These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

USE OF BIOASSAY-DIRECTED CHEMICAL ANALYSIS FOR IDENTIFYING MUTAGENIC COMPOUNDS IN URBAN AIR AND COMBUSTION EMISSIONS  

EPA Science Inventory

Bioassay-directed chemical analysis fractionation has been used for 30 years to identify mutagenic classes of compounds in complex mixtures. Most studies have used the Salmonella (Ames) mutagenicity assay, and we have recently applied this methodology to two standard reference sa...

2

Profiling of the Tox21 Chemical Collection for Mitochondrial Function to Identify Compounds that Acutely Decrease Mitochondrial Membrane Potential  

PubMed Central

Background: Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding whether different environmental chemicals and druglike molecules impact mitochondrial function represents an initial step in predicting exposure-related toxicity and defining a possible role for such compounds in the onset of various diseases. Objectives: We sought to identify individual chemicals and general structural features associated with changes in mitochondrial membrane potential (MMP). Methods: We used a multiplexed [two end points in one screen; MMP and adenosine triphosphate (ATP) content] quantitative high throughput screening (qHTS) approach combined with informatics tools to screen the Tox21 library of 10,000 compounds (~ 8,300 unique chemicals) at 15 concentrations each in triplicate to identify chemicals and structural features that are associated with changes in MMP in HepG2 cells. Results: Approximately 11% of the compounds (913 unique compounds) decreased MMP after 1 hr of treatment without affecting cell viability (ATP content). In addition, 309 compounds decreased MMP over a concentration range that also produced measurable cytotoxicity [half maximal inhibitory concentration (IC50) in MMP assay/IC50 in viability assay ? 3; p < 0.05]. More than 11% of the structural clusters that constitute the Tox21 library (76 of 651 clusters) were significantly enriched for compounds that decreased the MMP. Conclusions: Our multiplexed qHTS approach allowed us to generate a robust and reliable data set to evaluate the ability of thousands of drugs and environmental compounds to decrease MMP. The use of structure-based clustering analysis allowed us to identify molecular features that are likely responsible for the observed activity. Citation: Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice RR, Simeonov A, Austin CP, Xia M. 2015. Profiling of the Tox21 chemical collection for mitochondrial function to identify compounds that acutely decrease mitochondrial membrane potential. Environ Health Perspect 123:49–56;?http://dx.doi.org/10.1289/ehp.1408642 PMID:25302578

Attene-Ramos, Matias S.; Huang, Ruili; Michael, Sam; Witt, Kristine L.; Richard, Ann; Tice, Raymond R.; Simeonov, Anton; Austin, Christopher P.

2014-01-01

3

Sulfonamides identified as plant immune-priming compounds in high-throughput chemical screening increase disease resistance in Arabidopsis thaliana  

PubMed Central

Plant activators are agrochemicals that protect crops from diseases by activating the plant immune system. To isolate lead compounds for use as practical plant activators, we screened two different chemical libraries composed of various bioactive substances by using an established screening procedure that can selectively identify immune-priming compounds. We identified and characterized a group of sulfonamide compounds – sulfameter, sulfamethoxypyridazine, sulfabenzamide, and sulfachloropyridazine – among the various isolated candidate molecules. These sulfonamide compounds enhanced the avirulent Pseudomonas-induced cell death of Arabidopsis suspension cell cultures and increased disease resistance in Arabidopsis plants against both avirulent and virulent strains of the bacterium. These compounds did not prevent the growth of pathogenic bacteria in minimal liquid media at 200 ?M. They also did not induce the expression of defense-related genes in Arabidopsis seedlings, at least not at 24 and 48 h after treatment, suggesting that they do not act as salicylic acid analogs. In addition, although sulfonamides are known to be folate biosynthesis inhibitors, the application of folate did not restore the potentiation effects of the sulfonamides on pathogen-induced cell death. Our data suggest that sulfonamides potentiate Arabidopsis disease resistance by their novel chemical properties. PMID:23118736

Noutoshi, Yoshiteru; Ikeda, Mika; Saito, Tamio; Osada, Hiroyuki; Shirasu, Ken

2012-01-01

4

Sulfonamides identified as plant immune-priming compounds in high-throughput chemical screening increase disease resistance in Arabidopsis thaliana.  

PubMed

Plant activators are agrochemicals that protect crops from diseases by activating the plant immune system. To isolate lead compounds for use as practical plant activators, we screened two different chemical libraries composed of various bioactive substances by using an established screening procedure that can selectively identify immune-priming compounds. We identified and characterized a group of sulfonamide compounds - sulfameter, sulfamethoxypyridazine, sulfabenzamide, and sulfachloropyridazine - among the various isolated candidate molecules. These sulfonamide compounds enhanced the avirulent Pseudomonas-induced cell death of Arabidopsis suspension cell cultures and increased disease resistance in Arabidopsis plants against both avirulent and virulent strains of the bacterium. These compounds did not prevent the growth of pathogenic bacteria in minimal liquid media at 200 ?M. They also did not induce the expression of defense-related genes in Arabidopsis seedlings, at least not at 24 and 48 h after treatment, suggesting that they do not act as salicylic acid analogs. In addition, although sulfonamides are known to be folate biosynthesis inhibitors, the application of folate did not restore the potentiation effects of the sulfonamides on pathogen-induced cell death. Our data suggest that sulfonamides potentiate Arabidopsis disease resistance by their novel chemical properties. PMID:23118736

Noutoshi, Yoshiteru; Ikeda, Mika; Saito, Tamio; Osada, Hiroyuki; Shirasu, Ken

2012-01-01

5

A yeast chemical genetics approach identifies the compound 3,4,5-trimethoxybenzyl isothiocyanate as a calcineurin inhibitor.  

PubMed

The phosphatase enzyme calcineurin controls gene expression in a variety of biological contexts however few potent inhibitors are currently available. A screen of 360 plant extracts for inhibition of calcineurin-dependent gene expression in the model organism Saccharomyces cerevisiae identified the compound 3,4,5-trimethoxybenzyl isothiocyanate as an inhibitor. The compound was subsequently shown to inhibit human calcineurin via a mixed inhibition mechanism. To gain further mechanistic insight a yeast haploinsufficiency screen of 1152 deletion strains was carried out using a novel liquid medium screening method. The resulting haploinsufficiency profile is similar to that reported for the known calcineurin inhibitor FK506. PMID:24374339

Prescott, Thomas A K; Panaretou, Barry; Veitch, Nigel C; Simmonds, Monique S J

2014-01-31

6

Discovery of a novel neuroprotective compound, AS1219164, by high-throughput chemical screening of a newly identified apoptotic gene marker.  

PubMed

We have reported that tacrolimus (FK506), an immunosuppressive drug, and diclofenac, a non-steroidal anti-inflammatory drug, possess different modes of neuroprotective action. FK506 suppresses only thapsigargin-induced apoptosis in neuroblastoma SH-SY5Y cells while diclofenac reverses tunicamycin-induced as well as thapsigargin-induced apoptosis. The aim of this study is to discover novel compounds that exert neuroprotective properties by using the transcriptional response of a newly identified gene, which was regulated by both FK506 and diclofenac, as a surrogate screening marker in high-throughput chemical screening and characterize the compounds in comparison with FK506 and diclofenac. Using a microarray with 4504 human cDNAs and quantitative RT-PCR, two genes as apoptotic markers, transmembrane protein 100 (TMEM100) and limb-bud and heart (LBH), were identified because the thapsigargin-induced elevations in their mRNA levels were reversed by both FK506 and diclofenac. A luciferase reporter assay with a TMEM100 promoter region was applied to high-throughput chemical screening. AS1219164, {3-[(E)-2-{5-[(E)-2-pyridin-4-ylvinyl]pyridin-3-yl} vinyl]aniline}, suppressed thapsigargin-induced transactivation of the TMEM100 gene and reversed thapsigargin-induced increases in TMEM100 and LBH mRNA levels in SH-SY5Y cells, similar to the effects of FK506 and diclofenac. Furthermore, AS1219164 protected against SH-SY5Y cell death induced by four apoptotic agents including thapsigargin, similar to diclofenac, but was more potent than diclofenac, while FK506 only showed protective effects against thapsigargin-induced cell death. In conclusion, a novel neuroprotecitve compound, AS1219164, was discovered by high-throughput chemical screening using a reporter assay with the TMEM100 gene promoter regulated by both FK506 and diclofenac. Reporter assay using the promoter region of a gene under pharmacological and physiological transcriptional regulation would be well suit for use in high-throughput chemical screening. PMID:21824470

Yamazaki, Takao; Muramoto, Masakazu; Okitsu, Osamu; Morikawa, Noriyuki; Kita, Yasuhiro

2011-11-01

7

Devices for collecting chemical compounds  

DOEpatents

A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

Scott, Jill R; Groenewold, Gary S

2013-12-24

8

Novel Plant Immune-Priming Compounds Identified via High-Throughput Chemical Screening Target Salicylic Acid Glucosyltransferases in Arabidopsis[W][OA  

PubMed Central

Plant activators are compounds, such as analogs of the defense hormone salicylic acid (SA), that protect plants from pathogens by activating the plant immune system. Although some plant activators have been widely used in agriculture, the molecular mechanisms of immune induction are largely unknown. Using a newly established high-throughput screening procedure that screens for compounds that specifically potentiate pathogen-activated cell death in Arabidopsis thaliana cultured suspension cells, we identified five compounds that prime the immune response. These compounds enhanced disease resistance against pathogenic Pseudomonas bacteria in Arabidopsis plants. Pretreatments increased the accumulation of endogenous SA, but reduced its metabolite, SA-O-?-d-glucoside. Inducing compounds inhibited two SA glucosyltransferases (SAGTs) in vitro. Double knockout plants that lack both SAGTs consistently exhibited enhanced disease resistance. Our results demonstrate that manipulation of the active free SA pool via SA-inactivating enzymes can be a useful strategy for fortifying plant disease resistance and may identify useful crop protectants. PMID:22960909

Noutoshi, Yoshiteru; Okazaki, Masateru; Kida, Tatsuya; Nishina, Yuta; Morishita, Yoshihiko; Ogawa, Takumi; Suzuki, Hideyuki; Shibata, Daisuke; Jikumaru, Yusuke; Hanada, Atsushi; Kamiya, Yuji

2012-01-01

9

Cheminformatics Analysis of EPA ToxCast Chemical Libraries to Identify Domains of Applicability for Predictive Toxicity Models and Prioritize Compounds for Toxicity Testing  

EPA Science Inventory

An important goal of toxicology research is the development of robust methods that use in vitro and chemical structure information to predict in vivo toxicity endpoints. The US EPA ToxCast program is addressing this goal using ~600 in vitro assays to create bioactivity profiles o...

