Science.gov

Sample records for identify chemical compounds

  1. Large-Scale Chemical Similarity Networks for Target Profiling of Compounds Identified in Cell-Based Chemical Screens

    PubMed Central

    Lo, Yu-Chen; Senese, Silvia; Li, Chien-Ming; Hu, Qiyang; Huang, Yong; Damoiseaux, Robert; Torres, Jorge Z.

    2015-01-01

    Target identification is one of the most critical steps following cell-based phenotypic chemical screens aimed at identifying compounds with potential uses in cell biology and for developing novel disease therapies. Current in silico target identification methods, including chemical similarity database searches, are limited to single or sequential ligand analysis that have limited capabilities for accurate deconvolution of a large number of compounds with diverse chemical structures. Here, we present CSNAP (Chemical Similarity Network Analysis Pulldown), a new computational target identification method that utilizes chemical similarity networks for large-scale chemotype (consensus chemical pattern) recognition and drug target profiling. Our benchmark study showed that CSNAP can achieve an overall higher accuracy (>80%) of target prediction with respect to representative chemotypes in large (>200) compound sets, in comparison to the SEA approach (60–70%). Additionally, CSNAP is capable of integrating with biological knowledge-based databases (Uniprot, GO) and high-throughput biology platforms (proteomic, genetic, etc) for system-wise drug target validation. To demonstrate the utility of the CSNAP approach, we combined CSNAP's target prediction with experimental ligand evaluation to identify the major mitotic targets of hit compounds from a cell-based chemical screen and we highlight novel compounds targeting microtubules, an important cancer therapeutic target. The CSNAP method is freely available and can be accessed from the CSNAP web server (http://services.mbi.ucla.edu/CSNAP/). PMID:25826798

  2. Automated microwave double resonance spectroscopy: A tool to identify and characterize chemical compounds

    NASA Astrophysics Data System (ADS)

    Martin-Drumel, Marie-Aline; McCarthy, Michael C.; Patterson, David; McGuire, Brett A.; Crabtree, Kyle N.

    2016-03-01

    Owing to its unparalleled structural specificity, rotational spectroscopy is a powerful technique to unambiguously identify and characterize volatile, polar molecules. We present here a new experimental approach, automated microwave double resonance (AMDOR) spectroscopy, to rapidly determine the rotational constants of these compounds without a priori knowledge of elemental composition or molecular structure. This task is achieved by rapidly acquiring the classical (frequency vs. intensity) broadband spectrum of a molecule using chirped-pulse Fourier transform microwave (FTMW) spectroscopy and subsequently analyzing it in near real-time using complementary cavity FTMW detection and double resonance. AMDOR measurements provide a unique "barcode" for each compound from which rotational constants can be extracted. To illustrate the power of this approach, AMDOR spectra of three aroma compounds — trans-cinnamaldehyde, α-, and β-ionone — have been recorded and analyzed. The prospects to extend this approach to mixture characterization and purity assessment are described.

  3. Automated microwave double resonance spectroscopy: A tool to identify and characterize chemical compounds.

    PubMed

    Martin-Drumel, Marie-Aline; McCarthy, Michael C; Patterson, David; McGuire, Brett A; Crabtree, Kyle N

    2016-03-28

    Owing to its unparalleled structural specificity, rotational spectroscopy is a powerful technique to unambiguously identify and characterize volatile, polar molecules. We present here a new experimental approach, automated microwave double resonance (AMDOR) spectroscopy, to rapidly determine the rotational constants of these compounds without a priori knowledge of elemental composition or molecular structure. This task is achieved by rapidly acquiring the classical (frequency vs. intensity) broadband spectrum of a molecule using chirped-pulse Fourier transform microwave (FTMW) spectroscopy and subsequently analyzing it in near real-time using complementary cavity FTMW detection and double resonance. AMDOR measurements provide a unique "barcode" for each compound from which rotational constants can be extracted. To illustrate the power of this approach, AMDOR spectra of three aroma compounds - trans-cinnamaldehyde, α-, and β-ionone - have been recorded and analyzed. The prospects to extend this approach to mixture characterization and purity assessment are described. PMID:27036441

  4. USE OF BIOASSAY-DIRECTED CHEMICAL ANALYSIS FOR IDENTIFYING MUTAGENIC COMPOUNDS IN URBAN AIR AND COMBUSTION EMISSIONS

    EPA Science Inventory

    Bioassay-directed chemical analysis fractionation has been used for 30 years to identify mutagenic classes of compounds in complex mixtures. Most studies have used the Salmonella (Ames) mutagenicity assay, and we have recently applied this methodology to two standard reference sa...

  5. Profiling of the Tox21 Chemical Collection for Mitochondrial Function to Identify Compounds that Acutely Decrease Mitochondrial Membrane Potential

    PubMed Central

    Attene-Ramos, Matias S.; Huang, Ruili; Michael, Sam; Witt, Kristine L.; Richard, Ann; Tice, Raymond R.; Simeonov, Anton; Austin, Christopher P.

    2014-01-01

    Background: Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding whether different environmental chemicals and druglike molecules impact mitochondrial function represents an initial step in predicting exposure-related toxicity and defining a possible role for such compounds in the onset of various diseases. Objectives: We sought to identify individual chemicals and general structural features associated with changes in mitochondrial membrane potential (MMP). Methods: We used a multiplexed [two end points in one screen; MMP and adenosine triphosphate (ATP) content] quantitative high throughput screening (qHTS) approach combined with informatics tools to screen the Tox21 library of 10,000 compounds (~ 8,300 unique chemicals) at 15 concentrations each in triplicate to identify chemicals and structural features that are associated with changes in MMP in HepG2 cells. Results: Approximately 11% of the compounds (913 unique compounds) decreased MMP after 1 hr of treatment without affecting cell viability (ATP content). In addition, 309 compounds decreased MMP over a concentration range that also produced measurable cytotoxicity [half maximal inhibitory concentration (IC50) in MMP assay/IC50 in viability assay ≤ 3; p < 0.05]. More than 11% of the structural clusters that constitute the Tox21 library (76 of 651 clusters) were significantly enriched for compounds that decreased the MMP. Conclusions: Our multiplexed qHTS approach allowed us to generate a robust and reliable data set to evaluate the ability of thousands of drugs and environmental compounds to decrease MMP. The use of structure-based clustering analysis allowed us to identify molecular features that are likely responsible for the observed activity. Citation: Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice RR, Simeonov A, Austin CP, Xia M. 2015. Profiling of the Tox

  6. A yeast chemical genetics approach identifies the compound 3,4,5-trimethoxybenzyl isothiocyanate as a calcineurin inhibitor.

    PubMed

    Prescott, Thomas A K; Panaretou, Barry; Veitch, Nigel C; Simmonds, Monique S J

    2014-01-31

    The phosphatase enzyme calcineurin controls gene expression in a variety of biological contexts however few potent inhibitors are currently available. A screen of 360 plant extracts for inhibition of calcineurin-dependent gene expression in the model organism Saccharomyces cerevisiae identified the compound 3,4,5-trimethoxybenzyl isothiocyanate as an inhibitor. The compound was subsequently shown to inhibit human calcineurin via a mixed inhibition mechanism. To gain further mechanistic insight a yeast haploinsufficiency screen of 1152 deletion strains was carried out using a novel liquid medium screening method. The resulting haploinsufficiency profile is similar to that reported for the known calcineurin inhibitor FK506. PMID:24374339

  7. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    SciTech Connect

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Tropsha, Alexander

    2015-04-15

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. - Highlights: • It was compiled the largest publicly-available skin sensitization dataset. • Predictive QSAR models were developed for skin sensitization. • Developed models have higher prediction accuracy than OECD QSAR Toolbox. • Putative

  8. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds.

    PubMed

    Alves, Vinicius M; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H; Tropsha, Alexander

    2015-04-15

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using Random Forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers was 71-88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR Toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the Scorecard database of possible skin or sense organ toxicants as primary candidates for experimental validation. PMID:25560674

  9. Predicting chemically-induced skin reactions. Part I: QSAR models of skin sensitization and their application to identify potentially hazardous compounds

    PubMed Central

    Alves, Vinicius M.; Muratov, Eugene; Fourches, Denis; Strickland, Judy; Kleinstreuer, Nicole; Andrade, Carolina H.; Tropsha, Alexander

    2015-01-01

    Repetitive exposure to a chemical agent can induce an immune reaction in inherently susceptible individuals that leads to skin sensitization. Although many chemicals have been reported as skin sensitizers, there have been very few rigorously validated QSAR models with defined applicability domains (AD) that were developed using a large group of chemically diverse compounds. In this study, we have aimed to compile, curate, and integrate the largest publicly available dataset related to chemically-induced skin sensitization, use this data to generate rigorously validated and QSAR models for skin sensitization, and employ these models as a virtual screening tool for identifying putative sensitizers among environmental chemicals. We followed best practices for model building and validation implemented with our predictive QSAR workflow using random forest modeling technique in combination with SiRMS and Dragon descriptors. The Correct Classification Rate (CCR) for QSAR models discriminating sensitizers from non-sensitizers were 71–88% when evaluated on several external validation sets, within a broad AD, with positive (for sensitizers) and negative (for non-sensitizers) predicted rates of 85% and 79% respectively. When compared to the skin sensitization module included in the OECD QSAR toolbox as well as to the skin sensitization model in publicly available VEGA software, our models showed a significantly higher prediction accuracy for the same sets of external compounds as evaluated by Positive Predicted Rate, Negative Predicted Rate, and CCR. These models were applied to identify putative chemical hazards in the ScoreCard database of possible skin or sense organ toxicants as primary candidates for experimental validation. PMID:25560674

  10. Devices for collecting chemical compounds

    DOEpatents

    Scott, Jill R; Groenewold, Gary S

    2013-12-24

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  11. Heuristics for chemical compound matching.

    PubMed

    Hattori, Masahiro; Okuno, Yasushi; Goto, Susumu; Kanehisa, Minoru

    2003-01-01

    We have developed an efficient algorithm for comparing two chemical compounds, where the chemical structure is treated as a 2D graph consisting of atoms as vertices and covalent bonds as edges. Based on the concept of functional groups in chemistry, 68 atom types (vertex types) are defined for carbon, nitrogen, oxygen, and other atomic species with different environments, which has enabled detection of biochemically meaningful features. Maximal common subgraphs of two graphs can be found by searching for maximal cliques in the association graph, and we have introduced heuristics to accelerate the clique finding. Our heuristic procedure is controlled by some adjustable parameters. Here we applied our procedure to the latest KEGG/LIGAND database with different sets of parameters, and demonstrated the correlation of parameters in our algorithm with the distribution of similarity scores and/or the execution time. Finally, we showed the effectiveness of our heuristics for compound pairs along metabolic pathways. PMID:15706529

  12. Indexing molecules with chemical graph identifiers.

    PubMed

    Gregori-Puigjané, Elisabet; Garriga-Sust, Rut; Mestres, Jordi

    2011-09-01

    Fast and robust algorithms for indexing molecules have been historically considered strategic tools for the management and storage of large chemical libraries. This work introduces a modified and further extended version of the molecular equivalence number naming adaptation of the Morgan algorithm (J Chem Inf Comput Sci 2001, 41, 181-185) for the generation of a chemical graph identifier (CGI). This new version corrects for the collisions recognized in the original adaptation and includes the ability to deal with graph canonicalization, ensembles (salts), and isomerism (tautomerism, regioisomerism, optical isomerism, and geometrical isomerism) in a flexible manner. Validation of the current CGI implementation was performed on the open NCI database and the drug-like subset of the ZINC database containing 260,071 and 5,348,089 structures, respectively. The results were compared with those obtained with some of the most widely used indexing codes, such as the CACTVS hash code and the new InChIKey. The analyses emphasize the fact that compound management activities, like duplicate analysis of chemical libraries, are sensitive to the exact definition of compound uniqueness and thus still depend, to a minor extent, on the type and flexibility of the molecular index being used. PMID:21647928

  13. Cheminformatics Analysis of EPA ToxCast Chemical Libraries to Identify Domains of Applicability for Predictive Toxicity Models and Prioritize Compounds for Toxicity Testing

    EPA Science Inventory

    An important goal of toxicology research is the development of robust methods that use in vitro and chemical structure information to predict in vivo toxicity endpoints. The US EPA ToxCast program is addressing this goal using ~600 in vitro assays to create bioactivity profiles o...

  14. Chemically engineered extracts: source of bioactive compounds.

    PubMed

    Ramallo, I Ayelen; Salazar, Mario O; Mendez, Luciana; Furlan, Ricardo L E

    2011-04-19

    Biological research and drug discovery critically depend on access to libraries of small molecules that have an affinity for biomacromolecules. By virtue of their sustained success as sources of lead compounds, natural products are recognized as "privileged" starting points in structural space for library development. Compared with synthetic compounds, natural products have distinguishing structural properties; indeed, researchers have begun to quantify and catalog the differences between the two classes of molecules. Measurable differences in the number of chiral centers, the degree of saturation, the presence of aromatic rings, and the number of the various heteroatoms are among the chief distinctions between natural and synthetic compounds. Natural products also include a significant proportion of recurring molecular scaffolds that are not present in currently marketed drugs: the bioactivity of these natural substructures has been refined over the long process of evolution. In this Account, we present our research aimed at preparing libraries of semisynthetic compounds, or chemically engineered extracts (CEEs), through chemical diversification of natural products mixtures. The approach relies on the power of numbers, that is, in the chemical alteration of a sizable fraction of the starting complex mixture. Major changes in composition can be achieved through the chemical transformation of reactive molecular fragments that are found in most natural products. If such fragments are common enough, their transformation represents an entry point for chemically altering a high proportion of the components of crude natural extracts. We have searched for common reactive fragments in the Dictionary of Natural Products (CRC Press) and identified several functional groups that are expected to be present in a large fraction of the components of an average natural crude extract. To date, we have used reactions that incorporate (i) nitrogen atoms through carbonyl groups, (ii

  15. [Studies on chemical compounds of Chlorella sorokiniana].

    PubMed

    Zhang, Ling; Liu, Ping-huai; Wu, Jiao-na; Yang, Guo-fu; Suo, Yang-yang; Luo, Ning; Chen, Chen

    2015-04-01

    Chemical constituents of Chlorella sorokiniana were isolated and purified by repeated column chromatographies, over silicagel and Sephadex LH-20. Their structures were identified on the basis of physicochemical properties and spectroscopic data analysis. Five compounds were obtained from the petroleum ether extract of Chlorella sorokiniana, and their structures were identified as (22E, 24R)-5alpha, 3beta-epidioxiergosta-6, 22-dien-3beta-ol(1),(24S)-ergosta-7-en-3beta-ol(2), loliolide(3), stigmasta-7,22-dien-3beta,5alpha,6alpha-triol(4), and 3beta-hydroxy-5alpha,6alpha-epoxy-7-megastigmen-9-one(5). The main liposoluble fractions from Chlorella sorokiniana maiuly contain fatty acids, alkyl acids and olefine acids. Components 1-5 were isolated from the genus Chlorella for the first time. PMID:26281556

  16. Identifying chemicals that are planetary boundary threats.

    PubMed

    MacLeod, Matthew; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; Persson, Linn M; Rudén, Christina; McLachlan, Michael S

    2014-10-01

    Rockström et al. proposed a set of planetary boundaries that delimit a "safe operating space for humanity". Many of the planetary boundaries that have so far been identified are determined by chemical agents. Other chemical pollution-related planetary boundaries likely exist, but are currently unknown. A chemical poses an unknown planetary boundary threat if it simultaneously fulfills three conditions: (1) it has an unknown disruptive effect on a vital Earth system process; (2) the disruptive effect is not discovered until it is a problem at the global scale, and (3) the effect is not readily reversible. In this paper, we outline scenarios in which chemicals could fulfill each of the three conditions, then use the scenarios as the basis to define chemical profiles that fit each scenario. The chemical profiles are defined in terms of the nature of the effect of the chemical and the nature of exposure of the environment to the chemical. Prioritization of chemicals in commerce against some of the profiles appears feasible, but there are considerable uncertainties and scientific challenges that must be addressed. Most challenging is prioritizing chemicals for their potential to have a currently unknown effect on a vital Earth system process. We conclude that the most effective strategy currently available to identify chemicals that are planetary boundary threats is prioritization against profiles defined in terms of environmental exposure combined with monitoring and study of the biogeochemical processes that underlie vital Earth system processes to identify currently unknown disruptive effects. PMID:25181298

  17. IDENTIFYING CHEMICAL COMPOUNDS IN THE ENVIRONMENT

    EPA Science Inventory

    The quality of drinking and recreational water is currently ascertained using indicator bacteria. The tests to analyze for these bacteria require a considerable length of time to complete, and do not discriminate between human and animal fecal material sources. To shorten the t...

  18. Novel compound for identifying Escherichia coli.

    PubMed Central

    Watkins, W D; Rippey, S R; Clavet, C R; Kelley-Reitz, D J; Burkhardt, W

    1988-01-01

    A new chromogenic compound, 5-bromo-4-chloro-3-indoxyl-beta-D-glucuronide, was found to be useful for the rapid, specific, differential identification of Escherichia coli in the sanitary analysis of shellfish and wastewater. Of 1,025 presumptively positive colonies (blue) and 583 presumptively negative colonies (nonblue), only 1% false-negative and 5% false-positive results were found. PMID:3046494

  19. Quantum chemical studies of estrogenic compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...

  20. Chemical compound navigator: a web-based chem-BLAST, chemical taxonomy-based search engine for browsing compounds.

    PubMed

    Prasanna, M D; Vondrasek, Jiri; Wlodawer, Alexander; Rodriguez, H; Bhat, T N

    2006-06-01

    A novel technique to annotate, query, and analyze chemical compounds has been developed and is illustrated by using the inhibitor data on HIV protease-inhibitor complexes. In this method, all chemical compounds are annotated in terms of standard chemical structural fragments. These standard fragments are defined by using criteria, such as chemical classification; structural, chemical, or functional groups; and commercial, scientific or common names or synonyms. These fragments are then organized into a data tree based on their chemical substructures. Search engines have been developed to use this data tree to enable query on inhibitors of HIV protease (http://xpdb.nist.gov/hivsdb/hivsdb.html). These search engines use a new novel technique, Chemical Block Layered Alignment of Substructure Technique (Chem-BLAST) to search on the fragments of an inhibitor to look for its chemical structural neighbors. This novel technique to annotate and query compounds lays the foundation for the use of the Semantic Web concept on chemical compounds to allow end users to group, sort, and search structural neighbors accurately and efficiently. During annotation, it enables the attachment of "meaning" (i.e., semantics) to data in a manner that far exceeds the current practice of associating "metadata" with data by creating a knowledge base (or ontology) associated with compounds. Intended users of the technique are the research community and pharmaceutical industry, for which it will provide a new tool to better identify novel chemical structural neighbors to aid drug discovery. PMID:16508960

  1. Identifying interactions between chemical entities in biomedical text.

    PubMed

    Lamurias, Andre; Ferreira, João D; Couto, Francisco M

    2014-01-01

    Interactions between chemical compounds described in biomedical text can be of great importance to drug discovery and design, as well as pharmacovigilance. We developed a novel system, \\"Identifying Interactions between Chemical Entities\\" (IICE), to identify chemical interactions described in text. Kernel-based Support Vector Machines first identify the interactions and then an ensemble classifier validates and classifies the type of each interaction. This relation extraction module was evaluated with the corpus released for the DDI Extraction task of SemEval 2013, obtaining results comparable to state-of-the-art methods for this type of task. We integrated this module with our chemical named entity recognition module and made the whole system available as a web tool at www.lasige.di.fc.ul.pt/webtools/iice. PMID:25339081

  2. Identifying developmental vascular disruptor compounds using a predictive signature and alternative toxicity models

    EPA Science Inventory

    Identifying Developmental Vascular Disruptor Compounds Using a Predictive Signature and Alternative Toxicity Models Presenting Author: Tamara Tal Affiliation: U.S. EPA/ORD/ISTD, RTP, NC, USA Chemically induced vascular toxicity during embryonic development can result in a wide...

  3. Zebrafish behavioral profiling identifies multitarget antipsychotic-like compounds.

    PubMed

    Bruni, Giancarlo; Rennekamp, Andrew J; Velenich, Andrea; McCarroll, Matthew; Gendelev, Leo; Fertsch, Ethan; Taylor, Jack; Lakhani, Parth; Lensen, Dennis; Evron, Tama; Lorello, Paul J; Huang, Xi-Ping; Kolczewski, Sabine; Carey, Galen; Caldarone, Barbara J; Prinssen, Eric; Roth, Bryan L; Keiser, Michael J; Peterson, Randall T; Kokel, David

    2016-07-01

    Many psychiatric drugs act on multiple targets and therefore require screening assays that encompass a wide target space. With sufficiently rich phenotyping and a large sampling of compounds, it should be possible to identify compounds with desired mechanisms of action on the basis of behavioral profiles alone. Although zebrafish (Danio rerio) behavior has been used to rapidly identify neuroactive compounds, it is not clear what types of behavioral assays would be necessary to identify multitarget compounds such as antipsychotics. Here we developed a battery of behavioral assays in larval zebrafish to determine whether behavioral profiles can provide sufficient phenotypic resolution to identify and classify psychiatric drugs. Using the antipsychotic drug haloperidol as a test case, we found that behavioral profiles of haloperidol-treated zebrafish could be used to identify previously uncharacterized compounds with desired antipsychotic-like activities and multitarget mechanisms of action. PMID:27239787

  4. Lifetime of a Chemically Bound Helium Compound

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The rare-gas atoms are chemically inert, to an extent unique among all elements. This is due to the stable electronic structure of the atoms. Stable molecules with chemically bound rare-gas atoms are, however, known. A first such compound, XePtF6, W2S prepared in 1962 and since then a range of molecules containing radon, xenon and krypton have been obtained. Most recently, a first stable chemically bound compound of argon was prepared, leaving neon and helium as the only elements for which stable chemically bound molecules are not yet known. Electronic structure calculations predict that a metastable species HHeF exists, but significance of the result depends on the unknown lifetime. Here we report quantum dynamics calculations of the lifetime of HHeF, using accurate interactions computed from electronic structure theory. HHeF is shown to disintegrate by tunneling through energy barriers into He + HF and H + He + F the first channel greatly dominating. The lifetime of HHeF is more than 120 picoseconds, that of DHeF is 14 nanoseconds. The relatively long lifetimes are encouraging for the preparation prospects of this first chemically bound helium compound.

  5. USING AN ACCURATE MASS, TRIPLE QUADRUPOLE MASS SPECTROMETER AND AN ION CORRELATION PROGRAM TO IDENTIFY COMPOUNDS

    EPA Science Inventory

    Most compounds are not found in mass spectral libraries and must be identified by other means. Often, compound identities can be deduced from the compositions of the ions in their mass spectra and review of the chemical literature. Confirmation is provided by mass spectra and r...

  6. Assimilating chemical compound with a regional chemical model

    NASA Astrophysics Data System (ADS)

    Chang, C.; Yang, S.; Liang, M.; Hsu, S.; Tseng, Y.

    2012-12-01

    To constrain the source and sink of the chemical compounds at surface during model simulation, chemical compound assimilation with Local Ensemble Transform Kalman Filter (LETKF) has been implemented for the WRF-ChemT model. In this study, a two-tier system is applied to assimilating the meteorological and chemical variables in an OSSE framework. The unobserved surface flux is estimated according to the observations in the chemical component. A long-term nature run with total constant emission of 5.3×108 g/s is assumed to be the truth state in the OSSE. The simulated observations are obtained from the truth state by adding random errors. In order to generate the initial CO2 ensembles with similar spatial distribution as truth state without other prior information, the initial perturbation fields of CO2 are randomly chosen from three long-term runs with different emissions. The results indicate that in the constant emission case, the system can successfully estimate the unobserved chemical forcing and improve the distribution of the chemical compound. Under the scenario of diurnal forcing induced by human activities, the problem in estimating surface flux becomes more complex and difficult. A set of experiments with different initial chemical states suggest that the estimation of flux is sensitive to the quality of initial CO2 and CO2 surface flux. Strategies are designed to retrieve the time-varying information. The results show that with time-varying information and reliable initial ensembles, the estimation of surface flux have been significantly improved. Couple assimilation with meteorological and chemical components Surface flux estimation

  7. Exposure Levels for Chemical Threat Compounds; Information to Facilitate Chemical Incident Response

    SciTech Connect

    Hauschild, Veronique; Watson, Annetta Paule

    2013-01-01

    Exposure Standards, Limits and Guidelines for Chemical Threat Compunds ABSTRACT Exposure criteria for chemical warfare (CW) agents and certain toxic industrial chemicals (TICs) used as CW agents (such as chlorine fill in an improvised explosive device) have been developed for protection of the civilian general public, civilian employees in chemical agent processing facilities and deployed military populations. In addition, compound-specific concentrations have been developed to serve as how clean is clean enough clearance criteria guiding facility recovery following chemical terrorist or other hazardous release events. Such criteria are also useful to verify compound absence, identify containment boundaries and expedite facility recovery following chemical threat release. There is no single right value or concentration appropriate for all chemical hazard control applications. It is acknowledged that locating and comparing the many sources of CW agent and TIC exposure criteria has not been previously well-defined. This paper summarizes many of these estimates and assembles critical documentation regarding their derivation and use.

  8. Chemical effect on diffusion in intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ting

    With the trend of big data and the Internet of things, we live in a world full of personal electronic devices and small electronic devices. In order to make the devices more powerful, advanced electronic packaging such as wafer level packaging or 3D IC packaging play an important role. Furthermore, ?-bumps, which connect silicon dies together with dimension less than 10 ?m, are crucial parts in advanced packaging. Owing to the dimension of ?-bumps, they transform into intermetallic compound from tin based solder after the liquid state bonding process. Moreover, many new reliability issues will occur in electronic packaging when the bonding materials change; in this case, we no longer have tin based solder joint, instead, we have intermetallic compound ?-bumps. Most of the potential reliability issues in intermetallic compounds are caused by the chemical reactions driven by atomic diffusion in the material; thus, to know the diffusivities of atoms inside a material is significant and can help us to further analyze the reliability issues. However, we are lacking these kinds of data in intermetallic compound because there are some problems if used traditional Darken's analysis. Therefore, we considered Wagner diffusivity in our system to solve the problems and applied the concept of chemical effect on diffusion by taking the advantage that large amount of energy will release when compounds formed. Moreover, by inventing the holes markers made by Focus ion beam (FIB), we can conduct the diffusion experiment and obtain the tracer diffusivities of atoms inside the intermetallic compound. We applied the technique on Ni3Sn4 and Cu3Sn, which are two of the most common materials in electronic packaging, and the tracer diffusivities are measured under several different temperatures; moreover, microstructure of the intermetallic compounds are investigated to ensure the diffusion environment. Additionally, the detail diffusion mechanism was also discussed in aspect of diffusion

  9. Antitumor activity of chemical modified natural compounds.

    PubMed

    de Oliveira, M M

    1991-01-01

    Search of new activity substances starting from chemotherapeutic agents, continuously appears in international literature. Perhaps this search has been done more frequently in the field of antitumor chemotherapy on account of the unsuccess in saving advanced stage patients. The new point in this matter during the last decade was computer aid in planning more rational drugs. In near future "the accessibility of super computers and emergence of computer net systems, will open new avenues to rational drug design" (Portoghese, P. S., J. Med. Chem. 1989, 32, 1). Unknown pharmacological active compounds synthetized by plants can be found even without this electronic devices, as traditional medicine has pointed out in many countries, and give rise to a new drug. These compounds used as found in nature or after chemical modifications have produced successful experimental medicaments as FAA, "flavone acetic acid" with good results as inhibitors of slow growing animal tumors currently in preclinical evaluation for human treatment. In this lecture some international contributions in the field of chemical modified compounds as antineoplastic drugs will be examined, particularly those done by Brazilian researches. PMID:1842015

  10. Identifying Novel Cancer Therapies Using Chemical Genetics and Zebrafish.

    PubMed

    Dang, Michelle; Fogley, Rachel; Zon, Leonard I

    2016-01-01

    Chemical genetics is the use of small molecules to perturb biological pathways. This technique is a powerful tool for implicating genes and pathways in developmental programs and disease, and simultaneously provides a platform for the discovery of novel therapeutics. The zebrafish is an advantageous model for in vivo high-throughput small molecule screening due to translational appeal, high fecundity, and a unique set of developmental characteristics that support genetic manipulation, chemical treatment, and phenotype detection. Chemical genetic screens in zebrafish can identify hit compounds that target oncogenic processes-including cancer initiation and maintenance, metastasis, and angiogenesis-and may serve as cancer therapies. Notably, by combining drug discovery and animal testing, in vivo screening of small molecules in zebrafish has enabled rapid translation of hit anti-cancer compounds to the clinic, especially through the repurposing of FDA-approved drugs. Future technological advancements in automation and high-powered imaging, as well as the development and characterization of new mutant and transgenic lines, will expand the scope of chemical genetics in zebrafish. PMID:27165351

  11. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni.

    PubMed

    Mansour, Nuha R; Paveley, Ross; Gardner, J Mark F; Bell, Andrew S; Parkinson, Tanya; Bickle, Quentin

    2016-04-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  12. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni

    PubMed Central

    Gardner, J. Mark F.; Bell, Andrew S.; Parkinson, Tanya; Bickle, Quentin

    2016-01-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  13. A staining protocol for identifying secondary compounds in Myrtaceae1

    PubMed Central

    Retamales, Hernan A.; Scharaschkin, Tanya

    2014-01-01

    • Premise of the study: Here we propose a staining protocol using toluidine blue (TBO) and ruthenium red to reliably identify secondary compounds in the leaves of some species of Myrtaceae. • Methods and Results: Leaves of 10 species representing 10 different genera of Myrtaceae were processed and stained using five different combinations of ruthenium red and TBO. Optimal staining conditions were determined as 1 min of ruthenium red (0.05% aqueous) and 45 s of TBO (0.1% aqueous). Secondary compounds clearly identified under this treatment include mucilage in the mesophyll, polyphenols in the cuticle, lignin in fibers and xylem, tannins and carboxylated polysaccharides in the epidermis, and pectic substances in the primary cell walls. • Conclusions: Potential applications of this protocol include systematic, phytochemical, and ecological investigations in Myrtaceae. It might be applicable to other plant families rich in secondary compounds and could be used as a preliminary screening method for extraction of these elements. PMID:25309840

  14. Primary Polymer Aging Processes Identified from Weapon Headspace Chemicals

    SciTech Connect

    Chambers, D M; Bazan, J M; Ithaca, J G

    2002-03-25

    A current focus of our weapon headspace sampling work is the interpretation of the volatile chemical signatures that we are collecting. To help validate our interpretation we have been developing a laboratory-based material aging capability to simulate material decomposition chemistries identified. Key to establishing this capability has been the development of an automated approach to process, analyze, and quantify arrays of material combinations as a function of time and temperature. Our initial approach involves monitoring the formation and migration of volatile compounds produced when a material decomposes. This approach is advantageous in that it is nondestructive and provides a direct comparison with our weapon headspace surveillance initiative. Nevertheless, this approach requires us to identify volatile material residue and decomposition byproducts that are not typically monitored and reported in material aging studies. Similar to our weapon monitoring method, our principle laboratory-based method involves static headspace collection by solid phase microextraction (SPME) followed by gas chromatography/mass spectrometry (GC/MS). SPME is a sorbent collection technique that is ideally suited for preconcentration and delivery of trace gas-phase compounds for analysis by GC. When combined with MS, detection limits are routinely in the low- and sub-ppb ranges, even for semivolatile and polar compounds. To automate this process we incorporated a robotic sample processor configured for SPME collection. The completed system will thermally process, sample, and analyze a material sample. Quantification of the instrument response is another process that has been integrated into the system. The current system screens low-milligram quantities of material for the formation or outgas of small compounds as initial indicators of chemical decomposition. This emerging capability offers us a new approach to identify and non-intrusively monitor decomposition mechanisms that are

  15. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory

    When tentatively identifying compounds in complex mixtures using mass spectral libraries, multiple matches or no plausible matches due to a high level of chemical noise or interferences can occur. Worse yet, most analytes are not in the libraries. In each case, Ion Composition El...

  16. Device for collecting chemical compounds and related methods

    DOEpatents

    Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

    2013-01-01

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  17. How can Databases assist with the Prediction of Chemical Compounds?

    PubMed Central

    Schön, J Christian

    2014-01-01

    An overview is given on the ways databases can be employed to aid in the prediction of chemical compounds, in particular inorganic crystalline compounds. Methods currently employed and possible future approaches are discussed. PMID:26213422

  18. Predicting Biological Functions of Compounds Based on Chemical-Chemical Interactions

    PubMed Central

    Huang, Tao; Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Given a compound, how can we effectively predict its biological function? It is a fundamentally important problem because the information thus obtained may benefit the understanding of many basic biological processes and provide useful clues for drug design. In this study, based on the information of chemical-chemical interactions, a novel method was developed that can be used to identify which of the following eleven metabolic pathway classes a query compound may be involved with: (1) Carbohydrate Metabolism, (2) Energy Metabolism, (3) Lipid Metabolism, (4) Nucleotide Metabolism, (5) Amino Acid Metabolism, (6) Metabolism of Other Amino Acids, (7) Glycan Biosynthesis and Metabolism, (8) Metabolism of Cofactors and Vitamins, (9) Metabolism of Terpenoids and Polyketides, (10) Biosynthesis of Other Secondary Metabolites, (11) Xenobiotics Biodegradation and Metabolism. It was observed that the overall success rate obtained by the method via the 5-fold cross-validation test on a benchmark dataset consisting of 3,137 compounds was 77.97%, which is much higher than 10.45%, the corresponding success rate obtained by the random guesses. Besides, to deal with the situation that some compounds may be involved with more than one metabolic pathway class, the method presented here is featured by the capacity able to provide a series of potential metabolic pathway classes ranked according to the descending order of their likelihood for each of the query compounds concerned. Furthermore, our method was also applied to predict 5,549 compounds whose metabolic pathway classes are unknown. Interestingly, the results thus obtained are quite consistent with the deductions from the reports by other investigators. It is anticipated that, with the continuous increase of the chemical-chemical interaction data, the current method will be further enhanced in its power and accuracy, so as to become a useful complementary vehicle in annotating uncharacterized compounds for their biological

  19. Can Zebrafish be used to Identify Developmentally Neurotoxic Chemicals

    EPA Science Inventory

    Can Zebrafish be Used to Identify Developmentally Neurotoxic Chemicals? The U.S. Environmental Protection Agency is evaluating methods to screen and prioritize large numbers of chemicals for developmental neurotoxicity. We are exploring behavioral methods using zebrafish by desig...

  20. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes

    PubMed Central

    Goldberg, Alexander A.; Richard, Vincent R.; Kyryakov, Pavlo; Bourque, Simon D.; Beach, Adam; Burstein, Michelle T.; Glebov, Anastasia; Koupaki, Olivia; Boukh-Viner, Tatiana; Gregg, Christopher; Juneau, Mylène; English, Ann M.; Thomas, David Y.; Titorenko, Vladimir I.

    2010-01-01

    In chronologically aging yeast, longevity can be extended by administering a caloric restriction (CR) diet or some small molecules. These life-extending interventions target the adaptable target of rapamycin (TOR) and cAMP/protein kinase A (cAMP/PKA) signaling pathways that are under the stringent control of calorie availability. We designed a chemical genetic screen for small molecules that increase the chronological life span of yeast under CR by targeting lipid metabolism and modulating housekeeping longevity pathways that regulate longevity irrespective of the number of available calories. Our screen identifies lithocholic acid (LCA) as one of such molecules. We reveal two mechanisms underlying the life-extending effect of LCA in chronologically aging yeast. One mechanism operates in a calorie availability-independent fashion and involves the LCA-governed modulation of housekeeping longevity assurance pathways that do not overlap with the adaptable TOR and cAMP/PKA pathways. The other mechanism extends yeast longevity under non-CR conditions and consists in LCA-driven unmasking of the previously unknown anti-aging potential of PKA. We provide evidence that LCA modulates housekeeping longevity assurance pathways by suppressing lipid-induced necrosis, attenuating mitochondrial fragmentation, altering oxidation-reduction processes in mitochondria, enhancing resistance to oxidative and thermal stresses, suppressing mitochondria-controlled apoptosis, and enhancing stability of nuclear and mitochondrial DNA. PMID:20622262

  1. Chemical Trends for Transition Metal Compound Bonding to Graphene

    NASA Astrophysics Data System (ADS)

    Lange, Bjoern; Blum, Volker

    2015-03-01

    Transition metal compounds are of interest as catalysts for the hydrogen evolution reaction (HER). However, a perfect candidate to replace expensive platinum has not yet been identified. To tailor a specific compound, several properties come into play. One is the bonding to the underlying substrate, for which π-bonded carbon nanostructures are promising candidates. Here we analyze the bonding of small transition metal compound nanoclusters to a graphene layer for a range of chemical compositions: MxAy (M = Mo, Ti; A = S, O, B, N, C). The clusters are generated by an unbiased random search algorithm. We perform total energy calculations based on density functional theory to identify lowest energy clusters. We calculate binding energies using the PBE and HSE functionals with explicit van der Waals treatment and benchmark those against RPA cluster calculations. Our results indicate that molybdenum-carbides and -nitrides tend to bond tightly to graphene. Mo-oxides and -sulfides show small binding energies, indicating van der Waals bonding.

  2. Identification of anti-cancer chemical compounds using Xenopus embryos.

    PubMed

    Tanaka, Masamitsu; Kuriyama, Sei; Itoh, Go; Kohyama, Aki; Iwabuchi, Yoshiharu; Shibata, Hiroyuki; Yashiro, Masakazu; Aiba, Namiko

    2016-06-01

    Cancer tissues have biological characteristics similar to those observed in embryos during development. Many types of cancer cells acquire pro-invasive ability through epithelial-mesenchymal transition (EMT). Similar processes (gastrulation and migration of cranial neural crest cells [CNCC]) are observed in the early stages of embryonic development in Xenopus during which cells that originate from epithelial sheets through EMT migrate to their final destinations. The present study examined Xenopus embryonic tissues to identify anti-cancer compounds that prevent cancer invasion. From the initial test of known anti-cancer drugs, AMD3100 (an inhibitor of CXCR4) and paclitaxel (a cytoskeletal drug targeting microtubules) effectively prevented migration during gastrulation or CNCC development. Blind-screening of 100 synthesized chemical compounds was performed, and nine candidates that inhibited migration of these embryonic tissues without embryonic lethality were selected. Of these, C-157 (an analog of podophyllotoxin) and D-572 (which is an indole alkaroid) prevented cancer cell invasion through disruption of interphase microtubules. In addition, these compounds affected progression of mitotic phase and induced apoptosis of SAS oral cancer cells. SAS tumors were reduced in size after intratumoral injection of C-157, and peritoneal dissemination of melanoma cells and intracranial invasion of glioma cells were inhibited by C-157 and D-572. When the other analogues of these chemicals were compared, those with subtle effect on embryos were not tumor suppressive. These results suggest that a novel chemical-screening approach based on Xenopus embryos is an effective method for isolating anti-cancer drugs and, in particular, targeting cancer cell invasion and proliferation. PMID:27019404

  3. InChI - the worldwide chemical structure identifier standard

    PubMed Central

    2013-01-01

    Since its public introduction in 2005 the IUPAC InChI chemical structure identifier standard has become the international, worldwide standard for defined chemical structures. This article will describe the extensive use and dissemination of the InChI and InChIKey structure representations by and for the world-wide chemistry community, the chemical information community, and major publishers and disseminators of chemical and related scientific offerings in manuscripts and databases. PMID:23343401

  4. Process for preparing a chemical compound enriched in isotope content

    DOEpatents

    Michaels, Edward D.

    1982-01-01

    A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

  5. A Yeast Chemical Genetic Screen Identifies Inhibitors of Human Telomerase

    PubMed Central

    Wong, Lai Hong; Unciti-Broceta, Asier; Spitzer, Michaela; White, Rachel; Tyers, Mike; Harrington, Lea

    2013-01-01

    Summary Telomerase comprises a reverse transcriptase and an internal RNA template that maintains telomeres in many eukaryotes, and it is a well-validated cancer target. However, there is a dearth of small molecules with efficacy against human telomerase in vivo. We developed a surrogate yeast high-throughput assay to identify human telomerase inhibitors. The reversibility of growth arrest induced by active human telomerase was assessed against a library of 678 compounds preselected for bioactivity in S. cerevisiae. Four of eight compounds identified reproducibly restored growth to strains expressing active human telomerase, and three of these four compounds also specifically inhibited purified human telomerase in vitro. These compounds represent probes for human telomerase function, and potential entry points for development of lead compounds against telomerase-positive cancers. PMID:23521791

  6. Analysis of Pfizer compounds in EPA's ToxCast chemicals-assay space.

    PubMed

    Shah, Falgun; Greene, Nigel

    2014-01-21

    The U.S. Environmental Protection Agency (EPA) launched the ToxCast program in 2007 with the goal of evaluating high-throughput in vitro assays to prioritize chemicals that need toxicity testing. Their goal was to develop predictive bioactivity signatures for toxic compounds using a set of in vitro assays and/or in silico properties. In 2009, Pfizer joined the ToxCast initiative by contributing 52 compounds with preclinical and clinical data for profiling across the multiple assay platforms available. Here, we describe the initial analysis of the Pfizer subset of compounds within the ToxCast chemical (n = 1814) and in vitro assay (n = 486) space. An analysis of the hit rate of Pfizer compounds in the ToxCast assay panel allowed us to focus our mining of assays potentially most relevant to the attrition of our compounds. We compared the bioactivity profile of Pfizer compounds to other compounds in the ToxCast chemical space to gain insights into common toxicity pathways. Additionally, we explored the similarity in the chemical and biological spaces between drug-like compounds and environmental chemicals in ToxCast and compared the in vivo profiles of a subset of failed pharmaceuticals having high similarity in both spaces. We found differences in the chemical and biological spaces of pharmaceuticals compared to environmental chemicals, which may question the applicability of bioactivity signatures developed exclusively based on the latter to drug-like compounds if used without prior validation with the ToxCast Phase-II chemicals. Finally, our analysis has allowed us to identify novel interactions for our compounds in particular with multiple nuclear receptors that were previously not known. This insight may help us to identify potential liabilities with future novel compounds. PMID:24328225

  7. The Use of Chemical-Chemical Interaction and Chemical Structure to Identify New Candidate Chemicals Related to Lung Cancer

    PubMed Central

    Zheng, Mingyue; Kong, Xiangyin; Huang, Tao; Cai, Yu-Dong

    2015-01-01

    Lung cancer causes over one million deaths every year worldwide. However, prevention and treatment methods for this serious disease are limited. The identification of new chemicals related to lung cancer may aid in disease prevention and the design of more effective treatments. This study employed a weighted network, constructed using chemical-chemical interaction information, to identify new chemicals related to two types of lung cancer: non-small lung cancer and small-cell lung cancer. Then, a randomization test as well as chemical-chemical interaction and chemical structure information were utilized to make further selections. A final analysis of these new chemicals in the context of the current literature indicates that several chemicals are strongly linked to lung cancer. PMID:26047514

  8. Helping Students Distinguish between Mixtures and Chemical Compounds.

    ERIC Educational Resources Information Center

    Papageorgiou, George

    2002-01-01

    Describes a model demonstrating the difference between mixtures and chemical compounds in which two different colors of clay are used to represent two different elements. Makes connections to real world situations. (YDS)

  9. Chemical compounds of the foraging recruitment pheromone in bumblebees

    NASA Astrophysics Data System (ADS)

    Granero, Angeles Mena; Sanz, José M. Guerra; Gonzalez, Francisco J. Egea; Vidal, José L. Martinez; Dornhaus, Anna; Ghani, Junaid; Serrano, Ana Roldán; Chittka, Lars

    2005-08-01

    When the frenzied and irregular food-recruitment dances of bumblebees were first discovered, it was thought that they might represent an evolutionary prototype to the honeybee waggle dance. It later emerged that the primary function of the bumblebee dance was the distribution of an alerting pheromone. Here, we identify the chemical compounds of the bumblebee recruitment pheromone and their behaviour effects. The presence of two monoterpenes and one sesquiterpene (eucalyptol, ocimene and farnesol) in the nest airspace and in the tergal glands increases strongly during foraging. Of these, eucalyptol has the strongest recruitment effect when a bee nest is experimentally exposed to it. Since honeybees use terpenes for marking food sources rather than recruiting foragers inside the nest, this suggests independent evolutionary roots of food recruitment in these two groups of bees.

  10. Chemical and Radiological Toxicity of Uranium and Its Compounds

    SciTech Connect

    Tansky, R.R.

    2001-07-26

    The concentration of uranyl nitrate required to deliver the radiation dose limit for soluble uranium compounds is larger than the toxicity-based concentration limits. Therefore, for soluble uranium compounds, health consequences of exposure are primarily due to their chemical toxicity. For insoluble compounds of uranium, health consequences (e.g., fibrosis and/or carcinogenesis of the lung) are primarily due to irradiation of pulmonary tissues from inhaled respirable particles.

  11. Zebrafish screen identifies novel compound with selective toxicity against leukemia

    PubMed Central

    Ridges, Suzanne; Heaton, Will L.; Joshi, Deepa; Choi, Henry; Eiring, Anna; Batchelor, Lance; Choudhry, Priya; Manos, Elizabeth J.; Sofla, Hossein; Sanati, Ali; Welborn, Seth; Agarwal, Archana; Spangrude, Gerald J.; Miles, Rodney R.; Cox, James E.; Frazer, J. Kimble; Deininger, Michael; Balan, Kaveri; Sigman, Matthew; Müschen, Markus; Perova, Tatiana; Johnson, Radia; Montpellier, Bertrand; Guidos, Cynthia J.; Jones, David A.

    2012-01-01

    To detect targeted antileukemia agents we have designed a novel, high-content in vivo screen using genetically engineered, T-cell reporting zebrafish. We exploited the developmental similarities between normal and malignant T lymphoblasts to screen a small molecule library for activity against immature T cells with a simple visual readout in zebrafish larvae. After screening 26 400 molecules, we identified Lenaldekar (LDK), a compound that eliminates immature T cells in developing zebrafish without affecting the cell cycle in other cell types. LDK is well tolerated in vertebrates and induces long-term remission in adult zebrafish with cMYC-induced T-cell acute lymphoblastic leukemia (T-ALL). LDK causes dephosphorylation of members of the PI3 kinase/AKT/mTOR pathway and delays sensitive cells in late mitosis. Among human cancers, LDK selectively affects survival of hematopoietic malignancy lines and primary leukemias, including therapy-refractory B-ALL and chronic myelogenous leukemia samples, and inhibits growth of human T-ALL xenografts. This work demonstrates the utility of our method using zebrafish for antineoplastic candidate drug identification and suggests a new approach for targeted leukemia therapy. Although our efforts focused on leukemia therapy, this screening approach has broad implications as it can be translated to other cancer types involving malignant degeneration of developmentally arrested cells. PMID:22490804

  12. Chemical compounds isolated from Talinum triangulare (Portulacaceae).

    PubMed

    de Oliveira Amorim, Ana Paula; de Carvalho, Almir Ribeiro; Lopes, Norberto Peporine; Castro, Rosane Nora; de Oliveira, Marcia Cristina Campos; de Carvalho, Mário Geraldo

    2014-10-01

    This first phytochemical study of Talinum triangulare Leach (Portulacaceae), also known as 'cariru', which is a commonly consumed food in Northern Brazil, allowed the isolation and structural determination of four new compounds: one acrylamide, 3-N-(acryloyl, N-pentadecanoyl) propanoic acid (5), and three new phaeophytins named (15(1)S, 17R, 18R)-Ficuschlorin D acid (3(1),3(2)-didehydro-7-oxo-17(3)-O-phytyl-rhodochlorin-15-acetic acid), (13), Talichorin A (17R, 18R)-phaeophytin b-15(1)-hidroxy, 15(2),15(3)-acetyl-13(1)-carboxilic acid (14), and (15(1)S, 17R, 18R)-phaeophytin b peroxylactone or (15(1)S, 17R, 18R)-hydroperoxy-ficuschlorin D (16), together with twelve known compounds, including four phaeophytins (11,12, 15 and 17). The structures of the compounds were established on the basis of 1D and 2D NMR, IR, HRESI-MS spectra, including GC-MS, and HPLC-UV analysis, as well as comparisons with the literature data. The CD spectra data analysis were used to define the absolute configuration of phaeophytins 12 (13(2)R, 17R, 18R)-13(2)-hydroxyphaeophytin a, 13 and 16, 15 (15(1)S, 17R, 18R)-3(1),3(2)-didehydro-15(1)-hydroxyrhodochlorin-15-acetic acid δ-lactone-15(2)-methyl-17(3)-phytyl ester and 17 (17R, 18R)-purpurin 18-phytyl ester. PMID:24799228

  13. Artificial neural network cascade identifies multi-P450 inhibitors in natural compounds

    PubMed Central

    Li, Zhangming; Li, Yan; Sun, Lu; Tang, Yun; Liu, Lanru

    2015-01-01

    Substantial evidence has shown that most exogenous substances are metabolized by multiple cytochrome P450 (P450) enzymes instead of by merely one P450 isoform. Thus, multi-P450 inhibition leads to greater drug-drug interaction risk than specific P450 inhibition. Herein, we innovatively established an artificial neural network cascade (NNC) model composed of 23 cascaded networks in a ladder-like framework to identify potential multi-P450 inhibitors among natural compounds by integrating 12 molecular descriptors into a P450 inhibition score (PIS). Experimental data reporting in vitro inhibition of five P450 isoforms (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4) were obtained for 8,148 compounds from the Cytochrome P450 Inhibitors Database (CPID). The results indicate significant positive correlation between the PIS values and the number of inhibited P450 isoforms (Spearman’s ρ = 0.684, p < 0.0001). Thus, a higher PIS indicates a greater possibility for a chemical to inhibit the enzyme activity of at least three P450 isoforms. Ten-fold cross-validation of the NNC model suggested an accuracy of 78.7% for identifying whether a compound is a multi-P450 inhibitor or not. Using our NNC model, 22.2% of the approximately 160,000 natural compounds in TCM Database@Taiwan were identified as potential multi-P450 inhibitors. Furthermore, chemical similarity calculations suggested that the prevailing parent structures of natural multi-P450 inhibitors were alkaloids. Our findings show that dissection of chemical structure contributes to confident identification of natural multi-P450 inhibitors and provides a feasible method for virtually evaluating multi-P450 inhibition risk for a known structure. PMID:26719820

  14. LOSS OF ORGANIC CHEMICALS IN SOIL: PURE COMPOUND TREATABILITY STUDIES

    EPA Science Inventory

    Comprehensive screening data on the treatability of 32 organic chemicals in soil were developed. Of the evaluated chemicals, 22 were phenolic compounds. Aerobic batch laboratory microcosm experiments were conducted using two soils: an acidic clay soil with <1% organic matter and ...

  15. Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1993-01-01

    Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

  16. A Chemical Screen Identifies Small Molecules that Regulate Hepcidin Expression

    PubMed Central

    Gaun, Vera; Patchen, Bonnie; Volovetz, Josephine; Zhen, Aileen W.; Andreev, Aleksandr; Pollastri, Michael P.; Fraenkel, Paula G.

    2014-01-01

    Hepcidin, a peptide hormone produced in the liver, decreases intestinal iron absorption and macrophage iron release via effects on ferroportin. Bone morphogenic protein and Stat3 signaling regulate Hepcidin's transcription. Hepcidin is a potential drug target for patients with iron overload syndromes because its levels are inappropriately low in these individuals. To generate a tool for identifying small molecules that modulate Hepcidin expression, we stably transfected human hepatocytes (HepG2) cells with a reporter construct containing 2.7 kilobases of the human Hepcidin promoter upstream of a firefly reporter gene. We used high throughput methods to screen 10,169 chemicals in duplicate for their effect on Hepcidin expression and cell viability. Regulators were identified as chemicals that caused a change >3 standard deviations above or >1.5 standard deviations below the mean of the other chemicals (z-score >3 or <-1.5), while not adversely affecting cell viability, quantified by fluorescence assay. Following validation assays, we identified 16 chemicals in a broad range of functional classes that promote Hepcidin expression. All of the chemicals identified increased expression of bone morphogenic protein-dependent and/or Stat3-dependent genes, however none of them strongly increased phosphorylation of Smad1,5,8 or Stat3. PMID:24998898

  17. Studying a Drug-like, RNA-Focused Small Molecule Library Identifies Compounds That Inhibit RNA Toxicity in Myotonic Dystrophy.

    PubMed

    Rzuczek, Suzanne G; Southern, Mark R; Disney, Matthew D

    2015-12-18

    There are many RNA targets in the transcriptome to which small molecule chemical probes and lead therapeutics are desired. However, identifying compounds that bind and modulate RNA function in cellulo is difficult. Although rational design approaches have been developed, they are still in their infancies and leave many RNAs "undruggable". In an effort to develop a small molecule library that is biased for binding RNA, we computationally identified "drug-like" compounds from screening collections that have favorable properties for binding RNA and for suitability as lead drugs. As proof-of-concept, this collection was screened for binding to and modulating the cellular dysfunction of the expanded repeating RNA (r(CUG)(exp)) that causes myotonic dystrophy type 1. Hit compounds bind the target in cellulo, as determined by the target identification approach Competitive Chemical Cross-Linking and Isolation by Pull-down (C-ChemCLIP), and selectively improve several disease-associated defects. The best compounds identified from our 320-member library are more potent in cellulo than compounds identified by high-throughput screening (HTS) campaigns against this RNA. Furthermore, the compound collection has a higher hit rate (9% compared to 0.01-3%), and the bioactive compounds identified are not charged; thus, RNA can be "drugged" with compounds that have favorable pharmacological properties. Finally, this RNA-focused small molecule library may serve as a useful starting point to identify lead "drug-like" chemical probes that affect the biological (dys)function of other RNA targets by direct target engagement. PMID:26414664

  18. IDENTIFYING COMPOUNDS DESPITE CHROMATOGRAPHY LIMITATIONS: ORGANOPHOSPHATES IN TREATED SEWAGE

    EPA Science Inventory

    Highly concentrated extracts of sewage treatment plant (STP) effluents contain detectable
    levels of dozens of compounds resulting from human activities. Recent concern over use and
    disposal of Pharmaceuticals and Personal Care Products (PPCPS) (1) has stimulated interest ...

  19. STUDIES ON THE SENSITIZATION OF ANIMALS WITH SIMPLE CHEMICAL COMPOUNDS

    PubMed Central

    Landsteiner, K.; Di Somma, A. A.

    1938-01-01

    With the view of making new types of chemicals accessible for investigations on drug hypersensitiveness, methods have been devised for sensitizing animals with diazomethane and mustard oil, two non-aromatic compounds. Guinea pigs have been sensitized to diazomethane, a substance of high reactivity and known to cause severe allergic effects in man. With the second substance, allylisothiocyanate, likewise capable of forming conjugates with substances in the animal body, sensitization effects have been obtained in man and in hogs. Sensitization in human beings was successful with one out of six individuals treated. The observations indicate species and individual differences as regards the ability to become sensitized to various chemical compounds. PMID:19870801

  20. Chemical reactions of organic compounds on clay surfaces.

    PubMed Central

    Soma, Y; Soma, M

    1989-01-01

    Chemical reactions of organic compounds including pesticides at the interlayer and exterior surfaces of clay minerals and with soil organic matter are reviewed. Representative reactions under moderate conditions possibly occurring in natural soils are described. Attempts have been made to clarify the importance of the chemical nature of molecules, their structures and their functional groups, and the Brönsted or Lewis acidity of clay minerals. PMID:2533556

  1. Identifying Students with Chemical Health Problems: Background and Simulation.

    ERIC Educational Resources Information Center

    Maine State Dept. of Educational and Cultural Services, Augusta. Div. of Alcohol and Drug Education Services.

    This document discusses the role of school personnel in identifying and referring students with chemical health problems. It introduces the topic by stating that school personnel should be aware of how to deal with students who have violated school rules and those who are seeking help. It states that they should know how to draw the line…

  2. 30 CFR 47.21 - Identifying hazardous chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... standards in 30 CFR chapter I. (3) Occupational Safety and Health Administration (OSHA), 29 CFR part 1910... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The... Human Services, National Toxicology Program (NTP), Ninth Annual Report on Carcinogens, January 2001....

  3. Chemical bath deposition of II-VI compound thin films

    NASA Astrophysics Data System (ADS)

    Oladeji, Isaiah Olatunde

    II-VI compounds are direct bandgap semiconductors with great potentials in optoelectronic applications. Solar cells, where these materials are in greater demand, require a low cost production technology that will make the final product more affordable. Chemical bath deposition (CBD) a low cost growth technique capable of producing good quality thin film semiconductors over large area and at low temperature then becomes a suitable technology of choice. Heterogeneous reaction in a basic aqueous solution that is responsible for the II-VI compound film growth in CBD requires a metal complex. We have identified the stability constant (k) of the metal complex compatible with CBD growth mechanism to be about 106.9. This value is low enough to ensure that the substrate adsorbed complex relax for subsequent reaction with the chalcogen precursor to take place. It is also high enough to minimize the metal ion concentration in the bath participating in the precipitation of the bulk compounds. Homogeneous reaction that leads to precipitation in the reaction bath takes place because the solubility products of bulk II-VI compounds are very low. This reaction quickly depletes the bath of reactants, limit the film thickness, and degrade the film quality. While ZnS thin films are still hard to grow by CBD because of lack of suitable complexing agent, the homogeneous reaction still limits quality and thickness of both US and ZnS thin films. In this study, the zinc tetraammine complex ([Zn(NH3) 4]2+) with k = 108.9 has been forced to acquire its unsaturated form [Zn(NH3)3]2+ with a moderate k = 106.6 using hydrazine and nitrilotriacetate ion as complementary complexing agents and we have successfully grown ZnS thin films. We have also, minimized or eliminated the homogeneous reaction by using ammonium salt as a buffer and chemical bath with low reactant concentrations. These have allowed us to increase the saturation thickness of ZnS thin film by about 400% and raise that of US film

  4. Screening of antitubercular compound library identifies novel shikimate kinase inhibitors of Mycobacterium tuberculosis.

    PubMed

    Rajput, Vikrant S; Mehra, Rukmankesh; Kumar, Sanjay; Nargotra, Amit; Singh, Parvinder Pal; Khan, Inshad Ali

    2016-06-01

    Shikimate kinase of Mycobacterium tuberculosis is involved in the biosynthesis of aromatic amino acids through shikimate pathway. The enzyme is essential for the survival of M. tuberculosis and is absent from mammals, thus providing an excellent opportunity for identifying new chemical entities to combat tuberculosis with a novel mechanism of action. In this study, an antitubercular library of 1000 compounds was screened against M. tuberculosis shikimate kinase (MtSK). This effort led to the identification of 20 inhibitors, among which five promising leads exhibited half maximal inhibitory concentration (IC50) values below 10 μM. The most potent inhibitor ("5631296") showed an IC50 value of 5.10 μM ± 0.6. The leads were further evaluated for the activity against multidrug-resistant (MDR)-TB, Gram-positive and Gram-negative bacterial strains, mode of action, docking simulations, and combinatorial study with three frontline anti-TB drugs. Compound "5491210" displayed a nearly synergistic activity with rifampicin, isoniazid, and ethambutol while compound "5631296" was synergistic with rifampicin. In vitro cytotoxicity against HepG2 cell line was evaluated and barring one compound; all were found to be non-toxic (SI > 10). In order to rule out mitochondrial toxicity, the promising inhibitors were also evaluated for cell cytotoxicity using galactose medium where compounds "5631296" and "5122752" appeared non-toxic. Upon comprehensive analysis, compound "5631296" was found to be the most promising MtSK inhibitor that was safe, synergistic with rifampicin, and bactericidal against M. tuberculosis. PMID:26887318

  5. Semantic Similarity for Automatic Classification of Chemical Compounds

    PubMed Central

    Ferreira, João D.; Couto, Francisco M.

    2010-01-01

    With the increasing amount of data made available in the chemical field, there is a strong need for systems capable of comparing and classifying chemical compounds in an efficient and effective way. The best approaches existing today are based on the structure-activity relationship premise, which states that biological activity of a molecule is strongly related to its structural or physicochemical properties. This work presents a novel approach to the automatic classification of chemical compounds by integrating semantic similarity with existing structural comparison methods. Our approach was assessed based on the Matthews Correlation Coefficient for the prediction, and achieved values of 0.810 when used as a prediction of blood-brain barrier permeability, 0.694 for P-glycoprotein substrate, and 0.673 for estrogen receptor binding activity. These results expose a significant improvement over the currently existing methods, whose best performances were 0.628, 0.591, and 0.647 respectively. It was demonstrated that the integration of semantic similarity is a feasible and effective way to improve existing chemical compound classification systems. Among other possible uses, this tool helps the study of the evolution of metabolic pathways, the study of the correlation of metabolic networks with properties of those networks, or the improvement of ontologies that represent chemical information. PMID:20885779

  6. Chemicals from coal. Utilization of coal-derived phenolic compounds

    SciTech Connect

    Song, C.; Schobert, H.H.

    1999-07-01

    This article provides an overview for possible utilization of coal-derived phenolic compounds. Phenolic compounds are abundant in coal-derived liquids. Coal-derived phenolic compounds include phenol, cresol, catechol, methylcatechol, naphthol, and their derivatives. Liquids from coal liquefaction, pyrolysis, gasification, and carbonization are potential sources of phenolic chemicals, although certain processing and separation are needed. There are opportunities for coal-based phenolic chemicals, because there are existing industrial applications and potential new applications. Currently the petrochemical industry produces phenol in multi-step processes, and new research and development has resulted in a one-step process. Selective methylation of phenol can produce a precursor for aromatic engineering plastics. Catalytic oxidation of phenol has been commercialized recently for catechol production. There are potential new uses of phenol that could replace large-volume multi-step chemical processes that are based on benzene as the starting material. New chemical research on coal and coal-derived liquids can pave the way for their non-fuel uses for making chemicals and materials.

  7. Novel Anti-Campylobacter Compounds Identified Using High Throughput Screening of a Pre-selected Enriched Small Molecules Library

    PubMed Central

    Kumar, Anand; Drozd, Mary; Pina-Mimbela, Ruby; Xu, Xiulan; Helmy, Yosra A.; Antwi, Janet; Fuchs, James R.; Nislow, Corey; Templeton, Jillian; Blackall, Patrick J.; Rajashekara, Gireesh

    2016-01-01

    Campylobacter is a leading cause of foodborne bacterial gastroenteritis worldwide and infections can be fatal. The emergence of antibiotic-resistant Campylobacter spp. necessitates the development of new antimicrobials. We identified novel anti-Campylobacter small molecule inhibitors using a high throughput growth inhibition assay. To expedite screening, we made use of a “bioactive” library of 4182 compounds that we have previously shown to be active against diverse microbes. Screening for growth inhibition of Campylobacter jejuni, identified 781 compounds that were either bactericidal or bacteriostatic at a concentration of 200 μM. Seventy nine of the bactericidal compounds were prioritized for secondary screening based on their physico-chemical properties. Based on the minimum inhibitory concentration against a diverse range of C. jejuni and a lack of effect on gut microbes, we selected 12 compounds. No resistance was observed to any of these 12 lead compounds when C. jejuni was cultured with lethal or sub-lethal concentrations suggesting that C. jejuni is less likely to develop resistance to these compounds. Top 12 compounds also possessed low cytotoxicity to human intestinal epithelial cells (Caco-2 cells) and no hemolytic activity against sheep red blood cells. Next, these 12 compounds were evaluated for ability to clear C. jejuni in vitro. A total of 10 compounds had an anti-C. jejuni effect in Caco-2 cells with some effective even at 25 μM concentrations. These novel 12 compounds belong to five established antimicrobial chemical classes; piperazines, aryl amines, piperidines, sulfonamide, and pyridazinone. Exploitation of analogs of these chemical classes may provide Campylobacter specific drugs that can be applied in both human and animal medicine. PMID:27092106

  8. An Unbiased Oncology Compound Screen to Identify Novel Combination Strategies.

    PubMed

    O'Neil, Jennifer; Benita, Yair; Feldman, Igor; Chenard, Melissa; Roberts, Brian; Liu, Yaping; Li, Jing; Kral, Astrid; Lejnine, Serguei; Loboda, Andrey; Arthur, William; Cristescu, Razvan; Haines, Brian B; Winter, Christopher; Zhang, Theresa; Bloecher, Andrew; Shumway, Stuart D

    2016-06-01

    Combination drug therapy is a widely used paradigm for managing numerous human malignancies. In cancer treatment, additive and/or synergistic drug combinations can convert weakly efficacious monotherapies into regimens that produce robust antitumor activity. This can be explained in part through pathway interdependencies that are critical for cancer cell proliferation and survival. However, identification of the various interdependencies is difficult due to the complex molecular circuitry that underlies tumor development and progression. Here, we present a high-throughput platform that allows for an unbiased identification of synergistic and efficacious drug combinations. In a screen of 22,737 experiments of 583 doublet combinations in 39 diverse cancer cell lines using a 4 by 4 dosing regimen, both well-known and novel synergistic and efficacious combinations were identified. Here, we present an example of one such novel combination, a Wee1 inhibitor (AZD1775) and an mTOR inhibitor (ridaforolimus), and demonstrate that the combination potently and synergistically inhibits cancer cell growth in vitro and in vivo This approach has identified novel combinations that would be difficult to reliably predict based purely on our current understanding of cancer cell biology. Mol Cancer Ther; 15(6); 1155-62. ©2016 AACR. PMID:26983881

  9. Accurate ab initio energy gradients in chemical compound space.

    PubMed

    Anatole von Lilienfeld, O

    2009-10-28

    Analytical potential energy derivatives, based on the Hellmann-Feynman theorem, are presented for any pair of isoelectronic compounds. Since energies are not necessarily monotonic functions between compounds, these derivatives can fail to predict the right trends of the effect of alchemical mutation. However, quantitative estimates without additional self-consistency calculations can be made when the Hellmann-Feynman derivative is multiplied with a linearization coefficient that is obtained from a reference pair of compounds. These results suggest that accurate predictions can be made regarding any molecule's energetic properties as long as energies and gradients of three other molecules have been provided. The linearization coefficent can be interpreted as a quantitative measure of chemical similarity. Presented numerical evidence includes predictions of electronic eigenvalues of saturated and aromatic molecular hydrocarbons. PMID:19894922

  10. GPU Accelerated Chemical Similarity Calculation for Compound Library Comparison

    PubMed Central

    Ma, Chao; Wang, Lirong; Xie, Xiang-Qun

    2012-01-01

    Chemical similarity calculation plays an important role in compound library design, virtual screening, and “lead” optimization. In this manuscript, we present a novel GPU-accelerated algorithm for all-vs-all Tanimoto matrix calculation and nearest neighbor search. By taking advantage of multi-core GPU architecture and CUDA parallel programming technology, the algorithm is up to 39 times superior to the existing commercial software that runs on CPUs. Because of the utilization of intrinsic GPU instructions, this approach is nearly 10 times faster than existing GPU-accelerated sparse vector algorithm, when Unity fingerprints are used for Tanimoto calculation. The GPU program that implements this new method takes about 20 minutes to complete the calculation of Tanimoto coefficients between 32M PubChem compounds and 10K Active Probes compounds, i.e., 324G Tanimoto coefficients, on a 128-CUDA-core GPU. PMID:21692447

  11. Chemical impurity produces extra compound eyes and heads in crickets

    SciTech Connect

    Walton, B.T.

