate of estrogens are becoming an increasing public concern. Bacterial degradation has been considered the main process for eliminating estrogens from wastewater treatment plants. Various bacterial isolates are reportedly capable of aerobic estrogen degradation, and several estrogen degradation pathways have been proposed in proteobacteria and actinobacteria. However, the ecophysiological relevance of estrogen-degrading bacteria in the environment is unclear. In this study, we investigated the estrogen degradation pathway and corresponding degraders in activated sludge collected from the Dihua Sewage Treatment Plant, Taipei, Taiwan. Cultivation-dependent and cultivation-independent methods were used to assess estrogen biodegradation in the collected activated sludge. Estrogen metabolite profile analysis revealed the production of pyridinestrone acid and two A/B-ring cleavage products in activated sludge incubated with estrone (1 mM), which are characteristic of the 4,5- seco pathway. PCR-based functional assays detected sequences closely related to alphaproteobacterial oecC , a key gene of the 4,5- seco pathway. Metagenomic analysis suggested that Novosphingobium spp. are major estrogen degraders in estrone-amended activated sludge. Novosphingobium sp. strain SLCC, an estrone-degrading alphaproteobacterium, was isolated from the examined activated sludge. The general physiology and metabolism of this strain were characterized. Pyridinestrone acid and the A/B-ring cleavage products were detected in estrone-grown strain SLCC cultures. The production of pyridinestrone acid was also observed during the aerobic incubation of strain SLCC with 3.7 nM (1 μg/liter) estrone. This concentration is close to that detected in many natural and engineered aquatic ecosystems. The presented data suggest the ecophysiological relevance of Novosphingobium spp. in activated sludge. IMPORTANCE Estrogens, which persistently contaminate surface water

  13. Pathway Distiller - multisource biological pathway consolidation

    PubMed Central

    2012-01-01

    Background One method to understand and evaluate an experiment that produces a large set of genes, such as a gene expression microarray analysis, is to identify overrepresentation or enrichment for biological pathways. Because pathways are able to functionally describe the set of genes, much effort has been made to collect curated biological pathways into publicly accessible databases. When combining disparate databases, highly related or redundant pathways exist, making their consolidation into pathway concepts essential. This will facilitate unbiased, comprehensive yet streamlined analysis of experiments that result in large gene sets. Methods After gene set enrichment finds representative pathways for large gene sets, pathways are consolidated into representative pathway concepts. Three complementary, but different methods of pathway consolidation are explored. Enrichment Consolidation combines the set of the pathways enriched for the signature gene list through iterative combining of enriched pathways with other pathways with similar signature gene sets; Weighted Consolidation utilizes a Protein-Protein Interaction network based gene-weighting approach that finds clusters of both enriched and non-enriched pathways limited to the experiments' resultant gene list; and finally the de novo Consolidation method uses several measurements of pathway similarity, that finds static pathway clusters independent of any given experiment. Results We demonstrate that the three consolidation methods provide unified yet different functional insights of a resultant gene set derived from a genome-wide profiling experiment. Results from the methods are presented, demonstrating their applications in biological studies and comparing with a pathway web-based framework that also combines several pathway databases. Additionally a web-based consolidation framework that encompasses all three methods discussed in this paper, Pathway Distiller (http://cbbiweb.uthscsa.edu/Pathway

  14. Chemical modulation of glycerolipid signaling and metabolic pathways

    PubMed Central

    Scott, Sarah A.; Mathews, Thomas P.; Ivanova, Pavlina T.; Lindsley, Craig W.; Brown, H. Alex

    2014-01-01

    Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields—ranging from neuroscience and cancer to diabetes and obesity—have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. PMID:24440821

  15. Biochemical and Expression Analyses of the Rice Cinnamoyl-CoA Reductase Gene Family.

    PubMed

    Park, Hye Lin; Bhoo, Seong Hee; Kwon, Mi; Lee, Sang-Won; Cho, Man-Ho

    2017-01-01

    Cinnamoyl-CoA reductase (CCR) is the first committed enzyme in the monolignol pathway for lignin biosynthesis and catalyzes the conversion of hydroxycinnamoyl-CoAs into hydroxycinnamaldehydes. In the rice genome, 33 genes are annotated as CCR and CCR-like genes, collectively called OsCCR s. To elucidate the functions of OsCCR s, their phylogenetic relationships, expression patterns at the transcription levels and biochemical characteristics were thoroughly analyzed. Of the 33 OsCCR s, 24 of them encoded polypeptides of lengths similar to those of previously identified plant CCRs. The other nine OsCCRs had much shorter peptide lengths. Phylogenetic tree and sequence similarities suggested OsCCR4, 5, 17, 18, 19, 20, and 21 as likely candidates for functional CCRs in rice. To elucidate biochemical functions, OsCCR1, 5, 17, 19, 20, 21, and 26 were heterologously expressed in Escherichia coli and the resulting recombinant OsCCRs were purified to apparent homogeneity. Activity assays of the recombinant OsCCRs with hydroxycinnamoyl-CoAs revealed that OsCCR17, 19, 20, and 21 were biochemically active CCRs, in which the NAD(P)-binding and NADP-specificity motifs as well as the CCR signature motif were fully conserved. The kinetic parameters of enzyme reactions revealed that feruloyl-CoA, a precursor for the guaiacyl (G)-unit of lignin, is the most preferred substrate of OsCCR20 and 21. This result is consistent with a high content (about 70%) of G-units in rice lignins. Phylogenetic analysis revealed that OsCCR19 and 20 were grouped with other plant CCRs involved in developmental lignification, whereas OsCCR17 and 21 were closely related to stress-responsible CCRs identified from other plant species. In agreement with the phylogenetic analysis, expression analysis demonstrated that OsCCR20 was constitutively expressed throughout the developmental stages of rice, showing particularly high expression levels in actively lignifying tissues, such as roots and stems. These

  16. Microbial oxidative sulfur metabolism: biochemical evidence of the membrane-bound heterodisulfide reductase-like complex of the bacterium Aquifex aeolicus.

    PubMed

    Boughanemi, Souhela; Lyonnet, Jordan; Infossi, Pascale; Bauzan, Marielle; Kosta, Artémis; Lignon, Sabrina; Giudici-Orticoni, Marie-Thérèse; Guiral, Marianne

    2016-08-01

    The Hdr (heterodisulfide reductase)-like enzyme is predicted, from gene transcript profiling experiments previously published, to be essential in oxidative sulfur metabolism in a number of bacteria and archaea. Nevertheless, no biochemical and physicochemical data are available so far about this enzyme. Genes coding for it were identified in Aquifex aeolicus, a Gram-negative, hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium that uses inorganic sulfur compounds as electron donor to grow. We provide biochemical evidence that this Hdr-like enzyme is present in this sulfur-oxidizing prokaryote (cultivated with thiosulfate or elemental sulfur). We demonstrate, by immunolocalization and cell fractionation, that Hdr-like enzyme is associated, presumably monotopically, with the membrane fraction. We show by co-immunoprecipitation assay or partial purification, that the Hdr proteins form a stable complex composed of at least five subunits, HdrA, HdrB1, HdrB2, HdrC1 and HdrC2, present in two forms of high molecular mass on native gel (∼240 and 450 kDa). These studies allow us to propose a revised model for dissimilatory sulfur oxidation pathways in A. aeolicus, with Hdr predicted to generate sulfite. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing.

    PubMed

    Wu, Zujian; Pang, Wei; Coghill, George M

    2015-01-01

    Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitative modelling framework for inferring biochemical systems. In the proposed framework, interactions between reactants in the candidate models for a target biochemical system are evolved and eventually identified by the application of a qualitative model learning approach with an evolution strategy. Kinetic rates of the models generated from qualitative model learning are then further optimised by employing a quantitative approach with simulated annealing. Experimental results indicate that our proposed integrative framework is feasible to learn the relationships between biochemical reactants qualitatively and to make the model replicate the behaviours of the target system by optimising the kinetic rates quantitatively. Moreover, potential reactants of a target biochemical system can be discovered by hypothesising complex reactants in the synthetic models. Based on the biochemical models learned from the proposed framework, biologists can further perform experimental study in wet laboratory. In this way, natural biochemical systems can be better understood.

  18. An Approach for Identification of Novel Drug Targets in Streptococcus pyogenes SF370 Through Pathway Analysis.

    PubMed

    Singh, Satendra; Singh, Dev Bukhsh; Singh, Anamika; Gautam, Budhayash; Ram, Gurudayal; Dwivedi, Seema; Ramteke, Pramod W

    2016-12-01

    Streptococcus pyogenes is one of the most important pathogens as it is involved in various infections affecting upper respiratory tract and skin. Due to the emergence of multidrug resistance and cross-resistance, S. Pyogenes is becoming more pathogenic and dangerous. In the present study, an in silico comparative analysis of total 65 metabolic pathways of the host (Homo sapiens) and the pathogen was performed. Initially, 486 paralogous enzymes were identified so that they can be removed from possible drug target list. The 105 enzymes of the biochemical pathways of S. pyogenes from the KEGG metabolic pathway database were compared with the proteins from the Homo sapiens by performing a BLASTP search against the non-redundant database restricted to the Homo sapiens subset. Out of these, 83 enzymes were identified as non-human homologous while 30 enzymes of inadequate amino acid length were removed for further processing. Essential enzymes were finally mined from remaining 53 enzymes. Finally, 28 essential enzymes were identified in S. pyogenes SF370 (serotype M1). In subcellular localization study, 18 enzymes were predicted with cytoplasmic localization and ten enzymes with the membrane localization. These ten enzymes with putative membrane localization should be of particular interest. Acyl-carrier-protein S-malonyltransferase, DNA polymerase III subunit beta and dihydropteroate synthase are novel drug targets and thus can be used to design potential inhibitors against S. pyogenes infection. 3D structure of dihydropteroate synthase was modeled and validated that can be used for virtual screening and interaction study of potential inhibitors with the target enzyme.

  19. Complexity reduction of biochemical rate expressions.

    PubMed

    Schmidt, Henning; Madsen, Mads F; Danø, Sune; Cedersund, Gunnar

    2008-03-15

    The current trend in dynamical modelling of biochemical systems is to construct more and more mechanistically detailed and thus complex models. The complexity is reflected in the number of dynamic state variables and parameters, as well as in the complexity of the kinetic rate expressions. However, a greater level of complexity, or level of detail, does not necessarily imply better models, or a better understanding of the underlying processes. Data often does not contain enough information to discriminate between different model hypotheses, and such overparameterization makes it hard to establish the validity of the various parts of the model. Consequently, there is an increasing demand for model reduction methods. We present a new reduction method that reduces complex rational rate expressions, such as those often used to describe enzymatic reactions. The method is a novel term-based identifiability analysis, which is easy to use and allows for user-specified reductions of individual rate expressions in complete models. The method is one of the first methods to meet the classical engineering objective of improved parameter identifiability without losing the systems biology demand of preserved biochemical interpretation. The method has been implemented in the Systems Biology Toolbox 2 for MATLAB, which is freely available from http://www.sbtoolbox2.org. The Supplementary Material contains scripts that show how to use it by applying the method to the example models, discussed in this article.

  20. Genomic characterization of a new endophytic Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters for novel phenazine antibiotic production

    PubMed Central

    Remali, Juwairiah; Sarmin, Nurul ‘Izzah Mohd; Ng, Chyan Leong; Tiong, John J.L.; Aizat, Wan M.; Keong, Loke Kok

    2017-01-01

    Background Streptomyces are well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy) carbonyl) phenazine-1-carboxylic acid (HCPCA) extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea. Methods The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s) believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites. Results The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome with high GC content (71.35%) consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis. Discussion The HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential of S. kebangsaanensis for producing various antibiotics and secondary metabolites. PMID:29201559

  1. Influence of Biochemical Features of Burkholderia pseudomallei Strains on Identification Reliability by Vitek 2 System

    PubMed Central

    Zakharova, Irina B; Lopasteyskaya, Yana A; Toporkov, Andrey V; Viktorov, Dmitry V

    2018-01-01

    Background: Burkholderia pseudomallei is a Gram-negative saprophytic soil bacterium that causes melioidosis, a potentially fatal disease endemic in wet tropical areas. The currently available biochemical identification systems can misidentify some strains of B. pseudomallei. The aim of the present study was to identify the biochemical features of B. pseudomallei, which can affect its correct identification by Vitek 2 system. Materials and Methods: The biochemical patterns of 40 B. pseudomallei strains were obtained using Vitek 2 GN cards. The average contribution of biochemical tests in overall dissimilarities between correctly and incorrectly identified strains was assessed using nonmetric multidimensional scaling. Results: It was found (R statistic of 0.836, P = 0.001) that a combination of negative N-acetyl galactosaminidase, β-N-acetyl glucosaminidase, phosphatase, and positive D-cellobiase (dCEL), tyrosine arylamidase (TyrA), and L-proline arylamidase (ProA) tests leads to low discrimination of B. pseudomallei, whereas a set of positive dCEL and negative N-acetyl galactosaminidase, TyrA, and ProA determines the wrong identification of B. pseudomallei as Burkholderia cepacia complex. Conclusion: The further expansion of the Vitek 2 identification keys is needed for correct identification of atypical or regionally distributed biochemical profiles of B. pseudomallei. PMID:29563716

  2. DNA methylation screening of primary prostate tumors identifies SRD5A2 and CYP11A1 as candidate markers for assessing risk of biochemical recurrence.

    PubMed

    Horning, Aaron M; Awe, Julius A; Wang, Chiou-Miin; Liu, Joseph; Lai, Zhao; Wang, Vickie Yao; Jadhav, Rohit R; Louie, Anna D; Lin, Chun-Lin; Kroczak, Tad; Chen, Yidong; Jin, Victor X; Abboud-Werner, Sherry L; Leach, Robin J; Hernandez, Javior; Thompson, Ian M; Saranchuk, Jeff; Drachenberg, Darrel; Chen, Chun-Liang; Mai, Sabine; Huang, Tim Hui-Ming

    2015-11-01

    Altered DNA methylation in CpG islands of gene promoters has been implicated in prostate cancer (PCa) progression and can be used to predict disease outcome. In this study, we determine whether methylation changes of androgen biosynthesis pathway (ABP)-related genes in patients' plasma cell-free DNA (cfDNA) can serve as prognostic markers for biochemical recurrence (BCR). Methyl-binding domain capture sequencing (MBDCap-seq) was used to identify differentially methylated regions (DMRs) in primary tumors of patients who subsequently developed BCR or not, respectively. Methylation pyrosequencing of candidate loci was validated in cfDNA samples of 86 PCa patients taken at and/or post-radical prostatectomy (RP) using univariate and multivariate prediction analyses. Putative DMRs in 13 of 30 ABP-related genes were found between tumors of BCR (n = 12) versus no evidence of disease (NED) (n = 15). In silico analysis of The Cancer Genome Atlas data confirmed increased DNA methylation of two loci-SRD5A2 and CYP11A1, which also correlated with their decreased expression, in tumors with subsequent BCR development. Their aberrant cfDNA methylation was also associated with detectable levels of PSA taken after patients' post-RP. Multivariate analysis of the change in cfDNA methylation at all of CpG sites measured along with patient's treatment history predicted if a patient will develop BCR with 77.5% overall accuracy. Overall, increased DNA methylation of SRD5A2 and CYP11A1 related to androgen biosynthesis functions may play a role in BCR after patients' RP. The correlation between aberrant cfDNA methylation and detectable PSA in post-RP further suggests their utility as predictive markers for PCa recurrence. . © 2015 Wiley Periodicals, Inc.

  3. Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway.

    PubMed

    Jang, Ju-Won; Kim, Min-Kyu; Bae, Suk-Chul

    2018-04-20

    Yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) (YAP/TAZ) are transcriptional coactivators that regulate genes involved in proliferation and transformation by interacting with DNA-binding transcription factors. Remarkably, YAP/TAZ are essential for cancer initiation or growth of most solid tumors. Their activation induces cancer stem cell attributes, proliferation, and metastasis. The oncogenic activity of YAP/TAZ is inhibited by the Hippo cascade, an evolutionarily conserved pathway that is governed by two kinases, mammalian Ste20-like kinases 1/2 (MST1/2) and Large tumor suppressor kinase 1/2 (LATS1/2), corresponding to Drosophila's Hippo (Hpo) and Warts (Wts), respectively. One of the most influential aspects of YAP/TAZ biology is that these factors are transducers of cell structural features, including polarity, shape, and cytoskeletal organization. In turn, these features are intimately related to the cell's ability to attach to other cells and to the surrounding extracellular matrix (ECM), and are also influenced by the cell's microenvironment. Thus, YAP/TAZ respond to changes that occur at the level of whole tissues. Notably, small GTPases act as master organizers of the actin cytoskeleton. Recent studies provided convincing genetic evidence that small GTPase signaling pathways activate YAP/TAZ, while the Hippo pathway inhibits them. Biochemical studies showed that small GTPases facilitate the YAP-Tea domain transcription factor (TEAD) interaction by inhibiting YAP phosphorylation in response to serum stimulation, while the Hippo pathway facilitates the YAP-RUNX3 interaction by increasing YAP phosphorylation. Therefore, small GTPase pathways activate YAP/TAZ by switching its DNA-binding transcription factors. In this review, we summarize the relationship between the Hippo pathway and small GTPase pathways in the regulation of YAP/TAZ.

  4. Differences in the API 20E biochemical patterns of clinical and environmental Vibrio parahaemolyticus isolates.

    PubMed

    Martinez-Urtaza, Jaime; Lozano-Leon, Antonio; Viña-Feas, Alejandro; de Novoa, Jacobo; Garcia-Martin, Oscar

    2006-02-01

    Genetic differences in clinical and environmental strains of Vibrio parahaemolyticus have been widely used as criteria in identifying pathogenic isolates. However, few studies have been carried out to assess the differences in biochemical characteristics of V. parahaemolyticus isolates from human and environmental sources. We compared the biochemical profiles obtained by the characterization of V. parahaemolyticus isolates from human infections and the marine environment using the API 20E system. Environmental and clinical isolates showed significant differences in the gelatin and arabinose tests. Additionally, clinical isolates were correctly identified according to the API 20E profile using 0.85% NaCl diluent, but they presented nonspecific profiles with 2% NaCl diluent. In contrast, use of 2% NaCl diluent facilitated correct identification of the environmental isolates. Clinical isolates showed significant differences in up to five biochemical tests with respect to the API 20E database. The API 20E system is widely used in routine identification of bacteria in clinical laboratories, and this discrepancy in an important number of biochemical tests may lead to misidentification of V. parahaemolyticus infection.

  5. Dominant Mutations in S. cerevisiae PMS1 Identify the Mlh1-Pms1 Endonuclease Active Site and an Exonuclease 1-Independent Mismatch Repair Pathway

    PubMed Central

    Smith, Catherine E.; Mendillo, Marc L.; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S.; Desai, Arshad; Putnam, Christopher D.; Kolodner, Richard D.

    2013-01-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway. PMID:24204293

  6. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway.

    PubMed

    Smith, Catherine E; Mendillo, Marc L; Bowen, Nikki; Hombauer, Hans; Campbell, Christopher S; Desai, Arshad; Putnam, Christopher D; Kolodner, Richard D

    2013-10-01

    Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway.

  7. Experimentally-Derived Fibroblast Gene Signatures Identify Molecular Pathways Associated with Distinct Subsets of Systemic Sclerosis Patients in Three Independent Cohorts

    PubMed Central

    Johnson, Michael E.; Mahoney, J. Matthew; Taroni, Jaclyn; Sargent, Jennifer L.; Marmarelis, Eleni; Wu, Ming-Ru; Varga, John; Hinchcliff, Monique E.; Whitfield, Michael L.

    2015-01-01

    Genome-wide expression profiling in systemic sclerosis (SSc) has identified four ‘intrinsic’ subsets of disease (fibroproliferative, inflammatory, limited, and normal-like), each of which shows deregulation of distinct signaling pathways; however, the full set of pathways contributing to this differential gene expression has not been fully elucidated. Here we examine experimentally derived gene expression signatures in dermal fibroblasts for thirteen different signaling pathways implicated in SSc pathogenesis. These data show distinct and overlapping sets of genes induced by each pathway, allowing for a better understanding of the molecular relationship between profibrotic and immune signaling networks. Pathway-specific gene signatures were analyzed across a compendium of microarray datasets consisting of skin biopsies from three independent cohorts representing 80 SSc patients, 4 morphea, and 26 controls. IFNα signaling showed a strong association with early disease, while TGFβ signaling spanned the fibroproliferative and inflammatory subsets, was associated with worse MRSS, and was higher in lesional than non-lesional skin. The fibroproliferative subset was most strongly associated with PDGF signaling, while the inflammatory subset demonstrated strong activation of innate immune pathways including TLR signaling upstream of NF-κB. The limited and normal-like subsets did not show associations with fibrotic and inflammatory mediators such as TGFβ and TNFα. The normal-like subset showed high expression of genes associated with lipid signaling, which was absent in the inflammatory and limited subsets. Together, these data suggest a model by which IFNα is involved in early disease pathology, and disease severity is associated with active TGFβ signaling. PMID:25607805

  8. The Pathway Coexpression Network: Revealing pathway relationships

    PubMed Central

    Tanzi, Rudolph E.

    2018-01-01

    A goal of genomics is to understand the relationships between biological processes. Pathways contribute to functional interplay within biological processes through complex but poorly understood interactions. However, limited functional references for global pathway relationships exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of biological processes. Their relationships are currently either inferred from gene set enrichment within specific experiments, or by simple overlap, linking pathway annotations that have genes in common. Here, we provide a unifying interpretation of functional interaction between pathways by systematically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the correlation between canonical pathways valid in a broad context using a curated collection of 3,207 microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations to estimate significant correlations between pathways with related functions rather than with similar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex diseases using an Alzheimer’s Disease (AD) case study. PCxN retrieved pathways significantly correlated with an expert curated AD gene list. These pathways have known associations with AD and were significantly enriched for genes independently associated with AD. As a further step, we show how PCxN complements the results of gene set enrichment methods by revealing relationships between enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed that correlated pathways from an AD expression profiling study include functional clusters involved in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the extracellular matrix. PCxN provides a powerful new framework for interrogation of

  9. Benzoate Metabolism Intermediate Benzoyl Coenzyme A Affects Gentisate Pathway Regulation in Comamonas testosteroni

    PubMed Central

    Chen, Dong-Wei; Zhang, Yun; Jiang, Cheng-Ying

    2014-01-01

    A previous study showed that benzoate was catabolized via a coenzyme A (CoA)-dependent epoxide pathway in Azoarcus evansii (R. Niemetz, U. Altenschmidt, S. Brucker, and G. Fuchs, Eur. J. Biochem. 227:161-168, 1995), but gentisate 1,2-dioxygenase was induced. Similarly, we found that the Comamonas testosteroni strain CNB-1 degraded benzoate via a CoA-dependent epoxide pathway and that gentisate 1,2-dioxygenase (GenA) was also induced when benzoate or 3-hydroxybenzoate served as a carbon source for growth. Genes encoding the CoA-dependent epoxide (box genes) and gentisate (gen genes) pathways were identified. Genetic disruption revealed that the gen genes were not involved in benzoate and 3-hydroxybenzoate degradation. Hence, we investigated gen gene regulation in the CNB-1 strain. The PgenA promoter, a MarR-type regulator (GenR), and the GenR binding site were identified. We found that GenR took gentisate, 3-hydroxybenzoate, and benzoyl-CoA as effectors and that binding of GenR to its target DNA sequence was prohibited when these effectors were present. In vivo studies showed that the CNB-1 mutant that lost benzoyl-CoA synthesis was not able to activate PgenA promoter, while transcription of genA was upregulated in another CNB-1 mutant that lost the ability to degrade benzoyl-CoA. The finding that benzoyl-CoA (a metabolic intermediate of benzoate degradation) and 3-hydroxybenzoate function as GenR effectors explains why GenA was induced when CNB-1 grew on benzoate or 3-hydroxybenzoate. Regulation of gentisate pathways by MarR-, LysR-, and IclR-type regulators in diverse bacterial groups is discussed in detail. PMID:24771026

  10. Using Ambystoma mexicanum (Mexican Axolotl) Embryos, Chemical Genetics, and Microarray Analysis to Identify Signaling Pathways Associated with Tissue Regeneration

    PubMed Central

    Ponomareva, Larissa V.; Athippozhy, Antony; Thorson, Jon S.; Voss, S. Randal

    2015-01-01

    Amphibian vertebrates are important models in regenerative biology because they present exceptional regenerative capabilities throughout life. However, it takes considerable effort to rear amphibians to juvenile and adult stages for regeneration studies and the relatively large sizes that frogs and salamanders achieve during development make them difficult to use in chemical screens. Here we introduce a new tail regeneration model using late stage Mexican axolotl embryos. We show that axolotl embryos completely regenerate amputated tails in 7 days before they exhaust their yolk supply and begin to feed. Further, we show that axolotl embryos can be efficiently reared in microtiter plates to achieve moderate throughput screening of soluble chemicals to investigate toxicity and identify molecules that alter regenerative outcome. As proof of principle, we identified integration 1 / wingless (Wnt), transforming growth factor beta (Tgf-β), and fibroblast growth factor (Fgf) pathway antagonists that completely block tail regeneration and additional chemicals that significantly affected tail outgrowth. Furthermore, we used microarray analysis to show that inhibition of Wnt signaling broadly affects transcription of genes associated with Wnt, Fgf, Tgf-β, epidermal growth factor (Egf), Notch, nerve growth factor (Ngf), homeotic gene (Hox), rat sarcoma/mitogen-activated protein kinase (Ras/Mapk), myelocytomatosis viral oncogene (Myc), tumor protein 53 (p53), and retinoic acid (RA) pathways. Punctuated changes in the expression of genes known to regulate vertebrate development were observed; this suggests the tail regeneration transcriptional program is hierarchically structured and temporally ordered. Our study establishes the axolotl as a chemical screening model to investigate signaling pathways associated with tissue regeneration. PMID:26092703

  11. Pathway to care for drug resistant tuberculosis cases identified during a retrospective study conducted in high TB burden wards in Mumbai.