10

Identifying chemicals that are planetary boundary threats.  

PubMed

Rockström et al. proposed a set of planetary boundaries that delimit a "safe operating space for humanity". Many of the planetary boundaries that have so far been identified are determined by chemical agents. Other chemical pollution-related planetary boundaries likely exist, but are currently unknown. A chemical poses an unknown planetary boundary threat if it simultaneously fulfills three conditions: (1) it has an unknown disruptive effect on a vital Earth system process; (2) the disruptive effect is not discovered until it is a problem at the global scale, and (3) the effect is not readily reversible. In this paper, we outline scenarios in which chemicals could fulfill each of the three conditions, then use the scenarios as the basis to define chemical profiles that fit each scenario. The chemical profiles are defined in terms of the nature of the effect of the chemical and the nature of exposure of the environment to the chemical. Prioritization of chemicals in commerce against some of the profiles appears feasible, but there are considerable uncertainties and scientific challenges that must be addressed. Most challenging is prioritizing chemicals for their potential to have a currently unknown effect on a vital Earth system process. We conclude that the most effective strategy currently available to identify chemicals that are planetary boundary threats is prioritization against profiles defined in terms of environmental exposure combined with monitoring and study of the biogeochemical processes that underlie vital Earth system processes to identify currently unknown disruptive effects. PMID:25181298

MacLeod, Matthew; Breitholtz, Magnus; Cousins, Ian T; de Wit, Cynthia A; Persson, Linn M; Rudén, Christina; McLachlan, Michael S

2014-10-01

11

Identifying developmental vascular disruptor compounds using a predictive signature and alternative toxicity models  

EPA Science Inventory

Identifying Developmental Vascular Disruptor Compounds Using a Predictive Signature and Alternative Toxicity Models Presenting Author: Tamara Tal Affiliation: U.S. EPA/ORD/ISTD, RTP, NC, USA Chemically induced vascular toxicity during embryonic development can result in a wide...

12

Chemical compound navigator: a web-based chem-BLAST, chemical taxonomy-based search engine for browsing compounds.  

PubMed

A novel technique to annotate, query, and analyze chemical compounds has been developed and is illustrated by using the inhibitor data on HIV protease-inhibitor complexes. In this method, all chemical compounds are annotated in terms of standard chemical structural fragments. These standard fragments are defined by using criteria, such as chemical classification; structural, chemical, or functional groups; and commercial, scientific or common names or synonyms. These fragments are then organized into a data tree based on their chemical substructures. Search engines have been developed to use this data tree to enable query on inhibitors of HIV protease (http://xpdb.nist.gov/hivsdb/hivsdb.html). These search engines use a new novel technique, Chemical Block Layered Alignment of Substructure Technique (Chem-BLAST) to search on the fragments of an inhibitor to look for its chemical structural neighbors. This novel technique to annotate and query compounds lays the foundation for the use of the Semantic Web concept on chemical compounds to allow end users to group, sort, and search structural neighbors accurately and efficiently. During annotation, it enables the attachment of "meaning" (i.e., semantics) to data in a manner that far exceeds the current practice of associating "metadata" with data by creating a knowledge base (or ontology) associated with compounds. Intended users of the technique are the research community and pharmaceutical industry, for which it will provide a new tool to better identify novel chemical structural neighbors to aid drug discovery. PMID:16508960

Prasanna, M D; Vondrasek, Jiri; Wlodawer, Alexander; Rodriguez, H; Bhat, T N

2006-06-01

13

Quantum chemical studies of estrogenic compounds  

Technology Transfer Automated Retrieval System (TEKTRAN)

Quantum chemical methods are potent tools to provide information on the chemical structure and electronic properties of organic molecules. Modern computational chemistry methods have provided a great deal of insight into the binding of estrogenic compounds to estrogenic receptors (ER), an important ...

14

Microfluidic in vivo screen identifies compounds enhancing neuronal  

E-print Network

Compound screening is a powerful tool to identify new therapeutic targets, drug leads, and elucidate the fundamental mechanisms of biological processes. We report here the results of the first in vivo small-molecule screens ...

Haggarty, Stephen

15

Lifetime of a Chemically Bound Helium Compound  

NASA Technical Reports Server (NTRS)

The rare-gas atoms are chemically inert, to an extent unique among all elements. This is due to the stable electronic structure of the atoms. Stable molecules with chemically bound rare-gas atoms are, however, known. A first such compound, XePtF6, W2S prepared in 1962 and since then a range of molecules containing radon, xenon and krypton have been obtained. Most recently, a first stable chemically bound compound of argon was prepared, leaving neon and helium as the only elements for which stable chemically bound molecules are not yet known. Electronic structure calculations predict that a metastable species HHeF exists, but significance of the result depends on the unknown lifetime. Here we report quantum dynamics calculations of the lifetime of HHeF, using accurate interactions computed from electronic structure theory. HHeF is shown to disintegrate by tunneling through energy barriers into He + HF and H + He + F the first channel greatly dominating. The lifetime of HHeF is more than 120 picoseconds, that of DHeF is 14 nanoseconds. The relatively long lifetimes are encouraging for the preparation prospects of this first chemically bound helium compound.

Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Dochan (Technical Monitor)

2001-01-01

16

Exposure Levels for Chemical Threat Compounds; Information to Facilitate Chemical Incident Response  

SciTech Connect

Exposure Standards, Limits and Guidelines for Chemical Threat Compunds ABSTRACT Exposure criteria for chemical warfare (CW) agents and certain toxic industrial chemicals (TICs) used as CW agents (such as chlorine fill in an improvised explosive device) have been developed for protection of the civilian general public, civilian employees in chemical agent processing facilities and deployed military populations. In addition, compound-specific concentrations have been developed to serve as how clean is clean enough clearance criteria guiding facility recovery following chemical terrorist or other hazardous release events. Such criteria are also useful to verify compound absence, identify containment boundaries and expedite facility recovery following chemical threat release. There is no single right value or concentration appropriate for all chemical hazard control applications. It is acknowledged that locating and comparing the many sources of CW agent and TIC exposure criteria has not been previously well-defined. This paper summarizes many of these estimates and assembles critical documentation regarding their derivation and use.

Hauschild, Veronique [U.S. Army Public Health Command] [U.S. Army Public Health Command; Watson, Annetta Paule [ORNL] [ORNL

2013-01-01

17

A staining protocol for identifying secondary compounds in Myrtaceae1  

PubMed Central

• Premise of the study: Here we propose a staining protocol using toluidine blue (TBO) and ruthenium red to reliably identify secondary compounds in the leaves of some species of Myrtaceae. • Methods and Results: Leaves of 10 species representing 10 different genera of Myrtaceae were processed and stained using five different combinations of ruthenium red and TBO. Optimal staining conditions were determined as 1 min of ruthenium red (0.05% aqueous) and 45 s of TBO (0.1% aqueous). Secondary compounds clearly identified under this treatment include mucilage in the mesophyll, polyphenols in the cuticle, lignin in fibers and xylem, tannins and carboxylated polysaccharides in the epidermis, and pectic substances in the primary cell walls. • Conclusions: Potential applications of this protocol include systematic, phytochemical, and ecological investigations in Myrtaceae. It might be applicable to other plant families rich in secondary compounds and could be used as a preliminary screening method for extraction of these elements. PMID:25309840

Retamales, Hernan A.; Scharaschkin, Tanya

2014-01-01

18

Antiapicoplast and Gametocytocidal Screening To Identify the Mechanisms of Action of Compounds within the Malaria Box  

PubMed Central

Malaria remains a significant infectious disease that causes millions of clinical cases and >800,000 deaths per year. The Malaria Box is a collection of 400 commercially available chemical entities that have antimalarial activity. The collection contains 200 drug-like compounds, based on their oral absorption and the presence of known toxicophores, and 200 probe-like compounds, which are intended to represent a broad structural diversity. These compounds have confirmed activities against the asexual intraerythrocytic stages of Plasmodium falciparum and low cytotoxicities, but their mechanisms of action and their activities in other stages of the parasite's life cycle remain to be determined. The apicoplast is considered to be a promising source of malaria-specific targets, and its main function during intraerythrocytic stages is to provide the isoprenoid precursor isopentenyl diphosphate, which can be used for phenotype-based screens to identify compounds targeting this organelle. We screened 400 compounds from the Malaria Box using apicoplast-targeting phenotypic assays to identify their potential mechanisms of action. We identified one compound that specifically targeted the apicoplast. Further analyses indicated that the molecular target of this compound may differ from those of the current antiapicoplast drugs, such as fosmidomycin. Moreover, in our efforts to elucidate the mechanisms of action of compounds from the Malaria Box, we evaluated their activities against other stages of the life cycle of the parasite. Gametocytes are the transmission stage of the malaria parasite and are recognized as a priority target in efforts to eradicate malaria. We identified 12 compounds that were active against gametocytes with 50% inhibitory concentration values of <1 ?M. PMID:24247137

Bowman, Jessica D.; Merino, Emilio F.; Brooks, Carrie F.; Striepen, Boris; Carlier, Paul R.