    1981-04-03

    A chemical impurity isolated from commercially purchased acridine causes cricket embryos to develop extra compound eyes, branched antennae, extra antennae, and extra heads. Purified acridine does not produce similar duplications of cricket heads or head structures nor do the substituted acridines proflavine, acriflavine, or acridine orange. A dose-response relation exists such that the number and severity of abnormalities increase with increasing concentration of the teratogen.

  12. Chemical Compounds and Extraction Methods of “Maollahm”

    PubMed Central

    Sadeghpoor, Omid; Dayeni, Manijeh; Razi, Samane

    2016-01-01

    Background: Maollahm or meat juice, a by-product of meat, is a traditional remedy in Persian medicine. This product was used as a nourishment or treatment substance for sick people. According to the ancient Persian medicine, animal meat has more affinity with the human body and the body easily absorbs its nutrition. Therefore, one could resort to maollahm for patients requiring urgent nourishment to boost and strengthen their body. Methods: In this work, different ways of preparing maollahm from poultry, goat, cow, and sheep meat are studied. Most of these methods are based on distillation or barbecue before distillation, as prescribed by traditional medicine books. The reactions, chemical processes, and volatile compounds related to different types of cooked meat are also compared with the outcome of recent research studies. Results: The difference between various types of meat is related to their compounds. Different cooking processes such as barbecuing, roasting, cooking, and boiling have an effect on the taste, smell and the chemical constituents of maollahm. Additionally, the type of meat, animal feed, as well as using or removing the fat during the cooking process, have an effect on the produced volatile compounds. Conclusion: Cooking process and the type of meat have a direct effect on the compounds of maollahm. Possible reactions in the preparation process of maollahm are investigated and presented according to the new research studies. PMID:27516659

  13. Quantum Chemical Study of the Thermochemical Properties of Organophosphorous Compounds.

    PubMed

    Khalfa, A; Ferrari, M; Fournet, R; Sirjean, B; Verdier, L; Glaude, P A

    2015-10-22

    Organophosphorous compounds are involved in many toxic compounds such as fungicides, pesticides, or chemical warfare nerve agents. The understanding of the decomposition chemistry of these compounds in the environment is largely limited by the scarcity of thermochemical data. Because of the high toxicity of many of these molecules, experimental determination of their thermochemical properties is very difficult. In this work, standard gas-phase thermodynamic data, i.e., enthalpies of formation (ΔfH298°), standard entropies (S298°), and heat capacities (Cp°(T)), were determined using quantum chemical calculations and more specifically the CBS-QB3 composite method, which was found to be the best compromise between precision and calculation time among high accuracy composite methods. A large number of molecules was theoretically investigated, involving trivalent and pentavalent phosphorus atoms, and C, H, O, N, S, and F atoms. These data were used to propose 83 original groups, used in the semiempirical group contribution method proposed by Benson. Thanks to these latter group values, thermochemical properties of several nerve agents, common pesticides and herbicides have been evaluated. Bond dissociations energies (BDE), useful for the analysis the thermal stability of the compounds, were also determined in several molecules of interest. PMID:26434606

  14. Applications of swept-frequency acoustic interferometer for nonintrusive detection and identification of chemical warfare compounds

    SciTech Connect

    Sinha, D.N.; Springer, K.; Han, W.; Lizon, D.; Kogan, S.

    1997-12-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a nonintrusive liquid characterization technique developed specifically for detecting and identifying chemical warfare (CW) compounds inside sealed munitions. The SFAI technique can rapidly (less than 20 seconds) and accurately determine sound speed and sound attenuation of a liquid inside a container over a wide frequency range (1 kHz-15 MHz). From the frequency-dependent sound attenuation measurement, liquid density is determined. These three physical properties are used to uniquely identify the CW compounds. In addition, various chemical relaxation processes in liquids and particle size distribution in emulsions can also be determined from the frequency-dependent attenuation measurement. The SFAI instrument is battery-operated and highly portable (< 6 lb.). The instrument has many potential application in industry ranging from sensitive detection (ppm level) of contamination to process control. The theory of the technique will be described and examples of several chemical industry applications will be presented.

  15. International chemical identifier for reactions (RInChI)

    PubMed Central

    2013-01-01

    The IUPAC International Chemical Identifier (InChI) provides a method to generate a unique text descriptor of molecular structures. Building on this work, we report a process to generate a unique text descriptor for reactions, RInChI. By carefully selecting the information that is included and by ordering the data carefully, different scientists studying the same reaction should produce the same RInChI. If differences arise, these are most likely the minor layers of the InChI, and so may be readily handled. RInChI provides a concise description of the key data in a chemical reaction, and will help enable the rapid searching and analysis of reaction databases. PMID:24152584

  16. Identifying non-point sources of endocrine active compounds and their biological impacts in freshwater lakes.

    PubMed

    Baker, Beth H; Martinovic-Weigelt, Dalma; Ferrey, Mark; Barber, Larry B; Writer, Jeffery H; Rosenberry, Donald O; Kiesling, Richard L; Lundy, James R; Schoenfuss, Heiko L

    2014-10-01

    Contaminants of emerging concern, particularly endocrine active compounds (EACs), have been identified as a threat to aquatic wildlife. However, little is known about the impact of EACs on lakes through groundwater from onsite wastewater treatment systems (OWTS). This study aims to identify specific contributions of OWTS to Sullivan Lake, Minnesota, USA. Lake hydrology, water chemistry, caged bluegill sunfish (Lepomis macrochirus), and larval fathead minnow (Pimephales promelas) exposures were used to assess whether EACs entered the lake through OWTS inflow and the resultant biological impact on fish. Study areas included two OWTS-influenced near-shore sites with native bluegill spawning habitats and two in-lake control sites without nearby EAC sources. Caged bluegill sunfish were analyzed for plasma vitellogenin concentrations, organosomatic indices, and histological pathologies. Surface and porewater was collected from each site and analyzed for EACs. Porewater was also collected for laboratory exposure of larval fathead minnow, before analysis of predator escape performance and gene expression profiles. Chemical analysis showed EACs present at low concentrations at each study site, whereas discrete variations were reported between sites and between summer and fall samplings. Body condition index and liver vacuolization of sunfish were found to differ among study sites as did gene expression in exposed larval fathead minnows. Interestingly, biological exposure data and water chemistry did not match. Therefore, although results highlight the potential impacts of seepage from OWTS, further investigation of mixture effects and life history factor as well as chemical fate is warranted. PMID:24974177

  17. Chemical degradation of fluorosulfonamide fuel cell membrane polymer model compounds

    NASA Astrophysics Data System (ADS)

    Alsheheri, Jamela M.; Ghassemi, Hossein; Schiraldi, David A.

    2014-12-01

    The durability of a polymer electrolyte fuel cell membrane, along with high proton conductivity and mechanical performance is critical to the success of these energy conversion devices. Extending our work in perfluorinated membrane stability, aromatic trifluoromethyl sulfonamide model compounds were prepared, and their oxidative degradation was examined. The chemical structures for the models were based on mono-, di- and tri-perfluorinated sulfonamide modified phenyl rings. Durability of the model compounds was evaluated by exposure to hydroxyl radicals generated using Fenton reagent and UV irradiation of hydrogen peroxide. LC-MS results for the mono-substituted model compound indicate greater stability to radical oxidation than the di-substituted species; loss of perfluorinated fonamide side chains appears to be an important pathway, along with dimerization and aromatic ring hydroxylation. The tri-substituted model compound also shows loss of side chains, with the mono-substituted compound being a major oxidation product, along with a limited amount of hydroxylation and dimerization of the starting material.

  18. Mapping the chemical chromatin reactivation landscape identifies BRD4-TAF1 cross-talk.

    PubMed

    Sdelci, Sara; Lardeau, Charles-Hugues; Tallant, Cynthia; Klepsch, Freya; Klaiber, Björn; Bennett, James; Rathert, Philipp; Schuster, Michael; Penz, Thomas; Fedorov, Oleg; Superti-Furga, Giulio; Bock, Christoph; Zuber, Johannes; Huber, Kilian V M; Knapp, Stefan; Müller, Susanne; Kubicek, Stefan

    2016-07-01

    Bromodomain-containing proteins of the BET family recognize histone lysine acetylation and mediate transcriptional activation of target genes such as the MYC oncogene. Pharmacological inhibitors of BET domains promise therapeutic benefits in a variety of cancers. We performed a high-diversity chemical compound screen for agents capable of modulating BRD4-dependent heterochromatization of a generic reporter in human cells. In addition to known and new compounds targeting BRD4, we identified small molecules that mimic BRD4 inhibition without direct engagement. One such compound was a potent inhibitor of the second bromodomain of TAF1. Using this inhibitor, we discovered that TAF1 synergizes with BRD4 to control proliferation of cancer cells, making TAF1 an attractive epigenetic target in cancers driven by MYC. PMID:27159579

  19. Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing.

    PubMed

    Stringfellow, William T; Domen, Jeremy K; Camarillo, Mary Kay; Sandelin, Whitney L; Borglin, Sharon

    2014-06-30

    Hydraulic fracturing (HF), a method to enhance oil and gas production, has become increasingly common throughout the U.S. As such, it is important to characterize the chemicals found in HF fluids to evaluate potential environmental fate, including fate in treatment systems, and human health impacts. Eighty-one common HF chemical additives were identified and categorized according to their functions. Physical and chemical characteristics of these additives were determined using publicly available chemical information databases. Fifty-five of the compounds are organic and twenty-seven of these are considered readily or inherently biodegradable. Seventeen chemicals have high theoretical chemical oxygen demand and are used in concentrations that present potential treatment challenges. Most of the HF chemicals evaluated are non-toxic or of low toxicity and only three are classified as Category 2 oral toxins according to standards in the Globally Harmonized System of Classification and Labeling of Chemicals; however, toxicity information was not located for thirty of the HF chemicals evaluated. Volatilization is not expected to be a significant exposure pathway for most HF chemicals. Gaps in toxicity and other chemical properties suggest deficiencies in the current state of knowledge, highlighting the need for further assessment to understand potential issues associated with HF chemicals in the environment. PMID:24853136

  20. Physical and Chemical Aspects of Stabilization of Compounds in Silk

    PubMed Central

    Pritchard, Eleanor M.; Dennis, Patrick B.; Omenetto, Fiorenzo; Naik, Rajesh R.; Kaplan, David L.

    2015-01-01

    The challenge of stabilization of small molecules and proteins has received considerable interest. The biological activity of small molecules can be lost as a consequence of chemical modifications, while protein activity may be lost due to chemical or structural degradation, such as a change in macromolecular conformation or aggregation. In these cases stabilization is required to preserve therapeutic and bioactivity efficacy and safety. In addition to use in therapeutic applications, strategies to stabilize small molecules and proteins also have applications in industrial processes, diagnostics, and consumer products like food and cosmetics. Traditionally, therapeutic drug formulation efforts have focused on maintaining stability during product preparation and storage. However, with growing interest in the fields of encapsulation, tissue engineering and controlled release drug delivery systems, new stabilization challenges are being addressed; the compounds or protein of interest must be stabilized during: (1) fabrication of the protein or small molecule loaded carrier, (2) device storage, and (3) for the duration of intended release needs in vitro or in vivo. We review common mechanisms of compound degradation for small molecules and proteins during biomaterial preparation (including tissue engineering scaffolds and drug delivery systems), storage and in vivo implantation. We also review the physical and chemical aspects of polymer-based stabilization approaches, with a particular focus on the stabilizing properties of silk fibroin biomaterials. PMID:22270942

  1. An overview of NMR-based metabolomics to identify secondary plant compounds involved in host plant resistance.

    PubMed

    Leiss, Kirsten A; Choi, Young H; Verpoorte, Robert; Klinkhamer, Peter G L

    2011-06-01

    Secondary metabolites provide a potential source for the generation of host plant resistance and development of biopesticides. This is especially important in view of the rapid and vast spread of agricultural and horticultural pests worldwide. Multiple pests control tactics in the framework of an integrated pest management (IPM) programme are necessary. One important strategy of IPM is the use of chemical host plant resistance. Up to now the study of chemical host plant resistance has, for technical reasons, been restricted to the identification of single compounds applying specific chemical analyses adapted to the compound in question. In biological processes however, usually more than one compound is involved. Metabolomics allows the simultaneous detection of a wide range of compounds, providing an immediate image of the metabolome of a plant. One of the most universally used metabolomic approaches comprises nuclear magnetic resonance spectroscopy (NMR). It has been NMR which has been applied as a proof of principle to show that metabolomics can constitute a major advancement in the study of host plant resistance. Here we give an overview on the application of NMR to identify candidate compounds for host plant resistance. We focus on host plant resistance to western flower thrips (Frankliniella occidentalis) which has been used as a model for different plant species. PMID:21765818

  2. Analysis of chlorocarbon compounds identified in the SAM Investigation of the Mars Science Laboratory mission

    NASA Astrophysics Data System (ADS)

    Freissinet, Caroline; Mahaffy, P.; Glavin, D.; Buch, A.; Brunner, A.; Eigenbrode, J.; Martin, M.; Miller, K.; Steele, A.; Szopa, C.; SAM; MSL science Team

    2013-10-01

    The gas chromatograph mass spectrometer (GCMS) mode of the Sample Analysis at Mars (SAM) experiment was designed for the separation and identification of the chemical components of the gases released from a solid sample or trapped from the atmosphere. Gases from solid samples are either produced by heating a cell from ambient to >800-1100oC (EGA mode) or by wet chemistry extraction and reactions (not yet employed on Mars). Prior to EGA analysis of portions of the first 3 solid samples (Rocknest, John Klein and Cumberland) collected by MSL and delivered to SAM, an internal SAM blank run was carried out with an empty quartz cup. These blank analyses are required to understand the background signal intrinsic to the GCMS and its gas manifolds and traps. Several peaks have been identified as part of SAM background, some of them below the nmol level, which attests of the sensitivity of the instrument and as-designed performance of the GCMS. The origin of each peak has been investigated, and two major contributors are revealed; residual vapor from one of the chemicals used for SAM wet chemistry experiment: N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide (MTBSTFA), and the Tenax from the hydrocarbon trap. Supporting lab experiments are in progress to understand the reaction pathways of the molecules identified in the SAM background. These experiments help elucidate which molecules may be interpreted as indigenous to Mars. Of the three solid samples analyzed on 11 runs, it was possible to detect and identify several chlorinated compounds including several chlorohydrocarbons. The chlorine is likely derived from the decomposition of martian perchlorates or other indigenous Cl-containing species while the origin of the carbon is presently under investigation for each detected molecule. To date, a subset these molecules have been identified in lab studies and a terrestrial contribution to the observed products are more easily explained. The combined results from SAM and

  3. Electrolytic photodissociation of chemical compounds by iron oxide electrodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1984-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  4. Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes

    DOEpatents

    Somorjai, Gabor A.; Leygraf, Christofer H.

    1985-01-01

    Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

  5. Identifying Bioaccumulative Halogenated Organic Compounds Using a Nontargeted Analytical Approach: Seabirds as Sentinels

    PubMed Central

    Millow, Christopher J.; Mackintosh, Susan A.; Lewison, Rebecca L.; Dodder, Nathan G.; Hoh, Eunha

    2015-01-01

    Persistent organic pollutants (POPs) are typically monitored via targeted mass spectrometry, which potentially identifies only a fraction of the contaminants actually present in environmental samples. With new anthropogenic compounds continuously introduced to the environment, novel and proactive approaches that provide a comprehensive alternative to targeted methods are needed in order to more completely characterize the diversity of known and unknown compounds likely to cause adverse effects. Nontargeted mass spectrometry attempts to extensively screen for compounds, providing a feasible approach for identifying contaminants that warrant future monitoring. We employed a nontargeted analytical method using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS) to characterize halogenated organic compounds (HOCs) in California Black skimmer (Rynchops niger) eggs. Our study identified 111 HOCs; 84 of these compounds were regularly detected via targeted approaches, while 27 were classified as typically unmonitored or unknown. Typically unmonitored compounds of note in bird eggs included tris(4-chlorophenyl)methane (TCPM), tris(4-chlorophenyl)methanol (TCPMOH), triclosan, permethrin, heptachloro-1'-methyl-1,2'-bipyrrole (MBP), as well as four halogenated unknown compounds that could not be identified through database searching or the literature. The presence of these compounds in Black skimmer eggs suggests they are persistent, bioaccumulative, potentially biomagnifying, and maternally transferring. Our results highlight the utility and importance of employing nontargeted analytical tools to assess true contaminant burdens in organisms, as well as to demonstrate the value in using environmental sentinels to proactively identify novel contaminants. PMID:26020245

  6. An approach in building a chemical compound search engine in oracle database.

    PubMed

    Wang, H; Volarath, P; Harrison, R

    2005-01-01

    A searching or identifying of chemical compounds is an important process in drug design and in chemistry research. An efficient search engine involves a close coupling of the search algorithm and database implementation. The database must process chemical structures, which demands the approaches to represent, store, and retrieve structures in a database system. In this paper, a general database framework for working as a chemical compound search engine in Oracle database is described. The framework is devoted to eliminate data type constrains for potential search algorithms, which is a crucial step toward building a domain specific query language on top of SQL. A search engine implementation based on the database framework is also demonstrated. The convenience of the implementation emphasizes the efficiency and simplicity of the framework. PMID:17282834

  7. Indoor Volatile Organic Compounds and Chemical Sensitivity Reactions

    PubMed Central

    Win-Shwe, Tin-Tin; Arashidani, Keiichi; Kunugita, Naoki

    2013-01-01

    Studies of unexplained symptoms observed in chemically sensitive subjects have increased the awareness of the relationship between neurological and immunological diseases due to exposure to volatile organic compounds (VOCs). However, there is no direct evidence that links exposure to low doses of VOCs and neurological and immunological dysfunction. We review animal model data to clarify the role of VOCs in neuroimmune interactions and discuss our recent studies that show a relationship between chronic exposure of C3H mice to low levels of formaldehyde and the induction of neural and immune dysfunction. We also consider the possible mechanisms by which VOC exposure can induce the symptoms presenting in patients with a multiple chemical sensitivity. PMID:24228055

  8. Propolis volatile compounds: chemical diversity and biological activity: a review

    PubMed Central

    2014-01-01

    Propolis is a sticky material collected by bees from plants, and used in the hive as building material and defensive substance. It has been popular as a remedy in Europe since ancient times. Nowadays, propolis use in over-the-counter preparations, “bio”-cosmetics and functional foods, etc., increases. Volatile compounds are found in low concentrations in propolis, but their aroma and significant biological activity make them important for propolis characterisation. Propolis is a plant-derived product: its chemical composition depends on the local flora at the site of collection, thus it offers a significant chemical diversity. The role of propolis volatiles in identification of its plant origin is discussed. The available data about chemical composition of propolis volatiles from different geographic regions are reviewed, demonstrating significant chemical variability. The contribution of volatiles and their constituents to the biological activities of propolis is considered. Future perspectives in research on propolis volatiles are outlined, especially in studying activities other than antimicrobial. PMID:24812573

  9. The Privileged Chemical Space Predictor (PCSP): A computer program that identifies privileged chemical space from screens of modularly assembled chemical libraries

    PubMed Central

    Seedhouse, Steven J.; Labuda, Lucas P.; Disney, Matthew D.

    2010-01-01

    Modularly assembled combinatorial libraries are often used to identify ligands that bind to and modulate the function of a protein or a nucleic acid. Much of the data from screening these compounds, however, is not efficiently utilized to define structure-activity relationships (SAR). If SAR data are accurately constructed, it can enable the design of more potent binders. Herein, we describe a computer program called Privileged Chemical Space Predictor (PCSP) that statistically determines SAR from high-throughput screening (HTS) data and then identifies features in small molecules that predispose them for binding a target. Features are scored for statistical significance and can be utilized to design improved second generation compounds or more target-focused libraries. The program’s utility is demonstrated through analysis of a modularly assembled peptoid library that was screened for binding to and inhibiting a group I intron RNA from the fungal pathogen Candida albicans. PMID:20097562

  10. Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries

    PubMed Central

    Inglese, James; Auld, Douglas S.; Jadhav, Ajit; Johnson, Ronald L.; Simeonov, Anton; Yasgar, Adam; Zheng, Wei; Austin, Christopher P.

    2006-01-01

    High-throughput screening (HTS) of chemical compounds to identify modulators of molecular targets is a mainstay of pharmaceutical development. Increasingly, HTS is being used to identify chemical probes of gene, pathway, and cell functions, with the ultimate goal of comprehensively delineating relationships between chemical structures and biological activities. Achieving this goal will require methodologies that efficiently generate pharmacological data from the primary screen and reliably profile the range of biological activities associated with large chemical libraries. Traditional HTS, which tests compounds at a single concentration, is not suited to this task, because HTS is burdened by frequent false positives and false negatives and requires extensive follow-up testing. We have developed a paradigm, quantitative HTS (qHTS), tested with the enzyme pyruvate kinase, to generate concentration–response curves for >60,000 compounds in a single experiment. We show that this method is precise, refractory to variations in sample preparation, and identifies compounds with a wide range of activities. Concentration–response curves were classified to rapidly identify pyruvate kinase activators and inhibitors with a variety of potencies and efficacies and elucidate structure–activity relationships directly from the primary screen. Comparison of qHTS with traditional single-concentration HTS revealed a high prevalence of false negatives in the single-point screen. This study demonstrates the feasibility of qHTS for accurately profiling every compound in large chemical libraries (>105 compounds). qHTS produces rich data sets that can be immediately mined for reliable biological activities, thereby providing a platform for chemical genomics and accelerating the identification of leads for drug discovery. PMID:16864780

  11. Privacy-preserving search for chemical compound databases

    PubMed Central

    2015-01-01

    Background Searching for similar compounds in a database is the most important process for in-silico drug screening. Since a query compound is an important starting point for the new drug, a query holder, who is afraid of the query being monitored by the database server, usually downloads all the records in the database and uses them in a closed network. However, a serious dilemma arises when the database holder also wants to output no information except for the search results, and such a dilemma prevents the use of many important data resources. Results In order to overcome this dilemma, we developed a novel cryptographic protocol that enables database searching while keeping both the query holder's privacy and database holder's privacy. Generally, the application of cryptographic techniques to practical problems is difficult because versatile techniques are computationally expensive while computationally inexpensive techniques can perform only trivial computation tasks. In this study, our protocol is successfully built only from an additive-homomorphic cryptosystem, which allows only addition performed on encrypted values but is computationally efficient compared with versatile techniques such as general purpose multi-party computation. In an experiment searching ChEMBL, which consists of more than 1,200,000 compounds, the proposed method was 36,900 times faster in CPU time and 12,000 times as efficient in communication size compared with general purpose multi-party computation. Conclusion We proposed a novel privacy-preserving protocol for searching chemical compound databases. The proposed method, easily scaling for large-scale databases, may help to accelerate drug discovery research by making full use of unused but valuable data that includes sensitive information. PMID:26678650

  12. A chemical rescue screen identifies a Plasmodium falciparum apicoplast inhibitor targeting MEP isoprenoid precursor biosynthesis.

    PubMed

    Wu, Wesley; Herrera, Zachary; Ebert, Danny; Baska, Katie; Cho, Seok H; DeRisi, Joseph L; Yeh, Ellen

    2015-01-01

    The apicoplast is an essential plastid organelle found in Plasmodium parasites which contains several clinically validated antimalarial-drug targets. A chemical rescue screen identified MMV-08138 from the "Malaria Box" library of growth-inhibitory antimalarial compounds as having specific activity against the apicoplast. MMV-08138 inhibition of blood-stage Plasmodium falciparum growth is stereospecific and potent, with the most active diastereomer demonstrating a 50% effective concentration (EC50) of 110 nM. Whole-genome sequencing of 3 drug-resistant parasite populations from two independent selections revealed E688Q and L244I mutations in P. falciparum IspD, an enzyme in the MEP (methyl-d-erythritol-4-phosphate) isoprenoid precursor biosynthesis pathway in the apicoplast. The active diastereomer of MMV-08138 directly inhibited PfIspD activity in vitro with a 50% inhibitory concentration (IC50) of 7.0 nM. MMV-08138 is the first PfIspD inhibitor to be identified and, together with heterologously expressed PfIspD, provides the foundation for further development of this promising antimalarial drug candidate lead. Furthermore, this report validates the use of the apicoplast chemical rescue screen coupled with target elucidation as a discovery tool to identify specific apicoplast-targeting compounds with new mechanisms of action. PMID:25367906

  13. Transcriptional Inhibitors Identified in a 160,000-Compound Small-Molecule DUX4 Viability Screen.

    PubMed

    Choi, Si Ho; Bosnakovski, Darko; Strasser, Jessica M; Toso, Erik A; Walters, Michael A; Kyba, Michael

    2016-08-01

    Facioscapulohumeral muscular dystrophy is a genetically dominant, currently untreatable muscular dystrophy. It is caused by mutations that enable expression of the normally silent DUX4 gene, which encodes a pathogenic transcription factor. A screen based on Tet-on DUX4-induced mouse myoblast death previously uncovered compounds from a 44,000-compound library that protect against DUX4 toxicity. Many of those compounds acted downstream of DUX4 in an oxidative stress pathway. Here, we extend this screen to an additional 160,000 compounds and, using greater stringency, identify a new set of DUX4-protective compounds. From 640 hits, we performed secondary screens, repurchased 46 of the most desirable, confirmed activity, and tested each for activity against other cell death-inducing insults. The majority of these compounds also protected against oxidative stress. Of the 100 repurchased compounds identified through both screens, only SHC40, 75, and 98 inhibited DUX4 target genes, but they also inhibited dox-mediated DUX4 expression. Using a target gene readout on the 640-compound hit set, we discovered three overlooked compounds, SHC351, 540, and 572, that inhibit DUX4 target gene upregulation without nonspecific effects on the Tet-on system. These novel inhibitors of DUX4 transcriptional activity may thus act on pathways or cofactors needed by DUX4 for transcriptional activation in these cells. PMID:27245141

  14. A chemical screen to identify inducers of the mitochondrial unfolded protein response in C. elegans

    PubMed Central

    Rauthan, Manish; Pilon, Marc

    2015-01-01

    We previously showed that inhibition of the mevalonate pathway in C. elegans causes inhibition of protein prenylation, developmental arrest and lethality. We also showed that constitutive activation of the mitochondrial unfolded protein response, UPRmt, is an effective way for C. elegans to become resistant to the negative effects of mevalonate pathway inhibition. This was an important finding since statins, a drug class prescribed to lower cholesterol levels in patients, act by inhibiting the mevalonate pathway, and it is therefore possible that some of their undesirable side effects could be alleviated by activating the UPRmt. Here, we screened a chemical library and identified 4 compounds that specifically activated the UPRmt. One of these compounds, methacycline hydrochloride (a tetracycline antibiotic) also protected C. elegans and mammalian cells from statin toxicity. Methacycline hydrochloride and ethidium bromide, a known UPRmt activator, were also tested in mice: only ethidium bromide significantly activate the UPRmt in skeletal muscles. PMID:27123370

  15. High Throughput Screening Identifies a Novel Compound Protecting Cardiomyocytes from Doxorubicin-Induced Damage

    PubMed Central

    Gergely, Szabolcs; Hegedűs, Csaba; Lakatos, Petra; Kovács, Katalin; Gáspár, Renáta; Csont, Tamás; Virág, László

    2015-01-01

    Antracyclines are effective antitumor agents. One of the most commonly used antracyclines is doxorubicin, which can be successfully used to treat a diverse spectrum of tumors. Application of these drugs is limited by their cardiotoxic effect, which is determined by a lifetime cumulative dose. We set out to identify by high throughput screening cardioprotective compounds protecting cardiomyocytes from doxorubicin-induced injury. Ten thousand compounds of ChemBridge's DIVERSet compound library were screened to identify compounds that can protect H9C2 rat cardiomyocytes against doxorubicin-induced cell death. The most effective compound proved protective in doxorubicin-treated primary rat cardiomyocytes and was further characterized to demonstrate that it significantly decreased doxorubicin-induced apoptotic and necrotic cell death and inhibited doxorubicin-induced activation of JNK MAP kinase without having considerable radical scavenging effect or interfering with the antitumor effect of doxorubicin. In fact the compound identified as 3-[2-(4-ethylphenyl)-2-oxoethyl]-1,2-dimethyl-1H-3,1-benzimidazol-3-ium bromide was toxic to all tumor cell lines tested even without doxorubicine treatment. This benzimidazole compound may lead, through further optimalization, to the development of a drug candidate protecting the heart from doxorubicin-induced injury. PMID:26137186

  16. New effective chemically synthesized anti-smallpox compound NIOCH-14.

    PubMed

    Mazurkov, Oleg Yu; Kabanov, Alexey S; Shishkina, Larisa N; Sergeev, Alexander A; Skarnovich, Maksim O; Bormotov, Nikolay I; Skarnovich, Maria A; Ovchinnikova, Alena S; Titova, Ksenya A; Galahova, Darya O; Bulychev, Leonid E; Sergeev, Artemiy A; Taranov, Oleg S; Selivanov, Boris A; Tikhonov, Alexey Ya; Zavjalov, Evgenii L; Agafonov, Alexander P; Sergeev, Alexander N

    2016-05-01

    Antiviral activity of the new chemically synthesized compound NIOCH-14 (a derivative of tricyclodicarboxylic acid) in comparison with ST-246 (the condensed derivative of pyrroledione) was observed in experiments in vitro and in vivo using orthopoxviruses including highly pathogenic ones. After oral administration of NIOCH-14 to outbred ICR mice infected intranasally with 100 % lethal dose of ectromelia virus, it was shown that 50 % effective doses of NIOCH-14 and ST-246 did not significantly differ. The 'therapeutic window' varied from 1 day before infection to 6 days post-infection (p.i.) to achieve 100-60 % survival rate. The administration of NIOCH-14 and ST-246 to mice resulted in a significant reduction of ectromelia virus titres in organs examined as compared with the control and also reduced pathological changes in the lungs 6 days p.i. Oral administration of NIOCH-14 and ST-246 to ICR mice and marmots challenged with monkeypox virus as compared with the control resulted in a significant reduction of virus production in the lungs and the proportion of infected mice 7 days p.i. as well as the absence of disease in marmots. Significantly lower proportions of infected mice and virus production levels in the lungs as compared with the control were demonstrated in experiments after oral administration of NIOCH-14 and ST-246 to ICR mice and immunodeficient SCID mice challenged with variola virus 3 and 4 days p.i., respectively. The results obtained suggest good prospects for further study of the chemical compound NIOCH-14 to create a new smallpox drug on its basis. PMID:26861777

  17. Screening of Pharmacologically Active Small Molecule Compounds Identifies Antifungal Agents Against Candida Biofilms

    PubMed Central

    Watamoto, Takao; Egusa, Hiroshi; Sawase, Takashi; Yatani, Hirofumi

    2015-01-01

    Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using Candida albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM) using an antifungal susceptibility test (AST). To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF) cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and nine compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration. Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal candidiasis. PMID

  18. Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building

    SciTech Connect

    Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee; Apte, Michael; Maddalena, Randy

    2010-09-20

    The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC, a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed

  19. A Yeast/Drosophila Screen to Identify New Compounds Overcoming Frataxin Deficiency

    PubMed Central

    Seguin, Alexandra; Monnier, Véronique; Palandri, Amandine; Bihel, Frédéric; Rera, Michael; Schmitt, Martine; Camadro, Jean-Michel; Tricoire, Hervé; Lesuisse, Emmanuel

    2015-01-01

    Friedreich's ataxia (FA) is a rare neurodegenerative disease which is very debilitating for the patients who progressively lose their autonomy. The lack of efficient therapeutic treatment of the disease strongly argues for urgent need to search for new active compounds that may stop the progression of the disease or prevent the appearance of the symptoms when the genetic defect is diagnosed early enough. In the present study, we used a yeast strain with a deletion of the frataxin homologue gene as a model of FA cells in a primary screen of two chemical libraries, a fraction of the French National Chemical Library (5500 compounds) and the Prestwick collection (880 compounds). We ran a secondary screen on Drosophila melanogaster flies expressing reduced levels of frataxin during larval development. Half of the compounds selected in yeast appeared to be active in flies in this developmental paradigm, and one of the two compounds with highest activities in this assay partially rescued the heart dilatation phenotype resulting from heart specific depletion of frataxin. The unique complementarity of these two frataxin-deficient models, unicellular and multicellular, appears to be very efficient to select new compounds with improved selectivity, bringing significant perspectives towards improvements in FA therapy. PMID:26523199

  20. New Compound Sets Identified from High Throughput Phenotypic Screening Against Three Kinetoplastid Parasites: An Open Resource

    PubMed Central

    Peña, Imanol; Pilar Manzano, M.; Cantizani, Juan; Kessler, Albane; Alonso-Padilla, Julio; Bardera, Ana I.; Alvarez, Emilio; Colmenarejo, Gonzalo; Cotillo, Ignacio; Roquero, Irene; de Dios-Anton, Francisco; Barroso, Vanessa; Rodriguez, Ana; Gray, David W.; Navarro, Miguel; Kumar, Vinod; Sherstnev, Alexander; Drewry, David H.; Brown, James R.; Fiandor, Jose M.; Julio Martin, J.

    2015-01-01

    Using whole-cell phenotypic assays, the GlaxoSmithKline high-throughput screening (HTS) diversity set of 1.8 million compounds was screened against the three kinetoplastids most relevant to human disease, i.e. Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. Secondary confirmatory and orthogonal intracellular anti-parasiticidal assays were conducted, and the potential for non-specific cytotoxicity determined. Hit compounds were chemically clustered and triaged for desirable physicochemical properties. The hypothetical biological target space covered by these diversity sets was investigated through bioinformatics methodologies. Consequently, three anti-kinetoplastid chemical boxes of ~200 compounds each were assembled. Functional analyses of these compounds suggest a wide array of potential modes of action against kinetoplastid kinases, proteases and cytochromes as well as potential host–pathogen targets. This is the first published parallel high throughput screening of a pharma compound collection against kinetoplastids. The compound sets are provided as an open resource for future lead discovery programs, and to address important research questions. PMID:25740547

  1. A Yeast/Drosophila Screen to Identify New Compounds Overcoming Frataxin Deficiency.

    PubMed

    Seguin, Alexandra; Monnier, Véronique; Palandri, Amandine; Bihel, Frédéric; Rera, Michael; Schmitt, Martine; Camadro, Jean-Michel; Tricoire, Hervé; Lesuisse, Emmanuel

    2015-01-01

    Friedreich's ataxia (FA) is a rare neurodegenerative disease which is very debilitating for the patients who progressively lose their autonomy. The lack of efficient therapeutic treatment of the disease strongly argues for urgent need to search for new active compounds that may stop the progression of the disease or prevent the appearance of the symptoms when the genetic defect is diagnosed early enough. In the present study, we used a yeast strain with a deletion of the frataxin homologue gene as a model of FA cells in a primary screen of two chemical libraries, a fraction of the French National Chemical Library (5500 compounds) and the Prestwick collection (880 compounds). We ran a secondary screen on Drosophila melanogaster flies expressing reduced levels of frataxin during larval development. Half of the compounds selected in yeast appeared to be active in flies in this developmental paradigm, and one of the two compounds with highest activities in this assay partially rescued the heart dilatation phenotype resulting from heart specific depletion of frataxin. The unique complementarity of these two frataxin-deficient models, unicellular and multicellular, appears to be very efficient to select new compounds with improved selectivity, bringing significant perspectives towards improvements in FA therapy. PMID:26523199

  2. High-Throughput Chemical Screens Identify Disulfiram as an Inhibitor of Human Glioblastoma Stem Cells

    PubMed Central

    Hothi, Parvinder; Martins, Timothy J.; Chen, LiPing; Deleyrolle, Loic; Yoon, Jae-Geun; Reynolds, Brent; Foltz, Greg

    2012-01-01

    Glioblastoma Multiforme (GBM) continues to have a poor patient prognosis despite optimal standard of care. Glioma stem cells (GSCs) have been implicated as the presumed cause of tumor recurrence and resistance to therapy. With this in mind, we screened a diverse chemical library of 2,000 compounds to identify therapeutic agents that inhibit GSC proliferation and therefore have the potential to extend patient survival. High-throughput screens (HTS) identified 78 compounds that repeatedly inhibited cellular proliferation, of which 47 are clinically approved for other indications and 31 are experimental drugs. Several compounds (such as digitoxin, deguelin, patulin and phenethyl caffeate) exhibited high cytotoxicity, with half maximal inhibitory concentrations (IC50) in the low nanomolar range. In particular, the FDA approved drug for the treatment of alcoholism, disulfiram (DSF), was significantly potent across multiple patient samples (IC50 of 31.1 nM). The activity of DSF was potentiated by copper (Cu), which markedly increased GSC death. DSF–Cu inhibited the chymotrypsin-like proteasomal activity in cultured GSCs, consistent with inactivation of the ubiquitin-proteasome pathway and the subsequent induction of tumor cell death. Given that DSF is a relatively non-toxic drug that can penetrate the blood-brain barrier, we suggest that DSF should be tested (as either a monotherapy or as an adjuvant) in pre-clinical models of human GBM. Data also support targeting of the ubiquitin-proteasome pathway as a therapeutic approach in the treatment of GBM. PMID:23165409

  3. Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach

    PubMed Central

    2014-01-01

    Background Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates. Results We studied the composition and fermentability of 24 different biomass hydrolysates. To create diversity, the 24 hydrolysates were prepared from six different biomass types, namely sugar cane bagasse, corn stover, wheat straw, barley straw, willow wood chips and oak sawdust, and with four different pretreatment methods, i.e. dilute acid, mild alkaline, alkaline/peracetic acid and concentrated acid. Their composition and that of fermentation samples generated with these hydrolysates were analyzed with two GC-MS methods. Either ethyl acetate extraction or ethyl chloroformate derivatization was used before conducting GC-MS to prevent sugars are overloaded in the chromatograms, which obscure the detection of less abundant compounds. Using multivariate PLS-2CV and nPLS-2CV data analysis models, potential inhibitors were identified through establishing relationship between fermentability and composition of the hydrolysates. These identified compounds were tested for their effects on the growth of the model yeast, Saccharomyces. cerevisiae CEN.PK 113-7D, confirming that the majority of the identified compounds were indeed inhibitors. Conclusion Inhibitory compounds in lignocellulosic biomass hydrolysates were successfully identified using a non-targeted systematic approach: metabolomics. The identified inhibitors include both known ones, such as furfural, HMF and vanillin, and novel inhibitors, namely sorbic acid and phenylacetaldehyde. PMID:24655423

  4. Method for halogenating or radiohalogenating a chemical compound

    DOEpatents

    Kabalka, George W.

    2006-05-09

    A method for obtaining a halogenated organic compound, whereby an organotrifluoroborate compound is reacted with a halide ion in the presence of an oxidizing agent to produce the corresponding halogenated organic compound. The method may be used for producing radiohalogenated organic compounds.

  5. Anti-tubercular drug development: computational strategies to identify potential compounds.

    PubMed

    Rajkhowa, Sanchaita; Jha, Anupam Nath; Deka, Ramesh Chandra

    2015-11-01

    InhA is an attractive target to combat tuberculosis (TB), which is targeted by many pro-drugs (isoniazid, etc.) and drugs such as triclosan. However, triclosan is less useful as an antitubercular drug due to its low bioavailability and therefore, in order to overcome this difficulty, many derivatives of triclosan were prepared. Here, we have combined various computational techniques to virtually screen out four potential triclosan derivatives. Molecular docking methods have been employed to screen out 32 out of 62 triclosan derivatives considering the mode of binding and the top re-rank scores. A comparative study on the chemical properties of triclosan and some of its derivatives has been performed using density functional theory (DFT) calculations. DFT based global reactivity descriptors (GRD), such as hardness, chemical potential, chemical softness, electrophilicity index, Fukui function, and local philicity calculated at the optimized geometries were used to investigate the usefulness of these descriptors for understanding the reactive nature and sites of the molecules. QSAR equations were built using these descriptors considering these 32 compounds. Four common compounds showing the best correlation and the best docking scores were considered for the ADMET property calculations and their dynamical movements have been studied using molecular dynamics simulations. Our results showed that these four compounds are chemically more active than triclosan and have the potential to inhibit the Mycobacterium tuberculosis enoyl acyl carrier protein reductase. This work shows that combination of different computational techniques may help to screen out potential drug candidates from a list of possible ones. PMID:26386453

  6. Detailed Chemical Kinetic Reaction Mechanisms for Incineration of Organophosphorus and Fluoro-Organophosphorus Compounds

    SciTech Connect

    Glaude, P A; Melius, C; Pitz, W J; Westbrook, C K

    2001-12-13

    A detailed chemical kinetic reaction mechanism is developed to describe incineration of the chemical warfare nerve agent sarin (GB), based on commonly used principles of bond additivity and hierarchical reaction mechanisms. The mechanism is based on previous kinetic models of organophosphorus compounds such as TMP, DMMP and DIMP that are often used as surrogates to predict incineration of GB. Kinetic models of the three surrogates and GB are then used to predict their consumption in a perfectly stirred reactor fueled by natural gas to simulate incineration of these chemicals. Computed results indicate that DIMP is the only one of these surrogates that adequately describes combustion of GB under comparable conditions. The kinetic pathways responsible for these differences in reactivity are identified and discussed. The most important reaction in GB and DIMP that makes them more reactive than TMP or DMMP is found to be a six-center molecular elimination reaction producing propene.

  7. A framework for identifying characteristic odor compounds in municipal wastewater effluent.

    PubMed

    Agus, Eva; Zhang, Lifeng; Sedlak, David L

    2012-11-15

    Municipal wastewater often contains trace amounts of organic compounds that can compromise aesthetics of drinking water and undermine public confidence if a small amount of effluent enters the raw water source of a potable water supply. To efficiently identify compounds responsible for odors in wastewater effluent, an analytical framework consisting of gas chromatography with mass spectrometry (GC-MS) and gas chromatography with olfactometry detection (GC-Olf) coupled with flavor profile analysis (FPA) was used to identify and monitor compounds that could affect the aesthetics of drinking water. After prioritizing odor peaks detected in wastewater effluent by GC-Olf, the odorous components were tentatively identified using retention indices, mass spectra and odor descriptors. Wastewater effluent samples were typically dominated by earthy-musty odors with additional odors in the amine, sulfidic and fragrant categories. 2,4,6-trichloroanisole (246TCA), geosmin and 2-methylisoborneol (2MIB) were the main sources of the earthy/musty odors in wastewater effluent. The other odors were attributable to a suite of compounds, which were detected in some but not all of the wastewater effluents at levels well in excess of their odor thresholds. In most cases, the identities of odorants were confirmed using authentic standards. The fate of these odorous compounds, including 2-pyrrolidone, methylnaphthalenes, vanillin and 5-hydroxyvanillin (5-OH-vanillin), should be considered in future studies of water systems that receive effluent from upstream sources. PMID:22981490

  8. Machine learning of molecular electronic properties in chemical compound space

    NASA Astrophysics Data System (ADS)

    Montavon, Grégoire; Rupp, Matthias; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; Anatole von Lilienfeld, O.

    2013-09-01

    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.

  9. Chemical Modification of the Multi-Target Neuroprotective Compound Fisetin

    PubMed Central

    Chiruta, Chandramouli; Schubert, David; Dargusch, Richard; Maher, Pamela

    2012-01-01

    Many factors are implicated in age-related CNS disorders making it unlikely that modulating only a single factor will provide effective treatment. Perhaps a better approach is to identify small molecules that have multiple biological activities relevant to the maintenance of brain function. Recently, we identified an orally active, neuroprotective and cognition-enhancing molecule, the flavonoid fisetin, that is effective in several animal models of CNS disorders. Fisetin has direct antioxidant activity and can also increase the intracellular levels of glutathione (GSH), the major endogenous antioxidant. In addition, fisetin has both neurotrophic and anti-inflammatory activity. However, its relatively high EC50 in cell based assays, low lipophilicity, high tPSA and poor bioavailability suggest that there is room for medicinal chemical improvement. Here we describe a multi-tiered approach to screening that has allowed us to identify fisetin derivatives with significantly enhanced activity in an in vitro neuroprotection model while at the same time maintaining other key activities. PMID:22192055

  10. Identifying and designing chemicals with minimal acute aquatic toxicity

    PubMed Central

    Kostal, Jakub; Voutchkova-Kostal, Adelina; Anastas, Paul T.; Zimmerman, Julie Beth

    2015-01-01

    Industrial ecology has revolutionized our understanding of material stocks and flows in our economy and society. For this important discipline to have even deeper impact, we must understand the inherent nature of these materials in terms of human health and the environment. This paper focuses on methods to design synthetic chemicals to reduce their intrinsic ability to cause adverse consequence to the biosphere. Advances in the fields of computational chemistry and molecular toxicology in recent decades allow the development of predictive models that inform the design of molecules with reduced potential to be toxic to humans or the environment. The approach presented herein builds on the important work in quantitative structure–activity relationships by linking toxicological and chemical mechanistic insights to the identification of critical physical–chemical properties needed to be modified. This in silico approach yields design guidelines using boundary values for physiochemical properties. Acute aquatic toxicity serves as a model endpoint in this study. Defining value ranges for properties related to bioavailability and reactivity eliminates 99% of the chemicals in the highest concern for acute aquatic toxicity category. This approach and its future implementations are expected to yield very powerful tools for life cycle assessment practitioners and molecular designers that allow rapid assessment of multiple environmental and human health endpoints and inform modifications to minimize hazard. PMID:24639521

  11. Chemical Composition and Characteristic Odor Compounds in Essential Oil from Alismatis Rhizoma (Tubers of Alisma orientale).

    PubMed

    Miyazawa, Mitsuo; Yoshinaga, Seiji; Kashima, Yusei; Nakahashi, Hiroshi; Hara, Nobuyuki; Nakagawa, Hiroki; Usami, Atsushi

    2016-01-01

    Chemical composition and potent odorants that contribute to the characteristic odor of essential oil from Alismatis Rhizoma (tubers of Alisma orientale) were investigated by gas chromatography-mass spectrometry (GC-MS), GC-olfactometry (GC-O), aroma extract dilution analysis (AEDA) and relative flavor activity (RFA) methods. Fifty components, representing 94.5% of the total oil, were identified. In this study, we newly identified thirty-nine compounds in the oil from tubers of A. orientale. The major constituents of the essential oil were khusinol (36.2%), δ-elemene (12.4%), germacron (4.1%), alismol (3.8%), β-elemene (3.1%), and α-bisabolol (1.9%). Through sensory analysis, sixteen aroma-active compounds were detected and the key contributing aroma-active compounds were δ-elemene (woody, flavor dilution (FD)-factor = 4, RFA = 0.3) β-elemene (spicy, FD = 5, RFA = 0.7), spathulenol (green, FD = 5, RFA = 1.0), γ-eudesmol (woody, FD = 6, RFA = 1.5), and γ-cadinol (woody, FD = 5, RFA = 1.0). These compounds are thought to contribute to the odor from tubers of A. orientale. These results imply that the essential oil from the tubers of A. orientale deserve further investigations in the phytochemical and medicinal fields. PMID:26666273

  12. IDENTIFYING COMPOUNDS USING SOURCE CID ON AN ORTHOGONAL ACCELERATION TIME-OF-FLIGHT MASS SPECTROMETER

    EPA Science Inventory

    Exact mass libraries of ESI and APCI mass spectra are not commercially available In-house libraries are dependent on CID parameters and are instrument specific. The ability to identify compounds without reliance on mass spectral libraries is therefore more crucial for liquid sam...

  13. A NEW MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING TRACE-LEVEL ORGANIC COMPOUNDS IN COMPLEX MIXTURES

    EPA Science Inventory



    Most organic compounds are not found in mass spectral libraries and cannot be easily identified from low resolution mass spectra. Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer in a new way to determine exact mas...

  14. A Chemical Mutagenesis Screen Identifies Mouse Models with ERG Defects.

    PubMed

    Charette, Jeremy R; Samuels, Ivy S; Yu, Minzhong; Stone, Lisa; Hicks, Wanda; Shi, Lan Ying; Krebs, Mark P; Naggert, Jürgen K; Nishina, Patsy M; Peachey, Neal S

    2016-01-01

    Mouse models provide important resources for many areas of vision research, pertaining to retinal development, retinal function and retinal disease. The Translational Vision Research Models (TVRM) program uses chemical mutagenesis to generate new mouse models for vision research. In this chapter, we report the identification of mouse models for Grm1, Grk1 and Lrit3. Each of these is characterized by a primary defect in the electroretinogram. All are available without restriction to the research community. PMID:26427409

  15. High-Throughput Yeast-Based Reporter Assay to Identify Compounds with Anti-inflammatory Potential.

    PubMed

    Garcia, G; Santos, C Nunes do; Menezes, R

    2016-01-01

    The association between altered proteostasis and inflammatory responses has been increasingly recognized, therefore the identification and characterization of novel compounds with anti-inflammatory potential will certainly have a great impact in the therapeutics of protein-misfolding diseases such as degenerative disorders. Although cell-based screens are powerful approaches to identify potential therapeutic compounds, establishing robust inflammation models amenable to high-throughput screening remains a challenge. To bridge this gap, we have exploited the use of yeasts as a platform to identify lead compounds with anti-inflammatory properties. The yeast cell model described here relies on the high-degree homology between mammalian and yeast Ca(2+)/calcineurin pathways converging into the activation of NFAT and Crz1 orthologous proteins, respectively. It consists of a recombinant yeast strain encoding the lacZ gene under the control of Crz1-recongition elements to facilitate the identification of compounds interfering with Crz1 activation through the easy monitoring of β-galactosidase activity. Here, we describe in detail a protocol optimized for high-throughput screening of compounds with potential anti-inflammatory activity as well as a protocol to validate the positive hits using an alternative β-galactosidase substrate. PMID:27613055

  16. LigandBox: A database for 3D structures of chemical compounds

    PubMed Central

    Kawabata, Takeshi; Sugihara, Yusuke; Fukunishi, Yoshifumi; Nakamura, Haruki

    2013-01-01

    A database for the 3D structures of available compounds is essential for the virtual screening by molecular docking. We have developed the LigandBox database (http://ligandbox.protein.osaka-u.ac.jp/ligandbox/) containing four million available compounds, collected from the catalogues of 37 commercial suppliers, and approved drugs and biochemical compounds taken from KEGG_DRUG, KEGG_COMPOUND and PDB databases. Each chemical compound in the database has several 3D conformers with hydrogen atoms and atomic charges, which are ready to be docked into receptors using docking programs. The 3D conformations were generated using our molecular simulation program package, myPresto. Various physical properties, such as aqueous solubility (LogS) and carcinogenicity have also been calculated to characterize the ADME-Tox properties of the compounds. The Web database provides two services for compound searches: a property/chemical ID search and a chemical structure search. The chemical structure search is performed by a descriptor search and a maximum common substructure (MCS) search combination, using our program kcombu. By specifying a query chemical structure, users can find similar compounds among the millions of compounds in the database within a few minutes. Our database is expected to assist a wide range of researchers, in the fields of medical science, chemical biology, and biochemistry, who are seeking to discover active chemical compounds by the virtual screening. PMID:27493549

  17. Environmental Fate of Organophosphorus Compounds Related to Chemical Weapons

    SciTech Connect

    Davisson, M L; Love, A H; Vance, A; Reynolds, J G

    2005-02-08

    Man-made organophosphorus compounds have been widely distributed throughout our environment as pesticides since their development during and after WWII. Many important studies have documented their relative persistence and toxicity. Development and use of some organophosphorus compounds as nerve agents gave rise to a separate but parallel effort to understand environmental persistence. In this latter case, the experiments have focused mainly on evaporation rates and first-order reaction kinetics. However, because organophosphorus compounds are easily polarized, the ionic content of a surrounding media directly factors into these reaction rates, but limited work in this regard has been done under environmentally relevant conditions. Furthermore, limited experiments investigating persistence of these agents on soil has resulted in widely varying degradation rates. Not surprisingly, no studies have investigated affinities of organophosphorus nerve agents to mineral or organic matter typically found in soil. As a result, we initiated laboratory experiments on dilute concentrations of nerve agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) to quantify persistence in simulated environmental aqueous conditions. A quantitative analytical method was developed for VX and its degradation products using High Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS). VX hydrolysis rate is known to have a pH-dependency, however, the type of buffer and the relative proportion of different nucleophiles in solution significantly affect the overall rate and mechanism of degradation. For example, dissolved carbonate, a weak nucleophile dominating natural water, yielded pseudo-first order rate constants of {approx} 8 x 10{sup -3}/hr at pH 5 and 2 x 10{sup -2}/hr at pH 11. This small pH-dependent variation departs significantly from widely accepted rates at this pH range (4 x 10{sup -4}/hr to 8 x 10{sup -2}/hr) that were based on

  18. MBROLE 2.0—functional enrichment of chemical compounds

    PubMed Central

    López-Ibáñez, Javier; Pazos, Florencio; Chagoyen, Mónica

    2016-01-01

    Metabolites Biological Role (MBROLE) is a server that performs functional enrichment analysis of a list of chemical compounds derived from a metabolomics experiment, which allows this list to be interpreted in biological terms. Since its release in 2011, MBROLE has been used by different groups worldwide to analyse metabolomics experiments from a variety of organisms. Here we present the latest version of the system, MBROLE2, accessible at http://csbg.cnb.csic.es/mbrole2. MBROLE2 has been supplemented with 10 databases not available in the previous version, which allow analysis over a larger, richer set of vocabularies including metabolite–protein and drug–protein interactions. This new version performs automatic conversion of compound identifiers from different databases, thus simplifying usage. In addition, the user interface has been redesigned to generate an interactive, more intuitive representation of the results. PMID:27084944

  19. High-Throughput Screening Using a Whole-Cell Virus Replication Reporter Gene Assay to Identify Inhibitory Compounds against Rift Valley Fever Virus Infection.

    PubMed

    Islam, Md Koushikul; Baudin, Maria; Eriksson, Jonas; Öberg, Christopher; Habjan, Matthias; Weber, Friedemann; Överby, Anna K; Ahlm, Clas; Evander, Magnus

    2016-04-01

    Rift Valley fever virus (RVFV) is an emerging virus that causes serious illness in humans and livestock. There are no approved vaccines or treatments for humans. The purpose of the study was to identify inhibitory compounds of RVFV infection without any preconceived idea of the mechanism of action. A whole-cell-based high-throughput drug screening assay was developed to screen 28,437 small chemical compounds targeting RVFV infection. To accomplish both speed and robustness, a replication-competent NSs-deleted RVFV expressing a fluorescent reporter gene was developed. Inhibition of fluorescence intensity was quantified by spectrophotometry and related to virus infection in human lung epithelial cells (A549). Cell toxicity was assessed by the Resazurin cell viability assay. After primary screening, 641 compounds were identified that inhibited RVFV infection by ≥80%, with ≥50% cell viability at 50 µM concentration. These compounds were subjected to a second screening regarding dose-response profiles, and 63 compounds with ≥60% inhibition of RVFV infection at 3.12 µM compound concentration and ≥50% cell viability at 25 µM were considered hits. Of these, six compounds with high inhibitory activity were identified. In conclusion, the high-throughput assay could efficiently and safely identify several promising compounds that inhibited RVFV infection. PMID:26762502

  20. Drug Repurposing Screening Identifies Novel Compounds That Effectively Inhibit Toxoplasma gondii Growth

    PubMed Central

    Dittmar, Ashley J.; Drozda, Allison A.

    2016-01-01

    ABSTRACT The urgent need to develop new antimicrobial therapies has spawned the development of repurposing screens in which well-studied drugs and other types of compounds are tested for potential off-label uses. As a proof-of-principle screen to identify compounds effective against Toxoplasma gondii, we screened a collection of 1,120 compounds for the ability to significantly reduce Toxoplasma replication. A total of 94 compounds blocked parasite replication with 50% inhibitory concentrations of <5 µM. A significant number of these compounds are established inhibitors of dopamine or estrogen signaling. Follow-up experiments with the dopamine receptor inhibitor pimozide revealed that the drug impacted both parasite invasion and replication but did so independently of inhibition of dopamine or other neurotransmitter receptor signaling. Tamoxifen, which is an established inhibitor of the estrogen receptor, also reduced parasite invasion and replication. Even though Toxoplasma can activate the estrogen receptor, tamoxifen inhibits parasite growth independently of this transcription factor. Tamoxifen is also a potent inducer of autophagy, and we find that the drug stimulates recruitment of the autophagy marker light chain 3-green fluorescent protein onto the membrane of the vacuolar compartment in which the parasite resides and replicates. In contrast to other antiparasitic drugs, including pimozide, tamoxifen treatment of infected cells leads to a time-dependent elimination of intracellular parasites. Taken together, these data suggest that tamoxifen restricts Toxoplasma growth by inducing xenophagy or autophagic destruction of this obligate intracellular parasite. IMPORTANCE There is an urgent need to develop new therapies to treat microbial infections, and the repurposing of well-characterized compounds is emerging as one approach to achieving this goal. Using the protozoan parasite Toxoplasma gondii, we screened a library of 1,120 compounds and identified several

  1. Drug Repurposing Screening Identifies Novel Compounds That Effectively Inhibit Toxoplasma gondii Growth.

    PubMed

    Dittmar, Ashley J; Drozda, Allison A; Blader, Ira J

    2016-01-01

    The urgent need to develop new antimicrobial therapies has spawned the development of repurposing screens in which well-studied drugs and other types of compounds are tested for potential off-label uses. As a proof-of-principle screen to identify compounds effective against Toxoplasma gondii, we screened a collection of 1,120 compounds for the ability to significantly reduce Toxoplasma replication. A total of 94 compounds blocked parasite replication with 50% inhibitory concentrations of <5 µM. A significant number of these compounds are established inhibitors of dopamine or estrogen signaling. Follow-up experiments with the dopamine receptor inhibitor pimozide revealed that the drug impacted both parasite invasion and replication but did so independently of inhibition of dopamine or other neurotransmitter receptor signaling. Tamoxifen, which is an established inhibitor of the estrogen receptor, also reduced parasite invasion and replication. Even though Toxoplasma can activate the estrogen receptor, tamoxifen inhibits parasite growth independently of this transcription factor. Tamoxifen is also a potent inducer of autophagy, and we find that the drug stimulates recruitment of the autophagy marker light chain 3-green fluorescent protein onto the membrane of the vacuolar compartment in which the parasite resides and replicates. In contrast to other antiparasitic drugs, including pimozide, tamoxifen treatment of infected cells leads to a time-dependent elimination of intracellular parasites. Taken together, these data suggest that tamoxifen restricts Toxoplasma growth by inducing xenophagy or autophagic destruction of this obligate intracellular parasite. IMPORTANCE There is an urgent need to develop new therapies to treat microbial infections, and the repurposing of well-characterized compounds is emerging as one approach to achieving this goal. Using the protozoan parasite Toxoplasma gondii, we screened a library of 1,120 compounds and identified several

  2. REVIEW OF VOLATILE ORGANIC COMPOUND SOURCE APPORTIONMENT BY CHEMICAL MASS BALANCE. (R826237)

    EPA Science Inventory

    The chemical mass balance (CMB) receptor model has apportioned volatile organic compounds (VOCs) in more than 20 urban areas, mostly in the United States. These applications differ in terms of the total fraction apportioned, the calculation method, the chemical compounds used ...

  3. Exposure levels for chemical threat compounds: information to facilitate chemical incident response.

    PubMed

    Hauschild, Veronique D; Watson, Annetta

    2013-01-01

    Although not widely known, a robust set of peer-reviewed public health and occupational exposure levels presently exist for key chemical warfare agents (CWAs) and certain acutely toxic industrial chemicals (TICs) identified as terrorist attack threats. Familiarity with these CWA and TIC exposure levels and their historic applications has facilitated emergency management decision-making by public and environmental health decision-makers. Specifically, multiple air, soil, and water exposure levels for CWAs and TICs summarized here have been extensively peer-reviewed and published; many have been recognized and are in use by federal and state health agencies as criteria for hazard zone prediction and assessment, occupational safety, and "how clean is clean enough" decisions. The key, however, is to know which criteria are most appropriate for specific decisions. While public safety is critical, high levels of concern often associated with perceived or actual proximity to extremely toxic chemical agents could result in overly cautious decisions that generate excessive delays, expenditure of scarce resources, and technological difficulties. Rapid selection of the most appropriate chemical exposure criteria is recommended to avoid such problems and expedite all phases of chemical incident response and recovery. PMID:24340456

  4. Identifying antimalarial compounds targeting dihydrofolate reductase-thymidylate synthase (DHFR-TS) by chemogenomic profiling.

    PubMed

    Aroonsri, Aiyada; Akinola, Olugbenga; Posayapisit, Navaporn; Songsungthong, Warangkhana; Uthaipibull, Chairat; Kamchonwongpaisan, Sumalee; Gbotosho, Grace O; Yuthavong, Yongyuth; Shaw, Philip J

    2016-07-01

    The mode of action of many antimalarial drugs is unknown. Chemogenomic profiling is a powerful method to address this issue. This experimental approach entails disruption of gene function and phenotypic screening for changes in sensitivity to bioactive compounds. Here, we describe the application of reverse genetics for chemogenomic profiling in Plasmodium. Plasmodium falciparum parasites harbouring a transgenic insertion of the glmS ribozyme downstream of the dihydrofolate reductase-thymidylate synthase (DHFR-TS) gene were used for chemogenomic profiling of antimalarial compounds to identify those which target DHFR-TS. DHFR-TS expression can be attenuated by exposing parasites to glucosamine. Parasites with attenuated DHFR-TS expression were significantly more sensitive to antifolate drugs known to target DHFR-TS. In contrast, no change in sensitivity to other antimalarial drugs with different modes of action was observed. Chemogenomic profiling was performed using the Medicines for Malaria Venture (Switzerland) Malaria Box compound library, and two compounds were identified as novel DHFR-TS inhibitors. We also tested the glmS ribozyme in Plasmodium berghei, a rodent malaria parasite. The expression of reporter genes with downstream glmS ribozyme could be attenuated in transgenic parasites comparable with that obtained in P. falciparum. The chemogenomic profiling method was applied in a P. berghei line expressing a pyrimethamine-resistant Toxoplasma gondii DHFR-TS reporter gene under glmS ribozyme control. Parasites with attenuated expression of this gene were significantly sensitised to antifolates targeting DHFR-TS, but not other drugs with different modes of action. In conclusion, these data show that the glmS ribozyme reverse genetic tool can be applied for identifying primary targets of antimalarial compounds in human and rodent malaria parasites. PMID:27150044

  5. Oxidative properties and chemical stability of fluoronanotubes in matrixes of binary inorganic compounds.

    PubMed

    Peng, Haiqing; Gu, Zhenning; Liu, Yu; Chiang, Ivana W; Smalley, Richard E; Hauge, Robert H; Khabashesku, Valery N; Margrave, John L

    2003-01-01

    The chemical stability of fluoronanotubes in selected solid inorganic matrixes has been studied by initially mixing and mechanically grinding the components and subsequently heating them at temperatures ranging from 35 to 600 degrees C. The inorganic compounds selected for matrixes included halides (KBr, KI, Lil, LiBr, LiCl, NaCl, Znl2), oxides (Li2O, Fe2O3, PbO, MnO), lithium peroxide (Li2O2), potassium superoxide (KO2), sulfides (Li2S and ZnS), zinc selenide (ZnSe), lithium nitride (Li3N), and aluminum phosphide (AIP). Solid products, resulting from the proceeding chemical reactions, were analyzed by X-ray diffraction, Raman spectroscopy, and SEM/EDX elemental analysis. Gaseous and volatile products were identified with the help of the TGA/MS technique. Experimental data presented in this paper provide clear evidence that fluoronanotubes are not chemically inert toward the solid matrixes studied and exhibit significant oxidative properties in the redox reactions occurring under various temperatures, depending on the nature of the inorganic compound. PMID:12908234

  6. In situ Analysis of Organic Compounds on Mars using Chemical Derivatization and Gas Chromatography Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Buch, A.; Cabane, M.; Coll, P.; Navarro-Gonzalez, R.; Mahaffy, P. R.

    2005-01-01

    One of the core science objectives of NASA's 2009 Mars Science Laboratory (MSL) mission is to determine the past or present habitability of Mars. The search for key organic compounds relevant to terrestrial life will be an important part of that assessment. We have developed a protocol for the analysis of amino acids and carboxylic acids in Mars analogue materials using gas chromatography mass spectrometry (GCMS). As shown, a variety of carboxylic acids were readily identified in soil collected from the Atacama Desert in Chile at part-per-billion levels by GCMS after extraction and chemical derivatization using the reagent N,N-tert.-butyl (dimethylsilyl) trifluoroacetamide (MTBSTFA). Several derivatized amino acids including glycine and alanine were also detected by GCMS in the Atacama soil at lower concentrations (chromatogram not shown). Lacking derivatization capability, the Viking pyrolysis GCMS instruments could not have detected amino acids and carboxylic acids, since these non-volatile compounds require chemical transformation into volatile species that are stable in a GC column. We are currently optimizing the chemical extraction and derivatization technique for in situ GCMS analysis on Mars. Laboratory results of analyses of Atacama Desert samples and other Mars analogue materials using this protocol will be presented.

  7. Yeast-based automated high-throughput screens to identify anti-parasitic lead compounds.

    PubMed

    Bilsland, Elizabeth; Sparkes, Andrew; Williams, Kevin; Moss, Harry J; de Clare, Michaela; Pir, Pinar; Rowland, Jem; Aubrey, Wayne; Pateman, Ron; Young, Mike; Carrington, Mark; King, Ross D; Oliver, Stephen G

    2013-02-01

    We have developed a robust, fully automated anti-parasitic drug-screening method that selects compounds specifically targeting parasite enzymes and not their host counterparts, thus allowing the early elimination of compounds with potential side effects. Our yeast system permits multiple parasite targets to be assayed in parallel owing to the strains' expression of different fluorescent proteins. A strain expressing the human target is included in the multiplexed screen to exclude compounds that do not discriminate between host and parasite enzymes. This form of assay has the advantages of using known targets and not requiring the in vitro culture of parasites. We performed automated screens for inhibitors of parasite dihydrofolate reductases, N-myristoyltransferases and phosphoglycerate kinases, finding specific inhibitors of parasite targets. We found that our 'hits' have significant structural similarities to compounds with in vitro anti-parasitic activity, validating our screens and suggesting targets for hits identified in parasite-based assays. Finally, we demonstrate a 60 per cent success rate for our hit compounds in killing or severely inhibiting the growth of Trypanosoma brucei, the causative agent of African sleeping sickness. PMID:23446112

  8. Gas chromatograph-mass spectrometer (GC/MS) system for quantitative analysis of reactive chemical compounds

    DOEpatents

    Grindstaff, Quirinus G.