    PubMed

    Lobo, Eunice; Shah, Shimoni; Rangan, Sheela; Dholakia, Yatin; Mistry, Nerges

    2018-05-10

    Background: Mumbai is witnessing a rising incidence of all forms of drug resistant tuberculosis (DR-TB). Methods: A population-based, retrospective study was conducted between April and July 2014, in 15 high TB burden wards in Mumbai, to capture the patient pathways to TB care. A total of 23 DR-TB patients were identified and their pathways to access DR-TB care were recorded using semi-structured interviews. Results: The total DR-TB pathway time of new patients (who did not report any past episode of TB) (180 days; IQR 123,346) was found to be more than twice that of retreatment patients (who reported a past episode of TB) (69 days; IQR 42,128). Conclusions: The unacceptable delay for diagnosis and treatment of DR-TB in Mumbai advocates for consistent implementation of early screening of patients using rapid gene-based technologies.

  12. Pathway enrichment analysis approach based on topological structure and updated annotation of pathway.

    PubMed

    Yang, Qian; Wang, Shuyuan; Dai, Enyu; Zhou, Shunheng; Liu, Dianming; Liu, Haizhou; Meng, Qianqian; Jiang, Bin; Jiang, Wei

    2017-08-16

    Pathway enrichment analysis has been widely used to identify cancer risk pathways, and contributes to elucidating the mechanism of tumorigenesis. However, most of the existing approaches use the outdated pathway information and neglect the complex gene interactions in pathway. Here, we first reviewed the existing widely used pathway enrichment analysis approaches briefly, and then, we proposed a novel topology-based pathway enrichment analysis (TPEA) method, which integrated topological properties and global upstream/downstream positions of genes in pathways. We compared TPEA with four widely used pathway enrichment analysis tools, including database for annotation, visualization and integrated discovery (DAVID), gene set enrichment analysis (GSEA), centrality-based pathway enrichment (CePa) and signaling pathway impact analysis (SPIA), through analyzing six gene expression profiles of three tumor types (colorectal cancer, thyroid cancer and endometrial cancer). As a result, we identified several well-known cancer risk pathways that could not be obtained by the existing tools, and the results of TPEA were more stable than that of the other tools in analyzing different data sets of the same cancer. Ultimately, we developed an R package to implement TPEA, which could online update KEGG pathway information and is available at the Comprehensive R Archive Network (CRAN): https://cran.r-project.org/web/packages/TPEA/. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhir

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl{sub 4})-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl{sub 4} (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day formore » 3 weeks) and with continued CCl{sub 4}. We observed that combined treatment with CCl{sub 4} and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis.« less

  14. Molecular mechanisms of the non-coenzyme action of thiamin in brain: biochemical, structural and pathway analysis

    PubMed Central

    Mkrtchyan, Garik; Aleshin, Vasily; Parkhomenko, Yulia; Kaehne, Thilo; Luigi Di Salvo, Martino; Parroni, Alessia; Contestabile, Roberto; Vovk, Andrey; Bettendorff, Lucien; Bunik, Victoria

    2015-01-01

    Thiamin (vitamin B1) is a pharmacological agent boosting central metabolism through the action of the coenzyme thiamin diphosphate (ThDP). However, positive effects, including improved cognition, of high thiamin doses in neurodegeneration may be observed without increased ThDP or ThDP-dependent enzymes in brain. Here, we determine protein partners and metabolic pathways where thiamin acts beyond its coenzyme role. Malate dehydrogenase, glutamate dehydrogenase and pyridoxal kinase were identified as abundant proteins binding to thiamin- or thiazolium-modified sorbents. Kinetic studies, supported by structural analysis, revealed allosteric regulation of these proteins by thiamin and/or its derivatives. Thiamin triphosphate and adenylated thiamin triphosphate activate glutamate dehydrogenase. Thiamin and ThDP regulate malate dehydrogenase isoforms and pyridoxal kinase. Thiamin regulation of enzymes related to malate-aspartate shuttle may impact on malate/citrate exchange, responsible for exporting acetyl residues from mitochondria. Indeed, bioinformatic analyses found an association between thiamin- and thiazolium-binding proteins and the term acetylation. Our interdisciplinary study shows that thiamin is not only a coenzyme for acetyl-CoA production, but also an allosteric regulator of acetyl-CoA metabolism including regulatory acetylation of proteins and acetylcholine biosynthesis. Moreover, thiamin action in neurodegeneration may also involve neurodegeneration-related 14-3-3, DJ-1 and β-amyloid precursor proteins identified among the thiamin- and/or thiazolium-binding proteins. PMID:26212886

  15. Activation of sorbitol pathway in metabolic syndrome and increased susceptibility to cataract in Wistar-Obese rats

    PubMed Central

    Giridharan, Nappan Veettil

    2012-01-01

    Purpose Obesity is a major public health problem worldwide, and of late, epidemiological studies indicate a preponderance of cataracts under obesity conditions. Although cataract is a multifactorial disorder and various biochemical mechanisms have been proposed, the influence of obesity on cataractogenesis has yet to be investigated. In such a scenario, a suitable animal model that develops cataract following the onset of obesity will be a welcome tool for biomedical research. Therefore, we investigated the molecular and biochemical basis for predisposition to cataract in the obese mutant rat models established in our institute because 15%–20% of these rats develop cataracts spontaneously as they reach 12–15 months of age. Methods We analyzed the major biochemical pathways in the normal lenses of different age groups of our obese mutant rat strains, Wistar/Obese (WNIN/Ob) and WNIN/GR-Ob, the former with euglycemia and the latter with an additional impaired glucose tolerance trait. In addition, sorbitol levels were estimated in the cataractous lenses of the obese rats. Results Except for the polyol pathway, all the principal pathways of the lens remained unaltered. Therefore, sorbitol levels were found to be high in the normal eye lenses of obese rats (WNIN/Ob and WNIN/GR-Ob) compared to their lean controls from three months of age onwards. Between WNIN/Ob and WNIN/GR-Ob, the levels of sorbitol were higher in the latter, suggesting a synergistic effect of impaired glucose tolerance along with obesity in the activation of the sorbitol pathway. Either way, an elevated sorbitol pathway seemed to be the predisposing factor responsible for cataract formation in these mutant rats. Conclusions Activation of the sorbitol pathway indeed enhances the risk of cataract development in conditions such as metabolic syndrome. These rat models thus may be valuable tools for investigating obesity-associated cataract and for developing intervention strategies, based on these

  16. Simulation of a Petri net-based model of the terpenoid biosynthesis pathway.

    PubMed

    Hawari, Aliah Hazmah; Mohamed-Hussein, Zeti-Azura

    2010-02-09

    The development and simulation of dynamic models of terpenoid biosynthesis has yielded a systems perspective that provides new insights into how the structure of this biochemical pathway affects compound synthesis. These insights may eventually help identify reactions that could be experimentally manipulated to amplify terpenoid production. In this study, a dynamic model of the terpenoid biosynthesis pathway was constructed based on the Hybrid Functional Petri Net (HFPN) technique. This technique is a fusion of three other extended Petri net techniques, namely Hybrid Petri Net (HPN), Dynamic Petri Net (HDN) and Functional Petri Net (FPN). The biological data needed to construct the terpenoid metabolic model were gathered from the literature and from biological databases. These data were used as building blocks to create an HFPNe model and to generate parameters that govern the global behaviour of the model. The dynamic model was simulated and validated against known experimental data obtained from extensive literature searches. The model successfully simulated metabolite concentration changes over time (pt) and the observations correlated with known data. Interactions between the intermediates that affect the production of terpenes could be observed through the introduction of inhibitors that established feedback loops within and crosstalk between the pathways. Although this metabolic model is only preliminary, it will provide a platform for analysing various high-throughput data, and it should lead to a more holistic understanding of terpenoid biosynthesis.

  17. Construction and completion of flux balance models from pathway databases.

    PubMed

    Latendresse, Mario; Krummenacker, Markus; Trupp, Miles; Karp, Peter D

    2012-02-01

    Flux balance analysis (FBA) is a well-known technique for genome-scale modeling of metabolic flux. Typically, an FBA formulation requires the accurate specification of four sets: biochemical reactions, biomass metabolites, nutrients and secreted metabolites. The development of FBA models can be time consuming and tedious because of the difficulty in assembling completely accurate descriptions of these sets, and in identifying errors in the composition of these sets. For example, the presence of a single non-producible metabolite in the biomass will make the entire model infeasible. Other difficulties in FBA modeling are that model distributions, and predicted fluxes, can be cryptic and difficult to understand. We present a multiple gap-filling method to accelerate the development of FBA models using a new tool, called MetaFlux, based on mixed integer linear programming (MILP). The method suggests corrections to the sets of reactions, biomass metabolites, nutrients and secretions. The method generates FBA models directly from Pathway/Genome Databases. Thus, FBA models developed in this framework are easily queried and visualized using the Pathway Tools software. Predicted fluxes are more easily comprehended by visualizing them on diagrams of individual metabolic pathways or of metabolic maps. MetaFlux can also remove redundant high-flux loops, solve FBA models once they are generated and model the effects of gene knockouts. MetaFlux has been validated through construction of FBA models for Escherichia coli and Homo sapiens. Pathway Tools with MetaFlux is freely available to academic users, and for a fee to commercial users. Download from: biocyc.org/download.shtml. mario.latendresse@sri.com Supplementary data are available at Bioinformatics online.

  18. Novel degradation pathway and kinetic analysis for buprofezin removal by newly isolated Bacillus sp.

    PubMed

    Wang, Guangli; Xu, Dayong; Xiong, Minghua; Zhang, Hui; Li, Feng; Liu, Yuan

    2016-09-15

    Given the intensive and widespread application of the pesticide, buprofezin, its environmental residues potentially pose a problem; yet little is known about buprofezin's kinetic and metabolic behaviors. In this study, a novel gram-positive strain, designated BF-5, isolated from aerobic activated sludge, was found to be capable of metabolizing buprofezin as its sole energy, carbon, and nitrogen source. Based on its physiological and biochemical characteristics, other aspects of its phenotype, and a phylogenetic analysis, strain BF-5 was identified as Bacillus sp. This study investigated the effect of culture conditions on bacterial growth and substrate degradation, such as pH, temperature, initial concentration, different nitrogen source, and additional nitrogen sources as co-substrates. The degradation rate parameters, qmax, Ks, Ki and Sm were determined to be 0.6918 h(-1), 105.4 mg L(-1), 210.5 mg L(-1), and 148.95 mg L(-1) respectively. The capture of unpublished potential metabolites by gas chromatography-mass spectrometry (GC-MS) analysis has led to the proposal of a novel degradation pathway. Taken together, our results clarify buprofezin's biodegradation pathway(s) and highlight the promising potential of strain BF-5 in bioremediation of buprofezin-contaminated environments. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. EDdb: a web resource for eating disorder and its application to identify an extended adipocytokine signaling pathway related to eating disorder.

    PubMed

    Zhao, Min; Li, XiaoMo; Qu, Hong

    2013-12-01

    Eating disorder is a group of physiological and psychological disorders affecting approximately 1% of the female population worldwide. Although the genetic epidemiology of eating disorder is becoming increasingly clear with accumulated studies, the underlying molecular mechanisms are still unclear. Recently, integration of various high-throughput data expanded the range of candidate genes and started to generate hypotheses for understanding potential pathogenesis in complex diseases. This article presents EDdb (Eating Disorder database), the first evidence-based gene resource for eating disorder. Fifty-nine experimentally validated genes from the literature in relation to eating disorder were collected as the core dataset. Another four datasets with 2824 candidate genes across 601 genome regions were expanded based on the core dataset using different criteria (e.g., protein-protein interactions, shared cytobands, and related complex diseases). Based on human protein-protein interaction data, we reconstructed a potential molecular sub-network related to eating disorder. Furthermore, with an integrative pathway enrichment analysis of genes in EDdb, we identified an extended adipocytokine signaling pathway in eating disorder. Three genes in EDdb (ADIPO (adiponectin), TNF (tumor necrosis factor) and NR3C1 (nuclear receptor subfamily 3, group C, member 1)) link the KEGG (Kyoto Encyclopedia of Genes and Genomes) "adipocytokine signaling pathway" with the BioCarta "visceral fat deposits and the metabolic syndrome" pathway to form a joint pathway. In total, the joint pathway contains 43 genes, among which 39 genes are related to eating disorder. As the first comprehensive gene resource for eating disorder, EDdb ( http://eddb.cbi.pku.edu.cn ) enables the exploration of gene-disease relationships and cross-talk mechanisms between related disorders. Through pathway statistical studies, we revealed that abnormal body weight caused by eating disorder and obesity may both be

  20. Nanoparticles as biochemical sensors

    PubMed Central

    El-Ansary, Afaf; Faddah, Layla M

    2010-01-01

    There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body. PMID:24198472

  1. Fast and Precise Emulation of Stochastic Biochemical Reaction Networks With Amplified Thermal Noise in Silicon Chips.

    PubMed

    Kim, Jaewook; Woo, Sung Sik; Sarpeshkar, Rahul

    2018-04-01

    The analysis and simulation of complex interacting biochemical reaction pathways in cells is important in all of systems biology and medicine. Yet, the dynamics of even a modest number of noisy or stochastic coupled biochemical reactions is extremely time consuming to simulate. In large part, this is because of the expensive cost of random number and Poisson process generation and the presence of stiff, coupled, nonlinear differential equations. Here, we demonstrate that we can amplify inherent thermal noise in chips to emulate randomness physically, thus alleviating these costs significantly. Concurrently, molecular flux in thermodynamic biochemical reactions maps to thermodynamic electronic current in a transistor such that stiff nonlinear biochemical differential equations are emulated exactly in compact, digitally programmable, highly parallel analog "cytomorphic" transistor circuits. For even small-scale systems involving just 80 stochastic reactions, our 0.35-μm BiCMOS chips yield a 311× speedup in the simulation time of Gillespie's stochastic algorithm over COPASI, a fast biochemical-reaction software simulator that is widely used in computational biology; they yield a 15 500× speedup over equivalent MATLAB stochastic simulations. The chip emulation results are consistent with these software simulations over a large range of signal-to-noise ratios. Most importantly, our physical emulation of Poisson chemical dynamics does not involve any inherently sequential processes and updates such that, unlike prior exact simulation approaches, they are parallelizable, asynchronous, and enable even more speedup for larger-size networks.

  2. Integrating computational methods to retrofit enzymes to synthetic pathways.

    PubMed

    Brunk, Elizabeth; Neri, Marilisa; Tavernelli, Ivano; Hatzimanikatis, Vassily; Rothlisberger, Ursula

    2012-02-01

    Microbial production of desired compounds provides an efficient framework for the development of renewable energy resources. To be competitive to traditional chemistry, one requirement is to utilize the full capacity of the microorganism to produce target compounds with high yields and turnover rates. We use integrated computational methods to generate and quantify the performance of novel biosynthetic routes that contain highly optimized catalysts. Engineering a novel reaction pathway entails addressing feasibility on multiple levels, which involves handling the complexity of large-scale biochemical networks while respecting the critical chemical phenomena at the atomistic scale. To pursue this multi-layer challenge, our strategy merges knowledge-based metabolic engineering methods with computational chemistry methods. By bridging multiple disciplines, we provide an integral computational framework that could accelerate the discovery and implementation of novel biosynthetic production routes. Using this approach, we have identified and optimized a novel biosynthetic route for the production of 3HP from pyruvate. Copyright © 2011 Wiley Periodicals, Inc.

  3. Misleading biochemical laboratory test results

    PubMed Central

    Nanji, Amin A.

    1984-01-01

    This article reviews the general and specific factors that interfere with the performance of common biochemical laboratory tests and the interpretation of their results. The clinical status of the patient, drug interactions, and in-vivo and in-vitro biochemical interactions and changes may alter the results obtained from biochemical analysis of blood constituents. Failure to recognize invalid laboratory test results may lead to injudicious and dangerous management of patients. PMID:6375845

  4. Identification of biochemical features of defective Coffea arabica L. beans.

    PubMed

    Casas, María I; Vaughan, Michael J; Bonello, Pierluigi; McSpadden Gardener, Brian; Grotewold, Erich; Alonso, Ana P

    2017-05-01

    Coffee organoleptic properties are based in part on the quality and chemical composition of coffee beans. The presence of defective beans during processing and roasting contribute to off flavors and reduce overall cup quality. A multipronged approach was undertaken to identify specific biochemical markers for defective beans. To this end, beans were split into defective and non-defective fractions and biochemically profiled in both green and roasted states. A set of 17 compounds in green beans, including organic acids, amino acids and reducing sugars; and 35 compounds in roasted beans, dominated by volatile compounds, organic acids, sugars and sugar alcohols, were sufficient to separate the defective and non-defective fractions. Unsorted coffee was examined for the presence of the biochemical markers to test their utility in detecting defective beans. Although the green coffee marker compounds were found in all fractions, three of the roasted coffee marker compounds (1-methylpyrrole, 5-methyl- 2-furfurylfuran, and 2-methylfuran) were uniquely present in defective fractions. Published by Elsevier Ltd.

  5. Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells

    PubMed Central

    Ferrara, Maria Antonietta; Di Caprio, Giuseppe; Managò, Stefano; De Angelis, Annalisa; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara

    2015-01-01

    A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols. PMID:25836358

  6. Large-Scale Evolutionary Analysis of Genes and Supergene Clusters from Terpenoid Modular Pathways Provides Insights into Metabolic Diversification in Flowering Plants

    PubMed Central

    Hofberger, Johannes A.; Ramirez, Aldana M.; van den Bergh, Erik; Zhu, Xinguang; Bouwmeester, Harro J.; Schuurink, Robert C.; Schranz, M. Eric

    2015-01-01

    An important component of plant evolution is the plethora of pathways producing more than 200,000 biochemically diverse specialized metabolites with pharmacological, nutritional and ecological significance. To unravel dynamics underlying metabolic diversification, it is critical to determine lineage-specific gene family expansion in a phylogenomics framework. However, robust functional annotation is often only available for core enzymes catalyzing committed reaction steps within few model systems. In a genome informatics approach, we extracted information from early-draft gene-space assemblies and non-redundant transcriptomes to identify protein families involved in isoprenoid biosynthesis. Isoprenoids comprise terpenoids with various roles in plant-environment interaction, such as pollinator attraction or pathogen defense. Combining lines of evidence provided by synteny, sequence homology and Hidden-Markov-Modelling, we screened 17 genomes including 12 major crops and found evidence for 1,904 proteins associated with terpenoid biosynthesis. Our terpenoid genes set contains evidence for 840 core terpene-synthases and 338 triterpene-specific synthases. We further identified 190 prenyltransferases, 39 isopentenyl-diphosphate isomerases as well as 278 and 219 proteins involved in mevalonate and methylerithrol pathways, respectively. Assessing the impact of gene and genome duplication to lineage-specific terpenoid pathway expansion, we illustrated key events underlying terpenoid metabolic diversification within 250 million years of flowering plant radiation. By quantifying Angiosperm-wide versatility and phylogenetic relationships of pleiotropic gene families in terpenoid modular pathways, our analysis offers significant insight into evolutionary dynamics underlying diversification of plant secondary metabolism. Furthermore, our data provide a blueprint for future efforts to identify and more rapidly clone terpenoid biosynthetic genes from any plant species. PMID

  7. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway

    PubMed Central

    Stincone, Anna; Prigione, Alessandro; Cramer, Thorsten; Wamelink, Mirjam M. C.; Campbell, Kate; Cheung, Eric; Olin-Sandoval, Viridiana; Grüning, Nana-Maria; Krüger, Antje; Alam, Mohammad Tauqeer; Keller, Markus A.; Breitenbach, Michael; Brindle, Kevin M.; Rabinowitz, Joshua D.; Ralser, Markus

    2015-01-01

    The pentose phosphate pathway (PPP) is a fundamental component of cellular metabolism. The PPP is important to maintain carbon homoeostasis, to provide precursors for nucleotide and amino acid biosynthesis, to provide reducing molecules for anabolism, and to defeat oxidative stress. The PPP shares reactions with the Entner–Doudoroff pathway and Calvin cycle and divides into an oxidative and non-oxidative branch. The oxidative branch is highly active in most eukaryotes and converts glucose 6-phosphate into carbon dioxide, ribulose 5-phosphate and NADPH. The latter function is critical to maintain redox balance under stress situations, when cells proliferate rapidly, in ageing, and for the ‘Warburg effect’ of cancer cells. The non-oxidative branch instead is virtually ubiquitous, and metabolizes the glycolytic intermediates fructose 6-phosphate and glyceraldehyde 3-phosphate as well as sedoheptulose sugars, yielding ribose 5-phosphate for the synthesis of nucleic acids and sugar phosphate precursors for the synthesis of amino acids. Whereas the oxidative PPP is considered unidirectional, the non-oxidative branch can supply glycolysis with intermediates derived from ribose 5-phosphate and vice versa, depending on the biochemical demand. These functions require dynamic regulation of the PPP pathway that is achieved through hierarchical interactions between transcriptome, proteome and metabolome. Consequently, the biochemistry and regulation of this pathway, while still unresolved in many cases, are archetypal for the dynamics of the metabolic network of the cell. In this comprehensive article we review seminal work that led to the discovery and description of the pathway that date back now for 80 years, and address recent results about genetic and metabolic mechanisms that regulate its activity. These biochemical principles are discussed in the context of PPP deficiencies causing metabolic disease and the role of this pathway in biotechnology, bacterial and

  8. Structure and biochemical characterization of proliferating cellular nuclear antigen from a parasitic protozoon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G.