2014-01-01

19

Device for collecting chemical compounds and related methods  

DOEpatents

A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

2013-01-01

20

Development of an electronic nose to identify and quantify volatile hazardous compounds.  

PubMed

A new electronic nose was developed to identify the chemical compound released when a 2.5-L flask was broken inside a 3 m x 3 m x 2.5 m store-room. Flasks of 10 different hazardous compounds were initially present in the room: ammonia, propanone, hexane, acetic acid, toluene, methanol, tetrachloromethane, chloroform, ethanol and dichloromethane. Besides identification, quantification of the compound present in the air was also performed by the electronic nose, in order to evaluate the risk level for room cleaning. An array of six sensors based on coated piezoelectric quartz crystals was used. Although none of the individual sensors was specific for a single compound, an artificial neural network made it possible to identify and quantify the released vapour, among a series of 10 compounds, with six sensors. The neural network could be simplified, and the number of neurons reduced, provided it was used just for the identification task. Quantification could be performed later using the individual calibration of the sensor most sensitive to the identified compound. PMID:18804602

Fernandes, Daniel L A; Gomes, M Teresa S R

2008-10-19

21

Using Chemical Change to Identify an Unknown  

NSDL National Science Digital Library

In this activity, learners will develop a method to test five similar-looking powders (baking soda, baking powder, cream of tartar, detergent, and cornstarch) with four test liquids (water, vinegar, iodine solution, red cabbage solution). They will use the characteristic set of reactions for each powder to identify an unknown powder, which is one of the five powders they have tested.

Kessler, James H.; Galvan, Patricia M.

2007-01-01

22

APPLICATION OF AN ANALYSIS PROTOCOL TO IDENTIFY ORGANIC COMPOUNDS NOT IDENTIFIED BY SPECTRUM MATCHING. PART 2: APPENDICES  

EPA Science Inventory

Industrial wastewater survey samples were analyzed for organic compounds not identified by spectrum matching. Analysis of the samples proceeded from an initial packed column GC/MS analysis for Priority Pollutants, through computerized spectrum matching for other compounds, to the...

23

Chemical Genetics: Elucidating Biological Systems with Small-Molecule Compounds  

E-print Network

Chemical Genetics: Elucidating Biological Systems with Small-Molecule Compounds Masaoki Kawasumi1 and Paul Nghiem1,2 Chemical genetics employs diverse small-molecule compounds to elucidate biological processes in a manner analogous to the mutagenesis strategies at the core of classical genetics. Screening

Nghiem, Paul

24

InChI - the worldwide chemical structure identifier standard  

PubMed Central

Since its public introduction in 2005 the IUPAC InChI chemical structure identifier standard has become the international, worldwide standard for defined chemical structures. This article will describe the extensive use and dissemination of the InChI and InChIKey structure representations by and for the world-wide chemistry community, the chemical information community, and major publishers and disseminators of chemical and related scientific offerings in manuscripts and databases. PMID:23343401

2013-01-01

25

A Yeast Chemical Genetic Screen Identifies Inhibitors of Human Telomerase  

PubMed Central

Summary Telomerase comprises a reverse transcriptase and an internal RNA template that maintains telomeres in many eukaryotes, and it is a well-validated cancer target. However, there is a dearth of small molecules with efficacy against human telomerase in vivo. We developed a surrogate yeast high-throughput assay to identify human telomerase inhibitors. The reversibility of growth arrest induced by active human telomerase was assessed against a library of 678 compounds preselected for bioactivity in S. cerevisiae. Four of eight compounds identified reproducibly restored growth to strains expressing active human telomerase, and three of these four compounds also specifically inhibited purified human telomerase in vitro. These compounds represent probes for human telomerase function, and potential entry points for development of lead compounds against telomerase-positive cancers. PMID:23521791

Wong, Lai Hong; Unciti-Broceta, Asier; Spitzer, Michaela; White, Rachel; Tyers, Mike; Harrington, Lea

2013-01-01

26

A yeast chemical genetic screen identifies inhibitors of human telomerase.  

PubMed

Telomerase comprises a reverse transcriptase and an internal RNA template that maintains telomeres in many eukaryotes, and it is a well-validated cancer target. However, there is a dearth of small molecules with efficacy against human telomerase in vivo. We developed a surrogate yeast high-throughput assay to identify human telomerase inhibitors. The reversibility of growth arrest induced by active human telomerase was assessed against a library of 678 compounds preselected for bioactivity in S. cerevisiae. Four of eight compounds identified reproducibly restored growth to strains expressing active human telomerase, and three of these four compounds also specifically inhibited purified human telomerase in vitro. These compounds represent probes for human telomerase function, and potential entry points for development of lead compounds against telomerase-positive cancers. PMID:23521791

Wong, Lai Hong; Unciti-Broceta, Asier; Spitzer, Michaela; White, Rachel; Tyers, Mike; Harrington, Lea

2013-03-21

27

Zebrafish screen identifies novel compound with selective toxicity against leukemia  

PubMed Central

To detect targeted antileukemia agents we have designed a novel, high-content in vivo screen using genetically engineered, T-cell reporting zebrafish. We exploited the developmental similarities between normal and malignant T lymphoblasts to screen a small molecule library for activity against immature T cells with a simple visual readout in zebrafish larvae. After screening 26 400 molecules, we identified Lenaldekar (LDK), a compound that eliminates immature T cells in developing zebrafish without affecting the cell cycle in other cell types. LDK is well tolerated in vertebrates and induces long-term remission in adult zebrafish with cMYC-induced T-cell acute lymphoblastic leukemia (T-ALL). LDK causes dephosphorylation of members of the PI3 kinase/AKT/mTOR pathway and delays sensitive cells in late mitosis. Among human cancers, LDK selectively affects survival of hematopoietic malignancy lines and primary leukemias, including therapy-refractory B-ALL and chronic myelogenous leukemia samples, and inhibits growth of human T-ALL xenografts. This work demonstrates the utility of our method using zebrafish for antineoplastic candidate drug identification and suggests a new approach for targeted leukemia therapy. Although our efforts focused on leukemia therapy, this screening approach has broad implications as it can be translated to other cancer types involving malignant degeneration of developmentally arrested cells. PMID:22490804

Ridges, Suzanne; Heaton, Will L.; Joshi, Deepa; Choi, Henry; Eiring, Anna; Batchelor, Lance; Choudhry, Priya; Manos, Elizabeth J.; Sofla, Hossein; Sanati, Ali; Welborn, Seth; Agarwal, Archana; Spangrude, Gerald J.; Miles, Rodney R.; Cox, James E.; Frazer, J. Kimble; Deininger, Michael; Balan, Kaveri; Sigman, Matthew; Müschen, Markus; Perova, Tatiana; Johnson, Radia; Montpellier, Bertrand; Guidos, Cynthia J.; Jones, David A.

2012-01-01

28

Synchrotron radiation identified human chemical fingerprints a novel forensic approach  

E-print Network

Synchrotron radiation identified human chemical fingerprints ­ a novel forensic approach T with the goal of developing an advanced forensic technique to identify complicated partial latent prints a forensic analysis of the fingerprint chemistry, or to identify the latent prints of pre-pubescent children

29

Process for preparing a chemical compound enriched in isotope content  

DOEpatents

A process to prepare a chemical enriched in isotope content which includes: (a) A chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; (b) the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; (c) the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; (d) the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products.

Michaels, Edward D. (Spring Valley, OH)

1982-01-01

30

Systematic mining of generally recognized as safe (GRAS) flavor chemicals for bioactive compounds.  