    1992-01-01

    Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.

  9. Identification of a novel Vpr-binding compound that inhibits HIV-1 multiplication in macrophages by chemical array.

    PubMed

    Hagiwara, Kyoji; Murakami, Tomoyuki; Xue, Guangai; Shimizu, Yasuo; Takeda, Eri; Hashimoto, Yoshie; Honda, Kaori; Kondoh, Yasumitsu; Osada, Hiroyuki; Tsunetsugu-Yokota, Yasuko; Aida, Yoko

    2010-12-01

    Although HIV-1 replication can be controlled by highly active anti-retroviral therapy (HAART) using protease and reverse transcriptase inhibitors, the development of multidrug-resistant viruses compromises the efficacy of HAART. Thus, it is necessary to develop new drugs with novel targets. To identify new anti-HIV-1 compounds, recombinant Vpr was purified from transfected COS-7 cells and used to screen compounds by chemical array to identify those that bound Vpr. From this screen, 108 compounds were selected as positive for Vpr binding. Among these, one structurally similar group of four compounds showed anti-HIV activity in macrophages. In particular, compound SIP-1 had high inhibition activity and reduced the levels of p24 by more than 98% in macrophages after 8 or 12 days of infection. SIP-1 had no cytotoxic effects and did not disrupt cell cycle progression or induce apoptosis of Molt-4 and HeLa cell lines as measured by MTT assay, flow-cytometry analysis, and a caspase-3 assay. In addition, SIP-1 specifically bound to Vpr as assessed by photo-cross-linked small-molecule affinity beads. These results suggest that Vpr is a good target for the development of compounds that could potentially inhibit HIV-1 replication. Collectively, our results strongly suggest that chemical array is a useful method for screening anti-viral compounds. PMID:21036153

  10. Advanced exact structure searching in large databases of chemical compounds.

    PubMed

    Trepalin, Sergey V; Skorenko, Andrey V; Balakin, Konstantin V; Nasonov, Anatoly F; Lang, Stanley A; Ivashchenko, Andrey A; Savchuk, Nikolay P

    2003-01-01

    Efficient recognition of tautomeric compound forms in large corporate or commercially available compound databases is a difficult and labor intensive task. Our data indicate that up to 0.5% of commercially available compound collections for bioscreening contain tautomers. Though in the large registry databases, such as Beilstein and CAS, the tautomers are found in an automated fashion using high-performance computational technologies, their real-time recognition in the nonregistry corporate databases, as a rule, remains problematic. We have developed an effective algorithm for tautomer searching based on the proprietary chemoinformatics platform. This algorithm reduces the compound to a canonical structure. This feature enables rapid, automated computer searching of most of the known tautomeric transformations that occur in databases of organic compounds. Another useful extension of this methodology is related to the ability to effectively search for different forms of compounds that contain ionic and semipolar bonds. The computations are performed in the Windows environment on a standard personal computer, a very useful feature. The practical application of the proposed methodology is illustrated by several examples of successful recovery of tautomers and different forms of ionic compounds from real commercially available nonregistry databases. PMID:12767143

  11. Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.; Fuller, C.C.

    1997-01-01

    This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DDT (DDT + DDD + DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat hogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high

  12. A chemical screen to identify inducers of the mitochondrial unfolded protein response in C. elegans.

    PubMed

    Rauthan, Manish; Pilon, Marc

    2015-01-01

    We previously showed that inhibition of the mevalonate pathway in C. elegans causes inhibition of protein prenylation, developmental arrest and lethality. We also showed that constitutive activation of the mitochondrial unfolded protein response, UPR(mt), is an effective way for C. elegans to become resistant to the negative effects of mevalonate pathway inhibition. This was an important finding since statins, a drug class prescribed to lower cholesterol levels in patients, act by inhibiting the mevalonate pathway, and it is therefore possible that some of their undesirable side effects could be alleviated by activating the UPR(mt). Here, we screened a chemical library and identified 4 compounds that specifically activated the UPR(mt). One of these compounds, methacycline hydrochloride (a tetracycline antibiotic) also protected C. elegans and mammalian cells from statin toxicity. Methacycline hydrochloride and ethidium bromide, a known UPR(mt) activator, were also tested in mice: only ethidium bromide significantly activate the UPR(mt) in skeletal muscles. PMID:27123370

  13. Sexual Differences in Chemical Composition and Aroma-active Compounds of Essential Oil from Flower Buds of Eurya japonica.

    PubMed

    Miyazawa, Mitsuo; Usami, Atsushi; Tanaka, Takio; Tsuji, Kaoru; Takehara, Manami; Hori, Yuki

    2016-04-01

    This study was conducted to determine the composition of essential oil from buds of male and female Eurya japonica flowers and to determine the aroma-active compounds of this plant by gas chromatography-mass spectrometry (GC-MS), sensory evaluation, and odor activity values (OAV). The oils contained eighty-five compounds. We identified for the first time forty-four compounds in E. japonica. Through sensory evaluation, nineteen aroma-active compounds were identified by gas chromatography-olfactometry (GC-O). Because the chemical composition can affect the interaction between plants and herbivorous insects, our results suggest that essential oils from male and female flower buds of E. japonica differently affect herbivores. Sexual differences in essential oils deserve further investigations in this plant-insect system. PMID:26972466

  14. Histone markers identify the mode of action for compounds positive in the TK6 micronucleus assay.

    PubMed

    Cheung, Jennifer R; Dickinson, Donna A; Moss, Jocelyn; Schuler, Maik J; Spellman, Richard A; Heard, Pamela L

    2015-01-01

    The in vitro micronucleus assay with TK6 cells is frequently used as part of the genotoxicity testing battery for pharmaceuticals. Consequently, follow-up testing strategies are needed for positive compounds to determine their mode of action, which would then allow for deployment of appropriate in vivo follow-up strategies. We have chosen 3 micronucleus positive compounds, the clastogen etoposide, the aneugen noscapine and the cytotoxicant tunicamycin to evaluate different approaches to determine their aneugenic or clastogenic properties. Each of the three compounds were evaluated following 4 and 24h of continuous treatment by flow cytometry for micronucleus induction, the aneugenicity markers phosphorylated-histone 3 (p-H3) and polyploidy, the clastogenicity marker γH2AX and the apoptosis marker cleaved caspase 3. They were further evaluated by Western blot for mono-ubiquitinated and γH2AX. Results show that the clastogen etoposide produced a dose related increase in γH2AX and mono-ubiquitinated H2AX and a dose related decrease in p-H3 positive mitotic cells. Conversely, the aneugen produced increases in p-H3 and polyploidy with no significant increases seen in mono-ubiquitinated H2AX or γH2AX. Lastly, the cytotoxicant tunicamycin induced neither an increase in p-H3 nor γH2AX. All three compounds produced dose-related increases in cleaved caspase 3. The results from this study provide evidence that adding clastogenicity and aneugenicity markers to the in vitro micronucleus assay in TK6 cells could help to identify the mode of action of positive compounds. The combination of endpoints suggested here needs to be further evaluated by a broader set of test compounds. PMID:25726170

  15. Microwave spectra of some sulfur and nitrogen compounds. [for chemical analysis

    NASA Technical Reports Server (NTRS)

    White, W. F.

    1974-01-01

    A computer-controlled microwave spectrometer was used to catalog reference spectra for chemical analysis. The apparatus, software, and experimental procedures are described. Tables of absorption frequencies, peak absorption coefficients, and integrated intensities are included for 13 sulfur compounds, 14 nitrogen compounds, and 1 compound containing both sulfur and nitrogen. The frequency range covered was 26,500 to 40,000 MHz for most compounds and 18,000 to 40,000 MHz for some.

  16. Acute oral toxicity test of chemical compounds in silkworms.

    PubMed

    Usui, Kimihito; Nishida, Satoshi; Sugita, Takuya; Ueki, Takuro; Matsumoto, Yasuhiko; Okumura, Hidenobu; Sekimizu, Kazuhisa

    2016-02-01

    This study performed an acute oral toxicity test of 59 compounds in silkworms. These compounds are listed in OECD guidelines as standard substances for a cytotoxicity test, and median lethal dose (LD(50)) werecalculated for each compound. Acute oral LD(50) values in mammals are listed in OECD guidelines and acute oral LD(50) values in silkworms were determined in this study. R(2) for the correlation between LD(50) values in mammals and LD(50) values in silkworms was 0.66. In addition, the acute oral toxicity test in silkworms was performed by two different facilities, and test results from the facilities were highly reproducible. These findings suggest that an acute oral toxicity test in silkworms is a useful way to evaluate the toxicity of compounds in mammals. PMID:26971557

  17. Microscopic physical and chemical properties of graphite intercalation compounds

    SciTech Connect

    Eklund, P.C.

    1992-08-24

    Optical spectroscopy (Raman, FTIR and Reflection ) was used to study a variety of acceptor- and donor-type compounds synthesized to determine the microscopic models consistent with the spectrocsopic results. General finding is that the electrical conduction properties of these compounds can be understood on the basis that the intercalation of atomic and/or molecular species between the host graphite layers either raises or lowers the Fermi level (E{sub F)} in a graphitic band structure. This movement of E{sub F} is accomplished via a charge transfer of electrons from the intercalate layers to the graphitic layers (donor compounds), or vice versa (acceptor compounds). Furthermore, the band structure must be modified to take into account the layers of charge that occur as a result of the charge transfer. This charge layering introduces additional bands of states near E{sub F}, which are discussed. Charge-transfer also induces a perturbation of the graphitic normal mode frequencies which can be understood as the result of a contraction (acceptor compounds) or expansion (donor compounds) of the intralayer C-C bonds. Ab-initio calculations support this view and are in reasonable agreement with experimental data.

  18. Identification and quantification of individual chemical compounds in biogenic secondary organic aerosols using GCxGC-VUV/EI-HRTOFMS

    NASA Astrophysics Data System (ADS)

    Decker, M.; Worton, D. R.; Isaacman, G. A.; Chan, A. W.; Ruehl, C.; Zhao, Y.; Wilson, K. R.; Goldstein, A. H.

    2012-12-01

    Atmospheric aerosols have adverse effects on human health and air quality and affect radiative forcing and thus climate. While the organic fraction of aerosols is substantial, the sources and chemistry leading to the formation of secondary organic aerosols are very poorly understood. Characterizing individual compounds present in organic aerosol provides insights into the sources, formation mechanisms and oxidative transformations that have taken place. Fifteen aerosol samples collected over a 5 day period at the Blodgett Forest Research Station in the Sierra Nevada Mountains, part of the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX) in July 2009, were analyzed using comprehensive two dimensional gas chromatography with high resolution time of flight mass spectrometry (GCxGC-HRTOFMS). Approximately 600 compounds were observed in each sample as significant peaks in the chromatogram. Of these, around a third were identified by matching the unique electron ionization (EI) mass spectrum of each compound to the NIST library of characteristic fragmentation patterns. One filter sample was also analyzed using vacuum ultraviolet ionization (VUV) instead of EI. This 'soft' ionization technique results in much less fragmentation yielding the molecular ion of each compound, from which the exact mass was determined. If the formula of the EI library matched compound equaled the high mass resolution VUV molecular weight within a certain tolerance (< 30 ppm), then the library match was considered confirmed; 226 compounds were identified in this way. Using the VUV technique 234 additional compounds that were not in the EI mass spectral database were assigned chemical formulas based on the observed molecular weights. The chemical formulas in conjunction with the location of the compound in the GCxGC chromatogram were used to provide further classification of these compounds based on their likely functionalization. The broad array of observed oxygenated

  19. LOW VOLATILE ORGANIC COMPOUND (VOC) CHEMICAL AGENT RESISTANT COATING (CARC)

    EPA Science Inventory

    Chemical warfare causes many problems on the battlefield, among which is decontamination of exposed equipment. Because of this threat, the US Army ahs required the use of a Chemical Agent Resistant Coating (CARC) system on its equipment, beginning in FY 85. The equipment covere...

  20. Chemical properties and methods of analysis of refractory compounds

    NASA Technical Reports Server (NTRS)

    Samsonov, G. V. (Editor); Frantsevich, I. N. (Editor); Yeremenko, V. N. (Editor); Nazarchuk, T. N. (Editor); Popova, O. I. (Editor)

    1978-01-01

    Reactions involving refractory metals and the alloys based on them are discussed. Chemical, electrochemical, photometric, spectrophotometric, and X-ray analysis are among the methods described for analyzing the results of the reactions and for determining the chemical properties of these materials.

  1. From Leaf Metabolome to In Vivo Testing: Identifying Antifeedant Compounds for Ecological Studies of Marsupial Diets.

    PubMed

    Marsh, Karen J; Yin, Baofa; Singh, Inder Pal; Saraf, Isha; Choudhary, Alka; Au, Jessie; Tucker, David J; Foley, William J

    2015-06-01

    Identifying specific plant secondary metabolites that influence feeding behavior can be challenging, but a solid understanding of animal preferences can guide efforts. Common brushtail possums (Trichosurus vulpecula) predominantly eat Eucalyptus species belonging to the subgenus Symphyomyrtus, and avoid eating those belonging to the Monocalyptus subgenus (also called subgenus Eucalyptus). Using an unbiased (1)H NMR metabolomics approach, a previous study identified unsubstituted B ring flavanones in most species of monocalypts examined, whereas these compounds were absent from symphyomyrtles. We hypothesised that unsubstituted B ring flavanones act as feeding deterrents for common brushtail possums. In the current study, we tested this hypothesis by comparing how much possums ate of a basal diet, with diets containing one of four structurally related compounds; pinocembrin, flavanone (unsubstituted B ring flavanones), chrysin (the flavone analogue of pinocembrin), and naringenin (a flavanone with B ring substitution). We found that pinocembrin and flavanone deterred feeding relative to the basal diet, but that chrysin and naringenin did not at equivalent concentrations. Thus, unsubstituted B-ring flavanones may explain why brushtail possums avoid eating monocalypt species. Furthermore, small differences in the structure of secondary compounds can have a large impact on antifeedant properties. These results demonstrate that metabolomics can be a valuable tool for ecologists seeking to understand herbivore feeding preferences. PMID:25994224

  2. Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid

    DOEpatents

    Michaels, E.D.

    1981-02-25

    A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

  3. GPM: A Graph Pattern Matching Kernel with Diffusion for Chemical Compound Classification

    PubMed Central

    Smalter, Aaron; Huan, Jun; Lushington, Gerald

    2010-01-01

    Classifying chemical compounds is an active topic in drug design and other cheminformatics applications. Graphs are general tools for organizing information from heterogenous sources and have been applied in modelling many kinds of biological data. With the fast accumulation of chemical structure data, building highly accurate predictive models for chemical graphs emerges as a new challenge. In this paper, we demonstrate a novel technique called Graph Pattern Matching kernel (GPM). Our idea is to leverage existing frequent pattern discovery methods and explore their application to kernel classifiers (e.g. support vector machine) for graph classification. In our method, we first identify all frequent patterns from a graph database. We then map subgraphs to graphs in the database and use a diffusion process to label nodes in the graphs. Finally the kernel is computed using a set matching algorithm. We performed experiments on 16 chemical structure data sets and have compared our methods to other major graph kernels. The experimental results demonstrate excellent performance of our method. PMID:20428463

  4. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus

    PubMed Central

    Reker, Daniel; Rodrigues, Tiago; Schneider, Petra; Schneider, Gisbert

    2014-01-01

    De novo molecular design and in silico prediction of polypharmacological profiles are emerging research topics that will profoundly affect the future of drug discovery and chemical biology. The goal is to identify the macromolecular targets of new chemical agents. Although several computational tools for predicting such targets are publicly available, none of these methods was explicitly designed to predict target engagement by de novo-designed molecules. Here we present the development and practical application of a unique technique, self-organizing map–based prediction of drug equivalence relationships (SPiDER), that merges the concepts of self-organizing maps, consensus scoring, and statistical analysis to successfully identify targets for both known drugs and computer-generated molecular scaffolds. We discovered a potential off-target liability of fenofibrate-related compounds, and in a comprehensive prospective application, we identified a multitarget-modulating profile of de novo designed molecules. These results demonstrate that SPiDER may be used to identify innovative compounds in chemical biology and in the early stages of drug discovery, and help investigate the potential side effects of drugs and their repurposing options. PMID:24591595

  5. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus.

    PubMed

    Reker, Daniel; Rodrigues, Tiago; Schneider, Petra; Schneider, Gisbert

    2014-03-18

    De novo molecular design and in silico prediction of polypharmacological profiles are emerging research topics that will profoundly affect the future of drug discovery and chemical biology. The goal is to identify the macromolecular targets of new chemical agents. Although several computational tools for predicting such targets are publicly available, none of these methods was explicitly designed to predict target engagement by de novo-designed molecules. Here we present the development and practical application of a unique technique, self-organizing map-based prediction of drug equivalence relationships (SPiDER), that merges the concepts of self-organizing maps, consensus scoring, and statistical analysis to successfully identify targets for both known drugs and computer-generated molecular scaffolds. We discovered a potential off-target liability of fenofibrate-related compounds, and in a comprehensive prospective application, we identified a multitarget-modulating profile of de novo designed molecules. These results demonstrate that SPiDER may be used to identify innovative compounds in chemical biology and in the early stages of drug discovery, and help investigate the potential side effects of drugs and their repurposing options. PMID:24591595

  6. [Assessment of the relationship of properties of chemical compounds and their toxicity to a unified hygienic standardization for chemicals].

    PubMed

    Trushkov, V F; Perminov, K A; Sapozhnikova, V V; Ignatova, O L

    2013-01-01

    The connection of thermodynamic properties and parameters of toxicity of chemical substances was determined. Obtained data are used for the evaluation of toxicity and hygienic rate setting of chemical compounds. The relationship between enthalpy and toxicity of chemical compounds has been established. Orthogonal planning of the experiment was carried out in the course of the investigations. Equation of unified hygienic rate setting in combined, complex, conjunct influence on the organism is presented. Prospects of determination of toxicity and methodology of unified hygienic rate setting in combined, complex, conjunct influence on the organism are presented PMID:24003710

  7. Sources of toxicity and exposure information for identifying chemicals of high concern to children

    SciTech Connect

    Stone, Alex; Delistraty, Damon

    2010-11-15

    Due to the large number of chemicals in commerce without adequate toxicity characterization data, coupled with an ineffective federal policy for chemical management in the United States, many states are grappling with the challenge to identify toxic chemicals that may pose a risk to human health and the environment. Specific populations (e.g., children, elderly) are particularly sensitive to these toxic chemicals. In 2008, the Children's Safe Product Act (CSPA) was passed in Washington State. The CSPA included specific requirements to identify High Priority Chemicals (HPCs) and Chemicals of High Concern to Children (CHCCs). To implement this legislation, a methodology was developed to identify HPCs from authoritative scientific and regulatory sources on the basis of toxicity criteria. Another set of chemicals of concern was then identified from authoritative sources, based on their potential exposure to children. Exposure potential was evaluated by identifying chemicals detected in biomonitoring studies (i.e., human tissues), as well as those present in residential exposure media (e.g., indoor air, house dust, drinking water, consumer products). Accordingly, CHCCs were defined as HPCs that also appear in biomonitoring studies or relevant exposure media. For chemicals with unique Chemical Abstracts Service (CAS) numbers, we identified 2044 HPCs and 2219 chemicals with potential exposure to children, resulting in 476 CHCCs. The process of chemical identification is dynamic, so that chemicals may be added or subtracted as new information becomes available. Although beyond the scope of this paper, the 476 CHCCs will be prioritized in a more detailed assessment, based on the strength and weight of evidence of toxicity and exposure data. Our approach was developed to be flexible which allows the addition or removal of specific sources of toxicity or exposure information, as well as transparent to allow clear identification of inputs. Although the methodology was

  8. Chemical weapons: documented use and compounds on the horizon.

    PubMed

    Bismuth, Chantal; Borron, Stephen W; Baud, Frederic J; Barriot, Patrick

    2004-04-01

    Man's inhumanity to man is expressed through a plethora of tools of modern warfare and terror. The use of chemical and biological weapons with the goals of assault, demoralisation and lethality has been documented in recent history, both on the battlefield and in urban terror against civilians. A general review of a few of the currently employed chemical weapons and biological toxins, along with a look at potential chemical weapons and tools of counter-terrorism, follows. While these weapons are fearsome elements, the dangers should be viewed in the context of the widespread availability and efficacy of conventional weapons. PMID:15093243

  9. Quantum chemical calculations for polymers and organic compounds

    NASA Technical Reports Server (NTRS)

    Lopez, J.; Yang, C.

    1982-01-01

    The relativistic effects of the orbiting electrons on a model compound were calculated. The computational method used was based on 'Modified Neglect of Differential Overlap' (MNDO). The compound tetracyanoplatinate was used since empirical measurement and calculations along "classical" lines had yielded many known properties. The purpose was to show that for large molecules relativity effects could not be ignored and that these effects could be calculated and yield data in closer agreement to empirical measurements. Both the energy band structure and molecular orbitals are depicted.

  10. New clues on carcinogenicity-related substructures derived from mining two large datasets of chemical compounds.

    PubMed

    Golbamaki, Azadi; Benfenati, Emilio; Golbamaki, Nazanin; Manganaro, Alberto; Merdivan, Erinc; Roncaglioni, Alessandra; Gini, Giuseppina

    2016-04-01

    In this study, new molecular fragments associated with genotoxic and nongenotoxic carcinogens are introduced to estimate the carcinogenic potential of compounds. Two rule-based carcinogenesis models were developed with the aid of SARpy: model R (from rodents' experimental data) and model E (from human carcinogenicity data). Structural alert extraction method of SARpy uses a completely automated and unbiased manner with statistical significance. The carcinogenicity models developed in this study are collections of carcinogenic potential fragments that were extracted from two carcinogenicity databases: the ANTARES carcinogenicity dataset with information from bioassay on rats and the combination of ISSCAN and CGX datasets, which take into accounts human-based assessment. The performance of these two models was evaluated in terms of cross-validation and external validation using a 258 compound case study dataset. Combining R and H predictions and scoring a positive or negative result when both models are concordant on a prediction, increased accuracy to 72% and specificity to 79% on the external test set. The carcinogenic fragments present in the two models were compared and analyzed from the point of view of chemical class. The results of this study show that the developed rule sets will be a useful tool to identify some new structural alerts of carcinogenicity and provide effective information on the molecular structures of carcinogenic chemicals. PMID:26986491

  11. Prediction of Bioactive Compounds Using Computed NMR Chemical Shifts.

    PubMed

    Karthikeyan, Muthukumarasamy; Rajamohanan, Pattuparambil Ramanpillai; Vyas, Renu

    2015-01-01

    NMR based chemical shifts are an important diagnostic parameter for structure elucidation as they capture rich information related to conformational, electronic and stereochemical arrangement of functional groups in a molecule which is responsible for its activity towards any biological target. The present work discusses the importance of computing NMR chemical shifts from molecular structures. The NMR chemical shift data (experimental or computed) was used to generate fingerprints in binary formats for mapping molecular fragments (as descriptors) and correlating with the bioactivity classes. For this study, chemical shift data derived binary fingerprints were computed for 149 classes and 4800 bioactive molecules. The sensitivity and selectivity of fingerprints in discriminating molecules belonging to different therapeutic categories was assessed using a LibSVM based classifier. An accuracy of 82% for proton and 94% for carbon NMR fingerprints were obtained for anti-psoriatic and anti-psychotic molecules demonstrating the effectiveness of this approach for virtual screening. PMID:26138568

  12. Lead selection and characterization of antitubercular compounds using the Nested Chemical Library.

    PubMed

    Sipos, Anna; Pató, János; Székely, Rita; Hartkoorn, Ruben C; Kékesi, László; Őrfi, László; Szántai-Kis, Csaba; Mikušová, Katarína; Svetlíková, Zuzana; Korduláková, Jana; Nagaraja, Valakunja; Godbole, Adwait Anand; Bush, Natassja; Collin, Frédéric; Maxwell, Anthony; Cole, Stewart T; Kéri, György

    2015-06-01

    Discovering new drugs to treat tuberculosis more efficiently and to overcome multidrug resistance is a world health priority. To find novel antitubercular agents several approaches have been used in various institutions worldwide, including target-based approaches against several validated mycobacterial enzymes and phenotypic screens. We screened more than 17,000 compounds from Vichem's Nested Chemical Library™ using an integrated strategy involving whole cell-based assays with Corynebacterium glutamicum and Mycobacterium tuberculosis, and target-based assays with protein kinases PknA, PknB and PknG as well as other targets such as PimA and bacterial topoisomerases simultaneously. With the help of the target-based approach we have found very potent hits inhibiting the selected target enzymes, but good minimal inhibitory concentrations (MIC) against M. tuberculosis were not achieved. Focussing on the whole cell-based approach several potent hits were found which displayed minimal inhibitory concentrations (MIC) against M. tuberculosis below 10 μM and were non-mutagenic, non-cytotoxic and the targets of some of the hits were also identified. The most active hits represented various scaffolds. Medicinal chemistry-based lead optimization was performed applying various strategies and, as a consequence, a series of novel potent compounds were synthesized. These efforts resulted in some effective potential antitubercular lead compounds which were confirmed in phenotypic assays. PMID:25801335

  13. Calcium Imaging of Neuronal Activity in Drosophila Can Identify Anticonvulsive Compounds

    PubMed Central

    Streit, Anne K.; Fan, Yuen Ngan; Masullo, Laura; Baines, Richard A.

    2016-01-01

    Although there are now a number of antiepileptic drugs (AEDs) available, approximately one-third of epilepsy patients respond poorly to drug intervention. The reasons for this are complex, but are probably reflective of the increasing number of identified mutations that predispose individuals to this disease. Thus, there is a clear requirement for the development of novel treatments to address this unmet clinical need. The existence of gene mutations that mimic a seizure-like behaviour in the fruit fly, Drosophila melanogaster, offers the possibility to exploit the powerful genetics of this insect to identify novel cellular targets to facilitate design of more effective AEDs. In this study we use neuronal expression of GCaMP, a potent calcium reporter, to image neuronal activity using a non-invasive and rapid method. Expression in motoneurons in the isolated CNS of third instar larvae shows waves of calcium-activity that pass between segments of the ventral nerve cord. Time between calcium peaks, in the same neurons, between adjacent segments usually show a temporal separation of greater than 200 ms. Exposure to proconvulsants (picrotoxin or 4-aminopyridine) reduces separation to below 200 ms showing increased synchrony of activity across adjacent segments. Increased synchrony, characteristic of epilepsy, is similarly observed in genetic seizure mutants: bangsenseless1 (bss1) and paralyticK1270T (paraK1270T). Exposure of bss1 to clinically-used antiepileptic drugs (phenytoin or gabapentin) significantly reduces synchrony. In this study we use the measure of synchronicity to evaluate the effectiveness of known and novel anticonvulsive compounds (antipain, isethionate, etopiside rapamycin and dipyramidole) to reduce seizure-like CNS activity. We further show that such compounds also reduce the Drosophila voltage-gated persistent Na+ current (INaP) in an identified motoneuron (aCC). Our combined assays provide a rapid and reliable method to screen unknown compounds

  14. A cell-based fascin bioassay identifies compounds with potential anti-metastasis or cognition-enhancing functions

    PubMed Central

    Kraft, Robert; Kahn, Allon; Medina-Franco, José L.; Orlowski, Mikayla L.; Baynes, Cayla; López-Vallejo, Fabian; Barnard, Kobus; Maggiora, Gerald M.; Restifo, Linda L.

    2013-01-01

    SUMMARY The actin-bundling protein fascin is a key mediator of tumor invasion and metastasis and its activity drives filopodia formation, cell-shape changes and cell migration. Small-molecule inhibitors of fascin block tumor metastasis in animal models. Conversely, fascin deficiency might underlie the pathogenesis of some developmental brain disorders. To identify fascin-pathway modulators we devised a cell-based assay for fascin function and used it in a bidirectional drug screen. The screen utilized cultured fascin-deficient mutant Drosophila neurons, whose neurite arbors manifest the ‘filagree’ phenotype. Taking a repurposing approach, we screened a library of 1040 known compounds, many of them FDA-approved drugs, for filagree modifiers. Based on scaffold distribution, molecular-fingerprint similarities, and chemical-space distribution, this library has high structural diversity, supporting its utility as a screening tool. We identified 34 fascin-pathway blockers (with potential anti-metastasis activity) and 48 fascin-pathway enhancers (with potential cognitive-enhancer activity). The structural diversity of the active compounds suggests multiple molecular targets. Comparisons of active and inactive compounds provided preliminary structure-activity relationship information. The screen also revealed diverse neurotoxic effects of other drugs, notably the ‘beads-on-a-string’ defect, which is induced solely by statins. Statin-induced neurotoxicity is enhanced by fascin deficiency. In summary, we provide evidence that primary neuron culture using a genetic model organism can be valuable for early-stage drug discovery and developmental neurotoxicity testing. Furthermore, we propose that, given an appropriate assay for target-pathway function, bidirectional screening for brain-development disorders and invasive cancers represents an efficient, multipurpose strategy for drug discovery. PMID:22917928

  15. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra.

    PubMed

    Glauber, Kristine M; Dana, Catherine E; Park, Steve S; Colby, David A; Noro, Yukihiko; Fujisawa, Toshitaka; Chamberlin, A Richard; Steele, Robert E

    2013-12-01

    Developmental processes such as morphogenesis, patterning and differentiation are continuously active in the adult Hydra polyp. We carried out a small molecule screen to identify compounds that affect patterning in Hydra. We identified a novel molecule, DAC-2-25, that causes a homeotic transformation of body column into tentacle zone. This transformation occurs in a progressive and polar fashion, beginning at the oral end of the animal. We have identified several strains that respond to DAC-2-25 and one that does not, and we used chimeras from these strains to identify the ectoderm as the target tissue for DAC-2-25. Using transgenic Hydra that express green fluorescent protein under the control of relevant promoters, we examined how DAC-2-25 affects tentacle patterning. Genes whose expression is associated with the tentacle zone are ectopically expressed upon exposure to DAC-2-25, whereas those associated with body column tissue are turned off as the tentacle zone expands. The expression patterns of the organizer-associated gene HyWnt3 and the hypostome-specific gene HyBra2 are unchanged. Structure-activity relationship studies have identified features of DAC-2-25 that are required for activity and potency. This study shows that small molecule screens in Hydra can be used to dissect patterning processes. PMID:24255098

  16. A small molecule screen identifies a novel compound that induces a homeotic transformation in Hydra

    PubMed Central

    Glauber, Kristine M.; Dana, Catherine E.; Park, Steve S.; Colby, David A.; Noro, Yukihiko; Fujisawa, Toshitaka; Chamberlin, A. Richard; Steele, Robert E.

    2013-01-01

    Developmental processes such as morphogenesis, patterning and differentiation are continuously active in the adult Hydra polyp. We carried out a small molecule screen to identify compounds that affect patterning in Hydra. We identified a novel molecule, DAC-2-25, that causes a homeotic transformation of body column into tentacle zone. This transformation occurs in a progressive and polar fashion, beginning at the oral end of the animal. We have identified several strains that respond to DAC-2-25 and one that does not, and we used chimeras from these strains to identify the ectoderm as the target tissue for DAC-2-25. Using transgenic Hydra that express green fluorescent protein under the control of relevant promoters, we examined how DAC-2-25 affects tentacle patterning. Genes whose expression is associated with the tentacle zone are ectopically expressed upon exposure to DAC-2-25, whereas those associated with body column tissue are turned off as the tentacle zone expands. The expression patterns of the organizer-associated gene HyWnt3 and the hypostome-specific gene HyBra2 are unchanged. Structure-activity relationship studies have identified features of DAC-2-25 that are required for activity and potency. This study shows that small molecule screens in Hydra can be used to dissect patterning processes. PMID:24255098

  17. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics

    PubMed Central

    Vaniya, Arpana

    2015-01-01

    Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpretation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottleneck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MSn) trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, generate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over the past 10 years as a tool for metabolite identification, including algorithms, software and databases used to build and to implement fragmentation trees and mass spectral annotations. PMID:26213431

  18. Analogue Experiments Identify Possible Precursor Compounds for Chlorohydrocarbons Detected in SAM

    NASA Astrophysics Data System (ADS)

    Miller, K.; Summons, R. E.; Eigenbrode, J. L.; Freissinet, C.; Glavin, D. P.; Martin, M. G.; Team, M.

    2013-12-01

    Since landing at Gale Crater on August 6, 2012, the Sample Analysis at Mars (SAM) instrument suite, aboard the Curiosity Rover, has conducted multiple analyses of scooped and drilled samples and has identified a suite of chlorohydrocarbons including chloromethane, dichloromethane, trichloromethane, chloromethylpropene, and chlorobenzene (Glavin et al., 2013; Leshin et al., 2013). These compounds were identified after samples were pyrolysed at temperatures up to ~835°C through a combination of Evolved Gas Analysis (EGA) and Gas Chromatography Mass Spectrometry (GCMS). Since these chlorinated species were well above the background levels determined by empty cup blanks analyzed prior to solid sample analyses, thermal degradation of oxychlorine phases, such as perchlorate, present in the Martian soil, are the most likely source of chlorine needed to generate these chlorohydrocarbons. Laboratory analogue experiments show that terrestrial organics internal to SAM, such as N-methyl-N(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), a derivatization agent, can react with perchlorates to produce all of the chlorohydrocarbons detected by SAM. However, in pyrolysis-trap-GCMS laboratory experiments with MTBSTFA, C4 compounds are the predominant chlorohydrocarbon observed, whereas on SAM the C1 chlorohydrocarbons dominate (Glavin et al., 2013). This, in addition to the previous identification of chloromethane and dichloromethane by the 1976 Viking missions (Biemann et al., 1977), suggest that there could be another, possibly Martian, source of organic carbon contributing to the formation of the C1 chlorohydrocarbons, or other components of the solid samples analyzed by SAM are having a catalytic effect on chlorohydrocarbon generation. Laboratory analogue experiments investigated a suite of organic compounds that have the potential to accumulate on Mars (Benner et al., 2000) and thus serve as sources of carbon for the formation of chlorohydrocarbons detected by the SAM and

  19. Grape Seed Oil Compounds: Biological and Chemical Actions for Health

    PubMed Central

    Garavaglia, Juliano; Markoski, Melissa M.; Oliveira, Aline; Marcadenti, Aline

    2016-01-01

    Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These effects have been related to grape seed oil constituents, mainly tocopherol, linolenic acid, resveratrol, quercetin, procyanidins, carotenoids, and phytosterols. The aim of this article was to briefly review the composition and nutritional aspects of grape seed oil, the interactions of its compounds with molecular and cellular pathways, and its possible beneficial effects on health. PMID:27559299

  20. Grape Seed Oil Compounds: Biological and Chemical Actions for Health.

    PubMed

    Garavaglia, Juliano; Markoski, Melissa M; Oliveira, Aline; Marcadenti, Aline

    2016-01-01

    Grape seed oil is rich in phenolic compounds, fatty acids, and vitamins, with economic importance to pharmaceutical, cosmetic, and food industry. Its use as an edible oil has also been suggested, especially due to its pleasant sensory characteristics. Grape seed oil has beneficial properties for health that are mainly detected by in vitro studies, such as anti-inflammatory, cardioprotective, antimicrobial, and anticancer properties, and may interact with cellular and molecular pathways. These effects have been related to grape seed oil constituents, mainly tocopherol, linolenic acid, resveratrol, quercetin, procyanidins, carotenoids, and phytosterols. The aim of this article was to briefly review the composition and nutritional aspects of grape seed oil, the interactions of its compounds with molecular and cellular pathways, and its possible beneficial effects on health. PMID:27559299

  1. Radiation induced chemical changes of phenolic compounds in strawberries

    NASA Astrophysics Data System (ADS)

    Breitfellner, F.; Solar, S.; Sontag, G.

    2003-06-01

    In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment.

  2. Chemical evolution and the preservation of organic compounds on Mars

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Mancinelli, Rocco L.

    1989-01-01

    Several lines of evidence suggest that the environment on early Mars and early Earth were very similar. Since life is abundant on Earth, it seems likely that conditions on early Earth were conducive to chemical evolution and the origin of life. The similarity between early Mars and early Earth encourages the hypothesis that chemical evolution might have also occurred on Mars, but that decreasing temperatures and the loss of its atmosphere brought the evolution to a halt. The possibility of finding on Mars remnants of organic material dating back to this early clement period is addressed.

  3. PREDICTION OF CHEMICAL REACTIVITY PARAMETERS AND PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FROM MOLECULAR STRUCTURE USING SPARC

    EPA Science Inventory

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  4. Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures

    DOEpatents

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2014-09-30

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  5. Cyanobacterium sp. host cell and vector for production of chemical compounds in Cyanobacterial cultures

    DOEpatents

    Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

    2016-04-19

    A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

  6. ESTIMATION OF PHYSICAL PROPERTIES AND CHEMICAL REACTIVITY PARAMETERS OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The computer program SPARC (Sparc Performs Automated Reasoning in Chemistry)has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms ...

  7. EVALUATION USING AN ORGANOPHILIC CLAY TO CHEMICALLY STABILIZE WASTE CONTAINING ORGANIC COMPOUNDS

    EPA Science Inventory

    A modified clay (organophilic) was utilized to evaluate the potential for chemically stabilizing a waste containing organic compounds. hemical bonding between the binder and the contaminants was indicated. eachate testing also indicated strong binding. Copy available at NTIS as ...

  8. Chemical profiles and identification of key compound caffeine in marine-derived traditional Chinese medicine Ostreae concha.

    PubMed

    Yang, Xue; Zhou, Shi-Lu; Ma, Ai-Cui; Xu, Hai-Tao; Guan, Hua-Shi; Liu, Hong-Bing

    2012-05-01

    To compare the chemical differences between the medicinal and cultured oyster shells, their chemical profiles were investigated. Using the ultra performance liquid chromatography-electron spraying ionization-mass spectrometry (UPLC-ESI-MS), combined with principal component analysis (PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA), the discrimination of the chemical characteristics among the medicinal and cultured oyster shells was established. Moreover, the chemometric analysis revealed some potential key compounds. After a large-scale extraction and isolation, one target key compound was unambiguously identified as caffeine based on extensive spectroscopic data analysis (1D and 2D NMR, MS, and UV) and comparison with literature data. PMID:22822365

  9. Chemical Profiles and Identification of Key Compound Caffeine in Marine-Derived Traditional Chinese Medicine Ostreae concha

    PubMed Central

    Yang, Xue; Zhou, Shi-Lu; Ma, Ai-Cui; Xu, Hai-Tao; Guan, Hua-Shi; Liu, Hong-Bing

    2012-01-01

    To compare the chemical differences between the medicinal and cultured oyster shells, their chemical profiles were investigated. Using the ultra performance liquid chromatography-electron spraying ionization-mass spectrometry (UPLC-ESI-MS), combined with principal component analysis (PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA), the discrimination of the chemical characteristics among the medicinal and cultured oyster shells was established. Moreover, the chemometric analysis revealed some potential key compounds. After a large-scale extraction and isolation, one target key compound was unambiguously identified as caffeine (1) based on extensive spectroscopic data analysis (1D and 2D NMR, MS, and UV) and comparison with literature data. PMID:22822365

  10. Yeast-Based High-Throughput Screens to Identify Novel Compounds Active against Brugia malayi

    PubMed Central

    Bilsland, Elizabeth; Bean, Daniel M.; Devaney, Eileen; Oliver, Stephen G.

    2016-01-01

    Background Lymphatic filariasis is caused by the parasitic worms Wuchereria bancrofti, Brugia malayi or B. timori, which are transmitted via the bites from infected mosquitoes. Once in the human body, the parasites develop into adult worms in the lymphatic vessels, causing severe damage and swelling of the affected tissues. According to the World Health Organization, over 1.2 billion people in 58 countries are at risk of contracting lymphatic filariasis. Very few drugs are available to treat patients infected with these parasites, and these have low efficacy against the adult stages of the worms, which can live for 7–15 years in the human body. The requirement for annual treatment increases the risk of drug-resistant worms emerging, making it imperative to develop new drugs against these devastating diseases. Methodology/Principal Findings We have developed a yeast-based, high-throughput screening system whereby essential yeast genes are replaced with their filarial or human counterparts. These strains are labeled with different fluorescent proteins to allow the simultaneous monitoring of strains with parasite or human genes in competition, and hence the identification of compounds that inhibit the parasite target without affecting its human ortholog. We constructed yeast strains expressing eight different Brugia malayi drug targets (as well as seven of their human counterparts), and performed medium-throughput drug screens for compounds that specifically inhibit the parasite enzymes. Using the Malaria Box collection (400 compounds), we identified nine filarial specific inhibitors and confirmed the antifilarial activity of five of these using in vitro assays against Brugia pahangi. Conclusions/Significance We were able to functionally complement yeast deletions with eight different Brugia malayi enzymes that represent potential drug targets. We demonstrated that our yeast-based screening platform is efficient in identifying compounds that can discriminate between

  11. Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds

    PubMed Central

    2013-01-01

    Calcium phosphate apatites are inorganic compounds encountered in many different mineralized tissues. Bone mineral, for example, is constituted of nanocrystalline nonstoichiometric apatite, and the production of “analogs” through a variety of methods is frequently reported. In another context, the ability of solid surfaces to favor the nucleation and growth of “bone-like” apatite upon immersion in supersaturated fluids such as SFB is commonly used as one evaluation index of the “bioactivity” of such surfaces. Yet, the compounds or deposits obtained are not always thoroughly characterized, and their apatitic nature is sometimes not firmly assessed by appropriate physicochemical analyses. Of particular importance are the “actual” conditions in which the precipitation takes place. The precipitation of a white solid does not automatically indicate the formation of a “bone-like carbonate apatite layer” as is sometimes too hastily concluded: “all that glitters is not gold.” The identification of an apatite phase should be carefully demonstrated by appropriate characterization, preferably using complementary techniques. This review considers the fundamentals of calcium phosphate apatite characterization discussing several techniques: electron microscopy/EDX, XRD, FTIR/Raman spectroscopies, chemical analyses, and solid state NMR. It also underlines frequent problems that should be kept in mind when making “bone-like apatites.” PMID:23984373

  12. Compounds identified in-flight by ROSETTA-COSIMA before the comet encounter

    NASA Astrophysics Data System (ADS)

    Hilchenbach, M.; Fischer, H.; Krüger, H.; Thirkell, L.; Rynö, J.

    2013-09-01

    Secondary ion mass spectrometry (SIMS) is a laboratory surface analyzing technique and, with the COSIMA instrument onboard ROSETTA, it will be applied for the first time to in-situ measurements of cometary grains, once ROSETTA encounters its target comet, 67P/Churyumov-Gerasimenko, in the September 2014. The COmetary Secondary Ion Mass analyzer (COSIMA) onboard ROSETTA will expose metal targets, collect cometary dust grains in the inner coma and analyze these with an optical microscope as well as secondary ion mass spectrometry [1]. The COSIMA instrument has been operated in-flight for commissioning in the first months after launch in March 2004 and on a regular basis during the passive and active spacecraft check-out time intervals up to ROSETTA hibernation from June 2011 onwards. The secondary ion mass spectra background and /or contamination level of the COSIMA metal targets has been identified prior to launch and these had been selected accordingly to avoid masking of single elements or compounds by carrying different metal targets for cometary grain collection. The main compounds identified in-flight are silicon polymers and hydrocarbons. We will discuss the surface analysis results with COSIMA, carried out far off any comet or asteroid in interplanetary space, their time evolution and their potential sources within ROSETTA.

  13. E-prescribing errors identified in a compounding pharmacy: a quality-improvement project.

    PubMed

    Reed-Kane, Dana; Kittell, Katrina; Adkins, Jacquelyn; Flocks, Sarah; Nguyen, Thu

    2014-01-01

    Errors during the prescribing process can cause problems for patients. When the pharmacist intercepts a prescribing error, it can cause a delay, as the patient may not receive the medication until the problem is resolved. Electronic prescriptions are purported to reduce prescribing errors. However, studies have shown that electronic prescriptions can be prone to certain types of errors. Compounding pharmacies may present an additional obstacle for e-prescribing, as the prescribed medications are not commercially available and may not be listed in the e-prescribing software. The objectives of this study were to estimate the electronic prescription error rate in a compounding pharmacy, determine the most common error types, list the most common interventions pharmacists made, and estimate how long it took to resolve these errors. The study design was quality improvement with descriptive data. During the four weeks of data collection, the pharmacists were trained to complete a standardized data collection form when they identified an electronic prescription error. Percentages were calculated for new prescriptions, electronic prescriptions with errors, error types, and error resolution methods. In the four-week period of the study, there were 982 new prescriptions, 111 of which were electronic prescriptions. Of those 111 electronic prescriptions, 70 had errors. The electronic prescriptions error rate was 63%. The most common type of error was wrong entry field (70.3%). For this project, wrong entry field was defined to mean that the drug name was in the wrong field (81%) or that multiple entries were in the wrong field (7%). Pharmacists usually used their own judgment to resolve an error (67%). Many e-prescription errors were identified in this compounding pharmacy. When prescription errors happen, workflow and patient care are disrupted. Our goal is to discuss these findings with Surescripts and e-prescribing software companies to seek systems-based solutions. PMID

  14. CHEMICAL SPECIATION OF INORGANIC COMPOUNDS UNDER HYDROTHERMAL CONDITIONS

    EPA Science Inventory

    This research will utilize the high-intensity x-rays available at the Advance Photon Source (APS) to study the inorganic chemistry occurring during the hydrothermal oxidation of tank waste and the chemistry associated with tank waste vitrification. Although the chemical conversio...

  15. Inhibition of the compound action potentials of frog sciatic nerves by aroma oil compounds having various chemical structures

    PubMed Central

    Ohtsubo, Sena; Fujita, Tsugumi; Matsushita, Akitomo; Kumamoto, Eiichi

    2015-01-01

    Plant-derived chemicals including aroma oil compounds have an ability to inhibit nerve conduction and modulate transient receptor potential (TRP) channels. Although applying aroma oils to the skin produces a local anesthetic effect, this has not been yet examined throughly. The aim of the present study was to know how nerve conduction inhibitions by aroma oil compounds are related to their chemical structures and whether these activities are mediated by TRP activation. Compound action potentials (CAPs) were recorded from the frog sciatic nerve by using the air-gap method. Citral (aldehyde), which activates various types of TRP channels, attenuated the peak amplitude of CAP with the half-maximal inhibitory concentration (IC50) value of 0.46 mmol/L. Another aldehyde (citronellal), alcohol (citronellol, geraniol, (±)-linalool, (−)-linalool, (+)-borneol, (−)-borneol, α-terpineol), ester (geranyl acetate, linalyl acetate, bornyl acetate), and oxide (rose oxide) compounds also reduced CAP peak amplitudes (IC50: 0.50, 0.35, 0.53, 1.7, 2.0, 1.5, 2.3, 2.7, 0.51, 0.71, 0.44, and 2.6 mmol/L, respectively). On the other hand, the amplitudes were reduced by a small extent by hydrocarbons (myrcene and p-cymene) and ketone (camphor) at high concentrations (2–5 mmol/L). The activities of citral and other TRP agonists ((+)-borneol and camphor) were resistant to TRP antagonist ruthenium red. An efficacy sequence for the CAP inhibitions was generally aldehydes ≥ esters ≥ alcohols > oxides >> hydrocarbons. The CAP inhibition by the aroma oil compound was not related to its octanol–water partition coefficient. It is suggested that aroma oil compounds inhibit nerve conduction in a manner specific to their chemical structures without TRP activation. PMID:26038703

  16. Revealing of Biological Activity in Crude Extracts, Seperated Fractions, Groups of Chemical Substance and Individual Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crude extracts, separated fractions, groups of chemical substances, and individual compounds from natural sources are all evaluated stepwise while performing purifications in in-house bioassays. In a stepwise fashion proceeding from crude extracts to fractions and on to pure compounds, decisions ar...

  17. Chemical Screens Identify Drugs that Enhance or Mitigate Cellular Responses to Antibody-Toxin Fusion Proteins

    PubMed Central

    Guha, Rajarshi; Simon, Nathan; Pasetto, Matteo; Keller, Jonathan; Huang, Manjie; Angelus, Evan; Pastan, Ira; Ferrer, Marc; FitzGerald, David J.; Thomas, Craig J.

    2016-01-01

    The intersection of small molecular weight drugs and antibody-based therapeutics is rarely studied in large scale. Both types of agents are currently part of the cancer armamentarium. However, very little is known about how to combine them in optimal ways. Immunotoxins are antibody-toxin gene fusion proteins engineered to target cancer cells via antibody binding to surface antigens. For fusion proteins derived from Pseudomonas exotoxin (PE), potency relies on the enzymatic domain of the toxin which catalyzes the ADP-ribosylation of EF2 causing inhibition of protein synthesis leading to cell death. Candidate immunotoxins have demonstrated clear value in clinical trials but generally have not been curative as single agents. Therefore we undertook three screens to discover effective combinations that could act synergistically. From the MIPE-3 library of compounds we identified various enhancers of immunotoxin action and at least one major class of inhibitor. Follow-up experiments confirmed the screening data and suggested that immunotoxins when administered with everolimus or nilotinib exhibit favorable combinatory activity and would be candidates for preclinical development. Mechanistic studies revealed that everolimus-immunotoxin combinations acted synergistically on elements of the protein synthetic machinery, including S61 kinase and 4E-BP1 of the mTORC1 pathway. Conversely, PARP inhibitors antagonized immunotoxins and also blocked the toxicity due to native ADP-ribosylating toxins. Thus, our goal of investigating a chemical library was justified based on the identification of several approved compounds that could be developed preclinically as ‘enhancers’ and at least one class of mitigator to be avoided. PMID:27556570

  18. Chemical process for the catalytic oxidation of formaldehyde and other organic compounds

    SciTech Connect

    Murphy, A.P.

    1991-01-01

    The invention discusses a chemical process for the catalytic oxidation of formaldehyde and other organic compounds contained in a dilute aqueous solution, particularly waste water. The inventive feature resides in the use of a cobalt catalyst to increase the rate of oxidation of the organic compounds when hypochlorous acid is the oxidant. The latter may be provided by a chlorine compound, such as sodium hypochlorite, calcium hypochlorite or chlorine gas dissolved in water.

  19. Heteropteran chemical repellents identified in the citrus odor of a seabird (crested auklet: Aethia cristatella): evolutionary convergence in chemical ecology

    NASA Astrophysics Data System (ADS)

    Douglas, H. D.; Co, J. E.; Jones, T. H.; Conner, W. E.

    2001-08-01

    The exogenous application of chemical repellents is widespread in birds, but endogenous production is exceedingly rare. We herein report a new class of avian defensive compounds isolated from the feathers and volatile odor of the crested auklet ( Aethia cristatella). Mass spectra indicate that n-hexanal, n-octanal, n-decanal, Z-4-decenal and a 12-carbon unsaturated aldehyde comprise the auklet odorant. Octanal and hexanal are also secreted in the repugnant metasternal gland emissions of heteropteran insects and are known to be potent invertebrate repellents. We suggest that the auklet odorant functions as an ectoparasite repellent and a signal of mate quality. This would represent a rare and direct link between vigor, quality and parasite resistance, one of several putative bases for mate selection. This is the first report of defensive compounds produced by a seabird or colonial bird and one of the few examples of chemical defense in a polar or subpolar marine vertebrate.

  20. Potent Plasmodium falciparum gametocytocidal activity of diaminonaphthoquinones, lead antimalarial chemotypes identified in an antimalarial compound screen.

    PubMed

    Tanaka, Takeshi Q; Guiguemde, W Armand; Barnett, David S; Maron, Maxim I; Min, Jaeki; Connelly, Michele C; Suryadevara, Praveen Kumar; Guy, R Kiplin; Williamson, Kim C

    2015-03-01

    Forty percent of the world's population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria. PMID:25512421

  1. Potent Plasmodium falciparum Gametocytocidal Activity of Diaminonaphthoquinones, Lead Antimalarial Chemotypes Identified in an Antimalarial Compound Screen

    PubMed Central

    Tanaka, Takeshi Q; Guiguemde, W. Armand; Barnett, David S.; Maron, Maxim I.; Min, Jaeki; Connelly, Michele C.; Suryadevara, Praveen Kumar; Guy, R. Kiplin

    2014-01-01

    Forty percent of the world's population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria. PMID:25512421

  2. Combined Rational Design and a High Throughput Screening Platform for Identifying Chemical Inhibitors of a Ras-activating Enzyme*

    PubMed Central

    Evelyn, Chris R.; Biesiada, Jacek; Duan, Xin; Tang, Hong; Shang, Xun; Papoian, Ruben; Seibel, William L.; Nelson, Sandra; Meller, Jaroslaw; Zheng, Yi

    2015-01-01

    The Ras family small GTPases regulate multiple cellular processes, including cell growth, survival, movement, and gene expression, and are intimately involved in cancer pathogenesis. Activation of these small GTPases is catalyzed by a special class of enzymes, termed guanine nucleotide exchange factors (GEFs). Herein, we developed a small molecule screening platform for identifying lead hits targeting a Ras GEF enzyme, SOS1. We employed an ensemble structure-based virtual screening approach in combination with a multiple tier high throughput experimental screen utilizing two complementary fluorescent guanine nucleotide exchange assays to identify small molecule inhibitors of GEF catalytic activity toward Ras. From a library of 350,000 compounds, we selected a set of 418 candidate compounds predicted to disrupt the GEF-Ras interaction, of which dual wavelength GDP dissociation and GTP-loading experimental screening identified two chemically distinct small molecule inhibitors. Subsequent biochemical validations indicate that they are capable of dose-dependently inhibiting GEF catalytic activity, binding to SOS1 with micromolar affinity, and disrupting GEF-Ras interaction. Mutagenesis studies in conjunction with structure-activity relationship studies mapped both compounds to different sites in the catalytic pocket, and both inhibited Ras signaling in cells. The unique screening platform established here for targeting Ras GEF enzymes could be broadly useful for identifying lead inhibitors for a variety of small GTPase-activating GEF reactions. PMID:25825487

  3. Reactivity of target compounds for chemical coal desulfurization. Technical report, 1 December 1993--28 February 1994

    SciTech Connect

    Buchanan, D.H.; Amin, M.; Cunningham, R.; Galyen, J.

    1994-06-01

    This project seeks to identify representative organosulfur compounds which are removed by coal desulfurization reactions. Demineralized coals from the Illinois Basin Coal Sample Program are solvent extracted and the extracts fractionated to separate and concentrate organosulfur compounds for analysis by Gas Chromatography/Mass Spectroscopy. After sulfur compounds are characterized, the parent extracts will be subjected to reactions previously shown to reduce the organic sulfur content of Illinois coals, fractionated and again analyzed for organosulfur content to determine which compounds reacted during the chemical treatment. The original coal will be subjected to chemical desulfurization, extraction, fractionation and analysis in order to correlate changes in organic sulfur content of the coal with reactions of specific sulfur compounds. These compounds can thus be reliably considered as target molecules for the next generation of desulfurization processes. During this quarter, work continued on developing efficient methods to isolate and analyze sulfur-rich coal extract fractions by GC/MS. Since only relatively non-polar compounds can be analyzed, pyridine extracts must be fractionated. Direct extraction of several coals with toluene is quicker but did not give as much toluene soluble material as fractionation of pyridine extracts and is thus not suitable for preparation of representative analytical samples. The authors observe that most IBC sample program coals contain elemental sulfur due to oxidation of pyrite. There is less elemental sulfur in IBC-101 than in other Herrin coals. This coal was washed in a preparation plant to reduce pyrite concentration. Since elemental sulfur slowly reacts to produce organosulfur compounds in coal during storage or handling, this suggests that early removal of pyrite can reduce formation of these hard to remove compounds.

  4. Chemical genomic profiling via barcode sequencing to predict compound mode of action

    PubMed Central

    Piotrowski, Jeff S.; Simpkins, Scott W.; Li, Sheena C.; Deshpande, Raamesh; McIlwain, Sean; Ong, Irene; Myers, Chad L.; Boone, Charlie; Andersen, Raymond J.

    2015-01-01

    Summary Chemical genomics is an unbiased, whole-cell approach to characterizing novel compounds to determine mode of action and cellular target. Our version of this technique is built upon barcoded deletion mutants of Saccharomyces cerevisiae and has been adapted to a high-throughput methodology using next-generation sequencing. Here we describe the steps to generate a chemical genomic profile from a compound of interest, and how to use this information to predict molecular mechanism and targets of bioactive compounds. PMID:25618354

  5. A Chemical Genetic Screen for Modulators of Exocytic Transport Identifies Inhibitors of a Transport Mechanism Linked to GTR2 Function▿

    PubMed Central

    Zhang, Lisha; Huang, Min; Harsay, Edina

    2010-01-01

    Membrane and protein traffic to the cell surface is mediated by partially redundant pathways that are difficult to perturb in ways that yield a strong phenotype. Such robustness is expected in a fine-tuned process, regulated by environmental cues, that is required for controlled cell surface growth and cell proliferation. Synthetic genetic interaction screens are especially valuable for investigating complex processes involving partially redundant pathways or mechanisms. In a previous study, we used a triple-synthetic-lethal yeast mutant screen to identify a novel component of the late exocytic transport machinery, Avl9. In a chemical-genetic version of the successful mutant screen, we have now identified small molecules that cause a rapid (within 15 min) accumulation of secretory cargo and abnormal Golgi compartment-like membranes at low concentration (<2 μM), indicating that the compounds likely target the exocytic transport machinery at the Golgi. We screened for genes that, when overexpressed, suppress the drug effects, and found that the Ras-like small GTPase, Gtr2, but not its homolog and binding partner, Gtr1, efficiently suppresses the toxic effects of the compounds. Furthermore, assays for suppression of the secretory defect caused by the compounds suggest that Gtr proteins can regulate a pathway that is perturbed by the compounds. Because avl9Δ and gtr mutants share some phenotypes, our results indicate that the small molecules identified by our chemical-genetic strategy are promising tools for understanding Avl9 function and the mechanisms that control late exocytic transport. PMID:19897736

  6. Characterization of the reactivities of volatile organic compounds using a master chemical mechanism.

    PubMed

    Derwent, R G; Jenkin, M E; Saunders, S M; Pilling, M J

    2001-05-01

    A comprehensive description of the ozone-forming potentials of 101 organic compounds has been constructed under North American urban "averaged conditions" using a detailed master chemical mechanism and a simple air parcel trajectory model. This chemical mechanism describes the reactions of 3603 chemical species taking part in more than 10,500 chemical reactions. An index value has been calculated for each organic compound, which describes the increment in ozone concentrations found downwind of an urban area following the emission of a fixed increment in the mass emission of each organic compound. These indices, termed photochemical ozone creation potentials (POCPs), have been expressed on a scale relative to ethylene (ethene) = 100, and, a reactivity scale has been generated for alkanes, alkenes, and oxygenated and halogenated organic compounds. A high degree of correlation (R2 = 0.9) was found between these POCP values and the most widely accepted urban reactivity scale. While the reactivities of most of the 86 organic compounds compared fell within a consistent range, significant discrepancies were found for only 5 compounds. Single-day or multiday conditions appear to be important in establishing quantitative reactivity scales for the less reactive organic compounds. PMID:11355457

  7. Enhancement of the chemical semantic web through the use of InChI identifiers.

    PubMed

    Coles, Simon J; Day, Nick E; Murray-Rust, Peter; Rzepa, Henry S; Zhang, Yong

    2005-05-21

    Molecules, as defined by connectivity specified via the International Chemical Identifier (InChI), are precisely indexed by major web search engines so that Internet tools can be transparently used for unique structure searches. PMID:15889163

  8. ToxAlerts: A Web Server of Structural Alerts for Toxic Chemicals and Compounds with Potential Adverse Reactions

    PubMed Central

    2012-01-01

    The article presents a Web-based platform for collecting and storing toxicological structural alerts from literature and for virtual screening of chemical libraries to flag potentially toxic chemicals and compounds that can cause adverse side effects. An alert is uniquely identified by a SMARTS template, a toxicological endpoint, and a publication where the alert was described. Additionally, the system allows storing complementary information such as name, comments, and mechanism of action, as well as other data. Most importantly, the platform can be easily used for fast virtual screening of large chemical datasets, focused libraries, or newly designed compounds against the toxicological alerts, providing a detailed profile of the chemicals grouped by structural alerts and endpoints. Such a facility can be used for decision making regarding whether a compound should be tested experimentally, validated with available QSAR models, or eliminated from consideration altogether. The alert-based screening can also be helpful for an easier interpretation of more complex QSAR models. The system is publicly accessible and tightly integrated with the Online Chemical Modeling Environment (OCHEM, http://ochem.eu). The system is open and expandable: any registered OCHEM user can introduce new alerts, browse, edit alerts introduced by other users, and virtually screen his/her data sets against all or selected alerts. The user sets being passed through the structural alerts can be used at OCHEM for other typical tasks: exporting in a wide variety of formats, development of QSAR models, additional filtering by other criteria, etc. The database already contains almost 600 structural alerts for such endpoints as mutagenicity, carcinogenicity, skin sensitization, compounds that undergo metabolic activation, and compounds that form reactive metabolites and, thus, can cause adverse reactions. The ToxAlerts platform is accessible on the Web at http://ochem.eu/alerts, and it is constantly

  9. Identifying Alternative Conceptions of Chemical Kinetics among Secondary School and Undergraduate Students in Turkey

    ERIC Educational Resources Information Center

    Cakmakci, Gultekin

    2010-01-01

    This study identifies some alternative conceptions of chemical kinetics held by secondary school and undergraduate students (N = 191) in Turkey. Undergraduate students who participated are studying to become chemistry teachers when they graduate. Students' conceptions about chemical kinetics were elicited through a series of written tasks and…

  10. Gametocytocidal Screen Identifies Novel Chemical Classes with Plasmodium falciparum Transmission Blocking Activity

    PubMed Central

    Sanders, Natalie G.; Sullivan, David J.; Mlambo, Godfree; Dimopoulos, George; Tripathi, Abhai K.

    2014-01-01

    Discovery of transmission blocking compounds is an important intervention strategy necessary to eliminate and eradicate malaria. To date only a small number of drugs that inhibit gametocyte development and thereby transmission from the mosquito to the human host exist. This limitation is largely due to a lack of screening assays easily adaptable to high throughput because of multiple incubation steps or the requirement for high gametocytemia. Here we report the discovery of new compounds with gametocytocidal activity using a simple and robust SYBR Green I- based DNA assay. Our assay utilizes the exflagellation step in male gametocytes and a background suppressor, which masks the staining of dead cells to achieve healthy signal to noise ratio by increasing signal of viable parasites and subtracting signal from dead parasites. By determining the contribution of exflagellation to fluorescent signal and using appropriate cutoff values, we were able to screen for gametocytocidal compounds. After assay validation and optimization, we screened an FDA approved drug library of approximately 1500 compounds, as well as the 400 compound MMV malaria box and identified 44 gametocytocidal compounds with sub to low micromolar IC50s. Major classes of compounds with gametocytocidal activity included quaternary ammonium compounds with structural similarity to choline, acridine-like compounds similar to quinacrine and pyronaridine, as well as antidepressant, antineoplastic, and anthelminthic compounds. Top drug candidates showed near complete transmission blocking in membrane feeding assays. This assay is simple, reproducible and demonstrated robust Z-factor values at low gametocytemia levels, making it amenable to HTS for identification of novel and potent gametocytocidal compounds. PMID:25157792

  11. Spectral imaging of chemical compounds using multivariate optically enhanced filters integrated with InGaAs VGA cameras

    NASA Astrophysics Data System (ADS)

    Priore, Ryan J.; Jacksen, Niels

    2016-05-01

    Infrared hyperspectral imagers (HSI) have been fielded for the detection of hazardous chemical and biological compounds, tag detection (friend versus foe detection) and other defense critical sensing missions over the last two decades. Low Size/Weight/Power/Cost (SWaPc) methods of identification of chemical compounds spectroscopy has been a long term goal for hand held applications. We describe a new HSI concept for low cost / high performance InGaAs SWIR camera chemical identification for military, security, industrial and commercial end user applications. Multivariate Optical Elements (MOEs) are thin-film devices that encode a broadband, spectroscopic pattern allowing a simple broadband detector to generate a highly sensitive and specific detection for a target analyte. MOEs can be matched 1:1 to a discrete analyte or class prediction. Additionally, MOE filter sets are capable of sensing an orthogonal projection of the original sparse spectroscopic space enabling a small set of MOEs to discriminate a multitude of target analytes. This paper identifies algorithms and broadband optical filter designs that have been demonstrated to identify chemical compounds using high performance InGaAs VGA detectors. It shows how some of the initial models have been reduced to simple spectral designs and tested to produce positive identification of such chemicals. We also are developing pixilated MOE compressed detection sensors for the detection of a multitude of chemical targets in challenging backgrounds/environments for both commercial and defense/security applications. This MOE based, real-time HSI sensor will exhibit superior sensitivity and specificity as compared to currently fielded HSI systems.