    2012-02-08

    Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeastmore » and parasitic protozoa.« less

  9. Biochemical transformation of coals

    DOEpatents

    Lin, Mow S.; Premuzic, Eugene T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed.

  10. Magnolia officinalis (Hou Po) bark extract stimulates the Nrf2-pathway in hepatocytes and protects against oxidative stress.

    PubMed

    Rajgopal, Arun; Missler, Stephen R; Scholten, Jeffery D

    2016-12-04

    The highly aromatic bark of Magnolia officinalis Rehder and EH Wilson, (magnolia bark) has been widely used in traditional Chinese medicine where it is known as Hou Po. Historically the bark of the tree has been used for treating variety of disorders the most common use of magnolia bark in traditional prescription has been to treat stress and anxiety disorders. Till date it is not clear regarding the fundamental cellular pathway it modulates. NRF2 signaling has emerged as the central pathway that protects cells from variety of stressors this led us to hypothesize that basis for magnolia bark's effects could be via activating NRF2 pathway. We utilized variety of biochemical procedures like luciferase reporter assay, enzyme induction, gene expression to determine NRF2 inducing activity by magnolia bark extract and its significance. Further we identified the phytochemicals inducing this activity using bio-directed fractionation procedure. In this study, we demonstrate that magnolia bark extract activates Nrf2-dependent gene expression and protects against hydrogen peroxide mediated oxidative stress in hepatocytes. We further identified through HPLC fractionation and mass spectroscopy that magnolol, 4-methoxy honokiol and honokiol are the active phytochemicals inducing the Nrf2-mediated activity. This could be the molecular basis for its numerous beneficial activity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Autonomous bio-chemical decontaminator (ABCD) against weapons of mass destruction

    NASA Astrophysics Data System (ADS)

    Hyacinthe, Berg P.

    2006-05-01

    The proliferation of weapons of mass destruction (WMD) and the use of such elements pose an eminent asymmetric threat with disastrous consequences to the national security of any nation. In particular, the use of biochemical warfare agents against civilians and unprotected troops in international conflicts or by terrorists against civilians is considered as a very peculiar threat. Accordingly, taking a quarantine-before-inhalation approach to biochemical warfare, the author introduces the notion of autonomous biochemical decontamination against WMD. In the unfortunate event of a biochemical attack, the apparatus proposed herein is intended to automatically detect, identify, and more importantly neutralize a biochemical threat. Along with warnings concerning a cyber-WMD nexus, various sections cover discussions on human senses and computer sensors, corroborating evidence related to detection and neutralization of chemical toxins, and cyber-assisted olfaction in stand alone, peer-to-peer, and network settings. In essence, the apparatus can be used in aviation and mass transit security to initiate mass decontamination by dispersing a decontaminant aerosol or to protect the public water supply against a potential bioterrorist attack. Future effort may involve a system-on-chip (SoC) embodiment of this apparatus that allows a safer environment for the emerging phenomenon of cyber-assisted olfaction and morph cell phones into ubiquitous sensors/decontaminators. Although this paper covers mechanisms and protocols to avail a neutralizing substance, further research will need to explore the substance's various pharmacological profiles and potential side effects.

  12. Biochemical transformation of coals

    DOEpatents

    Lin, M.S.; Premuzic, E.T.

    1999-03-23

    A method of biochemically transforming macromolecular compounds found in solid carbonaceous materials, such as coal is provided. The preparation of new microorganisms, metabolically weaned through challenge growth processes to biochemically transform solid carbonaceous materials at extreme temperatures, pressures, pH, salt and toxic metal concentrations is also disclosed. 7 figs.

  13. Pathway to care for drug resistant tuberculosis cases identified during a retrospective study conducted in high TB burden wards in Mumbai

    PubMed Central

    Lobo, Eunice; Shah, Shimoni; Rangan, Sheela; Dholakia, Yatin; Mistry, Nerges

    2018-01-01

    Background: Mumbai is witnessing a rising incidence of all forms of drug resistant tuberculosis (DR-TB). Methods: A population-based, retrospective study was conducted between April and July 2014, in 15 high TB burden wards in Mumbai, to capture the patient pathways to TB care. A total of 23 DR-TB patients were identified and their pathways to access DR-TB care were recorded using semi-structured interviews. Results: The total DR-TB pathway time of new patients (who did not report any past episode of TB) (180 days; IQR 123,346) was found to be more than twice that of retreatment patients (who reported a past episode of TB) (69 days; IQR 42,128). Conclusions: The unacceptable delay for diagnosis and treatment of DR-TB in Mumbai advocates for consistent implementation of early screening of patients using rapid gene-based technologies. PMID:29863175

  14. Integrated Proteomic and Transcriptomic-Based Approaches to Identifying Signature Biomarkers and Pathways for Elucidation of Daoy and UW228 Subtypes.

    PubMed

    Higdon, Roger; Kala, Jessie; Wilkins, Devan; Yan, Julia Fangfei; Sethi, Manveen K; Lin, Liang; Liu, Siqi; Montague, Elizabeth; Janko, Imre; Choiniere, John; Kolker, Natali; Hancock, William S; Kolker, Eugene; Fanayan, Susan

    2017-02-03

    Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Patient survival has remained largely the same for the past 20 years, with therapies causing significant health, cognitive, behavioral and developmental complications for those who survive the tumor. In this study, we profiled the total transcriptome and proteome of two established MB cell lines, Daoy and UW228, using high-throughput RNA sequencing (RNA-Seq) and label-free nano-LC-MS/MS-based quantitative proteomics, coupled with advanced pathway analysis. While Daoy has been suggested to belong to the sonic hedgehog (SHH) subtype, the exact UW228 subtype is not yet clearly established. Thus, a goal of this study was to identify protein markers and pathways that would help elucidate their subtype classification. A number of differentially expressed genes and proteins, including a number of adhesion, cytoskeletal and signaling molecules, were observed between the two cell lines. While several cancer-associated genes/proteins exhibited similar expression across the two cell lines, upregulation of a number of signature proteins and enrichment of key components of SHH and WNT signaling pathways were uniquely observed in Daoy and UW228, respectively. The novel information on differentially expressed genes/proteins and enriched pathways provide insights into the biology of MB, which could help elucidate their subtype classification.

  15. Automated analysis of immunohistochemistry images identifies candidate location biomarkers for cancers.

    PubMed

    Kumar, Aparna; Rao, Arvind; Bhavani, Santosh; Newberg, Justin Y; Murphy, Robert F

    2014-12-23

    Molecular biomarkers are changes measured in biological samples that reflect disease states. Such markers can help clinicians identify types of cancer or stages of progression, and they can guide in tailoring specific therapies. Many efforts to identify biomarkers consider genes that mutate between normal and cancerous tissues or changes in protein or RNA expression levels. Here we define location biomarkers, proteins that undergo changes in subcellular location that are indicative of disease. To discover such biomarkers, we have developed an automated pipeline to compare the subcellular location of proteins between two sets of immunohistochemistry images. We used the pipeline to compare images of healthy and tumor tissue from the Human Protein Atlas, ranking hundreds of proteins in breast, liver, prostate, and bladder based on how much their location was estimated to have changed. The performance of the system was evaluated by determining whether proteins previously known to change location in tumors were ranked highly. We present a number of candidate location biomarkers for each tissue, and identify biochemical pathways that are enriched in proteins that change location. The analysis technology is anticipated to be useful not only for discovering new location biomarkers but also for enabling automated analysis of biomarker distributions as an aid to determining diagnosis.

  16. Modulation of nitrergic signalling pathway by American ginseng attenuates chronic unpredictable stress-induced cognitive impairment, neuroinflammation, and biochemical alterations.

    PubMed

    Rinwa, Puneet; Kumar, Anil

    2014-02-01

    Prolonged stress causes extensive loss of neurons leading to deficits in cognitive performance. Increasing evidence indicates that accumulation of intercellular messenger, nitric oxide (NO), plays a crucial role in the pathogenesis of memory disorders. American ginseng (AG) is known to show protection in different animal models of neurological diseases; however, its exact mechanism of action is not clearly understood. Therefore, the current study was designed to investigate the interaction of AG against chronic unpredictable stress (CUS)-associated behavioral and biochemical alterations and the probable role of nitrergic pathway in this effect. Male Laca mice were exposed to a series of stressors along with drug/vehicle treatment daily for 28 days. CUS paradigm caused significant impairment in both acquisition and retention memory as measured in Morris water maze and elevated plus maze task. This was coupled with alterations in oxidative stress markers, mitochondrial enzyme complex activities, pro-inflammatory cytokine (TNF-α), and acetylcholinesterase levels in the hippocampus as compared with naïve group. Besides, there was a marked increase in serum corticosterone levels. AG (100, 200 mg/kg; p.o.) treatment significantly improved cognitive impairment; reduced TNF-α, acetylcholinesterase, and corticosterone levels; and attenuated oxidative-nitrergic stress. Furthermore, pre-treatment of L-arginine (100 mg/kg; i.p.), a nitric oxide donor, with subeffective dose of AG (100 mg/kg; p.o.) reversed its protective effects. However, L-NAME (10 mg/kg, i.p.), a non-specific NO synthase inhibitor, potentiated the effects of AG. Our findings suggest that modulation of nitrergic signalling cascade is involved in the protective effects of AG against CUS-induced cognitive dysfunction, oxidative stress, and neuroinflammation.

  17. Evidence from Biochemical Pathways in Favor of Unfinished Evolution Rather than Intelligent Design

    ERIC Educational Resources Information Center

    Behrman, Edward J.; Marzluf, George A.

    2004-01-01

    An argument is made in favor of imperfect or unfinished evolution based on some metabolic pathways in which it seems that intelligent design would have done better. The case studies noted indicate the absence of highly intelligent design and are not intended as comprehensive collection but as a limited sample of inefficient situations in…

  18. Using Ambystoma mexicanum (Mexican axolotl) embryos, chemical genetics, and microarray analysis to identify signaling pathways associated with tissue regeneration.

    PubMed

    Ponomareva, Larissa V; Athippozhy, Antony; Thorson, Jon S; Voss, S Randal

    2015-12-01

    Amphibian vertebrates are important models in regenerative biology because they present exceptional regenerative capabilities throughout life. However, it takes considerable effort to rear amphibians to juvenile and adult stages for regeneration studies, and the relatively large sizes that frogs and salamanders achieve during development make them difficult to use in chemical screens. Here, we introduce a new tail regeneration model using late stage Mexican axolotl embryos. We show that axolotl embryos completely regenerate amputated tails in 7days before they exhaust their yolk supply and begin to feed. Further, we show that axolotl embryos can be efficiently reared in microtiter plates to achieve moderate throughput screening of soluble chemicals to investigate toxicity and identify molecules that alter regenerative outcome. As proof of principle, we identified integration 1 / wingless (Wnt), transforming growth factor beta (Tgf-β), and fibroblast growth factor (Fgf) pathway antagonists that completely block tail regeneration and additional chemicals that significantly affected tail outgrowth. Furthermore, we used microarray analysis to show that inhibition of Wnt signaling broadly affects transcription of genes associated with Wnt, Fgf, Tgf-β, epidermal growth factor (Egf), Notch, nerve growth factor (Ngf), homeotic gene (Hox), rat sarcoma/mitogen-activated protein kinase (Ras/Mapk), myelocytomatosis viral oncogene (Myc), tumor protein 53 (p53), and retinoic acid (RA) pathways. Punctuated changes in the expression of genes known to regulate vertebrate development were observed; this suggests the tail regeneration transcriptional program is hierarchically structured and temporally ordered. Our study establishes the axolotl as a chemical screening model to investigate signaling pathways associated with tissue regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Biochemical abnormalities in neonatal seizures.

    PubMed

    Sood, Arvind; Grover, Neelam; Sharma, Roshan

    2003-03-01

    The presence of seizure does not constitute a diagnoses but it is a symptom of an underlying central nervous system disorder due to systemic or biochemical disturbances. Biochemical disturbances occur frequently in the neonatal seizures either as an underlying cause or as an associated abnormality. In their presence, it is difficult to control seizure and there is a risk of further brain damage. Early recognition and treatment of biochemical disturbances is essential for optimal management and satisfactory long term outcome. The present study was conducted in the department of pediatrics in IGMC Shimla on 59 neonates. Biochemical abnormalities were detected in 29 (49.15%) of cases. Primary metabolic abnormalities occurred in 10(16.94%) cases of neonatal seizures, most common being hypocalcaemia followed by hypoglycemia, other metabolic abnormalities include hypomagnesaemia and hyponateremia. Biochemical abnormalities were seen in 19(38.77%) cases of non metabolic seizure in neonates. Associated metabolic abnormalities were observed more often with Hypoxic-ischemic-encephalopathy (11 out of 19) cases and hypoglycemia was most common in this group. No infant had hyponateremia, hyperkelemia or low zinc level.

  20. Genome-Wide siRNA-Based Functional Genomics of Pigmentation Identifies Novel Genes and Pathways That Impact Melanogenesis in Human Cells

    PubMed Central

    Bodemann, Brian; Petersen, Sean; Aruri, Jayavani; Koshy, Shiney; Richardson, Zachary; Le, Lu Q.; Krasieva, Tatiana; Roth, Michael G.; Farmer, Pat; White, Michael A.

    2008-01-01

    Melanin protects the skin and eyes from the harmful effects of UV irradiation, protects neural cells from toxic insults, and is required for sound conduction in the inner ear. Aberrant regulation of melanogenesis underlies skin disorders (melasma and vitiligo), neurologic disorders (Parkinson's disease), auditory disorders (Waardenburg's syndrome), and opthalmologic disorders (age related macular degeneration). Much of the core synthetic machinery driving melanin production has been identified; however, the spectrum of gene products participating in melanogenesis in different physiological niches is poorly understood. Functional genomics based on RNA-mediated interference (RNAi) provides the opportunity to derive unbiased comprehensive collections of pharmaceutically tractable single gene targets supporting melanin production. In this study, we have combined a high-throughput, cell-based, one-well/one-gene screening platform with a genome-wide arrayed synthetic library of chemically synthesized, small interfering RNAs to identify novel biological pathways that govern melanin biogenesis in human melanocytes. Ninety-two novel genes that support pigment production were identified with a low false discovery rate. Secondary validation and preliminary mechanistic studies identified a large panel of targets that converge on tyrosinase expression and stability. Small molecule inhibition of a family of gene products in this class was sufficient to impair chronic tyrosinase expression in pigmented melanoma cells and UV-induced tyrosinase expression in primary melanocytes. Isolation of molecular machinery known to support autophagosome biosynthesis from this screen, together with in vitro and in vivo validation, exposed a close functional relationship between melanogenesis and autophagy. In summary, these studies illustrate the power of RNAi-based functional genomics to identify novel genes, pathways, and pharmacologic agents that impact a biological phenotype and operate

  1. The EbpA-RpoN Regulatory Pathway of the Pathogen Leptospira interrogans Is Essential for Survival in the Environment.

    PubMed

    Hu, Wei-Lin; Pappas, Christopher J; Zhang, Jun-Jie; Yang, You-Yun; Yan, Jie; Picardeau, Mathieu; Yang, X Frank

    2017-02-01

    Leptospira interrogans is the agent of leptospirosis, a reemerging zoonotic disease. It is transmitted to humans through environmental surface waters contaminated by the urine of mammals chronically infected by pathogenic strains able to survive in water for long periods. Little is known about the regulatory pathways underlying environmental sensing and host adaptation of L. interrogans during its enzootic cycle. This study identifies the EbpA-RpoN regulatory pathway in L. interrogans In this pathway, EbpA, a σ 54 activator and putative prokaryotic enhancer-binding protein (EBP), and the alternative sigma factor RpoN (σ 54 ) control expression of at least three genes, encoding AmtB (an ammonium transport protein) and two proteins of unknown function. Electrophoresis mobility shift assay demonstrated that recombinant RpoN and EbpA bind to the promoter region and upstream of these three identified genes, respectively. Genetic disruption of ebpA in L. interrogans serovar Manilae virtually abolished expression of the three genes, including amtB in two independent ebpA mutants. Complementation of the ebpA mutant restored expression of these genes. Intraperitoneal inoculation of gerbils with the ebpA mutant did not affect mortality. However, the ebpA mutant had decreased cell length in vitro and had a significantly lowered cell density at stationary phase when grown with l-alanine as the sole nitrogen source. Furthermore, the ebpA mutant has dramatically reduced long-term survival ability in water. Together, these studies identify a regulatory pathway, the EbpA-RpoN pathway, that plays an important role in the zoonotic cycle of L. interrogans IMPORTANCE: Leptospirosis is a reemerging disease with global importance. However, our understanding of gene regulation of the spirochetal pathogen Leptospira interrogans is still in its infancy, largely due to the lack of robust tools for genetic manipulation of this spirochete. Little is known about how the pathogen achieves its

  2. The EbpA-RpoN Regulatory Pathway of the Pathogen Leptospira interrogans Is Essential for Survival in the Environment

    PubMed Central

    Hu, Wei-Lin; Pappas, Christopher J.; Zhang, Jun-Jie; Yang, You-Yun; Yan, Jie

    2016-01-01

    ABSTRACT Leptospira interrogans is the agent of leptospirosis, a reemerging zoonotic disease. It is transmitted to humans through environmental surface waters contaminated by the urine of mammals chronically infected by pathogenic strains able to survive in water for long periods. Little is known about the regulatory pathways underlying environmental sensing and host adaptation of L. interrogans during its enzootic cycle. This study identifies the EbpA-RpoN regulatory pathway in L. interrogans. In this pathway, EbpA, a σ54 activator and putative prokaryotic enhancer-binding protein (EBP), and the alternative sigma factor RpoN (σ54) control expression of at least three genes, encoding AmtB (an ammonium transport protein) and two proteins of unknown function. Electrophoresis mobility shift assay demonstrated that recombinant RpoN and EbpA bind to the promoter region and upstream of these three identified genes, respectively. Genetic disruption of ebpA in L. interrogans serovar Manilae virtually abolished expression of the three genes, including amtB in two independent ebpA mutants. Complementation of the ebpA mutant restored expression of these genes. Intraperitoneal inoculation of gerbils with the ebpA mutant did not affect mortality. However, the ebpA mutant had decreased cell length in vitro and had a significantly lowered cell density at stationary phase when grown with l-alanine as the sole nitrogen source. Furthermore, the ebpA mutant has dramatically reduced long-term survival ability in water. Together, these studies identify a regulatory pathway, the EbpA-RpoN pathway, that plays an important role in the zoonotic cycle of L. interrogans. IMPORTANCE Leptospirosis is a reemerging disease with global importance. However, our understanding of gene regulation of the spirochetal pathogen Leptospira interrogans is still in its infancy, largely due to the lack of robust tools for genetic manipulation of this spirochete. Little is known about how the pathogen

  3. [The application of cortical and subcortical stimulation threshold in identifying the motor pathway and guiding the resection of gliomas in the functional areas].

    PubMed

    Ren, X H; Yang, X C; Huang, W; Yang, K Y; Liu, L; Qiao, H; Guo, L J; Cui, Y; Lin, S

    2018-03-06

    Objective: This study aimed to analyze the application of cortical and subcortical stimulation threshold in identifying the motor pathway and guiding the resection of gliomas in the functional area, and to illustrate the minimal safe threshold by ROC method. Methods: Fifty-seven patients with gliomas in the functional areas were enrolled in the study at Beijing Tiantan Hospital from 2015 to 2017. Anesthesia was maintained intravenously with propofol 10% and remifentanil. Throughout the resection process, cortical or subcortical stimulation threshold was determined along tumor border using monopolar or bipolar electrodes. The motor pathway was identified and protected from resection according to the stimulation threshold and transcranial MEPs. Minimal threshold in each case was recorded. Results: Total resection was achieved in 32 cases(56.1%), sub-total resection in 22 cases(38.6%), and partial resection in 3 cases(5.3%). Pre-operative motor disability was found in 9 cases. Compared with pre-operative motor scores, 19 exhibited impaired motor functions on day 1 after surgery, 5 had quick recovery by day 7 after surgery, and 7 had late recovery by 3 months after surgery. At 3 months, 7 still had impaired motor function. The frequency of intraoperative seizure was 1.8%(1/57). No other side effect was found during electronic monitoring in the operation. The ROC curve revealed that the minimal safe monopolar subcortical threshold was 5.70 mA for strength deterioration on day 1 and day 7 after surgery. Univariate analysis revealed that decreased transcranial MEPs and minimal subcortical threshold ≤5.7 mA were correlated with postoperative strength deterioration. Conclusions: Cortical and subcortical stimulation threshold has its merit in identifying the motor pathway and guiding the resection for tumors within the functional areas. 5.7 mA can be used as the minimal safe threshold to protect the motor pathway from injury.

  4. Comprehensive Metabolomics Study To Assess Longitudinal Biochemical Changes and Potential Early Biomarkers in Nonobese Diabetic Mice That Progress to Diabetes.

    PubMed

    Buchwald, Peter; Tamayo-Garcia, Alejandro; Ramamoorthy, Sivapriya; Garcia-Contreras, Marta; Mendez, Armando J; Ricordi, Camillo

    2017-10-06

    A global nontargeted longitudinal metabolomics study was carried out in male and female NOD mice to characterize the time-profile of the changes in the metabolic signature caused by onset of type 1 diabetes (T1D) and identify possible early biomarkers in T1D progressors. Metabolomics profiling of samples collected at five different time-points identified 676 and 706 biochemicals in blood and feces, respectively. Several metabolites were expressed at significantly different levels in progressors at all time-points, and their proportion increased strongly following onset of hyperglycemia. At the last time-point, when all progressors were diabetic, a large percentage of metabolites had significantly different levels: 57.8% in blood and 27.8% in feces. Metabolic pathways most strongly affected included the carbohydrate, lipid, branched-chain amino acid, and oxidative ones. Several biochemicals showed considerable (>4×) change. Maltose, 3-hydroxybutyric acid, and kojibiose increased, while 1,5-anhydroglucitol decreased more than 10-fold. At the earliest time-point (6-week), differences between the metabolic signatures of progressors and nonprogressors were relatively modest. Nevertheless, several compounds had significantly different levels and show promise as possible early T1D biomarkers. They include fatty acid phosphocholine derivatives from the phosphatidylcholine subpathway (elevated in both blood and feces) as well as serotonin, ribose, and arabinose (increased) in blood plus 13-HODE, tocopherol (increased), diaminopimelate, valerate, hydroxymethylpyrimidine, and dulcitol (decreased) in feces. A combined metabolic signature based on these compounds might serve as an early predictor of T1D-progressors.

  5. A Geometric Method for Model Reduction of Biochemical Networks with Polynomial Rate Functions.

    PubMed

    Samal, Satya Swarup; Grigoriev, Dima; Fröhlich, Holger; Weber, Andreas; Radulescu, Ovidiu

    2015-12-01

    Model reduction of biochemical networks relies on the knowledge of slow and fast variables. We provide a geometric method, based on the Newton polytope, to identify slow variables of a biochemical network with polynomial rate functions. The gist of the method is the notion of tropical equilibration that provides approximate descriptions of slow invariant manifolds. Compared to extant numerical algorithms such as the intrinsic low-dimensional manifold method, our approach is symbolic and utilizes orders of magnitude instead of precise values of the model parameters. Application of this method to a large collection of biochemical network models supports the idea that the number of dynamical variables in minimal models of cell physiology can be small, in spite of the large number of molecular regulatory actors.

  6. Litchi chinensis as a Functional Food and a Source of Antitumor Compounds: An Overview and a Description of Biochemical Pathways.