PubMed

Bioactive food compounds can be both therapeutically and nutritionally relevant. Screening strategies are widely employed to identify bioactive compounds from edible plants. Flavor additives contained in the so-called FEMA GRAS (generally recognized as safe) list of approved flavoring ingredients is an additional source of potentially bioactive compounds. This work used the principles of molecular similarity to identify compounds with potential mood-modulating properties. The ability of certain GRAS molecules to inhibit histone deacetylase-1 (HDAC1), proposed as an important player in mood modulation, was assayed. Two GRAS chemicals were identified as HDAC1 inhibitors in the micromolar range, results similar to what was observed for the structurally related mood prescription drug valproic acid. Additional studies on bioavailability, toxicity at higher concentrations, and off-target effects are warranted. The methodology described in this work could be employed to identify potentially bioactive flavor chemicals present in the FEMA GRAS list. PMID:23848473

Martinez-Mayorga, Karina; Peppard, Terry L; López-Vallejo, Fabian; Yongye, Austin B; Medina-Franco, José L

2013-08-01

31

Finding Frequent Substructures in Chemical Compounds  

Microsoft Academic Search

The discovery of the relationships between chemical structure and biological function is central to biologi- cal science and medicine. In this paper we apply data mining to the problem of predicting chemical carcino- genicity. This toxicology application was launched at IJCAI'97 as a research challenge for artificial intelli- gence. Our approach to the problem is descriptive rather than based on

Luc Dehaspe; Hannu Toivonen; Ross D. King

1998-01-01

32

Chemical compounds of the foraging recruitment pheromone in bumblebees  

NASA Astrophysics Data System (ADS)

When the frenzied and irregular food-recruitment dances of bumblebees were first discovered, it was thought that they might represent an evolutionary prototype to the honeybee waggle dance. It later emerged that the primary function of the bumblebee dance was the distribution of an alerting pheromone. Here, we identify the chemical compounds of the bumblebee recruitment pheromone and their behaviour effects. The presence of two monoterpenes and one sesquiterpene (eucalyptol, ocimene and farnesol) in the nest airspace and in the tergal glands increases strongly during foraging. Of these, eucalyptol has the strongest recruitment effect when a bee nest is experimentally exposed to it. Since honeybees use terpenes for marking food sources rather than recruiting foragers inside the nest, this suggests independent evolutionary roots of food recruitment in these two groups of bees.

Granero, Angeles Mena; Sanz, José M. Guerra; Gonzalez, Francisco J. Egea; Vidal, José L. Martinez; Dornhaus, Anna; Ghani, Junaid; Serrano, Ana Roldán; Chittka, Lars

2005-08-01

33

IDENTIFYING COMPOUNDS DESPITE CHROMATOGRAPHY LIMITATIONS: ORGANOPHOSPHATES IN TREATED SEWAGE  

EPA Science Inventory

Highly concentrated extracts of sewage treatment plant (STP) effluents contain detectable levels of dozens of compounds resulting from human activities. Recent concern over use and disposal of Pharmaceuticals and Personal Care Products (PPCPS) (1) has stimulated interest ...

34

Thermodynamic analysis of chemical compatibility of several compounds with Fe-Cr-Al alloys  

NASA Technical Reports Server (NTRS)

Chemical compatibility between Fe-19.8Cr-4.8Al (weight percent), which is the base composition for the commercial superalloy MA956, and several carbides, borides, nitrides, oxides, and silicides was analyzed from thermodynamic considerations. The effect of addition of minor alloying elements, such as Ti, Y, and Y2O3, to the Fe-Cr-Al alloy on chemical compatibility between the alloy and various compounds was also analyzed. Several chemically compatible compounds that can be potential reinforcement materials and/or interface coating materials for Fe-Cr-Al based composites were identified.

Misra, Ajay K.

1993-01-01

35

LIGAND: Database of Chemical Compounds and Reactions in Biological Pathways  

NSDL National Science Digital Library

The Institute for Chemical Research at Kyoto University provides this frequently updated and well-documented database of enzyme reactions. With more than 9,300 entries, the LIGAND Chemical Database includes over 3,700 entries for enzymes (the Enzyme Reaction Database) and 5,600 entries for compounds (Chemical Compound Database). The database is searchable by keyword using DBGET (which supports numerous other databases and gene catalogs as well) and is accompanied by clear instructions. The LIGAND database, updated weekly, may be downloaded via anonymous FTP.

36

Chemical compounds isolated from Talinum triangulare (Portulacaceae).  

PubMed

This first phytochemical study of Talinum triangulare Leach (Portulacaceae), also known as 'cariru', which is a commonly consumed food in Northern Brazil, allowed the isolation and structural determination of four new compounds: one acrylamide, 3-N-(acryloyl, N-pentadecanoyl) propanoic acid (5), and three new phaeophytins named (15(1)S, 17R, 18R)-Ficuschlorin D acid (3(1),3(2)-didehydro-7-oxo-17(3)-O-phytyl-rhodochlorin-15-acetic acid), (13), Talichorin A (17R, 18R)-phaeophytin b-15(1)-hidroxy, 15(2),15(3)-acetyl-13(1)-carboxilic acid (14), and (15(1)S, 17R, 18R)-phaeophytin b peroxylactone or (15(1)S, 17R, 18R)-hydroperoxy-ficuschlorin D (16), together with twelve known compounds, including four phaeophytins (11,12, 15 and 17). The structures of the compounds were established on the basis of 1D and 2D NMR, IR, HRESI-MS spectra, including GC-MS, and HPLC-UV analysis, as well as comparisons with the literature data. The CD spectra data analysis were used to define the absolute configuration of phaeophytins 12 (13(2)R, 17R, 18R)-13(2)-hydroxyphaeophytin a, 13 and 16, 15 (15(1)S, 17R, 18R)-3(1),3(2)-didehydro-15(1)-hydroxyrhodochlorin-15-acetic acid ?-lactone-15(2)-methyl-17(3)-phytyl ester and 17 (17R, 18R)-purpurin 18-phytyl ester. PMID:24799228

de Oliveira Amorim, Ana Paula; de Carvalho, Almir Ribeiro; Lopes, Norberto Peporine; Castro, Rosane Nora; de Oliveira, Marcia Cristina Campos; de Carvalho, Mário Geraldo

2014-10-01

37

BioSM: A metabolomics tool for identifying endogenous mammalian biochemical structures in chemical structure space  

PubMed Central

The structural identification of unknown biochemical compounds in complex biofluids continues to be a major challenge in metabolomics research. Using LC/MS there are currently two major options for solving this problem: searching small biochemical databases, which often do not contain the unknown of interest, or searching large chemical databases which include large numbers of non-biochemical compounds. Searching larger chemical databases (larger chemical space) increases the odds of identifying an unknown biochemical compound, but only if non-biochemical structures can be eliminated from consideration. In this paper we present BioSM; a cheminformatics tool that uses known endogenous mammalian biochemical compounds (as scaffolds) and graph matching methods to identify endogenous mammalian biochemical structures in chemical structure space. The results of a comprehensive set of empirical experiments suggest that BioSM identifies endogenous mammalian biochemical structures with high accuracy. In a leave-one-out cross validation experiment, BioSM correctly predicted 95% of 1,388 Kyoto Encyclopedia of Genes and Genomes (KEGG) compounds as endogenous mammalian biochemicals using 1,565 scaffolds. Analysis of two additional biological datasets containing 2,330 human metabolites (HMDB) and 2,416 plant secondary metabolites (KEGG) resulted in biochemical annotations of 89% and 72% of the compounds respectively. When a dataset of 3,895 drugs (DrugBank and USAN) was tested, 48% of these structures were predicted to be biochemical. However, when a set of synthetic chemical compounds (Chembridge and Chemsynthesis databases) were examined, only 29% of the 458,207 structures were predicted to be biochemical. Moreover, BioSM predicted that 34% of 883,199 randomly selected compounds from PubChem were biochemical. We then expanded the scaffold list to 3,927 biochemical compounds and reevaluated the above datasets to determine whether scaffold number influenced model performance. Although there were significant improvements in model sensitivity and specificity using the larger scaffold list, the dataset comparison results were very similar. These results suggest that additional biochemical scaffolds will not further improve our representation of biochemical structure space and that the model is reasonably robust. BioSM provides a qualitative (yes/no) and quantitative (ranking) method for endogenous mammalian biochemical annotation of chemical space, and thus will be useful in the identification of unknown biochemical structures in metabolomics. BioSM is freely available at http://metabolomics.pharm.uconn.edu. PMID:23330685

Hamdalla, Mai A.; Mandoiu, Ion I.; Hill, Dennis W.; Rajasekaran, Sanguthevar; Grant, David F.

2013-01-01

38

A chemical screen identifies small molecules that regulate hepcidin expression.  