  12. Organohelium compounds: structures, stabilities and chemical bonding analyses.

    PubMed

    Fourré, Isabelle; Alvarez, Elsa; Chaquin, Patrick

    2014-02-24

    This paper deals with the possibility of forming short and relatively strong carbon-helium bonds in small typical organic molecules through substitution of one or several H atoms by He(+). A structural and energetics study (based on high-level calculations) of this unusual bonding, as well as a topological characterization of the resulting cations, is undertaken. Stable species generally requires substitution of about half of the hydrogen atoms for formation. Under these conditions, the number of such species appears to be potentially unlimited. "True" C-He bonds exhibit equilibrium distances ranging from 1.327 (C2H2He2(2+)) to 1.129 Å (He2CO(2+)). The energies of neutral He releasing range from approximately 5 kcal mol(-1) [He2CO(2+), (Z)-C2H2He2(2+)] to 25 kcal mol(-1) (C2HHe3(3+)), but remain most frequently around 10 kcal mol(-1). However, most of He(+)-substituted hydrocarbons are metastable with respect to C-C cleavage, except derivatives of ethene. Atoms in molecules (AIM) and electron localization function (ELF) topological descriptors classify the C-He bond as a weak charge-shift interaction [S. Shaik, D. Danovich, B. Silvi, D. L. Lauvergnat, P. C. Hiberty, Chem. Eur. J. 2005, 11, 6358-6371] in agreement with a recent publication by Rzepa [S. H. Rzepa, Nat. Chem. 2010, 2, 390-393]. He2CO(2+) is the only investigated compound that presents a C-He bonding ELF basin, which indicates a non-negligible covalent contribution to the bond. Other modifications in the electronic structure, such as the breaking of the triple bond in ethyne derivatives or the loss of aromaticity in C6H3He3(3+), are also nicely revealed by the ELF topology. PMID:24488791

  13. Identifying novel genes and chemicals related to nasopharyngeal cancer in a heterogeneous network.

    PubMed

    Li, Zhandong; An, Lifeng; Li, Hao; Wang, ShaoPeng; Zhou, You; Yuan, Fei; Li, Lin

    2016-01-01

    Nasopharyngeal cancer or nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. The factors that induce nasopharyngeal cancer are still not clear. Additional information about the chemicals or genes related to nasopharyngeal cancer will promote a better understanding of the pathogenesis of this cancer and the factors that induce it. Thus, a computational method NPC-RGCP was proposed in this study to identify the possible relevant chemicals and genes based on the presently known chemicals and genes related to nasopharyngeal cancer. To extensively utilize the functional associations between proteins and chemicals, a heterogeneous network was constructed based on interactions of proteins and chemicals. The NPC-RGCP included two stages: the searching stage and the screening stage. The former stage is for finding new possible genes and chemicals in the heterogeneous network, while the latter stage is for screening and removing false discoveries and selecting the core genes and chemicals. As a result, five putative genes, CXCR3, IRF1, CDK1, GSTP1, and CDH2, and seven putative chemicals, iron, propionic acid, dimethyl sulfoxide, isopropanol, erythrose 4-phosphate, β-D-Fructose 6-phosphate, and flavin adenine dinucleotide, were identified by NPC-RGCP. Extensive analyses provided confirmation that the putative genes and chemicals have significant associations with nasopharyngeal cancer. PMID:27149165

  14. Identifying novel genes and chemicals related to nasopharyngeal cancer in a heterogeneous network

    PubMed Central

    Li, Zhandong; An, Lifeng; Li, Hao; Wang, ShaoPeng; Zhou, You; Yuan, Fei; Li, Lin

    2016-01-01

    Nasopharyngeal cancer or nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. The factors that induce nasopharyngeal cancer are still not clear. Additional information about the chemicals or genes related to nasopharyngeal cancer will promote a better understanding of the pathogenesis of this cancer and the factors that induce it. Thus, a computational method NPC-RGCP was proposed in this study to identify the possible relevant chemicals and genes based on the presently known chemicals and genes related to nasopharyngeal cancer. To extensively utilize the functional associations between proteins and chemicals, a heterogeneous network was constructed based on interactions of proteins and chemicals. The NPC-RGCP included two stages: the searching stage and the screening stage. The former stage is for finding new possible genes and chemicals in the heterogeneous network, while the latter stage is for screening and removing false discoveries and selecting the core genes and chemicals. As a result, five putative genes, CXCR3, IRF1, CDK1, GSTP1, and CDH2, and seven putative chemicals, iron, propionic acid, dimethyl sulfoxide, isopropanol, erythrose 4-phosphate, β-D-Fructose 6-phosphate, and flavin adenine dinucleotide, were identified by NPC-RGCP. Extensive analyses provided confirmation that the putative genes and chemicals have significant associations with nasopharyngeal cancer. PMID:27149165

  15. Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches

    PubMed Central

    Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing

    2016-01-01

    The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722

  16. Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches.

    PubMed

    Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing

    2016-01-01

    The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722

  17. Prediction of the rodent carcinogenicity of organic compounds from their chemical structures using the FALS method.

    PubMed Central

    Moriguchi, I; Hirano, H; Hirono, S

    1996-01-01

    Fuzzy adaptive least-squares (FALS), a pattern recognition method recently developed in our laboratory for correlating structure with activity rating, was used to generate quantitative structure-activity relationship (QSAR) models on the carcinogenicity of organic compounds of several chemical classes. Using the predictive models obtained from the chemical class-based FALS QSAR approach, the rodent carcinogenicity or noncarcinogenicity of a group of organic chemicals currently being tested by the U.S. National Toxicology Program was estimated from their chemical structures. PMID:8933054

  18. Karrikins Identified in Biochars Indicate Post-Fire Chemical Cues Can Influence Community Diversity and Plant Development

    PubMed Central

    Kochanek, Jitka; Flematti, Gavin R.

    2016-01-01

    Background Karrikins are smoke-derived compounds that provide strong chemical cues to stimulate seed germination and seedling growth. The recent discovery in Arabidopsis that the karrikin perception system may be present throughout angiosperms implies a fundamental plant function. Here, we identify the most potent karrikin, karrikinolide (KAR1), in biochars and determine its role in species unique plant responses. Methods Biochars were prepared by three distinct commercial-scale pyrolysis technologies using systematically selected source material and their chemical properties, including karrikinolide, were quantified. Dose-response assays determined the effects of biochar on seed germination for two model species that require karrikinolide to break dormancy (Solanum orbiculatum, Brassica tourneforttii) and on seedling growth using two species that display plasticity to karrikins, biochar and phytotoxins (Lactuca sativa, Lycopersicon esculentum). Multivariate analysis examined relationships between biochar properties and the plant phenotype. Findings and Conclusions Results showed that karrikin abundant biochars stimulated dormant seed germination and seedling growth via mechanisms analogous to post-fire chemical cues. The individual species response was associated with its sensitivity to karrikinolide and inhibitory compounds within the biochars. These findings are critical for understanding why biochar influences community composition and plant physiology uniquely for different species and reaffirms that future pyrolysis technologies promise by-products that concomitantly sequester carbon and enhance plant growth for ecological and broader plant related applications. PMID:27536995

  19. [Recent advances in the study of antifungal lead compounds with new chemical scaffolds].

    PubMed

    Shao, Lü-cheng; Sheng, Chun-quan; Zhang, Wan-nian

    2007-11-01

    In recent years, the incidence of infections caused by invasive fungal pathogens has increased dramatically. However, most antifungal agents used in clinic have many drawbacks and cannot meet the demand of the clinical use. Therefore, for the development of new generation of antifungal agents, it is of great significance to find antifungal lead compounds with novel chemical scaffolds and new mode of action. Novel antifungal lead compounds reported in recent years are reviewed. Their chemical structures, antifungal activity and structure-activity relationship are discussed in detail, and current problems and trends in future research are also emphasized. PMID:18300466

  20. Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes

    PubMed Central

    Gokulakrishnan, J; Kuppusamy, Elumalai; Shanmugam, Dhanasekaran; Appavu, Anandan; Kaliyamoorthi, Krishnappa

    2013-01-01

    Objective To determine the repellent and pupicidal activities of Pogostemon cablin (P. cablin) chemical compositions were assayed for their toxicity against selected important vector mosquitoes, viz., Aedes aegypti (Ae. aegypti), Anopheles stephensi (An. stephensi) and Culex quinquefasciatus (Cx. quinquefasciatus) (Diptera: Culicidae). Methods The plants dry aerial parts were subjected to hydrodistillation using a modified Clevenger-type apparatus. The composition of the essential oil was analyzed by Gas Chromatography (GC) and GC mass spectrophotometry. Evaluation was carried out in a net cage (45 cm×30 cm×45 cm) containing 100 blood starved female mosquitoes and were assayed in the laboratory condition by using the protocol of WHO 2010. The repellent activity of P. cablin chemical compositions at concentration of 2mg/cm2were applied on skin of fore arm in man and exposed against adult female mosquitoes. The pupicidal activity was determined against selected important vector mosquitoes to concentration of 100 mg/L and mortality of each pupa was recorded after 24 h of exposure to the compounds. Results Chemical constituents of 15 compounds were identified in the oil of P.cablin compounds representing to 98.96%. The major components in essential oil were â-patchoulene, á-guaiene, ã-patchoulene, á-bulnesene and patchouli alcohol. The repellent activity of patchouli alcohol compound was found to be most effective for repellent activity and 2 mg/cm2 concentration provided 100% protection up to 280 min against Ae. aegypti, An. stephensi and Cx. quinquefasciatus, respectively. Similarly, pupae exposed to 100 mg/L concentrations of P. cablin chemical compositions. Among five compounds tested patchouli alcoholwas found to be most effective for pupicidal activity provided 28.44, 26.28 and 25.36 against Ae.aegypti, An.stephensi and Cx. quinquefasciatus, respectively. The percent adult emergence was inversely proportional to the concentration of compounds and directly

  1. Identification and quantitative analysis of chemical compounds based on multiscale linear fitting of terahertz spectra

    NASA Astrophysics Data System (ADS)

    Qiao, Lingbo; Wang, Yingxin; Zhao, Ziran; Chen, Zhiqiang

    2014-07-01

    Terahertz (THz) time-domain spectroscopy is considered as an attractive tool for the analysis of chemical composition. The traditional methods for identification and quantitative analysis of chemical compounds by THz spectroscopy are all based on full-spectrum data. However, intrinsic features of the THz spectrum only lie in absorption peaks due to existence of disturbances, such as unexpected components, scattering effects, and barrier materials. We propose a strategy that utilizes Lorentzian parameters of THz absorption peaks, extracted by a multiscale linear fitting method, for both identification of pure chemicals and quantitative analysis of mixtures. The multiscale linear fitting method can automatically remove background content and accurately determine Lorentzian parameters of the absorption peaks. The high recognition rate for 16 pure chemical compounds and the accurate predicted concentrations for theophylline-lactose mixtures demonstrate the practicability of our approach.

  2. Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators.

    PubMed

    Hieronymus, Haley; Lamb, Justin; Ross, Kenneth N; Peng, Xiao P; Clement, Cristina; Rodina, Anna; Nieto, Maria; Du, Jinyan; Stegmaier, Kimberly; Raj, Srilakshmi M; Maloney, Katherine N; Clardy, Jon; Hahn, William C; Chiosis, Gabriela; Golub, Todd R

    2006-10-01

    Although androgen receptor (AR)-mediated signaling is central to prostate cancer, the ability to modulate AR signaling states is limited. Here we establish a chemical genomic approach for discovery and target prediction of modulators of cancer phenotypes, as exemplified by AR signaling. We first identify AR activation inhibitors, including a group of structurally related compounds comprising celastrol, gedunin, and derivatives. To develop an in silico approach for target pathway identification, we apply a gene expression-based analysis that classifies HSP90 inhibitors as having similar activity to celastrol and gedunin. Validating this prediction, we demonstrate that celastrol and gedunin inhibit HSP90 activity and HSP90 clients, including AR. Broadly, this work identifies new modes of HSP90 modulation through a gene expression-based strategy. PMID:17010675

  3. Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections.

    PubMed

    Don, Rob; Ioset, Jean-Robert

    2014-01-01

    The Drugs for Neglected Diseases initiative (DNDi) has defined and implemented an early discovery strategy over the last few years, in fitting with its virtual R&D business model. This strategy relies on a medium- to high-throughput phenotypic assay platform to expedite the screening of compound libraries accessed through its collaborations with partners from the pharmaceutical industry. We review the pragmatic approaches used to select compound libraries for screening against kinetoplastids, taking into account screening capacity. The advantages, limitations and current achievements in identifying new quality series for further development into preclinical candidates are critically discussed, together with attractive new approaches currently under investigation. PMID:23985066

  4. Relationships between chemical structure and rat repellency: II. compounds screened between 1950 and 1960

    USGS Publications Warehouse

    Bowles, Walter A.; Adomaitis, V.A.; DeWitt, J.B.; Pratt, J.J., Jr.

    1974-01-01

    Over 4,600 compounds, chiefly organic types, were evaluated using both a food acceptance test (Part A) and a barrier penetration bioassay (Part B), to correlate relationships between chemical structure and rodent repellency. These chemicals are indexed and classified according to the functional groups present and to the degree of substitution within their molecular structures. The results of reduction in food consumption for each compound appraised are calculated and their K values listed in Table 1. The repellent activities of the functional groups represented, alone or in combinations, are expressed in Table II by a Functional Group Repellency Index.. A ranking of these indices suggests that acyclic and heteroyclic compounds containing tri- or pentavalent nitrogen would be a parent compound of choice for synthesizing novel repellents. Other molecular arrangements, spatial configurations and combinations of functional groups are compared. There were 123 active, interesting or promising compounds included in the 699 having K values of 85 or greater, which were selected for the barrier appraisal study. These chemicals were formulated in selective solvents at several concentrations and applied to burlap. Small food bags were fashioned using the fabric impregnated with the candidate formulation, and exposed to rodent attack following storage periods of varying intervals. The results of these tests are listed in Table III. Again, those compounds containing nitrogen in the functional groupings indicated a high order of effectiveness. Several commercial patents covering rodent repellents were issued using the data from the food acceptance and barrier studies. Organizations and cooperators which supplied samples for the program are listed in Appendix I. The Wiswesser cipher for compounds in Table I is used in Appendix II to facilitate location of chemicals by sample code number as they appear under the index headings, and for computer storage and analysis.

  5. Relationships between chemical structure and rat repellency. II. Compounds screened between 1950 and 1960

    USGS Publications Warehouse

    Bowles, W.A.; Adomaitis, V.A.; DeWitt, J.B.; Pratt, J.J., Jr.

    1974-01-01

    Over 4,600 compounds, chiefly organic types, were evaluated using both a food acceptance test (Part A) and a barrier penetration bioassay (Part B), to correlate relationships between chemical structure and rodent repellency.These chemicals are indexed and classified according to the functional groups present and to the degree of substitution within their molecular structures. The results of reduction in foot consumption for each compound appraised are calculated and their K values listed in Table I.The repellent activities of the functional groups represented, alone or in combinations, are expressed in Table II by a Functional Group Repellency Index. A ranking of these indices suggests that acyclic and heteroyclic compounds containing tri- or pentavalent nitrogen would be a parent compound of choice for synthesizing novel repellents. Other molecular arrangements, spatial configurations and combinations of functional groups are compared.There were 123 active, interesting or promising compounds included in the 699 having K values of 85 or greater, which were selected for the barrier appraisal study. These chemicals were formulated in selective solvents at several concentrations and applied to burlap. Small foot bags were fashioned using the fabric impregnated with the candidate formulation, and exposed to rodent attack following storage periods of varying intervals. The results of these tests are listed in Table III. Again, those compounds containing nitrogen in the functional groupings indicated a high order of effectiveness. Several commercial patents covering rodent repellents were issued using the data from the food acceptance and barrier studies.Organizations and cooperators which supplied samples for the program are listed in Appendix I. The Wiswesser cipher for compounds in Table I is used in Appendix II to facilitate location of chemicals by sample code number as they appear under the index headings, and for computer storage and analysis.

  6. 3D numerical simulation of the transport of chemical signature compounds from buried landmines

    NASA Astrophysics Data System (ADS)

    Irrazabal, Maik; Borrero, Ernesto; Briano, Julio G.; Castro, Miguel; Hernandez, Samuel P.

    2005-06-01

    The transport of the chemical signature compounds from buried landmines in a three-dimensional (3D) array has been numerically modeled using the finite-volume technique. Compounds such as trinitrotoluene, dinitrotoluene, and their degradation products, are semi volatile and somewhat soluble in water. Furthermore, they can strongly adsorb to the soil and undergo chemical and biological degradation. Consequently, the spatial and temporal concentration distributions of such chemicals depend on the mobility of the water and gaseous phases, their molecular and mechanical diffusion, adsorption characteristics, soil water content, compaction, and environmental factors. A 3D framework is required since two-dimensional (2D) symmetry may easily fade due to terrain topography: non-flat surfaces, soil heterogeneity, or underground fractures. The spatial and temporal distribution of the chemical-signature-compounds, in an inclined grid has been obtained. The fact that the chemicals may migrate horizontally, giving higher surface concentrations at positions not directly on top of the objects, emphasizes the need for understanding the transport mechanism when a chemical detector is used. Deformation in the concentration contours after rainfall is observed in the inclined surface and is attributed to both: the advective flux, and to the water flux at the surface caused by the slope. The analysis of the displacements in the position of the maximum concentrations at the surface, respect to the actual location of the mine, in an inclined system, is presented.

  7. Combining non selective gas sensors on a mobile robot for identification and mapping of multiple chemical compounds.

    PubMed

    Bennetts, Victor Hernandez; Schaffernicht, Erik; Pomareda, Victor; Lilienthal, Achim J; Marco, Santiago; Trincavelli, Marco

    2014-01-01

    In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources. PMID:25232911

  8. Combining Non Selective Gas Sensors on a Mobile Robot for Identification and Mapping of Multiple Chemical Compounds

    PubMed Central

    Victor Hernandez, Bennetts; Schaffernicht, Erik; Pomareda, Victor; Lilienthal, Achim J.; Marco, Santiago; Trincavelli, Marco

    2014-01-01

    In this paper, we address the task of gas distribution modeling in scenarios where multiple heterogeneous compounds are present. Gas distribution modeling is particularly useful in emission monitoring applications where spatial representations of the gaseous patches can be used to identify emission hot spots. In realistic environments, the presence of multiple chemicals is expected and therefore, gas discrimination has to be incorporated in the modeling process. The approach presented in this work addresses the task of gas distribution modeling by combining different non selective gas sensors. Gas discrimination is addressed with an open sampling system, composed by an array of metal oxide sensors and a probabilistic algorithm tailored to uncontrolled environments. For each of the identified compounds, the mapping algorithm generates a calibrated gas distribution model using the classification uncertainty and the concentration readings acquired with a photo ionization detector. The meta parameters of the proposed modeling algorithm are automatically learned from the data. The approach was validated with a gas sensitive robot patrolling outdoor and indoor scenarios, where two different chemicals were released simultaneously. The experimental results show that the generated multi compound maps can be used to accurately predict the location of emitting gas sources. PMID:25232911

  9. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis.

    PubMed

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A; Whatcott, Clifford; Soh, Katherine K; Warner, Steven; Bearss, David; Jette, Cicely A; Stewart, Rodney A

    2016-04-01

    The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, calledTg(snai1b:GFP), which labels epithelial cells undergoing EMT to producesox10-positive neural crest (NC) cells. Time-lapse and lineage analysis ofTg(snai1b:GFP)embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. TreatingTg(snai1b:GFP)embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RAin vivoand raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130

  10. Phenotypic chemical screening using a zebrafish neural crest EMT reporter identifies retinoic acid as an inhibitor of epithelial morphogenesis

    PubMed Central

    Jimenez, Laura; Wang, Jindong; Morrison, Monique A.; Whatcott, Clifford; Soh, Katherine K.; Warner, Steven; Bearss, David; Jette, Cicely A.; Stewart, Rodney A.

    2016-01-01

    ABSTRACT The epithelial-to-mesenchymal transition (EMT) is a highly conserved morphogenetic program essential for embryogenesis, regeneration and cancer metastasis. In cancer cells, EMT also triggers cellular reprogramming and chemoresistance, which underlie disease relapse and decreased survival. Hence, identifying compounds that block EMT is essential to prevent or eradicate disseminated tumor cells. Here, we establish a whole-animal-based EMT reporter in zebrafish for rapid drug screening, called Tg(snai1b:GFP), which labels epithelial cells undergoing EMT to produce sox10-positive neural crest (NC) cells. Time-lapse and lineage analysis of Tg(snai1b:GFP) embryos reveal that cranial NC cells delaminate from two regions: an early population delaminates adjacent to the neural plate, whereas a later population delaminates from within the dorsal neural tube. Treating Tg(snai1b:GFP) embryos with candidate small-molecule EMT-inhibiting compounds identified TP-0903, a multi-kinase inhibitor that blocked cranial NC cell delamination in both the lateral and medial populations. RNA sequencing (RNA-Seq) analysis and chemical rescue experiments show that TP-0903 acts through stimulating retinoic acid (RA) biosynthesis and RA-dependent transcription. These studies identify TP-0903 as a new therapeutic for activating RA in vivo and raise the possibility that RA-dependent inhibition of EMT contributes to its prior success in eliminating disseminated cancer cells. PMID:26794130

  11. Chemical mutagenesis testing in Drosophila. VII. Results of 22 coded compounds tested in larval feeding experiments

    SciTech Connect

    Zimmering, S.; Mason, J.M.; Valencia, R. )

    1989-01-01

    Twenty-two chemicals were tested for mutagenicity in the sex-linked recessive lethal (SLRL) mutation assay after being fed to Drosophila melanogaster larvae. One compound, maleic hydrazide, was found to be mutagenic. It was tested for the ability to produce reciprocal translocations (RTs) and was positive in that assay as well.

  12. Characterization of Spatial Repellent, Contact Irritant and Toxicant Chemical Actions of Standard Vector Control Compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A previously described modular high-throughput screening system (HITTS) was used to characterize the spatial repellent, contact irritant and toxicant chemical actions of 14 compounds with a history of use in vector control. The response of F1-F4 Aedes aegypti to various concentrations of four organo...

  13. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    PubMed Central

    Essack, Magbubah; Alzubaidy, Hanin S.; Bajic, Vladimir B.; Archer, John A. C.

    2014-01-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  14. Chemical compounds toxic to invertebrates isolated from marine cyanobacteria of potential relevance to the agricultural industry.

    PubMed

    Essack, Magbubah; Alzubaidy, Hanin S; Bajic, Vladimir B; Archer, John A C

    2014-11-01

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review. PMID:25356733

  15. Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes.

    PubMed

    Coimbra, Maria; Isacchi, Benedetta; van Bloois, Louis; Torano, Javier Sastre; Ket, Aldo; Wu, Xiaojie; Broere, Femke; Metselaar, Josbert M; Rijcken, Cristianne J F; Storm, Gert; Bilia, Rita; Schiffelers, Raymond M

    2011-09-20

    Natural bioactive compounds have been studied for a long time for their chemopreventive and therapeutic potential in several chronic inflammatory diseases, including cancer. However, their physicochemical properties generally result in poor chemical stability and lack of in vivo bioavailability. Very few human clinical trials have addressed absorption, distribution, metabolism, and excretion of these compounds in relation to efficacy. This limits the use of these valuable natural compounds in the clinic. In this study, we examined caffeic acid (derivatives), carvacrol (derivatives), thymol, pterostilbene (derivatives), and N-(3-oxo-dodecanoyl)-l-homoserine lactone. These are natural compounds with strong anti-inflammatory properties derived from plants and bacteria. However, these compounds have poor water solubility or are chemically unstable. To overcome these limitations we have prepared liposomal formulations. Our results show that lipophilic 3-oxo-C(12)-homoserine lactone and stilbene derivatives can be loaded into liposomal lipid bilayer with efficiencies of 50-70%. Thereby, the liposomes solubilize these compounds, allowing intravenous administration without use of solvents. When compounds could not be loaded into the lipid bilayer (carvacrol and thymol) or are rapidly extracted from the liposomes in the presence of serum albumin (3-oxo-C(12)-homoserine lactone and pterostilbene derivatives), derivatization of the compound into a water-soluble prodrug was shown to improve loading efficiency and encapsulation stability. The phosphate forms of carvacrol and pterostilbene were loaded into the aqueous interior of the liposomes and encapsulation was unaffected by the presence of serum albumin. Chemical instability of resveratrol was improved by liposome-encapsulation, preventing inactivating cis-trans isomerization. For caffeic acid, liposomal encapsulation did not prevent oxidation into a variety of products. Still, by derivatization into a phenyl ester, the

  16. Chemical indicators of sulfate sensitivity to nitrogen oxides and volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Stein, Ariel F.; Lamb, Dennis

    2002-10-01

    The formation of aerosol sulfate (SO42-) in eastern North America is chemically linked to the emissions of nitrogen oxides (NOx) and volatile organic compounds (VOC) through oxidation of the gaseous precursor, sulfur dioxide (SO2). The response of sulfate production to controls in NOx and VOC emissions depends, in part, on the resulting changes in oxidant levels and the competition that naturally exists between the gas- and aqueous-phase pathways for SO2 oxidation. We propose the use of a combination of concentrations of nitric acid, particulate nitrate, hydrogen peroxide, and ambient sulfate as a nondimensional indicator of the effectiveness of VOC or NOx controls in decreasing SO42- abundance. The concentrations of these indicator species were calculated from a series of photochemical model simulations with varying rates of NOx and VOC emissions using a three-dimensional Eulerian model (MODELS-3) that covers the northeastern United States. This study shows that ambient sulfate concentrations are likely to decrease more effectively as VOC emissions are reduced, when the nondimensional indicator is less than a certain threshold. However, a higher value of the indicator identifies a regime in which NOx emissions reductions are more effective for reducing sulfate than are VOC emissions. In addition, a description of the sulfate-formation pathways, along with a theoretical analysis of the transition between NOx- and VOC-sensitive regimes, provides a strong rationale for the use of the sulfate sensitivity indicator.

  17. A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture.

    PubMed

    Umina, Paul A; Jenkins, Sommer; McColl, Stuart; Arthur, Aston; Hoffmann, Ary A

    2015-01-01

    Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels. PMID:26694469

  18. A Framework for Identifying Selective Chemical Applications for IPM in Dryland Agriculture

    PubMed Central

    Umina, Paul A.; Jenkins, Sommer; McColl, Stuart; Arthur, Aston; Hoffmann, Ary A.

    2015-01-01

    Shifts to Integrated Pest Management (IPM) in agriculture are assisted by the identification of chemical applications that provide effective control of pests relative to broad-spectrum pesticides but have fewer negative effects on natural enemy (beneficial) groups that assist in pest control. Here, we outline a framework for identifying such applications and apply this framework to field trials involving the crop establishment phase of Australian dryland cropping systems. Several chemicals, which are not presently available to farmers in Australia, were identified as providing moderate levels of pest control and seedling protection, with the potential to be less harmful to beneficial groups including predatory mites, predatory beetles and ants. This framework highlights the challenges involved in chemically controlling pests while maintaining non-target populations when pest species are present at damaging levels. PMID:26694469

  19. USE OF THE RIBONUCLEASE PROTECTION ASSAY FOR IDENTIFYING CHEMICALS WHICH ELLICIT HYPERSENSITIVITY RESPONSES

    EPA Science Inventory

    Use of the Ribonuclease Protection Assay (RPA) for Identifying Chemicals that Elicit Hypersensitivity Responses. L.M. Plitnick, 1, D.M. Sailstad, 2, and R.J. Smialowicz, 2 1UNC, Curriculum in Toxicology, Chapel Hill, NC and 2USEPA, NHEERL, RTP, NC.

    The incidence of aller...

  20. Experimental Evaluation of the UV Raman Lidar Sensitivity in Detection of Traces of Chemical Compounds

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, Sergey; Gorlov, Evgeny; Zharkov, Viktor

    2016-06-01

    Experimental results are presented on the remote detection of traces of some chemical compounds on the surface with the help of Raman lidar built on the basis of an excimer KrF laser with a narrow line emission and multi-channel spectrum analyzer based on the diffraction spectrograph and a time gated ICCD camera. The sensitivity of the system is evaluated for the sensing range of 10 m. At the accumulation of the signal over 1000 laser pulses, the detection threshold of the nitrogencontaining chemical compounds of about of units of μg/cm2 has been reached. The effect of the substrate material on the sensitivity of the Ramanlidar method for detecting traces of chemicals on the surface is analyzed.

  1. Genetic and environmental factors affecting host response to drugs and other chemical compounds in our environment.

    PubMed Central

    Vesell, E S; Passananti, G T

    1977-01-01

    Compared to laboratory animals, humans are extremely heterogenous with respect to the many factors that can influence the distribution and biological effects of toxic chemicals. This heterogeneity can prevent an accurate assessment of the impact of a particular toxic compound on the health of an individual subject. Some of the factors that can significantly modify the host response to certain drugs, which serve in this review as a model for environmental chemicals, are enumerated and discussed. Although the mechanisms by which many of these factors modify the biological effects of certain environmental chemicals and drugs have been determined in some cases, better definition of the nature of interactions between these factors and environmental chemicals in a particular individual is required at a biochemical and molecular level. Recommendations are offered for the further development of our knowledge concerning interactions between environmental chemicals and such factors in a particular individual. PMID:598349

  2. Survey of Chemical Compounds Tested In Vitro against Rumen Protozoa for Possible Control of Bloat

    PubMed Central

    Willard, F. L.; Kodras, Rudolph

    1967-01-01

    Over 170 chemical agents were screened for antiprotozoal action in bovine ruminal fluid. Compounds were tested at 0.1 and 0.05% concentrations. Tested compounds included inorganic compounds, antibiotics, biocides, neuromuscular agents, arsenicals, plant and animal hormones, antimalarials, surface-active agents, anthelmintics, and many others. The most active compounds were cupric sulfate, nickel sulfate, nitrofurazone, hydrogen peroxide, dodecyl sodium sulfate, pelargonic acid, iodoacetic acid, 1-diethylaminoethylamino-4-methylthiaxanthrone, sodium arsanilate, sodium arsenate, bismuth glycolyl arsanilate, 1-β-hydroxyethyl-2-methyl-5-nitroimidazole, and p-nitroaniline. Copper ion was not particularly effective against entodinia; nickel ion had no effect on holotrichs. Hydrogen peroxide and iodoacetic acid were effective at a concentration of 0.005%. Anionic surface-active agents were very effective, especially long-chain sulfates and phosphates. These antiprotozoal agents warrant further in vivo studies for possible use in treating or curing bloat in ruminants. PMID:6077407

  3. Chemical, physical, and biological properties of compounds present at hazardous-waste sites. Final report

    SciTech Connect

    Not Available

    1985-09-27

    The chemical profiles are intended to serve as a concise reference with information on the physicochemical properties, transport and fate, toxicity, and regulatory standards for individual chemicals identified by the EPA Office of Waste Program Enforcement at hazardous-waste sites. The profiles can be used in conjunction with the Toxicology and Endangerment Assessment Handbooks.

  4. Prediction of compounds in different local structure-activity relationship environments using emerging chemical patterns.

    PubMed

    Namasivayam, Vigneshwaran; Gupta-Ostermann, Disha; Balfer, Jenny; Heikamp, Kathrin; Bajorath, Jürgen

    2014-05-27

    Active compounds can participate in different local structure-activity relationship (SAR) environments and introduce different degrees of local SAR discontinuity, depending on their structural and potency relationships in data sets. Such SAR features have thus far mostly been analyzed using descriptive approaches, in particular, on the basis of activity landscape modeling. However, compounds in different local SAR environments have not yet been predicted. Herein, we adapt the emerging chemical patterns (ECP) method, a machine learning approach for compound classification, to systematically predict compounds with different local SAR characteristics. ECP analysis is shown to accurately assign many compounds to different local SAR environments across a variety of activity classes covering the entire range of observed local SARs. Control calculations using random forests and multiclass support vector machines were carried out and a variety of statistical performance measures were applied. In all instances, ECP calculations yielded comparable or better performance than controls. The approach presented herein can be applied to predict compounds that complement local SARs or prioritize compounds with different SAR characteristics. PMID:24803014

  5. Chemical constituents of peppers (Piper spp.) and application to food preservation: naturally occurring antioxidative compounds.

    PubMed

    Nakatani, N; Inatani, R; Ohta, H; Nishioka, A

    1986-08-01

    In a structure analysis of the compounds of the genus Piper (Family Piperaceae), we identified five phenolic amides from Piper nigrum, seven compounds from P. retrofractum, and two compounds from P. baccatum. All the phenolic amides possess significant antioxidant activities that are more effective than the naturally occurring antioxidant, alpha-tocopherol. One amide, feruperine, has antioxidant activity as high as the synthetic antioxidants, butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Naturally occurring antioxidants, therefore, may surpass BHA and BHT in their ability to inactivate mutagens in food. PMID:3757949

  6. Crystal chemical and quantum chemical studies of Ba(Sr)-Nb oxide compounds

    NASA Technical Reports Server (NTRS)

    Zubkov, V. G.; Turzhevsky, S. A.; Pereliaev, V. A.; Liechtenstein, A. I.; Gubanov, V. A.

    1990-01-01

    The information available on the BaO(SrO)-NbO-NbO2 system with the niobium atom in the lower oxidation degree is very limited. Very few compounds have been found previously in this system. They are BaNbO3, SrxNbO3(0,7=x=1), Ba2Nb2O9, SrNb8O14; and some suggestions on the BaNb8O14 existence have been made also. At the same time Nb-based oxide compounds could be quite interesting in the search of new noncopper high T(sub c) superconductors Researchers studied Ba(Sr) NbxO2x-2 and Ba2(Sr2)-NbxO2x-1 compositions in the phase diagram of BaO(SrO)-NbO-NbO2 system. The synthesis of the materials was carried out in vacuum at the temperatures of 1000 to 1500 C. Barium carbonate and niobium pentoxide were used as initial components. X-ray analysis was carried out.

  7. Chemical aspects of coumarin compounds for the prevention of hepatocellular carcinomas.

    PubMed

    Okamoto, Toshihiro; Kobayashi, Tadashi; Yoshida, Shinichi

    2005-01-01

    The normalization of plasma alanine aminotransferase (ALT) has been proved to be a strategy for preventing the development of hepatocellular carcinoma (HCC) in hepatitis C virus (HCV)-infection. Glycyrrhizin, a plant medicine, normalizes plasma ALT and prevents HCC. However, glycyrrhizin is administered intravenously and thereby chemical which is effective on oral administration is required. Coumarin compounds are active components of herbs used for the treatment of various diseases. The ability of coumarin compounds to lower plasma ALT were examined using mice concanavalin A-induced hepatitis and mice anti-Fas antibody-induced hepatitis. Furanocoumarins pd-Ia, pd-II and pd-III lower plasma ALT, but they are large molecules that are hardly absorbed on oral administration. Furocoumarin effectively lowers plasma ALT, but the safety range between the effective and toxic dosages is narrow. In contrast, osthole, a simple coumarin, causes strong reduction of plasma ALT and also inhibits caspase-3 activation. Furthermore, this chemical is quite safe upon large dose administration. In the structure of osthole, the methoxy group at position-7 and the 3-methyl-2-butenyl group at position-8 were elucidated to be essential for the beneficial effect of this chemical. We conclude that osthole will become a leading chemical for synthesizing a compound which prevents HCC on oral administration. PMID:15720260

  8. Changes on physico-chemical, textural, lipolysis and volatile compounds during the manufacture of dry-cured foal "cecina".

    PubMed

    Lorenzo, José M

    2014-01-01

    The changes in the physico-chemical and textural properties, lipolysis and volatile compounds during the manufacture of dry-cured foal "cecina" were studied. The pH increased during the last stages of processing but gradually declined over the curing period. TBARS values, hardness and chewiness increased with processing time from 0.14, 2.74 and 0.83 to 3.49 mg malonaldehyde/kg, 20.33 kg and 5.05 kg∗mm, respectively. Ripening time also affected the colour parameters: lightness (L*), redness (a*) and yellowness (b*) (P<0.001). The total average content of free fatty acid (FFA) increased significantly from 433.7 mg/100 g of fat in the raw pieces to 2655.5 mg/100 g of fat at the end of the drying-ripening stage. The main FFA at the end of the manufacturing process was palmitic acid (C16:0), followed by oleic (C18:1cis9), stearic (C18:0) and linoleic (C18:2n-6). A total of fifty five volatile compounds were identified during the manufacture of dry-cured foal "cecina", including esters, aldehydes, aliphatic hydrocarbons, branched hydrocarbons, alcohols, aromatic hydrocarbons, furans, ketones. Aldehydes reached their maximum level at the end of the post-salting stage. In the final product, esters became the dominant chemical compounds. PMID:23916960

  9. Potential hazards to embryo implantation: A human endometrial in vitro model to identify unwanted antigestagenic actions of chemicals

    SciTech Connect

    Fischer, L.; Deppert, W.R.; Pfeifer, D.; Stanzel, S.; Weimer, M.; Hanjalic-Beck, A.; Stein, A.; Straßer, M.; Zahradnik, H.P.; Schaefer, W.R.

    2012-05-01

    Embryo implantation is a crucial step in human reproduction and depends on the timely development of a receptive endometrium. The human endometrium is unique among adult tissues due to its dynamic alterations during each menstrual cycle. It hosts the implantation process which is governed by progesterone, whereas 17β-estradiol regulates the preceding proliferation of the endometrium. The receptors for both steroids are targets for drugs and endocrine disrupting chemicals. Chemicals with unwanted antigestagenic actions are potentially hazardous to embryo implantation since many pharmaceutical antiprogestins adversely affect endometrial receptivity. This risk can be addressed by human tissue-specific in vitro assays. As working basis we compiled data on chemicals interacting with the PR. In our experimental work, we developed a flexible in vitro model based on human endometrial Ishikawa cells. Effects of antiprogestin compounds on pre-selected target genes were characterized by sigmoidal concentration–response curves obtained by RT-qPCR. The estrogen sulfotransferase (SULT1E1) was identified as the most responsive target gene by microarray analysis. The agonistic effect of progesterone on SULT1E1 mRNA was concentration-dependently antagonized by RU486 (mifepristone) and ZK137316 and, with lower potency, by 4-nonylphenol, bisphenol A and apigenin. The negative control methyl acetoacetate showed no effect. The effects of progesterone and RU486 were confirmed on the protein level by Western blotting. We demonstrated proof of principle that our Ishikawa model is suitable to study quantitatively effects of antiprogestin-like chemicals on endometrial target genes in comparison to pharmaceutical reference compounds. This test is useful for hazard identification and may contribute to reduce animal studies. -- Highlights: ► We compare progesterone receptor-mediated endometrial effects of chemicals and drugs. ► 4-Nonylphenol, bisphenol A and apigenin exert weak

  10. Development of a Fundamental Understanding of Chemical Bonding and Electronic Structure in Spinel Compounds

    SciTech Connect

    Sickafus, K.E.; Wills, J.M.; Chen, S.-P.; Terry, J.H., Jr.; Hartmann, T.; Sheldon, R.I.

    1999-05-14

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos national Laboratory (LANL). Hundreds of ceramic compounds possess the spinel crystal structure and exhibit a remarkable variety of properties, ranging from compounds that are electrical insulators to compounds that are superconducting, or from compounds with ferri- and antiferromagnetic behavior to materials with colossal magnetoresistive characteristics. The unique crystal structure of spinel compounds is in many ways responsible for the widely varying physical properties of spinels. The objective of this project is to investigate the nature of chemical bonding, point defects, and electronic structure in compounds with the spinel crystal structure. Our goal is to understand and predict the stability of the spinel structure as a function of chemical composition, stoichiometry, and cation disorder. The consequences of cation disorder in spinel materials can be profound . The ferromagnetic characteristics of magnesioferrite, for instance, are entirely attributable to disorder on the cation sublattices. Our studies provide insight into the mechanisms of point defect formation and cation disorder and their effects on the electronic band structure and crystal structure of spinel-structure materials. our ultimate objective is to develop a more substantive knowledge of the spinel crystal structure and to promote new and novel uses for spinel compounds. The technical approach to achieve our goals is to combine first-principles calculations with experimental measurements. The structural and electronic properties of spinel samples were experimentally determined primarily with X-ray and neutron scattering, optical and X-ray absorption, and electron energy-loss spectroscopy. Total energy electronic structure calculations were performed to determine structural stability, band structure, density of states, and electron distribution. We also used shell

  11. Development of a Fundamental Understanding of Chemical Bonding and Electronic Structure in Spinel Compounds

    SciTech Connect

    Sickafus, K.E.; Wills, J.M.; Chen, S.-P.; Terry, J.H., Jr.; Hartmann, T.; Sheldon, R.I.

    1999-06-03

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Hundreds of ceramic compounds possess the spinel crystal structure and exhibit a remarkable variety of properties, ranging from compounds that are electrical insulators to compounds that are superconducting, or from compounds with ferri- and antiferromagnetic behavior to materials with colossal magnetoresistive characteristics. The unique crystal structure of spinel compounds is in many ways responsible for the widely varying physical properties of spinels. The objective of this project is to investigate the nature of chemical bonding, point defects, and electronic structure in compounds with the spinel crystal structure. Our goal is to understand and predict the stability of the spinel structure as a function of chemical composition, stoichiometry, and cation disorder. The consequences of cation disorder in spinel materials can be profound . The ferromagnetic characteristics of magnesioferrite, for instance, are entirely attributable to disorder on the cation sublattices. Our studies provide insight into the mechanisms of point defect formation and cation disorder and their effects on the electronic band structure and crystal structure of spinel-structure materials. Our ultimate objective is to develop a more substantive knowledge of the spinel crystal structure and to promote new and novel uses for spinel compounds. The technical approach to achieve our goals is to combine first-principles calculations with experimental measurements. The structural and electronic properties of spinel samples were experimentally determined primarily with X-ray and neutron scattering, optical and X-ray absorption, and electron energy-loss spectroscopy. Total energy electronic structure calculations were performed to determine structural stability, band structure, density of states, and electron distribution. We also used shell

  12. Cdc25B Dual-Specificity Phosphatase Inhibitors Identified in a High-Throughput Screen of the NIH Compound Library

    PubMed Central

    Foster, Caleb A.; Tierno, Marni Brisson; Shun, Tong Ying; Shinde, Sunita N.; Paquette, William D.; Brummond, Kay M.; Wipf, Peter; Lazo, John S.

    2009-01-01

    Abstract The University of Pittsburgh Molecular Library Screening Center (Pittsburgh, PA) conducted a screen with the National Institutes of Health compound library for inhibitors of in vitro cell division cycle 25 protein (Cdc25) B activity during the pilot phase of the Molecular Library Screening Center Network. Seventy-nine (0.12%) of the 65,239 compounds screened at 10 μM met the active criterion of ≥50% inhibition of Cdc25B activity, and 25 (31.6%) of these were confirmed as Cdc25B inhibitors with 50% inhibitory concentration (IC50) values <50 μM. Thirteen of the Cdc25B inhibitors were represented by singleton chemical structures, and 12 were divided among four clusters of related structures. Thirteen (52%) of the Cdc25B inhibitor hits were quinone-based structures. The Cdc25B inhibitors were further characterized in a series of in vitro secondary assays to confirm their activity, to determine their phosphatase selectivity against two other dual-specificity phosphatases, mitogen-activated protein kinase phosphatase (MKP)-1 and MKP-3, and to examine if the mechanism of Cdc25B inhibition involved oxidation and inactivation. Nine Cdc25B inhibitors did not appear to affect Cdc25B through a mechanism involving oxidation because they did not generate detectable amounts of H2O2 in the presence of dithiothreitol, and their Cdc25B IC50 values were not significantly affected by exchanging the dithiothreitol for β-mercaptoethanol or reduced glutathione or by adding catalase to the assay. Six of the nonoxidative hits were selective for Cdc25B inhibition versus MKP-1 and MKP-3, but only the two bisfuran-containing hits, PubChem substance identifiers 4258795 and 4260465, significantly inhibited the growth of human MBA-MD-435 breast and PC-3 prostate cancer cell lines. To confirm the structure and biological activity of 4260465, the compound was resynthesized along with two analogs. Neither of the substitutions to the two analogs was tolerated, and only the

  13. Identifying the structural requirements for chromosomal aberration by incorporating molecular flexibility and metabolic activation of chemicals.

    PubMed

    Mekenyan, Ovanes; Todorov, Milen; Serafimova, Rossitsa; Stoeva, Stoyanka; Aptula, Aynur; Finking, Robert; Jacob, Elard

    2007-12-01

    Modeling the potential of chemicals to induce chromosomal damage has been hampered by the diversity of mechanisms which condition this biological effect. The direct binding of a chemical to DNA is one of the underlying mechanisms that is also responsible for bacterial mutagenicity. Disturbance of DNA synthesis due to inhibition of topoisomerases and interaction of chemicals with nuclear proteins associated with DNA (e.g., histone proteins) were identified as additional mechanisms leading to chromosomal aberrations (CA). A comparative analysis of in vitro genotoxic data for a large number of chemicals revealed that more than 80% of chemicals that elicit bacterial mutagenicity (as indicated by the Ames test) also induce CA; alternatively, only 60% of chemicals that induce CA have been found to be active in the Ames test. In agreement with this relationship, a battery of models is developed for modeling CA. It combines the Ames model for bacterial mutagenicity, which has already been derived and integrated into the Optimized Approach Based on Structural Indices Set (OASIS) tissue metabolic simulator (TIMES) platform, and a newly derived model accounting for additional mechanisms leading to CA. Both models are based on the classical concept of reactive alerts. Some of the specified alerts interact directly with DNA or nuclear proteins, whereas others are applied in a combination of two- or three-dimensional quantitative structure-activity relationship models assessing the degree of activation of the alerts from the rest of the molecules. The use of each of the alerts has been justified by a mechanistic interpretation of the interaction. In combination with a rat liver S9 metabolism simulator, the model explained the CA induced by metabolically activated chemicals that do not elicit activity in the parent form. The model can be applied in two ways: with and without metabolic activation of chemicals. PMID:18052113

  14. EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen.

    PubMed

    Scheipl, Susanne; Barnard, Michelle; Cottone, Lucia; Jorgensen, Mette; Drewry, David H; Zuercher, William J; Turlais, Fabrice; Ye, Hongtao; Leite, Ana P; Smith, James A; Leithner, Andreas; Möller, Peter; Brüderlein, Silke; Guppy, Naomi; Amary, Fernanda; Tirabosco, Roberto; Strauss, Sandra J; Pillay, Nischalan; Flanagan, Adrienne M

    2016-07-01

    Chordoma is a rare malignant bone tumour with a poor prognosis and limited therapeutic options. We undertook a focused compound screen (FCS) against 1097 compounds on three well-characterized chordoma cell lines; 154 compounds were selected from the single concentration screen (1 µm), based on their growth-inhibitory effect. Their half-maximal effective concentration (EC50 ) values were determined in chordoma cells and normal fibroblasts. Twenty-seven of these compounds displayed chordoma selective cell kill and 21/27 (78%) were found to be EGFR/ERBB family inhibitors. EGFR inhibitors in clinical development were then studied on an extended cell line panel of seven chordoma cell lines, four of which were sensitive to EGFR inhibition. Sapitinib (AstraZeneca) emerged as the lead compound, followed by gefitinib (AstraZeneca) and erlotinib (Roche/Genentech). The compounds were shown to induce apoptosis in the sensitive cell lines and suppressed phospho-EGFR and its downstream pathways in a dose-dependent manner. Analysis of substituent patterns suggested that EGFR-inhibitors with small aniline substituents in the 4-position of the quinazoline ring were more effective than inhibitors with large substituents in that position. Sapitinib showed significantly reduced tumour growth in two xenograft mouse models (U-CH1 xenograft and a patient-derived xenograft, SF8894). One of the resistant cell lines (U-CH2) was shown to express high levels of phospho-MET, a known bypass signalling pathway to EGFR. Neither amplifications (EGFR, ERBB2, MET) nor mutations in EGFR, ERBB2, ERBB4, PIK3CA, BRAF, NRAS, KRAS, PTEN, MET or other cancer gene hotspots were detected in the cell lines. Our findings are consistent with the reported (p-)EGFR expression in the majority of clinical samples, and provide evidence for exploring the efficacy of EGFR inhibitors in the treatment of patients with chordoma and studying possible resistance mechanisms to these compounds in vitro and in vivo. © 2016

  15. Extended Functional Groups (EFG): An Efficient Set for Chemical Characterization and Structure-Activity Relationship Studies of Chemical Compounds.

    PubMed

    Salmina, Elena S; Haider, Norbert; Tetko, Igor V

    2015-01-01

    The article describes a classification system termed "extended functional groups" (EFG), which are an extension of a set previously used by the CheckMol software, that covers in addition heterocyclic compound classes and periodic table groups. The functional groups are defined as SMARTS patterns and are available as part of the ToxAlerts tool (http://ochem.eu/alerts) of the On-line CHEmical database and Modeling (OCHEM) environment platform. The article describes the motivation and the main ideas behind this extension and demonstrates that EFG can be efficiently used to develop and interpret structure-activity relationship models. PMID:26703557

  16. Screening of Transient Receptor Potential Canonical Channel Activators Identifies Novel Neurotrophic Piperazine Compounds.

    PubMed

    Sawamura, Seishiro; Hatano, Masahiko; Takada, Yoshinori; Hino, Kyosuke; Kawamura, Tetsuya; Tanikawa, Jun; Nakagawa, Hiroshi; Hase, Hideharu; Nakao, Akito; Hirano, Mitsuru; Rotrattanadumrong, Rachapun; Kiyonaka, Shigeki; Mori, Masayuki X; Nishida, Motohiro; Hu, Yaopeng; Inoue, Ryuji; Nagata, Ryu; Mori, Yasuo

    2016-03-01

    Transient receptor potential canonical (TRPC) proteins form Ca(2+)-permeable cation channels activated upon stimulation of metabotropic receptors coupled to phospholipase C. Among the TRPC subfamily, TRPC3 and TRPC6 channels activated directly by diacylglycerol (DAG) play important roles in brain-derived neurotrophic factor (BDNF) signaling, promoting neuronal development and survival. In various disease models, BDNF restores neurologic deficits, but its therapeutic potential is limited by its poor pharmacokinetic profile. Elucidation of a framework for designing small molecules, which elicit BDNF-like activity via TRPC3 and TRPC6, establishes a solid basis to overcome this limitation. We discovered, through library screening, a group of piperazine-derived compounds that activate DAG-activated TRPC3/TRPC6/TRPC7 channels. The compounds [4-(5-chloro-2-methylphenyl)piperazin-1-yl](3-fluorophenyl)methanone (PPZ1) and 2-[4-(2,3-dimethylphenyl)piperazin-1-yl]-N-(2-ethoxyphenyl)acetamide (PPZ2) activated, in a dose-dependent manner, recombinant TRPC3/TRPC6/TRPC7 channels, but not other TRPCs, in human embryonic kidney cells. PPZ2 activated native TRPC6-like channels in smooth muscle cells isolated from rabbit portal vein. Also, PPZ2 evoked cation currents and Ca(2+) influx in rat cultured central neurons. Strikingly, both compounds induced BDNF-like neurite growth and neuroprotection, which were abolished by a knockdown or inhibition of TRPC3/TRPC6/TRPC7 in cultured neurons. Inhibitors of Ca(2+) signaling pathways, except calcineurin, impaired neurite outgrowth promotion induced by PPZ compounds. PPZ2 increased activation of the Ca(2+)-dependent transcription factor, cAMP response element-binding protein. These findings suggest that Ca(2+) signaling mediated by activation of DAG-activated TRPC channels underlies neurotrophic effects of PPZ compounds. Thus, piperazine-derived activators of DAG-activated TRPC channels provide important insights for future development of a

  17. Chemicals identified in human biological media: a data base. Third annual report, October 1981

    SciTech Connect

    Cone, M.V.; Baldauf, M.F.; Martin, F.M.

    1981-12-01

    Data from almost 1600 of the 3800 body-burden documents collected to date have been entered in the data base as of October 1981. The emphasis on including recent literature and significant research documents has resulted in a chronological mix of articles from 1974 to the present. When body-burden articles are identified, data are extracted and entered in the data base by chemical and tissue/body fluid. Each data entry comprises a single record (or line entry) and is assigned a record number. If a particular document deals with more than one chemical and/or tissue, there will be multiple records for that document. For example, a study of 5 chemicals in each of 3 tissues has 15 different records (or 15 line entries) in the data base with 15 record numbers. Record numbers are assigned consecutively throughout the entire data base and appear in the upper left corner of the first column for each record.

  18. FAF-Drugs3: a web server for compound property calculation and chemical library design

    PubMed Central

    Lagorce, David; Sperandio, Olivier; Baell, Jonathan B.; Miteva, Maria A.; Villoutreix, Bruno O.

    2015-01-01

    Drug attrition late in preclinical or clinical development is a serious economic problem in the field of drug discovery. These problems can be linked, in part, to the quality of the compound collections used during the hit generation stage and to the selection of compounds undergoing optimization. Here, we present FAF-Drugs3, a web server that can be used for drug discovery and chemical biology projects to help in preparing compound libraries and to assist decision-making during the hit selection/lead optimization phase. Since it was first described in 2006, FAF-Drugs has been significantly modified. The tool now applies an enhanced structure curation procedure, can filter or analyze molecules with user-defined or eight predefined physicochemical filters as well as with several simple ADMET (absorption, distribution, metabolism, excretion and toxicity) rules. In addition, compounds can be filtered using an updated list of 154 hand-curated structural alerts while Pan Assay Interference compounds (PAINS) and other, generally unwanted groups are also investigated. FAF-Drugs3 offers access to user-friendly html result pages and the possibility to download all computed data. The server requires as input an SDF file of the compounds; it is open to all users and can be accessed without registration at http://fafdrugs3.mti.univ-paris-diderot.fr. PMID:25883137

  19. Thin film synthesis of superconducting chemical compounds. Final report 1 January 1981-30 December 1983

    SciTech Connect

    Sienko, M.J.; Hoffmann, R.; Newman, J.A.; Burlitch, J.M.

    1984-05-31

    The objective of this research was to define the chemical factors that affect onset of superconductivity in ternary compounds: to determine how small changes in stoichiometry and microstructure influence critical temperature, how the number and placing of magnetic ions act to quench superconductivity, and how the crystal structure can be modified to enhance superconductivity. The approach was to synthesize, from ultrapure starting elements, ternary borides, silicides, sulfides and selenides of the second and third row transition elements, to characterize the new compounds for x-ray structure, electric and magnetic behavior, and then compare them with doped materials. Four kinds of compounds were investigated: rare earth diosmium disilicides, rare earth osmium-iridium borides, layered structure transition metal dichalcogenides, and Chevrel type molybdenum ternaries. Both the rare earth osmium-iridium borides and rare earth diosmium disilicides were synthesized by arc melting. The crystal structures were refined and magnetic susceptibility studies revealed conventional Hund's rule behavior in the disilicides while the (Pr, Nd) (Os, Ir) 4B4 compounds are characterized by Van Vleck paramagnetism of closely spaced multiplets. Only LaOs/sub 2/Si/sub 2/ and LuOs/sub 2/Si/sub 2/ compounds are superconducting with Tc's in the 2-4K range. In the layered compounds, lithium intercalated ZrS/sub 2/, ZrSe/sub 2/, NbS/sub 2/, and NbSe/sub 2/ were studied.

  20. FAF-Drugs3: a web server for compound property calculation and chemical library design.

    PubMed

    Lagorce, David; Sperandio, Olivier; Baell, Jonathan B; Miteva, Maria A; Villoutreix, Bruno O

    2015-07-01

    Drug attrition late in preclinical or clinical development is a serious economic problem in the field of drug discovery. These problems can be linked, in part, to the quality of the compound collections used during the hit generation stage and to the selection of compounds undergoing optimization. Here, we present FAF-Drugs3, a web server that can be used for drug discovery and chemical biology projects to help in preparing compound libraries and to assist decision-making during the hit selection/lead optimization phase. Since it was first described in 2006, FAF-Drugs has been significantly modified. The tool now applies an enhanced structure curation procedure, can filter or analyze molecules with user-defined or eight predefined physicochemical filters as well as with several simple ADMET (absorption, distribution, metabolism, excretion and toxicity) rules. In addition, compounds can be filtered using an updated list of 154 hand-curated structural alerts while Pan Assay Interference compounds (PAINS) and other, generally unwanted groups are also investigated. FAF-Drugs3 offers access to user-friendly html result pages and the possibility to download all computed data. The server requires as input an SDF file of the compounds; it is open to all users and can be accessed without registration at http://fafdrugs3.mti.univ-paris-diderot.fr. PMID:25883137

  1. Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds

    NASA Technical Reports Server (NTRS)

    Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

    2008-01-01

    Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

  2. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation

    PubMed Central

    Ye, Wei; Wu, Hongqing; He, Xin; Wang, Lei; Zhang, Weimin; Li, Haohua; Fan, Yunfei; Tan, Guohui; Liu, Taomei; Gao, Xiaoxia

    2016-01-01

    Background Agarwood is a traditional Chinese medicine used as a clinical sedative, carminative, and antiemetic drug. Agarwood is formed in Aquilaria sinensis when A. sinensis trees are threatened by external physical, chemical injury or endophytic fungal irritation. However, the mechanism of agarwood formation via chemical induction remains unclear. In this study, we characterized the transcriptome of different parts of a chemically induced A. sinensis trunk sample with agarwood. The Illumina sequencing platform was used to identify the genes involved in agarwood formation. Methodology/Principal Findings A five-year-old Aquilaria sinensis treated by formic acid was selected. The white wood part (B1 sample), the transition part between agarwood and white wood (W2 sample), the agarwood part (J3 sample), and the rotten wood part (F5 sample) were collected for transcriptome sequencing. Accordingly, 54,685,634 clean reads, which were assembled into 83,467 unigenes, were obtained with a Q20 value of 97.5%. A total of 50,565 unigenes were annotated using the Nr, Nt, SWISS-PROT, KEGG, COG, and GO databases. In particular, 171,331,352 unigenes were annotated by various pathways, including the sesquiterpenoid (ko00909) and plant–pathogen interaction (ko03040) pathways. These pathways were related to sesquiterpenoid biosynthesis and defensive responses to chemical stimulation. Conclusions/Significance The transcriptome data of the different parts of the chemically induced A. sinensis trunk provide a rich source of materials for discovering and identifying the genes involved in sesquiterpenoid production and in defensive responses to chemical stimulation. This study is the first to use de novo sequencing and transcriptome assembly for different parts of chemically induced A. sinensis. Results demonstrate that the sesquiterpenoid biosynthesis pathway and WRKY transcription factor play important roles in agarwood formation via chemical induction. The comparative analysis of

  3. Chemical characterization of brominated flame retardants and identification of structurally representative compounds.

    PubMed

    Andersson, Patrik L; Oberg, Kjell; Orn, Ulrika

    2006-05-01

    Three training sets were selected, each consisting of 10 structurally diverse compounds representative of brominated flame retardants (BFRs) that are either in use or have been used. Just three compounds account for nearly all the total production volume of BFRs. In the present study, however, the physicochemical characteristics of a far more structurally diverse set of 65 BFRs was explored using 15 molecular descriptors (including log P, constitutional counts, and semiempirical quantum mechanical parameters) and principal component analysis (PCA). The PCA generated an overview of the structural variation among BFRs, and certain compounds with unique physicochemical properties and specific clusters of compounds with distinct properties were identified. The training-set compounds were selected by applying the condensed information obtained from the PCA and statistical experimental design. The three training sets, which were designated as optimal, practical, and alternative, were selected either to maximize the structural variation (optimal) or to combine structural variation with practical advantages, such as ease of experimental handling and commercial availability (practical and alternative). Inclusion of the suggested compounds in assessments of the persistence, bioaccumulation, and toxicity properties of BFRs and related programs should help to increase our understanding of the effects and environmental fate of these compounds. PMID:16704058

  4. Kinetics of gas-phase reactions relevant to the chemical vapor deposition of indium compounds

    SciTech Connect

    Allendorf, M.D.; McDaniel, A.H.

    1998-03-01

    Compounds containing indium are of interest for electronic and optical applications. These compounds include III-V semiconductors such as InP and InAs used in both electronic devices and solar cells, and indium tin oxide, which can be used for optical memory and antireflection coatings. Chemical vapor deposition (CVD) techniques can be used to deposit these materials on a variety of substrates. At the temperatures typically employed (550--900 K), gas-phase chemical reactions involving the indium-containing precursor can occur. The kinetics of trimethylindium pyrolysis are investigated in a flow reactor equipped with a molecular-beam mass-spectrometric sampling system. Data are analyzed using a new computational approach that accounts for heat and mass transport in the reactor. The measured activation energy, 46.2 kcal/mol, is in good agreement with previously reported values.

  5. The relationship between the chemical structure and neurotoxicity of alkyl organophosphorus compounds

    PubMed Central

    Davies, D. R.; Holland, P.; Rumens, M. J.

    1960-01-01

    Thirty-six alkyl organophosphorus compounds have been tested for neurotoxicity in the chicken. The individual compounds were chosen to enable the importance of each portion of the molecule to be assessed in relation to the property of neurotoxicity. Seventeen substances were found to be neurotoxic, fifteen for the first time. All of these contained fluorine. On the basis of the results reported, certain predictions have been made about the chemical structure of compounds which would be expected to be neurotoxic. The importance of fluorine suggests that it plays a direct role in the development of the biochemical lesion, and this may occur as the result of its being carried by the molecule as a whole to specific areas in the nervous system. By the action of cholinesterase, the P-F bond may be ruptured and ionic fluorine liberated where it blocks some metabolic cycle. PMID:13814387

  6. Electronic properties and chemical bondings of Csbnd Hsbnd Nsbnd O compounds

    NASA Astrophysics Data System (ADS)

    Qin, Han; Liu, Qi-Jun; Chai, Rui-Qing; Liu, Fu-Sheng; Liu, Zheng-Tang

    2016-07-01

    We have performed the density functional theory (DFT) calculations within generalized gradient approximation (GGA) plus TS scheme to calculate the structural and electronic properties of Csbnd Hsbnd Nsbnd O compounds. Due to the insufficient description of intermolecular interactions within the GGA calculations, the GGA plus TS dispersion correction have been used to optimize the structural parameters. The calculated results based on the GGA + TS calculations are in agreement with the experimental data, indicating that the introduction of TS dispersion correction can effectively obtain the structural properties of Csbnd Hsbnd Nsbnd O compounds. The electronic properties of nineteen Csbnd Hsbnd Nsbnd O compounds including density of states, Mulliken charges, bond populations and band structures have been obtained and analyzed. According to these calculated data, the electron distributions and charge transfers have been investigated, which are conducive to clarify the chemical bonding characters and further help to future research of understanding the initial chemistry within the detonating energetic materials.

  7. Optical methods for creating delivery systems of chemical compounds to plant roots

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Rogacheva, Svetlana M.; Arefeva, Oksana A.; Minin, Dmitryi V.; Tolmachev, Sergey A.; Kupadze, Machammad S.

    2004-08-01

    Spectrophotometric and fluorescence methods have been used for creation and investigation of various systems of target delivery of chemical compounds to roots of plants. The possibility of using liposomes, incrusted by polysaccharides of the external surface of nitrogen-fixing rizospheric bacteria Azospirillum brasilense SP 245, and nanoparticles incrusted by polysaccharides of wheat roots, as the named systems has been shown. The important role of polysaccharide-polysaccharide interaction in the adsorption processes of bacteria on wheat roots has been demonstrated.

  8. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOEpatents

    Mowry, Curtis Dale; Thornberg, Steven Michael

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  9. Metal organic chemical vapor deposition of 111-v compounds on silicon

    DOEpatents

    Vernon, Stanley M.

    1986-01-01

    Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

  10. The Limits of Two-Year Bioassay Exposure Regimens for Identifying Chemical Carcinogens

    PubMed Central

    Huff, James; Jacobson, Michael F.; Davis, Devra Lee

    2008-01-01

    Background Chemical carcinogenesis bioassays in animals have long been recognized and accepted as valid predictors of potential cancer hazards to humans. Most rodent bioassays begin several weeks after birth and expose animals to chemicals or other substances, including workplace and environmental pollutants, for 2 years. New findings indicate the need to extend the timing and duration of exposures used in the rodent bioassay. Objectives In this Commentary, we propose that the sensitivity of chemical carcinogenesis bio-assays would be enhanced by exposing rodents beginning in utero and continuing for 30 months (130 weeks) or until their natural deaths at up to about 3 years. Discussion Studies of three chemicals of different structures and uses—aspartame, cadmium, and toluene—suggest that exposing experimental animals in utero and continuing exposure for 30 months or until their natural deaths increase the sensitivity of bioassays, avoid false-negative results, and strengthen the value and validity of results for regulatory agencies. Conclusions Government agencies, drug companies, and the chemical industry should conduct and compare the results of 2-year bioassays of known carcinogens or chemicals for which there is equivocal evidence of carcinogenicity with longer-term studies, with and without in utero exposure. If studies longer than 2 years and/or with in utero exposure are found to better identify potential human carcinogens, then regulatory agencies should promptly revise their testing guidelines, which were established in the 1960s and early 1970s. Changing the timing and dosing of the animal bioassay would enhance protection of workers and consumers who are exposed to potentially dangerous workplace or home contaminants, pollutants, drugs, food additives, and other chemicals throughout their lives. PMID:19057693

  11. [Chemical Loss of Volatile Organic Compounds and Its Impact on the Formation of Ozone in Shanghai].

    PubMed

    Wang, Hong-li

    2015-09-01

    The spatial characterization of ozone (O3) and its precursors was studied based on the field measurements in urban and rural areas of Shanghai during the summer of 2014. The chemical loss of volatile organic compounds (VOCs) was estimated by the parameterization method. The mixing ratio of VOCs was 20 x 10(-9) in urban area and 17 x 10(-9) in the west rural area during the measurements. The average values of the maximum incremental reactivity were comparable in urban and rural areas, namely 5. 0 mol.mol-1 (O3/VOCs). By contrast, the chemical loss of VOCs was 8. 3 x 10(-9) in west rural area, which was two times as that in urban area. The more chemical loss of VOCs was probably one of the important reasons leading to the higher O3 concentration in west rural area. The regional transport might be important reason of the variation of O3 in the eastern coastal rural area. The chemical loss of VOCs showed good agreement with the local formation of O3 in both urban and rural areas, suggesting a similar efficiency of O3 formation from the chemical loss of VOCs. Among the chemical loss, aromatics and alkenes are the dominant VOC species of the atmospheric chemistry which accounts for more than 90% . The diurnal profile of VOC chemical loss matched well with the production of O3 with one-hour postponement. PMID:26717674

  12. Selenium status in workers handling aromatic nitro-amino compounds in a chemical factory

    SciTech Connect

    Yoshida, M.; Sunaga, M.; Hara, I. )

    1990-09-01

    The selenium status of workers handling aromatic nitro-amino (ANA) compounds was evaluated by measurement of their blood and urinary selenium concentrations and blood glutathione peroxidase (GSH-Px) activities. Forty-seven healthy Japanese male workers (42.7 +/- 12.1 yr) handling ANA compounds routinely in a chemical factory were studied as exposed workers, and 107 nonindustrial healthy Japanese males (39.3 +/- 10.0 yr) in the same region served as a control group. Urinary diazoreaction-positive metabolites and methemoglobin, both of which have been used as indices of exposure to ANA compounds, were significantly elevated in the exposed workers. Both plasma and erythrocyte selenium in the exposed workers showed 20% lower values compared to the control group. GSH-Px activities in plasma and erythrocytes were also significantly decreased in the exposed workers, but urinary selenium excretions were similar between the two groups. Questionnaire information obtained from each subject regarding intake habits of selenium-rich foods (bread, eggs, meat, and fish) indicated that the average dietary selenium intake was similar for the control group and the exposed workers. These results indicate that (1) the workers handling ANA compounds were surely exposed to these chemicals; (2) their selenium status was lower than that of the nonindustrial controls; and (3) the low selenium status was not associated with any dietary factor.