    PubMed

    Emanuele, Sonia; Lauricella, Marianna; Calvaruso, Giuseppe; D'Anneo, Antonella; Giuliano, Michela

    2017-09-08

    Litchi is a tasty fruit that is commercially grown for food consumption and nutritional benefits in various parts of the world. Due to its biological activities, the fruit is becoming increasingly known and deserves attention not only for its edible part, the pulp, but also for its peel and seed that contain beneficial substances with antioxidant, cancer preventive, antimicrobial, and anti-inflammatory functions. Although literature demonstrates the biological activity of Litchi components in reducing tumor cell viability in in vitro or in vivo models, data about the biochemical mechanisms responsible for these effects are quite fragmentary. This review specifically describes, in a comprehensive analysis, the antitumor properties of the different parts of Litchi and highlights the main biochemical mechanisms involved.

  7. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites

    PubMed Central

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K.

    2018-01-01

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be

  8. RaMP: A Comprehensive Relational Database of Metabolomics Pathways for Pathway Enrichment Analysis of Genes and Metabolites.

    PubMed

    Zhang, Bofei; Hu, Senyang; Baskin, Elizabeth; Patt, Andrew; Siddiqui, Jalal K; Mathé, Ewy A

    2018-02-22

    The value of metabolomics in translational research is undeniable, and metabolomics data are increasingly generated in large cohorts. The functional interpretation of disease-associated metabolites though is difficult, and the biological mechanisms that underlie cell type or disease-specific metabolomics profiles are oftentimes unknown. To help fully exploit metabolomics data and to aid in its interpretation, analysis of metabolomics data with other complementary omics data, including transcriptomics, is helpful. To facilitate such analyses at a pathway level, we have developed RaMP (Relational database of Metabolomics Pathways), which combines biological pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, WikiPathways, and the Human Metabolome DataBase (HMDB). To the best of our knowledge, an off-the-shelf, public database that maps genes and metabolites to biochemical/disease pathways and can readily be integrated into other existing software is currently lacking. For consistent and comprehensive analysis, RaMP enables batch and complex queries (e.g., list all metabolites involved in glycolysis and lung cancer), can readily be integrated into pathway analysis tools, and supports pathway overrepresentation analysis given a list of genes and/or metabolites of interest. For usability, we have developed a RaMP R package (https://github.com/Mathelab/RaMP-DB), including a user-friendly RShiny web application, that supports basic simple and batch queries, pathway overrepresentation analysis given a list of genes or metabolites of interest, and network visualization of gene-metabolite relationships. The package also includes the raw database file (mysql dump), thereby providing a stand-alone downloadable framework for public use and integration with other tools. In addition, the Python code needed to recreate the database on another system is also publicly available (https://github.com/Mathelab/RaMP-BackEnd). Updates for databases in RaMP will be

  9. Aged keratinocyte phenotyping: morphology, biochemical markers and effects of Dead Sea minerals.

    PubMed

    Soroka, Yoram; Ma'or, Zeev; Leshem, Yael; Verochovsky, Lilian; Neuman, Rami; Brégégère, François Menahem; Milner, Yoram

    2008-10-01

    The aging process and its characterization in keratinocytes have not been studied in depth until now. We have assessed the cellular and molecular characteristics of aged epidermal keratinocytes in monolayer cultures and in skin by measuring their morphological, fluorometric and biochemical properties. Light and electron microscopy, as well as flow cytometry, revealed increase in cell size, changes in cell shape, alterations in mitochondrial structure and cytoplasmic content with aging. We showed that the expression of 16 biochemical markers was altered in aged cultured cells and in tissues, including caspases 1 and 3 and beta-galactosidase activities, immunoreactivities of p16, Ki67, 20S proteasome and effectors of the Fas-dependent apoptotic pathway. Aged cells diversity, and individual variability of aging markers, call for a multifunctional assessment of the aging phenomenon, and of its modulation by drugs. As a test case, we have measured the effects of Dead Sea minerals on keratinocyte cultures and human skin, and found that they stimulate proliferation and mitochondrial activity, decrease the expression of some aging markers, and limit apoptotic damage after UVB irradiation.

  10. Discovery of biochemical biomarkers for aggression: A role for metabolomics in psychiatry.

    PubMed

    Hagenbeek, Fiona A; Kluft, Cornelis; Hankemeier, Thomas; Bartels, Meike; Draisma, Harmen H M; Middeldorp, Christel M; Berger, Ruud; Noto, Antonio; Lussu, Milena; Pool, René; Fanos, Vassilios; Boomsma, Dorret I

    2016-07-01

    Human aggression encompasses a wide range of behaviors and is related to many psychiatric disorders. We introduce the different classification systems of aggression and related disorders as a basis for discussing biochemical biomarkers and then present an overview of studies in humans (published between 1990 and 2015) that reported statistically significant associations of biochemical biomarkers with aggression, DSM-IV disorders involving aggression, and their subtypes. The markers are of different types, including inflammation markers, neurotransmitters, lipoproteins, and hormones from various classes. Most studies focused on only a limited portfolio of biomarkers, frequently a specific class only. When integrating the data, it is clear that compounds from several biological pathways have been found to be associated with aggressive behavior, indicating complexity and the need for a broad approach. In the second part of the paper, using examples from the aggression literature and psychiatric metabolomics studies, we argue that a better understanding of aggression would benefit from a more holistic approach such as provided by metabolomics. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Isolation of an isocarbophos-degrading strain of Arthrobacter sp. scl-2 and identification of the degradation pathway.

    PubMed

    Rong, Li; Guo, Xinqiang; Chen, Kai; Zhu, Jianchun; Li, Shunpeng; Jiang, Jiandong

    2009-11-01

    Isocarbophos is a widely used organophosphorus insecticide that has caused environmental pollution in many areas. However, degradation of isocarbophos by pure cultures has not been extensively studied, and the degradation pathway has not been determined. In this paper, a highly effective isocarbophos-degrading strain, scl-2, was isolated from isocarbophos-polluted soil. Strain scl-2 was preliminarily identified as Arthrobacter sp. based on its morphological, physiological, and biochemical properties, as well as 16S rDNA analysis. Strain scl-2 could utilize isocarbophos as its sole source of carbon and phosphorus for growth. One hundred mg/l isocarbophos could be degraded to a nondetectable level in 18 h by scl-2 in cell culture, and isofenphos-methyl, profenofos, and phosmet could also be degraded. During the degradation of isocarbophos, the metabolites isopropyl salicylate, salicylate, and gentisate were detected and identified based on MS/MS analysis and their retention times in HPLC. Transformation of gentisate to pyruvate and fumarate via maleylpyruvate and fumarylpyruvate was detected by assaying for the activities of gentisate 1,2- dioxygenase (GDO) and maleylpyruvate isomerase. Therefore, we have identified the degradation pathway of isocarbophos in Arthrobacter sp. scl-2 for the first time. This study highlights an important potential use of the strain scl-2 for the cleanup of environmental contamination by isocarbophos and presents a mechanism of isocarbophos metabolism.

  12. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder.

    PubMed

    Walden, Helen; Deans, Andrew J

    2014-01-01

    Mutations in any of at least sixteen FANC genes (FANCA-Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.

  13. An Integrative Data Mining Approach to Identify Adverse Outcome Pathway Signatures

    EPA Science Inventory

    Adverse Outcome Pathways (AOPs) provide a formal framework for describing the mechanisms underlying the toxicity of chemicals in our environment. This process improves our ability to incorporate high-throughput toxicity testing (HTT) results and biomarker information on early key...

  14. Chronic histiocytic intervillositis - Clinical, biochemical and radiological findings: An observational study.

    PubMed

    Koby, Lawrence; Keating, Sarah; Malinowski, Ann Kinga; D'Souza, Rohan

    2018-04-01

    Chronic histiocytic intervillositis (CHI) of the placenta although rare, has a high recurrence rate, is associated with serious adverse pregnancy outcomes and has no available treatment. This study aims to determine clinical, biochemical and radiological factors associated with CHI, to guide management of subsequent pregnancies. This retrospective observational study included consecutive cases with a histopathologic diagnosis of CHI after 18 weeks of gestation, between 2001 and 2014, and no controls. Clinical (maternal, fetal and delivery outcomes), biochemical (first- and second-trimester biomarkers for fetal aneuploidy and serum alkaline phosphatase) and radiological (second- and third-trimester fetal, placental and Doppler ultrasound) factors associated with a histopathological diagnosis of CHI were identified and results presented as percentages. Outcomes of subsequent pregnancies were described. Of 231 identified cases of 'intervillositis', 33 were confirmed to have CHI, of which only 4/33 (12.1%) had prior uncomplicated term deliveries. During pregnancy, 10/18 (55.5%) had abnormal first-trimester screening, 4/16 (25%) had abnormal second-trimester screening, 6/19 (31.6%) had at least one elevated alkaline phosphatase level, and 15/20 (75%) had at least one abnormal feature on mid-trimester placental ultrasound. In subsequent pregnancies that were closely followed with a combination of biochemical and radiologic tests, there were no cases of fetal loss, and lower incidence of fetal growth restriction and preterm birth. No clinical, biochemical or radiological finding is consistently associated with CHI and adverse outcomes thereof. Whether the incorporation of these tests in individualized care-plans could improve outcomes in subsequent pregnancies needs to be studied further. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Biochemical tests of placental function for assessment in pregnancy.

    PubMed

    Neilson, James P

    2012-08-15

    Biochemical tests of placental or feto-placental function were widely used in the 1960s and 1970s in high-risk pregnancies to try to predict, and thus try to avoid, adverse fetal outcome. To assess the effects of performing biochemical tests of placental function in high-risk, low-risk, or unselected pregnancies. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (10 May 2012). Controlled trials (randomized or 'quasi-randomized') that compare the use of biochemical tests of placental function in pregnancy with non-use. Trial quality was assessed and data were extracted by the review author. A single eligible trial of poor quality was identified. It involved 622 women with high-risk pregnancies who had had plasma (o)estriol estimations. Women were allocated to have their (o)estriol results revealed or concealed on the basis of hospital record number (with attendant risk of selection bias). There were no obvious differences in perinatal mortality (relative risk (RR) 0.88, 95% confidence interval (CI) 0.36 to 2.13) or planned delivery (RR 0.97, 95% CI 0.81 to 1.15) between the two groups. The available trial data do not support the use of (o)estriol estimation in high-risk pregnancies. The single small trial available does not have the power to exclude a beneficial effect but this is probably of historical interest since biochemical testing has been superseded by biophysical testing in antepartum fetal assessment.

  16. Identifying Opportunities for Vertical Integration of Biochemistry and Clinical Medicine.

    PubMed

    Wendelberger, Karen J.; Burke, Rebecca; Haas, Arthur L.; Harenwattananon, Marisa; Simpson, Deborah

    1998-01-01

    Objectives: Retention of basic science knowledge, as judged by National Board of Medical Examiners' (NBME) data, suffers due to lack of apparent relevance and isolation of instruction from clinical application, especially in biochemistry. However, the literature reveals no systematic process for identifying key biochemical concepts and associated clinical conditions. This study systematically identified difficult biochemical concepts and their common clinical conditions as a critical step towards enhancing relevance and retention of biochemistry.Methods: A multi-step/ multiple stakeholder process was used to: (1) identify important biochemistry concepts; (2) determine students' perceptions of concept difficulty; (3) assess biochemistry faculty, student, and clinical teaching scholars' perceived relevance of identified concepts; and (4) identify associated common clinical conditions for relevant and difficult concepts. Surveys and a modified Delphi process were used to gather data, subsequently analyzed using SPSS for Windows.Results: Sixteen key biochemical concepts were identified. Second year medical students rated 14/16 concepts as extremely difficult while fourth year students rated nine concepts as moderately to extremely difficult. On average, each teaching scholar generated common clinical conditions for 6.2 of the 16 concepts, yielding a set of seven critical concepts and associated clinical conditions.Conclusions: Key stakeholders in the instructional process struggle to identify biochemistry concepts that are critical, difficult to learn and associated with common clinical conditions. However, through a systematic process beginning with identification of concepts and associated clinical conditions, relevance of basic science instruction can be enhanced.

  17. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures

    PubMed Central

    Strnad, Ondrej; Brezovsky, Jan; Kozlikova, Barbora; Gora, Artur; Sustr, Vilem; Klvana, Martin; Medek, Petr; Biedermannova, Lada; Sochor, Jiri; Damborsky, Jiri

    2012-01-01

    Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input, while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely available as a multiplatform command-line application at http://www.caver.cz. PMID:23093919

  18. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures.

    PubMed

    Chovancova, Eva; Pavelka, Antonin; Benes, Petr; Strnad, Ondrej; Brezovsky, Jan; Kozlikova, Barbora; Gora, Artur; Sustr, Vilem; Klvana, Martin; Medek, Petr; Biedermannova, Lada; Sochor, Jiri; Damborsky, Jiri

    2012-01-01

    Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input, while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely available as a multiplatform command-line application at http://www.caver.cz.

  19. An algorithm for modularization of MAPK and calcium signaling pathways: comparative analysis among different species.

    PubMed

    Nayak, Losiana; De, Rajat K

    2007-12-01

    Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a whole. In the present article, we have proposed an algorithm for modularization of signal transduction pathways. Unlike studying a signaling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the entire pathway better. A comparative study of modules belonging to different species (for the same signaling pathway) has been made, which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding algorithm of Newman [Newman MEJ. Modularity and community structure in networks. Proc Natl Acad Sci USA 2006;103(23):8577-82] has been demonstrated using the aforesaid pathways of H. sapiens.

  20. Development of a pluripotent stem cell derived neuronal model to identify chemically induced pathway perturbations in relation to neurotoxicity: Effects of CREB pathway inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pistollato, Francesca; Louisse, Jochem; Scelfo, Bibiana

    2014-10-15

    According to the advocated paradigm shift in toxicology, acquisition of knowledge on the mechanisms underlying the toxicity of chemicals, such as perturbations of biological pathways, is of primary interest. Pluripotent stem cells (PSCs), such as human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), offer a unique opportunity to derive physiologically relevant human cell types to measure molecular and cellular effects of such pathway modulations. Here we compared the neuronal differentiation propensity of hESCs and hiPSCs with the aim to develop novel hiPSC-based tools for measuring pathway perturbation in relation to molecular and cellular effects in vitro.more » Among other fundamental pathways, also, the cAMP responsive element binding protein (CREB) pathway was activated in our neuronal models and gave us the opportunity to study time-dependent effects elicited by chemical perturbations of the CREB pathway in relation to cellular effects. We show that the inhibition of the CREB pathway, using 2-naphthol-AS-E-phosphate (KG-501), induced an inhibition of neurite outgrowth and synaptogenesis, as well as a decrease of MAP2{sup +} neuronal cells. These data indicate that a CREB pathway inhibition can be related to molecular and cellular effects that may be relevant for neurotoxicity testing, and, thus, qualify the use of our hiPSC-derived neuronal model for studying chemical-induced neurotoxicity resulting from pathway perturbations. - Highlights: • HESCs derived neuronal cells serve as benchmark for iPSC based neuronal toxicity test development. • Comparisons between hESCs and hiPSCs demonstrated variability of the epigenetic state • CREB pathway modulation have been explored in relation to the neurotoxicant exposure KG-501 • hiPSC might be promising tools to translate theoretical AoPs into toxicological in vitro tests.« less

  1. French Medico-Administrative Data to Identify the Care Pathways of Women With Breast Cancer.

    PubMed

    Lefeuvre, Delphine; Le Bihan-Benjamin, Christine; Pauporté, Iris; Medioni, Jacques; Bousquet, Philippe-Jean

    2017-07-01

    Study of the care pathways is an important topic for care planning, as well as to observe guidelines application. This study aimed to describe care pathways and the period of time between treatments of women with breast cancer (BC), at a population level. Women with in situ, local and regional BC who were hospitalized and newly treated in 2012 were included and followed for 1 year. Care pathways were described, focusing on surgery (partial mastectomy [PM], total mastectomy [TM]), chemotherapy, and radiotherapy. The periods of time between treatments were measured and compared with the guidelines. The study involved 52,128 women. The most common care pathways among the 2845 women with in situ BC were PM-radiotherapy (46.7%) and TM (28.5%). Among the 41,470 women with local BC, they were: PM-radiotherapy (44.8%) or PM-chemotherapy-radiotherapy (16.0%). The 7813 women with regional BC had similar care pathways, although chemotherapy was given more frequently (73%). The periods of time between surgery and chemotherapy were in accordance with the guidelines for 98% of the women; those between surgery and radiotherapy were affected by adjuvant chemotherapy. Finally, the time between chemotherapy and radiotherapy was longer than recommended for 40% of the women. The French medicoadministrative databases allow the study, at a national population level, of the care pathways and periods of time between treatments of women with BC according to the stage of the disease. They were close to the guidelines, although an improvement is highly necessary. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Global transcriptome analysis of formalin-fixed prostate cancer specimens identifies biomarkers of disease recurrence.

    PubMed

    Long, Qi; Xu, Jianpeng; Osunkoya, Adeboye O; Sannigrahi, Soma; Johnson, Brent A; Zhou, Wei; Gillespie, Theresa; Park, Jong Y; Nam, Robert K; Sugar, Linda; Stanimirovic, Aleksandra; Seth, Arun K; Petros, John A; Moreno, Carlos S

    2014-06-15

    Prostate cancer remains the second leading cause of cancer death in American men and there is an unmet need for biomarkers to identify patients with aggressive disease. In an effort to identify biomarkers of recurrence, we performed global RNA sequencing on 106 formalin-fixed, paraffin-embedded prostatectomy samples from 100 patients at three independent sites, defining a 24-gene signature panel. The 24 genes in this panel function in cell-cycle progression, angiogenesis, hypoxia, apoptosis, PI3K signaling, steroid metabolism, translation, chromatin modification, and transcription. Sixteen genes have been associated with cancer, with five specifically associated with prostate cancer (BTG2, IGFBP3, SIRT1, MXI1, and FDPS). Validation was performed on an independent publicly available dataset of 140 patients, where the new signature panel outperformed markers published previously in terms of predicting biochemical recurrence. Our work also identified differences in gene expression between Gleason pattern 4 + 3 and 3 + 4 tumors, including several genes involved in the epithelial-to-mesenchymal transition and developmental pathways. Overall, this study defines a novel biomarker panel that has the potential to improve the clinical management of prostate cancer. ©2014 American Association for Cancer Research.

  3. Biophysical and biochemical constraints imposed by salt stress: learning from halophytes

    PubMed Central

    Duarte, Bernardo; Sleimi, Noomene; Caçador, Isabel

    2014-01-01

    Soil salinization is one of the most important factors impacting plant productivity. About 3.6 billion of the world’s 5.2 billion ha of agricultural dry land, have already suffered erosion, degradation, and salinization. Halophytes are typically considered as plants able to complete their life cycle in environments where the salt concentration is above 200 mM NaCl. Salinity adjustment is a complex phenomenon but essential mechanism to overcome salt stress, with both biophysical and biochemical implications. At this level, halophytes evolved in several directions, adopting different strategies. Otherwise, the lack of adaptation to a salt environment would negatively affect their electron transduction pathways and the entire energetic metabolism, the foundation of every plant photosynthesis and biomass production. The maintenance of ionic homeostasis is in the basis of all cellular counteractive measures, in particular in terms of redox potential and energy transduction. In the present work the biophysical mechanisms underlying energy capture and transduction in halophytes are discussed alongside with their relation with biochemical counteractive mechanisms, integrating data from photosynthetic light harvesting complexes, electron transport chains to the quinone pools, carbon fixation, and energy dissipation metabolism. PMID:25566311

  4. Notch pathway activity identifies cells with cancer stem cell-like properties and correlates with worse survival in lung adenocarcinoma

    PubMed Central

    Hassan, Khaled A.; Wang, Luo; Korkaya, Hasan; Chen, Guoan; Maillard, Ivan; Beer, David G.; Kalemkerian, Gregory P.; Wicha, Max S.

    2013-01-01

    Purpose The cancer stem cell theory postulates that tumors contain a subset of cells with stem cell properties of self-renewal, differentiation and tumor-initiation. The purpose of this study is to determine the role of Notch activity in identifying lung cancer stem cells. Experimental Design We investigated the role of Notch activity in lung adenocarcinoma utilizing a Notch GFP-reporter construct and a gamma-secretase inhibitor (GSI), which inhibits Notch pathway activity. Results Transduction of lung cancer cells with Notch GFP-reporter construct identified a subset of cells with high Notch activity (GFP-bright). GFP-bright cells had the ability to form more tumor spheres in serum-free media, and were able to generate both GFP-bright and GFP-dim (lower Notch activity) cell populations. GFP-bright cells were resistant to chemotherapy and were tumorigenic in serial xenotransplantation assays. Tumor xenografts of mice treated with GSI had decreased expression of downstream effectors of Notch pathway and failed to regenerate tumors upon reimplantation in NOD/SCID mice. Using multivariate analysis, we detected a statistically significant correlation between poor clinical outcome and Notch activity (reflected in increased Notch ligand expression or decreased expression of the negative modulators), in a group of 441 lung adenocarcinoma patients. This correlation was further confirmed in an independent group of 89 adenocarcinoma patients where Hes-1 overexpression correlated with poor overall survival. Conclusions Notch activity can identify lung cancer stem cell-like population and its inhibition may be an appropriate target for treating lung adenocarcinoma. PMID:23444212

  5. Dysregulated Pathway Identification of Alzheimer's Disease Based on Internal Correlation Analysis of Genes and Pathways.

    PubMed

    Kong, Wei; Mou, Xiaoyang; Di, Benteng; Deng, Jin; Zhong, Ruxing; Wang, Shuaiqun

    2017-11-20

    Dysregulated pathway identification is an important task which can gain insight into the underlying biological processes of disease. Current pathway-identification methods focus on a set of co-expression genes and single pathways and ignore the correlation between genes and pathways. The method proposed in this study, takes into account the internal correlations not only between genes but also pathways to identifying dysregulated pathways related to Alzheimer's disease (AD), the most common form of dementia. In order to find the significantly differential genes for AD, mutual information (MI) is used to measure interdependencies between genes other than expression valves. Then, by integrating the topology information from KEGG, the significant pathways involved in the feature genes are identified. Next, the distance correlation (DC) is applied to measure the pairwise pathway crosstalks since DC has the advantage of detecting nonlinear correlations when compared to Pearson correlation. Finally, the pathway pairs with significantly different correlations between normal and AD samples are known as dysregulated pathways. The molecular biology analysis demonstrated that many dysregulated pathways related to AD pathogenesis have been discovered successfully by the internal correlation detection. Furthermore, the insights of the dysregulated pathways in the development and deterioration of AD will help to find new effective target genes and provide important theoretical guidance for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. An evolving paradigm for the secretory pathway?