PubMed

Hepcidin, a peptide hormone produced in the liver, decreases intestinal iron absorption and macrophage iron release via effects on ferroportin. Bone morphogenic protein and Stat3 signaling regulate Hepcidin's transcription. Hepcidin is a potential drug target for patients with iron overload syndromes because its levels are inappropriately low in these individuals. To generate a tool for identifying small molecules that modulate Hepcidin expression, we stably transfected human hepatocytes (HepG2) cells with a reporter construct containing 2.7kb of the human Hepcidin promoter upstream of a firefly reporter gene. We used high throughput methods to screen 10,169 chemicals in duplicate for their effect on Hepcidin expression and cell viability. Regulators were identified as chemicals that caused a change >3 standard deviations above or >1 standard deviation below the mean of the other chemicals (z-score >3 or <1), while not adversely affecting cell viability, quantified by fluorescence assay. Following validation assays, we identified 16 chemicals in a broad range of functional classes that promote Hepcidin expression. All of the chemicals identified increased expression of bone morphogenic protein-dependent and/or Stat3-dependent genes, however none of them strongly increased phosphorylation of Smad1,5,8 or Stat3. PMID:24998898

Gaun, Vera; Patchen, Bonnie; Volovetz, Josephine; Zhen, Aileen W; Andreev, Aleksandr; Pollastri, Michael P; Fraenkel, Paula G

2014-12-01

39

Microscale Synthesis and In-Situ Spectroscopic Characterization of Some Chemical Weapons Related Organophosphonate Compounds  

Microsoft Academic Search

Inspection protocols for the Chemical Weapons Treaty, which went into effect on April 29, 1997 require on-site analytical procedures which include a comprehensive mass spectral database of hundreds of scheduled compounds. A number of these compounds were prepared on a nanogram scale via a micro-scale synthetic approach using GC-IRD\\/MSD analytical instrumentation to purify and identify the resulting products. The collected

H. Dupont Durst; Jeffrey R. Mays; Jill L. Ruth; Barry R. Williams; Robert V. Duevel

1998-01-01

40

A Chemical Stain for Identifying Arsenic-Treated Wood  

E-print Network

A Chemical Stain for Identifying Arsenic-Treated Wood (FINAL) Submitted June 23, 2006 Amy Omae-TREATED WOOD II.1 Applying Phosphate Stains to Arsenate Stains 7 II.2 A Potential Arsenic-Test Kit 14 II.3 Whole Wood Application of the Modified Stannous Chloride Stain 19 II.4 Other Attempted Stain

Florida, University of

41

Sensitivity, robustness, and identifiability in stochastic chemical kinetics models  

E-print Network

Sensitivity, robustness, and identifiability in stochastic chemical kinetics models Michal' performances is sensitivity analysis (2). Large sensitivity to a parameter suggests that the system's output in an insensitive parameter will have little effect on the behavior. Traditionally, the concept of sensitivity has

Millar, Andrew J.

42

Cyclopropyl Carboxamides, a Chemically Novel Class of Antimalarial Agents Identified in a Phenotypic Screen ?  

PubMed Central

Malaria is one of the deadliest infectious diseases in the world, with the eukaryotic parasite Plasmodium falciparum causing the most severe form of the disease. Discovery of new classes of antimalarial drugs has become an urgent task to counteract the increasing problem of drug resistance. Screening directly for compounds able to inhibit parasite growth in vitro is one of the main approaches the malaria research community is now pursuing for the identification of novel antimalarial drug leads. Very recently, thousands of compounds with potent activity against the parasite P. falciparum have been identified and information about their molecular descriptors, antiplasmodial potency, and cytotoxicity is publicly available. Now the challenges are how to identify the most promising chemotypes for further development and how best to progress these compounds through a lead optimization program to generate antimalarial drug candidates. We report here the first chemical series to be characterized from one of those screenings, a completely novel chemical class with the generic name cyclopropyl carboxamides that has never before been described as having antimalarial or other pharmacological activities. Cyclopropyl carboxamides are potent inhibitors of drug-sensitive and -resistant strains of P. falciparum in vitro and show in vivo oral efficacy in malaria mouse models. In the present work, we describe the biological characterization of this chemical family, showing that inhibition of their still unknown target has very favorable pharmacological consequences but the compounds themselves seem to select for resistance at a high frequency. PMID:21968362

Sanz, Laura M.; Jiménez-Díaz, M. Belen; Crespo, Benigno; De-Cozar, Cristina; Almela, M. Jesus; Angulo-Barturen, Iñigo; Castañeda, Pablo; Ibañez, Javier; Fernández, Esther Pilar; Ferrer, Santiago; Herreros, Esperanza; Lozano, Sonia; Martínez, María Santos; Rueda, Lourdes; Burrows, Jeremy N.; García-Bustos, Jose F.; Gamo, Francisco-Javier

2011-01-01

43

Chemical bath deposition of II-VI compound thin films  

NASA Astrophysics Data System (ADS)

II-VI compounds are direct bandgap semiconductors with great potentials in optoelectronic applications. Solar cells, where these materials are in greater demand, require a low cost production technology that will make the final product more affordable. Chemical bath deposition (CBD) a low cost growth technique capable of producing good quality thin film semiconductors over large area and at low temperature then becomes a suitable technology of choice. Heterogeneous reaction in a basic aqueous solution that is responsible for the II-VI compound film growth in CBD requires a metal complex. We have identified the stability constant (k) of the metal complex compatible with CBD growth mechanism to be about 106.9. This value is low enough to ensure that the substrate adsorbed complex relax for subsequent reaction with the chalcogen precursor to take place. It is also high enough to minimize the metal ion concentration in the bath participating in the precipitation of the bulk compounds. Homogeneous reaction that leads to precipitation in the reaction bath takes place because the solubility products of bulk II-VI compounds are very low. This reaction quickly depletes the bath of reactants, limit the film thickness, and degrade the film quality. While ZnS thin films are still hard to grow by CBD because of lack of suitable complexing agent, the homogeneous reaction still limits quality and thickness of both US and ZnS thin films. In this study, the zinc tetraammine complex ([Zn(NH3) 4]2+) with k = 108.9 has been forced to acquire its unsaturated form [Zn(NH3)3]2+ with a moderate k = 106.6 using hydrazine and nitrilotriacetate ion as complementary complexing agents and we have successfully grown ZnS thin films. We have also, minimized or eliminated the homogeneous reaction by using ammonium salt as a buffer and chemical bath with low reactant concentrations. These have allowed us to increase the saturation thickness of ZnS thin film by about 400% and raise that of US film form 0.2 to 0.5 mum with improved quality. A novel chemical activated diffusion of Cd into ZnS thin film at temperature lower than 100°C is also developed. This in conjunction with thermal activated diffusion at 400°C has enabled us to synthesize Cd1-xZn xS thin films suitable for solar cells from CBD grown CdS/ZnS multilayer. The potential application of the new Cd1-xZnxS/CdS/CdTe solar cell structure is also demonstrated. The unoptimized structure grown on transparent conducting oxide coated soda lime glass of 3mm thickness with no antireflection coating yielded a 10% efficiency. This efficiency is the highest ever recorded in any Cd1-xZnxS film containing CdTe solar cells.

Oladeji, Isaiah Olatunde

44

NMR characterization of chemically synthesized branched ?-dextrin model compounds.  

PubMed

(1)H and (13)C NMR chemical shifts were accurately determined by consistent referencing for an extensive set of chemically synthesized branched ?-glucan model compounds. The model compounds include anomerically fixed and reducing oligosaccharides ranging in size from isomaltose to a doubly branched decasaccharide. Both the (13)C1 chemical shift and the (13)C6 chemical shifts in ?-(1?6) glycosidic bonds are strongly dependent on the chemical structure in the vicinity of the branch point, especially on the addition of glucopyranosyl units towards the non-reducing end of the backbone chain. The conformational sampling at the branch point of the branched ?-glucan model compounds was experimentally probed with homo-nuclear scalar couplings. Substitution at O6 consistently increases the fraction of C6-O6 trans conformations, but to a lesser extent, if the attachment occurs at the reducing end residue. Increasingly complex structures in the vicinity of the branch point increase the population of the gauche-trans conformation of the C5-C6 bond. This population change is found to correlate with the (13)C6 chemical shift. PMID:24957577

Petersen, Bent O; Motawie, Mohammed Saddik; Møller, Birger Lindberg; Hindsgaul, Ole; Meier, Sebastian

2015-02-11

45

Chemical Compound Navigator: A Web-Based Chem-BLAST, Chemical Taxonomy-Based Search Engine for Browsing  

E-print Network

Chemical Compound Navigator: A Web-Based Chem-BLAST, Chemical Taxonomy-Based Search Engine, query, and analyze chemical compounds has been developed and is illustrated by using the inhibitor data on HIV protease-inhibitor complexes. In this method, all chemical compounds are annotated in terms

46

Identifying non-point sources of endocrine active compounds and their biological impacts in freshwater lakes.  

PubMed

Contaminants of emerging concern, particularly endocrine active compounds (EACs), have been identified as a threat to aquatic wildlife. However, little is known about the impact of EACs on lakes through groundwater from onsite wastewater treatment systems (OWTS). This study aims to identify specific contributions of OWTS to Sullivan Lake, Minnesota, USA. Lake hydrology, water chemistry, caged bluegill sunfish (Lepomis macrochirus), and larval fathead minnow (Pimephales promelas) exposures were used to assess whether EACs entered the lake through OWTS inflow and the resultant biological impact on fish. Study areas included two OWTS-influenced near-shore sites with native bluegill spawning habitats and two in-lake control sites without nearby EAC sources. Caged bluegill sunfish were analyzed for plasma vitellogenin concentrations, organosomatic indices, and histological pathologies. Surface and porewater was collected from each site and analyzed for EACs. Porewater was also collected for laboratory exposure of larval fathead minnow, before analysis of predator escape performance and gene expression profiles. Chemical analysis showed EACs present at low concentrations at each study site, whereas discrete variations were reported between sites and between summer and fall samplings. Body condition index and liver vacuolization of sunfish were found to differ among study sites as did gene expression in exposed larval fathead minnows. Interestingly, biological exposure data and water chemistry did not match. Therefore, although results highlight the potential impacts of seepage from OWTS, further investigation of mixture effects and life history factor as well as chemical fate is warranted. PMID:24974177

Baker, Beth H; Martinovic-Weigelt, Dalma; Ferrey, Mark; Barber, Larry B; Writer, Jeffery H; Rosenberry, Donald O; Kiesling, Richard L; Lundy, James R; Schoenfuss, Heiko L

2014-10-01

47

High throughput screening against the peroxidase cascade of African trypanosomes identifies antiparasitic compounds that inactivate tryparedoxin.  