  13. Solvent Extraction of Chemical Attribution Signature Compounds from Painted Wall Board: Final Report

    SciTech Connect

    Wahl, Jon H.; Colburn, Heather A.

    2009-10-29

    This report summarizes work that developed a robust solvent extraction procedure for recovery of chemical attribution signature (CAS) compound dimethyl methyl phosphonate (DMMP) (as well as diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)) from painted wall board (PWB), which was selected previously as the exposed media by the chemical attribution scientific working group (CASWG). An accelerated solvent extraction approach was examined to determine the most effective method of extraction from PWB. Three different solvent systems were examined, which varied in solvent strength and polarity (i.e., 1:1 dichloromethane : acetone,100% methanol, and 1% isopropanol in pentane) with a 1:1 methylene chloride : acetone mixture having the most robust and consistent extraction for four original target organophosphorus compounds. The optimum extraction solvent was determined based on the extraction efficiency of the target analytes from spiked painted wallboard as determined by gas chromatography x gas chromatography mass spectrometry (GCxGC-MS) analysis of the extract. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor-deposited onto painted wallboard tickets.

  14. Miniaturized sequential injection analyzer for the monitoring and quantitation of chemical weapons degradation compounds

    NASA Astrophysics Data System (ADS)

    Lancaster, Herbert L., III; Postlethwaite, Timothy A.; Zhang, Peng; Sorrells, Richard

    2002-06-01

    The ability to monitor and detect chemical warfare agents and their degradation compounds continues to be of utmost importance. Remote on-site field analysis of these compounds is also extremely important as it relates to treaty verification for the Chemical Weapons Convention, as well as the minimization and elimination of human exposure. A portable instrument has been developed and miniaturized that allows for the detection of these compounds in the field with better quantitative results and higher reproducibility than traditional field test kits. All sample and reagent manipulations are conducted in a completely automated fashion. Quantitative results may be determined colorimetrically using the molybdenum blue reaction for the final degradation product of phosphonic acid based chemical warfare agents with a detection limit of 0.05 ppm. The instrument is based on the flow analysis technique of sequential injection analysis (SIA). The benefits of this approach are that the method provides rapid response, high reproducibility of results, high sensitivity and minimal waste production.

  15. Estrogenic activity assessment of environmental chemicals using in vitro assays: identification of two new estrogenic compounds.

    PubMed Central

    Lascombe, I; Beffa, D; Rüegg, U; Tarradellas, J; Wahli, W

    2000-01-01

    Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:10903615

  16. Chemical Shifts to Metabolic Pathways: Identifying Metabolic Pathways Directly from a Single 2D NMR Spectrum.

    PubMed

    Dubey, Abhinav; Rangarajan, Annapoorni; Pal, Debnath; Atreya, Hanudatta S

    2015-12-15

    Identifying cellular processes in terms of metabolic pathways is one of the avowed goals of metabolomics studies. Currently, this is done after relevant metabolites are identified to allow their mapping onto specific pathways. This task is daunting due to the complex nature of cellular processes and the difficulty in establishing the identity of individual metabolites. We propose here a new method: ChemSMP (Chemical Shifts to Metabolic Pathways), which facilitates rapid analysis by identifying the active metabolic pathways directly from chemical shifts obtained from a single two-dimensional (2D) [(13)C-(1)H] correlation NMR spectrum without the need for identification and assignment of individual metabolites. ChemSMP uses a novel indexing and scoring system comprised of a "uniqueness score" and a "coverage score". Our method is demonstrated on metabolic pathways data from the Small Molecule Pathway Database (SMPDB) and chemical shifts from the Human Metabolome Database (HMDB). Benchmarks show that ChemSMP has a positive prediction rate of >90% in the presence of decluttered data and can sustain the same at 60-70% even in the presence of noise, such as deletions of peaks and chemical shift deviations. The method tested on NMR data acquired for a mixture of 20 amino acids shows a success rate of 93% in correct recovery of pathways. When used on data obtained from the cell lysate of an unexplored oncogenic cell line, it revealed active metabolic pathways responsible for regulating energy homeostasis of cancer cells. Our unique tool is thus expected to significantly enhance analysis of NMR-based metabolomics data by reducing existing impediments. PMID:26556218

  17. Flue gas compounds and microalgae: (bio-)chemical interactions leading to biotechnological opportunities.

    PubMed

    Van Den Hende, Sofie; Vervaeren, Han; Boon, Nico

    2012-01-01

    Flue gases are a resource yet to be fully utilised in microalgal biotechnology, not only to moderate the anthropogenic effects on our climate, but also to steer microalgal resource management towards innovative applications of microalgal biomass compounds. These gases, both untreated and treated into current discharge standards, contain CO2, N2, H2O, O2, NOx, SOx, CxHy, CO, particulate matter, halogen acids and heavy metals. To better steer and engineer flue gas-fed microalgal cultures, all these compounds need to be considered. Therefore, here, we review (i) the chemical composition and treatment technologies of flue gas, (ii) the uptake pathways and removal of the different compounds in microalgae reactors, and (iii) the tolerance and effects on microalgae of all flue gas compounds. By emphasising the interactions between microalgae and flue gas compounds, we envisage new pathways for microalgal biomass valorisation such as enzyme production for environmental technology, novel biogas production and biosequestration of minerals. Furthermore, we highlight fundamental and applied research niches that merit further investigation. PMID:22425735

  18. Modulation of alternative splicing with chemical compounds in new therapeutics for human diseases.

    PubMed

    Ohe, Kenji; Hagiwara, Masatoshi

    2015-04-17

    Alternative splicing is a critical step where a limited number of human genes generate a complex and diverse proteome. Various diseases, including inherited diseases with abnormalities in the "genome code," have been found to result in an aberrant mis-spliced "transcript code" with correlation to the resulting phenotype. Chemical compound-based and nucleic acid-based strategies are trying to target this mis-spliced "transcript code". We will briefly mention about how to obtain splicing-modifying-compounds by high-throughput screening and overview of what is known about compounds that modify splicing pathways. The main focus will be on RNA-binding protein kinase inhibitors. In the main text, we will refer to diseases where splicing-modifying-compounds have been intensively investigated, with comparison to nucleic acid-based strategies. The information on their involvement in mis-splicing as well as nonsplicing events will be helpful in finding better compounds with less off-target effects for future implications in mis-splicing therapy. PMID:25560473

  19. Cyanobacteria and microalgae: a renewable source of bioactive compounds and other chemicals.

    PubMed

    Encarnação, Telma; Pais, Alberto A C C; Campos, Maria G; Burrows, Hugh D

    2015-01-01

    Microalgae and cyanobacteria are rich sources of many valuable compounds, including important bioactive and biotechnologically relevant chemicals. Their enormous biodiversity, and the consequent variability in the respective biochemical composition, make microalgae cultivations a promising resource for many novel chemically and biologically active molecules and compounds of high commercial value such as lipids and dyes. The nature of the chemicals produced can be manipulated by changing the cultivation media and conditions. Algae are extremely versatile because they can be adapted to a variety of cell culture conditions. They do not require arable land, can be cultivated on saline water and wastewaters, and require much less water than plants. They possess an extremely high growth rate making these microorganisms very attractive for use in biofuel production--some species of algae can achieve around 100 times more oil than oil seeds. In addition, microalgae and cyanobacteria can accumulate various biotoxins and can contribute to mitigate greenhouse gases since they produce biomass through carbon dioxide fixation. In this review, we provide an overview of the application of microalgae in the production of bioactive and other chemicals. PMID:26288917

  20. Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds.

    PubMed

    Kagan, Isabelle A; Flythe, Michael D

    2014-01-01

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species. PMID:24747583

  1. Thin-layer Chromatographic (TLC) Separations and Bioassays of Plant Extracts to Identify Antimicrobial Compounds

    PubMed Central

    Kagan, Isabelle A.; Flythe, Michael D.

    2014-01-01

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species. PMID:24747583

  2. Development of a QSAR for worst case estimates of acute toxicity of chemically reactive compounds.

    PubMed

    Freidig, A P; Dekkers, S; Verwei, M; Zvinavashe, E; Bessems, J G M; van de Sandt, J J M

    2007-05-15

    Future EU legislations enforce a fast hazard and risk assessment of thousands of existing chemicals. If conducted by means of present data requirements, this assessment will use a huge number of test animals and will be neither cost nor time effective. The purpose of the current research was to develop methods to increase the acceptability of in vitro data for classification and labelling regarding acute toxicity. For this purpose, a large existing database containing in vitro and in vivo data was analysed. For more than 300 compounds in the database, relations between in vitro cytotoxicity and rat or mouse intravenous and oral in vivo LD50 values were re-evaluated and the possibilities for definition of mechanism based chemical subclasses were investigated. A high in vitro-in vivo correlation was found for chemicals classified as irritants. This can be explained by a shared unspecific cytotoxicity of these compounds which will act as the predominant mode of action for both endpoints, irritation and acute toxicity. For this subclass, which covered almost 40% of all compounds in the database, the LD50 values after intravenous dosing could be predicted with high accuracy. A somewhat lower accuracy was found for the prediction of oral LD50 values based on in vitro cytotoxicity data. Based on this successful correlation, a classification and labelling scheme was developed, that includes a hazard based definition of the applicability domain (irritants) and a prediction of the labelling of compounds for their acute iv and oral toxicity. The scheme was tested by an external validation. PMID:17462838

  3. Electrophysiological and behavioral responses of female Helicoverpa armigera to compounds identified in flowers of African marigold, Tagetes erecta.

    PubMed

    Bruce, T J; Cork, A

    2001-06-01

    Seven electrophysiologically active compounds were detected in air-entrained headspace samples of live flowers of Tagetes erecta analyzed by gas chromatography (GC) linked to a female Helicoverpa armigera electroantennograph (EAG) using polar and nonpolar capillary columns. These compounds were subsequently identified using GC linked to mass spectrometry as benzaldehyde, (S)-(-)-limonene, (R,S)-(+/-)-linalool, (E)-myroxide, (Z)-beta-ocimene, phenylacetaldehyde, and (R)-(-)-piperitone. Electrophysiological activity was confirmed by EAG with a 1-microg dose of each compound on filter paper eliciting EAG responses that were significantly greater than the solvent control response from female moths. Wind-tunnel bioassays with T. erecta headspace samples, equivalent to 0.4 flower/hr emission from a live flower, elicited a significant increase in the number of upwind approaches from female H. armigera relative to a solvent control. Similarly, a seven-component synthetic blend of EAG-active compounds identified from T. erecta presented in the same ratio (1.0:1.6:0.7:1.4:0.4:5.0:2.7, respectively) and concentration (7.2 microg) as found in the natural sample elicited a significant increase in the number of upwind approaches relative to a solvent control during a 12-min bioassay that was equivalent to that elicited by the natural T. erecta floral volatiles. PMID:11504018

  4. Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile.

    PubMed

    Yu, Peigen; Yeo, Angelin Soo-Lee; Low, Mei-Yin; Zhou, Weibiao

    2014-07-15

    Thirty-nine non-volatile compounds in seven ready-to-drink (RTD) green tea samples were analysed and quantified using liquid chromatography. Taste reconstruction experiments using thirteen selected compounds were conducted to identify the key non-volatile tastants. Taste profiles of the reconstructed samples did not differ significantly from the RTD tea samples. To investigate the taste contribution and significance of individual compounds, omission experiments were carried out by removing individual or a group of compounds. Sensory evaluation revealed that the astringent- and bitter-tasting (-)-epigallocatechin gallate, bitter-tasting caffeine, and the umami-tasting l-glutamic acid were the main contributors to the taste of RTD green tea. Subsequently, the taste profile of the reduced recombinant, comprising of a combination of these three compounds and l-theanine, was found to not differ significantly from the sample recombinant and RTD tea sample. Lastly, regression models were developed to objectively predict and assess the intensities of bitterness and astringency in RTD green teas. PMID:24594147

  5. Tandem virtual screening targeting the SRA domain of UHRF1 identifies a novel chemical tool modulating DNA methylation.

    PubMed

    Myrianthopoulos, Vassilios; Cartron, Pierre Francois; Liutkevičiūtė, Zita; Klimašauskas, Saulius; Matulis, Daumantas; Bronner, Christian; Martinet, Nadine; Mikros, Emmanuel

    2016-05-23

    Ubiquitin-like protein UHRF1 that contains PHD and RING finger domain 1 is a key epigenetic protein enabling maintenance of the DNA methylation status through replication. A tandem virtual screening approach was implemented for identifying small molecules able to bind the 5-methylcytosine pocket of UHRF1 and inhibit its functionality. The NCI/DTP small molecules Repository was screened in silico by a combined protocol implementing structure-based and ligand-based methodologies. Consensus ranking was utilized to select a set of 27 top-ranked compounds that were subsequently evaluated experimentally in a stepwise manner for their ability to demethylate DNA in cellulo using PCR-MS and HPLC-MS/MS. The most active molecules were further assessed in a cell-based setting by the Proximity Ligation In Situ Assay and the ApoTome technology. Both evaluations confirmed that the DNMT1/UHRF1 interactions were significantly reduced after 4 h of incubation of U251 glioma cells with the most potent compound NSC232003, showing a 50% interaction inhibition at 15 μM as well as induction of global DNA cytosine demethylation as measured by ELISA. This is the first report of a chemical tool that targets UHRF1 and modulates DNA methylation in a cell context by potentially disrupting DNMT1/UHRF1 interactions. Compound NSC232003, a uracil derivative freely available by the NCI/DTP Repository, provides a versatile lead for developing highly potent and cell-permeable UHRF1 inhibitors that will enable dissection of DNA methylation inheritance. PMID:27049577

  6. Compounded bioidentical hormone therapy: identifying use trends and knowledge gaps among US women

    PubMed Central

    Pinkerton, JoAnn V.; Santoro, Nanette

    2015-01-01

    Abstract Objective: Two surveys (Harris and Rose surveys) were conducted to quantify the use of compounded hormone therapy (CHT; or bioidentical hormone therapy) among perimenopausal and postmenopausal women in the United States, to assess women's knowledge of CHT versus Food and Drug Administration (FDA)–approved hormone therapy, and to gather information on menopausal experience. Methods: The Harris survey was administered to 801 women aged 45 to 60 years who had experienced at least one menopausal symptom. The Rose survey was administered to 2,044 women aged 40 years or older who were ever users of hormone therapy. Women were queried about menopausal symptoms, hormone therapy use, and knowledge of CHT. Findings from the Rose survey were extrapolated using US Census Bureau data and prescription claims for FDA-approved hormone therapy to estimate the prevalence of CHT use. Results: According to extrapolations using Rose data, up to 2.5 million US women aged 40 years or older may use CHT annually, accounting for 28% to 68% of hormone therapy prescriptions. Harris data showed that 86% of women surveyed were unaware that CHT products are not FDA-approved. The Rose survey asked a subset of 1,771 women whether their hormone therapy had been personalized based on hormone levels; 21% (378) answered “yes” whereas 27% (476) did not know. In both surveys, most hormone therapy users stated that their physician had recommended the treatment. Conclusions: We estimate that 1 million to 2.5 million US women aged 40 years or older use CHT. The data suggest that many women are unaware that compounded hormones have not been evaluated or approved by the FDA. Providers have an educational opportunity to ensure that women considering hormone therapy understand the risks and benefits of inadequately regulated CHT. PMID:25692877

  7. [Quantification assessment of the relationship between chemical and olfactory concentrations for malodorous volatile organic compounds].

    PubMed

    Liu, Shu-Le; Wang, Bo-Guang; He, Jie; Tang, Xiao-Dong; Zhao, De-Jun; Guo, Wei

    2011-12-01

    Using self-made cold-traps and gas bags, the odor samples were collected from 6 sewage treatment workshops of a typical municipal sewage treatment plant in Guangzhou City. The chemical composition and olfactory concentrations of these samples were respectively analyzed by thermal-desorption/GC-MS and triangle odor bag method. Finally, a mathematical equation was built for assessing the relationship between principal organic odorants and the olfactory concentrations. The result showing that: (1) More than 70 volatile organic compounds were detected in municipal sewage treatment plant, among which were 30 malodorous volatile organic compounds (MVOCs), ranging from 0.37 to 1 872.24 microg x m(-3) and appearing in sludge dewatering, thickening and aeration tank with the highest concentrations. (2) Principle component analysis was used to group the target MVOCs into 5 categories: benzenes, halohydrocarbons, aldehydes, hydrocarbons and S, N-containing organic compounds. (3) Multiple lineal regression analysis was used to build a quantified relationship between chemical and olfactory concentrations of MVOCs. The result indicated that 25% of the odor problem of sewage treatment unit was due to MVOCs. The predicted values were fitting well with measured values. The sensitivity of mathematical equation for measuring odor concentration was higher than that of human olfactory system. PMID:22468522

  8. Volatile Organic Compounds Identified in Post-Flight Air Analysis of the Multipurpose Logistics Module from International Space Station

    NASA Astrophysics Data System (ADS)

    Peterson, B.; Wheeler, R.

    Bioregenerative systems involve storing and processing waste along with atmospheric management. The MPLM, Multipurpose Logistics Module, is a reusable logistics carrier and primary delivery system used to resupply the International Space Station (ISS) and return Station cargo that requires a pressurized environment. The cylindrical module is approximately 6.4 meters long, 4.6 meters in diameter, and weighs almost 4,082kg. The module provides storage and additional workspace for up to two astronauts when docked to the ISS. It can carry up to 9,072 kg of supplies, science experiments, spare parts and other logistical components for ISS. There is concern for a potentially hazardous condition caused by contamination of the atmosphere in the MPLM upon return from orbit. This would be largely due to unforeseen spills or container leakage. This has led to the need for special care in handling the returned module prior to processing the module for its next flight. Prior to opening the MPLM, atmospheric samples are analyzed for trace volatile organic compounds, VOC's. It is noted that our analyses also reflect the atmosphere in the ISS on that day of closure. With the re turn of STS-108, 12th ISS Flight (UF1), the analysis showed 24 PPM of methane. This corresponds to the high levels on space station during a time period when the air filtration system was shut off. Chemical characterization of atmospheres on the ISS and MPLM provide useful information for concerns with plant growth experiments on ISS. Work with closed plant growth chambers show potential for VOC's to accumulate to toxic levels for plants. The ethylene levels for 4 MPLM analyses over the course on one year were measured at, 0.070, 0.017, 0.012 and 0.007 PPM. Phytochemical such as ethylene are detected with natural plant physiological events such as flowering and as a result of plant damage or from decaying food. A build up of VOC's may contribute to phytotoxic effects for the plant growth experiments or

  9. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE PAGESBeta

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; Zimmermann, Kathryn J.; Blomquist, Byron W.; Huebert, Barry J.; Bertram, Timothy H.

    2016-04-05

    Here, benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt−1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through a combinationmore » of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated (R2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  10. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; Zimmermann, Kathryn J.; Blomquist, Byron W.; Huebert, Barry J.; Bertram, Timothy H.

    2016-04-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt-1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion-molecule reactions likely proceed through a combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated (R2 > 0.95, 10 s averages) over a wide range of sampling conditions.

  11. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Kim, M. J.; Zoerb, M. C.; Campbell, N. R.; Zimmermann, K. J.; Blomquist, B. W.; Huebert, B. J.; Bertram, T. H.

    2015-10-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e. DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt-1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a weaker electric field, demonstrated that ion-molecule reactions likely proceed through a combination of ligand-switching and direct charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer. Measurements from the two instruments were highly correlated (R2=0.80) over a wide range of sampling conditions.

  12. Real-time monitoring of volatile organic compounds using chemical ionization mass spectroscopy: Final report

    SciTech Connect

    Thornberg, S.M.; Mowry, C.D.; Keenan, M.R.; Bender, S.F.A.; Owen, T.

    1997-04-01

    Volatile organic compound (VOC) emission to the atmosphere is of great concern to semiconductor manufacturing industries, research laboratories, the public, and regulatory agencies. Some industries are seeking ways to reduce emissions by reducing VOCs at the point of use (or generation). This paper discusses the requirements, design, calibration, and use of a sampling inlet/quadrupole mass spectrometer system for monitoring VOCs in a semiconductor manufacturing production line. The system uses chemical ionization to monitor compounds typically found in the lithography processes used to manufacture semiconductor devices (e.g., acetone, photoresist). The system was designed to be transportable from tool to tool in the production line and to give the operator real-time feedback so the process(es) can be adjusted to minimize VOC emissions. Detection limits ranging from the high ppb range for acetone to the low ppm range fore other lithography chemicals were achieved using chemical ionization mass spectroscopy at a data acquisition rate of approximately 1 mass spectral scan (30 to 200 daltons) per second. A demonstration of exhaust VOC monitoring was performed at a working semiconductor fabrication facility during actual wafer processing.

  13. Quantum chemical and statistical study of megazol-derived compounds with trypanocidal activity

    NASA Astrophysics Data System (ADS)

    Rosselli, F. P.; Albuquerque, C. N.; da Silva, A. B. F.

    In this work we performed a structure-activity relationship (SAR) study with the aim to correlate molecular properties of the megazol compound and 10 of its analogs with the biological activity against Trypanosoma cruzi (trypanocidal or antichagasic activity) presented by these molecules. The biological activity indication was obtained from in vitro tests and the molecular properties (variables or descriptors) were obtained from the optimized chemical structures by using the PM3 semiempirical method. It was calculated ˜80 molecular properties selected among steric, constitutional, electronic, and lipophilicity properties. In order to reduce dimensionality and investigate which subset of variables (descriptors) would be more effective in classifying the compounds studied, according to their degree of trypanocidal activity, we employed statistical methodologies (pattern recognition and classification techniques) such as principal component analysis (PCA), hierarchical cluster analysis (HCA), K-nearest neighbor (KNN), and discriminant function analysis (DFA). These methods showed that the descriptors molecular mass (MM), energy of the second lowest unoccupied molecular orbital (LUMO+1), charge on the first nitrogen at substituent 2 (qN'), dihedral angles (D1 and D2), bond length between atom C4 and its substituent (L4), Moriguchi octanol-partition coefficient (MLogP), and length-to-breadth ratio (L/Bw) were the variables responsible for the separation between active and inactive compounds against T. cruzi. Afterwards, the PCA, KNN, and DFA models built in this work were used to perform trypanocidal activity predictions for eight new megazol analog compounds.

  14. Mutations in a translation initiation factor identify target of a memory-enhancing compound

    PubMed Central

    Sekine, Yusuke; Zyryanova, Alisa; Crespillo-Casado, Ana; Fischer, Peter M.; Harding, Heather P.; Ron, David

    2015-01-01

    The integrated stress response (ISR) modulates mRNA translation to regulate the mammalian unfolded protein response (UPR), immunity and memory formation. A chemical ISR inhibitor, ISRIB, enhances cognitive function and modulates the UPR in vivo. To explore mechanisms involved in ISRIB action we screened cultured mammalian cells for somatic mutations that reversed its effect on the ISR. Clustered missense mutations were found at the N-terminal portion of the delta subunit of guanine nucleotide exchange factor (GEF) eIF2B. When reintroduced by CRISPR-Cas9 gene editing of wildtype cells, these mutations reversed both ISRIB-mediated inhibition of the ISR and its stimulatory effect on eIF2B GEF activity towards its substrate, eIF2, in vitro. Thus ISRIB targets an interaction between eIF2 and eIF2B that lies at the core of the ISR. PMID:25858979

  15. A Substrate Pharmacophore for the Human Organic Cation/Carnitine Transporter Identifies Compounds Associated with Rhabdomyolysis

    PubMed Central

    Ekins, Sean; Diao, Lei; Polli, James E.

    2012-01-01

    The human Organic Cation/Carnitine Transporter (hOCTN2), is a high affinity cation/carnitine transporter expressed widely in human tissues and is physiologically important for the homeostasis of L-carnitine. The objective of this study was to elucidate the substrate requirements of this transporter via computational modelling based on published in vitro data. Nine published substrates of hOCTN2 were used to create a common features pharmacophore that was validated by mapping other known OCTN2 substrates. The pharmacophore was used to search a drug database and retrieved molecules that were then used as search queries in PubMed for instances of a side effect (rhabdomyolysis) associated with interference with L-carnitine transport. The substrate pharmacophore was comprised of two hydrogen bond acceptors, a positive ionizable feature and ten excluded volumes. The substrate pharmacophore also mapped 6 out of 7 known substrate molecules used as a test set. After searching a database of ~800 known drugs, thirty drugs were predicted to map to the substrate pharmacophore with L-carnitine shape restriction. At least 16 of these molecules had case reports documenting an association with rhabdomyolysis and represent a set for prioritizing for future testing as OCTN2 substrates or inhibitors. This computational OCTN2 substrate pharmacophore derived from published data partially overlaps a previous OCTN2 inhibitor pharmacophore and is also able to select compounds that demonstrate rhabdomyolysis, further confirming the possible linkage between this side effect and hOCTN2. PMID:22339151

  16. Effect of chemical pretreatment on anaerobic biodegradation of refractory organic compounds

    SciTech Connect

    Wang, Y.T. )

    1992-08-01

    The potential for using chemical oxidation to enhance anaerobic biodegradability and reduce toxicity of two model phenolic compounds (o-cresol and 2,4-DNP) was evaluated. Batch bioassays were performed on the model compounds and their oxidation samples to determine biodegradability and toxicity in batch methanogenic cultures. Ozone, hydrogen peroxide, and potassium permanganate were the three oxidants examined in this study. A dose of approximately 5 moles hydrogen peroxide, in the presence of a ferrous iron catalyst (Fenton's reagent), 7 moles permanganate, or 25 moles of ozone per mole of o-cresol was needed to significantly enhance anaerobic biodegradability of oxidation samples. Approximately 2.5-4.5 moles of hydrogen peroxide or 7 moles of ozone per mole of 2,4-DNP reduced methanogenic toxicity by 50%. 25 refs., 6 figs., 3 tabs.

  17. An FTIR point sensor for identifying chemical WMD and hazardous materials

    NASA Astrophysics Data System (ADS)

    Norman, Mark L.; Gagnon, Aaron M.; Reffner, John A.; Schiering, David W.; Allen, Jeffrey D.

    2004-03-01

    A new point sensor for identifying chemical weapons of mass destruction and other hazardous materials based on Fourier transform infrared (FT-IR) spectroscopy is presented. The sensor is a portable, fully functional FT-IR system that features a miniaturized Michelson interferometer, an integrated diamond attenuated total reflection (ATR) sample interface, and an embedded on-board computer. Samples are identified by an automated search algorithm that compares their infrared spectra to digitized databases that include reference spectra of nerve and blister agents, toxic industrial chemicals, and other hazardous materials. The hardware and software are designed for use by technicians with no background in infrared spectroscopy. The unit, which is fully self-contained, can be hand-carried and used in a hot zone by personnel in Level A protective gear, and subsequently decontaminated by spraying or immersion. Wireless control by a remote computer is also possible. Details of the system design and performance, including results of field validation tests, are discussed.

  18. Screening and prioritisation of chemical risks from metal mining operations, identifying exposure media of concern.

    PubMed

    Pan, Jilang; Oates, Christopher J; Ihlenfeld, Christian; Plant, Jane A; Voulvoulis, Nikolaos

    2010-04-01

    Metals have been central to the development of human civilisation from the Bronze Age to modern times, although in the past, metal mining and smelting have been the cause of serious environmental pollution with the potential to harm human health. Despite problems from artisanal mining in some developing countries, modern mining to Western standards now uses the best available mining technology combined with environmental monitoring, mitigation and remediation measures to limit emissions to the environment. This paper develops risk screening and prioritisation methods previously used for contaminated land on military and civilian sites and engineering systems for the analysis and prioritisation of chemical risks from modern metal mining operations. It uses hierarchical holographic modelling and multi-criteria decision making to analyse and prioritise the risks from potentially hazardous inorganic chemical substances released by mining operations. A case study of an active platinum group metals mine in South Africa is used to demonstrate the potential of the method. This risk-based methodology for identifying, filtering and ranking mining-related environmental and human health risks can be used to identify exposure media of greatest concern to inform risk management. It also provides a practical decision-making tool for mine acquisition and helps to communicate risk to all members of mining operation teams. PMID:19353294

  19. Identifying chemical carcinogens and assessing potential risk in short-term bioassays using transgenic mouse models.

    PubMed Central

    Tennant, R W; French, J E; Spalding, J W

    1995-01-01

    Cancer is a worldwide public health concern. Identifying carcinogens and limiting their exposure is one approach to the problem of reducing risk. Currently, epidemiology and rodent bioassays are the means by which putative human carcinogens are identified. Both methods have intrinsic limitations: they are slow and expensive processes with many uncertainties. The development of methods to modify specific genes in the mammalian genome has provided promising new tools for identifying carcinogens and characterizing risk. Transgenic mice may provide advantages in shortening the time required for bioassays and improving the accuracy of carcinogen identification; transgenic mice might now be included in the testing armamentarium without abandoning the two-year bioassay, the current standard. We show that mutagenic carcinogens can be identified with increased sensitivity and specificity using hemizygous p53 mice in which one allele of the p53 gene has been inactivated. Furthermore, the TG.AC transgenic model, carrying a v-Ha-ras construct, has developed papillomas and malignant tumors in response to a number of mutagenic and nonmutagenic carcinogens and tumor promoters, but not to noncarcinogens. We present a decision-tree approach that permits, at modest extra cost, the testing of more chemicals with improved ability to extrapolate from rodents to humans. Images Figure 1. Figure 2. Figure 3. PMID:8529591

  20. Laboratory Infrared Spectroscopy to Identify New Compounds on Icy Moon Surfaces

    NASA Astrophysics Data System (ADS)

    Wray, James J.; Young, Cindy L.; Hand, Kevin P.; Poston, Michael J.; Carlson, Robert W.; Clark, Roger N.; Spencer, John R.; Jennings, Donald E.

    2014-11-01

    We are exploring the value of mid-infrared spectroscopy for identifying non-H2O constituents of icy moon surfaces. Recently we reported evidence for a new emissivity feature identified on Iapetus using Cassini’s Composite Infrared Spectrometer [1]. This 11.7 μm feature is consistent with emissivity minima (transparency features) of very fine-grained silicates. Its position and shape may be diagnostic of silicate type, but most lab data at these wavelengths have been acquired using coarser grains and/or at Earth surface pressures and temperatures. Infrared spectra can change substantially under low-temperature, vacuum conditions [e.g., 2,3].We prepared sieved (<0.4 mm) and very fine-grained (few μm) powders of six different silicates and measured their VNIR (0.35-2.5 μm) reflectance spectra under ambient air, and mid-IR (1.2-20 μm) spectra in a purged N2 glovebox. All silicates exhibited mid-IR transparency features (and loss of other features) in micronized form that were not observed for the coarser grain sizes. Muscovite, a phyllosilicate mineral possibly similar to those tentatively identified on Europa [4], provided the closest match to Iapetus in the mid-IR--although clear VNIR features of muscovite have not been identified on Iapetus [5]--and therefore we measured muscovite across the same wavelength range under Iapetus-like conditions (T=125 K, P<3x10^-8 torr). We will report on our ongoing analysis and plans for additional future measurements in JPL’s Icy Worlds Simulation Lab. [1] Young, C.L., et al. (2014), Workshop on the Habitability of Icy Worlds, Abstract #4038.[2] Logan, L.M., et al. (1973), J. Geophys. Res., 78(23), 4983-5003.[3] Donaldson Hanna, K.L., et al. (2012), J. Geophys. Res., 117, E00H05.[4] Shirley, J.H., et al. (2013), AGU Fall Meeting, Abstract #P54A-07.[5] Clark, R.N., et al. (2012), Icarus, 218, 831-860.

  1. N alpha-(1-deoxy-D-fructos-1-yl)-L-arginine, an antioxidant compound identified in aged garlic extract.

    PubMed

    Ryu, K; Ide, N; Matsuura, H; Itakura, Y

    2001-03-01

    Aged garlic extract (AGE) has been shown to have antioxidant activity. The organosulfur compounds, S-allyl-L-cysteine and S-allylmercapto-L-cysteine, are responsible, at least in part, for the antioxidant activity of AGE. To identify major active components, we fractionated AGE, using hydrogen peroxide scavenging activity as an antioxidative index. Strong activity in the amino acid fraction was found and the major active compound was identified as N alpha-(1-deoxy-D-fructos-1-yl)-L-arginine (Fru-Arg). Antioxidant activity of Fru-Arg was comparable to that of ascorbic acid, scavenging hydrogen peroxide completely at 50 micromol/L and 37% at 10 micromol/L. Quantitative analysis using the established HPLC system revealed that AGE contained 2.1-2.4 mmol/L of Fru-Arg, but none was detected in either raw or heated garlic juice. Furthermore, it was shown that a minimum of 4 mo aging incubation was required for Fru-Arg to be generated. These findings indicate that the aging process is critical for the production of the antioxidant compound, Fru-Arg. These results may explain some of the variation in benefits among different commercially available garlic preparations. PMID:11238799

  2. A High-Throughput Screening Assay to Identify Kidney Toxic Compounds.

    PubMed

    Ramm, Susanne; Adler, Melanie; Vaidya, Vishal S

    2016-01-01

    Kidney toxicity due to drugs and chemicals poses a significant health burden for patients and a financial risk for pharmaceutical companies. However, currently no sensitive and high-throughput in vitro method exists for predictive nephrotoxicity assessment. Primary human proximal tubular epithelial cells (HPTECs) possess characteristics of differentiated epithelial cells, making them a desirable model to use in in vitro screening systems. Additionally, heme oxygenase 1 (HO-1) protein expression is upregulated as a protective mechanism during kidney toxicant-induced oxidative stress or inflammation in HPTECs and can therefore be used as a biomarker for nephrotoxicity. In this article, we describe two different methods to screen for HO-1 increase: A homogeneous time resolved fluorescence (HTRF) assay and an immunofluorescence assay. The latter provides lower throughput but higher sensitivity due to the combination of two readouts, HO-1 intensity and cell number. The methods described in the protocol are amendable for other cell types as well. © 2016 by John Wiley & Sons, Inc. PMID:27479365

  3. Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits.

    PubMed

    de Souza, Vanessa Rios; Pereira, Patrícia Aparecida Pimenta; da Silva, Thais Lomônaco Teodoro; de Oliveira Lima, Luiz Carlos; Pio, Rafael; Queiroz, Fabiana

    2014-08-01

    This study aimed to evaluate the chemical composition, identify the bioactive compounds and measure the antioxidant activity present in blackberry, red raspberry, strawberry, sweet cherry and blueberry fruits produced in the subtropical areas of Brazil and to verify that the chemical properties of these fruit are similar when compared to the temperate production zones. Compared with berries and cherries grown in temperate climates, the centesimal composition and physical chemical characteristics found in the Brazilian berries and cherries are in agreement with data from the literature. For the mineral composition, the analyzed fruits presented lower concentrations of P, K, Ca, Mg and Zn and higher levels of Fe. The values found for the bioactive compounds generally fit the ranges reported in the literature with minor differences. The greatest difference was found in relation to ascorbic acid, as all fruits analyzed showed levels well above those found in the literature. PMID:24629981

  4. Molecular descriptor data explain market prices of a large commercial chemical compound library

    NASA Astrophysics Data System (ADS)

    Polanski, Jaroslaw; Kucia, Urszula; Duszkiewicz, Roksana; Kurczyk, Agata; Magdziarz, Tomasz; Gasteiger, Johann

    2016-06-01

    The relationship between the structure and a property of a chemical compound is an essential concept in chemistry guiding, for example, drug design. Actually, however, we need economic considerations to fully understand the fate of drugs on the market. We are performing here for the first time the exploration of quantitative structure-economy relationships (QSER) for a large dataset of a commercial building block library of over 2.2 million chemicals. This investigation provided molecular statistics that shows that on average what we are paying for is the quantity of matter. On the other side, the influence of synthetic availability scores is also revealed. Finally, we are buying substances by looking at the molecular graphs or molecular formulas. Thus, those molecules that have a higher number of atoms look more attractive and are, on average, also more expensive. Our study shows how data binning could be used as an informative method when analyzing big data in chemistry.

  5. Molecular descriptor data explain market prices of a large commercial chemical compound library

    PubMed Central

    Polanski, Jaroslaw; Kucia, Urszula; Duszkiewicz, Roksana; Kurczyk, Agata; Magdziarz, Tomasz; Gasteiger, Johann

    2016-01-01

    The relationship between the structure and a property of a chemical compound is an essential concept in chemistry guiding, for example, drug design. Actually, however, we need economic considerations to fully understand the fate of drugs on the market. We are performing here for the first time the exploration of quantitative structure-economy relationships (QSER) for a large dataset of a commercial building block library of over 2.2 million chemicals. This investigation provided molecular statistics that shows that on average what we are paying for is the quantity of matter. On the other side, the influence of synthetic availability scores is also revealed. Finally, we are buying substances by looking at the molecular graphs or molecular formulas. Thus, those molecules that have a higher number of atoms look more attractive and are, on average, also more expensive. Our study shows how data binning could be used as an informative method when analyzing big data in chemistry. PMID:27334348

  6. Molecular descriptor data explain market prices of a large commercial chemical compound library.

    PubMed

    Polanski, Jaroslaw; Kucia, Urszula; Duszkiewicz, Roksana; Kurczyk, Agata; Magdziarz, Tomasz; Gasteiger, Johann

    2016-01-01

    The relationship between the structure and a property of a chemical compound is an essential concept in chemistry guiding, for example, drug design. Actually, however, we need economic considerations to fully understand the fate of drugs on the market. We are performing here for the first time the exploration of quantitative structure-economy relationships (QSER) for a large dataset of a commercial building block library of over 2.2 million chemicals. This investigation provided molecular statistics that shows that on average what we are paying for is the quantity of matter. On the other side, the influence of synthetic availability scores is also revealed. Finally, we are buying substances by looking at the molecular graphs or molecular formulas. Thus, those molecules that have a higher number of atoms look more attractive and are, on average, also more expensive. Our study shows how data binning could be used as an informative method when analyzing big data in chemistry. PMID:27334348

  7. Chemical characterization of dissolved organic compounds from coastal sea surface microlayers (Baltic Sea, Germany).

    PubMed

    van Pinxteren, Manuela; Müller, Conny; Iinuma, Yoshiteru; Stolle, Christian; Herrmann, Hartmut

    2012-10-01

    The physicochemical properties of the sea surface microlayer (SML), i.e. the boundary layer between the air and the sea, and its impact on air-sea exchange processes have been investigated for decades. However, a detailed description about these processes remains incomplete. In order to obtain a better chemical characterization of the SML, in a case study three pairs of SML and corresponding bulk water samples were taken in the southern Baltic Sea. The samples were analyzed for dissolved organic carbon and dissolved total nitrogen, as well as for several organic nitrogen containing compounds and carbohydrates, namely aliphatic amines, dissolved free amino acids, dissolved free monosaccharides, sugar alcohols, and monosaccharide anhydrates. Therefore, reasonable analytical procedures with respect to desalting and enrichment were established. All aliphatic amines and the majority of the investigated amino acids (11 out of 18) were found in the samples with average concentrations between 53 ng L(-1) and 1574 ng L(-1). The concentrations of carbohydrates were slightly higher, averaging 2900 ng L(-1). Calculation of the enrichment factor (EF) between the sea surface microlayer and the bulk water showed that dissolved total nitrogen was more enriched (EF: 1.1 and 1.2) in the SML than dissolved organic carbon (EF: 1.0 and 1.1). The nitrogen containing organic compounds were generally found to be enriched in the SML (EF: 1.9-9.2), whereas dissolved carbohydrates were not enriched or even depleted (EF: 0.7-1.2). Although the investigated compounds contributed on average only 0.3% to the dissolved organic carbon and 0.4% to the total dissolved nitrogen fraction, these results underline the importance of single compound analysis to determine SML structure, function, and its potential for a transfer of compounds into the atmosphere. PMID:22475414

  8. Chemical compound of a snow cover in taiga zone territory of the European northeast of Russia

    NASA Astrophysics Data System (ADS)

    Mariya, Vasilevich

    2013-04-01

    Receipt of substances from atmosphere plays an important role in geochemical balance of ecosystems. Atmosphere participates participate in an exchange and substance redistribution for the Earth, and its chemical compound gives the objective information on quality of the air environment. The snow cover acts as the effective store of substances which remain in it in an invariable condition within winter. Chemical compound of snow reflects the valid size of dry both damp losses and quantitative parametres of pollution of ecosystems. Sensitivity of a snow cover to change of industrial conditions in region allows to estimate a state of environment objectively. Distinction of areas on natural receipt macro- and microcomponents from atmosphere causes of an estimation of their background receipt on spreading surface. The purpose of the present work is studying of a chemical compound of a snow cover and spatial distribution of macrocomponents to a taiga zone territories of the European northeast (Republic Komi). It is established that average value of a mineralization of thawed snow, has made 2.8 mg/dm3 and tends to reduction with width increase. Our results have shown that thawed snow water in a taiga zone is characterised by subacidic reaction. Average value ?? has made 4.7 ± 0.1. The oxidation of snow cover is observed from the north on the south. Formation of acidity of a snow cover estimated through the relation of the sum of concentration anions (A = [SO42-] + [N?3-] + [?l-]) to the sum of cations concentration (K = [NH4+] + [Ca2+] + [Mg2+] + [Na+] + [K+]). The received data follows that thawed snow of a taiga zone is characterised by values ?/? <1 at increase in the given relation from the south on the north from 0.42 till (average value equally 0.58). Thus, the acid-base properties of a taiga zone snow cover are defined by deficiency of neutralised connections and prevalence in thawed snow of ions of hydrogen that corresponds to the general situation in the

  9. Chemical constituents and cytotoxic effect of the main compounds of Lythrum salicaria L.

    PubMed

    Manayi, Azadeh; Saeidnia, Soodabeh; Ostad, Seyed Nasser; Hadjiakhoondi, Abbas; Ardekani, Mohammad Reza Shams; Vazirian, Mahdi; Akhtar, Yasmin; Khanavi, Mahnaz

    2013-01-01

    Lythrum salicaria L. (Lythraceae), a herbaceous plant growing widely in Iran, has been well known for many centuries for its astringent and styptic properties. A phytochemical investigation of this plant, based on spectroscopic analysis, identified fourteen compounds: 5-hydroxypyrrolidin-2-one (1), umbelliferone-6-carboxylic acid (2), 3,3',4'-tri-O-methylellagic acid-4-O-beta-D-(2"-acetyl)-glucopyranoside (3), 3,3',4'-tri-O-methylellagic acid-4-O-beta-D-glucopyranoside (4), daucosterol (5), phytol (6), dodecanoic acid (7), oleanolic acid (8), 3,3',4'-tri-O-methylellagic acid (9), corosolic acid (10), beta-sitosterol (11), peucedanin (12), buntansin (13), and erythrodiol (14). All compounds, except for 8 and 11, have been isolated from L. salicaria for the first time. Cytotoxic activities of the compounds were examined against three cancerous cell lines, colon carcinoma (HT-29), leukemia (K-562), and breast ductal carcinoma (T47D), and Swiss mouse embryo fibroblast (NIH-3T3) cells using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and methotrexate as positive control. Compounds 5, 10, 11, and 14 were the most active against the HT-29 cell line with IC50 values of 192.7, 36.8, 38.2, and 12.8 microg/mL, respectively. Compounds 14, 11, 5, and 10 were 6.4, 2.8, 2.6, and 1.4 times, respectively, more selective than methotrexate. Compound 5 was the most active against the K-562 cell line (IC50 = 50.2 microg/mL), with a selectivity exceeding that of methotrexate 13.3 times. The results of the cytotoxic assay confirmed that growth and proliferation of the cancer cell lines are predominantly influenced by triterpene derivatives and sterols of this plant. PMID:24459770

  10. Phenotypic assays to identify agents that induce reactive gliosis: a counter-screen to prioritize compounds for preclinical animal studies.

    PubMed

    Beckerman, Samuel R; Jimenez, Joaquin E; Shi, Yan; Al-Ali, Hassan; Bixby, John L; Lemmon, Vance P

    2015-09-01

    Astrocyte phenotypes change in a process called reactive gliosis after traumatic central nervous system (CNS) injury. Astrogliosis is characterized by expansion of the glial fibrillary acidic protein (GFAP) cytoskeleton, adoption of stellate morphologies, and differential expression of some extracellular matrix molecules. The astrocytic response immediately after injury is beneficial, but in the chronic injury phase, reactive astrocytes produce inhibitory factors (i.e., chondroitin sulfate proteoglycans [CSPGs]) that limit the regrowth of injured axons. There are no drugs that promote axon regeneration or functional recovery after CNS trauma in humans. To develop novel therapeutics for the injured CNS, we screened various libraries in a phenotypic assay to identify compounds that promote neurite outgrowth. However, the effects these compounds have on astrocytes are unknown. Specifically, we were interested in whether compounds could alter astrocytes in a manner that mimics the glial reaction to injury. To test this hypothesis, we developed cell-based phenotypic bioassays to measure changes in (1) GFAP morphology/localization and (2) CSPG expression/immunoreactivity from primary astrocyte cultures. These assays were optimized for six-point dose-response experiments in 96-well plates. The GFAP morphology assay is suitable for counter-screening with a Z-factor of 0.44±0.03 (mean±standard error of the mean; N=3 biological replicates). The CSPG assay is reproducible and informative, but does not satisfy common metrics for a "screenable" assay. As proof of principle, we tested a small set of hit compounds from our neurite outgrowth bioassay and identified one that can enhance axon growth without exacerbating the deleterious characteristics of reactive gliosis. PMID:26230074

  11. DETERMINATION OF CHEMICAL CLASSES FROM MASS SPECTRA OF TOXIC ORGANIC COMPOUNDS BY SIMCA PATTERN RECOGNITION AND INFORMATION THEORY

    EPA Science Inventory

    The low resolution mass spectra of a set of 78 toxic volatile organic compounds were examined for information concerning chemical classes. These compounds were predominately chloro- and/or bromoaromatics, -alkanes, or -alkenes, which are routinely sought at trace levels in ambien...

  12. Stereoregularity of poly (lactic acid) and their model compounds as studied by NMR and quantum chemical calculations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...

  13. System and method for preconcentrating, identifying, and quantifying chemical and biological substances

    DOEpatents

    Yu, Conrad M.; Koo, Jackson C.

    2000-01-01

    A system and method for preconcentrating, identifying, and quantifying chemical and biological substances is disclosed. An input valve directs a first volume of a sample gas to a surface acoustic wave (SAW) device. The SAW device preconcentrates and detects a mass of a substance within the sample gas. An output valve receives a second volume of the sample gas containing the preconcentrated substance from the SAW device and directs the second volume to a gas chromatograph (GC). The GC identifies the preconcentrated substance within the sample gas. A shunt valve exhausts a volume of the sample gas equal to the first volume minus the second volume away from the SAW device and the GC. The method of the present invention includes the steps of opening an input valve for passing a first volume of a sample gas to a SAW device; preconcentrating and detecting a mass of a substance within the sample gas using the SAW device; opening an output valve for passing a second volume of the sample gas containing the preconcentrated substance to a gas chromatograph (GC); and then identifying the preconcentrated substance within the sample gas using the GC.

  14. Identifying 2'-O-methylationation sites by integrating nucleotide chemical properties and nucleotide compositions.

    PubMed

    Chen, Wei; Feng, Pengmian; Tang, Hua; Ding, Hui; Lin, Hao

    2016-06-01

    2'-O-methylationation is an important post-transcriptional modification and plays important roles in many biological processes. Although experimental technologies have been proposed to detect 2'-O-methylationation sites, they are cost-ineffective. As complements to experimental techniques, computational methods will facilitate the identification of 2'-O-methylationation sites. In the present study, we proposed a support vector machine-based method to identify 2'-O-methylationation sites. In this method, RNA sequences were formulated by nucleotide chemical properties and nucleotide compositions. In the jackknife cross-validation test, the proposed method obtained an accuracy of 95.58% for identifying 2'-O-methylationation sites in the human genome. Moreover, the model was also validated by identifying 2'-O-methylation sites in the Mus musculus and Saccharomyces cerevisiae genomes, and the obtained accuracies are also satisfactory. These results indicate that the proposed method will become a useful tool for the research on 2'-O-methylation. PMID:27191866

  15. [Source profile and chemical reactivity of volatile organic compounds from vehicle exhaust].

    PubMed

    Qiao, Yue-Zhen; Wang, Hong-Li; Huang, Cheng; Chen, Chang-Hong; Su, Lei-Yan; Zhou, Min; Xu, Hua; Zhang, Gang-Feng; Chen, Yi-Ran; Li, Li; Chen, Ming-Hua; Huang, Hai-Ying

    2012-04-01

    Light-duty gasoline taxis (LDGT) and passenger cars (LDGV), heavy-duty diesel buses (HDDB) and trucks (HDDT), gasoline motorcycles (MC) and LPG scooters (LPGS), were selected for tailpipe volatile organic compounds (VOCs) samplings by using transient dynamometer and on road test combined with SUMMA canisters technology. The samples were tested by GC-MS to analyze the concentration and species composition of VOCs. The results indicate that light-duty gasoline automobiles have higher fractions of aromatic hydrocarbons, which account for 43.38%-44.45% of the total VOCs, the main aromatic hydrocarbons are toluene and xylenes. Heavy-duty diesel vehicles have higher fractions of alkanes, which constitute 46.86%-48.57% of the total VOCs, the main alkanes are propane, n-dodecane and n-undecane. In addition, oxy-organics account for 13.28%-15.01% of the VOCs, the main oxy-organics is acetone. The major compound from MC and LPGS exhaust is acetylene, it accounts for 39.75% and 76.67% of the total VOCs, respectively. VOCs exhaust from gasoline motorcycles and light-duty gasoline automobiles has a significantly higher chemical reactivity than those from heavy-duty diesel vehicles, which contribute 55% and 44% to the atmospheric chemical reactivity in Shanghai. The gasoline motorcycles and light-duty gasoline automobiles are the key pollution sources affecting city and region ambient oxidation, and the key active species of toluene, xylenes, propylene, and styrene make the greatest contribution. PMID:22720548

  16. Chemical Space Mapping and Structure-Activity Analysis of the ChEMBL Antiviral Compound Set.

    PubMed

    Klimenko, Kyrylo; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2016-08-22

    Curation, standardization and data fusion of the antiviral information present in the ChEMBL public database led to the definition of a robust data set, providing an association of antiviral compounds to seven broadly defined antiviral activity classes. Generative topographic mapping (GTM) subjected to evolutionary tuning was then used to produce maps of the antiviral chemical space, providing an optimal separation of compound families associated with the different antiviral classes. The ability to pinpoint the specific spots occupied (responsibility patterns) on a map by various classes of antiviral compounds opened the way for a GTM-supported search for privileged structural motifs, typical for each antiviral class. The privileged locations of antiviral classes were analyzed in order to highlight underlying privileged common structural motifs. Unlike in classical medicinal chemistry, where privileged structures are, almost always, predefined scaffolds, privileged structural motif detection based on GTM responsibility patterns has the decisive advantage of being able to automatically capture the nature ("resolution detail"-scaffold, detailed substructure, pharmacophore pattern, etc.) of the relevant structural motifs. Responsibility patterns were found to represent underlying structural motifs of various natures-from very fuzzy (groups of various "interchangeable" similar scaffolds), to the classical scenario in medicinal chemistry (underlying motif actually being the scaffold), to very precisely defined motifs (specifically substituted scaffolds). PMID:27410486

  17. Chemical kinetic study of the oxidation of toluene and related cyclic compounds

    SciTech Connect

    Mehl, M; Frassoldati, A; Fietzek, R; Faravelli, T; Pitz, W; Ranzi, E

    2009-10-01

    Chemical kinetic models of hydrocarbons found in transportation fuels are needed to simulate combustion in engines and to improve engine performance. The study of the combustion of practical fuels, however, has to deal with their complex compositions, which generally involve hundreds of compounds. To provide a simplified approach for practical fuels, surrogate fuels including few relevant components are used instead of including all components. Among those components, toluene, the simplest of the alkyl benzenes, is one of the most prevalent aromatic compounds in gasoline in the U.S. (up to 30%) and is a promising candidate for formulating gasoline surrogates. Unfortunately, even though the combustion of aromatics been studied for a long time, the oxidation processes relevant to this class of compounds are still matter of discussion. In this work, the combustion of toluene is systematically approached through the analysis of the kinetics of some important intermediates contained in its kinetic submechanism. After discussing the combustion chemistry of cyclopentadiene, benzene, phenol and, finally, of toluene, the model is validated against literature experimental data over a wide range of operating conditions.

  18. Passive Sampling in Regulatory Chemical Monitoring of Nonpolar Organic Compounds in the Aquatic Environment.

    PubMed

    Booij, Kees; Robinson, Craig D; Burgess, Robert M; Mayer, Philipp; Roberts, Cindy A; Ahrens, Lutz; Allan, Ian J; Brant, Jan; Jones, Lisa; Kraus, Uta R; Larsen, Martin M; Lepom, Peter; Petersen, Jördis; Pröfrock, Daniel; Roose, Patrick; Schäfer, Sabine; Smedes, Foppe; Tixier, Céline; Vorkamp, Katrin; Whitehouse, Paul

    2016-01-01

    We reviewed compliance monitoring requirements in the European Union, the United States, and the Oslo-Paris Convention for the protection of the marine environment of the North-East Atlantic, and evaluated if these are met by passive sampling methods for nonpolar compounds. The strengths and shortcomings of passive sampling are assessed for water, sediments, and biota. Passive water sampling is a suitable technique for measuring concentrations of freely dissolved compounds. This method yields results that are incompatible with the EU's quality standard definition in terms of total concentrations in water, but this definition has little scientific basis. Insufficient quality control is a present weakness of passive sampling in water. Laboratory performance studies and the development of standardized methods are needed to improve data quality and to encourage the use of passive sampling by commercial laboratories and monitoring agencies. Successful prediction of bioaccumulation based on passive sampling is well documented for organisms at the lower trophic levels, but requires more research for higher levels. Despite the existence of several knowledge gaps, passive sampling presently is the best available technology for chemical monitoring of nonpolar organic compounds. Key issues to be addressed by scientists and environmental managers are outlined. PMID:26619247

  19. Element and chemical compounds transfer in bio-crude from hydrothermal liquefaction of microalgae.

    PubMed

    Tang, Xiaohan; Zhang, Chao; Li, Zeyu; Yang, Xiaoyi

    2016-02-01

    In this study, hydrothermal liquefaction (HTL) experiments of Nannochloropsis and Spirulina were carried out at different temperatures (220-300 °C) to explore the effects of temperature on bio-crude yield and properties. The optimal temperature for bio-crude yield was around 260-280 °C. Transfers of element and chemical compounds in bio-crude were discussed in detail to deduce the reaction mechanism. The hydrogen and carbon recoveries were consistent with the results of bio-crude yields at every temperature point. The relative percentage of fatty acid in bio-crude decreased and the amine and amide increased for both microalgae with temperature rising. The N-heterocyclic compounds in bio-crude increased with temperature rising for Nannochloropsis, while decreased when temperature increased from 220 °C to 280 °C for Spirulina. Bio-crude gained at higher temperature or from microalgae with high protein content may contain high heteroatom compounds. PMID:26700753

  20. Triptolide, an active compound identified in a traditional Chinese herb, induces apoptosis of rheumatoid synovial fibroblasts

    PubMed Central

    Kusunoki, Natsuko; Yamazaki, Ryuta; Kitasato, Hidero; Beppu, Moroe; Aoki, Haruhito; Kawai, Shinichi

    2004-01-01

    Background Extracts of Tripterygium wilfordii Hook F (TWHF), a traditional Chinese herb, have been reported to show efficacy in patients with rheumatoid arthritis (RA). Since RA is not only characterized by inflammation but also by synovial proliferation in the joints, we examined whether triptolide (a constituent of TWHF) could influence the proliferation of rheumatoid synovial fibroblasts (RSF) by induction of apoptosis. Results RSF were obtained from RA patients during surgery and were treated with triptolide under various conditions. The viability and proliferation of RSF were measured by the 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate (WST-1) assay and by 5-bromo-2'-deoxyuridine incorporation, respectively. Apoptosis was identified by detection of DNA fragmentation using an enzyme-linked immunosorbent assay and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). The role of caspases in apoptosis of RSF was analyzed by measuring caspase-3 activity. Activation of the peroxisome proliferator-activated receptor (PPAR) γ was assessed by a luciferase reporter gene assay using RSF transfected with a plasmid containing the peroxisome proliferator response element. Triptolide decreased viability, inhibited proliferation, and induced apoptosis of RSF in a concentration-dependent manner at very low (nM) concentrations. Caspase-3 activity was increased by treatment with triptolide and was suppressed by caspase inhibitors. Although PPARγ activation was induced by 15-deoxy-Δ12,14-prostaglandin J2, triptolide did not induce it under the same experimental conditions. An extract of TWHF also induced DNA fragmentation in RSF. Conclusion The mechanism of action remains to be studied; however, triptolide may possibly have a disease-modifying effect in patients with RA. PMID:15040811

  1. Identifying the causes of differences in ozone production from the CB05 and CBMIV chemical mechanisms

    NASA Astrophysics Data System (ADS)

    Saylor, R. D.; Stein, A. F.

    2011-10-01

    An investigation was conducted to identify the mechanistic differences between two versions of the carbon bond gas-phase chemical mechanism (CB05 and CBMIV) which consistently lead to larger ground-level ozone concentrations being produced in the CB05 version of the National Air Quality Forecasting Capability (NAQFC) modeling system even though the two parallel forecast systems utilize the same meteorology and base emissions and similar initial and boundary conditions. Box models of each of the mechanisms as they are implemented in the NAQFC were created and a set of 12 sensitivity simulations was designed. The sensitivity simulations independently probed the conceptual mechanistic differences between CB05 and CBMIV and were exercised over a 45-scenario simulation suite designed to emulate the wide range of chemical regimes encountered in a continental-scale atmospheric chemistry model. Results of the sensitivity simulations indicate that two sets of reactions that were included in the CB05 mechanism, but which were absent from the CBMIV mechanism, are the primary causes of the greater ozone production in the CB05 version of the NAQFC. One set of reactions recycles the higher organic peroxide species of CB05 (ROOH), resulting in additional photochemically reactive products that act to produce additional ozone in some chemical regimes. The other set of reactions recycles reactive nitrogen from less reactive forms back to NO2, increasing the effective NOx concentration of the system. In particular, the organic nitrate species (NTR), which was a terminal product for reactive nitrogen in the CBMIV mechanism, acts as a reservoir species in CB05 to redistribute NOx from major source areas to potentially NOx-sensitive areas where additional ozone may be produced in areas remote from direct NOx sources.

  2. Identifying the causes of differences in ozone production from the CB05 and CBMIV chemical mechanisms

    NASA Astrophysics Data System (ADS)

    Saylor, R. D.; Stein, A. F.

    2012-02-01

    An investigation was conducted to identify the mechanistic differences between two versions of the carbon bond gas-phase chemical mechanism (CB05 and CBMIV) which consistently lead to larger ground-level ozone concentrations being produced in the CB05 version of the National Air Quality Forecasting Capability (NAQFC) modeling system even though the two parallel forecast systems utilize the same meteorology and base emissions and similar initial and boundary conditions. Box models of each of the mechanisms as they are implemented in the NAQFC were created and a set of 12 sensitivity simulations was designed. The sensitivity simulations independently probed the conceptual mechanistic differences between CB05 and CBMIV and were exercised over a 45-scenario simulation suite designed to emulate the wide range of chemical regimes encountered in a continental-scale atmospheric chemistry model. Results of the sensitivity simulations indicate that two sets of reactions that were included in the CB05 mechanism, but which were absent from the CBMIV mechanism, are the primary causes of the greater ozone production in the CB05 version of the NAQFC. One set of reactions recycles the higher organic peroxide species of CB05 (ROOH), resulting in additional photochemically reactive products that act to produce additional ozone in some chemical regimes. The other set of reactions recycles reactive nitrogen from less reactive forms back to NO2, increasing the effective NOx concentration of the system. In particular, the organic nitrate species (NTR), which was a terminal product for reactive nitrogen in the CBMIV mechanism, acts as a reservoir species in CB05 to redistribute NOx from major source areas to potentially NOx-sensitive areas where additional ozone may be produced in areas remote from direct NOx sources.

  3. Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification

    DOEpatents

    Holzrichter, John F.; Siekhaus, Wigbert J.

    1997-01-01

    A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule.

  4. Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification

    DOEpatents

    Holzrichter, J.F.; Siekhaus, W.J.

    1997-04-15

    A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule. 6 figs.

  5. Chemical Screening Identifies EUrd as a Novel Inhibitor Against Temozolomide-Resistant Glioblastoma-Initiating Cells.

    PubMed

    Tsukamoto, Yoshihiro; Ohtsu, Naoki; Echizenya, Smile; Otsuguro, Satoko; Ogura, Ryosuke; Natsumeda, Manabu; Isogawa, Mizuho; Aoki, Hiroshi; Ichikawa, Satoshi; Sakaitani, Masahiro; Matsuda, Akira; Maenaka, Katsumi; Fujii, Yukihiko; Kondo, Toru

    2016-08-01

    Glioblastoma (GBM), one of the most malignant human cancers, frequently recurs despite multimodal treatment with surgery and chemo/radiotherapies. GBM-initiating cells (GICs) are the likely cell-of-origin in recurrences, as they proliferate indefinitely, form tumors in vivo, and are resistant to chemo/radiotherapies. It is therefore crucial to find chemicals that specifically kill GICs. We established temozolomide (the standard medicine for GBM)-resistant GICs (GICRs) and used the cells for chemical screening. Here, we identified 1-(3-C-ethynyl-β-d-ribopentofuranosyl) uracil (EUrd) as a selective drug for targeting GICRs. EUrd induced the death in GICRs more effectively than their parental GICs, while it was less toxic to normal neural stem cells. We demonstrate that the cytotoxic effect of EUrd on GICRs partly depended on the increased expression of uridine-cytidine kinase-like 1 (UCKL1) and the decreased one of 5'-nucleotidase cytosolic III (NT5C3), which regulate uridine-monophosphate synthesis positively and negatively respectively. Together, these findings suggest that EUrd can be used as a new therapeutic drug for GBM with the expression of surrogate markers UCKL1 and NT5C3. Stem Cells 2016;34:2016-2025. PMID:27090194

  6. Neutron interrogation to identify chemical elements with an ion-tube neutron source (INS)

    SciTech Connect

    Alvarez, R.A.; Dougan, A.D.; Rowland, M.R.; Wang, T.F.

    1994-04-07

    A non-destructive analysis technique using a portable, electric ion-tube neutron source (INS) and gamma ray detector has been used to identify the key constituent elements in a number of sealed munitions, and from the elemental makeup, infer the types of agent within each. The high energy (14 MeV) and pulsed character of the neutron flux from an INS provide a method of measuring, quantitatively, the oxygen, carbon, and fluorine content of materials in closed containers, as well as the other constituents that can be measured with low-energy neutron probes. The broad range of elements that can be quantitatively measured with INS-based instruments provides a capability of verifying common munition fills; it provides the greatest specificity of any portable neutron-based technique for determining the full matrix of chemical elements in completely unrestricted sample scenarios. The specific capability of quantifying the carbon and oxygen content of materials should lead to a fast screening technique which, can discriminate very quickly between high-explosive and chemical agent-filled containers.

  7. Revisiting benzene cluster cations for the chemical ionization of dimethyl sulfide and select volatile organic compounds

    DOE PAGESBeta

    Kim, Michelle J.; Zoerb, Matthew C.; Campbell, Nicole R.; Zimmermann, Kathryn J.; Blomquist, Byron W.; Huebert, Barry J.; Bertram, Timothy H.

    2016-01-01

    Benzene cluster cations were revisited as a sensitive and selective reagent ion for the chemical ionization of dimethyl sulfide (DMS) and a select group of volatile organic compounds (VOCs). Laboratory characterization was performed using both a new set of compounds (i.e., DMS, β-caryophyllene) as well as previously studied VOCs (i.e., isoprene, α-pinene). Using a field deployable chemical-ionization time-of-flight mass spectrometer (CI-ToFMS), benzene cluster cations demonstrated high sensitivity (> 1 ncps ppt−1) to DMS, isoprene, and α-pinene standards. Parallel measurements conducted using a chemical-ionization quadrupole mass spectrometer, with a much weaker electric field, demonstrated that ion–molecule reactions likely proceed through a combination of ligand-switching and directmore » charge transfer mechanisms. Laboratory tests suggest that benzene cluster cations may be suitable for the selective ionization of sesquiterpenes, where minimal fragmentation (< 25 %) was observed for the detection of β-caryophyllene, a bicyclic sesquiterpene. The in-field stability of benzene cluster cations using CI-ToFMS was examined in the marine boundary layer during the High Wind Gas Exchange Study (HiWinGS). The use of benzene cluster cation chemistry for the selective detection of DMS was validated against an atmospheric pressure ionization mass spectrometer, where measurements from the two instruments were highly correlated (R2 > 0.95, 10 s averages) over a wide range of sampling conditions.« less

  8. Quinones and Aromatic Chemical Compounds in Particulate Matter Induce Mitochondrial Dysfunction: Implications for Ultrafine Particle Toxicity

    PubMed Central

    Xia, Tian; Korge, Paavo; Weiss, James N.; Li, Ning; Venkatesen, M. Indira; Sioutas, Constantinos; Nel, Andre

    2004-01-01

    Particulate pollutants cause adverse health effects through the generation of oxidative stress. A key question is whether these effects are mediated by the particles or their chemical compounds. In this article we show that aliphatic, aromatic, and polar organic compounds, fractionated from diesel exhaust particles (DEPs), exert differential toxic effects in RAW 264.7 cells. Cellular analyses showed that the quinone-enriched polar fraction was more potent than the polycyclic aromatic hydrocarbon (PAH)–enriched aromatic fraction in O2•− generation, decrease of membrane potential (ΔΨm), loss of mitochondrial membrane mass, and induction of apoptosis. A major effect of the polar fraction was to promote cyclosporin A (CsA)–sensitive permeability transition pore (PTP) opening in isolated liver mitochondria. This opening effect is dependent on a direct effect on the PTP at low doses as well as on an effect on ΔΨm at high doses in calcium (Ca2+)-loaded mitochondria. The direct PTP effect was mimicked by redox-cycling DEP quinones. Although the aliphatic fraction failed to perturb mitochondrial function, the aromatic fraction increased the Ca2+ retention capacity at low doses and induced mitochondrial swelling and a decrease in ΔΨm at high doses. This swelling effect was mostly CsA insensitive and could be reproduced by a mixture of PAHs present in DEPs. These chemical effects on isolated mitochondria could be reproduced by intact DEPs as well as ambient ultrafine particles (UFPs). In contrast, commercial polystyrene nanoparticles failed to exert mitochondrial effects. These results suggest that DEP and UFP effects on the PTP and ΔΨm are mediated by adsorbed chemicals rather than the particles themselves. PMID:15471724

  9. Creating an Adaptive Technology Using a Cheminformatics System to Read Aloud Chemical Compound Names for People with Visual Disabilities

    ERIC Educational Resources Information Center

    Kamijo, Haruo; Morii, Shingo; Yamaguchi, Wataru; Toyooka, Naoki; Tada-Umezaki, Masahito; Hirobayashi, Shigeki

    2016-01-01

    Various tactile methods, such as Braille, have been employed to enhance the recognition ability of chemical structures by individuals with visual disabilities. However, it is unknown whether reading aloud the names of chemical compounds would be effective in this regard. There are no systems currently available using an audio component to assist…

  10. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex.