    PubMed Central

    Lippincott-Schwartz, Jennifer

    2011-01-01

    The paradigm that the secretory pathway consists of a stable endoplasmic reticulum and Golgi apparatus, using discrete transport vesicles to exchange their contents, gained important support from groundbreaking biochemical and genetic studies during the 1980s. However, the subsequent development of new imaging technologies with green fluorescent protein introduced data on dynamic processes not fully accounted for by the paradigm. As a result, we may be seeing an example of how a paradigm is evolving to account for the results of new technologies and their new ways of describing cellular processes. PMID:22039065

  7. Therapeutic efficacy of atypical antipsychotic drugs by targeting multiple stress-related metabolic pathways

    PubMed Central

    Cai, H L; Jiang, P; Tan, Q Y; Dang, R L; Tang, M M; Xue, Y; Deng, Y; Zhang, B K; Fang, P F; Xu, P; Xiang, D X; Li, H D; Yao, J K

    2017-01-01

    Schizophrenia (SZ) is considered to be a multifactorial brain disorder with defects involving many biochemical pathways. Patients with SZ show variable responses to current pharmacological treatments of SZ because of the heterogeneity of this disorder. Stress has a significant role in the pathophysiological pathways and therapeutic responses of SZ. Atypical antipsychotic drugs (AAPDs) can modulate the stress response of the hypothalamic–pituitary–adrenal (HPA) axis and exert therapeutic effects on stress by targeting the prefrontal cortex (PFC) and hippocampus. To evaluate the effects of AAPDs (such as clozapine, risperidone and aripiprazole) on stress, we compared neurochemical profile variations in the PFC and hippocampus between rat models of chronic unpredictable mild stress (CUMS) for HPA axis activation and of long-term dexamethasone exposure (LTDE) for HPA axis inhibition, using an ultraperformance liquid chromatography–mass spectrometry (UPLC–MS/MS)-based metabolomic approach and a multicriteria assessment. We identified a number of stress-induced biomarkers comprising creatine, choline, inosine, hypoxanthine, uric acid, allantoic acid, lysophosphatidylcholines (LysoPCs), phosphatidylethanolamines (PEs), corticosterone and progesterone. Specifically, pathway enrichment and correlation analyses suggested that stress induces oxidative damage by disturbing the creatine–phosphocreatine circuit and purine pathway, leading to excessive membrane breakdown. Moreover, our data suggested that the AAPDs tested partially restore stress-induced deficits by increasing the levels of creatine, progesterone and PEs. Thus, the present findings provide a theoretical basis for the hypothesis that a combined therapy using adenosine triphosphate fuel, antioxidants and omega-3 fatty acids as supplements may have synergistic effects on the therapeutic outcome following AAPD treatment. PMID:28509906

  8. An integrated pathway system modeling of Saccharomyces cerevisiae HOG pathway: a Petri net based approach.

    PubMed

    Tomar, Namrata; Choudhury, Olivia; Chakrabarty, Ankush; De, Rajat K

    2013-02-01

    Biochemical networks comprise many diverse components and interactions between them. It has intracellular signaling, metabolic and gene regulatory pathways which are highly integrated and whose responses are elicited by extracellular actions. Previous modeling techniques mostly consider each pathway independently without focusing on the interrelation of these which actually functions as a single system. In this paper, we propose an approach of modeling an integrated pathway using an event-driven modeling tool, i.e., Petri nets (PNs). PNs have the ability to simulate the dynamics of the system with high levels of accuracy. The integrated set of signaling, regulatory and metabolic reactions involved in Saccharomyces cerevisiae's HOG pathway has been collected from the literature. The kinetic parameter values have been used for transition firings. The dynamics of the system has been simulated and the concentrations of major biological species over time have been observed. The phenotypic characteristics of the integrated system have been investigated under two conditions, viz., under the absence and presence of osmotic pressure. The results have been validated favorably with the existing experimental results. We have also compared our study with the study of idFBA (Lee et al., PLoS Comput Biol 4:e1000-e1086, 2008) and pointed out the differences between both studies. We have simulated and monitored concentrations of multiple biological entities over time and also incorporated feedback inhibition by Ptp2 which has not been included in the idFBA study. We have concluded that our study is the first to the best of our knowledge to model signaling, metabolic and regulatory events in an integrated form through PN model framework. This study is useful in computational simulation of system dynamics for integrated pathways as there are growing evidences that the malfunctioning of the interplay among these pathways is associated with disease.

  9. Do Growth Mindsets in Math Benefit Females? Identifying Pathways between Gender, Mindset, and Motivation.

    PubMed

    Degol, Jessica L; Wang, Ming-Te; Zhang, Ya; Allerton, Julie

    2018-05-01

    Despite efforts to increase female representation in science, technology, engineering, and mathematics (STEM), females continue to be less motivated to pursue STEM careers than males. A short-term longitudinal study used a sample of 1449 high school students (grades 9-12; 49% females) to examine pathways from gender and mindset onto STEM outcomes via motivational beliefs (i.e., expectancy beliefs, task value, and cost). Mindset, motivational beliefs, and STEM career aspirations were assessed between the fall and winter months of the 2014-2015 school year and math grades were obtained at the conclusion of the same year. Student growth mindset beliefs predicted higher task values in math. Task values also mediated the pathway from a growth mindset to higher STEM career aspirations. Expectancy beliefs mediated the pathway between gender and math achievement. This mediated pathway was stronger for females than for males, such that females had higher math achievement than males when they endorsed a growth mindset. Findings suggest possible avenues for improving female's interest in STEM.

  10. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery.

    PubMed

    Karim, Ashty S; Jewett, Michael C

    2016-07-01

    Speeding up design-build-test (DBT) cycles is a fundamental challenge facing biochemical engineering. To address this challenge, we report a new cell-free protein synthesis driven metabolic engineering (CFPS-ME) framework for rapid biosynthetic pathway prototyping. In our framework, cell-free cocktails for synthesizing target small molecules are assembled in a mix-and-match fashion from crude cell lysates either containing selectively enriched pathway enzymes from heterologous overexpression or directly producing pathway enzymes in lysates by CFPS. As a model, we apply our approach to n-butanol biosynthesis showing that Escherichia coli lysates support a highly active 17-step CoA-dependent n-butanol pathway in vitro. The elevated degree of flexibility in the cell-free environment allows us to manipulate physiochemical conditions, access enzymatic nodes, discover new enzymes, and prototype enzyme sets with linear DNA templates to study pathway performance. We anticipate that CFPS-ME will facilitate efforts to define, manipulate, and understand metabolic pathways for accelerated DBT cycles without the need to reengineer organisms. Copyright © 2016 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda.

    PubMed

    Prasher, Bhavana; Negi, Sapna; Aggarwal, Shilpi; Mandal, Amit K; Sethi, Tav P; Deshmukh, Shailaja R; Purohit, Sudha G; Sengupta, Shantanu; Khanna, Sangeeta; Mohammad, Farhan; Garg, Gaurav; Brahmachari, Samir K; Mukerji, Mitali

    2008-09-09

    Ayurveda is an ancient system of personalized medicine documented and practiced in India since 1500 B.C. According to this system an individual's basic constitution to a large extent determines predisposition and prognosis to diseases as well as therapy and life-style regime. Ayurveda describes seven broad constitution types (Prakritis) each with a varying degree of predisposition to different diseases. Amongst these, three most contrasting types, Vata, Pitta, Kapha, are the most vulnerable to diseases. In the realm of modern predictive medicine, efforts are being directed towards capturing disease phenotypes with greater precision for successful identification of markers for prospective disease conditions. In this study, we explore whether the different constitution types as described in Ayurveda has molecular correlates. Normal individuals of the three most contrasting constitutional types were identified following phenotyping criteria described in Ayurveda in Indian population of Indo-European origin. The peripheral blood samples of these individuals were analysed for genome wide expression levels, biochemical and hematological parameters. Gene Ontology (GO) and pathway based analysis was carried out on differentially expressed genes to explore if there were significant enrichments of functional categories among Prakriti types. Individuals from the three most contrasting constitutional types exhibit striking differences with respect to biochemical and hematological parameters and at genome wide expression levels. Biochemical profiles like liver function tests, lipid profiles, and hematological parameters like haemoglobin exhibited differences between Prakriti types. Functional categories of genes showing differential expression among Prakriti types were significantly enriched in core biological processes like transport, regulation of cyclin dependent protein kinase activity, immune response and regulation of blood coagulation. A significant enrichment of

  12. Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda

    PubMed Central

    Prasher, Bhavana; Negi, Sapna; Aggarwal, Shilpi; Mandal, Amit K; Sethi, Tav P; Deshmukh, Shailaja R; Purohit, Sudha G; Sengupta, Shantanu; Khanna, Sangeeta; Mohammad, Farhan; Garg, Gaurav; Brahmachari, Samir K; Mukerji, Mitali

    2008-01-01

    Background Ayurveda is an ancient system of personalized medicine documented and practiced in India since 1500 B.C. According to this system an individual's basic constitution to a large extent determines predisposition and prognosis to diseases as well as therapy and life-style regime. Ayurveda describes seven broad constitution types (Prakritis) each with a varying degree of predisposition to different diseases. Amongst these, three most contrasting types, Vata, Pitta, Kapha, are the most vulnerable to diseases. In the realm of modern predictive medicine, efforts are being directed towards capturing disease phenotypes with greater precision for successful identification of markers for prospective disease conditions. In this study, we explore whether the different constitution types as described in Ayurveda has molecular correlates. Methods Normal individuals of the three most contrasting constitutional types were identified following phenotyping criteria described in Ayurveda in Indian population of Indo-European origin. The peripheral blood samples of these individuals were analysed for genome wide expression levels, biochemical and hematological parameters. Gene Ontology (GO) and pathway based analysis was carried out on differentially expressed genes to explore if there were significant enrichments of functional categories among Prakriti types. Results Individuals from the three most contrasting constitutional types exhibit striking differences with respect to biochemical and hematological parameters and at genome wide expression levels. Biochemical profiles like liver function tests, lipid profiles, and hematological parameters like haemoglobin exhibited differences between Prakriti types. Functional categories of genes showing differential expression among Prakriti types were significantly enriched in core biological processes like transport, regulation of cyclin dependent protein kinase activity, immune response and regulation of blood coagulation. A

  13. Identifying Potential Therapeutics for Osteoporosis by Exploiting the Relationship between Mevalonate Pathway and Bone Metabolism.

    PubMed

    Wan Hasan, Wan Nuraini; Chin, Kok-Yong; Jolly, James Jam; Abd Ghafar, Norzana; Soelaiman, Ima Nirwana

    2018-04-23

    Osteoporosis is a silent skeletal disease characterized by low bone mass and destruction of skeletal microarchitecture, leading to an increased fracture risk. This occurs due to an imbalance in bone remodelling, whereby the rate of bone resorption is greater than bone formation. Mevalonate pathway, previously known to involve in cholesterol synthesis, is an important regulatory pathway for bone remodelling. This review aimed to provide an overview of the relationship between mevalonate pathway and bone metabolism, as well as agents which act through this pathway to achieve their therapeutic potential. Mevalonate pathway produces farnesyl pyrophosphate and geranylgeranyl pyrophosphate essential in protein prenylation. An increase in protein prenylation favours bone resorption over bone formation. Non-nitrogen containing bisphosphonates inhibit farnesyl diphosphate synthase which produces farnesyl pyrophosphate. They are used as the first line therapy for osteoporosis. Statins, a well-known class of cholesterol-lowering agents, inhibit 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase, the rate-determining enzyme in the mevalonate pathway. It was shown to increase bone mineral density and prevent fracture in humans. Tocotrienol is a group of vitamin E commonly found in palm oil, rice bran and annatto bean. It causes degradation of HMG-CoA reductase. Many studies demonstrated that tocotrienol prevented bone loss in animal studies but its efficacy has not been tested in humans. mevalonate pathway can be exploited to develop effective antiosteoporosis agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Surprisal analysis of genome-wide transcript profiling identifies differentially expressed genes and pathways associated with four growth conditions in the microalga Chlamydomonas.

    PubMed

    Bogaert, Kenny A; Manoharan-Basil, Sheeba S; Perez, Emilie; Levine, Raphael D; Remacle, Francoise; Remacle, Claire

    2018-01-01

    The usual cultivation mode of the green microalga Chlamydomonas is liquid medium and light. However, the microalga can also be grown on agar plates and in darkness. Our aim is to analyze and compare gene expression of cells cultivated in these different conditions. For that purpose, RNA-seq data are obtained from Chlamydomonas samples of two different labs grown in four environmental conditions (agar@light, agar@dark, liquid@light, liquid@dark). The RNA seq data are analyzed by surprisal analysis, which allows the simultaneous meta-analysis of all the samples. First we identify a balance state, which defines a state where the expression levels are similar in all the samples irrespectively of their growth conditions, or lab origin. In addition our analysis identifies additional constraints needed to quantify the deviation with respect to the balance state. The first constraint differentiates the agar samples versus the liquid ones; the second constraint the dark samples versus the light ones. The two constraints are almost of equal importance. Pathways involved in stress responses are found in the agar phenotype while the liquid phenotype comprises ATP and NADH production pathways. Remodeling of membrane is suggested in the dark phenotype while photosynthetic pathways characterize the light phenotype. The same trends are also present when performing purely statistical analysis such as K-means clustering and differentially expressed genes.

  15. Identifying Likely Transmission Pathways within a 10-Year Community Outbreak of Tuberculosis by High-Depth Whole Genome Sequencing

    PubMed Central

    Sadsad, Rosemarie; Martinez, Elena; Jelfs, Peter; Hill-Cawthorne, Grant A.; Gilbert, Gwendolyn L.; Marais, Ben J.; Sintchenko, Vitali

    2016-01-01

    Background Improved tuberculosis control and the need to contain the spread of drug-resistant strains provide a strong rationale for exploring tuberculosis transmission dynamics at the population level. Whole-genome sequencing provides optimal strain resolution, facilitating detailed mapping of potential transmission pathways. Methods We sequenced 22 isolates from a Mycobacterium tuberculosis cluster in New South Wales, Australia, identified during routine 24-locus mycobacterial interspersed repetitive unit typing. Following high-depth paired-end sequencing using the Illumina HiSeq 2000 platform, two independent pipelines were employed for analysis, both employing read mapping onto reference genomes as well as de novo assembly, to control biases in variant detection. In addition to single-nucleotide polymorphisms, the analyses also sought to identify insertions, deletions and structural variants. Results Isolates were highly similar, with a distance of 13 variants between the most distant members of the cluster. The most sensitive analysis classified the 22 isolates into 18 groups. Four of the isolates did not appear to share a recent common ancestor with the largest clade; another four isolates had an uncertain ancestral relationship with the largest clade. Conclusion Whole genome sequencing, with analysis of single-nucleotide polymorphisms, insertions, deletions, structural variants and subpopulations, enabled the highest possible level of discrimination between cluster members, clarifying likely transmission pathways and exposing the complexity of strain origin. The analysis provides a basis for targeted public health intervention and enhanced classification of future isolates linked to the cluster. PMID:26938641

  16. Two novel WD40 domain–containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway

    PubMed Central

    Shi, Yufeng; Stefan, Christopher J.; Rue, Sarah M.; Teis, David; Emr, Scott D.

    2011-01-01

    Regulated secretion, nutrient uptake, and responses to extracellular signals depend on cell-surface proteins that are internalized and recycled back to the plasma membrane. However, the underlying mechanisms that govern membrane protein recycling to the cell surface are not fully known. Using a chemical-genetic screen in yeast, we show that the arginine transporter Can1 is recycled back to the cell surface via two independent pathways mediated by the sorting nexins Snx4/41/42 and the retromer complex, respectively. In addition, we identify two novel WD40-domain endosomal recycling proteins, Ere1 and Ere2, that function in the retromer pathway. Ere1 is required for Can1 recycling via the retromer-mediated pathway, but it is not required for the transport of other retromer cargoes, such as Vps10 and Ftr1. Biochemical studies reveal that Ere1 physically interacts with internalized Can1. Ere2 is present in a complex containing Ere1 on endosomes and functions as a regulator of Ere1. Taken together, our results suggest that Snx4/41/42 and the retromer comprise two independent pathways for the recycling of internalized cell-surface proteins. Moreover, a complex containing the two novel proteins Ere1 and Ere2 mediates cargo-specific recognition by the retromer pathway. PMID:21880895

  17. Causal correlation of foliar biochemical concentrations with AVIRIS spectra using forced entry linear regression

    NASA Technical Reports Server (NTRS)

    Dawson, Terence P.; Curran, Paul J.; Kupiec, John A.

    1995-01-01

    A major goal of airborne imaging spectrometry is to estimate the biochemical composition of vegetation canopies from reflectance spectra. Remotely-sensed estimates of foliar biochemical concentrations of forests would provide valuable indicators of ecosystem function at regional and eventually global scales. Empirical research has shown a relationship exists between the amount of radiation reflected from absorption features and the concentration of given biochemicals in leaves and canopies (Matson et al., 1994, Johnson et al., 1994). A technique commonly used to determine which wavelengths have the strongest correlation with the biochemical of interest is unguided (stepwise) multiple regression. Wavelengths are entered into a multivariate regression equation, in their order of importance, each contributing to the reduction of the variance in the measured biochemical concentration. A significant problem with the use of stepwise regression for determining the correlation between biochemical concentration and spectra is that of 'overfitting' as there are significantly more wavebands than biochemical measurements. This could result in the selection of wavebands which may be more accurately attributable to noise or canopy effects. In addition, there is a real problem of collinearity in that the individual biochemical concentrations may covary. A strong correlation between the reflectance at a given wavelength and the concentration of a biochemical of interest, therefore, may be due to the effect of another biochemical which is closely related. Furthermore, it is not always possible to account for potentially suitable waveband omissions in the stepwise selection procedure. This concern about the suitability of stepwise regression has been identified and acknowledged in a number of recent studies (Wessman et al., 1988, Curran, 1989, Curran et al., 1992, Peterson and Hubbard, 1992, Martine and Aber, 1994, Kupiec, 1994). These studies have pointed to the lack of a physical

  18. An integrative framework for Bayesian variable selection with informative priors for identifying genes and pathways.

    PubMed

    Peng, Bin; Zhu, Dianwen; Ander, Bradley P; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R; Yang, Xiaowei

    2013-01-01

    The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with 'large p, small n' problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed.

  19. A Combined Pathway and Regional Heritability Analysis Indicates NETRIN1 Pathway Is Associated With Major Depressive Disorder.

    PubMed

    Zeng, Yanni; Navarro, Pau; Fernandez-Pujals, Ana M; Hall, Lynsey S; Clarke, Toni-Kim; Thomson, Pippa A; Smith, Blair H; Hocking, Lynne J; Padmanabhan, Sandosh; Hayward, Caroline; MacIntyre, Donald J; Wray, Naomi R; Deary, Ian J; Porteous, David J; Haley, Chris S; McIntosh, Andrew M

    2017-02-15

    Genome-wide association studies (GWASs) of major depressive disorder (MDD) have identified few significant associations. Testing the aggregation of genetic variants, in particular biological pathways, may be more powerful. Regional heritability analysis can be used to detect genomic regions that contribute to disease risk. We integrated pathway analysis and multilevel regional heritability analyses in a pipeline designed to identify MDD-associated pathways. The pipeline was applied to two independent GWAS samples [Generation Scotland: The Scottish Family Health Study (GS:SFHS, N = 6455) and Psychiatric Genomics Consortium (PGC:MDD) (N = 18,759)]. A polygenic risk score (PRS) composed of single nucleotide polymorphisms from the pathway most consistently associated with MDD was created, and its accuracy to predict MDD, using area under the curve, logistic regression, and linear mixed model analyses, was tested. In GS:SFHS, four pathways were significantly associated with MDD, and two of these explained a significant amount of pathway-level regional heritability. In PGC:MDD, one pathway was significantly associated with MDD. Pathway-level regional heritability was significant in this pathway in one subset of PGC:MDD. For both samples the regional heritabilities were further localized to the gene and subregion levels. The NETRIN1 signaling pathway showed the most consistent association with MDD across the two samples. PRSs from this pathway showed competitive predictive accuracy compared with the whole-genome PRSs when using area under the curve statistics, logistic regression, and linear mixed model. These post-GWAS analyses highlight the value of combining multiple methods on multiple GWAS data for the identification of risk pathways for MDD. The NETRIN1 signaling pathway is identified as a candidate pathway for MDD and should be explored in further large population studies. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights

  20. Identifying Barriers and Pathways to Success for Renewable Energy Development on American Indian Lands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Necefer, Len Edward; Jones, Thomas Elisha

    American Indian tribes possess lands rich with renewable energy (RE) resources. Tribes have great potential and need to develop these resources, yet face a host of barriers that continue to impede development. Understanding these challenges as well as the pathways that can be taken to overcome them may facilitate more economic development to meet community needs and better position tribes to play a role in securing a low-carbon energy future for the United States. This paper presents the results of an expert elicitation of 24 tribal energy experts from federal, tribal, academic, and private industry backgrounds to identify barriers andmore » opportunities for federally recognized tribes in the lower 48 states. Experts identified a number of unique challenges facing tribes including financing and funding, infrastructure, tribal leadership and staff, state-level influence, and partnerships. Cultural factors were seen only to be of concern with large-scale development. Tribal sovereignty is a significant motivation for RE development and has yet to be fully realized. Cultural considerations are critical to the success of future projects; smaller residential and community-scale projects may be a better fit. Improving partnerships between tribes and the private sector can increase RE deployment and overcome historical distrust. States can have a double-ended influence on projects within tribal lands through taxation.« less

  1. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment.

    PubMed

    Lovewell, Rustin R; Hayes, Sandra M; O'Toole, George A; Berwin, Brent

    2014-04-01

    Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections.

  2. Pseudomonas aeruginosa flagellar motility activates the phagocyte PI3K/Akt pathway to induce phagocytic engulfment

    PubMed Central

    Lovewell, Rustin R.; Hayes, Sandra M.; O'Toole, George A.

    2014-01-01

    Phagocytosis of the bacterial pathogen Pseudomonas aeruginosa is the primary means by which the host controls bacterially induced pneumonia during lung infection. Previous studies have identified flagellar swimming motility as a key pathogen-associated molecular pattern (PAMP) recognized by phagocytes to initiate engulfment. Correspondingly, loss of flagellar motility is observed during chronic pulmonary infection with P. aeruginosa, and this likely reflects a selection for bacteria resistant to phagocytic clearance. However, the mechanism underlying the preferential phagocytic response to motile bacteria is unknown. Here we have identified a cellular signaling pathway in alveolar macrophages and other phagocytes that is specifically activated by flagellar motility. Genetic and biochemical methods were employed to identify that phagocyte PI3K/Akt activation is required for bacterial uptake and, importantly, it is specifically activated in response to P. aeruginosa flagellar motility. Based on these observations, the second important finding that emerged from these studies is that titration of the bacterial flagellar motility results in a proportional activation state of Akt. Therefore, the Akt pathway is responsive to, and corresponds with, the degree of bacterial flagellar motility, is independent of the actin polymerization that facilitates phagocytosis, and determines the phagocytic fate of P. aeruginosa. These findings elucidate the mechanism behind motility-dependent phagocytosis of extracellular bacteria and support a model whereby phagocytic clearance exerts a selective pressure on P. aeruginosa populations in vivo, which contributes to changes in pathogenesis during infections. PMID:24487390

  3. A Biochemical Oscillator Using Excitatory Molecules for Nanonetworks.

    PubMed

    Shitiri, Ethungshan; Cho, Ho-Shin

    2016-10-01

    For nanonetworks to be able to achieve large-scale functionality, such as to respond collectively to a trigger, synchrony between nanomachines is essential. However, to facilitate synchronization, some sort of physical clocking mechanism is required, such as the oscillators driven by auto-inhibitory molecules or by auto-inducing molecules. In this study, taking inspiration from the widely studied biological oscillatory phenomena called Calcium (Ca 2+ ) oscillations, we undertake a different approach to design an oscillator. Our model employs three different types of excitatory molecules that work in tandem to generate oscillatory phenomenon in the concentration levels of the molecule of interest. The main objective of the study is to model a high frequency biochemical oscillator, along with the investigations to identify and determine the parameters that affect the period of the oscillations. The investigations entail and highlight the design of the reserve unit, a reservoir of the molecule of interest, as a key factor in realizing a high frequency stable biochemical oscillator.

  4. Proline Precursors and Collagen Synthesis: Biochemical Challenges of Nutrient Supplementation and Wound Healing.

    PubMed

    Albaugh, Vance L; Mukherjee, Kaushik; Barbul, Adrian

    2017-11-01

    Wound healing is a complex process marked by highly coordinated immune fluxes into an area of tissue injury; these are required for re-establishment of normal tissue integrity. Along with this cascade of cellular players, wound healing also requires coordinated flux through a number of biochemical pathways, leading to synthesis of collagen and recycling or removal of damaged tissues. The availability of nutrients, especially amino acids, is critical for wound healing, and enteral supplementation has been intensely studied as a potential mechanism to augment wound healing-either by increasing tensile strength, decreasing healing time, or both. From a practical standpoint, although enteral nutrient supplementation may seem like a reasonable strategy to augment healing, a number of biochemical and physiologic barriers exist that limit this strategy. In this critical review, the physiology of enteral amino acid metabolism and supplementation and challenges therein are discussed in the context of splanchnic physiology and biochemistry. Additionally, a review of studies examining various methods of amino acid supplementation and the associated effects on wound outcomes are discussed. © 2017 American Society for Nutrition.