PubMed

In African trypanosomes, the detoxification of broad spectrum hydroperoxides relies on a unique cascade composed of trypanothione (T(SH)(2)), trypanothione reductase, tryparedoxin (Tpx), and nonselenium glutathione peroxidase-type enzymes. All three proteins are essential for Trypanosoma brucei. Here, we subjected the complete system to a high throughput screening approach with nearly 80,000 chemicals. Twelve compounds inhibited the peroxidase system. All but one carried chloroalkyl substituents. The detailed kinetic analysis showed that two compounds weakly inhibited trypanothione reductase, but none of them specifically interacted with the peroxidase. They proved to be time-dependent inhibitors of Tpx-modifying Cys-40, the first cysteine of its active site WCPPC motif. Importantly, gel shift assays verified Tpx as a target in the intact parasites. T(SH)(2), present in the in vitro assays and in the cells in high molar excess, did not interfere with Tpx inactivation. The compounds inhibited the proliferation of bloodstream T. brucei with EC(50) values down to <1 ?M and exerted up to 83-fold lower toxicity toward HeLa cells. Irreversible inhibitors are traditionally regarded as unfavorable. However, a large number of antimicrobials and anticancer therapeutics acts covalently with their target protein. The compounds identified here also interacted with recombinant human thioredoxin, a distant relative of Tpx. This finding might even be exploited for thioredoxin-based anticancer drug development approaches reported recently. The fact that the T(SH)(2)/Tpx couple occupies a central position within the trypanosomal thiol metabolism and delivers electrons also for the synthesis of DNA precursors renders the parasite-specific oxidoreductase an attractive drug target molecule. PMID:22275351

Fueller, Florian; Jehle, Britta; Putzker, Kerstin; Lewis, Joe D; Krauth-Siegel, R Luise

2012-03-16

48

Chemical procedures to detect carcinogenic compound in domestic wastewater  

NASA Astrophysics Data System (ADS)

This review presents chemical methods to detect carcinogenic compound in wastewater. Atomic absorption spectroscopy (AAS), high performance liquid chromatography (HPLC) and gas chromatography mass spectroscopy (GCMS) and their alternative attached equipments were discussed. The application of each method is elaborated using related studies in the field.

S, Abd Manan T.; A, Malakahmad

2013-06-01

49

Analysis of chlorocarbon compounds identified in the SAM Investigation of the Mars Science Laboratory mission  

NASA Astrophysics Data System (ADS)

The gas chromatograph mass spectrometer (GCMS) mode of the Sample Analysis at Mars (SAM) experiment was designed for the separation and identification of the chemical components of the gases released from a solid sample or trapped from the atmosphere. Gases from solid samples are either produced by heating a cell from ambient to >800-1100oC (EGA mode) or by wet chemistry extraction and reactions (not yet employed on Mars). Prior to EGA analysis of portions of the first 3 solid samples (Rocknest, John Klein and Cumberland) collected by MSL and delivered to SAM, an internal SAM blank run was carried out with an empty quartz cup. These blank analyses are required to understand the background signal intrinsic to the GCMS and its gas manifolds and traps. Several peaks have been identified as part of SAM background, some of them below the nmol level, which attests of the sensitivity of the instrument and as-designed performance of the GCMS. The origin of each peak has been investigated, and two major contributors are revealed; residual vapor from one of the chemicals used for SAM wet chemistry experiment: N-methyl-N-tert-butyldimethylsilyl-trifluoroacetamide (MTBSTFA), and the Tenax from the hydrocarbon trap. Supporting lab experiments are in progress to understand the reaction pathways of the molecules identified in the SAM background. These experiments help elucidate which molecules may be interpreted as indigenous to Mars. Of the three solid samples analyzed on 11 runs, it was possible to detect and identify several chlorinated compounds including several chlorohydrocarbons. The chlorine is likely derived from the decomposition of martian perchlorates or other indigenous Cl-containing species while the origin of the carbon is presently under investigation for each detected molecule. To date, a subset these molecules have been identified in lab studies and a terrestrial contribution to the observed products are more easily explained. The combined results from SAM and the associated laboratory studies represent a significant step forward in the search for near-surface organic compounds on Mars.

Freissinet, Caroline; Mahaffy, P.; Glavin, D.; Buch, A.; Brunner, A.; Eigenbrode, J.; Martin, M.; Miller, K.; Steele, A.; Szopa, C.; SAM; MSL science Team

2013-10-01

50

Chemical Biology Drug Sensitivity Screen Identifies Sunitinib as Synergistic Agent with Disulfiram in Prostate Cancer Cells  

PubMed Central

Background Current treatment options for castration- and treatment-resistant prostate cancer are limited and novel approaches are desperately needed. Our recent results from a systematic chemical biology sensitivity screen covering most known drugs and drug-like molecules indicated that aldehyde dehydrogenase inhibitor disulfiram is one of the most potent cancer-specific inhibitors of prostate cancer cell growth, including TMPRSS2-ERG fusion positive cancers. However, the results revealed that disulfiram alone does not block tumor growth in vivo nor induce apoptosis in vitro, indicating that combinatorial approaches may be required to enhance the anti-neoplastic effects. Methods and Findings In this study, we utilized a chemical biology drug sensitivity screen to explore disulfiram mechanistic details and to identify compounds potentiating the effect of disulfiram in TMPRSS2-ERG fusion positive prostate cancer cells. In total, 3357 compounds including current chemotherapeutic agents as well as drug-like small molecular compounds were screened alone and in combination with disulfiram. Interestingly, the results indicated that androgenic and antioxidative compounds antagonized disulfiram effect whereas inhibitors of receptor tyrosine kinase, proteasome, topoisomerase II, glucosylceramide synthase or cell cycle were among compounds sensitizing prostate cancer cells to disulfiram. The combination of disulfiram and an antiangiogenic agent sunitinib was studied in more detail, since both are already in clinical use in humans. Disulfiram-sunitinib combination induced apoptosis and reduced androgen receptor protein expression more than either of the compounds alone. Moreover, combinatorial exposure reduced metastatic characteristics such as cell migration and 3D cell invasion as well as induced epithelial differentiation shown as elevated E-cadherin expression. Conclusions Taken together, our results propose novel combinatorial approaches to inhibit prostate cancer cell growth. Disulfiram-sunitinib combination was identified as one of the potent synergistic approaches. Since sunitinib alone has been reported to lack efficacy in prostate cancer clinical trials, our results provide a rationale for novel combinatorial approach to target prostate cancer more efficiently. PMID:23251544

Ketola, Kirsi; Kallioniemi, Olli; Iljin, Kristiina

2012-01-01

51

Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing.  

PubMed

Hydraulic fracturing (HF), a method to enhance oil and gas production, has become increasingly common throughout the U.S. As such, it is important to characterize the chemicals found in HF fluids to evaluate potential environmental fate, including fate in treatment systems, and human health impacts. Eighty-one common HF chemical additives were identified and categorized according to their functions. Physical and chemical characteristics of these additives were determined using publicly available chemical information databases. Fifty-five of the compounds are organic and twenty-seven of these are considered readily or inherently biodegradable. Seventeen chemicals have high theoretical chemical oxygen demand and are used in concentrations that present potential treatment challenges. Most of the HF chemicals evaluated are non-toxic or of low toxicity and only three are classified as Category 2 oral toxins according to standards in the Globally Harmonized System of Classification and Labeling of Chemicals; however, toxicity information was not located for thirty of the HF chemicals evaluated. Volatilization is not expected to be a significant exposure pathway for most HF chemicals. Gaps in toxicity and other chemical properties suggest deficiencies in the current state of knowledge, highlighting the need for further assessment to understand potential issues associated with HF chemicals in the environment. PMID:24853136

Stringfellow, William T; Domen, Jeremy K; Camarillo, Mary Kay; Sandelin, Whitney L; Borglin, Sharon

2014-06-30

52

Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds  

E-print Network

The concepts of alpha- and beta-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals alpha-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical elements, the same way as chemical elements are located in increasing atomic weights in the Periodic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Beta-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, beta-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further development of the Periodic Table of Chemical Elements and Chemical Compounds and their properties investigation.

Labushev, Mikhail M

2013-01-01

53

Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds  

E-print Network

The concepts of alpha- and beta-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals alpha-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical elements, the same way as chemical elements are located in increasing atomic weights in the Periodic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Beta-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, beta-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further development of the Periodic Table of Chemical Elements and Chemical Compounds and their properties investigation.

Mikhail M. Labushev

2013-03-20

54

Information-retrieval facilities for identifying organic compounds from infrared spectra  

SciTech Connect

The authors consider the features of an IRS designed for an ES-1010 microcomputer and intended for identifying organic compounds from their IR spectra, and in particular, trace organic compounds in a natural waters and effluents after isolation in the pure state.

Antipova-Karataeva, I.I.; Rykova, E.A.; Kazanova, N.N.

1986-07-10

55

Chemical impurity produces extra compound eyes and heads in crickets  

SciTech Connect

A chemical impurity isolated from commercially purchased acridine causes cricket embryos to develop extra compound eyes, branched antennae, extra antennae, and extra heads. Purified acridine does not produce similar duplications of cricket heads or head structures nor do the substituted acridines proflavine, acriflavine, or acridine orange. A dose-response relation exists such that the number and severity of abnormalities increase with increasing concentration of the teratogen.

Walton, B.T.