    PubMed

    Golubovskaya, Vita M; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53+/+ and p53-/- cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53+/+ cells but not in p53-/- cells. Among up-regulated genes in HCT p53+/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53+/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach. PMID:24452144

  11. Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials

    PubMed Central

    Reichenberg, Fredrik; Smedes, Foppe; Jönsson, Jan-Åke; Mayer, Philipp

    2008-01-01

    Background In soils contaminated by hydrophobic organic compounds, the concentrations are less indicative of potential exposure and distribution than are the associated chemical activities, fugacities and freely dissolved concentrations. The latter can be measured by diffusive sampling into thin layers of polymer, as in, for example, solid phase micro-extraction. Such measurements require equilibrium partitioning of analytes into the polymer while ensuring that the sample is not depleted. We introduce the validation of these requirements based on parallel sampling into polymer layers of different thicknesses. Results Equilibrium sampling devices were made by coating glass vials internally with 3–12 μm thick layers of polydimethylsiloxane (PDMS). These were filled with slurries of a polluted soil and gently agitated for 5 days. The concentrations of 7 polycyclic aromatic hydrocarbons (PAHs) in the PDMS were measured. Validation confirmed fulfilment of the equilibrium sampling requirements and high measurement precision. Finally, chemical activities of the PAHs in the soil were determined from their concentrations and activity coefficients in the PDMS. Conclusion PAHs' thermodynamic activities in a soil test material were determined via a method of uptake into PDMS. This can be used to assess chemical exposure and predict diffusion and partitioning processes. PMID:18460193

  12. Advances in SXFA-Coated SAW Chemical Sensors for Organophosphorous Compound Detection

    PubMed Central

    Wang, Wen; He, Shitang; Li, Shunzhou; Liu, Minghua; Pan, Yong

    2011-01-01

    A polymer-coated surface acoustic wave (SAW)-based chemical sensor for organophosphorous compound sensing at extremely low concentrations was developed, in which a dual-delay-line oscillator coated with fluoroalcoholpolysiloxane (SXFA) acted as the sensor element. Response mechanism analysis was performed on the SXFA-coated chemical sensor, resulting in the optimal design parameters. The shear modulus of the SXFA, which is the key parameter for theoretical simulation, was extracted experimentally. New designs were done on the SAW devices to decrease the insertion loss. Referring to the new phase modulation approach, superior short-term frequency stability (±2 Hz in seconds) was achieved from the SAW oscillator using the fabricated 300 MHz delay line as the feedback element. In the sensor experiment on dimethylmethylphosphonate (DMMP) detection, the fabricated SXFA-coated chemical sensor exhibited an excellent threshold detection limit up to 0.004 mg/m3 (0.7 ppb) and good sensitivity (∼485 Hz/mg/m3 for a DMMP concentration of 2∼14 mg/m3). PMID:22319366

  13. Determining chemical activity of (semi)volatile compounds by headspace solid-phase microextraction.

    PubMed

    Legind, Charlotte N; Karlson, Ulrich; Burken, Joel G; Reichenberg, Fredrik; Mayer, Philipp

    2007-04-01

    This research introduces a new analytical methodology for measuring chemical activity of nonpolar (semi)volatile organic compounds in different sample matrices using automated solid-phase microextraction (SPME). The chemical activity of an analyte is known to determine its equilibrium concentration in the SPME fiber coating. On this basis, SPME was utilized for the analytical determination of chemical activity, fugacity, and freely dissolved concentration using these steps: (1) a sample is brought into a vial, (2) the SPME fiber is introduced into the headspace and equilibrated with the sample, (3) the SPME fiber is injected into the GC for thermal desorption and analysis, and (4) the method is calibrated by SPME above partitioning standards in methanol. Model substances were BTEX, naphthalene, and alkanes, which were measured in a variety of sample types: liquid polydimethylsiloxane (PDMS), wood, soil, and nonaqueous phase liquid (NAPL). Variable sample types (i.e., matrices) had no influence on sampling kinetics because diffusion through the headspace was rate limiting for the overall sampling process. Sampling time was 30 min, and relative standard deviations were generally below 5% for homogeneous solutions and somewhat higher for soil and NAPL. This type of activity measurement is fast, reliable, almost solvent free, and applicable for mixed-media sampling. PMID:17313185

  14. PINS chemical identification software

    DOEpatents

    Caffrey, Augustine J.; Krebs, Kennth M.

    2004-09-14

    An apparatus and method for identifying a chemical compound. A neutron source delivers neutrons into the chemical compound. The nuclei of chemical elements constituting the chemical compound emit gamma rays upon interaction with the neutrons. The gamma rays are characteristic of the chemical elements constituting the chemical compound. A spectrum of the gamma rays is generated having a detection count and an energy scale. The energy scale is calibrated by comparing peaks in the spectrum to energies of pre-selected chemical elements in the spectrum. A least-squares fit completes the calibration. The chemical elements constituting the chemical compound can be readily determined, which then allows for identification of the chemical compound.

  15. Bioactive Compounds, Chemical Composition, and Medicinal Value of the Giant Puffball, Calvatia gigantea (Higher Basidiomycetes), from Turkey.

    PubMed

    Kivrak, Ibrahim; Kivrak, Seyda; Harmandar, Mansur

    2016-01-01

    In this study, the compositions of Calvatia gigantea were first analyzed in order to elucidate its chemical basis for development as a health-enhancing food or medicine. This study investigates the chemical composition (nutritional value; phenolic, sugar and fatty acid content; aroma compounds) and antioxidant properties (radical scavenging activity, reducing power, and inhibition of lipid peroxidation) of C. gigantea. The results showed that C. gigantea contains phenolic compounds and sugars and is rich in polyunsaturated fatty acids (67.93%), proteins (34.37%), and carbohydrates (51.97%). The most abundant compounds were gentisic acid (23.26 µg/g; as a phenolic compound), trehalose (9.78 g/100g; as a sugar), and hexanal (34.71%; as an aroma compound). These findings suggest that C. gigantea might be a promising source of medicine and has the potential to be a health food and food supplementary product. PMID:27279532

  16. Physico-Chemical Characterization, Bioactive Compounds and Antioxidant Activity of Malay Apple [Syzygium malaccense (L.) Merr. & L.M. Perry].

    PubMed

    Nunes, Polyana Campos; Aquino, Jailane de Souza; Rockenbach, Ismael Ivan; Stamford, Tânia Lúcia Montenegro

    2016-01-01

    The purpose of this study was to evaluate the physico-chemical characteristics, bioactive compounds and antioxidant activity of Malay apple fruit (Syzygium malaccense) grown in Brazil with regard to the geographical origin and its peel fractions and edible portion analyzed independently. Fruit diameter, weight, yield, and centesimal composition, ascorbic acid, reductive sugars, total soluble solids, pH and fiber content were determined. Total phenolics (1293 mg gallic acid equivalent/100 g) and total anthocyanins (1045 mg/100 g) contents were higher in the peel, with the major anthocyanin identified using HPLC-DAD-MS/MS as cyanidin 3-glucoside. Higher values for DPPH antiradical scavenging activity (47.52 μMol trolox equivalent antioxidant capacity/g) and Ferric Reducing Antioxidant Potential (FRAP, 0.19 mM ferreous sulfate/g) were also observed in the peel fraction. All extracts tested showed the ability to inhibit oxidation in the β-carotene/linoleic acid system. This study highlights the potential of Malay apple fruit as a good source of antioxidant compounds with potential benefits to human health. PMID:27352306

  17. Physico-Chemical Characterization, Bioactive Compounds and Antioxidant Activity of Malay Apple [Syzygium malaccense (L.) Merr. & L.M. Perry

    PubMed Central

    Nunes, Polyana Campos; Aquino, Jailane de Souza; Rockenbach, Ismael Ivan; Stamford, Tânia Lúcia Montenegro

    2016-01-01

    The purpose of this study was to evaluate the physico-chemical characteristics, bioactive compounds and antioxidant activity of Malay apple fruit (Syzygium malaccense) grown in Brazil with regard to the geographical origin and its peel fractions and edible portion analyzed independently. Fruit diameter, weight, yield, and centesimal composition, ascorbic acid, reductive sugars, total soluble solids, pH and fiber content were determined. Total phenolics (1293 mg gallic acid equivalent/100 g) and total anthocyanins (1045 mg/100 g) contents were higher in the peel, with the major anthocyanin identified using HPLC-DAD-MS/MS as cyanidin 3-glucoside. Higher values for DPPH antiradical scavenging activity (47.52 μMol trolox equivalent antioxidant capacity/g) and Ferric Reducing Antioxidant Potential (FRAP, 0.19 mM ferreous sulfate/g) were also observed in the peel fraction. All extracts tested showed the ability to inhibit oxidation in the β-carotene/linoleic acid system. This study highlights the potential of Malay apple fruit as a good source of antioxidant compounds with potential benefits to human health. PMID:27352306

  18. Relativistic DFT Calculation of (119)Sn Chemical Shifts and Coupling Constants in Tin Compounds.

    PubMed

    Bagno, Alessandro; Casella, Girolamo; Saielli, Giacomo

    2006-01-01

    The nuclear shielding and spin-spin coupling constants of (119)Sn in stannane, tetramethylstannane, methyltin halides Me4-nSnXn (X = Cl, Br, I; n = 1-3), tin halides, and some stannyl cations have been investigated computationally by DFT methods and Slater all-electron basis sets, including relativistic effects by means of the zeroth order regular approximation (ZORA) method up to spin-orbit coupling. Calculated (119)Sn chemical shifts generally correlate well with experimental values, except when several heavy halogen atoms, especially iodine, are bound to tin. In such cases, calculated chemical shifts are almost constant at the scalar (spin-free) ZORA level; only at the spin-orbit level is a good correlation, which holds for all compounds examined, attained. A remarkable "heavy-atom effect", analogous to that observed for analogous alkyl halides, is evident. The chemical shift of the putative stannyl cation (SnH3(+)) has also been examined, and it is concluded that the spectrum of the species obtained in superacids is inconsistent with a simple SnH3(+) structure; strong coordination to even weak nucleophiles such as FSO3H leads to a very satisfactory agreement. On the contrary, the calculated (119)Sn chemical shift of the trimesitylstannyl cation is in very good agreement with the experimental value. Coupling constants between (119)Sn and halogen nuclei are also well-modeled in general (taking into account the large uncertainties in the experimental values); relativistic spin-orbit effects are again quite evident. Couplings to (13)C and (1)H also fall, on the average, on the same correlation line, but individual values show a significant deviation from the expected unit slope. PMID:26626377

  19. Analysis of biological and chemical compounds by remote spectroscopy using IR TeX glass fibers

    NASA Astrophysics Data System (ADS)

    Le Foulgoc, Karine; Le Neindre, Lydia; Guimond, Yann; Ma, Hong Li; Zhang, Xhang H.; Lucas, Jacques

    1995-09-01

    The TeX glasses are attracting much attention as materials for low loss mid-IR optical fibers and are consequently good candidates for thermal imaging, laser power delivery, and more recently remote sensing. The TeX glass fiber, transmitting in a wide optical window, has a minimum attenuation in the 9-10 micrometers region. Fibers with an attenuation of less than 0.5 dB/m have been repeatly obtained. These fibers are coated with a UV curable or thermal plastic, in order to improve their mechanical properites. The IR remote spectroscopy using TeX fibers is one of the most promising applications. This technology allows to perform in situ, real-time, and on-line analysis of chemical and biological compounds. The study of industrial processes such as fermentations has been performed by this method, based on the use of these IR TeX fibers.

  20. Chemical composition and antibacterial activity of selected essential oils and some of their main compounds.

    PubMed

    Wanner, Juergen; Schmidt, Erich; Bail, Stefanie; Jirovetz, Leopold; Buchbauer, Gerhard; Gochev, Velizar; Girova, Tanya; Atanasova, Teodora; Stoyanova, Albena

    2010-09-01

    The chemical composition of essential oils of cabreuva (Myrocarpus fastigiatus Allemao, Fabaceae) from Brazil, cedarwood (Juniperus ashei, Cupressaceae) from Texas, Juniper berries (Juniperus communis L., Cupressaceae) and myrrh (Commiphora myrrha (Nees) Engl., Burseraceae) were analyzed using GC/FID and GC/MS. The antimicrobial activity of these essential oils and some of their main compounds were tested against eleven different strains of Gram-positive and Gram-negative bacteria by using agar diffusion and agar serial dilution methods. Animal and plant pathogens, food poisoning and spoilage bacteria were selected. The volatile oils exhibited considerable inhibitory effects against all tested organisms, except Pseudomonas, using both test methods. Higher activity was observed against Gram-positive strains in comparison with Gram-negative bacteria. Cabreuva oil from Brazil showed similar results, but in comparison with the other oils tested, only when higher concentrations of oil were used. PMID:20922991

  1. Can Coffee Chemical Compounds and Insecticidal Plants Be Harnessed for Control of Major Coffee Pests?

    PubMed

    Green, Paul W C; Davis, Aaron P; Cossé, Allard A; Vega, Fernando E

    2015-11-01

    Pests and pathogens threaten coffee production worldwide and are difficult to control using conventional methods, such as insecticides. We review the literature on the chemistry of coffee, concentrating on compounds most commonly reported from Coffea arabica and Coffea canephora. Differences in chemistry can distinguish coffee species and varieties, and plants grown under different biogeographic conditions exhibit different chemotypes. A number of chemical groups, such as alkaloids and caffeoylquinic acids, are known to be insecticidal, but most studies have investigated their effects on coffee quality and flavor. More research is required to bridge this gap in knowledge, so that coffee can be bred to be more resistant to pests. Furthermore, we report on some pesticidal plants that have been used for control of coffee pests. Locally sourced pesticidal plants have been underutilized and offer a sustainable alternative to conventional insecticides and could be used to augment breeding for resilience of coffee plants. PMID:26458882

  2. Identification of volatile and semivolatile compounds in chemical ionization GC-MS using a mass-to-structure (MTS) Search Engine with integral isotope pattern ranking.

    PubMed

    Liao, Wenta; Draper, William M

    2013-02-21

    The mass-to-structure or MTS Search Engine is an Access 2010 database containing theoretical molecular mass information for 19,438 compounds assembled from common sources such as the Merck Index, pesticide and pharmaceutical compilations, and chemical catalogues. This database, which contains no experimental mass spectral data, was developed as an aid to identification of compounds in atmospheric pressure ionization (API)-LC-MS. This paper describes a powerful upgrade to this database, a fully integrated utility for filtering or ranking candidates based on isotope ratios and patterns. The new MTS Search Engine is applied here to the identification of volatile and semivolatile compounds including pesticides, nitrosoamines and other pollutants. Methane and isobutane chemical ionization (CI) GC-MS spectra were obtained from unit mass resolution mass spectrometers to determine MH(+) masses and isotope ratios. Isotopes were measured accurately with errors of <4% and <6%, respectively, for A + 1 and A + 2 peaks. Deconvolution of interfering isotope clusters (e.g., M(+) and [M - H](+)) was required for accurate determination of the A + 1 isotope in halogenated compounds. Integrating the isotope data greatly improved the speed and accuracy of the database identifications. The database accurately identified unknowns from isobutane CI spectra in 100% of cases where as many as 40 candidates satisfied the mass tolerance. The paper describes the development and basic operation of the new MTS Search Engine and details performance testing with over 50 model compounds. PMID:23248816

  3. Identifying New Candidate Genes and Chemicals Related to Prostate Cancer Using a Hybrid Network and Shortest Path Approach

    PubMed Central

    Yuan, Fei; Zhou, You; Wang, Meng; Yang, Jing; Wu, Kai; Lu, Changhong; Kong, Xiangyin; Cai, Yu-Dong

    2015-01-01

    Prostate cancer is a type of cancer that occurs in the male prostate, a gland in the male reproductive system. Because prostate cancer cells may spread to other parts of the body and can influence human reproduction, understanding the mechanisms underlying this disease is critical for designing effective treatments. The identification of as many genes and chemicals related to prostate cancer as possible will enhance our understanding of this disease. In this study, we proposed a computational method to identify new candidate genes and chemicals based on currently known genes and chemicals related to prostate cancer by applying a shortest path approach in a hybrid network. The hybrid network was constructed according to information concerning chemical-chemical interactions, chemical-protein interactions, and protein-protein interactions. Many of the obtained genes and chemicals are associated with prostate cancer. PMID:26504486

  4. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics.

    PubMed

    Kleinstreuer, N C; Smith, A M; West, P R; Conard, K R; Fontaine, B R; Weir-Hauptman, A M; Palmer, J A; Knudsen, T B; Dix, D J; Donley, E L R; Cezar, G G

    2011-11-15

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast™ chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox® model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. PMID:21925528

  5. Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants.

    PubMed

    Zhu, Hao; Zhang, Jun; Kim, Marlene T; Boison, Abena; Sedykh, Alexander; Moran, Kimberlee

    2014-10-20

    High-throughput screening (HTS) assays that measure the in vitro toxicity of environmental compounds have been widely applied as an alternative to in vivo animal tests of chemical toxicity. Current HTS studies provide the community with rich toxicology information that has the potential to be integrated into toxicity research. The available in vitro toxicity data is updated daily in structured formats (e.g., deposited into PubChem and other data-sharing web portals) or in an unstructured way (papers, laboratory reports, toxicity Web site updates, etc.). The information derived from the current toxicity data is so large and complex that it becomes difficult to process using available database management tools or traditional data processing applications. For this reason, it is necessary to develop a big data approach when conducting modern chemical toxicity research. In vitro data for a compound, obtained from meaningful bioassays, can be viewed as a response profile that gives detailed information about the compound's ability to affect relevant biological proteins/receptors. This information is critical for the evaluation of complex bioactivities (e.g., animal toxicities) and grows rapidly as big data in toxicology communities. This review focuses mainly on the existing structured in vitro data (e.g., PubChem data sets) as response profiles for compounds of environmental interest (e.g., potential human/animal toxicants). Potential modeling and mining tools to use the current big data pool in chemical toxicity research are also described. PMID:25195622

  6. Relations between the structure of storage and the transport of chemical compounds in karstic aquifers

    NASA Astrophysics Data System (ADS)

    Vaute, L.; Drogue, C.; Garrelly, L.; Ghelfenstein, M.

    1997-12-01

    Study of the movement of chemical compounds naturally present in the water, or which result from pollution, are examined according to the reservoir structure in karstic aquifers. Structure is represented by a simple geometrical model; slow flow takes place in blocks with a network of low-permeability cracks. The blocks are separated by highly permeable karstic conduits that allow rapid flow, and these form the aquifer drainage system. The karst studied covers 110 km 2. It is fed by an interrupted stream draining a 35 km 2 non-karstic basin, contaminated at the entry to the karst by effluents from a sewage treatment station. The underground water reappears as a resurgence with an annual average flow of approximately 1 m 3 s -1, after an apparent underground course of 8 km in the karst. Several local sources of pollution (effluent from septic tanks) contaminate the underground water during its course. Sixteen measurement operations were performed at 12 water points, between the interrupted stream and the spring. Some sampling points were at drains, and others were in the low-permeability fissured blocks. Comparison at each point of the concentrations of 14 chemical compounds gave the following results: when pollutant discharge occurs in a permeable zone, movement is rapid in the drainage network formed by the karstic conduits, and does not reach the less permeable fissured blocks which are thus protected; however, if discharge is in a low-permeability zone, the flow does not allow rapid movement of the polluted water, and this increases the pollutant concentration at the discharge. This simple pattern can be upset by a reversal of the apparent piezometric gradient between a block and a conduit during floods or pumping; this may reverse flow directions and hence modify the movement of contaminants. The study made it possible to site five boreholes whose positions in the karstic structure were unknown, showing the interest of such an approach for the forecasting of the

  7. Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L.

    PubMed

    Petropoulos, Spyridon A; Levizou, Efi; Ntatsi, Georgia; Fernandes, Ângela; Petrotos, Konstantinos; Akoumianakis, Konstantinos; Barros, Lillian; Ferreira, Isabel C F R

    2017-01-01

    Soil salinization is an increasing problem for many areas throughout the world that renders prohibitive vegetables and crop production in general. In the present study, Cichorium spinosum L. plants were grown under saline conditions in order to evaluate chemical composition and bioactive compounds content of their leaves. Salinity increase resulted in significant changes of macro and micro-nutrients content (nutritional value, sugars, fatty acids, minerals, ascorbic acid and tocopherols), whereas the concentration of phenolic compounds was not significantly affected. Chicoric and 5-O-caffeoylquinic acid were the most abundant phenolic acids. In contrast, antioxidant activity and mineral composition were beneficially affected by mid-to-high and high salinity levels. In conclusion, C. spinosum can be cultivated under saline conditions without compromising the quality of the final product, especially in semi-arid areas where irrigation water is scarce and/or of low quality due to high content of NaCl (coastal areas or areas where underground water is saline). PMID:27507457

  8. Catalytic Conversion of Carbon-Containing Compounds into Valuable Chemicals and Fuels

    NASA Astrophysics Data System (ADS)

    Cheng, Zhuo

    Conversion of carbon-containing compounds, especially C1 compounds such as carbon dioxide and methane, to valuable chemicals and fuels will hopefully address concerns over decreasing supplies of fossil fuels and mitigate the eects of greenhouse gas emissions on global climate change. Many challenges, however, remain to be addressed before these technologies may be adopted on an industrial scale. Chiefly, catalysts must be developed to activate carbon-containing compounds from their thermodynamically stable ground states, using hydrogen, electrons, or heat as energy sources. We chose as model catalytic systems: 1) Metathesis of ethene and 2-butene; 2) Methane dehydrogenation and carbon dioxide hydrogenation. We developed three computational methodologies to study these processes across a range of length and time scales. First, we investigated how electronic structure affects the properties and reactivity of these catalyst systems; by computing the partial electronic density of states, electronic localization function, and excess spin density, we showed how redox supports, such as ceria, promote electron transfer reactions. We applied this to the studies of methane activation and carbon dioxide activation. Second, we developed a non-equilibrium thermodynamics approach to calculate energies of activation at nite temperatures, based on the Bronsted-Evans-Polanyi principle and the Nudged Elastic Band method. Third, we developed an approach to numerically compute heat capacities and other thermodynamic properties on extended catalytic systems that are comparable in accuracy and precision to methods that have been well-developed for gas-phase molecules. We applied these to the studies of metathesis propagation and carbon dioxide hydrogenation. We gained mechanistic, thermodynamic, and kinetic insight into the elementary steps that comprise larger reaction networks of interest to the broader catalysis community. Ultimately, these theoretical and computational predictions

  9. IDENTIFYING CHEMICALS FOR CUMULATIVE RISK ASSESSMENT USING COMMON MECHANISMS OF ACTION AND TOXICITY

    EPA Science Inventory

    Traditionally, potential health risk assessments from exposure to contaminated food, drinking water, or environmental media have been conducted on individual pesticides or chemicals in each medium of concern. However, humans are generally exposed to multiple chemicals and stress...

  10. A Yeast-Based Chemical Screen Identifies a PDE Inhibitor That Elevates Steroidogenesis in Mouse Leydig Cells via PDE8 and PDE4 Inhibition

    PubMed Central

    Demirbas, Didem; Wyman, Arlene R.; Shimizu-Albergine, Masami; Cakici, Ozgur; Beavo, Joseph A.; Hoffman, Charles S.

    2013-01-01

    A cell-based high-throughput screen (HTS) was developed to detect phosphodiesterase 8 (PDE8) and PDE4/8 combination inhibitors. By replacing the Schizosaccharomyces pombe PDE gene with the murine PDE8A1 gene in strains lacking adenylyl cyclase, we generated strains whose protein kinase A (PKA)-stimulated growth in 5-fluoro orotic acid (5FOA) medium reflects PDE8 activity. From our previously-identified PDE4 and PDE7 inhibitors, we identified a PDE4/8 inhibitor that allowed us to optimize screening conditions. Of 222,711 compounds screened, ∼0.2% displayed composite Z scores of >20. Additional yeast-based assays using the most effective 367 compounds identified 30 candidates for further characterization. Among these, compound BC8-15 displayed the lowest IC50 value for both PDE4 and PDE8 inhibition in in vitro enzyme assays. This compound also displays significant activity against PDE10A and PDE11A. BC8-15 elevates steroidogenesis in mouse Leydig cells as a single pharmacological agent. Assays using BC8-15 and two structural derivatives support a model in which PDE8 is a primary regulator of testosterone production by Leydig cells, with an additional role for PDE4 in this process. BC8-15, BC8-15A, and BC8-15C, which are commercially available compounds, display distinct patterns of activity against PDE4, PDE8, PDE10A, and PDE11A, representing a chemical toolkit that could be used to examine the biological roles of these enzymes in cell culture systems. PMID:23967182

  11. DESI-MS/MS of Chemical Warfare Agents and Related Compounds

    NASA Astrophysics Data System (ADS)

    D'Agostino, Paul A.

    Solid phase microextraction (SPME) fibers were used to headspace ­sample chemical warfare agents and their hydrolysis products from glass vials and glass vials containing spiked media, including Dacron swabs, office carpet, paper and fabric. The interface of the Z-spray source was modified to permit safe introduction of the SPME fibers for desorption electrospray ionization mass spectrometric (DESI-MS) analysis. A "dip and shoot" method was also developed for the rapid sampling and DESI-MS analysis of chemical warfare agents and their hydrolysis products in liquid samples. Sampling was performed by simply dipping fused silica, stainless steel or SPME tips into the organic or aqueous samples. Replicate analyses were completed within several minutes under ambient conditions with no sample pre-treatment, resulting in a significant increase in sample throughput. The developed sample handling and analysis method was applied to the determination of chemical warfare agent content in samples containing unknown chemical and/or biological warfare agents. Ottawa sand was spiked with sulfur mustard, extracted with water and autoclaved to ensure sterility. Sulfur mustard was completely hydrolysed during the extraction/autoclave step and thiodiglycol was identified by DESI-MS, with analyses generally being completed within 1 min using the "dip and shoot" method.

  12. Biogeographical Analysis of Chemical Co-Occurrence Data to Identify Priorities for Mixtures Research

    EPA Science Inventory

    A challenge with multiple chemical risk assessment is the need to consider the joint behavior of chemicals in mixtures. To address this need, pharmacologists and toxicologists have developed methods over the years to evaluate and test chemical interaction. In practice, however, t...

  13. Development and application of a sensitive, phenotypic, high-throughput image-based assay to identify compound activity against Trypanosoma cruzi amastigotes

    PubMed Central

    Sykes, Melissa L.; Avery, Vicky M.

    2015-01-01

    We have developed a high content 384-well, image-based assay to estimate the effect of compound treatment on Trypanosoma cruzi amastigotes in 3T3 fibroblasts. In the same well, the effect of compound activity on host cells can also be determined, as an initial indicator of cytotoxicity. This assay has been used to identify active compounds from an in-house library of compounds with either known biological activity or that are FDA approved, and separately, from the Medicines for Malaria Venture Malaria Box collection. Active compounds were screened against T. cruzi trypomastigotes, utilising an assay developed with the viability dye resazurin. Twelve compounds with reconfirmed solid sample activity, with IC50 values of less than 10 μM and selectivity indices to T. cruzi amastigotes over 3T3 host cells of between >22 and 319 times were identified from these libraries. As 3T3 cells are contact inhibited, with limited proliferation in the assay, selective compounds of interest were profiled in a separate assay to estimate the viability of compound treated, replicating HEK293 cells. Selective compounds that were not previously reported in the literature were further profiled by extending the incubation time against amastigote infected 3T3 cells to determine if there were residual amastigotes post-treatment, important for the consideration of the exposure time required for further biological characterisation. The assay development process and the suitability of identified compounds as hit molecules for Chagas disease research are discussed. PMID:27120069

  14. Engineering nanoparticles surface for biosensing: "Chemical noses" to detect and identify proteins, bacteria and cancerous cells

    NASA Astrophysics Data System (ADS)

    Miranda-Sanchez, Oscar Ramon

    Rapid and sensitive detection of biomolecules is an important issue in nanomedicine. Many disorders are manifested by changes in protein levels of serum and other biofluids. Rapid and effective differentiation between normal and cancerous cells is an important challenge for the diagnosis and treatment of tumor. Likewise, rapid and effective identification of pathogens is a key target in both biomedical and environmental monitoring. Most biological recognition processes occur via specific interactions. Gold nanoparticles (AuNP s) feature sizes commensurate with biomacromolecules, coupled with useful physical and optical properties. A key issue in the use of nanomaterials is controlling the interfacial interactions of these complex systems. Modulation of these physicochemical properties can be readily achieved by engineering nanoparticles surface. Inspired by the idea of mimicking nature, a convenient, precise and rapid method for sensing proteins, cancerous cells and bacteria has been developed by overtaking the superb performance of biological olfactory systems in odor detection, identification, tracking, and location. On the fundamental side, an array-based/'chemical nose' sensor composed of cationic functionalized AuNPs as receptors and anionic fluorescent conjugated polymers or green fluorescent proteins or enzyme/substrates as transducers that can properly detect and identify proteins, bacteria, and cancerous cells has been successfully fabricated.

  15. A chemical proteomic atlas of brain serine hydrolases identifies cell type-specific pathways regulating neuroinflammation

    PubMed Central

    Viader, Andreu; Ogasawara, Daisuke; Joslyn, Christopher M; Sanchez-Alavez, Manuel; Mori, Simone; Nguyen, William; Conti, Bruno; Cravatt, Benjamin F

    2016-01-01

    Metabolic specialization among major brain cell types is central to nervous system function and determined in large part by the cellular distribution of enzymes. Serine hydrolases are a diverse enzyme class that plays fundamental roles in CNS metabolism and signaling. Here, we perform an activity-based proteomic analysis of primary mouse neurons, astrocytes, and microglia to furnish a global portrait of the cellular anatomy of serine hydrolases in the brain. We uncover compelling evidence for the cellular compartmentalization of key chemical transmission pathways, including the functional segregation of endocannabinoid (eCB) biosynthetic enzymes diacylglycerol lipase-alpha (DAGLα) and –beta (DAGLβ) to neurons and microglia, respectively. Disruption of DAGLβ perturbed eCB-eicosanoid crosstalk specifically in microglia and suppressed neuroinflammatory events in vivo independently of broader effects on eCB content. Mapping the cellular distribution of metabolic enzymes thus identifies pathways for regulating specialized inflammatory responses in the brain while avoiding global alterations in CNS function. DOI: http://dx.doi.org/10.7554/eLife.12345.001 PMID:26779719

  16. Assessment of multi-chemical pollution in aquatic ecosystems using toxic units: compound prioritization, mixture characterization and relationships with biological descriptors.

    PubMed

    Ginebreda, Antoni; Kuzmanovic, Maja; Guasch, Helena; de Alda, Miren López; López-Doval, Julio C; Muñoz, Isabel; Ricart, Marta; Romaní, Anna M; Sabater, Sergi; Barceló, Damià

    2014-01-15

    Chemical pollution is typically characterized by exposure to multiple rather than to single or a limited number of compounds. Parent compounds, transformation products and other non-targeted compounds yield mixtures whose composition can only be partially identified by monitoring, while a substantial proportion remains unknown. In this context, risk assessment based on the application of additive ecotoxicity models, such as concentration addition (CA), is rendered somewhat misleading. Here, we show that ecotoxicity risk information can be better understood upon consideration of the probabilistic distribution of risk among the different compounds. Toxic units of the compounds identified in a sample fit a lognormal probability distribution. The parameters characterizing this distribution (mean and standard deviation) provide information which can be tentatively interpreted as a measure of the toxic load and its apportionment among the constituents in the mixture (here interpreted as mixture complexity). Furthermore, they provide information for compound prioritization tailored to each site and enable prediction of some of the functional and structural biological variables associated with the receiving ecosystem. The proposed approach was tested in the Llobregat River basin (NE Spain) using exposure and toxicity data (algae and Daphnia) corresponding to 29 pharmaceuticals and 22 pesticides, and 5 structural and functional biological descriptors related to benthic macroinvertebrates (diversity, biomass) and biofilm metrics (diatom quality, chlorophyll-a content and photosynthetic capacity). Aggregated toxic units based on Daphnia and algae bioassays provided a good indication of the pollution pattern of the Llobregat River basin. Relative contribution of pesticides and pharmaceuticals to total toxic load was variable and highly site dependent, the latter group tending to increase its contribution in urban areas. Contaminated sites' toxic load was typically dominated by

  17. Clinical breath analysis: Discriminating between human endogenous compounds and exogenous (environmental) chemical confounders

    EPA Science Inventory

    Volatile organic compounds (VOCs) in exhaled breath originate from current or previous environmental exposures (exogenous compounds) and internal metabolic anabolic and catabolic) production (endogenous compounds). The origins of certain VOCs in breath presumed to be endogenous ...

  18. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection.

    PubMed

    Xu, Fang-Qian; Wang, Wen; Xue, Xu-Feng; Hu, Hao-Liang; Liu, Xin-Lu; Pan, Yong

    2015-01-01

    A new wireless and passive surface acoustic wave (SAW)-based chemical sensor for organophosphorous compound (OC) detection is presented. A 434 MHz reflective delay line configuration composed by single phase unidirectional transducers (SPUDTs) and three shorted reflectors was fabricated on YZ LiNbO₃ piezoelectric substrate as the sensor element. A thin fluoroalcoholpolysiloxane (SXFA) film acted as the sensitive interface deposited onto the SAW propagation path between the second and last reflectors of the SAW device. The first reflector was used for the temperature compensation utilizing the difference method. The adsorption between the SXFA and OC molecules modulates the SAW propagation, especially for the time delay of the SAW, hence, the phase shifts of the reflection peaks from the corresponding reflectors can be used to characterize the target OC. Prior to the sensor fabrication, the coupling of modes (COM) and perturbation theory were utilized to predict the SAW device performance and the gas adsorption. Referring to a frequency-modulated continuous wave (FMCW)-based reader unit, the developed SAW chemical sensor was wirelessly characterized in gas exposure experiments for dimethylmethylphosphonate (DMMP) detection. Sensor performance parameters such as phase sensitivity, repeatability, linearity, and temperature compensation were evaluated experimentally. PMID:26633419

  19. Development of a Wireless and Passive SAW-Based Chemical Sensor for Organophosphorous Compound Detection

    PubMed Central

    Xu, Fang-Qian; Wang, Wen; Xue, Xu-Feng; Hu, Hao-Liang; Liu, Xin-Lu; Pan, Yong

    2015-01-01

    A new wireless and passive surface acoustic wave (SAW)-based chemical sensor for organophosphorous compound (OC) detection is presented. A 434 MHz reflective delay line configuration composed by single phase unidirectional transducers (SPUDTs) and three shorted reflectors was fabricated on YZ LiNbO3 piezoelectric substrate as the sensor element. A thin fluoroalcoholpolysiloxane (SXFA) film acted as the sensitive interface deposited onto the SAW propagation path between the second and last reflectors of the SAW device. The first reflector was used for the temperature compensation utilizing the difference method. The adsorption between the SXFA and OC molecules modulates the SAW propagation, especially for the time delay of the SAW, hence, the phase shifts of the reflection peaks from the corresponding reflectors can be used to characterize the target OC. Prior to the sensor fabrication, the coupling of modes (COM) and perturbation theory were utilized to predict the SAW device performance and the gas adsorption. Referring to a frequency-modulated continuous wave (FMCW)-based reader unit, the developed SAW chemical sensor was wirelessly characterized in gas exposure experiments for dimethylmethylphosphonate (DMMP) detection. Sensor performance parameters such as phase sensitivity, repeatability, linearity, and temperature compensation were evaluated experimentally. PMID:26633419

  20. Identification, characterization and HPLC quantification of process-related impurities in Trelagliptin succinate bulk drug: Six identified as new compounds.

    PubMed

    Zhang, Hui; Sun, Lili; Zou, Liang; Hui, Wenkai; Liu, Lei; Zou, Qiaogen; Ouyang, Pingkai

    2016-09-01

    A sensitive, selective and stability indicating reversed-phase LC method was developed for the determination of process related impurities of Trelagliptin succinate in bulk drug. Six impurities were identified by LC-MS. Further, their structures were characterized and confirmed utilizing LC-MS/MS, IR and NMR spectral data. The most probable mechanisms for the formation of these impurities were also discussed. To the best of our knowledge, six structures among these impurities are new compounds and have not been reported previously. The superior separation was achieved on an InertSustain C18 (250mm×4.6mm, 5μm) column in a gradient mixture of acetonitrile and 20mmol potassium dihydrogen phosphate with 0.25% triethylamine (pH adjusted to 3.5 with phosphate acid). The method was validated as per regulatory guidelines to demonstrate system suitability, specificity, sensitivity, linearity, robustness, and stability. PMID:27209451

  1. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    SciTech Connect

    Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

    2009-11-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH

  2. Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area

    SciTech Connect

    Apel, Eric; Emmons, L.; Karl, Thomas G.; Flocke, Frank M.; Hills, A. J.; Madronich, Sasha; Lee-Taylor, J.; Fried, Alan; Weibring, P.; Walega, J.; Richter, Dirk; Tie, X.; Mauldin, L.; Campos, Teresa; Weinheimer, Andrew J.; Knapp, David; Sive, B.; Kleinman, Lawrence I.; Springston, S.; Zaveri, Rahul A.; Ortega, John V.; Voss, Paul B.; Blake, D. R.; Baker, Angela K.; Warneke, Carsten; Welsh-Bon, Daniel; de Gouw, Joost A.; Zheng, J.; Zhang, Renyi; Rudolph, Jochen; Junkermann, W.; Riemer, D.

    2010-01-01

    The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on March 18 and the NCAR C130 one day later on March 19. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the March 19 plume and to help interpret the OH

  3. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  4. Cell-Based Small-Molecule Compound Screen Identifies Fenretinide as Potential Therapeutic for Translocation-Positive Rhabdomyosarcoma

    PubMed Central

    Herrero Martín, David; Boro, Aleksandar; Schäfer, Beat W.

    2013-01-01

    A subset of paediatric sarcomas are characterized by chromosomal translocations encoding specific oncogenic transcription factors. Such fusion proteins represent tumor specific therapeutic targets although so far it has not been possible to directly inhibit their activity by small-molecule compounds. In this study, we hypothesized that screening a small-molecule library might identify already existing drugs that are able to modulate the transcriptional activity of PAX3/FOXO1, the fusion protein specifically found in the pediatric tumor alveolar rhabdomyosarcoma (aRMS). Towards this end, we established a reporter cell line based on the well characterized PAX3/FOXO1 target gene AP2ß. A library enriched in mostly FDA approved drugs was screened using specific luciferase activity as read-out and normalized for cell viability. The most effective inhibitor identified from this screen was Fenretinide. Treatment with this compound resulted in down-regulation of PAX3/FOXO1 mRNA and protein levels as well as in reduced expression of several of its direct target genes, but not of wild-type FOXO1, in a dose- and time-dependent manner. Moreover, fenretinide induced reactive oxygen species and apoptosis as shown by caspase 9 and PARP cleavage and upregulated miR-9. Importantly, it demonstrated a significant anti-tumor effect in vivo. These results are similar to earlier reports for two other pediatric tumors, namely neuroblastoma and Ewing sarcoma, where fenretinide is under clinical development. Our results suggest that fenretinide might represent a novel treatment option also for translocation-positive rhabdomyosarcoma. PMID:23372815

  5. Cell-based small-molecule compound screen identifies fenretinide as potential therapeutic for translocation-positive rhabdomyosarcoma.

    PubMed

    Herrero Martín, David; Boro, Aleksandar; Schäfer, Beat W

    2013-01-01

    A subset of paediatric sarcomas are characterized by chromosomal translocations encoding specific oncogenic transcription factors. Such fusion proteins represent tumor specific therapeutic targets although so far it has not been possible to directly inhibit their activity by small-molecule compounds. In this study, we hypothesized that screening a small-molecule library might identify already existing drugs that are able to modulate the transcriptional activity of PAX3/FOXO1, the fusion protein specifically found in the pediatric tumor alveolar rhabdomyosarcoma (aRMS). Towards this end, we established a reporter cell line based on the well characterized PAX3/FOXO1 target gene AP2ß. A library enriched in mostly FDA approved drugs was screened using specific luciferase activity as read-out and normalized for cell viability. The most effective inhibitor identified from this screen was Fenretinide. Treatment with this compound resulted in down-regulation of PAX3/FOXO1 mRNA and protein levels as well as in reduced expression of several of its direct target genes, but not of wild-type FOXO1, in a dose- and time-dependent manner. Moreover, fenretinide induced reactive oxygen species and apoptosis as shown by caspase 9 and PARP cleavage and upregulated miR-9. Importantly, it demonstrated a significant anti-tumor effect in vivo. These results are similar to earlier reports for two other pediatric tumors, namely neuroblastoma and Ewing sarcoma, where fenretinide is under clinical development. Our results suggest that fenretinide might represent a novel treatment option also for translocation-positive rhabdomyosarcoma. PMID:23372815

  6. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    SciTech Connect

    Kleinstreuer, N.C.; Smith, A.M.; West, P.R.; Conard, K.R.; Fontaine, B.R.; Weir-Hauptman, A.M.; Palmer, J.A.; Knudsen, T.B.; Dix, D.J.; Donley, E.L.R.; Cezar, G.G.

    2011-11-15

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast Trade-Mark-Sign chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox Registered-Sign model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: Black-Right-Pointing-Pointer We tested 11 environmental compounds in a hESC metabolomics platform. Black-Right-Pointing-Pointer Significant changes in secreted small molecule metabolites were observed. Black-Right-Pointing-Pointer Perturbed mass features map to pathways critical for normal development and

  7. The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome

    PubMed Central

    Harlow, Philippa H.; Perry, Simon J.; Widdison, Stephanie; Daniels, Shannon; Bondo, Eddie; Lamberth, Clemens; Currie, Richard A.; Flemming, Anthony J.

    2016-01-01

    To determine whether a C. elegans bioassay could predict mammalian developmental activity, we selected diverse compounds known and known not to elicit such activity and measured their effect on C. elegans egg viability. 89% of compounds that reduced C. elegans egg viability also had mammalian developmental activity. Conversely only 25% of compounds found not to reduce egg viability in C. elegans were also inactive in mammals. We conclude that the C. elegans egg viability assay is an accurate positive predictor, but an inaccurate negative predictor, of mammalian developmental activity. We then evaluated C. elegans as a tool to identify mechanisms affecting toxicological outcomes among related compounds. The difference in developmental activity of structurally related fungicides in C. elegans correlated with their rate of metabolism. Knockdown of the cytochrome P450s cyp-35A3 and cyp-35A4 increased the toxicity to C. elegans of the least developmentally active compounds to the level of the most developmentally active. This indicated that these P450s were involved in the greater rate of metabolism of the less toxic of these compounds. We conclude that C. elegans based approaches can predict mammalian developmental activity and can yield plausible hypotheses for factors affecting the biological potency of compounds in mammals. PMID:26987796

  8. Overview of toxicity data and risk assessment methods for evaluating the chemical effects of depleted uranium compounds.

    SciTech Connect

    Hartmann, H. M.; Monette, F. A.; Avci, H. I.; Environmental Assessment

    2000-10-01

    In the United States, depleted uranium is handled or used in several chemical forms by both governmental agencies and private industry (primarily companies producing and machining depleted uranium metal for military applications). Human exposure can occur as a result of handling these compounds, routine low-level effluent releases to the environment from processing facilities, or materials being accidentally released from storage locations or during processing or transportation. Exposure to uranium can result in both chemical and radiological toxicity, but in most instances chemical toxicity is of greater concern. This article discusses the chemical toxic effects from human exposure to depleted uranium compounds that are likely to be handled during the long-term management and use of depleted uranium hexafluoride (UF{sub 6}) inventories in the United States. It also reviews representative publications in the toxicological literature to establish appropriate reference values for risk assessments. Methods are described for evaluating chemical toxicity caused by chronic low-level exposure and acute exposure. Example risk evaluations are provided for illustration. Preliminary results indicate that chemical effects of chronic exposure to uranium compounds under normal operating conditions would be negligibly small. Results also show that acute exposures under certain accident conditions could cause adverse chemical effects among the populations exposed.

  9. An Automated High-Throughput Cell-Based Multiplexed Flow Cytometry Assay to Identify Novel Compounds to Target Candida albicans Virulence-Related Proteins

    PubMed Central

    Bernardo, Stella M.; Allen, Christopher P.; Waller, Anna; Young, Susan M.; Oprea, Tudor; Sklar, Larry A.; Lee, Samuel A.

    2014-01-01

    Although three major classes of systemic antifungal agents are clinically available, each is characterized by important limitations. Thus, there has been considerable ongoing effort to develop novel and repurposed agents for the therapy of invasive fungal infections. In an effort to address these needs, we developed a novel high-throughput, multiplexed screening method that utilizes small molecules to probe candidate drug targets in the opportunistic fungal pathogen Candida albicans. This method is amenable to high-throughput automated screening and is based upon detection of changes in GFP levels of individually tagged target proteins. We first selected four GFP-tagged membrane-bound proteins associated with virulence or antifungal drug resistance in C. albicans. We demonstrated proof-of-principle that modulation of fluorescence intensity can be used to assay the expression of specific GFP-tagged target proteins to inhibitors (and inducers), and this change is measurable within the HyperCyt automated flow cytometry sampling system. Next, we generated a multiplex of differentially color-coded C. albicans strains bearing C-terminal GFP-tags of each gene encoding candidate drug targets incubated in the presence of small molecules from the Prestwick Chemical Library in 384-well microtiter plate format. Following incubation, cells were sampled through the HyperCyt system and modulation of protein levels, as indicated by changes in GFP-levels of each strain, was used to identify compounds of interest. The hit rate for both inducers and inhibitors identified in the primary screen did not exceed 1% of the total number of compounds in the small-molecule library that was probed, as would be expected from a robust target-specific, high-throughput screening campaign. Secondary assays for virulence characteristics based on null mutant strains were then used to further validate specificity. In all, this study presents a method for the identification and verification of new

  10. Development of microbial and chemical MST tools to identify the origin of the faecal pollution in bathing and shellfish harvesting waters in France.

    PubMed

    Gourmelon, M; Caprais, M P; Mieszkin, S; Marti, R; Wéry, N; Jardé, E; Derrien, M; Jadas-Hécart, A; Communal, P Y; Jaffrezic, A; Pourcher, A M

    2010-09-01

    The microbiological quality of coastal or river waters can be affected by faecal pollution from human or animal sources. An efficient MST (Microbial Source Tracking) toolbox consisting of several host-specific markers would therefore be valuable for identifying the origin of the faecal pollution in the environment and thus for effective resource management and remediation. In this multidisciplinary study, after having tested some MST markers on faecal samples, we compared a selection of 17 parameters corresponding to chemical (steroid ratios, caffeine, and synthetic compounds), bacterial (host-specific Bacteroidales, Lactobacillus amylovorus and Bifidobacterium adolescentis) and viral (genotypes I-IV of F-specific bacteriophages, FRNAPH) markers on environmental water samples (n = 33; wastewater, runoff and river waters) with variable Escherichia coli concentrations. Eleven microbial and chemical parameters were finally chosen for our MST toolbox, based on their specificity for particular pollution sources represented by our samples and their detection in river waters impacted by human or animal pollution; these were: the human-specific chemical compounds caffeine, TCEP (tri(2-chloroethyl)phosphate) and benzophenone; the ratios of sitostanol/coprostanol and coprostanol/(coprostanol+24-ethylcopstanol); real-time PCR (Polymerase Chain Reaction) human-specific (HF183 and B. adolescentis), pig-specific (Pig-2-Bac and L. amylovorus) and ruminant-specific (Rum-2-Bac) markers; and human FRNAPH genogroup II. PMID:20709349

  11. A Systems Biology Approach for Identifying Hepatotoxicant Groups Based on Similarity in Mechanisms of Action and Chemical Structure.

    PubMed

    Hebels, Dennie G A J; Rasche, Axel; Herwig, Ralf; van Westen, Gerard J P; Jennen, Danyel G J; Kleinjans, Jos C S

    2016-01-01

    When evaluating compound similarity, addressing multiple sources of information to reach conclusions about common pharmaceutical and/or toxicological mechanisms of action is a crucial strategy. In this chapter, we describe a systems biology approach that incorporates analyses of hepatotoxicant data for 33 compounds from three different sources: a chemical structure similarity analysis based on the 3D Tanimoto coefficient, a chemical structure-based protein target prediction analysis, and a cross-study/cross-platform meta-analysis of in vitro and in vivo human and rat transcriptomics data derived from public resources (i.e., the diXa data warehouse). Hierarchical clustering of the outcome scores of the separate analyses did not result in a satisfactory grouping of compounds considering their known toxic mechanism as described in literature. However, a combined analysis of multiple data types may hypothetically compensate for missing or unreliable information in any of the single data types. We therefore performed an integrated clustering analysis of all three data sets using the R-based tool iClusterPlus. This indeed improved the grouping results. The compound clusters that were formed by means of iClusterPlus represent groups that show similar gene expression while simultaneously integrating a similarity in structure and protein targets, which corresponds much better with the known mechanism of action of these toxicants. Using an integrative systems biology approach may thus overcome the limitations of the separate analyses when grouping liver toxicants sharing a similar mechanism of toxicity. PMID:27311473

  12. Chemical oxidation of a malodorous compound, indole, using iron entrapped in calcium alginate beads.

    PubMed

    Ben Hammouda, Samia; Adhoum, Nafaâ; Monser, Lotfi

    2016-01-15

    Iron-alginate beads (Fe-ABs) were successfully prepared by the ion-gelation method, and applied as heterogeneous Fenton catalysts for the removal of a malodorous compound 'indole'. Similarly, copper-enriched alginate beads (Cu-ABs) were synthesized and tested as like-Fenton catalyst, however, their application proved not to be effective for this purpose. Fe-ABs catalysts were characterized by FTIR, SEM, EDS and AAS spectroscopy. Results pointed out that the parameters affecting Fenton catalysis must be carefully chosen to avoid excessive iron release. Under optimal conditions, complete indole removal and considerably high reduction of TOC, without significant leaching was achieved. Indole decay followed a pseudo-first-order kinetics. The absolute rate constant for indole hydroxylation was 3.59×10(9) M(-1) s(-1), as determined by the competition kinetics method. Four reaction intermediates (Isatin, Dioxindole, Oxindole and Anthralinic acid) were identified by ULC/MS/MS analysis. Short-chain aliphatic carboxylic acids like formic, acetic, oxalic, maleic, oxamic and pyruvic acids were identified by ion exclusion chromatography and as end-products. Based on the identified by-products, a plausible mineralization pathway was proposed. Moreover, the catalyst was recovered quantitatively by simple filtration and reused for several times without significant loss of activity. PMID:26384996

  13. Big Data in Chemical Toxicity Research: The Use of High-Throughput Screening Assays To Identify Potential Toxicants

    PubMed Central

    2015-01-01

    High-throughput screening (HTS) assays that measure the in vitro toxicity of environmental compounds have been widely applied as an alternative to in vivo animal tests of chemical toxicity. Current HTS studies provide the community with rich toxicology information that has the potential to be integrated into toxicity research. The available in vitro toxicity data is updated daily in structured formats (e.g., deposited into PubChem and other data-sharing web portals) or in an unstructured way (papers, laboratory reports, toxicity Web site updates, etc.). The information derived from the current toxicity data is so large and complex that it becomes difficult to process using available database management tools or traditional data processing applications. For this reason, it is necessary to develop a big data approach when conducting modern chemical toxicity research. In vitro data for a compound, obtained from meaningful bioassays, can be viewed as a response profile that gives detailed information about the compound’s ability to affect relevant biological proteins/receptors. This information is critical for the evaluation of complex bioactivities (e.g., animal toxicities) and grows rapidly as big data in toxicology communities. This review focuses mainly on the existing structured in vitro data (e.g., PubChem data sets) as response profiles for compounds of environmental interest (e.g., potential human/animal toxicants). Potential modeling and mining tools to use the current big data pool in chemical toxicity research are also described. PMID:25195622

  14. Nitrogen K-edge XANES - an overview of reference compounds used to identify unknown organic nitrogen in environmental samples.

    PubMed

    Leinweber, Peter; Kruse, Jens; Walley, Fran L; Gillespie, Adam; Eckhardt, Kai Uwe; Blyth, Robert I R; Regier, Tom

    2007-11-01

    The chemical nature of soil organic nitrogen (N) is still poorly understood and one-third to one-half of it is typically classified as ;unknown N'. Nitrogen K-edge XANES spectroscopy has been used to develop a systematic overview on spectral features of all major N functions in soil and environmental samples. The absolute calibration of the photon energy was completed using the 1s --> pi* transitions of pure gas-phase N(2). On this basis a library of spectral features is provided for mineral N, nitro N, amino acids, peptides, and substituted pyrroles, pyridines, imidazoles, pyrazoles, pyrazines, pyrimidines and purine bases. Although N XANES was previously considered ;non-destructive', effects of radiation damage were shown for two compound classes and an approach was proposed to minimize it. This new evidence is integrated into a proposal for the evaluation spectra from environmental samples with unknown composition. Thus a basis is laid to develop N K-edge XANES as a complementary standard research method to study the molecular composition and ecological functions of ;unknown N' in soil and the environment. PMID:17960033

  15. Electrocatalytic processing of renewable biomass-derived compounds for production of chemicals, fuels and electricity

    NASA Astrophysics Data System (ADS)

    Xin, Le

    The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while

  16. Acute toxicity of Daphnia pulex to six classes of chemical compounds potentially hazardous to Great Lakes aquatic biota

    USGS Publications Warehouse

    Smith, Stephen B.; Savino, Jacqueline F.; Blouin, Marc A.

    1988-01-01

    Of the six classes of chemicals potentially hazardous to Great Lakes aquatic biota, derivatives of polyaromatic hydrocarbons (PAHs) were the most acutely toxic (48-h EC 50) to Daphnia pulex. The other classes, listed in order of decreasing toxicity were alkyl halides, nitrogen-containing compounds, cyclic alkanes, heterocyclic nitrogen compounds, silicon-containing compounds. O f the 41 compounds representing the six chemical classes, 6 were extremely toxic (> 0.01 - 0.1 mg/L), 11 highly toxic (> 01. - 1.0 mg/L), 20 moderately toxic (> 1.0 - 10.0 mg/L), and 4 slightly toxic (>10 - 100 mg/L). The reference compound, p, p'DDT, was super toxic (< 0.01 mg/L). Based on toxicity and relative abundance (hazard ranking) of the 21 compounds that were detected in tissue of Great Lakes fishes, the classes of compounds that present the greatest threat to Great Lakes aquatic biota are PAH derivatives, alkyl halides, and cyclic aklanes.

  17. Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.

    2000-01-01

    The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.

  18. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  19. Using in Vitro High Throughput Screening Assays to Identify Potential Endocrine-Disrupting Chemicals

    EPA Science Inventory

    Over the past 20 years, an increased focus on detecting environmental chemicals posing a risk of adverse effects due to endocrine disruption has driven the creation of the U.S. EPA Endocrine Disruptor Screening Program (EDSP). Thousands of chemicals are subject to the EDSP, whic...

  20. An Event-Related Potentials Study of Mental Rotation in Identifying Chemical Structural Formulas

    ERIC Educational Resources Information Center

    Huang, Chin-Fei; Liu, Chia-Ju

    2012-01-01

    The purpose of this study was to investigate how mental rotation strategies affect the identification of chemical structural formulas. This study conducted event-related potentials (ERPs) experiments. In addition to the data collected in the ERPs, a Chemical Structure Conceptual Questionnaire and interviews were also admin-istered for data…

  1. ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TOOL FOR IDENTIFYING ORGANIC COMPOUNDS IN COMPLEX EXTRACTS OF ENVIRONMENTAL SAMPLES

    EPA Science Inventory


    Unidentified Organic Compounds. For target analytes, standards are purchased, extraction and clean-up procedures are optimized, and mass spectra and retention times for the chromatographic separation are obtained for comparison to the target compounds in environmental sample ...

  2. Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes.

    PubMed

    Ali, Abbas; Tabanca, Nurhayat; Demirci, Betul; Blythe, Eugene K; Ali, Zulfiqar; Baser, K Husnu Can; Khan, Ikhlas A

    2015-01-21

    The chemical compositions of essential oils obtained from four species of genus Salvia were analyzed by gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The main compounds identified from Salvia species essential oils were as follows: 1,8-cineole (71.7%), α-pinene (5.1%), camphor (4.4%), and β-pinene (3.8%) in Salvia apiana; borneol (17.4%), β-eudesmol (10.4%), bornyl acetate (5%), and guaiol (4.8%) in Salvia elegans; bornyl acetate (11.4%), β-caryophyllene (6.5%), caryophyllene oxide (13.5%), and spathulenol (7.0%) in Salvia leucantha; α-thujene (25.8%), viridiflorol (20.4%), β-thujene (5.7%), and camphor (6.4%) in Salvia officinalis. In biting-deterrent bioassays, essential oils of S. leucantha and S. elegans at 10 μg/cm(2) showed activity similar to that of DEET (97%, N, N-diethyl-m-toluamide) in two species of mosquitoes, whereas the activities of S. officinalis and S. apiana essential oils were lower than those of the other oils or DEET. Pure compounds β-eudesmol and guaiol showed biting-deterrent activity similar to DEET at 25 nmol/cm(2), whereas the activity of 13-epi-manool, caryophyllene oxide, borneol, bornyl acetate, and β-caryophyllene was significantly lower than that of β-eudesmol, guaiol, or DEET. All essential oils showed larvicidal activity except that of S. apiana, which was inactive at the highest dose of 125 ppm against both mosquito species. On the basis of 95% CIs, all of the essential oils showed higher toxicity in Anopheles quadrimaculatus than in Aedes aegypti. The essential oil of S. leucantha with an LC50 value of 6.2 ppm showed highest toxicity in An. quadrimaculatus. PMID:25531412

  3. Micro-Spectroscopic Chemical Imaging of Individual Identified Marine Biogenic and Ambient Organic Ice Nuclei (Invited)

    NASA Astrophysics Data System (ADS)

    Knopf, D. A.; Alpert, P. A.; Wang, B.; OBrien, R. E.; Moffet, R. C.; Aller, J. Y.; Laskin, A.; Gilles, M.

    2013-12-01

    Atmospheric ice formation represents one of the least understood atmospheric processes with important implications for the hydrological cycle and climate. Current freezing descriptions assume that ice active sites on the particle surface initiate ice nucleation, however, the nature of these sites remains elusive. Here, we present a new experimental method that allows us to relate physical and chemical properties of individual particles with observed water uptake and ice nucleation ability using a combination of micro-spectroscopic and optical single particle analytical techniques. We apply this method to field-collected particles and particles generated via bursting of bubbles produced by glass frit aeration and plunging water impingement jets in a mesocosm containing artificial sea water and bacteria and/or phytoplankton. The most efficient ice nuclei (IN) within a particle population are identified and characterized. Single particle characterization is achieved by computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy. A vapor controlled cooling-stage coupled to an optical microscope is used to determine the onsets of water uptake, immersion freezing, and deposition ice nucleation of the individual particles as a function of temperature (T) as low as 200 K and relative humidity (RH) up to water saturation. In addition, we perform CCSEM/EDX to obtain on a single particle level the elemental composition of the entire particle population. Thus, we can determine if the IN are exceptional in nature or belong to a major particle type class with respect to composition and size. We find that ambient and sea spray particles are coated by organic material and can induce ice formation under tropospheric relevant conditions. Micro-spectroscopic single particle analysis of the investigated particle samples invokes a potential

  4. Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds

    SciTech Connect

    Lumpkin, Gregory R. Pruneda, Miguel; Rios, Susana; Smith, Katherine L.; Trachenko, Kostya; Whittle, Karl R.; Zaluzec, Nestor J.

    2007-04-15

    The radiation tolerance of synthetic pyrochlore and defect fluorite compounds has been studied using ion irradiation. We show that the results can be quantified in terms of the critical temperature for amorphization, structural parameters, classical Pauling electronegativity difference, and disorder energies. Our results demonstrate that radiation tolerance is correlated with a change in the structure from pyrochlore to defect fluorite, a smaller unit cell dimension, and lower cation-anion disorder energy. Radiation tolerance is promoted by an increase in the Pauling cation-anion electronegativity difference or, in other words, an increase in the ionicity of the chemical bonds. A further analysis of the data indicates that, of the two possible cation sites in ideal pyrochlore, the smaller B-site cation appears to play the major role in bonding. This result is supported by ab initio calculations of the structure and bonding, showing a correlation between the Mulliken overlap populations of the B-site cation and the critical temperature. - Graphical abstract: Three-dimensional representation of the predicted critical amorphization temperature in pyrochlores.

  5. Jabuticaba (Myrciaria cauliflora) Seeds: Chemical Characterization and Extraction of Antioxidant and Antimicrobial Compounds.

    PubMed

    Hacke, Ana Carolina Mendes; Granato, Daniel; Maciel, Laércio Galvão; Weinert, Patrícia Los; Prado-Silva, Leonardo do; Alvarenga, Verônica Ortiz; de Souza Sant'Ana, Anderson; Bataglion, Giovana Anceski; Eberlin, Marcos Nogueira; Rosso, Neiva Deliberali

    2016-09-01

    This study was aimed to assess the effect of time and temperature on the extraction of antioxidant compounds from jabuticaba seeds (Myrciaria cauliflora cv. Sabará), to optimize the solvent proportion (water, ethyl alcohol, and propanone), and to characterize the extract according to the chemical composition, antioxidant, and antimicrobial properties. Proximal composition, total phenolic content (TPC), antioxidant, and antimicrobial activities were analyzed. The optimized solvent ratio of 60% water and 40% propanone provided a mean TPC of 8.65 g GAE/100 g seeds and the antioxidant activity toward 2,2-diphenyl-1-picrylhydrazyl (DPPH) was 82.79% ± 0.50%. Time and temperature parameters did not influence the yield of TPC. The gross seed extract was partially purified and both exhibited a high antioxidant activity and antimicrobial potential toward Gram-positive and Gram-negative bacteria. The purified jabuticaba seed lyophilized extract contained a higher (P < 0.05) TPC, o-diphenols, flavonols, and antioxidant activity measured by the DPPH assay and total reducing capacity as compared to the gross lyophilized extract. Electrospray ionization coupled with tandem mass spectrometry (ESI-MS/MS) data showed the presence of ellagitannins and ellagic acid in the extracts, which are probably the responsible for the antimicrobial and antioxidant activities. PMID:27490163

  6. Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5.

    PubMed

    Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu

    2014-03-01

    Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. PMID:24413482

  7. Hydrazine bisalane is a potential compound for chemical hydrogen storage. A theoretical study.

    PubMed

    Nguyen, Vinh Son; Swinnen, Saartje; Leszczynski, Jerzy; Nguyen, Minh Tho

    2011-09-14

    Electronic structure calculations suggest that hydrazine bisalane (AlH(3)NH(2)NH(2)AlH(3), alhyzal) is a promising compound for chemical hydrogen storage (CHS). Calculations are carried out using the coupled-cluster theory CCSD(T) with the aug-cc-pVTZ basis set. Potential energy surfaces are constructed to probe the formation of, and hydrogen release from, hydrazine bisalane which is initially formed from the reaction of hydrazine with dialane. Molecular and electronic characteristics of both gauche and trans alhyzal are determined for the first time. The gauche hydrazine bisalane is formed from starting reactants hydrazine + dialane following a movement of an AlH(3) group from AlH(3)AlH(3)NH(2)NH(2) rather than by a direct attachment of a separate AlH(3) group, generated by predissociation of dialane, to AlH(3)NH(2)NH(2). The energy barriers for dehydrogenation processes from gauche and transalhyzal are in the range of 21-28 kcal mol(-1), which are substantially smaller than those of ca. 40 kcal mol(-1) previously determined for the isovalent hydrazine bisborane (bhyzb) system. H(2) release from hydrazine bisalane is thus more favored over that from hydrazine bisborane, making the Al derivative an alternative candidate for CHS. PMID:21776513

  8. Adverse Outcome Pathways for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptor

    EPA Science Inventory

    Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

  9. Disulfide-Trapping Identifies a New, Effective Chemical Probe for Activating the Nuclear Receptor Human LRH-1 (NR5A2)

    PubMed Central

    de Jesus Cortez, Felipe; Suzawa, Miyuki; Irvy, Sam; Bruning, John M.; Sablin, Elena; Jacobson, Matthew P.; Fletterick, Robert J.; Ingraham, Holly A.

    2016-01-01

    Conventional efforts relying on high-throughput physical and virtual screening of large compound libraries have failed to yield high-efficiency chemical probes for many of the 48 human nuclear receptors. Here, we investigated whether disulfide-trapping, an approach new to nuclear receptors, would provide effective lead compounds targeting human liver receptor homolog 1 (hLRH-1, NR5A2). Despite the fact that hLRH-1 contains a large ligand binding pocket and binds phospholipids with high affinity, existing synthetic hLRH-1 ligands are of limited utility due to poor solubility, low efficacy or significant off-target effects. Using disulfide-trapping, we identified a lead compound that conjugates with remarkably high-efficiency to a native cysteine residue (Cys346) lining the hydrophobic cavity in the ligand binding domain of hLRH-1. Guided by computational modeling and cellular assays, the lead compound was elaborated into ligands PME8 and PME9 that bind hLRH-1 reversibly (no cysteine reactivity) and increase hLRH-1 activity in cells. When compared with the existing hLRH-1 synthetic agonist RJW100, both PME8 and PME9 showed comparable induction of the LRH-1 dependent target gene CYP24A1 in human HepG2 cells, beginning as early as 3 h after drug treatment. The induction is specific as siRNA-mediated knock-down of hLRH-1 renders both PME8 and PME9 ineffective. These data show that PME8 and PME9 are potent activators of hLRH-1 and suggest that with further development this lead series may yield useful chemical probes for manipulating LRH-1 activity in vivo. PMID:27467220

  10. Coordination compounds of tetravalent silicon, germanium and tin: the structure, chemical bonding and intermolecular interactions in them

    NASA Astrophysics Data System (ADS)

    Korlyukov, A. A.