  5. A chloroplast pathway for the de novo biosynthesis of triacylglycerol in Chlamydomonas reinhardtii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, J.; Xu, C.; Andre, C.

    2011-06-23

    Neutral lipid metabolism has been extensively studied in yeast, plants and mammals. In contrast, little information is available regarding the biochemical pathway, enzymes and regulatory factors involved in the biosynthesis of triacylglycerol (TAG) in microalgae. In the conventional TAG biosynthetic pathway widely accepted for yeast, plants and mammals, TAG is assembled in the endoplasmic reticulum (ER) from its immediate precursor diacylglycerol (DAG) made by ER-specific acyltransferases, and is deposited exclusively in lipid droplets in the cytosol. Here, we demonstrated that the unicellular microalga Chlamydomonas reinhardtii employs a distinct pathway that uses DAG derived almost exclusively from the chloroplast to producemore » TAG. This unique TAG biosynthesis pathway is largely dependent on de novo fatty acid synthesis, and the TAG formed in this pathway is stored in lipid droplets in both the chloroplast and the cytosol. These findings have wide implications for understanding TAG biosynthesis and storage and other areas of lipid metabolism in microalgae and other organisms.« less

  6. Present status of biochemical research on the insecticide resistance problem*

    PubMed Central

    Agosin, Moises

    1963-01-01

    In order to provide a rational basis for the development of new insecticides, a thorough understanding of resistance mechanisms is necessary and this presupposes a detailed knowledge of the normal biochemical pathways in insects. The author reviews recent progress in this field, particularly the work on enzymatic detoxication of insecticides which appears to be the most important single factor in the production of resistance. The mechanisms include dehydrochlorination and α-methylenic oxidation (DDT), hydrolysis by phosphatases or carboxyesterases (organophosphorus compounds), and oxidation by microsomal enzyme systems (various classes of insecticides). Much work still needs to be done on the enzyme systems involved, especially in relation to substrate specificity and the effect of enzyme inhibitors that might act as synergists of insecticides. PMID:20604178

  7. Immortalization of cat iris sphincter smooth muscle cells by SV40 virus: growth, morphological, biochemical and pharmacological characteristics.

    PubMed

    Ocklind, A; Yousufzai, S Y; Ghosh, S; Coca-Prados, M; St Jernschantz, J; Abdel-Latif, A A

    1995-11-01

    The purpose of this study was to establish immortalized cell cultures of cat iris sphincter smooth muscle cells for a model investigating ocular receptors and their signal transduction pathways. Cultured cat iris sphincter muscle cells were immortalized by viral transformation with SV40 virus and the morphological and immunocytochemical properties of the normal and immortalized cells were investigated. The transformed cell clone, SV-CISM-2, was further characterized biochemically and pharmacologically. The normal muscle cells showed characteristics of smooth muscle cells, as judged by their growth and the presence of smooth muscle alpha-actin and desmin. After seven passages the normal cells ceased to proliferate. In contrast, the immortalized cells retained their proliferative ability for more than 220 population doublings over 55 passages. The transformation phenotype in these cells was confirmed by their expression of the large T-antigen, the incorporation of viral DNA into cellular DNA, growth in agarose and in low-serum medium, and complete loss of contact inhibition. The immortalized cells expressed smooth muscle alpha-actin, desmin and MLC protein. Biochemical and pharmacological studies on the SV-CISM cells revealed the presence of several functional receptors including muscarinic cholinergic, beta-adrenergic, peptidergic (substance P and endothelin). Platelet-activating factor, and prostaglandin (PG). Muscarinic stimulation of these cells resulted in: (a) a dose-dependent increase in the release of arachidonic acid (AA) and (PGs) and enhancement in the production of inositol trisphosphate (IP3); and (b) a substantial increase in MLC phosphorylation (118%), an indicator of smooth muscle contractility. The stimulatory effects of carbachol on these responses were completely blocked by atropine, a muscarinic receptor antagonist. This study constitutes the first successful immortalization of iris sphincter smooth muscle cells. The SV-CISM-2 cells can serve as

  8. Uveal Melanoma: Identifying Immunological and Chemotherapeutic Targets to Treat Metastases.

    PubMed

    Jager, Martine J; Dogrusöz, Mehmet; Woodman, Scott E

    2017-01-01

    Uveal melanoma is an intraocular malignancy that, depending on its size and genetic make-up, may lead to metastases in up to 50% of cases. Currently, no therapy has been proven to improve survival. However, new therapies exploiting immune responses against metastases are being developed. The primary tumor is well characterized: tumors at high risk of developing metastases often contain macrophages and lymphocytes. However, these lymphocytes are often regulatory T cells that may suppress immune response. Currently, immune checkpoint inhibitors have shown marked efficacy in multiple cancers (eg, cutaneous melanoma) but do not yet improve survival in uveal melanoma patients. More knowledge needs to be acquired regarding the function of T cells in uveal melanoma. Other therapeutic options are related to the biochemical pathways. Targeting the RAF-MEK-ERK pathway with small molecule MEK inhibitors abrogates the growth of UM cells harboring GNAQ/GNA11 Q209 mutations, suggesting that these aberrant G-protein oncogenes mediate, at least in part, their effect through this hallmark proliferation pathway. Other pathways are also implicated, such as those involving c-Jun and YAP. Further studies may show how interference in the different pathways may affect survival. Copyright 2017 Asia-Pacific Academy of Ophthalmology.

  9. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway

    PubMed Central

    Hsiao, Yu-Yun; Tsai, Wen-Chieh; Kuoh, Chang-Sheng; Huang, Tian-Hsiang; Wang, Hei-Chia; Wu, Tian-Shung; Leu, Yann-Lii; Chen, Wen-Huei; Chen, Hong-Hwa

    2006-01-01

    Background Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs), and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis. Results The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P) to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST). Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives. Conclusion This systems

  10. Comparison of transcripts in Phalaenopsis bellina and Phalaenopsis equestris (Orchidaceae) flowers to deduce monoterpene biosynthesis pathway.

    PubMed

    Hsiao, Yu-Yun; Tsai, Wen-Chieh; Kuoh, Chang-Sheng; Huang, Tian-Hsiang; Wang, Hei-Chia; Wu, Tian-Shung; Leu, Yann-Lii; Chen, Wen-Huei; Chen, Hong-Hwa

    2006-07-13

    Floral scent is one of the important strategies for ensuring fertilization and for determining seed or fruit set. Research on plant scents has hampered mainly by the invisibility of this character, its dynamic nature, and complex mixtures of components that are present in very small quantities. Most progress in scent research, as in other areas of plant biology, has come from the use of molecular and biochemical techniques. Although volatile components have been identified in several orchid species, the biosynthetic pathways of orchid flower fragrance are far from understood. We investigated how flower fragrance was generated in certain Phalaenopsis orchids by determining the chemical components of the floral scent, identifying floral expressed-sequence-tags (ESTs), and deducing the pathways of floral scent biosynthesis in Phalaneopsis bellina by bioinformatics analysis. The main chemical components in the P. bellina flower were shown by gas chromatography-mass spectrometry to be monoterpenoids, benzenoids and phenylpropanoids. The set of floral scent producing enzymes in the biosynthetic pathway from glyceraldehyde-3-phosphate (G3P) to geraniol and linalool were recognized through data mining of the P. bellina floral EST database (dbEST). Transcripts preferentially expressed in P. bellina were distinguished by comparing the scent floral dbEST to that of a scentless species, P. equestris, and included those encoding lipoxygenase, epimerase, diacylglycerol kinase and geranyl diphosphate synthase. In addition, EST filtering results showed that transcripts encoding signal transduction and Myb transcription factors and methyltransferase, in addition to those for scent biosynthesis, were detected by in silico hybridization of the P. bellina unigene database against those of the scentless species, rice and Arabidopsis. Altogether, we pinpointed 66% of the biosynthetic steps from G3P to geraniol, linalool and their derivatives. This systems biology program combined

  11. Identification of personalized dysregulated pathways in hepatocellular carcinoma.

    PubMed

    Li, Hong; Jiang, Xiumei; Zhu, Shengjie; Sui, Lihong

    2017-04-01

    Hepatocellular carcinoma (HCC) is the most common liver malignancy, and ranks the fifth most prevalent malignant tumors worldwide. In general, HCC are detected until the disease is at an advanced stage and may miss the best chance for treatment. Thus, elucidating the molecular mechanisms is critical to clinical diagnosis and treatment for HCC. The purpose of this study was to identify dysregulated pathways of great potential functional relevance in the progression of HCC. Microarray data of 72 pairs of tumor and matched non-tumor surrounding tissues of HCC were transformed to gene expression data. Differentially expressed genes (DEG) between patients and normal controls were identified using Linear Models for Microarray Analysis. Personalized dysregulated pathways were identified using individualized pathway aberrance score module. 169 differentially expressed genes (DEG) were obtained with |logFC|≥1.5 and P≤0.01. 749 dysregulated pathways were obtained with P≤0.01 in pathway statistics, and there were 93 DEG overlapped in the dysregulated pathways. After performing normal distribution analysis, 302 pathways with the aberrance probability≥0.5 were identified. By ranking pathway with aberrance probability, the top 20 pathways were obtained. Only three DEGs (TUBA1C, TPR, CDC20) were involved in the top 20 pathways. These personalized dysregulated pathways and overlapped genes may give new insights into the underlying biological mechanisms in the progression of HCC. Particular attention can be focused on them for further research. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways

    NASA Technical Reports Server (NTRS)

    McAllister, T. N.; Frangos, J. A.

    1999-01-01

    Fluid flow has been shown to be a potent stimulus in osteoblasts and osteocytes and may therefore play an important role in load-induced bone remodeling. The objective of this study was to investigate the characteristics of flow-activated pathways. Previously we reported that fluid flow stimulates rapid and continuous release of nitric oxide (NO) in primary rat calvarial osteoblasts. Here we demonstrate that flow-induced NO release is mediated by shear stress and that this response is distinctly biphasic. Transients in shear stress associated with the onset of flow stimulated a burst in NO production (8.2 nmol/mg of protein/h), while steady flow stimulated sustained NO production (2.2 nmol/mg of protein/h). Both G-protein inhibition and calcium chelation abolished the burst phase but had no effect on sustained production. Activation of G-proteins stimulated dose-dependent NO release in static cultures of both calvarial osteoblasts and UMR-106 osteoblast-like cells. Pertussis toxin had no effect on NO release. Calcium ionophore stimulated low levels of NO production within 15 minutes but had no effect on sustained production. Taken together, these data suggest that fluid shear stress stimulates NO release by two distinct pathways: a G-protein and calcium-dependent phase sensitive to flow transients, and a G-protein and calcium-independent pathway stimulated by sustained flow.

  13. Host Glycan Sugar-Specific Pathways in Streptococcus pneumonia: Galactose as a Key Sugar in Colonisation and Infection

    PubMed Central

    Paixão, Laura; Oliveira, Joana; Veríssimo, André; Vinga, Susana; Lourenço, Eva C.; Ventura, M. Rita; Kjos, Morten; Veening, Jan-Willem; Fernandes, Vitor E.; Andrew, Peter W.; Yesilkaya, Hasan; Neves, Ana Rute

    2015-01-01

    The human pathogen Streptococcus pneumoniae is a strictly fermentative organism that relies on glycolytic metabolism to obtain energy. In the human nasopharynx S. pneumoniae encounters glycoconjugates composed of a variety of monosaccharides, which can potentially be used as nutrients once depolymerized by glycosidases. Therefore, it is reasonable to hypothesise that the pneumococcus would rely on these glycan-derived sugars to grow. Here, we identified the sugar-specific catabolic pathways used by S. pneumoniae during growth on mucin. Transcriptome analysis of cells grown on mucin showed specific upregulation of genes likely to be involved in deglycosylation, transport and catabolism of galactose, mannose and N acetylglucosamine. In contrast to growth on mannose and N-acetylglucosamine, S. pneumoniae grown on galactose re-route their metabolic pathway from homolactic fermentation to a truly mixed acid fermentation regime. By measuring intracellular metabolites, enzymatic activities and mutant analysis, we provide an accurate map of the biochemical pathways for galactose, mannose and N-acetylglucosamine catabolism in S. pneumoniae. Intranasal mouse infection models of pneumococcal colonisation and disease showed that only mutants in galactose catabolic genes were attenuated. Our data pinpoint galactose as a key nutrient for growth in the respiratory tract and highlights the importance of central carbon metabolism for pneumococcal pathogenesis. PMID:25826206

  14. Comparative Transcriptomics to Identify Novel Genes and Pathways in Dinoflagellates

    NASA Astrophysics Data System (ADS)

    Ryan, D.

    2016-02-01

    The unarmored dinoflagellate Karenia brevis is among the most prominent harmful, bloom-forming phytoplankton species in the Gulf of Mexico. During blooms, the polyketides PbTx-1 and PbTx-2 (brevetoxins) are produced by K. brevis. Brevetoxins negatively impact human health and the Gulf shellfish harvest. However, the genes underlying brevetoxin synthesis are currently unknown. Because the K. brevis genome is extremely large ( 1 × 1011 base pairs long), and with a high proportion of repetitive, non-coding DNA, it has not been sequenced. In fact, large, repetitive genomes are common among the dinoflagellate group. High-throughput RNA sequencing technology enabled us to assemble Karenia transcriptomes de novo and investigate potential genes in the brevetoxin pathway through comparative transcriptomics. The brevetoxin profile varies among K. brevis clonal cultures. For example, well-documented Wilson-CCFWC268 typically produces 8-10 pg PbTx per cell, whereas SP1 produces < 2 pg PbTx/cell, and the mutant low-toxin Wilson clone produces undetectable to low (<0.05 pg/cell) amounts. Further, PbTx-2 has been measured in Karenia papilionacea but not Karenia mikimotoi. We compared the transcriptomes of four K. brevis clones (Wilson-CCFWC268, SP3, SP1, and mutant low-toxin Wilson) with K. papilionacea and K. mikimotoi to investigate nucleotide-level genetic variations and differences in gene expression. Of the 85,000 transcripts in the K. brevis transcriptome, 4,600 transcripts, including novel unannotated orthologs and putative polyketide synthases (PKSs), were only expressed by brevetoxin-producing K. brevis and K. papilionacea, not K. mikimotoi. Examination of gene expression between the typical- and low-toxin Wilson clones identified about 3,500 genes with significantly different expression levels, including 2 putative PKSs. One of the 2 PKSs was only found in the brevetoxin-producing Karenia species. These transcriptomes could not have been characterized without high

  15. A signaling pathway contributing to platelet storage lesion development: targeting PI3-kinase–dependent Rap1 activation slows storage-induced platelet deterioration

    PubMed Central

    Schubert, Peter; Thon, Jonathan N.; Walsh, Geraldine M.; Chen, Cindy H.I.; Moore, Edwin D.; Devine, Dana V.; Kast, Juergen

    2015-01-01

    BACKGROUND The term platelet storage lesion (PSL) describes the structural and biochemical changes in platelets (PLTs) during storage. These are typified by alterations of morphologic features and PLT metabolism leading to reduced functionality and hence reduced viability for transfusion. While the manifestations of the storage lesion are well characterized, the biochemical pathways involved in the initiation of this process are unknown. STUDY DESIGN AND METHODS A complementary proteomic approach has recently been applied to analyze changes in the PLT proteome during storage. By employing stringent proteomic criteria, 12 proteins were identified as significantly and consistently changing in relative concentration over a 7-day storage period. Microscopy, Western blot analysis, flow cytometry, and PLT functionality analyses were used to unravel the involvement of a subset of these 12 proteins, which are connected through integrin signaling in one potential signaling pathway underlying storage lesion development. RESULTS Microscopic analysis revealed changes in localization of glycoprotein IIIa, Rap1, and talin during storage. Rap1 activation was observed to correlate with expression of the PLT activation marker CD62P. PLTs incubated for 7 days with the PI3-kinase inhibitor LY294002 showed diminished Rap1 activation as well as a moderate reduction in integrin αIIbβ3 activation and release of α-granules. Furthermore, this inhibitor seemed to improve PLT integrity and quality during storage as several in vitro probes showed a deceleration of PLT activation. CONCLUSION These results provide the first evidence for a signaling pathway mediating PSL in which PI3-kinase–dependent Rap1 activation leads to integrin αIIbβ3 activation and PLT degranulation. PMID:19497060

  16. The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS.

    PubMed

    Premasiri, W Ranjith; Lee, Jean C; Sauer-Budge, Alexis; Théberge, Roger; Costello, Catherine E; Ziegler, Lawrence D

    2016-07-01

    The dominant molecular species contributing to the surface-enhanced Raman spectroscopy (SERS) spectra of bacteria excited at 785 nm are the metabolites of purine degradation: adenine, hypoxanthine, xanthine, guanine, uric acid, and adenosine monophosphate. These molecules result from the starvation response of the bacterial cells in pure water washes following enrichment from nutrient-rich environments. Vibrational shifts due to isotopic labeling, bacterial SERS spectral fitting, SERS and mass spectrometry analysis of bacterial supernatant, SERS spectra of defined bacterial mutants, and the enzymatic substrate dependence of SERS spectra are used to identify these molecular components. The absence or presence of different degradation/salvage enzymes in the known purine metabolism pathways of these organisms plays a central role in determining the bacterial specificity of these purine-base SERS signatures. These results provide the biochemical basis for the development of SERS as a rapid bacterial diagnostic and illustrate how SERS can be applied more generally for metabolic profiling as a probe of cellular activity. Graphical Abstract Bacterial typing by metabolites released under stress.

  17. Pathway Pathology

    PubMed Central

    Rosner, Andrea; Miyoshi, Keiko; Landesman-Bollag, Esther; Xu, Xin; Seldin, David C.; Moser, Amy R.; MacLeod, Carol L.; Shyamala, G.; Gillgrass, Amy E.; Cardiff, Robert D.

    2002-01-01

    To study phenotype-genotype correlations, ErbB/Ras pathway tumors (transgenic for ErbB2, c-Neu, mutants of c-Neu, polyomavirus middle T antigene (PyV-mT), Ras, and bi-transgenic for ErbB2/Neu with ErbB3 and with progesterone receptor) from four different institutions were histopathologically compared with Wnt pathway tumors [transgenes Wnt1, Wnt10b, dominant-negative glycogen synthase kinase 3-β, β-Catenin, and spontaneous mutants of adenomatous polyposis coli gene (Apc)]. ErbB/Ras pathway tumors tend to form solid nodules consisting of poorly differentiated cells with abundant cytoplasm. ErbB/Ras pathway tumors also have scanty stroma and lack myoepithelial or squamous differentiation. In contrast, Wnt pathway tumors exhibit myoepithelial, acinar, or glandular differentiation, and, frequently, combinations of these. Squamous metaplasia is frequent and may include transdifferentiation to epidermal and pilar structures. Most Wnt pathway tumors form caricatures of elongated, branched ductules, and have well-developed stroma, inflammatory infiltrates, and pushing margins. Tumors transgenic for interacting genes such as protein kinase CK2α (casein kinase IIα), and the fibroblast growth factors (Fgf) Int2/Fgf3 or keratinocyte growth factor (Kgf/Fgf7) also have the Wnt pathway phenotype. Because the tumors from the ErbB/Ras and the Wnt pathway are so distinct and can be readily identified using routine hematoxylin and eosin sections, we suggest that pathway pathology is applicable in both basic and clinical cancer research. PMID:12213737

  18. Structuring evolution: biochemical networks and metabolic diversification in birds.

    PubMed

    Morrison, Erin S; Badyaev, Alexander V

    2016-08-25

    Recurrence and predictability of evolution are thought to reflect the correspondence between genomic and phenotypic dimensions of organisms, and the connectivity in deterministic networks within these dimensions. Direct examination of the correspondence between opportunities for diversification imbedded in such networks and realized diversity is illuminating, but is empirically challenging because both the deterministic networks and phenotypic diversity are modified in the course of evolution. Here we overcome this problem by directly comparing the structure of a "global" carotenoid network - comprising of all known enzymatic reactions among naturally occurring carotenoids - with the patterns of evolutionary diversification in carotenoid-producing metabolic networks utilized by birds. We found that phenotypic diversification in carotenoid networks across 250 species was closely associated with enzymatic connectivity of the underlying biochemical network - compounds with greater connectivity occurred the most frequently across species and were the hotspots of metabolic pathway diversification. In contrast, we found no evidence for diversification along the metabolic pathways, corroborating findings that the utilization of the global carotenoid network was not strongly influenced by history in avian evolution. The finding that the diversification in species-specific carotenoid networks is qualitatively predictable from the connectivity of the underlying enzymatic network points to significant structural determinism in phenotypic evolution.

  19. Identification of core pathways based on attractor and crosstalk in ischemic stroke.

    PubMed

    Diao, Xiufang; Liu, Aijuan

    2018-02-01

    Ischemic stroke is a leading cause of mortality and disability around the world. It is an important task to identify dysregulated pathways which infer molecular and functional insights existing in high-throughput experimental data. Gene expression profile of E-GEOD-16561 was collected. Pathways were obtained from the database of Kyoto Encyclopedia of Genes and Genomes and Retrieval of Interacting Genes was used to download protein-protein interaction sets. Attractor and crosstalk approaches were applied to screen dysregulated pathways. A total of 20 differentially expressed genes were identified in ischemic stroke. Thirty-nine significant differential pathways were identified according to P<0.01 and 28 pathways were identified with RP<0.01 and 17 pathways were identified with impact factor >250. On the basis of the three criteria, 11 significant dysfunctional pathways were identified. Among them, Epstein-Barr virus infection was the most significant differential pathway. In conclusion, with the method based on attractor and crosstalk, significantly dysfunctional pathways were identified. These pathways are expected to provide molecular mechanism of ischemic stroke and represents a novel potential therapeutic target for ischemic stroke treatment.

  20. THE 5-LIPOXYGENASE PATHWAY IS REQUIRED FOR ACUTE LUNG INJURY FOLLOWING HEMORRHAGIC SHOCK

    PubMed Central

    Eun, John C.; Moore, Ernest E.; Mauchley, David C.; Johnson, Chris A.; Meng, Xianzhong; Banerjee, Anirban; Wohlauer, Max V.; Zarini, Simona; Gijón, Miguel A.; Murphy, Robert C.