1981-04-03

56

Material chemistry of perovskite compounds as chemical sensors  

Microsoft Academic Search

The advantages of applying non-stoichiometric perovskite materials in chemical sensor applications are reviewed and highlighted with particular reference to the SrFeO2.5+x system. The phase relationships of SrFeO2.5+x for (0identified with the substituted material, SrFe0.9Cu0.1O2.5+x, such that the prospect of `tunable' chemical and physical properties is identified. Thin-films of the parent perovskite have been prepared by

M. L Post; J. J Tunney; D Yang; X Du; D. L Singleton

1999-01-01

57

Modifying Culture Conditions in Chemical Library Screening Identifies Alternative Inhibitors of Mycobacteria?  

PubMed Central

In this study, application of a dual absorbance/fluorescence assay to a chemical library screen identified several previously unknown inhibitors of mycobacteria. In addition, growth conditions had a significant effect on the activity profile of the library. Some inhibitors such as Se-methylselenocysteine were detected only when screening was performed under nutrient-limited culture conditions as opposed to nutrient-rich culture conditions. We propose that multiple culture condition library screening is required for complete inhibitory profiling and for maximal antimycobacterial compound detection. PMID:19786608

Miller, Christopher H.; Nisa, Shahista; Dempsey, Sandi; Jack, Cameron; O'Toole, Ronan

2009-01-01

58

A Chemical Rescue Screen Identifies a Plasmodium falciparum Apicoplast Inhibitor Targeting MEP Isoprenoid Precursor Biosynthesis.  

PubMed

The apicoplast is an essential plastid organelle found in Plasmodium parasites which contains several clinically validated antimalarial-drug targets. A chemical rescue screen identified MMV-08138 from the "Malaria Box" library of growth-inhibitory antimalarial compounds as having specific activity against the apicoplast. MMV-08138 inhibition of blood-stage Plasmodium falciparum growth is stereospecific and potent, with the most active diastereomer demonstrating a 50% effective concentration (EC50) of 110 nM. Whole-genome sequencing of 3 drug-resistant parasite populations from two independent selections revealed E688Q and L244I mutations in P. falciparum IspD, an enzyme in the MEP (methyl-d-erythritol-4-phosphate) isoprenoid precursor biosynthesis pathway in the apicoplast. The active diastereomer of MMV-08138 directly inhibited PfIspD activity in vitro with a 50% inhibitory concentration (IC50) of 7.0 nM. MMV-08138 is the first PfIspD inhibitor to be identified and, together with heterologously expressed PfIspD, provides the foundation for further development of this promising antimalarial drug candidate lead. Furthermore, this report validates the use of the apicoplast chemical rescue screen coupled with target elucidation as a discovery tool to identify specific apicoplast-targeting compounds with new mechanisms of action. PMID:25367906

Wu, Wesley; Herrera, Zachary; Ebert, Danny; Baska, Katie; Cho, Seok H; DeRisi, Joseph L; Yeh, Ellen

2015-01-01

59

Identifying Sources of Volatile Organic Compounds and Aldehydes in a High Performance Building  

SciTech Connect

The developers of the Paharpur Business Center (PBC) and Software Technology Incubator Park in New Delhi, India offer an environmentally sustainable building with a strong emphasis on energy conservation, waste minimization and superior indoor air quality (IAQ). To achieve the IAQ goal, the building utilizes a series of air cleaning technologies for treating the air entering the building. These technologies include an initial water wash followed by ultraviolet light treatment and biolfiltration using a greenhouse located on the roof and numerous plants distributed throughout the building. Even with the extensive treatment of makeup air and room air in the PBC, a recent study found that the concentrations of common volatile organic compounds and aldehydes appear to rise incrementally as the air passes through the building from the supply to the exhaust. This finding highlights the need to consider the minimization of chemical sources in buildings in combination with the use of advanced air cleaning technologies when seeking to achieve superior IAQ. The goal of this project was to identify potential source materials for indoor chemicals in the PBC. Samples of building materials, including wood paneling (polished and unpolished), drywall, and plastic from a hydroponic drum that was part of the air cleaning system, were collected from the building for testing. All materials were collected from the PBC building and shipped to the Lawrence Berkeley National Laboratory (LBNL) for testing. The materials were pre-conditioned for two different time periods before measuring material and chemical specific emission factors for a range of VOCs and Aldehydes. Of the six materials tested, we found that the highest emitter of formaldehyde was new plywood paneling. Although polish and paint contribute to some VOC emissions, the main influence of the polish was in altering the capacity of the surface to accumulate formaldehyde. Neither the new nor aged polish contributed significantly to formaldehyde emissions. The VOC emission stream (excluding formaldehyde) was composed of up to 18 different chemicals and the total VOC emissions ranged in magnitude from 7 mu g/m2/h (old wood with old polish) to>500 mu g/m2/h (painted drywall). The formaldehyde emissions from drywall and old wood with either new or old polish were ~;;15 mu g/m2/h while the new wood material emitted>100 mu g/m2/h. However, when the projected surface area of each material in the building was considered, the new wood, old wood and painted drywall material all contributed substantially to the indoor formaldehyde loading while the coatings contributed primarily to the VOCs.

Ortiz, Anna C.; Russell, Marion; Lee, Wen-Yee; Apte, Michael; Maddalena, Randy

2010-09-20

60

Electrolytic photodissociation of chemical compounds by iron oxide electrodes  

DOEpatents

Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor diode having visible light as its sole source of energy. The diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

Somorjai, Gabor A. (Berkeley, CA); Leygraf, Christofer H. (Berkeley, CA)

1984-01-01

61

Electrolytic photodissociation of chemical compounds by iron oxide photochemical diodes  

DOEpatents

Chemical compounds can be dissociated by contacting the same with a p/n type semi-conductor photochemical diode having visible light as its sole source of energy. The photochemical diode consists of low cost, readily available materials, specifically polycrystalline iron oxide doped with silicon in the case of the n-type semi-conductor electrode, and polycrystalline iron oxide doped with magnesium in the case of the p-type electrode. So long as the light source has an energy greater than 2.2 electron volts, no added energy source is needed to achieve dissociation.

Somorjai, Gabor A. (Berkeley, CA); Leygraf, Christofer H. (Berkeley, CA)

1985-01-01

62

Chemical characterisation of semi-volatile and aerosol compounds from the photooxidation of toluene and NOx  

NASA Astrophysics Data System (ADS)

The chemical composition of a gas phase and secondary organic aerosol (SOA) mixture from toluene photooxidation in NOx was determined. Aerosol from toluene photooxidation was generated in a smog chamber and was collected onto glass fibre filters along with those gas phase compounds which adhered to the filter. The filter bound organic material was extracted, derivatised with O-2,3,4,5,6-pentafluorobenzyl hydroxylamine (PFBHA) and N,O-bistrimethylsilyl-trifluoroacetamide (BSTFA), then analysed using gas chromatography-mass spectrometry (GC-MS). Compound identification was aided by the use of isotopically-labelled toluene. The effect of humidity on product formation was investigated by raising water vapour concentration in one experiment. Sixty compounds were identified, of which twenty had not been identified from toluene photooxidation previously. Small carboxylic acids and dicarbonyls provided the highest proportion of identifiable compounds by relative response. The use of water to extract the filter samples resulted in much higher relative responses for oxocarboxylic acids, such as glyoxylic acid and pyruvic acid, than has been observed in previous studies. The formation of levulinic acid was determined to be due to the reaction of water with aromatic photooxidation products in the gas phase or particle phase of the chamber experiment. Nuclear magnetic resonance (NMR) was used to determine the functional groups of water-extracted organic material, which indicated that the water-soluble components were comprised of compounds which contain similar functional groups, primarily alcohols and carboxylic acids.

White, Stephen J.; Jamie, Ian M.; Angove, Dennys E.

2014-02-01

63

Indoor volatile organic compounds and chemical sensitivity reactions.  

PubMed

Studies of unexplained symptoms observed in chemically sensitive subjects have increased the awareness of the relationship between neurological and immunological diseases due to exposure to volatile organic compounds (VOCs). However, there is no direct evidence that links exposure to low doses of VOCs and neurological and immunological dysfunction. We review animal model data to clarify the role of VOCs in neuroimmune interactions and discuss our recent studies that show a relationship between chronic exposure of C3H mice to low levels of formaldehyde and the induction of neural and immune dysfunction. We also consider the possible mechanisms by which VOC exposure can induce the symptoms presenting in patients with a multiple chemical sensitivity. PMID:24228055

Win-Shwe, Tin-Tin; Fujimaki, Hidekazu; Arashidani, Keiichi; Kunugita, Naoki

2013-01-01

64

Identifying inhibitory compounds in lignocellulosic biomass hydrolysates using an exometabolomics approach  

PubMed Central

Background Inhibitors are formed that reduce the fermentation performance of fermenting yeast during the pretreatment process of lignocellulosic biomass. An exometabolomics approach was applied to systematically identify inhibitors in lignocellulosic biomass hydrolysates. Results We studied the composition and fermentability of 24 different biomass hydrolysates. To create diversity, the 24 hydrolysates were prepared from six different biomass types, namely sugar cane bagasse, corn stover, wheat straw, barley straw, willow wood chips and oak sawdust, and with four different pretreatment methods, i.e. dilute acid, mild alkaline, alkaline/peracetic acid and concentrated acid. Their composition and that of fermentation samples generated with these hydrolysates were analyzed with two GC-MS methods. Either ethyl acetate extraction or ethyl chloroformate derivatization was used before conducting GC-MS to prevent sugars are overloaded in the chromatograms, which obscure the detection of less abundant compounds. Using multivariate PLS-2CV and nPLS-2CV data analysis models, potential inhibitors were identified through establishing relationship between fermentability and composition of the hydrolysates. These identified compounds were tested for their effects on the growth of the model yeast, Saccharomyces. cerevisiae CEN.PK 113-7D, confirming that the majority of the identified compounds were indeed inhibitors. Conclusion Inhibitory compounds in lignocellulosic biomass hydrolysates were successfully identified using a non-targeted systematic approach: metabolomics. The identified inhibitors include both known ones, such as furfural, HMF and vanillin, and novel inhibitors, namely sorbic acid and phenylacetaldehyde. PMID:24655423

2014-01-01

65

Chemical and sensory profiles of makgeolli, Korean commercial rice wine, from descriptive, chemical, and volatile compound analyses.  