    2015-04-01

    The review is devoted to analysis and generalization of the results of (i) quantum chemical studies on the structure, chemical bonding and intermolecular interactions in coordination compounds of tetravalent silicon, germanium and tin in crystals, in solutions and in the gas phase and (ii) experimental investigations of the electron density distribution in these systems. The bibliography includes 147 references. In memoriam of Corresponding Member of the Russian Academy of Sciences M Yu Antipin (1951 - 2013), Academician of the Russian Academy of Sciences M G Voronkov (1921 - 2014) and Dr. S P Knyazev, Lomonosov Moscow University of Fine Chemical Technology (1949 - 2012).

  11. CFam: a chemical families database based on iterative selection of functional seeds and seed-directed compound clustering

    PubMed Central

    Zhang, Cheng; Tao, Lin; Qin, Chu; Zhang, Peng; Chen, Shangying; Zeng, Xian; Xu, Feng; Chen, Zhe; Yang, Sheng Yong; Chen, Yu Zong

    2015-01-01

    Similarity-based clustering and classification of compounds enable the search of drug leads and the structural and chemogenomic studies for facilitating chemical, biomedical, agricultural, material and other industrial applications. A database that organizes compounds into similarity-based as well as scaffold-based and property-based families is useful for facilitating these tasks. CFam Chemical Family database http://bidd2.cse.nus.edu.sg/cfam was developed to hierarchically cluster drugs, bioactive molecules, human metabolites, natural products, patented agents and other molecules into functional families, superfamilies and classes of structurally similar compounds based on the literature-reported high, intermediate and remote similarity measures. The compounds were represented by molecular fingerprint and molecular similarity was measured by Tanimoto coefficient. The functional seeds of CFam families were from hierarchically clustered drugs, bioactive molecules, human metabolites, natural products, patented agents, respectively, which were used to characterize families and cluster compounds into families, superfamilies and classes. CFam currently contains 11 643 classes, 34 880 superfamilies and 87 136 families of 490 279 compounds (1691 approved drugs, 1228 clinical trial drugs, 12 386 investigative drugs, 262 881 highly active molecules, 15 055 human metabolites, 80 255 ZINC-processed natural products and 116 783 patented agents). Efforts will be made to further expand CFam database and add more functional categories and families based on other types of molecular representations. PMID:25414339

  12. Chemical Compounds in Natural Medicines That Affect Macropharges and Adipocyte Cells.

    PubMed

    Kitanaka, Susumu

    2016-01-01

    Macrophages play major roles in inflammation, immunity and host defense mechanisms. Once activated they produce and release cytokines, oxygen and nitrogen species, and eicosanoids. The best characterized stimuli to induce the transcription of genes encoding pro-inflammatory proteins in macrophages in vitro is bacterial lipopolysaccharide (LPS). LPS could be used alone or in combination with recombinant mouse interferon-γ (IFN-γ). Such stimulation results in cytokine release and the synthesis of enzymes such as cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). The nitric oxide (NO) radical is known to play a central role in inflammatory and immune reactions for self-protection. However, the excessive production of NO may lead to tissue damage. In inflammatory diseases such as rheumatoid arthritis, excessive NO production by activated macrophages has been observed. Adipose tissue is composed of various cell types such as mature adipocytes, preadipocytes, fibroblasts, endothelial cells, vascular cells, and macrophages. Recent studies indicate that obesity is associated with low-grade chronic inflammation of adipose tissues, and that such inflammation is one of the potential mechanisms leading to the insulin resistance. It has been demonstrated that obese adipose tissue is characterized by the increased infiltration of macrophages. Therefore, we attempted to identify natural anti-inflammatory compounds that not only inhibit the secretion of NO from RAW 264.7 cells, but also inhibit triglyceride accumulation in 3T3-L1 adipocytes. This review describes the NO prpduction inhibitory activity or the TG accumulation inhibitory activity of the compounds obtained from 18 plants and a fungi that have been used as traditional medicines. PMID:27592825

  13. In vivo natriuretic peptide reporter assay identifies chemical modifiers of hypertrophic cardiomyopathy signalling

    PubMed Central

    Becker, Jason R.; Robinson, Tamara Y.; Sachidanandan, Chetana; Kelly, Amy E.; Coy, Shannon; Peterson, Randall T.; MacRae, Calum A.

    2012-01-01

    Aims Despite increased understanding of the fundamental biology regulating cardiomyocyte hypertrophy and heart failure, it has been challenging to find novel chemical or genetic modifiers of these pathways. Traditional cell-based methods do not model the complexity of an intact cardiovascular system and mammalian models are not readily adaptable to chemical or genetic screens. Our objective was to create an in vivo model suitable for chemical and genetic screens for hypertrophy and heart failure modifiers Methods and results Using the developing zebrafish, we established that the cardiac natriuretic peptide genes (nppa and nppb), known markers of cardiomyocyte hypertrophy and heart failure, were induced in the embryonic heart by pathological cardiac stimuli. This pathological induction was distinct from the developmental regulation of these genes. We created a luciferase-based transgenic reporter line that accurately modelled the pathological induction patterns of the zebrafish nppb gene. Utilizing this reporter line, we were able to show remarkable conservation of pharmacological responses between the larval zebrafish heart and adult mammalian models. Conclusion By performing a focused screen of chemical agents, we were able to show a distinct response of a genetic model of hypertrophic cardiomyopathy to the histone deacetylase inhibitor, Trichostatin A, and the mitogen-activated protein kinase kinase 1/2 inhibitor, U0126. We believe this in vivo reporter line will offer a unique approach to the identification of novel chemical or genetic regulators of myocardial hypertrophy and heart failure. PMID:22198505

  14. Classification of compounds with distinct or overlapping multi-target activities and diverse molecular mechanisms using emerging chemical patterns.

    PubMed

    Namasivayam, Vigneshwaran; Hu, Ye; Balfer, Jenny; Bajorath, Jürgen

    2013-06-24

    The emerging chemical patterns (ECP) approach has been introduced for compound classification. Thus far, only very few ECP applications have been reported. Here, we further investigate the ECP methodology by studying complex classification problems. The analysis involves multi-target data sets with systematically organized subsets of compounds having distinct or overlapping target activities and, in addition, data sets containing classes of specifically active compounds with different mechanism-of-action. In systematic classification trials focusing on individual compound subsets or mechanistic classes, ECP calculations utilizing numerical descriptors achieve moderate to high sensitivity, dependent on the data set, and consistently high specificity. Accurate ECP predictions are already obtained on the basis of very small learning sets with only three positive training instances, which distinguishes the ECP approach from many other machine learning techniques. PMID:23692475

  15. ASSESSMENT OF A FATHEAD MINNOW REPRODUCTION ASSAY FOR IDENTIFYING ENDOCRINE-DISRUPTING CHEMICALS WITH DIVERSE MODES OF ACTION

    EPA Science Inventory

    The US EPA has developed a short-term reproduction test with the fathead minnow to identify potential endocrine disrupting chemicals (EDCs). The assay is initiated by collecting baseline spawning data from reproductively-active adult fathead minnows for 21 d, followed by a 21 d e...

  16. 76 FR 63304 - Guidance for Industry on Incorporation of Physical-Chemical Identifiers Into Solid Oral Dosage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... labeling in a future guidance. In the Federal Register of July 14, 2009 (74 FR 34021), FDA announced the... recommendations on design considerations for incorporating physical-chemical identifiers (PCIDs) into solid oral... provides recommendations to pharmaceutical manufacturers on the following topics: (1) Design...

  17. Control of the chemical state change of sulfur in solid compound targets during high-resolution PIXE measurements

    NASA Astrophysics Data System (ADS)

    Woo, Hyung-Joo; Choi, Han-Woo; Kim, Gi-Dong; Kim, Joon-Kon

    2012-07-01

    A high-energy-resolution wavelength-dispersive (WD) X-ray spectrometer in the Johansson geometry, which allowed energy resolution below the natural linewidth of the K α lines was employed in measurements of the proton-induced K α X-ray emission spectra for six typical sulfur compounds (CdS, Na2SO3, Na2 S2O5, NaHSO3, (NH4)2SO4, and Na2SO4) to investigate the chemical state change during 2.4-MeV proton irradiation with a current density of 7.5 nA/mm2. We found that the chemical state change of each compound depended on the various factors affecting the surface temperature increase, such as target thickness, mounting method, and existence of active cooling during the measurement. The chemical state of sulfur on the target surface of S4+ compounds was gradually changed into S6+ without exception through irradiation under poor cooling conditions. Sulfur compounds of the S0 and S6+ states with closed shell structures were proven to be chemically stable against proton bombardment, as expected. However, (NH4)2SO4 was found to be most sensitive to proton irradiation among the sulfur compounds, and S0, one of the reaction products, became a major element at doses higher than 3 × 108 Gy. If thick targets were mounted by using a carbon adhesive tape, chemical state change could be observed in some cases even with lowtemperature cooling down to -80 °C, however, the chemical state change seemed to be remarkably suppressed by using very thin targets mounted with a silver paste even without active cooling. In conclusion, the chemical states of sulfur compounds could be preserved without significant change for an accumulated dose of about 3 × 107 Gy, equivalent to a typical high-resolution PIXE scanning period, by adopting a proper target preparation scheme to discharge proton-induced thermal energy effectively from the irradiated target surface.

  18. Phenotypic Screening of Primary Human Cell Culture Systems to Identify Potential for Compound Toxicity (CHI Phenotypic Screening)

    EPA Science Inventory

    Addressing safety aspects of drugs and environmental chemicals has historically been undertaken through animal testing. However, the quantity of chemicals needing assessment and the challenge of species extrapolation require development of alternative approaches. Assessing phenot...

  19. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts

    PubMed Central

    YongE, Feng; GaoShan, Kou

    2015-01-01

    Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew’s correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin. PMID:26422468

  20. Tuning the ferromagnetic phase in the CDW compound SmNiC2 via chemical alloying.

    PubMed

    Prathiba, G; Kim, I; Shin, S; Strychalska, J; Klimczuk, T; Park, T

    2016-01-01

    We report a study on tuning the charge density wave (CDW) ferromagnet SmNiC2 to a weakly coupled superconductor by substituting La for Sm. X-ray diffraction measurements show that the doped compounds obey Vegard's law, where La (Lu) alloying expands (shrinks) the lattice due to its larger (smaller) atomic size than Sm. In the series Sm1-xLaxNiC2, CDW transition (TCDW = 148 K) for SmNiC2 is gradually suppressed, while the ferromagnetic (FM) ordering temperature (TC) at 17 K slightly increases up to x = 0.3. For x > 0.3, TC starts to decrease and there is no signature that could be related with the CDW phase. Electrical resistivity, magnetic susceptibility and specific heat measurements point toward the possible presence of a FM quantum critical point (QCP) near x = 0.92, where the TC is extrapolated to zero temperature. Superconductivity in LaNiC2 (Tsc = 2.9 K) is completely suppressed with small amount of Sm inclusion near the proposed FM critical point, indicating a competition between the two ordered phases. The tunable lattice parameters via chemical substitution (La,Lu) and the ensuing change among the ordered phases of ferromagnetism, CDW and superconductivity underscores that SmNiC2 provides a rich avenue to study the rare example of a FM QCP, where the broken symmetries are intricately correlated. PMID:27221309

  1. Associations between self-reported odour annoyance and volatile organic compounds in 'Chemical Valley', Sarnia, Ontario.

    PubMed

    Atari, Dominic Odwa; Luginaah, Isaac N; Gorey, Kevin; Xu, Xiaohong; Fung, Karen

    2013-06-01

    Annoyance produced by air pollution has been suggested as a useful proxy for determining ambient air pollution exposure. However, most of the studies, to date, have focused on nitrogen dioxide and sulphur dioxide, with no work done on volatile organic compounds (VOC). This study is aimed at examining the associations between odour annoyance and VOC in 'Chemical Valley', Sarnia, Ontario, Canada. Annoyance scores were extracted from a community health survey (N = 774), and exposures to VOC were estimated from respondents' six-digit alphanumeric postal codes using land use regression models. Univariate analyses were used to explore the relationships between odour annoyance and modelled pollutants, whilst multivariate ordinal logistic regression was utilized to examine the determinants of odour annoyance. The results indicate that odour annoyance is significantly associated with modelled benzene, toluene, ethylbenzene, o-xylene and (m + p) xylene (BTEX) pollutants. The findings also show that the determinants of odour annoyance in the context of VOC include gender, number of relatives in the community, perception of air pollution, community satisfaction, medical checkups, ability to cope with daily life demands and general symptoms. When compared, the analysis indicates that Sarnia residents respond to considerably lower BTEX concentrations than the allowable 'safe' levels in the province of Ontario. In general, the results exhibit a dose-response gradient with annoyance score increasing with rising modelled pollutant concentrations. The observed relationships suggest that odour annoyance might be a function of true exposure and may serve as a proxy for air quality and ambient air pollution monitoring. However, questionnaire-based odour annoyance scores need to be longitudinally validated across different geographical scales and pollutants if they are to be adopted at the national level. PMID:23014924

  2. Tuning the ferromagnetic phase in the CDW compound SmNiC2 via chemical alloying

    PubMed Central

    Prathiba, G.; Kim, I.; Shin, S.; Strychalska, J.; Klimczuk, T.; Park, T.

    2016-01-01

    We report a study on tuning the charge density wave (CDW) ferromagnet SmNiC2 to a weakly coupled superconductor by substituting La for Sm. X-ray diffraction measurements show that the doped compounds obey Vegard’s law, where La (Lu) alloying expands (shrinks) the lattice due to its larger (smaller) atomic size than Sm. In the series Sm1−xLaxNiC2, CDW transition (TCDW = 148 K) for SmNiC2 is gradually suppressed, while the ferromagnetic (FM) ordering temperature (TC) at 17 K slightly increases up to x = 0.3. For x > 0.3, TC starts to decrease and there is no signature that could be related with the CDW phase. Electrical resistivity, magnetic susceptibility and specific heat measurements point toward the possible presence of a FM quantum critical point (QCP) near x = 0.92, where the TC is extrapolated to zero temperature. Superconductivity in LaNiC2 (Tsc = 2.9 K) is completely suppressed with small amount of Sm inclusion near the proposed FM critical point, indicating a competition between the two ordered phases. The tunable lattice parameters via chemical substitution (La,Lu) and the ensuing change among the ordered phases of ferromagnetism, CDW and superconductivity underscores that SmNiC2 provides a rich avenue to study the rare example of a FM QCP, where the broken symmetries are intricately correlated. PMID:27221309

  3. Tuning the ferromagnetic phase in the CDW compound SmNiC2 via chemical alloying

    NASA Astrophysics Data System (ADS)

    Prathiba, G.; Kim, I.; Shin, S.; Strychalska, J.; Klimczuk, T.; Park, T.

    2016-05-01

    We report a study on tuning the charge density wave (CDW) ferromagnet SmNiC2 to a weakly coupled superconductor by substituting La for Sm. X-ray diffraction measurements show that the doped compounds obey Vegard’s law, where La (Lu) alloying expands (shrinks) the lattice due to its larger (smaller) atomic size than Sm. In the series Sm1‑xLaxNiC2, CDW transition (TCDW = 148 K) for SmNiC2 is gradually suppressed, while the ferromagnetic (FM) ordering temperature (TC) at 17 K slightly increases up to x = 0.3. For x > 0.3, TC starts to decrease and there is no signature that could be related with the CDW phase. Electrical resistivity, magnetic susceptibility and specific heat measurements point toward the possible presence of a FM quantum critical point (QCP) near x = 0.92, where the TC is extrapolated to zero temperature. Superconductivity in LaNiC2 (Tsc = 2.9 K) is completely suppressed with small amount of Sm inclusion near the proposed FM critical point, indicating a competition between the two ordered phases. The tunable lattice parameters via chemical substitution (La,Lu) and the ensuing change among the ordered phases of ferromagnetism, CDW and superconductivity underscores that SmNiC2 provides a rich avenue to study the rare example of a FM QCP, where the broken symmetries are intricately correlated.

  4. Evaluation of the protective effect of chemical additives in the oxidation of phenolic compounds catalysed by peroxidase.

    PubMed

    Torres, Juliana Arriel; Chagas, Pricila Maria Batista; Silva, Maria Cristina; Dos Santos, Custódio Donizete; Corrêa, Angelita Duarte

    2016-01-01

    The use of oxidoredutive enzymes in removing organic pollutants has been the subject of much research. The oxidation of phenolic compounds in the presence of chemical additives has been the focus of this study. In this investigation, the influence of the additives polyethylene glycol and Triton X-100 was evaluated in the phenol oxidation, caffeic acid, chlorogenic acid and total phenolic compounds present in coffee processing wastewater (CPW) at different pH values, performed by turnip peroxidase and peroxidase extracted from soybean seed hulls. The influence of these additives was observed only in the oxidation of phenol and caffeic acid. In the oxidation of other studied phenolic compounds, the percentage of oxidation remained unchanged in the presence of these chemical additives. In the oxidation of CPW in the presence of additives, no change in the oxidation of phenolic compounds was observed. Although several studies show the importance of evaluating the influence of additives on the behaviour of enzymes, this study found a positive response from the economic point of view for the treatment of real wastewater, since the addition of these substances showed no influence on the oxidation of phenolic compounds, which makes the process less costly. PMID:26502790

  5. The chemical processing of gas-phase carbonyl compounds by sulfuric acid aerosols: 2,4-pentanedione

    NASA Astrophysics Data System (ADS)

    Nozière, Barbara; Riemer, Daniel D.

    This work investigates the interactions between gas-phase carbonyl compounds and sulfuric acid aerosols. It focuses on understanding the chemical processes, giving a first estimate of their importance in the atmosphere, and suggesting directions for further investigations. The solubility and reactivity of a compound with a large enolization constant, 2,4-pentanedione, in water/sulfuric acid solutions 0-96 wt% have been investigated at room temperature using the bubble column/GC-FID technique. 2,4-pentanedione was found to undergo aldol condensation at acidities as low as 20 wt% H 2SO 4, that is, well in the tropospheric range of aerosol composition. In agreement with well-established organic chemical knowledge, this reaction resulted in changes of color of the solutions of potential importance for the optical properties of the aerosols. 2,4-pentanedione was also found to undergo retroaldol reaction, specific to dicarbonyl compounds, producing acetone and acetaldehyde. The Henry's law coefficient for 2,4-pentanedione was found to be a factor 5 larger than the one of acetone over the whole range of acidity, with a value in water of H (297 K)=(155±27) M atm -1. A chemical system is proposed to describe the transformations of carbonyl compounds in sulfuric acid aerosols. Aldol condensation is likely to be the most common reaction for these compounds, probably involving a large number of the ones present in the atmosphere and a wide range of aerosol compositions. The enolization constant contributes as a proportional factor to the rate constant for aldol condensation, and is shown in this work to contribute as an additive constant to the Henry's law coefficient. In addition to the many important aspects of these reactions illustrated in this work, the rate of aldol condensation was estimated to be potentially fast enough for the losses of some compounds in acidic aerosols to compete with their gas-phase chemistry in the atmosphere.

  6. Collisionally activated dissociation and electron capture dissociation of several mass spectrometry-identifiable chemical cross-linkers.

    PubMed

    Chowdhury, Saiful M; Munske, Gerhard R; Tang, Xiaoting; Bruce, James E

    2006-12-15

    One of the challenges in protein interaction studies with chemical cross-linking stems from the complexity of intra-, inter-, and dead-end cross-linked peptide mixtures. We have developed new cross-linkers to study protein-protein interactions with mass spectrometry to improve the ability to deal with this complexity. Even the accurate mass capabilities of FTICR-MS alone cannot unambiguously identify cross-linked peptides from cell-labeling experiments due to the complexity of these mixtures resultant from the enormous number of possible cross-linked species. We have developed novel cross-linkers that have unique fragmentation features in the gas phase. The characteristics of these cross-linkers combined with the accurate mass capability of FTICR-MS can help distinguish cross-linking reaction products and assign protein identities. These cross-linkers that we call protein interaction reporters (PIRs) have been constructed with two reactive groups attached through two bonds that can be preferentially cleaved by low-energy CID of the respective protonated precursor ions. After cleavage of the labile bonds, the middle part of the linker serves as a reporter ion to aid identification of cross-linked peptides. This report highlights three new PIRs with new features that have been developed to improve the efficiency of release of reporter ions. The new cross-linkers reported here were tuned with the addition of an affinity tag, a hydrophilic group, a photocleavable group, and new low-energy MS/MS cleavable bonds. This report presents our investigation of the MSMS fragmentation behavior of selected protonated ions of the new compounds. The comprehensive fragmentation of these PIRs and PIR-labeled cross-linked peptides with low-energy collisions and an example of electron capture dissociation in FTICR-MS is presented. These new cross-linkers will contribute to current systems biology research by allowing acquisition of global or large-scale data on protein

  7. Integrated compound profiling screens identify the mitochondrial electron transport chain as the molecular target of the natural products manassantin, sesquicillin, and arctigenin.

    PubMed

    Lai, Kevin; Selinger, Douglas W; Solomon, Jonathan M; Wu, Hua; Schmitt, Esther; Serluca, Fabrizio C; Curtis, Daniel; Benson, John D

    2013-01-18

    Phenotypic compound screens can be used to identify novel targets in signaling pathways and disease processes, but the usefulness of these screens depends on the ability to quickly determine the target and mechanism of action of the molecules identified as hits. One fast route to discovering the mechanism of action of a compound is to profile its properties and to match this profile with those of compounds of known mechanism of action. In this work, the Novartis collection of over 12,000 pure natural products was screened for effects on early zebrafish development. The largest phenotypic class of hits, which caused developmental arrest without necrosis, contained known electron transport chain inhibitors and many compounds of unknown mechanism of action. High-throughput transcriptional profiling revealed that these compounds are mechanistically related to one another. Metabolic and biochemical assays confirmed that all of the molecules that induced developmental arrest without necrosis inhibited the electron transport chain. These experiments demonstrate that the electron transport chain is the target of the natural products manassantin, sesquicillin, and arctigenin. The overlap between the zebrafish and transcriptional profiling screens was not perfect, indicating that multiple profiling screens are necessary to fully characterize molecules of unknown function. Together, zebrafish screening and transcriptional profiling represent sensitive and scalable approaches for identifying bioactive compounds and elucidating their mechanism of action. PMID:23138533

  8. Detection of semi-volatile organic compounds (SVOCs) in surface water, soil, and groundwater in a chemical industrial park in Eastern China.

    PubMed

    Liu, Benhua; Li, Yuehua; Ma, Jianfeng; Huang, Linxian; Chen, Liang

    2016-01-01

    China is suffering from serious water and soil pollution, especially in the North China Plain. This work investigated semi-volatile organic compounds (SVOCs) in surface water, groundwater and soil within a chemical industrial park in Eastern China, for which the volatile organic compound (VOC) results have been previously reported. A total of 20 samples were collected from the field, and analyzed in the laboratory. A 100% detection frequency of SVOCs in samples from this chemical industrial park was observed (same as VOCs). Moreover, the detection frequency of 113 SVOCs in each sample reached 15.93, 12.39 and 20.35% for surface water, groundwater and soil, respectively. The most detected SVOCs in the park included N-containing SVOCs, polycyclic aromatic hydrocarbons, phthalates, organic pesticides and polychlorodiphenyls. The elevated detecting frequencies and concentration levels of SVOCs identified in the groundwater were attributed to the intensive chemical production activities in the park. In addition, the agricultural activities in the area might also have contributed to the SVOCs to the groundwater. The results of VOCs and SVOCs from this and previous studies suggest that the groundwater in this industrial park has been severely contaminated, and the contamination likely spreads beyond the park. Imminent hydrogeological assessments and remedial actions are warranted to eliminate the source and mitigate the potential plume expansion beyond the park boundary. PMID:26942541

  9. Comparing the potency of chemicals with multiple modes of action in aquatic toxicology: Acute toxicity due to narcosis versus reactive toxicity of acrylic compounds

    SciTech Connect

    Freidig, A.P.; Verhaar, H.J.M.; Hermens, J.L.M.

    1999-09-01

    A series of acrylates and methacrylates was used to illustrate a strategy to compare the importance of two modes of action (MOA) and thereby identify the predominant cause of acute fish toxicity. Acrylic compounds are known to be Michael acceptors and may therefore react with glutathione (GSH), causing GSH-depletion in vivo (reactive mechanism). On the other hand, acrylates may also act by a nonspecific mechanism (narcosis). The following two, physiologically meaningful parameters were calculated in order to estimate the contribution of these two mechanisms to the overall acute toxicity: (i) a lipid normalized body burden for narcosis and (ii) the potential degree of GSH depletion by chemical reactivity. The degree of GSH depletion was found to be related to the product of the reactivity toward GSH and the exposure concentration. This model was validated with four model compounds and an in vivo study. For both MOA, toxic ratios were calculated and compared for all chemicals in the series. The approach enables the comparison of the contribution to toxicity of chemicals with more than on MOA.

  10. Mining Molecular Pharmacological Effects from Biomedical Text: a Case Study for Eliciting Anti-Obesity/Diabetes Effects of Chemical Compounds.

    PubMed

    Dura, Elzbieta; Muresan, Sorel; Engkvist, Ola; Blomberg, Niklas; Chen, Hongming

    2014-05-01

    In the pharmaceutical industry, efficiently mining pharmacological data from the rapidly increasing scientific literature is very crucial for many aspects of the drug discovery process such as target validation, tool compound selection etc. A quick and reliable way is needed to collect literature assertions of selected compounds' biological and pharmacological effects in order to assist the hypothesis generation and decision-making of drug developers. INFUSIS, the text mining system presented here, extracts data on chemical compounds from PubMed abstracts. It involves an extensive use of customized natural language processing besides a co-occurrence analysis. As a proof-of-concept study, INFUSIS was used to search in abstract texts for several obesity/diabetes related pharmacological effects of the compounds included in a compound dictionary. The system extracts assertions regarding the pharmacological effects of each given compound and scores them by the relevance. For each selected pharmacological effect, the highest scoring assertions in 100 abstracts were manually evaluated, i.e. 800 abstracts in total. The overall accuracy for the inferred assertions was over 90 percent. PMID:27485890

  11. Identifying unknown minerals and compounds from X-ray diffraction patterns using the Johnson and Vand FORTRAN 4 computer program

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.

    1976-01-01

    Automated computer identification of minerals and compounds from unknown samples is provided along with detailed instructions and worked examples for use in graduate level courses in mineralogy and X-ray analysis applications.

  12. A Quantum Chemical and Statistical Study of Cytotoxic Activity of Compounds Isolated from Curcuma zedoaria.

    PubMed

    Hamdi, Omer Abdalla Ahmed; Anouar, El Hassane; Shilpi, Jamil A; Trabolsy, Zuhra Bashir Khalifa Al; Zain, Sharifuddin Bin Md; Zakaria, Nur Shahidatul Shida; Zulkefeli, Mohd; Weber, Jean-Frédéric F; Malek, Sri Nurestri A; Rahman, Syarifah Nur Syed Abdul; Awang, Khalijah

    2015-01-01

    A series of 21 compounds isolated from Curcuma zedoaria was subjected to cytotoxicity test against MCF7; Ca Ski; PC3 and HT-29 cancer cell lines; and a normal HUVEC cell line. To rationalize the structure-activity relationships of the isolated compounds; a set of electronic; steric and hydrophobic descriptors were calculated using density functional theory (DFT) method. Statistical analyses were carried out using simple and multiple linear regressions (SLR; MLR); principal component analysis (PCA); and hierarchical cluster analysis (HCA). SLR analyses showed that the cytotoxicity of the isolated compounds against a given cell line depend on certain descriptors; and the corresponding correlation coefficients (R2) vary from 0%-55%. MLR results revealed that the best models can be achieved with a limited number of specific descriptors applicable for compounds having a similar basic skeleton. Based on PCA; HCA and MLR analyses; active compounds were classified into subgroups; which was in agreement with the cell based cytotoxicity assay. PMID:25923077

  13. Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds.

    PubMed

    Ares, Ana M; Nozal, María J; Bernal, José

    2013-10-25

    Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided. PMID:23899380

  14. Eryngial (trans-2-dodecenal), a bioactive compound from Eryngium foetidum: its identification, chemical isolation, characterization and comparison with ivermectin in vitro.

    PubMed

    Forbes, W M; Gallimore, W A; Mansingh, A; Reese, P B; Robinson, R D

    2014-02-01

    Methanol-water (4:1, v/v) crude extracts (50 mg mL(-1)) of 25 Jamaican medicinal plants were screened in vitro for anthelmintic activity using infective third-stage larvae of Strongyloides stercoralis. The most effective extract was further chemically scrutinized to isolate and identify the source of the bioactivity, and the efficacy of this compound was compared with ivermectin. Eosin exclusion (0.1 mg mL(-1)) served as the indicator of mortality in all bioassays. A crude extract of Eryngium foetidum (Apiaceae) was significantly (Probit Analysis, P<0.05) more potent than the other plant extracts, taking 18.9 h to kill 50% (LT50) of the larvae. Further, the petrol extract of E. foetidum was significantly more effective (Probit Analysis, P<0.05) at killing the larvae (LT50, 4.7 h) than either its methanol-water or dichloromethane extract. The latter two effected less than 1% larval mortality after 120 h. With bioassay-driven column chromatography of the petrol extract, trans-2-dodecenal (eryngial) was identified and chemically isolated as the main anthelmintic compound in E. foetidum. There was a significant difference between the 24 h LD50 values (mm) of trans-2-dodecenal (0.461) and ivermectin (2.251) but there was none between the 48 h LD50 values (mm): trans-2-dodecenal (0.411) and ivermectin (0.499) in vitro. PMID:24139239

  15. Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.

    PubMed

    Shi, Yujun

    2015-02-17

    CONSPECTUS: Hot wire chemical vapor deposition (HWCVD), also referred to as catalytic CVD (Cat-CVD), has been used to produce Si-containing thin films, nanomaterials, and functional polymer coatings that have found wide applications in microelectronic and photovoltaic devices, in automobiles, and in biotechnology. The success of HWCVD is largely due to its various advantages, including high deposition rate, low substrate temperatures, lack of plasma-induced damage, and large-area uniformity. Film growth in HWCVD is induced by reactive species generated from primary decomposition on the metal wire or from secondary reactions in the gas phase. In order to achieve a rational and efficient optimization of the process, it is essential to identify the reactive species and to understand the chemical kinetics that govern the production of these precursor species for film growth. In this Account, we report recent progress in unraveling the complex gas-phase reaction chemistry in the HWCVD growth of silicon carbide thin films using organosilicon compounds as single-source precursors. We have demonstrated that laser ionization mass spectrometry is a powerful diagnostic tool for studying the gas-phase reaction chemistry when combined with the methods of isotope labeling and chemical trapping. The four methyl-substituted silane molecules, belonging to open-chain alkylsilanes, dissociatively adsorb on W and Ta filaments to produce methyl radical and H2 molecule. Under the typical deposition pressures, with increasing number of methyl substitution, the dominant chemistry occurring in the gas phase switches from silylene/silene reactions to free-radical short chain reactions. This change in dominant reaction intermediates from silylene/silene to methyl radicals explains the observation from thin film deposition that silicon carbide films become more C-rich with a decreasing number of Si-H bonds in the four precursor molecules. In the case of cyclic monosilacyclobutanes, we have

  16. The UV-filter benzophenone-1 inhibits 17beta-hydroxysteroid dehydrogenase type 3: Virtual screening as a strategy to identify potential endocrine disrupting chemicals.

    PubMed

    Nashev, Lyubomir G; Schuster, Daniela; Laggner, Christian; Sodha, Seloni; Langer, Thierry; Wolber, Gerhard; Odermatt, Alex

    2010-04-15

    The prevalence of male reproductive disorders and testicular cancer is steadily increasing. Because the exposure to chemicals disrupting natural hormone action has been associated with these diseases, it is important to identify endocrine disrupting chemicals (EDCs) and their targets of action. Here, a 3D-structural database that can be applied for virtual screening approaches to facilitate the identification of EDCs was constructed. The database was screened using pharmacophores of 17beta-hydroxysteroid dehydrogenase type 3 (17beta-HSD3), which catalyzes the last step of testosterone synthesis in testicular Leydig cells and plays an essential role during male sexual development. Among other chemicals, benzophenone (BP) UV-filters were predicted as potential 17beta-HSD3 inhibitors. Biological analyses revealed (2,4-dihydroxyphenyl)-phenylmethanone (also known as benzophenone-1, BP-1) as an inhibitor of human 17beta-HSD3 (IC(50) 1.05microM). BP-1 also efficiently blocked conversion of androstenedione to testosterone by mouse and rat 17beta-HSD3 in whole-organ enzyme assays. Moreover, BP-1 antagonized the testosterone-dependent activation of androgen receptors (IC(50) 5.7microM), suggesting synergistic anti-androgenic effects of BP-1 by preventing testosterone formation and blocking receptor activation. In addition, analyses of several commonly used UV-filters on estrogen- and androgen-metabolizing 17beta-HSD enzymes revealed 3-benzylidene camphor (3-BC) and 4-methylbenzylidene camphor (4-MBC) as low micromolar 17beta-HSD2 inhibitors. In conclusion, screening of virtual chemical structure libraries can facilitate the identification of compounds interfering with hormone action. The potential disruption of 17beta-HSD enzyme function by the UV-filters BP-1, 3-BC and 4-MBC requires further investigation and should be considered for safety assessment of these chemicals. PMID:20005209

  17. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay

    PubMed Central

    Lee, Kwang Jin; Oh, You Chang; Cho, Won Kyung; Ma, Jin Yeul

    2015-01-01

    This study investigated the antioxidant activity of one hundred kinds of pure chemical compounds found within a number of natural substances and oriental medicinal herbs (OMH). Three different methods were used to evaluate the antioxidant activity of DPPH radical-scavenging activity, ABTS radical-scavenging activity, and online screening HPLC-ABTS assays. The results indicated that 17 compounds exhibited better inhibitory activity against ABTS radical than DPPH radical. The IC50 rate of a more practical substance is determined, and the ABTS assay IC50 values of gallic acid hydrate, (+)-catechin hydrate, caffeic acid, rutin hydrate, hyperoside, quercetin, and kaempferol compounds were 1.03 ± 0.25, 3.12 ± 0.51, 1.59 ± 0.06, 4.68 ± 1.24, 3.54 ± 0.39, 1.89 ± 0.33, and 3.70 ± 0.15 μg/mL, respectively. The ABTS assay is more sensitive to identifying the antioxidant activity since it has faster reaction kinetics and a heightened response to antioxidants. In addition, there was a very small margin of error between the results of the offline-ABTS assay and those of the online screening HPLC-ABTS assay. We also evaluated the effects of 17 compounds on the NO secretion in LPS-stimulated RAW 264.7 cells and also investigated the cytotoxicity of 17 compounds using a cell counting kit (CCK) in order to determine the optimal concentration that would provide an effective anti-inflammatory action with minimum toxicity. These results will be compiled into a database, and this method can be a powerful preselection tool for compounds intended to be studied for their potential bioactivity and antioxidant activity related to their radical-scavenging capacity. PMID:26504472

  18. Xlink-Identifier: An Automated Data Analysis Platform for Confident Identifications of Chemically Cross-linked Peptides using Tandem Mass Spectrometry

    PubMed Central

    Du, Xiuxia; Chowdhury, Saiful M.; Manes, Nathan P.; Wu, Si; Mayer, M. Uljana; Adkins, Joshua N.; Anderson, Gordon A.; Smith, Richard D.

    2011-01-01

    Chemical cross-linking combined with mass spectrometry provides a powerful method for identifying protein-protein interactions and probing the structure of protein complexes. A number of strategies have been reported that take advantage of the high sensitivity and high resolution of modern mass spectrometers. Approaches typically include synthesis of novel cross-linking compounds, and/or isotopic labelling of the cross-linking reagent and/or protein, and label-free methods. We report Xlink-Identifier, a comprehensive data analysis platform that has been developed to support label-free analyses. It can identify inter-peptide, intra-peptide, and deadend cross-links as well as underivatized peptides. The software streamlines data pre-processing, peptide scoring, and visualization and provides an overall data analysis strategy for studying protein-protein interactions and protein structure using mass spectrometry. The software has been evaluated using a custom synthesized cross-linking reagent that features an enrichment tag. Xlink-Identifier offers the potential to perform large-scale identifications of protein-protein interactions using tandem mass spectrometry. PMID:21175198

  19. Direct atmospheric pressure chemical ionisation ion trap mass spectrometry for aroma analysis: Speed, sensitivity and resolution of isobaric compounds

    NASA Astrophysics Data System (ADS)

    Jublot, Lionel; Linforth, Robert S. T.; Taylor, Andrew J.

    2005-06-01

    Atmospheric pressure chemical ionisation (APCI) sources were developed for real time analysis of volatile release from foods using an ion trap (IT) mass spectrometer (MS). Key objectives were spectral simplicity (minimal fragmentation), response time and signal to noise ratio. The benefits of APCI-IT-MS were assessed by comparing the performance for in vivo and headspace analyses with that obtained using APCI coupled to a quadrupole mass analyser. Using MS-MS, direct APCI-IT-MS was able to differentiate mixtures of some C6 and terpene isobaric aroma compounds. Resolution could be achieved for some compounds by monitoring specific secondary ions. Direct resolution was also achieved with two of the three isobaric compounds released from chocolate with time as the sample was eaten.

  20. Comparison of predicted and derived measures of volatile organic compounds inside four relocatable classrooms due to identified interior finish sources

    SciTech Connect

    Hodgson, Alfred T.; Shendell, Derek G.; Fisk, William J.; Apte, Michael G.

    2003-06-01

    Indoor exposures to toxic and odorous volatile organic compounds (VOCs) are of general concern. Recently, VOCs in portable or relocatable classrooms (RCs) have received particular attention. However, very little was known about indoor environmental quality (IEQ) and the sources, composition, and indoor concentrations of VOCs in RCs. This project task focused on developing and demonstrating a process for selecting interior finish materials for RCs that have relatively low impacts with respect to their emissions of toxic and odorous VOCs. This task was part of a larger project to demonstrate the potential for simultaneous improvements in IEQ and energy efficiency in four new RCs equipped both with a continuously ventilating advanced heating, ventilating, and air conditioning system (HVAC) and a standard HVAC system. These HVACs were operated on alternate weeks. One RC per pair was constructed with standard interior finish materials, and the other included alternate interior materials identified in our prior laboratory study to have low VOC emissions. The RCs were sited in side-by-side pairs at two elementary schools in distinct northern California climate zones. Classroom VOC emission rates (mg hr{sup -1}) and concentrations were predicted based on VOC emission factors ({micro}g m{sup -2} hr{sup -1}) measured for individual materials in the laboratory, the quantities of installed materials and design ventilation rates. Predicted emission rates were compared to values derived from classroom measurements of VOC concentrations and ventilation rates made at pre-occupancy, eight weeks, and 27 weeks. Predicted concentrations were compared to measured integrated VOC indoor minus outdoor concentrations during school hours in the fall cooling season with the advanced HVAC operated. These measured concentrations also were compared between standard and material-modified RCs. Our combined laboratory and field process proved effective by correctly predicting that IEQ impacts of

  1. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications

    NASA Technical Reports Server (NTRS)

    Collis, Ward J.; Abul-Fadl, Ali

    1988-01-01

    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  2. Model for the Vaporization of Mixed Organometallic Compounds in the Metalorganic Chemical Vapor Deposition of High Temperature Superconducting Films

    NASA Technical Reports Server (NTRS)

    Meng, Guangyao; Zhou, Gang; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1993-01-01

    A model of the vaporization and mass transport of mixed organometallics from a single source for thin film metalorganic chemical vapor deposition is presented. A stoichiometric gas phase can be obtained from a mixture of the organometallics in the desired mole ratios, in spite of differences in the volatilities of the individual compounds. Proper film composition and growth rates are obtained by controlling the velocity of a carriage containing the organometallics through the heating zone of a vaporizer.

  3. Toward Relatively General and Accurate Quantum Chemical Predictions of Solid-State 17O NMR Chemical Shifts in Various Biologically Relevant Oxygen-containing Compounds

    PubMed Central

    Rorick, Amber; Michael, Matthew A.; Yang, Liu; Zhang, Yong

    2015-01-01

    Oxygen is an important element in most biologically significant molecules and experimental solid-state 17O NMR studies have provided numerous useful structural probes to study these systems. However, computational predictions of solid-state 17O NMR chemical shift tensor properties are still challenging in many cases and in particular each of the prior computational work is basically limited to one type of oxygen-containing systems. This work provides the first systematic study of the effects of geometry refinement, method and basis sets for metal and non-metal elements in both geometry optimization and NMR property calculations of some biologically relevant oxygen-containing compounds with a good variety of XO bonding groups, X= H, C, N, P, and metal. The experimental range studied is of 1455 ppm, a major part of the reported 17O NMR chemical shifts in organic and organometallic compounds. A number of computational factors towards relatively general and accurate predictions of 17O NMR chemical shifts were studied to provide helpful and detailed suggestions for future work. For the studied various kinds of oxygen-containing compounds, the best computational approach results in a theory-versus-experiment correlation coefficient R2 of 0.9880 and mean absolute deviation of 13 ppm (1.9% of the experimental range) for isotropic NMR shifts and R2 of 0.9926 for all shift tensor properties. These results shall facilitate future computational studies of 17O NMR chemical shifts in many biologically relevant systems, and the high accuracy may also help refinement and determination of active-site structures of some oxygen-containing substrate bound proteins. PMID:26274812

  4. A model explaining and predicting lamb flavour from the aroma-active chemical compounds released upon grilling light lamb loins.

    PubMed

    Bueno, Mónica; Campo, M Mar; Cacho, Juan; Ferreira, Vicente; Escudero, Ana

    2014-12-01

    The objective of the work is to understand the role of the different aroma compounds in the perception of the local "lamb flavour" concept. For this, a set of 70 loins (Longissimus dorsi) from approximately seventy day-old Rasa Aragonesa male lambs were grilled and the aroma-active chemicals released during the grilling process were trapped and analyzed. Carbonyl compounds were derivatizated and determined by GC-NCI-MS, whereas other aromatic compounds were directly analyzed by GC-GC-MS. Odour activity values (OAVs) were calculated using their odour threshold values in air. Lamb flavour could be satisfactory explained by a partial least-squares model (74% explained variance in cross-validation) built by the OAVs of 32 aroma-active chemical compounds. The model demonstrates that the lamb flavour concept is the result of a complex balance. Its intensity critically and positively depends to the levels of volatile fatty acids and several dimethylpyrazines while is negatively influenced by the different alkenals and alkadienals. (E,E)-2,4-decadienal and (E)-2-nonenal showed top OAVs. PMID:25089786

  5. Enhancing of chemical compound and drug name recognition using representative tag scheme and fine-grained tokenization

    PubMed Central

    2015-01-01

    Background The functions of chemical compounds and drugs that affect biological processes and their particular effect on the onset and treatment of diseases have attracted increasing interest with the advancement of research in the life sciences. To extract knowledge from the extensive literatures on such compounds and drugs, the organizers of BioCreative IV administered the CHEMical Compound and Drug Named Entity Recognition (CHEMDNER) task to establish a standard dataset for evaluating state-of-the-art chemical entity recognition methods. Methods This study introduces the approach of our CHEMDNER system. Instead of emphasizing the development of novel feature sets for machine learning, this study investigates the effect of various tag schemes on the recognition of the names of chemicals and drugs by using conditional random fields. Experiments were conducted using combinations of different tokenization strategies and tag schemes to investigate the effects of tag set selection and tokenization method on the CHEMDNER task. Results This study presents the performance of CHEMDNER of three more representative tag schemes-IOBE, IOBES, and IOB12E-when applied to a widely utilized IOB tag set and combined with the coarse-/fine-grained tokenization methods. The experimental results thus reveal that the fine-grained tokenization strategy performance best in terms of precision, recall and F-scores when the IOBES tag set was utilized. The IOBES model with fine-grained tokenization yielded the best-F-scores in the six chemical entity categories other than the "Multiple" entity category. Nonetheless, no significant improvement was observed when a more representative tag schemes was used with the coarse or fine-grained tokenization rules. The best F-scores that were achieved using the developed system on the test dataset of the CHEMDNER task were 0.833 and 0.815 for the chemical documents indexing and the chemical entity mention recognition tasks, respectively. Conclusions The

  6. Chemicals identified in human biological media: a data base. Third annual report, October 1981

    SciTech Connect

    Cone, M.V.; Baldauf, M.F.; Martin, F.M.

    1981-12-01

    Part 2 contains the data base in tabular format. There are two sections, the first with records on nondrug substances, and the second with records on drugs. Chemicals in each section are arranged alphabetically by CAS preferred name, CAS registry number, formula, atomic weight, melting point, boiling point, and vapor pressure. Tissues are listed alphabetically with exposure route, analytical method, number of cases, range, and mean - when available in the source document. A variety of information may also be included that is pertinent to the range and mean as well as experimental design, demography, health effects, pathology, morphology, and toxicity. Review articles are included in the data base; however, no data have been extracted from such documents because the original research articles are included.

  7. Identifying and Quantifying Chemical Forms of Sediment-Bound Ferrous Iron.

    NASA Astrophysics Data System (ADS)

    Kohler, M.; Kent, D. B.; Bekins, B. A.; Cozzarelli, I.; Ng, G. H. C.

    2015-12-01

    Aqueous Fe(II) produced by dissimilatory iron reduction comprises only a small fraction of total biogenic Fe(II) within an aquifer. Most biogenic Fe(II) is bound to sediments on ion exchange sites; as surface complexes and, possibly, surface precipitates; or incorporated into solid phases (e.g., siderite, magnetite). Different chemical forms of sediment-bound Fe(II) have different reactivities (e.g., with dissolved oxygen) and their formation or destruction by sorption/desorption and precipitation/dissolution is coupled to different solutes (e.g., major cations, H+, carbonate). We are quantifying chemical forms of sediment-bound Fe(II) using previously published extractions, novel extractions, and experimental studies (e.g., Fe isotopic exchange). Sediments are from Bemidji, Minnesota, where biodegradation of hydrocarbons from a burst oil pipeline has driven extensive dissimilatory Fe(III) reduction, and sites potentially impacted by unconventional oil and gas development. Generally, minimal Fe(II) was mobilized from ion exchange sites (batch desorption with MgCl2 and repeated desorption with NH4Cl). A < 2mm sediment fraction from the iron-reducing zone at Bemidji had 1.8umol/g Fe(II) as surface complexes or carbonate phases (sodium acetate at pH 5) of which ca. 13% was present as surface complexes (FerroZine extractions). Total bioavailable Fe(III) and biogenic Fe(II) (HCl extractions) was 40-50 umole/g on both background and iron-reducing zone sediments . Approximately half of the HCl-extractable Fe from Fe-reducing zone sediments was Fe(II) whereas 12 - 15% of Fe extracted from background sediments was present as Fe(II). One-third to one-half of the total biogenic Fe(II) extracted from sediments collected from a Montana prairie pothole located downgradient from a produced-water disposal pit was present as surface-complexed Fe(II).

  8. Cytotoxic Activity and Chemical Composition of the Root Extract from the Mexican Species Linum scabrellum: Mechanism of Action of the Active Compound 6-Methoxypodophyllotoxin

    PubMed Central

    Alejandre-García, Ivonne; Álvarez, Laura; Cardoso-Taketa, Alexandre; González-Maya, Leticia; Antúnez, Mayra; Salas-Vidal, Enrique; Díaz, J. Fernando; Marquina-Bahena, Silvia; Villarreal, María Luisa

    2015-01-01

    The cytotoxic activity and the chemical composition of the dichloromethane/methanol root extract of Linum scabrellum Planchon (Linaceae) were analyzed. Using NMR spectra and mass spectrometry analyses of the extract we identified eight main constituents: oleic acid (1), octadecenoic acid (2), stigmasterol (3), α-amyrin (4), pinoresinol (5), 6 methoxypodophyllotoxin (6), coniferin (7), and 6-methoxypodophyllotoxin-7-O-β-D-glucopyranoside (8). By using the sulforhodamine B assay, an important cytotoxic activity against four human cancer cell lines, HF6 colon (IC50 = 0.57 μg/mL), MCF7 breast (IC50 = 0.56 μg/mL), PC3 prostate (IC50 = 1.60 μg/mL), and SiHa cervical (IC50 = 1.54 μg/mL), as well as toward the normal fibroblasts line HFS-30 IC50 = 1.02 μg/mL was demonstrated. Compound 6 (6-methoxypodophyllotoxin) was responsible for the cytotoxic activity exhibiting an IC50 value range of 0.0632 to 2.7433 µg/mL against the tested cell lines. Cell cycle studies with compound 6 exhibited a cell arrest in G2/M of the prostate PC3 cancer cell line. Microtubule disruption studies demonstrated that compound 6 inhibited the polymerization of tubulin through its binding to the colchicine site (binding constant Kb = 7.6 × 106 M−1). A dose-response apoptotic effect was also observed. This work constitutes the first investigation reporting the chemical composition of L. scabrellum and the first study determining the mechanism of action of compound 6. PMID:26246833

  9. Evaluation of performance reference compounds (PRCs) to monitor emerging polar contaminants by polar organic chemical integrative samplers (POCIS) in rivers.

    PubMed

    Carpinteiro, Inmaculada; Schopfer, Adrien; Estoppey, Nicolas; Fong, Camille; Grandjean, Dominique; de Alencastro, Luiz F

    2016-02-01

    In this work, a method combining polar organic chemical integrative samplers (POCIS) and ultraperformance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was assessed for the determination of two corrosion inhibitors (benzotriazole and methylbenzotriazole), seven pesticides (atrazine, diuron, isoproturon, linuron, metolachlor, penconazole, terbuthylazine), and four pharmaceuticals (carbamazepine, diclofenac, metformin, sulfamethoxazole) in river water. As a first step, two POCIS sorbents, hydrophilic-lipophilic balance (HLB) and Strata X-CW, were compared. The comparison of the uptake profiles of the studied compounds showed that the HLB sorbent provides better uptake (higher sampled amount and better linearity) than Strata X-CW except for the basic compound metformin. Since the sampling rate (R s) of POCIS depends on environmental factors, seven compounds were evaluated as potential performance reference compounds (PRCs) through kinetic experiments. Deisopropylatrazine-d5 (DIA-d5) and, as far as we know, for the first time 4-methylbenzotriazole-d3 showed suitable desorption. The efficiency of both compounds to correct for the effect of water velocity was shown using a channel system in which POCIS were exposed to 2 and 50 cm s(-1). Finally, POCIS were deployed upstream and downstream of agricultural wine-growing and tree-growing areas in the Lienne River and the Uvrier Canal (Switzerland). The impact of the studied areas on both streams could be demonstrated. PMID:26637214

  10. Influence of chemical doping and hydrostatic pressure on the magnetic properties of Mn1 -xFexAs magnetocaloric compounds

    NASA Astrophysics Data System (ADS)

    Rocco, D. L.; de Campos, A.; Carvalho, A. Magnus G.; dos Santos, A. O.; da Silva, L. M.; Gama, S.; da Luz, M. S.; von Ranke, P.; de Oliveira, N. A.; Coelho, A. A.; Cardoso, L. P.; Souza, J. A.

    2016-02-01

    This paper presents the results of an investigation of the magnetic and structural properties of Mn1-xFexAs compounds under hydrostatic pressure and chemical doping. The chemical doping was performed by using low Fe doping levels (x =0 , 0.003, 0.006, 0.010, 0.015, and 0.018), which emulates the negative pressure effect on the crystal structure. The results of this approach were compared with the physical pressure effect (hydrostatic pressure from 0 to 2.2 kbar) on the Mn0.997Fe0.003As . Both approaches exhibit the same magnetic behaviors: the TC and saturation magnetization decrease as the pressure increases; for the highest pressure studied, an orthorhombic antiferromagnetic phase occurs below the critical temperature and coexists with the ferromagnetic hexagonal phase. The equivalence between hydrostatic pressure and chemical doping indicates that the Fe doping only causes structural deformation. In addition, we performed magnetic measurements at high temperature (up to 520 K) on the samples with x =0 and 0.003 in order to investigate the magnetic behavior above TC=310 K. These results, along with structural characterization, clearly show that between TC and Tt the system is a weak antiferromagnet with short-range order confined only in the a b plane. Finally, using the low- and high-temperature data, the magnetic phase diagrams of the compound under hydrostatic pressure and chemical doping were redrawn.

  11. Chemical decomposition of iron in Spanish coal pyrolysis identified by Moessbauer spectroscopy at different temperatures

    SciTech Connect

    Ahmed, M.A.; Blesa, M.J.; Moliner, R.

    2007-07-01

    Three chars from lignite (Se), sub bituminous (AA6), bituminous (BCA) Spanish coals produced at 673 K, 773 K, and 873 K were analyzed by Moessbauer spectroscopy at room temperature, and 80 K, except BCA char produced at 873 K, its analysis was extended down to 10 K. Least square fit analysis for the spectra of Se chars showed that, jarosite/Fe{sup 3+} was hydrolyzed into rozenite/Fe2+ at 873 K. Pyrite was reduced to troilite (FeS) at 773 K. Both jarosite and very broad doublet were observed at T = 673 K. The hyperfine parameters of this phase gave close values to microcrystalline iron in either Fe (II) or Fe (III) states. On the other hand, the spectral analysis of AA6 chars ascertained that rozenite was hydrolyzed to goethite (FeOOH) in the range of 773 K-873 K, whereas pyrite was reduced to pyrrohotite (Fe{sub 1-x}S). However, no chemical changes were observed for jarosite in all AA6-chars. Likewise, siderite was changed into magnetite in the BCA chars produced at 673 K and 773 K. Spectrum performed at 10 K for char produced at 873 K proved the presence of ferrihydrite (H = 489.2 kOe), troilite (H = 355.3 kOe) and a broad paramagnetic doublet belonging to an organic iron. These phases and still remaining siderite inferred also that such transformations are incomplete.

  12. Genetic and chemical validation identifies Mycobacterium tuberculosis topoisomerase I as an attractive anti-tubercular target.

    PubMed

    Ravishankar, Sudha; Ambady, Anisha; Awasthy, Disha; Mudugal, Naina Vinay; Menasinakai, Sreenivasaiah; Jatheendranath, Sandesh; Guptha, Supreeth; Sharma, Sreevalli; Balakrishnan, Gayathri; Nandishaiah, Radha; Ramachandran, Vasanthi; Eyermann, Charles J; Reck, Folkert; Rudrapatna, Suresh; Sambandamurthy, Vasan K; Sharma, Umender K

    2015-09-01

    DNA topoisomerases perform the essential function of maintaining DNA topology in prokaryotes. DNA gyrase, an essential enzyme that introduces negative supercoils, is a clinically validated target. However, topoisomerase I (Topo I), an enzyme responsible for DNA relaxation has received less attention as an antibacterial target, probably due to the ambiguity over its essentiality in many organisms. The Mycobacterium tuberculosis genome harbors a single topA gene with no obvious redundancy in its function suggesting an essential role. The topA gene could be inactivated only in the presence of a complementing copy of the gene in M. tuberculosis. Furthermore, down-regulation of topA in a genetically engineered strain of M. tuberculosis resulted in loss of bacterial viability which correlated with a concomitant depletion of intracellular Topo I levels. The topA knockdown strain of M. tuberculosis failed to establish infection in a murine model of TB and was cleared from lungs in two months post infection. Phenotypic screening of a Topo I overexpression strain led to the identification of an inhibitor, thereby providing chemical validation of this target. Thus, our work confirms the attractiveness of Topo I as an anti-mycobacterial target. PMID:26073894

  13. Evaluation of a Silicone Membrane as an Alternative to Human Skin for Determining Skin Permeation Parameters of Chemical Compounds.

    PubMed

    Uchida, Takashi; Yakumaru, Masafumi; Nishioka, Keisuke; Higashi, Yoshihiro; Sano, Tomohiko; Todo, Hiroaki; Sugibayashi, Kenji

    2016-01-01

    We evaluated the effectiveness of a silicone membrane as an alternative to human skin using the skin permeation parameters of chemical compounds. An in vitro permeation study using 15 model compounds was conducted, and permeation parameters comprising permeability coefficient (P), diffusion parameter (DL(-2)), and partition parameter (KL) were calculated from each permeation profile. Significant correlations were obtained in log P, log DL(-2), and log KL values between the silicone membrane and human skin. DL(-2) values of model compounds, except flurbiprofen, in the silicone membrane were independent of the lipophilicity of the model compounds and were 100-fold higher than those in human skin. For antipyrine and caffeine, which are hydrophilic, KL values in the silicone membrane were 100-fold lower than those in human skin, and P values, calculated as the product of a DL(-2) and KL, were similar. For lipophilic compounds, such as n-butyl paraben and flurbiprofen, KL values for silicone were similar to or 10-fold higher than those in human skin, and P values for silicone were 100-fold higher than those in human skin. Furthermore, for amphiphilic compounds with log Ko/w values from 0.5 to 3.5, KL values in the silicone membrane were 10-fold lower than those in human skin, and P values for silicone were 10-fold higher than those in human skin. The silicone membrane was useful as a human skin alternative in an in vitro skin permeation study. However, depending on the lipophilicity of the model compounds, some parameters may be over- or underestimated. PMID:27581638

  14. Callicarpenal and Intermedeol: Two Natural Arthropod Feeding Deterrent and Repellent Compounds Identified from the Southern Folk Remedy Plant, Callicarpa americana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In previous studies on the American beautyberry (Callicarpa americana), it was demonstrated that callicarpenal and intermedeol were responsible for the arthropod repellent and feeding deterrent activity of this folk remedy. Both compounds showed significant bite-deterring activity against Aedes aeg...

  15. Students' Predictions about the Sensory Properties of Chemical Compounds: Additive versus Emergent Frameworks

    ERIC Educational Resources Information Center

    Talanquer, Vicente

    2008-01-01

    We investigated general chemistry students' intuitive ideas about the expected properties of the products of a chemical reaction. In particular, we analyzed college chemistry students' predictions about the color, smell, and taste of the products of chemical reactions represented at the molecular level. The study was designed to explore the extent…

  16. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: A comparison of three relativistic computational methods

    NASA Astrophysics Data System (ADS)

    Arcisauskaite, Vaida; Melo, Juan I.; Hemmingsen, Lars; Sauer, Stephan P. A.

    2011-07-01

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL2 (L = Cl, Br, I, CH3) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH3)2 within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ˜2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr2 and HgI2 when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ˜500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ˜100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible.

  17. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.

    PubMed

    Arcisauskaite, Vaida; Melo, Juan I; Hemmingsen, Lars; Sauer, Stephan P A

    2011-07-28

    We investigate the importance of relativistic effects on NMR shielding constants and chemical shifts of linear HgL(2) (L = Cl, Br, I, CH(3)) compounds using three different relativistic methods: the fully relativistic four-component approach and the two-component approximations, linear response elimination of small component (LR-ESC) and zeroth-order regular approximation (ZORA). LR-ESC reproduces successfully the four-component results for the C shielding constant in Hg(CH(3))(2) within 6 ppm, but fails to reproduce the Hg shielding constants and chemical shifts. The latter is mainly due to an underestimation of the change in spin-orbit contribution. Even though ZORA underestimates the absolute Hg NMR shielding constants by ∼2100 ppm, the differences between Hg chemical shift values obtained using ZORA and the four-component approach without spin-density contribution to the exchange-correlation (XC) kernel are less than 60 ppm for all compounds using three different functionals, BP86, B3LYP, and PBE0. However, larger deviations (up to 366 ppm) occur for Hg chemical shifts in HgBr(2) and HgI(2) when ZORA results are compared with four-component calculations with non-collinear spin-density contribution to the XC kernel. For the ZORA calculations it is necessary to use large basis sets (QZ4P) and the TZ2P basis set may give errors of ∼500 ppm for the Hg chemical shifts, despite deceivingly good agreement with experimental data. A Gaussian nucleus model for the Coulomb potential reduces the Hg shielding constants by ∼100-500 ppm and the Hg chemical shifts by 1-143 ppm compared to the point nucleus model depending on the atomic number Z of the coordinating atom and the level of theory. The effect on the shielding constants of the lighter nuclei (C, Cl, Br, I) is, however, negligible. PMID:21806118

  18. Screening of novel chemical compounds as possible inhibitors of carbonic anhydrase and photosynthetic activity of photosystem II.

    PubMed

    Karacan, Mehmet Sayım; Zharmukhamedov, Sergei K; Mamaş, Serhat; Kupriyanova, Elena V; Shitov, Alexandr V; Klimov, Vyacheslav V; Özbek, Neslihan; Özmen, Ümmühan; Gündüzalp, Ayla; Schmitt, Franz-Josef; Karacan, Nurcan; Friedrich, Thomas; Los, Dmitry A; Carpentier, Robert; Allakhverdiev, Suleyman I

    2014-08-01

    Thirty novel chemical compounds were designed and synthesized expecting that they would be possible inhibitors. From this number eleven were organic bases, twenty-four were their organic derivatives and fourteen were metal complexes. Screening of these chemicals by their action on photosynthetic electron transfer (PET) and carbonic anhydrase (CA) activity (CAA) of photosystem II (PSII), α-CA, as well as β-CA was done. Several groups were revealed among them. Some of them are capable to suppress either one, two, three, or even all of the measured activities. As example, one of the Cu(II)-phenyl sulfonylhydrazone complexes (compound 25) suppresses CAA of α-CA by 88%, CAA of β-CA by 100% inhibition; CAA of PSII by 100% and the PSII photosynthetic activity by 66.2%. The Schiff base compounds (12, 15) and Cu(II)-phenyl sulfonylhydrazone complexes (25, 26) inhibited the CAA and PET of PSII significantly. The obtained data indicate that the PSII donor side is a target of the inhibitory action of these agents. Some physico- or electrochemical properties such as diffusion coefficient, number of transferred electrons, peak potential and heterogeneous standard rate constants of the compounds were determined in nonaqueous media. pKa values were also determined in nonaqueous and aqueous media. Availability in the studied group of novel chemical agents possessing different inhibitory activity allow in future to isolate the "active part" in the structure of the inhibitors responsible for different inhibitory mechanisms, as well as to determine the influence of side substituters on its inhibitory efficiency. PMID:24418071

  19. Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed.

    PubMed

    Bach, Cristina; Dauchy, Xavier; Chagnon, Marie-Christine; Etienne, Serge

    2012-03-01

    A declaration of conformity according to European regulation No. 10/2011 is required to ensure the safety of plastic materials in contact with foodstuffs. This regulation established a positive list of substances that are authorized for use in plastic materials. Some compounds are subject to restrictions and/or specifications according to their toxicological data. Despite this, the analysis of PET reveals some non-intentionally added substances (NIAS) produced by authorized initial reactants and additives. Genotoxic and estrogenic activities in PET-bottled water have been reported. Chemical mixtures in bottled water have been suggested as the source of these toxicological effects. Furthermore, sample preparation techniques, such as solid-phase extraction (SPE), to extract estrogen-like compounds in bottled water are controversial. It has been suggested that inappropriate extraction methods and sample treatment may result in false-negative or positive responses when testing water extracts in bioassays. There is therefore a need to combine chemical analysis with bioassays to carry out hazard assessments. Formaldehyde, acetaldehyde and antimony are clearly related to migration from PET into water. However, several studies have shown other theoretically unexpected substances in bottled water. The origin of these compounds has not been clearly established (PET container, cap-sealing resins, background contamination, water processing steps, NIAS, recycled PET, etc.). Here, we surveyed toxicological studies on PET-bottled water and chemical compounds that may be present therein. Our literature review shows that contradictory results for PET-bottled water have been reported, and differences can be explained by the wide variety of analytical methods, bioassays and exposure conditions employed. PMID:22196043

  20. Genome scan linkage analysis identifies quantitative trait loci affecting serum clinical-chemical traits in Korean native chicken.