    2012-01-01

    The cellular and biochemical mechanisms leading to acute lung injury and subsequent multiple organ failure are only partially understood. In order to study the potential role of eicosanoids, particularly leukotrienes, as possible mediators of acute lung injury, we used a murine experimental model of acute lung injury induced by hemorrhagic shock after blood removal via cardiac puncture. Neutrophil sequestration as shown by immunofluorescence, and protein leakage into the alveolar space, were measured as markers of injury. We used liquid chromatography coupled to tandem mass spectrometry to unequivocally identify several eicosanoids in the bronchoalveolar lavage fluid of experimental animals. MK886, a specific inhibitor of the 5-lipoxygenase pathway, as well as transgenic mice deficient in 5-lipoxygenase, were used to determine the role of this enzymatic pathway in this model. Leukotriene B4 and leukotriene C4 were consistently elevated in shock-treated mice compared to sham-treated mice. MK886 attenuated neutrophil infiltration and protein extravasation induced by hemorrhagic shock. 5-lipoxygenase-deficient mice showed reduced neutrophil infiltration and protein extravasation after shock treatment, indicating greatly reduced lung injury. These results support the hypothesis that 5-lipoxygenase, most likely through the generation of leukotrienes, plays an important role in the pathogenesis of acute lung injury induced by hemorrhagic shock in mice. This pathway could represent a new target for pharmacological intervention to reduce lung damage following severe primary injury. PMID:22392149

  1. An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization.

    PubMed

    Halper, Sean M; Cetnar, Daniel P; Salis, Howard M

    2018-01-01

    Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

  2. Identifying niche-mediated regulatory factors of stem cell phenotypic state: a systems biology approach.

    PubMed

    Ravichandran, Srikanth; Del Sol, Antonio

    2017-02-01

    Understanding how the cellular niche controls the stem cell phenotype is often hampered due to the complexity of variegated niche composition, its dynamics, and nonlinear stem cell-niche interactions. Here, we propose a systems biology view that considers stem cell-niche interactions as a many-body problem amenable to simplification by the concept of mean field approximation. This enables approximation of the niche effect on stem cells as a constant field that induces sustained activation/inhibition of specific stem cell signaling pathways in all stem cells within heterogeneous populations exhibiting the same phenotype (niche determinants). This view offers a new basis for the development of single cell-based computational approaches for identifying niche determinants, which has potential applications in regenerative medicine and tissue engineering. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  3. An Integrative Framework for Bayesian Variable Selection with Informative Priors for Identifying Genes and Pathways

    PubMed Central

    Ander, Bradley P.; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R.; Yang, Xiaowei

    2013-01-01

    The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with ‘large p, small n’ problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed. PMID:23844055

  4. Cell Death Pathways in Mutant Rhodopsin Rat Models Identifies Genotype-Specific Targets Controlling Retinal Degeneration.

    PubMed

    Viringipurampeer, Ishaq A; Gregory-Evans, Cheryl Y; Metcalfe, Andrew L; Bashar, Emran; Moritz, Orson L; Gregory-Evans, Kevin

    2018-06-18

    Retinitis pigmentosa (RP) is a group of inherited neurological disorders characterized by rod photoreceptor cell death, followed by secondary cone cell death leading to progressive blindness. Currently, there are no viable treatment options for RP. Due to incomplete knowledge of the molecular signaling pathways associated with RP pathogenesis, designing therapeutic strategies remains a challenge. In particular, preventing secondary cone photoreceptor cell loss is a key goal in designing potential therapies. In this study, we identified the main drivers of rod cell death and secondary cone loss in the transgenic S334ter rhodopsin rat model, tested the efficacy of specific cell death inhibitors on retinal function, and compared the effect of combining drugs to target multiple pathways in the S334ter and P23H rhodopsin rat models. The primary driver of early rod cell death in the S334ter model was a caspase-dependent process, whereas cone cell death occurred though RIP3-dependent necroptosis. In comparison, rod cell death in the P23H model was via necroptotic signaling, whereas cone cell loss occurred through inflammasome activation. Combination therapy of four drugs worked better than the individual drugs in the P23H model but not in the S334ter model. These differences imply that treatment modalities need to be tailored for each genotype. Taken together, our data demonstrate that rationally designed genotype-specific drug combinations will be an important requisite to effectively target primary rod cell loss and more importantly secondary cone survival.

  5. Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects

    PubMed Central

    Abbas, Ghulam; Murtaza, Behzad; Bibi, Irshad; Shahid, Muhammad; Khan, Muhammad Imran; Amjad, Muhammad; Hussain, Munawar; Natasha

    2018-01-01

    Environmental contamination with arsenic (As) is a global environmental, agricultural and health issue due to the highly toxic and carcinogenic nature of As. Exposure of plants to As, even at very low concentration, can cause many morphological, physiological, and biochemical changes. The recent research on As in the soil-plant system indicates that As toxicity to plants varies with its speciation in plants (e.g., arsenite, As(III); arsenate, As(V)), with the type of plant species, and with other soil factors controlling As accumulation in plants. Various plant species have different mechanisms of As(III) or As(V) uptake, toxicity, and detoxification. This review briefly describes the sources and global extent of As contamination and As speciation in soil. We discuss different mechanisms responsible for As(III) and As(V) uptake, toxicity, and detoxification in plants, at physiological, biochemical, and molecular levels. This review highlights the importance of the As-induced generation of reactive oxygen species (ROS), as well as their damaging impacts on plants at biochemical, genetic, and molecular levels. The role of different enzymatic (superoxide dismutase, catalase, glutathione reductase, and ascorbate peroxidase) and non-enzymatic (salicylic acid, proline, phytochelatins, glutathione, nitric oxide, and phosphorous) substances under As(III/V) stress have been delineated via conceptual models showing As translocation and toxicity pathways in plant species. Significantly, this review addresses the current, albeit partially understood, emerging aspects on (i) As-induced physiological, biochemical, and genotoxic mechanisms and responses in plants and (ii) the roles of different molecules in modulation of As-induced toxicities in plants. We also provide insight on some important research gaps that need to be filled to advance our scientific understanding in this area of research on As in soil-plant systems. PMID:29301332

  6. Modular and Stochastic Approaches to Molecular Pathway Models of ATM, TGF beta, and WNT Signaling

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; O'Neill, Peter; Ponomarev, Artem; Carra, Claudio; Whalen, Mary; Pluth, Janice M.

    2009-01-01

    Deterministic pathway models that describe the biochemical interactions of a group of related proteins, their complexes, activation through kinase, etc. are often the basis for many systems biology models. Low dose radiation effects present a unique set of challenges to these models including the importance of stochastic effects due to the nature of radiation tracks and small number of molecules activated, and the search for infrequent events that contribute to cancer risks. We have been studying models of the ATM, TGF -Smad and WNT signaling pathways with the goal of applying pathway models to the investigation of low dose radiation cancer risks. Modeling challenges include introduction of stochastic models of radiation tracks, their relationships to more than one substrate species that perturb pathways, and the identification of a representative set of enzymes that act on the dominant substrates. Because several pathways are activated concurrently by radiation the development of modular pathway approach is of interest.

  7. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression

    PubMed Central

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya

    2017-01-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C. PMID:28170390

  8. Multiscale mutation clustering algorithm identifies pan-cancer mutational clusters associated with pathway-level changes in gene expression.

    PubMed

    Poole, William; Leinonen, Kalle; Shmulevich, Ilya; Knijnenburg, Theo A; Bernard, Brady

    2017-02-01

    Cancer researchers have long recognized that somatic mutations are not uniformly distributed within genes. However, most approaches for identifying cancer mutations focus on either the entire-gene or single amino-acid level. We have bridged these two methodologies with a multiscale mutation clustering algorithm that identifies variable length mutation clusters in cancer genes. We ran our algorithm on 539 genes using the combined mutation data in 23 cancer types from The Cancer Genome Atlas (TCGA) and identified 1295 mutation clusters. The resulting mutation clusters cover a wide range of scales and often overlap with many kinds of protein features including structured domains, phosphorylation sites, and known single nucleotide variants. We statistically associated these multiscale clusters with gene expression and drug response data to illuminate the functional and clinical consequences of mutations in our clusters. Interestingly, we find multiple clusters within individual genes that have differential functional associations: these include PTEN, FUBP1, and CDH1. This methodology has potential implications in identifying protein regions for drug targets, understanding the biological underpinnings of cancer, and personalizing cancer treatments. Toward this end, we have made the mutation clusters and the clustering algorithm available to the public. Clusters and pathway associations can be interactively browsed at m2c.systemsbiology.net. The multiscale mutation clustering algorithm is available at https://github.com/IlyaLab/M2C.

  9. Aspects on the Physiological and Biochemical Foundations of Neurocritical Care

    PubMed Central

    Nordström, Carl-Henrik; Koskinen, Lars-Owe; Olivecrona, Magnus

    2017-01-01

    Neurocritical care (NCC) is a branch of intensive care medicine characterized by specific physiological and biochemical monitoring techniques necessary for identifying cerebral adverse events and for evaluating specific therapies. Information is primarily obtained from physiological variables related to intracranial pressure (ICP) and cerebral blood flow (CBF) and from physiological and biochemical variables related to cerebral energy metabolism. Non-surgical therapies developed for treating increased ICP are based on knowledge regarding transport of water across the intact and injured blood–brain barrier (BBB) and the regulation of CBF. Brain volume is strictly controlled as the BBB permeability to crystalloids is very low restricting net transport of water across the capillary wall. Cerebral pressure autoregulation prevents changes in intracranial blood volume and intracapillary hydrostatic pressure at variations in arterial blood pressure. Information regarding cerebral oxidative metabolism is obtained from measurements of brain tissue oxygen tension (PbtO2) and biochemical data obtained from intracerebral microdialysis. As interstitial lactate/pyruvate (LP) ratio instantaneously reflects shifts in intracellular cytoplasmatic redox state, it is an important indicator of compromised cerebral oxidative metabolism. The combined information obtained from PbtO2, LP ratio, and the pattern of biochemical variables reveals whether impaired oxidative metabolism is due to insufficient perfusion (ischemia) or mitochondrial dysfunction. Intracerebral microdialysis and PbtO2 give information from a very small volume of tissue. Accordingly, clinical interpretation of the data must be based on information of the probe location in relation to focal brain damage. Attempts to evaluate global cerebral energy state from microdialysis of intraventricular fluid and from the LP ratio of the draining venous blood have recently been presented. To be of clinical relevance, the

  10. PROFILING GENE EXPRESSION IN HUMAN H295R ADRENOCORTICAL CARCINOMA CELLS AND RAT TESTES TO IDENTIFY PATHWAYS OF TOXICITY FOR CONAZOLE FUNGICIDES

    EPA Science Inventory

    Profiling Gene Expression in Human H295R Adrenocortical Carcinoma Cells and Rat Testes to Identify Pathways of Toxicity for Conazole Fungicides
    Ren1, H., Schmid1, J., Retief2, J., Turpaz2, Y.,Zhang3, X.,Jones3, P., Newsted3, J.,Giesy3, J., Wolf1, D.,Wood1, C., Bao1, W., Dix1, ...

  11. Profiling the changes in signaling pathways in ascorbic acid/β-glycerophosphate-induced osteoblastic differentiation.

    PubMed

    Chaves Neto, Antonio Hernandes; Queiroz, Karla Cristiana; Milani, Renato; Paredes-Gamero, Edgar Julian; Justo, Giselle Zenker; Peppelenbosch, Maikel P; Ferreira, Carmen Veríssima

    2011-01-01

    Despite numerous reports on the ability of ascorbic acid and β-glycerophosphate (AA/β-GP) to induce osteoblast differentiation, little is known about the molecular mechanisms involved in this phenomenon. In this work, we used a peptide array containing specific consensus sequences (potential substrates) for protein kinases and traditional biochemical techniques to examine the signaling pathways modulated during AA/β-GP-induced osteoblast differentiation. The kinomic profile obtained after 7 days of treatment with AA/β-GP identified 18 kinase substrates with significantly enhanced or reduced phosphorylation. Peptide substrates for Akt, PI3K, PKC, BCR, ABL, PRKG1, PAK1, PAK2, ERK1, ERBB2, and SYK showed a considerable reduction in phosphorylation, whereas enhanced phosphorylation was observed in substrates for CHKB, CHKA, PKA, FAK, ATM, PKA, and VEGFR-1. These findings confirm the potential usefulness of peptide microarrays for identifying kinases known to be involved in bone development in vivo and in vitro and show that this technique can be used to investigate kinases whose function in osteoblastic differentiation is poorly understood.

  12. Physiological and biochemical characteristics of adrenergic receptors and pathways in brown adipocytes

    NASA Technical Reports Server (NTRS)

    Horwitz, B. A.

    1975-01-01

    Mechanisms involved in the thermogenic response of brown adipose tissue (BAT) to sympathetic nervous stimulation (e.g., by cold exposure) and to norepinephrine (NE) release are investigated. Three effects appear to play a role in the increased oxygen consumption (and heat production) of the adipocytes: increased membrane permeability, activation of the beta-adrenergic pathway, and enhancement of Na(+)/K(+) membrane pump activity. Increased passive influx of Na(+) and efflux of K(+) due to greater permeability raise the energy demands of the Na/K pump; the pump is also stimulated by increased cyclic AMP synthesis resulting from activation by NE of membrane-bound adenyl cyclase. Studies with inhibitors such as propanolol, phentolamine, and ouabain support this hypothesis.

  13. Molecular pathways: targeting p21-activated kinase 1 signaling in cancer--opportunities, challenges, and limitations.

    PubMed

    Eswaran, Jeyanthy; Li, Da-Qiang; Shah, Anil; Kumar, Rakesh

    2012-07-15

    The evolution of cancer cells involves deregulation of highly regulated fundamental pathways that are central to normal cellular architecture and functions. p21-activated kinase 1 (PAK1) was initially identified as a downstream effector of the GTPases Rac and Cdc42. Subsequent studies uncovered a variety of new functions for this kinase in growth factor and steroid receptor signaling, cytoskeleton remodeling, cell survival, oncogenic transformation, and gene transcription, largely through systematic discovery of its direct, physiologically relevant substrates. PAK1 is widely upregulated in several human cancers, such as hormone-dependent cancer, and is intimately linked to tumor progression and therapeutic resistance. These exciting developments combined with the kinase-independent role of PAK1-centered phenotypic signaling in cancer cells elevated PAK1 as an attractive drug target. Structural and biochemical studies revealed the precise mechanism of PAK1 activation, offering the possibility to develop PAK1-targeted cancer therapeutic approaches. In addition, emerging reports suggest the potential of PAK1 and its specific phosphorylated substrates as cancer prognostic markers. Here, we summarize recent findings about the PAK1 molecular pathways in human cancer and discuss the current status of PAK1-targeted anticancer therapies.

  14. Timescale analysis of rule-based biochemical reaction networks

    PubMed Central

    Klinke, David J.; Finley, Stacey D.

    2012-01-01

    The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed upon reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of Interleukin-12 (IL-12) signaling in näive CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based upon the available data. The analysis correctly predicted that reactions associated with JAK2 and TYK2 binding to their corresponding receptor exist at a pseudo-equilibrium. In contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. PMID:21954150

  15. Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors.

    PubMed

    Koster, Roelof; Mitra, Nandita; D'Andrea, Kurt; Vardhanabhuti, Saran; Chung, Charles C; Wang, Zhaoming; Loren Erickson, R; Vaughn, David J; Litchfield, Kevin; Rahman, Nazneen; Greene, Mark H; McGlynn, Katherine A; Turnbull, Clare; Chanock, Stephen J; Nathanson, Katherine L; Kanetsky, Peter A

    2014-11-15

    Genome-wide association (GWA) studies of testicular germ cell tumor (TGCT) have identified 18 susceptibility loci, some containing genes encoding proteins important in male germ cell development. Deletions of one of these genes, DMRT1, lead to male-to-female sex reversal and are associated with development of gonadoblastoma. To further explore genetic association with TGCT, we undertook a pathway-based analysis of SNP marker associations in the Penn GWAs (349 TGCT cases and 919 controls). We analyzed a custom-built sex determination gene set consisting of 32 genes using three different methods of pathway-based analysis. The sex determination gene set ranked highly compared with canonical gene sets, and it was associated with TGCT (FDRG = 2.28 × 10(-5), FDRM = 0.014 and FDRI = 0.008 for Gene Set Analysis-SNP (GSA-SNP), Meta-Analysis Gene Set Enrichment of Variant Associations (MAGENTA) and Improved Gene Set Enrichment Analysis for Genome-wide Association Study (i-GSEA4GWAS) analysis, respectively). The association remained after removal of DMRT1 from the gene set (FDRG = 0.0002, FDRM = 0.055 and FDRI = 0.009). Using data from the NCI GWA scan (582 TGCT cases and 1056 controls) and UK scan (986 TGCT cases and 4946 controls), we replicated these findings (NCI: FDRG = 0.006, FDRM = 0.014, FDRI = 0.033, and UK: FDRG = 1.04 × 10(-6), FDRM = 0.016, FDRI = 0.025). After removal of DMRT1 from the gene set, the sex determination gene set remains associated with TGCT in the NCI (FDRG = 0.039, FDRM = 0.050 and FDRI = 0.055) and UK scans (FDRG = 3.00 × 10(-5), FDRM = 0.056 and FDRI = 0.044). With the exception of DMRT1, genes in the sex determination gene set have not previously been identified as TGCT susceptibility loci in these GWA scans, demonstrating the complementary nature of a pathway-based approach for genome-wide analysis of TGCT. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. BioCluster: tool for identification and clustering of Enterobacteriaceae based on biochemical data.

    PubMed

    Abdullah, Ahmed; Sabbir Alam, S M; Sultana, Munawar; Hossain, M Anwar

    2015-06-01

    Presumptive identification of different Enterobacteriaceae species is routinely achieved based on biochemical properties. Traditional practice includes manual comparison of each biochemical property of the unknown sample with known reference samples and inference of its identity based on the maximum similarity pattern with the known samples. This process is labor-intensive, time-consuming, error-prone, and subjective. Therefore, automation of sorting and similarity in calculation would be advantageous. Here we present a MATLAB-based graphical user interface (GUI) tool named BioCluster. This tool was designed for automated clustering and identification of Enterobacteriaceae based on biochemical test results. In this tool, we used two types of algorithms, i.e., traditional hierarchical clustering (HC) and the Improved Hierarchical Clustering (IHC), a modified algorithm that was developed specifically for the clustering and identification of Enterobacteriaceae species. IHC takes into account the variability in result of 1-47 biochemical tests within this Enterobacteriaceae family. This tool also provides different options to optimize the clustering in a user-friendly way. Using computer-generated synthetic data and some real data, we have demonstrated that BioCluster has high accuracy in clustering and identifying enterobacterial species based on biochemical test data. This tool can be freely downloaded at http://microbialgen.du.ac.bd/biocluster/. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  17. LncSubpathway: a novel approach for identifying dysfunctional subpathways associated with risk lncRNAs by integrating lncRNA and mRNA expression profiles and pathway topologies.

    PubMed

    Xu, Yanjun; Li, Feng; Wu, Tan; Xu, Yingqi; Yang, Haixiu; Dong, Qun; Zheng, Meiyu; Shang, Desi; Zhang, Chunlong; Zhang, Yunpeng; Li, Xia

    2017-02-28

    Long non-coding RNAs (lncRNAs) play important roles in various biological processes, including the development of many diseases. Pathway analysis is a valuable aid for understanding the cellular functions of these transcripts. We have developed and characterized LncSubpathway, a novel method that integrates lncRNA and protein coding gene (PCG) expression with interactome data to identify disease risk subpathways that functionally associated with risk lncRNAs. LncSubpathway identifies the most relevance regions which are related with risk lncRNA set and implicated with study conditions through simultaneously considering the dysregulation extent of lncRNAs, PCGs and their correlations. Simulation studies demonstrated that the sensitivity and false positive rates of LncSubpathway were within acceptable ranges, and that LncSubpathway could accurately identify dysregulated regions that related with disease risk lncRNAs within pathways. When LncSubpathway was applied to colorectal carcinoma and breast cancer subtype datasets, it identified cancer type- and breast cancer subtype-related meaningful subpathways. Further, analysis of its robustness and reproducibility indicated that LncSubpathway was a reliable means of identifying subpathways that functionally associated with lncRNAs. LncSubpathway is freely available at http://www.bio-bigdata.com/lncSubpathway/.

  18. LncSubpathway: a novel approach for identifying dysfunctional subpathways associated with risk lncRNAs by integrating lncRNA and mRNA expression profiles and pathway topologies

    PubMed Central

    Wu, Tan; Xu, Yingqi; Yang, Haixiu; Dong, Qun; Zheng, Meiyu; Shang, Desi; Zhang, Chunlong; Zhang, Yunpeng; Li, Xia

    2017-01-01

    Long non-coding RNAs (lncRNAs) play important roles in various biological processes, including the development of many diseases. Pathway analysis is a valuable aid for understanding the cellular functions of these transcripts. We have developed and characterized LncSubpathway, a novel method that integrates lncRNA and protein coding gene (PCG) expression with interactome data to identify disease risk subpathways that functionally associated with risk lncRNAs. LncSubpathway identifies the most relevance regions which are related with risk lncRNA set and implicated with study conditions through simultaneously considering the dysregulation extent of lncRNAs, PCGs and their correlations. Simulation studies demonstrated that the sensitivity and false positive rates of LncSubpathway were within acceptable ranges, and that LncSubpathway could accurately identify dysregulated regions that related with disease risk lncRNAs within pathways. When LncSubpathway was applied to colorectal carcinoma and breast cancer subtype datasets, it identified cancer type- and breast cancer subtype-related meaningful subpathways. Further, analysis of its robustness and reproducibility indicated that LncSubpathway was a reliable means of identifying subpathways that functionally associated with lncRNAs. LncSubpathway is freely available at http://www.bio-bigdata.com/lncSubpathway/. PMID:28152521

  19. Mammalian O-Mannosylation Pathway: Glycan Structures, Enzymes, and Protein Substrates

    PubMed Central

    2015-01-01

    The mammalian O-mannosylation pathway for protein post-translational modification is intricately involved in modulating cell–matrix interactions in the musculature and nervous system. Defects in enzymes of this biosynthetic pathway are causative for multiple forms of congenital muscular dystophy. The application of advanced genetic and biochemical technologies has resulted in remarkable progress in this field over the past few years, culminating with the publication of three landmark papers in 2013 alone. In this review, we will highlight recent progress focusing on the dramatic expansion of the set of genes known to be involved in O-mannosylation and disease processes, the concurrent acceleration of the rate of O-mannosylation pathway protein functional assignments, the tremendous increase in the number of proteins now known to be modified by O-mannosylation, and the recent progress in protein O-mannose glycan quantification and site assignment. Also, we attempt to highlight key outstanding questions raised by this abundance of new information. PMID:24786756

  20. The progesterone-induced enhancement of object recognition memory consolidation involves activation of the extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) pathways in the dorsal hippocampus

    PubMed Central

    Orr, Patrick T.; Rubin, Amanda J.; Fan, Lu; Kent, Brianne A.; Frick, Karyn M.

    2012-01-01

    Although much recent work has elucidated the biochemical mechanisms underlying the modulation of memory by 17β-estradiol, little is known about the signaling events through which progesterone (P) regulates memory. We recently demonstrated that immediate post-training infusion of P into the dorsal hippocampus enhances object recognition memory consolidation in young ovariectomized female mice (Orr et al., 2009). The goal of the present study was to identify the biochemical alterations that might underlie this mnemonic enhancement. We hypothesized that the P-induced enhancement of object recognition would be dependent on activation of the ERK and mTOR pathways. In young ovariectomized mice, we found that bilateral dorsal hippocampal infusion of P significantly increased levels of phospho-p42 ERK and the mTOR substrate S6K in the dorsal hippocampus 5 minutes after infusion. Phospho-p42 ERK levels were downregulated 15 minutes after infusion and returned to baseline 30 minutes after infusion, suggesting a biphasic effect of P on ERK activation. Dorsal hippocampal ERK and mTOR activation were necessary for P to facilitate memory consolidation, as suggested by the fact that inhibitors of both pathways infused into the dorsal hippocampus immediately after training blocked the P-induced enhancement of object recognition. Collectively, these data provide the first demonstration that the ability of P to enhance memory consolidation depends on the rapid activation of cell signaling and protein synthesis pathways in the dorsal hippocampus. PMID:22265866

  1. An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: Structural, biochemical and gene expression analysis

    PubMed Central

    Chim, Nicholas; Riley, Robert; The, Juliana; Im, Soyeon; Segelke, Brent; Lekin, Tim; Yu, Minmin; Hung, Li Wei; Terwilliger, Tom; Whitelegge, Julian P.; Goulding, Celia W.

    2010-01-01

    Disulfide bond forming (Dsb) proteins ensure correct folding and disulfide bond formation of secreted proteins. Previously, we showed that Mycobacterium tuberculosis DsbE (Mtb DsbE, Rv2878c) aids in vitro oxidative folding of proteins. Here we present structural, biochemical and gene expression analyses of another putative Mtb secreted disulfide bond isomerase protein homologous to Mtb DsbE, Mtb DsbF (Rv1677). The X-ray crystal structure of Mtb DsbF reveals a conserved thioredoxin fold although the active-site cysteines may be modeled in both oxidized and reduced forms, in contrast to the solely reduced form in Mtb DsbE. Furthermore, the shorter loop region in Mtb DsbF results in a more solvent-exposed active site. Biochemical analyses show that, similar to Mtb DsbE, Mtb DsbF can oxidatively refold reduced, unfolded hirudin and has a comparable pKa for the active-site solvent-exposed cysteine. However, contrary to Mtb DsbE, the Mtb DsbF redox potential is more oxidizing and its reduced state is more stable. From computational genomics analysis of the M. tuberculosis genome, we identified a potential Mtb DsbF interaction partner, Rv1676, a predicted peroxiredoxin. Complex formation is supported by protein co-expression studies and inferred by gene expression profiles, whereby Mtb DsbF and Rv1676 are upregulated under similar environments. Additionally, comparison of Mtb DsbF and Mtb DsbE gene expression data indicate anticorrelated gene expression patterns, suggesting that these two proteins and their functionally linked partners constitute analogous pathways that may function under different conditions. PMID:20060836

  2. Kinetic insulation as an effective mechanism for achieving pathway specificity in intracellular signaling networks

    PubMed Central

    Behar, Marcelo; Dohlman, Henrik G.; Elston, Timothy C.

    2007-01-01

    Intracellular signaling pathways that share common components often elicit distinct physiological responses. In most cases, the biochemical mechanisms responsible for this signal specificity remain poorly understood. Protein scaffolds and cross-inhibition have been proposed as strategies to prevent unwanted cross-talk. Here, we report a mechanism for signal specificity termed “kinetic insulation.” In this approach signals are selectively transmitted through the appropriate pathway based on their temporal profile. In particular, we demonstrate how pathway architectures downstream of a common component can be designed to efficiently separate transient signals from signals that increase slowly over time. Furthermore, we demonstrate that upstream signaling proteins can generate the appropriate input to the common pathway component regardless of the temporal profile of the external stimulus. Our results suggest that multilevel signaling cascades may have evolved to modulate the temporal profile of pathway activity so that stimulus information can be efficiently encoded and transmitted while ensuring signal specificity. PMID:17913886

  3. Significant Deregulated Pathways in Diabetes Type II Complications Identified through Expression Based Network Biology

    NASA Astrophysics Data System (ADS)

    Ukil, Sanchaita; Sinha, Meenakshee; Varshney, Lavneesh; Agrawal, Shipra

    Type 2 Diabetes is a complex multifactorial disease, which alters several signaling cascades giving rise to serious complications. It is one of the major risk factors for cardiovascular diseases. The present research work describes an integrated functional network biology approach to identify pathways that get transcriptionally altered and lead to complex complications thereby amplifying the phenotypic effect of the impaired disease state. We have identified two sub-network modules, which could be activated under abnormal circumstances in diabetes. Present work describes key proteins such as P85A and SRC serving as important nodes to mediate alternate signaling routes during diseased condition. P85A has been shown to be an important link between stress responsive MAPK and CVD markers involved in fibrosis. MAPK8 has been shown to interact with P85A and further activate CTGF through VEGF signaling. We have traced a novel and unique route correlating inflammation and fibrosis by considering P85A as a key mediator of signals. The next sub-network module shows SRC as a junction for various signaling processes, which results in interaction between NF-kB and beta catenin to cause cell death. The powerful interaction between these important genes in response to transcriptionally altered lipid metabolism and impaired inflammatory response via SRC causes apoptosis of cells. The crosstalk between inflammation, lipid homeostasis and stress, and their serious effects downstream have been explained in the present analyses.

  4. Structural and Biochemical Characterization of a Bifunctional Ketoisomerase/N-acetyltransferase from Shewanella denitrificans¶

    PubMed Central

    Chantigian, Daniel P.; Thoden, James B.; Holden, Hazel M.

    2014-01-01

    Unusual N-acetylated sugars have been observed on the O-antigens of some Gram-negative bacteria and on the S-layers of both Gram-positive and Gram-negative bacteria. One such sugar is 3-acetamido-3,6-dideoxy-α-d-galactose or Fuc3NAc. The pathway for its production requires five enzymes with the first step involving the attachment of dTMP to glucose-1-phosphate. Here we report a structural and biochemical characterization of a bifunctional enzyme from Shewanella denitificans thought to be involved in the biosynthesis of dTDP-Fuc3NAc. On the basis of a bioinformatics analysis, the enzyme, hereafter referred to as FdtD, has been postulated to catalyze the third and fifth steps in the pathway, namely a 3,4-keto isomerization and an N-acetyltransferase reaction. For the X-ray analysis reported here, the enzyme was crystallized in the presence of dTDP and CoA. The crystal structure shows that FdtD adopts a hexameric quaternary structure with 322 symmetry. Each subunit of the hexamer folds into two distinct domains connected by a flexible loop. The N-terminal domain adopts a left-handed β-helix motif and is responsible for the N-acetylation reaction. The C-terminal domain folds into an antiparallel flattened β-barrel that harbors the active site responsible for the isomerization reaction. Biochemical assays verify the two proposed catalytic activities of the enzyme and reveal that the 3,4-keto isomerization event leads to inversion of configuration about the hexose C-4' carbon. PMID:24128043

  5. Identifying pathways and processes affecting nitrate and orthophosphate inputs to streams in agricultural watersheds

    USGS Publications Warehouse

    Tesoriero, A.J.; Duff, J.H.; Wolock, D.M.; Spahr, N.E.; Almendinger, J.E.

    2009-01-01

    Understanding nutrient pathways to streams will improve nutrient management strategies and estimates of the time lag between when changes in land use practices occur and when water quality effects that result from these changes are observed. Nitrate and orthophosphate (OP) concentrations in several environmental compartments were examined in watersheds having a range of base flow index (BFI) values across the continental United States to determine the dominant pathways for water and nutrient inputs to streams. Estimates of the proportion of stream nitrate that was derived from groundwater increased as BFI increased. Nitrate concentration gradients between groundwater and surface water further supported the groundwater source of nitrate in these high BFI streams. However, nitrate concentrations in stream-bed pore water in all settings were typically lower than stream or upland groundwater concentrations, suggesting that nitrate discharge to streams was not uniform through the bed. Rather, preferential pathways (e.g., springs, seeps) may allow high nitrate groundwater to bypass sites of high biogeochemical transformation. Rapid pathway compartments (e.g., overland flow, tile drains) had OP concentrations that were typically higher than in streams and were important OP conveyers in most of these watersheds. In contrast to nitrate, the proportion of stream OP that is derived from ground water did not systematically increase as BFI increased. While typically not the dominant source of OP, groundwater discharge was an important pathway of OP transport to streams when BFI values were very high and when geochemical conditions favored OP mobility in groundwater. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  6. A biochemical basis for induction of retina regeneration by antioxidants.

    PubMed

    Echeverri-Ruiz, Nancy; Haynes, Tracy; Landers, Joseph; Woods, Justin; Gemma, Michael J; Hughes, Michael; Del Rio-Tsonis, Katia

    2018-01-15

    The use of antioxidants in tissue regeneration has been studied, but their mechanism of action is not well understood. Here, we analyze the role of the antioxidant N-acetylcysteine (NAC) in retina regeneration. Embryonic chicks are able to regenerate their retina after its complete removal from retinal stem/progenitor cells present in the ciliary margin (CM) of the eye only if a source of exogenous factors, such as FGF2, is present. This study shows that NAC modifies the redox status of the CM, initiates self-renewal of the stem/progenitor cells, and induces regeneration in the absence of FGF2. NAC works as an antioxidant by scavenging free radicals either independently or through the synthesis of glutathione (GSH), and/or by reducing oxidized proteins through a thiol disulfide exchange activity. We dissected the mechanism used by NAC to induce regeneration through the use of inhibitors of GSH synthesis and the use of other antioxidants with different biochemical structures and modes of action, and found that NAC induces regeneration through its thiol disulfide exchange activity. Thus, our results provide, for the first time, a biochemical basis for induction of retina regeneration. Furthermore, NAC induction was independent of FGF receptor signaling, but dependent on the MAPK (pErk1/2) pathway. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Service-based analysis of biological pathways

    PubMed Central

    Zheng, George; Bouguettaya, Athman

    2009-01-01

    Background Computer-based pathway discovery is concerned with two important objectives: pathway identification and analysis. Conventional mining and modeling approaches aimed at pathway discovery are often effective at achieving either objective, but not both. Such limitations can be effectively tackled leveraging a Web service-based modeling and mining approach. Results Inspired by molecular recognitions and drug discovery processes, we developed a Web service mining tool, named PathExplorer, to discover potentially interesting biological pathways linking service models of biological processes. The tool uses an innovative approach to identify useful pathways based on graph-based hints and service-based simulation verifying user's hypotheses. Conclusion Web service modeling of biological processes allows the easy access and invocation of these processes on the Web. Web service mining techniques described in this paper enable the discovery of biological pathways linking these process service models. Algorithms presented in this paper for automatically highlighting interesting subgraph within an identified pathway network enable the user to formulate hypothesis, which can be tested out using our simulation algorithm that are also described in this paper. PMID:19796403

  8. Neuro magnetic resonance spectroscopy using wavelet decomposition and statistical testing identifies biochemical changes in people with spinal cord injury and pain.

    PubMed

    Stanwell, Peter; Siddall, Philip; Keshava, Nirmal; Cocuzzo, Daniel; Ramadan, Saadallah; Lin, Alexander; Herbert, David; Craig, Ashley; Tran, Yvonne; Middleton, James; Gautam, Shiva; Cousins, Michael; Mountford, Carolyn

    2010-11-01

    Spinal cord injury (SCI) can be accompanied by chronic pain, the mechanisms for which are poorly understood. Here we report that magnetic resonance spectroscopy measurements from the brain, collected at 3T, and processed using wavelet-based feature extraction and classification algorithms, can identify biochemical changes that distinguish control subjects from subjects with SCI as well as subdividing the SCI group into those with and without chronic pain. The results from control subjects (n=10) were compared to those with SCI (n=10). The SCI cohort was made up of subjects with chronic neuropathic pain (n=5) and those without chronic pain (n=5). The wavelet-based decomposition of frequency domain MRS signals employs statistical significance testing to identify features best suited to discriminate different classes. Moreover, the features benefit from careful attention to the post-processing of the spectroscopy data prior to the comparison of the three cohorts. The spectroscopy data, from the thalamus, best distinguished control subjects without SCI from those with SCI with a sensitivity and specificity of 0.9 (Percentage of Correct Classification). The spectroscopy data obtained from the prefrontal cortex and anterior cingulate cortex both distinguished between SCI subjects with chronic neuropathic pain and those without pain with a sensitivity and specificity of 1.0. In this study, where two underlying mechanisms co-exist (i.e. SCI and pain), the thalamic changes appear to be linked more strongly to SCI, while the anterior cingulate cortex and prefrontal cortex changes appear to be specifically linked to the presence of pain. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Sorbitol dehydrogenase of Aspergillus niger, SdhA, is part of the oxido-reductive D-galactose pathway and essential for D-sorbitol catabolism.

    PubMed

    Koivistoinen, Outi M; Richard, Peter; Penttilä, Merja; Ruohonen, Laura; Mojzita, Dominik

    2012-02-17

    In filamentous fungi D-galactose can be catabolised through the oxido-reductive and/or the Leloir pathway. In the oxido-reductive pathway D-galactose is converted to d-fructose in a series of steps where the last step is the oxidation of d-sorbitol by an NAD-dependent dehydrogenase. We identified a sorbitol dehydrogenase gene, sdhA (JGI53356), in Aspergillus niger encoding a medium chain dehydrogenase which is involved in D-galactose and D-sorbitol catabolism. The gene is upregulated in the presence of D-galactose, galactitol and D-sorbitol. An sdhA deletion strain showed reduced growth on galactitol and growth on D-sorbitol was completely abolished. The purified enzyme converted D-sorbitol to D-fructose with K(m) of 50±5 mM and v(max) of 80±10 U/mg. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. An Integrative data mining approach to identifying Adverse Outcome Pathway (AOP) Signatures

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework is a tool for making biological connections and summarizing key information across different levels of biological organization to connect biological perturbations at the molecular level to adverse outcomes for an individual or populatio...

  11. A biochemical framework for eIF4E-dependent mRNA export and nuclear recycling of the export machinery.

    PubMed

    Volpon, Laurent; Culjkovic-Kraljacic, Biljana; Sohn, Hye Seon; Blanchet-Cohen, Alexis; Osborne, Michael J; Borden, Katherine L B

    2017-06-01

    The eukaryotic translation initiation factor eIF4E acts in the nuclear export and translation of a subset of mRNAs. Both of these functions contribute to its oncogenic potential. While the biochemical mechanisms that underlie translation are relatively well understood, the molecular basis for eIF4E's role in mRNA export remains largely unexplored. To date, over 3000 transcripts, many encoding oncoproteins, were identified as potential nuclear eIF4E export targets. These target RNAs typically contain a ∼50-nucleotide eIF4E sensitivity element (4ESE) in the 3' UTR and a 7-methylguanosine cap on the 5' end. While eIF4E associates with the cap, an unknown factor recognizes the 4ESE element. We previously identified cofactors that functionally interacted with eIF4E in mammalian cell nuclei including the leucine-rich pentatricopeptide repeat protein LRPPRC and the export receptor CRM1/XPO1. LRPPRC simultaneously interacts with both eIF4E bound to the 5' mRNA cap and the 4ESE element in the 3' UTR. In this way, LRPPRC serves as a specificity factor to recruit 4ESE-containing RNAs within the nucleus. Further, we show that CRM1 directly binds LRPPRC likely acting as the export receptor for the LRPPRC-eIF4E-4ESE RNA complex. We also found that Importin 8, the nuclear importer for cap-free eIF4E, imports RNA-free LRPPRC, potentially providing both coordinated nuclear recycling of the export machinery and an important surveillance mechanism to prevent futile export cycles. Our studies provide the first biochemical framework for the eIF4E-dependent mRNA export pathway. © 2017 Volpon et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  12. Genetic Screening Identifies Cyanogenesis-Deficient Mutants of Lotus japonicus and Reveals Enzymatic Specificity in Hydroxynitrile Glucoside Metabolism[W][OA

    PubMed Central

    Takos, Adam; Lai, Daniela; Mikkelsen, Lisbeth; Abou Hachem, Maher; Shelton, Dale; Motawia, Mohammed Saddik; Olsen, Carl Erik; Wang, Trevor L.; Martin, Cathie; Rook, Fred

    2010-01-01

    Cyanogenesis, the release of hydrogen cyanide from damaged plant tissues, involves the enzymatic degradation of amino acid–derived cyanogenic glucosides (α-hydroxynitrile glucosides) by specific β-glucosidases. Release of cyanide functions as a defense mechanism against generalist herbivores. We developed a high-throughput screening method and used it to identify cyanogenesis deficient (cyd) mutants in the model legume Lotus japonicus. Mutants in both biosynthesis and catabolism of cyanogenic glucosides were isolated and classified following metabolic profiling of cyanogenic glucoside content. L. japonicus produces two cyanogenic glucosides: linamarin (derived from Val) and lotaustralin (derived from Ile). Their biosynthesis may involve the same set of enzymes for both amino acid precursors. However, in one class of mutants, accumulation of lotaustralin and linamarin was uncoupled. Catabolic mutants could be placed in two complementation groups, one of which, cyd2, encoded the β-glucosidase BGD2. Despite the identification of nine independent cyd2 alleles, no mutants involving the gene encoding a closely related β-glucosidase, BGD4, were identified. This indicated that BGD4 plays no role in cyanogenesis in L. japonicus in vivo. Biochemical analysis confirmed that BGD4 cannot hydrolyze linamarin or lotaustralin and in L. japonicus is specific for breakdown of related hydroxynitrile glucosides, such as rhodiocyanoside A. By contrast, BGD2 can hydrolyze both cyanogenic glucosides and rhodiocyanosides. Our genetic analysis demonstrated specificity in the catabolic pathways for hydroxynitrile glucosides and implied specificity in their biosynthetic pathways as well. In addition, it has provided important tools for elucidating and potentially modifying cyanogenesis pathways in plants. PMID:20453117

  13. Biochemical quantitation of the eIF5A hypusination in Arabidopsis thaliana uncovers ABA-dependent regulation

    PubMed Central

    Belda-Palazón, Borja; Nohales, María A.; Rambla, José L.; Aceña, José L.; Delgado, Oscar; Fustero, Santos; Martínez, M. Carmen; Granell, Antonio; Carbonell, Juan; Ferrando, Alejandro

    2014-01-01

    The eukaryotic translation elongation factor eIF5A is the only protein known to contain the unusual amino acid hypusine which is essential for its biological activity. This post-translational modification is achieved by the sequential action of the enzymes deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). The crucial molecular function of eIF5A during translation has been recently elucidated in yeast and it is expected to be fully conserved in every eukaryotic cell, however the functional description of this pathway in plants is still sparse. The genetic approaches with transgenic plants for either eIF5A overexpression or antisense have revealed some activities related to the control of cell death processes but the molecular details remain to be characterized. One important aspect of fully understanding this pathway is the biochemical description of the hypusine modification system. Here we have used recombinant eIF5A proteins either modified by hypusination or non-modified to establish a bi-dimensional electrophoresis (2D-E) profile for the three eIF5A protein isoforms and their hypusinated or unmodified proteoforms present in Arabidopsis thaliana. The combined use of the recombinant 2D-E profile together with 2D-E/western blot analysis from whole plant extracts has provided a quantitative approach to measure the hypusination status of eIF5A. We have used this information to demonstrate that treatment with the hormone abscisic acid produces an alteration of the hypusine modification system in Arabidopsis thaliana. Overall this study presents the first biochemical description of the post-translational modification of eIF5A by hypusination which will be functionally relevant for future studies related to the characterization of this pathway in Arabidopsis thaliana. PMID:24904603

  14. Plant MetGenMAP: an integrative analysis system for plant systems biology

    USDA-ARS?s Scientific Manuscript database

    We have developed a web-based system, Plant MetGenMAP, which can identify significantly altered biochemical pathways and highly affected biological processes, predict functional roles of pathway genes, and potential pathway-related regulatory motifs from transcript and metabolite profile datasets. P...

  15. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John J. Kilbane II

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will bemore » to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing

  16. ATLAS of Biochemistry: A Repository of All Possible Biochemical Reactions for Synthetic Biology and Metabolic Engineering Studies.

    PubMed

    Hadadi, Noushin; Hafner, Jasmin; Shajkofci, Adrian; Zisaki, Aikaterini; Hatzimanikatis, Vassily

    2016-10-21

    Because the complexity of metabolism cannot be intuitively understood or analyzed, computational methods are indispensable for studying biochemistry and deepening our understanding of cellular metabolism to promote new discoveries. We used the computational framework BNICE.ch along with cheminformatic tools to assemble the whole theoretical reactome from the known metabolome through expansion of the known biochemistry presented in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We constructed the ATLAS of Biochemistry, a database of all theoretical biochemical reactions based on known biochemical principles and compounds. ATLAS includes more than 130 000 hypothetical enzymatic reactions that connect two or more KEGG metabolites through novel enzymatic reactions that have never been reported to occur in living organisms. Moreover, ATLAS reactions integrate 42% of KEGG metabolites that are not currently present in any KEGG reaction into one or more novel enzymatic reactions. The generated repository of information is organized in a Web-based database ( http://lcsb-databases.epfl.ch/atlas/ ) that allows the user to search for all possible routes from any substrate compound to any product. The resulting pathways involve known and novel enzymatic steps that may indicate unidentified enzymatic activities and provide potential targets for protein engineering. Our approach of introducing novel biochemistry into pathway design and associated databases will be important for synthetic biology and metabolic engineering.

  17. A strategy for evaluating pathway analysis methods.

    PubMed

    Yu, Chenggang; Woo, Hyung Jun; Yu, Xueping; Oyama, Tatsuya; Wallqvist, Anders; Reifman, Jaques

    2017-10-13

    Researchers have previously developed a multitude of methods designed to identify biological pathways associated with specific clinical or experimental conditions of interest, with the aim of facilitating biological interpretation of high-throughput data. Before practically applying such pathway analysis (PA) methods, we must first evaluate their performance and reliability, using datasets where the pathways perturbed by the conditions of interest have been well characterized in advance. However, such 'ground truths' (or gold standards) are often unavailable. Furthermore, previous evaluation strategies that have focused on defining 'true answers' are unable to systematically and objectively assess PA methods under a wide range of conditions. In this work, we propose a novel strategy for evaluating PA methods independently of any gold standard, either established or assumed. The strategy involves the use of two mutually complementary metrics, recall and discrimination. Recall measures the consistency of the perturbed pathways identified by applying a particular analysis method to an original large dataset and those identified by the same method to a sub-dataset of the original dataset. In contrast, discrimination measures specificity-the degree to which the perturbed pathways identified by a particular method to a dataset from one experiment differ from those identifying by the same method to a dataset from a different experiment. We used these metrics and 24 datasets to evaluate six widely used PA methods. The results highlighted the common challenge in reliably identifying significant pathways from small datasets. Importantly, we confirmed the effectiveness of our proposed dual-metric strategy by showing that previous comparative studies corroborate the performance evaluations of the six methods obtained by our strategy. Unlike any previously proposed strategy for evaluating the performance of PA methods, our dual-metric strategy does not rely on any ground truth

  18. [Role of angiotensin II receptor type 2 in predicting biochemical recurrence in the treatment of prostate cancer].

    PubMed

    Chibichyan, M B; Kogan, M I; Chernogubova, E A; Pavlenko, I A; Matishov, D G

    2016-12-01

    To identify markers for predicting aggressive forms of prostate cancer. The study retrospectively evaluated expression of angiotensin II type 2 receptors (AT2-R) in prostate needle biopsy tissue from patients with and without biochemical recurrence after combined hormone and radiation therapy. The study findings showed that low expression of AT2-R in prostate tissue was associated with a high risk of biochemical recurrence. The data on the nature of AT2-R expression in prostate tissue of prostate cancer patients may be considered as a tool for predicting biochemical recurrence after combined hormone and radiation therapy. The test has a sensitivity of 87.5% and specificity of 85.71%.

  19. A bottom-up robust optimization framework for identifying river basin development pathways under deep climate uncertainty

    NASA Astrophysics Data System (ADS)

    Taner, M. U.; Ray, P.; Brown, C.

    2016-12-01

    Hydroclimatic nonstationarity due to climate change poses challenges for long-term water infrastructure planning in river basin systems. While designing strategies that are flexible or adaptive hold intuitive appeal, development of well-performing strategies requires rigorous quantitative analysis that address uncertainties directly while making the best use of scientific information on the expected evolution of future climate. Multi-stage robust optimization (RO) offers a potentially effective and efficient technique for addressing the problem of staged basin-level planning under climate change, however the necessity of assigning probabilities to future climate states or scenarios is an obstacle to implementation, given that methods to reliably assign probabilities to future climate states are not well developed. We present a method that overcomes this challenge by creating a bottom-up RO-based framework that decreases the dependency on probability distributions of future climate and rather employs them after optimization to aid selection amongst competing alternatives. The iterative process yields a vector of `optimal' decision pathways each under the associated set of probabilistic assumptions. In the final phase, the vector of optimal decision pathways is evaluated to identify the solutions that are least sensitive to the scenario probabilities and are most-likely conditional on the climate information. The framework is illustrated for the planning of new dam and hydro-agricultural expansions projects in the Niger River Basin over a 45-year planning period from 2015 to 2060.

  20. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.