    PubMed

    Seo, Dong-Won; Park, Hee-Bok; Jin, Shil; Cahyadi, Muhammad; Choi, Nuri; Heo, Kang-Nyeong; Jo, Cheorun; Lee, Jun-Heon

    2016-07-01

    Alterations in robustness- and health-related traits lead to physiological changes, such as changes in the serum clinical chemical parameters in individuals. Therefore, clinical-chemical traits can be used as biomarkers to examine the health status of chickens. The aim of the present study was to detect the quantitative trait loci (QTLs) influencing eight clinical-chemical traits (glucose, total protein, creatinine, high-density lipoprotein cholesterol, total cholesterol, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and α-amylase) in an F1 nuclear families comprising 83 F0 founders and 585 F1 progeny of Korean native chickens. Genotypic data on 135 DNA markers representing 26 autosomes have been generated for this resource pedigree. The total length of the map was 2729.4 cM. We used a multipoint variance component linkage approach to identify QTLs for the traits. A significant QTL affecting serum α-amylase levels was identified on chicken chromosome (GGA) 7 [logarithm of odds (LOD) = 3.02, P value = 1.92 × 10(-4)]. Additionally, we detected several suggestive linkage signals for the levels of total cholesterol, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and creatinine on GGA 4, 12, 13, and 15. In this study, serum α-amylase levels related significant QTL was mapped on GGA7 and cholesterol, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and creatinine traits related suggestive QTLs were detected on GGA4, 12, 13 and 15, respectively. Further verification and fine mapping of these identified QTLs can provide valuable information for understanding the variations of clinical chemical trait in chickens. PMID:27188424

  1. Economics of resynchronization strategies including chemical tests to identify nonpregnant cows.

    PubMed

    Giordano, J O; Fricke, P M; Cabrera, V E

    2013-02-01

    Our objectives were to assess (1) the economic value of decreasing the interval between timed artificial insemination (TAI) services when using a pregnancy test that allows earlier identification of nonpregnant cows; and (2) the effect of pregnancy loss and inaccuracy of a chemical test (CT) on the economic value of a pregnancy test for dairy farms. Simulation experiments were performed using a spreadsheet-based decision support tool. In experiment 1, we assessed the effect of changing the interbreeding interval (IBI) for cows receiving TAI on the value of reproductive programs by simulating a 1,000-cow dairy herd using a combination of detection of estrus (30 to 80% of cows detected in estrus) and TAI. The IBI was incremented by 7d from 28 to 56 d to reflect intervals either observed (35 to 56 d) or potentially observed (28 d) in dairy operations. In experiment 2, we evaluated the effect of accuracy of the CT and additional pregnancy loss due to earlier testing on the value of reproductive programs. The first scenario compared the use of a CT 31 ± 3 d after a previous AI with rectal palpation (RP) 39 ± 3 d after AI. The second scenario used a CT 24 ± 3 d after AI or transrectal ultrasound (TU) 32 d after AI. Parameters evaluated included sensitivity (Se), specificity (Sp), questionable diagnosis (Qd), cost of the CT, and expected pregnancy loss. Sensitivity analysis was performed for all possible combinations of parameter values to determine their relative importance on the value of the CT. In experiment 1, programs with a shorter IBI had greater economic net returns at all levels of detection of estrus, and use of chemical tests available on the market today might be beneficial compared with RP. In experiment 2, the economic value of programs using a CT could be either greater or less than that of RP and TU, depending on the value for each of the parameters related to the CT evaluated. The value of the program using the CT was affected (in order) by (1) Se, (2

  2. Identification of chemical compounds present in different fractions of Annona reticulata L. leaf by using GC-MS.

    PubMed

    Rout, Soumya P; Kar, Durga M

    2014-01-01

    GC-MS analysis of fractions prepared from hydro-alcoholic extract of Annona reticulata Linn (Family Annonaceae) leaf revealed the presence of 9,10-dimethyltricyclo[4.2.1.1(2,5)]decane-9,10-diol; 4-(1,5-dihydroxy-2,6,6-trimethylcyclohex-2-enyl)but-3-en-2-one; 3,7-dimethyl-6-nonen-1-ol acetate; 9-octadecenamide,(Z)-; glycerine; D-glucose,6-O-α-D-galactopyranosyl-; desulphosinigrin and α-methyl-D-mannopyranoside as few of the major compounds in different fractions. The presence of these compounds in the plant has been identified for the first time. PMID:25050939

  3. Utilizing Chemical Genomics to Identify Cytochrome b as a Novel Drug Target for Chagas Disease

    PubMed Central

    Khare, Shilpi; Roach, Steven L.; Barnes, S. Whitney; Hoepfner, Dominic; Walker, John R.; Chatterjee, Arnab K.; Neitz, R. Jeffrey; Arkin, Michelle R.; McNamara, Case W.; Ballard, Jaime; Lai, Yin; Fu, Yue; Molteni, Valentina; Yeh, Vince; McKerrow, James H.; Glynne, Richard J.; Supek, Frantisek

    2015-01-01

    Unbiased phenotypic screens enable identification of small molecules that inhibit pathogen growth by unanticipated mechanisms. These small molecules can be used as starting points for drug discovery programs that target such mechanisms. A major challenge of the approach is the identification of the cellular targets. Here we report GNF7686, a small molecule inhibitor of Trypanosoma cruzi, the causative agent of Chagas disease, and identification of cytochrome b as its target. Following discovery of GNF7686 in a parasite growth inhibition high throughput screen, we were able to evolve a GNF7686-resistant culture of T. cruzi epimastigotes. Clones from this culture bore a mutation coding for a substitution of leucine by phenylalanine at amino acid position 197 in cytochrome b. Cytochrome b is a component of complex III (cytochrome bc1) in the mitochondrial electron transport chain and catalyzes the transfer of electrons from ubiquinol to cytochrome c by a mechanism that utilizes two distinct catalytic sites, QN and QP. The L197F mutation is located in the QN site and confers resistance to GNF7686 in both parasite cell growth and biochemical cytochrome b assays. Additionally, the mutant cytochrome b confers resistance to antimycin A, another QN site inhibitor, but not to strobilurin or myxothiazol, which target the QP site. GNF7686 represents a promising starting point for Chagas disease drug discovery as it potently inhibits growth of intracellular T. cruzi amastigotes with a half maximal effective concentration (EC50) of 0.15 µM, and is highly specific for T. cruzi cytochrome b. No effect on the mammalian respiratory chain or mammalian cell proliferation was observed with up to 25 µM of GNF7686. Our approach, which combines T. cruzi chemical genetics with biochemical target validation, can be broadly applied to the discovery of additional novel drug targets and drug leads for Chagas disease. PMID:26186534

  4. Activation of Human Peroxisome Proliferator-Activated Nuclear Receptors (PPARγ1) by Semi-Volatile Compounds (SVOCs) and Chemical Mixtures in Indoor Dust.

    PubMed

    Fang, Mingliang; Webster, Thomas F; Stapleton, Heather M

    2015-08-18

    Recently, we reported that several semi-volatile compounds (SVOCs) were competitive ligands for human peroxisome proliferator-activated nuclear receptor gamma (PPARγ1). We also observed significant binding from chemicals extracted from house dust at a concentration of 3 mg dust/mL in the dosing medium. To follow up on this study, a commercially available reporter gene assay (GeneBLAzer PPARγ1 non-DA Assay, Invitrogen) was used to investigate the PPARγ1 activation by 30 common SVOCs (e.g., brominated flame retardants, organophosphates, and phthalates) and in house dust extracts. Twenty-eight SVOCs or their metabolites were either confirmed or for the first time were found to be weak or moderate PPARγ1 agonists. We also observed activation in 15 of 25 dust extracts examined. In some cases, activation was as high as 50% of the activation of the positive control (rosiglitazone). Furthermore, there was a significant and positive correlation (r = 0.7, p < 0.003) between data collected from this reporter assay and our previous ligand binding assay tested on the same dust extracts. Our results suggest that many SVOCs ubiquitous in house dust, or their metabolites, are possible PPARγ1 agonists. Also, chemical mixtures present in house dust at environmentally relevant levels can activate human PPARγ1 in a transfected cell culture system, and further research is needed to identify the primary chemical(s) driving this activity. PMID:26172262

  5. Gaseous chemical compounds in indoor and outdoor air of 602 houses throughout Japan in winter and summer.

    PubMed

    Uchiyama, Shigehisa; Tomizawa, Takuya; Tokoro, Asumo; Aoki, Manami; Hishiki, Mayu; Yamada, Tomomi; Tanaka, Reiko; Sakamoto, Hironari; Yoshida, Tsutomu; Bekki, Kanae; Inaba, Yohei; Nakagome, Hideki; Kunugita, Naoki

    2015-02-01

    A nationwide survey of indoor air quality in Japan was conducted using four types of diffusive samplers. Gaseous chemical compounds such as carbonyls, volatile organic compounds (VOC), acid gases, basic gases, and ozone were measured in indoor and outdoor air of 602 houses throughout Japan in winter and summer. Four kinds of diffusive samplers were used in this study: DSD-BPE/DNPH packed with 2,4-dinitrophenyl hydrazine and trans-1,2-bis(2-pyridyl)ethylene coated silica for ozone and carbonyls; VOC-SD packed with Carboxen 564 particles for volatile organic compounds; DSD-TEA packed with triethanolamine impregnated silica for acid gases; and DSD-NH3 packed with phosphoric acid impregnated silica for basic gases. These samplers are small and lightweight and do not require a power source, hence, it was possible to obtain a large number of air samples via mail from throughout Japan. Almost all compounds in indoor air were present at higher levels in summer than in winter. In particular, formaldehyde, toluene, and ammonia were strongly dependent on temperature, and their levels increased with temperature. The nitrogen dioxide concentration in indoor air particularly increased only during winter and was well correlated with the formic acid concentration (correlation coefficient=0.959). Ozone concentrations in indoor air were extremely low compared with the outdoor concentrations. Ozone flowing from outdoor air may be decomposed quickly by chemical compounds in indoor air; therefore, it is suggested that the indoor/outdoor ratio of ozone represents the ventilation of the indoor environment. PMID:25601740

  6. [Pollution status of phenolic compounds in the soil and sediment from a chemical industrial park along the Yangtze River].

    PubMed

    Chen, Jiexia; Wei, Enze; Xian, Qiming

    2014-08-01

    A determination method of 12 phenolic compounds in soil and sediment samples by gas chromatography-mass spectrometry (GC-MS) analysis coupled with accelerated solvent extraction (ASE) and gel permeation chromatography (GPC) for clean-up was developed. The method detection limits (MDLs) varied from 0. 410 μg/kg to 13. 1 μg/kg (dry weight), and the average recoveries ranged from 70. 7% to 122% with the relative standard deviations (RSDs) of 1. 2% to 16%. Based on this method, the levels of 12 phenolic compounds were investigated in 17 soil surrounding a chemical industrial park along the Yangtze River and seven sediment samples collected in the river. It was found that 11 of the 12 phenolic compounds were detected in all of the 24 samples, and only hydroquinone was below the MDL. The contents of the total 12 phenolic compounds were 10. 16-30. 66 mg/kg in the soil and 18. 00-29. 83 mg/kg in the sediment, with the average contents of 18. 26 and 22. 51 mg/kg respectively. It showed that 4-nitro- phenol, 4-chloro-3-methylphenol, 2-chlorohydroquinone, 2-methyl-4,6-dinitrophenol and 2,4,6- trichlorophenol were five major phenolic contaminants in the soil and sediment in this study. The pollution levels of the 12 phenolic compounds were low in the soil of the chemical industrial park as well as in the sediment of the Yangtze River, which implied a comparatively low risk for the environment. PMID:25434120

  7. Deduction of the chemical state and the electronic structure of Nd{sub 2}Fe{sub 14}B compound from X-ray photoelectron spectroscopy core-level and valence-band spectra

    SciTech Connect

    Wang, Jing; Liang, Le; Zhang, Lanting E-mail: lmsun@sjtu.edu.cn; Sun, Limin E-mail: lmsun@sjtu.edu.cn; Hirano, Shinichi

    2014-10-28

    Characterization of chemical state and electronic structure of the technologically important Nd{sub 2}Fe{sub 14}B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd{sub 2}Fe{sub 14}B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd{sub 2}Fe{sub 14}B compound can be clearly determined to be 0 and −3, respectively. The Nd in Nd{sub 2}Fe{sub 14}B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd{sub 2}O{sub 3}. In addition, by comparing the valence-band spectrum of Nd{sub 2}Fe{sub 14}B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd{sub 2}Fe{sub 14}B compound is made more clear. The B 2p states and B 2s states are identified to be at ∼11.2 eV and ∼24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd{sub 2}Fe{sub 14}B compound.

  8. Identifying rhodamine dye plume sources in near-shore oceanic environments by integration of chemical and visual sensors.

    PubMed

    Tian, Yu; Kang, Xiaodong; Li, Yunyi; Li, Wei; Zhang, Aiqun; Yu, Jiangchen; Li, Yiping

    2013-01-01

    This article presents a strategy for identifying the source location of a chemical plume in near-shore oceanic environments where the plume is developed under the influence of turbulence, tides and waves. This strategy includes two modules: source declaration (or identification) and source verification embedded in a subsumption architecture. Algorithms for source identification are derived from the moth-inspired plume tracing strategies based on a chemical sensor. The in-water test missions, conducted in November 2002 at San Clemente Island (California, USA) in June 2003 in Duck (North Carolina, USA) and in October 2010 at Dalian Bay (China), successfully identified the source locations after autonomous underwater vehicles tracked the rhodamine dye plumes with a significant meander over 100 meters. The objective of the verification module is to verify the declared plume source using a visual sensor. Because images taken in near shore oceanic environments are very vague and colors in the images are not well-defined, we adopt a fuzzy color extractor to segment the color components and recognize the chemical plume and its source by measuring color similarity. The source verification module is tested by images taken during the CPT missions. PMID:23507823

  9. Identifying Rhodamine Dye Plume Sources in Near-Shore Oceanic Environments by Integration of Chemical and Visual Sensors

    PubMed Central

    Tian, Yu; Kang, Xiaodong; Li, Yunyi; Li, Wei; Zhang, Aiqun; Yu, Jiangchen; Li, Yiping

    2013-01-01

    This article presents a strategy for identifying the source location of a chemical plume in near-shore oceanic environments where the plume is developed under the influence of turbulence, tides and waves. This strategy includes two modules: source declaration (or identification) and source verification embedded in a subsumption architecture. Algorithms for source identification are derived from the moth-inspired plume tracing strategies based on a chemical sensor. The in-water test missions, conducted in November 2002 at San Clemente Island (California, USA) in June 2003 in Duck (North Carolina, USA) and in October 2010 at Dalian Bay (China), successfully identified the source locations after autonomous underwater vehicles tracked the rhodamine dye plumes with a significant meander over 100 meters. The objective of the verification module is to verify the declared plume source using a visual sensor. Because images taken in near shore oceanic environments are very vague and colors in the images are not well-defined, we adopt a fuzzy color extractor to segment the color components and recognize the chemical plume and its source by measuring color similarity. The source verification module is tested by images taken during the CPT missions. PMID:23507823

  10. Evaluation of chemical labeling methods for identifying functional arginine residues of proteins by mass spectrometry.

    PubMed

    Wanigasekara, Maheshika S K; Chowdhury, Saiful M

    2016-09-01

    Arginine residues undergo several kinds of post-translational modifications (PTMs). These PTMs are associated with several inflammatory diseases, such as rheumatoid arthritis, atherosclerosis, and diabetes. Mass spectrometric studies of arginine modified proteins and peptides are very important, not only to identify the reactive arginine residues but also to understand the tandem mass spectrometry behavior of these peptides for assigning the sequences unambiguously. Herein, we utilize tandem mass spectrometry to report the performance of two widely used arginine labeling reagents, 1,2-cyclohexanedione (CHD) and phenylglyoxal (PG) with several arginine containing peptides and proteins. Time course labeling studies were performed to demonstrate the selectivity of the reagents in proteins or protein digests. Structural studies on the proteins were also explored to better understand the reaction sites and position of arginine residues. We found CHD showed better labeling efficiencies compared to phenylglyoxal. Reactive arginine profiling on a purified albumin protein clearly pointed out the cellular glycation modification site for this protein with high confidence. We believe these detailed mass-spectrometric studies will provide significant input to profile reactive arginine residues in large-scale studies; therefore, targeted proteomics can be performed to the short listed reactive sites for cellular arginine modifications. PMID:27543028

  11. Anionic phenolic compounds bind stronger with transthyretin than their neutral forms: nonnegligible mechanisms in virtual screening of endocrine disrupting chemicals.

    PubMed

    Yang, Xianhai; Xie, Hongbin; Chen, Jingwen; Li, Xuehua

    2013-09-16

    The molecular structures of many endocrine-disrupting chemicals (EDCs) contain groups that ionize under physiological pH conditions. It is unclear whether the neutral and ionic forms have different binding mechanisms with the macromolecular targets. We selected phenolic compounds and human transthyretin (hTTR) as a model system and employed molecular docking with quantum mechanics/molecular mechanics optimizations to probe the mechanisms. The binding patterns of ionizable ligands in hTTR crystal structures were also analyzed. We found that the anionic forms of the phenolic compounds bind stronger than the corresponding neutral forms with hTTR. Electrostatic and van de Waals interactions are the dominant forces for most of the anionic and neutral forms, respectively. Because of the dominant and orientational electrostatic interactions, the -O(-) groups point toward the entry port of the binding site. The aromatic rings of the compounds also form cation-π interactions with the -NH3(+) group of Lys 15 residues in hTTR. Molecular descriptors were selected to characterize the interactions and construct a quantitative structure-activity relationship model on the relative competing potency of chemicals with T4 binding to hTTR. It is concluded that the effects of ionization should not be neglected when constructing in silico models for screening of potential EDCs. PMID:23941687

  12. Isolation and Chemical Structural Characterisation of a Compound with Antioxidant Activity from the Roots of Senna italica

    PubMed Central

    Mokgotho, Matlou Phineas; Gololo, Stanley Sechene; Masoko, Peter; Shai, Leshwene Jeremiah; Bagla, Victor Patrick; Eloff, Jacobus Nicolaas

    2013-01-01

    Senna italica, a member of the Fabaceae family (subfamily Caesalpiniaceae), is widely used in South African traditional medicine to treat a number of disease conditions. Aqueous extracts of the plant are mainly used to treat sexually transmitted infections and intestinal complications. The roots of S. italica were ground to a fine powder and sequentially extracted with n-hexane, dichloromethane, acetone, and methanol using serial exhaustive extraction (SEE) method. Thin layer chromatography was used to analyse the phytochemical composition of the extracts and DPPH radical scavenging method to detect the presence of antioxidant compounds. The bioassay guided fractionation of the acetone fraction afforded an antioxidant compound with free radical scavenging activity. The isolated compound was subsequently identified as 3,4′,5-trihydroxystilbene (resveratrol). This study represents the first report of the stilbene resveratrol in S. italica. PMID:23843877

  13. Combined chemical-genetic approach identifies cytosolic HSP70 dependence in rhabdomyosarcoma.

    PubMed

    Sabnis, Amit J; Guerriero, Christopher J; Olivas, Victor; Sayana, Anin; Shue, Jonathan; Flanagan, Jennifer; Asthana, Saurabh; Paton, Adrienne W; Paton, James C; Gestwicki, Jason E; Walter, Peter; Weissman, Jonathan S; Wipf, Peter; Brodsky, Jeffrey L; Bivona, Trever G

    2016-08-01

    Cytosolic and organelle-based heat-shock protein (HSP) chaperones ensure proper folding and function of nascent and injured polypeptides to support cell growth. Under conditions of cellular stress, including oncogenic transformation, proteostasis components maintain homeostasis and prevent apoptosis. Although this cancer-relevant function has provided a rationale for therapeutically targeting proteostasis regulators (e.g., HSP90), cancer-subtype dependencies upon particular proteostasis components are relatively undefined. Here, we show that human rhabdomyosarcoma (RMS) cells, but not several other cancer cell types, depend upon heat-shock protein 70 kDA (HSP70) for survival. HSP70-targeted therapy (but not chemotherapeutic agents) promoted apoptosis in RMS cells by triggering an unfolded protein response (UPR) that induced PRKR-like endoplasmic reticulum kinase (PERK)-eukaryotic translation initiation factor α (eIF2α)-CEBP homologous protein (CHOP) signaling and CHOP-mediated cell death. Intriguingly, inhibition of only cytosolic HSP70 induced the UPR, suggesting that the essential activity of HSP70 in RMS cells lies at the endoplasmic reticulum-cytosol interface. We also found that increased CHOP mRNA in clinical specimens was a biomarker for poor outcomes in chemotherapy-treated RMS patients. The data suggest that, like human epidermal growth factor receptor 2 (HER2) amplification in breast cancer, increased CHOP in RMS is a biomarker of decreased response to chemotherapy but enhanced response to targeted therapy. Our findings identify the cytosolic HSP70-UPR axis as an unexpected regulator of RMS pathogenesis, revealing HSP70-targeted therapy as a promising strategy to engage CHOP-mediated apoptosis and improve RMS treatment. Our study highlights the utility of dissecting cancer subtype-specific dependencies on proteostasis networks to uncover unanticipated cancer vulnerabilities. PMID:27450084

  14. EXPOSURE-DOSE-EFFECT LINKAGES FOR CHEMICALLY REACTIVE AIR TOXIC COMPOUNDS

    EPA Science Inventory

    This project represents a multidisciplinary collaboration to develop and test methods for more precisely predicting human exposure-dose-response relationships of respiratory tract irritants. These irritants have the unique property of reacting chemically with proteins and lipids ...

  15. Estimation of Physical Properties and Chemical Reactivity Parameters of Organic Compounds for Environmental Modeling by SPARC

    EPA Science Inventory

    Mathematical models for predicting the transport and fate of pollutants in the environment require reactivity parameter values that is value of the physical and chemical constants that govern reactivity. Although empirical structure activity relationships have been developed th...

  16. Using the chemical equilibrium partitioning space to explore factors influencing the phase distribution of compounds involved in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Wania, F.; Lei, Y. D.; Wang, C.; Abbatt, J. P. D.; Goss, K.-U.

    2015-03-01

    Many atmospheric and chemical variables influence the partitioning equilibrium between gas phase and condensed phases of compounds implicated in the formation of secondary organic aerosol (SOA). The large number of factors and their interaction makes it often difficult to assess their relative importance and concerted impact. Here we introduce a two-dimensional space which maps regions of dominant atmospheric phase distribution within a coordinate system defined by equilibrium partition coefficients between the gas phase, an aqueous phase and a water-insoluble organic matter (WIOM) phase. Placing compounds formed from the oxidation of n-alkanes, terpenes and mono-aromatic hydrocarbons on the maps based on their predicted partitioning properties allows for a simple graphical assessment of their equilibrium phase distribution behaviour. Specifically, it allows for the simultaneous visualisation and quantitative comparison of the impact on phase distribution of changes in atmospheric parameters (such as temperature, salinity, WIOM-phase polarity, organic aerosol load, and liquid water content) and chemical properties (such as oxidation state, molecular size, functionalisation, and dimerisation). The graphical analysis reveals that the addition of hydroxyl, carbonyl and carboxyl groups increases the affinity of aliphatic, alicyclic and aromatic hydrocarbons for the aqueous phase more rapidly than their affinity for WIOM, suggesting that the aqueous phase may often be relevant even for substances that are considerably larger than the C2 and C3 compounds that are typically believed to be associated with aqueous SOA. In particular, the maps identify some compounds that contribute to SOA formation if partitioning to both WIOM and aqueous phase is considered but would remain in the gas phase if either condensed phase were neglected. For example, many semi-volatile α-pinene oxidation products will contribute to aqueous SOA under the conditions of high liquid water content

  17. Using the chemical equilibrium partitioning space to explore factors influencing the phase distribution of compounds involved in secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Wania, F.; Lei, Y. D.; Wang, C.; Abbatt, J. P. D.; Goss, K.-U.

    2014-10-01

    Many atmospheric and chemical variables influence the partitioning equilibrium between gas phase and condensed phases of compounds implicated in the formation of secondary organic aerosol (SOA). The large number of factors and their interaction makes it often difficult to assess their relative importance and concerted impact. Here we introduce a two-dimensional space, which maps regions of dominant atmospheric phase distribution within a coordinate system defined by equilibrium partitioning coefficients between the gas phase, an aqueous phase and a water insoluble organic matter (WIOM) phase. Placing compounds formed from the oxidation of n-alkanes, terpenes and mono-aromatic hydrocarbons on the maps based on their predicted partitioning properties allows for a simple graphical assessment of their equilibrium phase distribution behaviour. Specifically, it allows for the simultaneous visualization and quantitative comparison of the impact on phase distribution of changes in atmospheric parameters (such as temperature, salinity, WIOM phase polarity, organic aerosol load, and liquid water content), and chemical properties (such as oxidation state, molecular size, functionalization, and dimerisation). The graphical analysis reveals that the addition of hydroxyl, carbonyl and carboxyl groups increases the affinity of aliphatic, alicyclic and aromatic hydrocarbons for the aqueous phase more rapidly than their affinity for WIOM, suggesting that the aqueous phase may often be relevant even for substances that are considerably larger than the C2 and C3 compounds that are typically believed to be associated with aqueous SOA. In particular, the maps identify some compounds that contribute to SOA formation if partitioning to both WIOM and aqueous phase is considered, but would remain in the gas phase if either condensed phase were neglected. For example, many semi-volatile α-pinene oxidation products will contribute to aqueous SOA under the high liquid water content

  18. Chemical probes of quorum sensing: from compound development to biological discovery.

    PubMed

    Welsh, Michael A; Blackwell, Helen E

    2016-09-01

    Bacteria can utilize chemical signals to coordinate the expression of group-beneficial behaviors in a method of cell-cell communication called quorum sensing (QS). The discovery that QS controls the production of virulence factors and biofilm formation in many common pathogens has driven an explosion of research aimed at both deepening our fundamental understanding of these regulatory networks and developing chemical agents that can attenuate QS signaling. The inherently chemical nature of QS makes studying these pathways with small molecule tools a complementary approach to traditional microbiology techniques. Indeed, chemical tools are beginning to yield new insights into QS regulation and provide novel strategies to inhibit QS. Here, we review the most recent advances in the development of chemical probes of QS systems in Gram-negative bacteria, with an emphasis on the opportunistic pathogen Pseudomonas aeruginosa We first describe reports of novel small molecule modulators of QS receptors and QS signal synthases. Next, in several case studies, we showcase how chemical tools have been deployed to reveal new knowledge of QS biology and outline lessons for how researchers might best target QS to combat bacterial virulence. To close, we detail the outstanding challenges in the field and suggest strategies to overcome these issues. PMID:27268906

  19. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata.

    PubMed

    Specian, Vânia; Sarragiotto, Maria Helena; Pamphile, João Alencar; Clemente, Edmar

    2012-07-01

    Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase) is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of (1)H and (13)C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl)-ethanol (Tyrosol). Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential. PMID:24031942

  20. A NOVEL ENERGY-EFFICIENT PLASMA CHEMICAL PROCESS FOR THE DESTRUCTION OF VOLATILE TOXIC COMPOUNDS

    EPA Science Inventory

    Removal of low-concentrations (below several percent) of toxic volatile compounds from contaminated air streams is encountered at DOE waste sites in two instances:(i) off-gases resulting from air-stripping of contaminated soils and (ii) effluent from the incineration of highly-co...

  1. ANALYSIS OF AMBIENT POLAR VOLATILE ORGANIC COMPOUNDS USING CHEMICAL IONIZATION -- ION TRAP DETECTOR

    EPA Science Inventory

    The current approach to measuring trace levels of volatile organic compounds (VOCs) in ambient air requires cryogenic trapping of the analytes, followed by thermal desorption and low-temperature refocussing onto a column for analysis by capillary gas chromatography/mass spectrome...

  2. ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION

    EPA Science Inventory

    Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

  3. A 'chemically-gated' photoresponsive compound as a visible detector for organophosphorus nerve agents.

    PubMed

    Nourmohammadian, Farahnaz; Wu, Tuoqi; Branda, Neil R

    2011-10-21

    We describe a versatile and convenient visible detection method for organophosphorus compounds based on a colorless 'pro-photoresponsive' organic molecule that undergoes photochemical ring-closing to produce a colored isomer only after it reacts with vapors of the phosphorylating agent. PMID:21901219

  4. Potassium Tris (Oxalato) Ferrate (III): A Versatile Compound to Illustrate the Principles of Chemical Equilibria

    ERIC Educational Resources Information Center

    Gonzalez, Gabriel; Seco, Miquel

    2004-01-01

    The potassium salt is an easy product to synthesize in an introductory course on inorganic chemistry and the students are required to prepare this product in order to improve their laboratory skills and as an introduction to the synthesis of coordination compounds. The complex potassium tris (oxalato) ferrate (III) is used to illustrate the…

  5. Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata

    PubMed Central

    Specian, Vânia; Sarragiotto, Maria Helena; Pamphile, João Alencar; Clemente, Edmar

    2012-01-01

    Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase) is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of 1H and 13C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl)-ethanol (Tyrosol). Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential. PMID:24031942

  6. EVALUATION OF THE SEMIVOST METHOD FOR HALOGENATED COMPOUNDS AT A CHEMICAL MANUFACTURING FACILITY

    EPA Science Inventory

    A field test was conducted to determine the applicability of the SemiVOST method (SW-846 Method 0010 (Sampling), SW-846 Draft Method 3542 (Sample Preparation), and SW-846 Method 8270 (Analysis)) to semivolatile halogenated organic compounds listed in Title Ill of the 1990 Clean A...

  7. Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination

    USGS Publications Warehouse

    Glassmeyer, S.T.; Furlong, E.T.; Kolpin, D.W.; Cahill, J.D.; Zaugg, S.D.; Werner, S.L.; Meyer, M.T.; Kryak, D.D.

    2005-01-01

    The quality of drinking and recreational water is currently (2005) determined using indicator bacteria. However, the culture tests used to analyze for these bacteria require a long time to complete and do not discriminate between human and animal fecal material sources. One complementary approach is to use chemicals found in human wastewater, which would have the advantages of (1) potentially shorter analysis times than the bacterial culture tests and (2) being selected for human-source specificity. At 10 locations, water samples were collected upstream and at two successive points downstream from a wastewaster treatment plant (WWTP); a treated effluent sample was also collected at each WWTP. This sampling plan was used to determine the persistence of a chemically diverse suite of emerging contaminants in streams. Samples were also collected at two reference locations assumed to have minimal human impacts. Of the 110 chemical analytes investigated in this project, 78 were detected at least once. The number of compounds in a given sample ranged from 3 at a reference location to 50 in a WWTP effluent sample. The total analyte load at each location varied from 0.018 μg/L at the reference location to 97.7 μg/L in a separate WWTP effluent sample. Although most of the compound concentrations were in the range of 0.01−1.0 μg/L, in some samples, individual concentrations were in the range of 5−38 μg/L. The concentrations of the majority of the chemicals present in the samples generally followed the expected trend:  they were either nonexistent or at trace levels in the upstream samples, had their maximum concentrations in the WWTP effluent samples, and then declined in the two downstream samples. This research suggests that selected chemicals are useful as tracers of human wastewater discharge.

  8. High Throughput Screening for Compounds That Alter Muscle Cell Glycosylation Identifies New Role for N-Glycans in Regulating Sarcolemmal Protein Abundance and Laminin Binding*

    PubMed Central

    Cabrera, Paula V.; Pang, Mabel; Marshall, Jamie L.; Kung, Raymond; Nelson, Stanley F.; Stalnaker, Stephanie H.; Wells, Lance; Crosbie-Watson, Rachelle H.; Baum, Linda G.

    2012-01-01

    Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function. PMID:22570487

  9. hERGAPDbase: a database documenting hERG channel inhibitory potentials and APD-prolongation activities of chemical compounds.

    PubMed

    Hishigaki, Haretsugu; Kuhara, Satoru

    2011-01-01

    Drug-induced QT interval prolongation is one of the most common reasons for the withdrawal of drugs from the market. In the past decade, at least nine drugs, i.e. terfenadine, astemizole, grepafloxacin, terodiline, droperidol, lidoflazine, sertindole, levomethadyl and cisapride, have been removed from the market or their use has been severely restricted because of drug-induced QT interval prolongation. Therefore, this irregularity is a major safety concern in the case of drugs submitted for regulatory approval. The most common mechanism of drug-induced QT interval prolongation may be drug-related inhibition of the human ether-á-go-go-related gene (hERG) channel, which subsequently results in prolongation of the cardiac action potential duration (APD). hERGAPDbase is a database of electrophysiological experimental data documenting potential hERG channel inhibitory actions and the APD-prolongation activities of chemical compounds. All data entries are manually collected from scientific papers and curated by a person. With hERGAPDbase, we aim to provide useful information for chemical and pharmacological scientists and enable easy access to electrophysiological experimental data on chemical compounds. Database URL: http://www.grt.kyushu-u.ac.jp/hergapdbase/. PMID:21586548

  10. Sorption and toxicity reduction of pharmaceutically active compounds and endocrine disrupting chemicals in the presence of colloidal humic acid.

    PubMed

    Kim, Injeong; Kim, Hyo-Dong; Jeong, Tae-Yong; Kim, Sang Don

    2016-01-01

    This study investigated the toxicity changes and sorption of pharmaceuticals and endocrine disrupters in the presence of humic acid (HA). For the sorption experiment, a dead end filtration (DEF) system was used to separate bound and free-form target compounds. An algae growth inhibition test and E-screen assay were conducted to estimate the toxic effect of pharmaceutically active compounds (PhACs) and endocrine disrupting chemicals (EDCs), respectively. The permeate concentration was confirmed using liquid chromatography-mass spectrometry. In the sorption test, we observed significant sorption of PhACs and EDCs on colloidal HA, except for sulfamethoxazole (SMX). The values of log KCOC derived from DEF determinations ranged from 4.40 to 5.03. The removal efficiency varied with the HA concentration and the target chemical properties. Tetracycline and 4-octylphenol showed the highest sorption or removal efficiency (≈50%), even at 5 mg C/L HA. The algal growth inhibition of PhACs and the estrogenic effects of EDCs were significantly decreased in proportion to HA concentrations, except for SMX. In addition, the chemical analysis results showed a positive relationship with the bioassay results. Consequently, the sorption of PhACs and EDCs onto colloidal HA should be emphasized in natural environments because it significantly reduces bioavailable concentrations and toxicity to aquatic organisms. PMID:27533865

  11. Using Ambystoma mexicanum (Mexican axolotl) embryos, chemical genetics, and microarray analysis to identify signaling pathways associated with tissue regeneration.

    PubMed

    Ponomareva, Larissa V; Athippozhy, Antony; Thorson, Jon S; Voss, S Randal

    2015-12-01

    Amphibian vertebrates are important models in regenerative biology because they present exceptional regenerative capabilities throughout life. However, it takes considerable effort to rear amphibians to juvenile and adult stages for regeneration studies, and the relatively large sizes that frogs and salamanders achieve during development make them difficult to use in chemical screens. Here, we introduce a new tail regeneration model using late stage Mexican axolotl embryos. We show that axolotl embryos completely regenerate amputated tails in 7days before they exhaust their yolk supply and begin to feed. Further, we show that axolotl embryos can be efficiently reared in microtiter plates to achieve moderate throughput screening of soluble chemicals to investigate toxicity and identify molecules that alter regenerative outcome. As proof of principle, we identified integration 1 / wingless (Wnt), transforming growth factor beta (Tgf-β), and fibroblast growth factor (Fgf) pathway antagonists that completely block tail regeneration and additional chemicals that significantly affected tail outgrowth. Furthermore, we used microarray analysis to show that inhibition of Wnt signaling broadly affects transcription of genes associated with Wnt, Fgf, Tgf-β, epidermal growth factor (Egf), Notch, nerve growth factor (Ngf), homeotic gene (Hox), rat sarcoma/mitogen-activated protein kinase (Ras/Mapk), myelocytomatosis viral oncogene (Myc), tumor protein 53 (p53), and retinoic acid (RA) pathways. Punctuated changes in the expression of genes known to regulate vertebrate development were observed; this suggests the tail regeneration transcriptional program is hierarchically structured and temporally ordered. Our study establishes the axolotl as a chemical screening model to investigate signaling pathways associated with tissue regeneration. PMID:26092703

  12. Changes on physico-chemical properties, lipid oxidation and volatile compounds during the manufacture of celta dry-cured loin.

    PubMed

    Pateiro, M; Franco, D; Carril, J A; Lorenzo, J M

    2015-08-01

    The present study deals with the changes on the main technological characteristics and volatile compounds profile of a traditional Spanish dry-ripened loin from Celta pig breed. The evolution of physicochemical properties, colour, texture, free fatty acid profile and volatile compounds were assessed throughout the process seasoning, post-seasoning and after 30 and 60 days of dry-ripening. As it was expected, pH, moisture and activity water were significantly (P < 0.001) influenced by ripening time. Statistical analysis also displayed that colour parameters (lightness, L*; redness, a*; yellowness, b*) decreased significantly (P < 0.001) during the manufacturing process. On the other hand, lipid oxidation reached the highest levels at the end of process with mean values of 0.34 mg MDA/kg. Regarding total FFA, a significant (P < 0.001) increase was observed during the manufacturing process, being MUFA the most abundant at the end of process. Finally, sixty seven volatile compounds were identified during the manufacture of Celta dry-cured loin. At the end of process, volatile compounds from microbial activity were the most abundant followed by volatile compounds from lipid oxidation. PMID:26243901

  13. Anti-Prion Activity of a Panel of Aromatic Chemical Compounds: In Vitro and In Silico Approaches

    PubMed Central

    Ferreira, Natalia C.; Marques, Icaro A.; Conceição, Wesley A.; Macedo, Bruno; Machado, Clarice S.; Mascarello, Alessandra; Chiaradia-Delatorre, Louise Domeneghini; Yunes, Rosendo Augusto; Nunes, Ricardo José; Hughson, Andrew G.; Raymond, Lynne D.; Pascutti, Pedro G.; Caughey, Byron; Cordeiro, Yraima

    2014-01-01

    The prion protein (PrP) is implicated in the Transmissible Spongiform Encephalopathies (TSEs), which comprise a group of fatal neurodegenerative diseases affecting humans and other mammals. Conversion of cellular PrP (PrPC) into the scrapie form (PrPSc) is the hallmark of TSEs. Once formed, PrPSc aggregates and catalyzes PrPC misfolding into new PrPSc molecules. Although many compounds have been shown to inhibit the conversion process, so far there is no effective therapy for TSEs. Besides, most of the previously evaluated compounds failed in vivo due to poor pharmacokinetic profiles. In this work we propose a combined in vitro/in silico approach to screen for active anti-prion compounds presenting acceptable drugability and pharmacokinetic parameters. A diverse panel of aromatic compounds was screened in neuroblastoma cells persistently infected with PrPSc (ScN2a) for their ability to inhibit PK-resistant PrP (PrPRes) accumulation. From ∼200 compounds, 47 were effective in decreasing the accumulation of PrPRes in ScN2a cells. Pharmacokinetic and physicochemical properties were predicted in silico, allowing us to obtain estimates of relative blood brain barrier permeation and mutagenicity. MTT reduction assays showed that most of the active compounds were non cytotoxic. Compounds that cleared PrPRes from ScN2a cells, were non-toxic in the MTT assay, and presented a good pharmacokinetic profile were investigated for their ability to inhibit aggregation of an amyloidogenic PrP peptide fragment (PrP109–149). Molecular docking results provided structural models and binding affinities for the interaction between PrP and the most promising compounds. In summary, using this combined in vitro/in silico approach we have identified new small organic anti-scrapie compounds that decrease the accumulation of PrPRes in ScN2a cells, inhibit the aggregation of a PrP peptide, and possess pharmacokinetic characteristics that support their drugability. These compounds are

  14. The Arctic seasonal snow pack as a transfer mechanism and a reactor for lower atmosphere chemical compounds (Invited)

    NASA Astrophysics Data System (ADS)

    Douglas, T. A.

    2013-12-01

    The Polar Regions are snow covered for two thirds of the year (or longer) and in many locations there are few melt events during the winter. As a consequence, the late winter snow pack presents a spatial and temporal archive of the previous winter's precipitation, snow-atmosphere exchange, and within snow pack physical and chemical processes. However, to use the snow pack as a 'sensor' we have to understand the physical and chemical exchange processes between atmospheric compounds and snow and ice surfaces. Of equal importance is knowledge of the reactions that occur in and on snow and ice particle surfaces. Recent research has provided insights on the pathways individual compounds take from the lower atmosphere to snow and on the physical and chemical processes occurring within the snow pack at a variety of scales. Snow on or near sea ice has markedly higher major ion concentrations than snow on the terrestrial snow pack, most notably for chloride and bromide. This difference in chemical composition can be dramatic even in coastal regions where the land is only hundreds of meters away. As a consequence, we have to treat chemical cycling processes in/on snow on sea ice and snow on land differently. Since these halogens, particularly bromine, play critical roles in the spring time photochemical reactions that oxidize ozone and mercury their presence and fate on the sea ice snow pack is of particular interest. A future Arctic is expected to have a thinner, more dynamic sea ice cover that will arrive later and melt earlier. The areal extent of young ice production will likely increase markedly. This would lead to a different snow depositional and chemical regime on sea ice with potential ramifications for chemical exchange with the lower atmosphere. The roles of clear sky precipitation ('diamond dust') and surface hoar deposition in providing a unique lower atmospheric 'reactor' and potential source of water equivalence have been largely overlooked. This despite the

  15. Characterizing the Smell of Marijuana by Odor Impact of Volatile Compounds: An Application of Simultaneous Chemical and Sensory Analysis

    PubMed Central

    2015-01-01

    Recent US legislation permitting recreational use of marijuana in certain states brings the use of marijuana odor as probable cause for search and seizure to the forefront of forensic science, once again. This study showed the use of solid-phase microextraction with multidimensional gas chromatography—mass spectrometry and simultaneous human olfaction to characterize the total aroma of marijuana. The application of odor activity analysis offers an explanation as to why high volatile chemical concentration does not equate to most potent odor impact of a certain compound. This suggests that more attention should be focused on highly odorous compounds typically present in low concentrations, such as nonanal, decanol, o-cymene, benzaldehyde, which have more potent odor impact than previously reported marijuana headspace volatiles. PMID:26657499

  16. Changes in physico-chemical properties and volatile compounds throughout the manufacturing process of dry-cured foal loin.

    PubMed

    Lorenzo, José M; Carballo, J

    2015-01-01

    Physico-chemical, textural, lipolytic and volatile compound changes that occur during the manufacture of dry-cured foal loin were studied. Hardness and chewiness increased significantly (P<0.001) from 1.67 kg and 0.48 kg ∗ mm to 18.33 kg and 5.01 kg∗mm, respectively during ripening process. The total average content of free fatty acid increased significantly (P<0.001), from 768.8 mg/100g of fat in the loins immediately after the seasoning period to 1271.1mg/100g of fat at the end of the drying-ripening period. In the final product, aldehydes became the dominant volatile compounds. PMID:25280362

  17. Analysis of gaseous toxic industrial compounds and chemical warfare agent simulants by atmospheric pressure ionization mass spectrometry.

    PubMed

    Cotte-Rodríguez, Ismael; Justes, Dina R; Nanita, Sergio C; Noll, Robert J; Mulligan, Christopher C; Sanders, Nathaniel L; Cooks, R Graham

    2006-04-01

    The suitability of atmospheric pressure chemical ionization mass spectrometry as sensing instrumentation for the real-time monitoring of low levels of toxic compounds is assessed, especially with respect to public safety applications. Gaseous samples of nine toxic industrial compounds, NH3, H2S, Cl2, CS2, SO2, C2H4O, HBr, C6H6 and AsH3, and two chemical warfare agent simulants, dimethyl methylphosphonate (DMMP) and methyl salicylate (MeS), were studied. API-MS proves highly suited to this application, with speedy analysis times (<30 seconds), high sensitivity, high selectivity towards analytes, good precision, dynamic range and accuracy. Tandem MS methods were implemented in selected cases for improved selectivity, sensitivity, and limits of detection. Limits of detection in the parts-per-billion and parts-per-trillion range were achieved for this set of analytes. In all cases detection limits were well below the compounds' permissible exposure limits (PELs), even in the presence of added complex mixtures of alkanes. Linear responses, up to several orders of magnitude, were obtained over the concentration ranges studied (sub-ppb to ppm), with relative standard deviations less than 3%, regardless of the presence of alkane interferents. Receiver operating characteristic (ROC) curves are presented to show the performance trade-off between sensitivity, probability of correct detection, and false positive rate. A dynamic sample preparation system for the production of gas phase analyte concentrations ranging from 100 pptr to 100 ppm and capable of admixing gaseous matrix compounds and control of relative humidity and temperature is also described. PMID:16568176

  18. Production of Monomeric Aromatic Compounds from Oil Palm Empty Fruit Bunch Fiber Lignin by Chemical and Enzymatic Methods.

    PubMed

    Tang, Pei-Ling; Hassan, Osman; Maskat, Mohamad Yusof; Badri, Khairiah

    2015-01-01

    In this study, oil palm empty fruit bunch (OPEFBF) was pretreated with alkali, and lignin was extracted for further degradation into lower molecular weight phenolic compounds using enzymes and chemical means. Efficiency of monomeric aromatic compounds production from OPEFBF lignin via chemical (nitrobenzene versus oxygen) and enzymatic [cutinase versus manganese peroxidase (MnP)] approaches was investigated. The effects of sodium hydroxide concentration (2, 5, and 10% wt.) and reaction time (30, 90, and 180 minutes) on the yield of aromatic compounds were studied. The results obtained indicated that nitrobenzene oxidation produced the highest yield (333.17 ± 49.44 ppm hydroxybenzoic acid, 5.67 ± 0.25 ppm p-hydroxybenzaldehyde, 25.57 ± 1.64 ppm vanillic acid, 168.68 ± 23.23 ppm vanillin, 75.44 ± 6.71 ppm syringic acid, 815.26 ± 41.77 ppm syringaldehyde, 15.21 ± 2.19 ppm p-coumaric acid, and 44.75 ± 3.40 ppm ferulic acid), among the tested methods. High sodium hydroxide concentration (10% wt.) was needed to promote efficient nitrobenzene oxidation. However, less severe oxidation condition was preferred to preserve the hydroxycinnamic acids (p-coumaric acid and ferulic acid). Cutinase-catalyzed hydrolysis was found to be more efficient than MnP-catalyzed oxidation in the production of aromatic compounds. By hydrolyzed 8% wt. of lignin with 0.625 mL cutinase g(-1) lignin at pH 8 and 55°C for 24 hours, about 642.83 ± 14.45 ppm hydroxybenzoic acid, 70.19 ± 3.31 ppm syringaldehyde, 22.80 ± 1.04 ppm vanillin, 27.06 ± 1.20 ppm p-coumaric acid, and 50.19 ± 2.23 ppm ferulic acid were produced. PMID:26798644

  19. Chemical compounds from anthropogenic environment and immune evasion mechanisms: potential interactions

    PubMed Central

    Kravchenko, Julia; Corsini, Emanuela; Williams, Marc A.; Decker, William; Manjili, Masoud H.; Otsuki, Takemi; Singh, Neetu; Al-Mulla, Faha; Al-Temaimi, Rabeah; Amedei, Amedeo; Colacci, Anna Maria; Vaccari, Monica; Mondello, Chiara; Scovassi, A. Ivana; Raju, Jayadev; Hamid, Roslida A.; Memeo, Lorenzo; Forte, Stefano; Roy, Rabindra; Woodrick, Jordan; Salem, Hosni K.; Ryan, Elizabeth P.; Brown, Dustin G.; Lowe, Leroy; Lyerly, H.Kim

    2015-01-01

    An increasing number of studies suggest an important role of host immunity as a barrier to tumor formation and progression. Complex mechanisms and multiple pathways are involved in evading innate and adaptive immune responses, with a broad spectrum of chemicals displaying the potential to adversely influence immunosurveillance. The evaluation of the cumulative effects of low-dose exposures from the occupational and natural environment, especially if multiple chemicals target the same gene(s) or pathway(s), is a challenge. We reviewed common environmental chemicals and discussed their potential effects on immunosurveillance. Our overarching objective was to review related signaling pathways influencing immune surveillance such as the pathways involving PI3K/Akt, chemokines, TGF-β, FAK, IGF-1, HIF-1α, IL-6, IL-1α, CTLA-4 and PD-1/PDL-1 could individually or collectively impact immunosurveillance. A number of chemicals that are common in the anthropogenic environment such as fungicides (maneb, fluoxastrobin and pyroclostrobin), herbicides (atrazine), insecticides (pyridaben and azamethiphos), the components of personal care products (triclosan and bisphenol A) and diethylhexylphthalate with pathways critical to tumor immunosurveillance. At this time, these chemicals are not recognized as human carcinogens; however, it is known that they these chemicalscan simultaneously persist in the environment and appear to have some potential interfere with the host immune response, therefore potentially contributing to promotion interacting with of immune evasion mechanisms, and promoting subsequent tumor growth and progression. PMID:26002081

  20. Implementation and performance evaluation of a database of chemical formulas for the screening of pharmaco/toxicologically relevant compounds in biological samples using electrospray ionization-time-of-flight mass spectrometry.

    PubMed

    Polettini, Aldo; Gottardo, Rossella; Pascali, Jennifer Paola; Tagliaro, Franco

    2008-04-15

    Electrospray ionization (ESI)-time-of-flight (TOF) MS enables searching a wide number of pharmaco/toxicologically relevant compounds (PTRC) in biosamples. However, the number of identifiable PTRC depends on extension of reference database of chemical formulas/compound names. Previous approaches proposed in-house or commercial databases with limitations either in PTRC number or content (e.g., few metabolites, presence of non-PTRC). In the frame of development of a ESI-TOF PTRC screening procedure, a subset of PubChem Compound as reference database is proposed. Features of this database (approximately 50,500 compounds) are illustrated, and its performance evaluated through analysis by capillary electrophoresis (CE)-ESI-TOF of hair/blood/urine collected from subjects under treatment with known drugs or by comparison with reference standards. The database is rich in parent compounds of pharmaceutical and illicit drugs, pesticides, and poisons and contains many metabolites (including about 6000 phase I metabolites and 180 glucuronides) and related substances (e.g., impurities, esters). The average number of hits with identical chemical formula is 1.82 +/- 2.27 (median = 1, range 1-39). Minor deficiencies, redundancies, and errors have been detected that do not limit the potential of the database in identifying unknown PTRC. The database allows a much broader search for PTRC than other commercial/in-house databases of chemical formulas/compound names previously proposed. However, the probability that a search retrieves different PTRC having identical chemical formula is higher than with smaller databases, and additional information (anamnestic/circumstantial data, concomitant presence of parent drug and metabolite, selective sample preparation, liquid chromatographic retention, and CE migration behavior) must be used in order to focus the search more tightly. PMID:18336013

  1. Stimulation of Ideas through Compound-Based Bibliometrics: Counting and Mapping Chemical Compounds for Analyzing Research Topics in Chemistry, Physics, and Materials Science.

    PubMed

    Barth, Andreas; Marx, Werner

    2012-12-01

    Counting compounds (rather than papers or citations) offers a new perspective for quantitative analyses of research activities. First of all, we can precisely define (compound-related) research topics and access the corresponding publications (scientific papers as well as patents) as a measure of research activity. We can also establish the time evolution of the publications dealing with specific compounds or compound classes. Moreover, the mapping of compounds by establishing compound-based landscapes has some potential to visualize the compound basis of research topics for further research activities. We have analyzed the rare earth compounds to give an example of a broad compound class. We present the number of the currently existing compounds and of the corresponding publications as well as the time evolution of the papers and patents. Furthermore, we have analyzed the rare earth cuprates (copper oxides) as an example of a narrower compound class to demonstrate the potential of mapping compounds by compound-based landscapes. We have quantified the various element combinations of the existing compounds and revealed all element combinations not yet realized in the synthesis within this compound class. Finally, we have analyzed the quasicrystal compound category as an example of a compound class that is not defined by a specific element combination or a molecular structure. PMID:24551517

  2. A novel energy-efficient plasma chemical process for the destruction of volatile toxic compounds. 1997 annual progress report

    SciTech Connect

    Pinnaduwage, L.A.; Ma, C.Y.L.

    1997-09-01

    'The objective of this research program is to develop new plasma chemical processes for the destruction of volatile toxic compounds (VTCs) in contaminated air streams where the contamination levels are below a few percent. The authors plan to exploit the large cross sections associated with dissociative electron attachment to highly excited molecular states. Such highly excited states are to be populated in glow discharges via excitation transfer from high- lying, metastable states of rare gases. Basic knowledge of the excitation transfer processes and the electron attachment processes are crucial to the development of the proposed techniques, and these processes will be studied in detail.'

  3. Chemical composition and phenolic compound profile of mortiño (Vaccinium floribundum Kunth).

    PubMed

    Vasco, Catalina; Riihinen, Kaisu; Ruales, Jenny; Kamal-Eldin, Afaf

    2009-09-23

    The phenolic compounds in mortiño (Vaccinium floribundum Kunth, family Ericaceae) from the páramos of Ecuador were studied by LC-DAD-MS/MS for the first time. (-)-Epicatechin, one dimer A and one trimer A were found at a total concentration of 18 mg/100 g FW. Of the flavonol glycosides (38 mg/100 g FW), quercetin and myricetin were found as -3-O-hexosides, -3-O-pentosides and -3-O-deoxyhexosides. Chlorogenic and neochlorogenic acids together with caffeic/ferulic acid derivatives were found as predominant components among the hydroxycinnamic acids in the berry. Anthocyanins, including cyanidin and delphinidin derivatives, were the major phenolic compound class quantified (345 mg cyanidin-3-O-glucoside/100 g FW). PMID:19719139

  4. Antidepressant-like and anxiolytic-like effects of cannabidiol: a chemical compound of Cannabis sativa.

    PubMed

    de Mello Schier, Alexandre R; de Oliveira Ribeiro, Natalia P; Coutinho, Danielle S; Machado, Sergio; Arias-Carrión, Oscar; Crippa, Jose A; Zuardi, Antonio W; Nardi, Antonio E; Silva, Adriana C

    2014-01-01

    Anxiety and depression are pathologies that affect human beings in many aspects of life, including social life, productivity and health. Cannabidiol (CBD) is a constituent non-psychotomimetic of Cannabis sativa with great psychiatric potential, including uses as an antidepressant-like and anxiolytic-like compound. The aim of this study is to review studies of animal models using CBD as an anxiolytic-like and antidepressant-like compound. Studies involving animal models, performing a variety of experiments on the above-mentioned disorders, such as the forced swimming test (FST), elevated plus maze (EPM) and Vogel conflict test (VCT), suggest that CBD exhibited an anti-anxiety and antidepressant effects in animal models discussed. Experiments with CBD demonstrated non-activation of neuroreceptors CB1 and CB2. Most of the studies demonstrated a good interaction between CBD and the 5-HT1A neuro-receptor. PMID:24923339

  5. Fluorination of uranium dioxide particles: a review of physical and chemical properties of the compounds involved

    NASA Astrophysics Data System (ADS)

    Sazhin, S. S.; Jeapes, A. P.

    1999-11-01

    A review of literature related to the process of fluorination of uranium dioxide and physical properties of the compounds involved (uranium hexafluoride, fluorine, uranium dioxide and argon) is presented. It is pointed out that there exist strong indications that the maximum rate of fluorination of uranium dioxide can be achieved at temperatures above 540°C. Particular attention is focused on the study of transport properties of argon-fluorine plasma.

  6. Chemical oxidation of volatile and semi-volatile organic compounds in soil

    SciTech Connect

    Gates, D.D.; Siegrist, R.L.; Cline, S.R.

    1995-06-01

    Subsurface contamination with fuel hydrocarbons or chlorinated hydrocarbons is prevalent throughout the Department of Energy (DOE) complex and in many sites managed by the Environmental Protection Agency (EPA) Superfund program. The most commonly reported chlorinated hydrocarbons (occurring > 50% of DOE contaminated sites) were trichloroethylene (TCE), 1, 1, 1,-trichloroethane (TCA), and tetrachloroethylene (PCE) with concentrations in the range of 0.2 {mu}g/kg to 12,000 mg/kg. The fuel hydrocarbons most frequently reported as being present at DOE sites include aromatic compounds and polyaromatic compounds such as phenanthrene, pyrene, and naphthalene. The primary sources of these semi-volatile organic compounds (SVOCs) are coal waste from coal fired electric power plants used at many of these facilities in the past and gasoline spills and leaks. Dense non-aqueous phase liquids (DNAPLs) can migrate within the subsurface for long periods of time along a variety of pathways including fractures, macropores, and micropores. Diffusion of contaminants in the non-aqueous, aqueous, and vapor phase can occur from the fractures and macropores into the matrix of fine-textured media. As a result of these contamination processes, removal of contaminants from the subsurface and the delivery of treatment agents into and throughout contaminated regions are often hindered, making rapid and extensive remediation difficult.

  7. Laboratory and Ambient Measurements of Oxidized Organic Compounds in the Gas Phase Using Nitrate Ion Chemical Ionization Coupled with High Resolution Time-of-Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Massoli, P.; Stark, H.; Canagaratna, M. R.; Krechmer, J.; Lambe, A. T.; Isaacman-VanWertz, G. A.; Nowak, J. B.; Kimmel, J.; Kroll, J. H.; Jayne, J. T.; Worsnop, D. R.

    2015-12-01

    Chemical Ionization Mass Spectrometry (CIMS) is a widely used technique for molecular level characterization of inorganic and organic gas phase species. Here we present laboratory and ambient measurements of gaseous organic compounds by means of a High Resolution Time-of-Flight Chemical Ionization Mass Spectrometry (HR-ToF-CIMS) using nitrate ion (NO3-) chemistry, which recently has proven capable of selectively detecting oxidized organic molecules in the gas-phase via clustering with NO3- and its high order clusters. Such low and extremely low volatility organic compounds (LVOC, ELVOC) have an important role in particulate phase chemistry and formation of secondary organic aerosol (SOA). The HR-ToF-CIMS was deployed during the Southern Oxidant and Aerosol Study (SOAS) at the forest site in Centreville, AL (June 1 - July 15, 2013), where emissions were dominated by biogenic volatile organic compounds (BVOC), occasionally mixing with anthropogenic emissions. During SOAS, the HR-ToF-CIMS detected oxidation products of both isoprene (typically C5 LVOC) and terpenes (typically C10 ELVOC). The isoprene-related LVOC showed a diurnal cycle with a day time peak, while two groups of terpene ELVOC were identified, one peaking at night and one peaking during the day. Positive Matrix Factorization (PMF) analyses are applied to the dataset to further interpret these observations. The effect of anthropogenic pollution on the biogenic-dominated environment was also investigated during periods of elevated nitrous and sulfur dioxide levels. To further aid in interpretation of the SOAS dataset, oxidized organic molecules were produced via OH and O3 initiated oxidation of biogenic gas-phase precursors in targeted laboratory studies and detected using the HR-ToF-CIMS. Spectra were obtained in these studies over a range of simulated atmospheric conditions.

  8. Chemical characterization and mutagenic properties of polycyclic aromatic compounds in sediment from tributaries of the Great Lakes

    USGS Publications Warehouse

    Fabacher, David L.; Schmitt, Christopher J.; Besser, John M.; Mac, Michael J.

    1988-01-01

    Sediments from four inshore industrial sites and a reference site in the Great Lakes were extracted with solvents and characterized chemically for polycyclic aromatic compounds (PACs). An aqueous phase and a crude organic extract were obtained. The crude organic extract was further resolved into fractions A-2 (polycyclic aromatic hydrocarbons) and A-3 (nitrogen-containing polycyclic aromatic compounds), which were analyzed for PACs by gas chromatography and gas chromatography-mass spectrometry. The extracts and fractions were tested for mutagenicity in three assays: Ames, rat hepatocyte unscheduled DNA synthesis, and Chinese hamster ovary hypoxanthine-guanine phosphoribosyl transferase (CHO/HGPRT). Sediments from the industrial sites contained 27 to 363 μg/g total PACs; the reference site, less than 1 μg/g. Qualitative differences in the residue profiles among the sites were attributable to the probable sources of the PACs (petroleum versus combustion). Only one industrial site yielded measurable (0.1 μg/g or more) concentrations of individual nitrogen-containing PACs. In the Ames assay, only the highest doses of the A-2 fractions from two sites approached positive results. Conversely, the crude organic extract and A-2 and A-3 fractions from all sites induced unscheduled DNA synthesis. Crude organic extracts and the A-2 and A-3 fractions from all industrial sites gave well-defined dose-response relations in the CHO/HGPRT assay. We established the presence of chemical mutagens in sediment that could be correlated with neoplasms in fish from many of the sites; however, the mutagenicity of the sediment extracts was not completely related to the degree of contamination by PACs. We also discuss the utility of mutagenicity assays in the evaluation of complex chemical mixtures and recommend the use of a CHO/HGPRT-type assay in which cells are not required to proliferate in the presence of potential interfering chemicals.

  9. An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway

    PubMed Central

    Gonsalves, Foster C.; Klein, Keren; Carson, Brittany B.; Katz, Shauna; Ekas, Laura A.; Evans, Steve; Nagourney, Robert; Cardozo, Timothy; Brown, Anthony M. C.; DasGupta, Ramanuj

    2011-01-01

    Misregulated β-catenin responsive transcription (CRT) has been implicated in the genesis of various malignancies, including colorectal carcinomas, and it is a key therapeutic target in combating various cancers. Despite significant effort, successful clinical implementation of CRT inhibitory therapeutics remains a challenging goal. This is, in part, because of the challenge of identifying inhibitory compounds that specifically modulate the nuclear transcriptional activity of β-catenin while not affecting its cytoskeletal function in stabilizing adherens junctions at the cell membrane. Here, we report an RNAi-based modifier screening strategy for the identification of CRT inhibitors. Our data provide support for the specificity of these inhibitory compounds in antagonizing the transcriptional function of nuclear β-catenin. We show that these inhibitors efficiently block Wnt/β-catenin–induced target genes and phenotypes in various mammalian and cancer cell lines. Importantly, these Wnt inhibitors are specifically cytotoxic to human colon tumor biopsy cultures as well as colon cancer cell lines that exhibit deregulated Wnt signaling. PMID:21393571

  10. RESPONSE OF PORTABLE VOC (VOLATILE ORGANIC COMPOUNDS) ANALYZERS TO CHEMICAL MIXTURES

    EPA Science Inventory

    The report gives the responses of two types of portable VOC analyzers (Century Systems OVA-108 and Bacharach TLV Sniffer), calibrated with methane and used to measure a variety of chemical vapor mixtures. Instrument response data for both binary and ternary mixtures of selected c...

  11. Comment on the reference compound for chemical shift and Knight shift determination of (209)Bi nuclei.

    PubMed

    Nowak, Bogdan

    2015-01-01

    Several groups exploring the (209)Bi NMR in solids, including usual insulators, metallic and magnetic materials and recently diamagnetic topological materials, use different standards (usually old and invalid) for chemical shift (Knight shift) determination, ignoring IUPAC recommendations. As a consequence the published shift values exhibit considerable differences (up to 17,500 ppm). PMID:25534279

  12. Annual fluxes of particulate chemical trace compounds during the North-East water polynya experiment

    NASA Astrophysics Data System (ADS)

    Schüβler, Uwe; Schulz-Bull, Detlef E.; Bauerfeind, Eduard

    1997-01-01

    Particulate fluxes of organic marker substances (alkanes, wax esters, pristane, and alkenones) and trace elements (Al, Cd, Cu, Fe, Mn, Ni, and Pb) were determined from identical samples of sediment trap material collected at North East Water Polynya (NEWP) locations E and F in the north-western Greenland Sea. Samples from the East Greenland Shelf were obtained with two sediment traps deployed at 130 m depth over a 331-day period from August 1992 to June 1993 within the NEWP experiment. Particulate fluxes of the chemical tracers showed a pronounced seasonality, which was largely consistent with ice-coverage data. Relative flux pattern exhibited initial maxima during August and September 1992. Fluxes were lowest during winter time (November 1992 to early March 1993), followed by an increase by a factor of 2-5 in mid-March 1993. In contrast, flux of n-alkanes occurred almost entirely in spring 1993. Flux of alkenones was not detectable throughout this experiment. Temporal variations of chemical tracer fluxes at trap location E were similar to those of station F during autumn 1992. Normalization calculations showed that lithogenic material was an important source for trace element fluxes, with an estimated lithogenic fraction of the bulk material flux increasing from autumn to spring. A non-lithogenic flux component was observed for Cd throughout the time of deployment. The chemical data indicate that during the peak flux periods a large proportion of the sinking particles consisted of fresh material. Differences in the patterns of the bulk material flux and the chemical tracer fluxes indicate that there must have been a substantial difference between autumn and spring in the gross chemical composition of the sinking material.

  13. A novel method developed for estimating mineralization efficiencies and its application in PC and PEC degradations of large molecule biological compounds with unknown chemical formula.

    PubMed

    Li, Guiying; Liu, Xiaolu; An, Taicheng; Wong, Po Keung; Zhao, Huijun

    2016-05-15

    A new method to estimate the photocatalytic (PC) and photoelectrocatalytic (PEC) mineralization efficiencies of large molecule biological compounds with unknown chemical formula in water was firstly developed and experimentally validated. The method employed chemical oxidation under the standard dichromate chemical oxygen demand (COD) conditions to obtain QCOD values of model compounds with unknown chemical formula. The measured QCOD values were used as the reference to replace QCOD values of model compounds for calculation of the mineralization efficiencies (in %) by assuming the obtained QCOD values are the measure of the theoretical charge required for the complete mineralization of organic pollutants. Total organic carbon (TOC) was also employed as a reference to confirm the mineralization capacity of dichromate chemical oxidation. The developed method was applied to determine the degradation extent of model compounds, such as bovine serum albumin (BSA), lecithin and bacterial DNA, by PC and PEC. Incomplete PC mineralization of all large molecule biological compounds was observed, especially for BSA. But the introduction of electrochemical technique into a PC oxidation process could profoundly improve the mineralization efficiencies of model compounds. PEC mineralization efficiencies of bacterial DNA was the highest, while that of lecithin was the lowest. Overall, PEC degradation method was found to be much effective than PC method for all large molecule biological compounds investigated, with PEC/PC mineralization ratios followed an order of BSA > lecithin > DNA. PMID:26994335

  14. JV Task 86 - Identifying the Source of Benzene in Indoor Air Using Different Compound Classes from TO-15 Data

    SciTech Connect

    Steven B. Hawthorne

    2007-04-15

    Volatile organic compound (VOC) data that had already been collected using EPA method TO-15 at four different sites under regulatory scrutiny (a school, strip mall, apartment complex, and business/residential neighborhood) were evaluated to determine whether the source of indoor air benzene was outdoor air or vapor intrusion from contaminated soil. Both the use of tracer organics characteristic of different sources and principal component statistical analysis demonstrated that the source of indoor air at virtually all indoor sampling locations was a result of outdoor air, and not contaminated soil in and near the indoor air-sampling locations. These results show that proposed remediation activities to remove benzene-contaminated soil are highly unlikely to reduce indoor air benzene concentrations. A manuscript describing these results is presently being prepared for submission to a peer-reviewed journal.

  15. Correlations between chemical reactivity and mutagenic activity against S. typhimurium TA100 for alpha-dicarbonyl compounds as a proof of the mutagenic mechanism.

    PubMed

    Rodríguez Mellado, J M; Ruiz Montoya, M

    1994-01-16

    The mutagenic activities in the Ames test against S. typhimurium TA100 for a series of alpha-dicarbonyl compounds are examined together with the formation constants of the adducts formed between such compounds and guanine and guanosine. Correlations between the equilibrium constants, the apparent reaction enthalpies, and the mutagenic activity are presented. These correlations imply that the mutagenic activity is related to the chemical reactivity of the dicarbonyl compounds with the puric bases. PMID:7506369

  16. Isolation of an unknown compound, from both blood of Bhopal aerosol disaster victims and residue of tank E-610 of Union Carbide India Limited--chemical characterization of the structure.

    PubMed

    Chandra, H; Saraf, A K; Jadhav, R K; Rao, G J; Sharma, V K; Sriramachari, S; Vairamani, M

    1994-04-01

    A total of more than 28 chemical entities/reaction products in the form of gases, vapour and particulate matter were reported from the tank E-610 of methyl isocyanate (MIC) storage tank of Union Carbide India Limited on the night of 2/3 December 1984 in Bhopal. In earlier studies, methyl isocyanate and its trimer, with a few other compounds, were reported in the human victims preserved in deep freeze. Randomly selected samples were analysed by gas chromatograph coupled with mass spectrometer (ITD-800, Finnigan MAT, UK). Four of the cases showed the peaks and fragmentation pattern identified with one of the unidentified compound of molecular weight 269 amu in the Tank Residue, which constituted about 0.2 area per cent on GC-ITD. After isolation by column chromatography and being exposed to characterization, it was identified as a Spiro compound. It was possibly formed by the polymerization of five molecules of methyl isocyanate. PMID:8054074

  17. Attomole detection of isotope-labeled compounds in chemical defense research

    SciTech Connect

    Vogel, J.S.; Buchholz, B.A.; Pawley, N.H.; Mauthe, R.E.; Dingley, K.; Turteltaub, K.

    1996-11-01

    AMS detects 14C at zeptomole to femtomole sensitivities. We detected the effect of ChE-blocking pyridostigmine bromide on the CNS uptake of a pyrethroid insecticide at scaled human-equivalent exposures in rats. Significant blood to brain protection from permethrin dosed at 5mg/kg is seen in the CNS of rats receiving pyridostigmine bromide pretreatments in chow at 2mg/kg/day. The synergy of these compounds was suggested as a precursor to some symptoms of `Gulf War Syndrome`.

  18. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN...

  19. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN...

  20. 40 CFR 721.9668 - Organotin lithium compound.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Organotin lithium compound. 721.9668... Substances § 721.9668 Organotin lithium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as an organotin lithium compound (PMN...