PubMed

The chemical and sensory profiles of 12 commercial samples of makgeolli, a Korean rice wine, were determined using descriptive sensory, chemical, and volatile components analyses. The sample wines were analysed for their titratable acidity, ethanol content, pH, Hunter colour value and total reducing sugars. The chemical compositions of the makgeolli samples were found to be significantly different. The volatile compounds were extracted with solid-phase microextraction and analysed by gas chromatography time-of-flight mass spectrometry. In all, 45 major volatile compounds, consisting of 33 esters, 8 alcohols, 1 aldehyde, 1 acid, 1 phenol and 1 terpene, were identified; each makgeolli sample included 28-35 volatile compounds. Based on principal component analysis of the sensory data, samples RW1, RW2, RW5, RW8 and RW12 were associated with roasted cereal, mouldy, bubbles, sweet and sour attributes; the other samples were associated with sensory attributes of yellowness, yeast, full body, turbidity, continuation, swallow, alcohol, fruit aroma and whiteness. PMID:24444985

Jung, Heeyong; Lee, Seung-Joo; Lim, Jeong Ho; Kim, Bum Keun; Park, Kee Jai

2014-01-01

66

Chemical genomics in Escherichia coli identifies an inhibitor of bacterial lipoprotein targeting.  

PubMed

One of the most significant hurdles to developing new chemical probes of biological systems and new drugs to treat disease is that of understanding the mechanism of action of small molecules discovered with cell-based small-molecule screening. Here we have assembled an ordered, high-expression clone set of all of the essential genes from Escherichia coli and used it to systematically screen for suppressors of growth inhibitory compounds. Using this chemical genomic approach, we demonstrate that the targets of well-known antibiotics can be identified as high copy suppressors of chemical lethality. This approach led to the discovery of MAC13243, a molecule that belongs to a new chemical class and that has a unique mechanism and promising activity against multidrug-resistant Pseudomonas aeruginosa. We show that MAC13243 inhibits the function of the LolA protein and represents a new chemical probe of lipoprotein targeting in bacteria with promise as an antibacterial lead with Gram-negative selectivity. PMID:19783991

Pathania, Ranjana; Zlitni, Soumaya; Barker, Courtney; Das, Rahul; Gerritsma, David A; Lebert, Julie; Awuah, Emilia; Melacini, Giuseppe; Capretta, Fred A; Brown, Eric D

2009-11-01

67

Quantitative prediction of antitarget interaction profiles for chemical compounds  

PubMed Central

The evaluation of possible interactions between chemical compounds and antitarget proteins is an important task of research and development process. Here we describe the development and validation of QSAR models for the prediction of antitarget end-points, created on the basis of Multilevel and Quantitative Neighborhoods of Atoms descriptors and self-consistent regression. Data on 4000 chemical compounds interacting with 18 antitarget proteins (13 receptors, 2 enzymes and 3 transporters) were used to model thirty two sets of end-points (IC50, Ki and Kact). Each set was randomly divided into training and test sets in a ratio of 80% to 20%, respectively. The test sets were used for external validation of QSAR models created on the basis of the training sets. The coverage of prediction for all test sets exceeded 95% and for half of the test sets it was 100%. The accuracy of prediction for 29 of the end-points, based on the external test sets was typically in the range of R2test = 0.6–0.9; three tests sets had a lower R2test values, specifically 0.55 – 0.6. The proposed approach showed a reasonable accuracy of prediction for 91% of the antitarget end-points and high coverage for all external test sets. On the basis of the created models we have developed a freely available on-line service for in silico prediction of 32 antitarget end-points: http://www.pharmaexpert.ru/GUSAR/antitargets.html. PMID:23078046

Zakharov, Alexey V.; Lagunin, Alexey A.; Filimonov, Dmitry A.; Poroikov, Vladimir V.

2012-01-01

68

High-Throughput Chemical Screens Identify Disulfiram as an Inhibitor of Human Glioblastoma Stem Cells  

PubMed Central

Glioblastoma Multiforme (GBM) continues to have a poor patient prognosis despite optimal standard of care. Glioma stem cells (GSCs) have been implicated as the presumed cause of tumor recurrence and resistance to therapy. With this in mind, we screened a diverse chemical library of 2,000 compounds to identify therapeutic agents that inhibit GSC proliferation and therefore have the potential to extend patient survival. High-throughput screens (HTS) identified 78 compounds that repeatedly inhibited cellular proliferation, of which 47 are clinically approved for other indications and 31 are experimental drugs. Several compounds (such as digitoxin, deguelin, patulin and phenethyl caffeate) exhibited high cytotoxicity, with half maximal inhibitory concentrations (IC50) in the low nanomolar range. In particular, the FDA approved drug for the treatment of alcoholism, disulfiram (DSF), was significantly potent across multiple patient samples (IC50 of 31.1 nM). The activity of DSF was potentiated by copper (Cu), which markedly increased GSC death. DSF–Cu inhibited the chymotrypsin-like proteasomal activity in cultured GSCs, consistent with inactivation of the ubiquitin-proteasome pathway and the subsequent induction of tumor cell death. Given that DSF is a relatively non-toxic drug that can penetrate the blood-brain barrier, we suggest that DSF should be tested (as either a monotherapy or as an adjuvant) in pre-clinical models of human GBM. Data also support targeting of the ubiquitin-proteasome pathway as a therapeutic approach in the treatment of GBM. PMID:23165409

Hothi, Parvinder; Martins, Timothy J.; Chen, LiPing; Deleyrolle, Loic; Yoon, Jae-Geun; Reynolds, Brent; Foltz, Greg

2012-01-01

69

A phenotypic screening approach to identify anticancer compounds derived from marine fungi.  

PubMed

This study covers the isolation, testing, and identification of natural products with anticancer properties. Secondary metabolites were isolated from fungal strains originating from a variety of marine habitats. Strain culture protocols were optimized with respect to growth media composition and fermentation conditions. From these producers, isolated compounds were screened for their effect on the viability and proliferation of a subset of the NCI60 panel of cancer cell lines. Active compounds of interest were identified and selected for detailed assessments and structural elucidation using nuclear magnetic resonance. This revealed the majority of fungal-derived compounds represented known anticancer chemotypes, confirming the integrity of the process and the ability to identify suitable compounds. Examination of effects of selected compounds on cancer-associated cell signaling pathways used phospho flow cytometry in combination with 3D fluorescent cell barcoding. In parallel, the study addressed the logistical aspects of maintaining multiple cancer cell lines in culture simultaneously. A potential solution involving microbead-based cell culture was investigated (BioLevitator, Hamilton). Selected cell lines were cultured in microbead and 2D methods and cell viability tests showed comparable compound inhibition in both methods (R2=0.95). In a further technology assessment, an image-based assay system was investigated for its utility as a possible complement to ATP-based detection for quantifying cell growth and viability in a label-free manner. PMID:24735443

Ellinger, Bernhard; Silber, Johanna; Prashar, Anjali; Landskron, Johannes; Weber, Jonas; Rehermann, Sarah; Müller, Franz-Josef; Smith, Stephen; Wrigley, Stephen; Taskén, Kjetil; Gribbon, Philip; Labes, Antje; Imhoff, Johannes F

2014-04-01

70

Next-generation NAMPT inhibitors identified by sequential high-throughput phenotypic chemical and functional genomic screens.  

PubMed

Phenotypic high-throughput chemical screens allow for discovery of small molecules that modulate complex phenotypes and provide lead compounds for novel therapies; however, identification of the mechanistically relevant targets remains a major experimental challenge. We report the application of sequential unbiased high-throughput chemical and ultracomplex small hairpin RNA (shRNA) screens to identify a distinctive class of inhibitors that target nicotinamide phosphoribosyl transferase (NAMPT), a rate-limiting enzyme in the biosynthesis of nicotinamide adenine dinucleotide, a crucial cofactor in many biochemical processes. The lead compound STF-118804 is a highly specific NAMPT inhibitor, improves survival in an orthotopic xenotransplant model of high-risk acute lymphoblastic leukemia, and targets leukemia stem cells. Tandem high-throughput screening using chemical and ultracomplex shRNA libraries, therefore, provides a rapid chemical genetics approach for seamless progression from small-molecule lead identification to target discovery and validation. PMID:24183972

Matheny, Christina J; Wei, Michael C; Bassik, Michael C; Donnelly, Alicia J; Kampmann, Martin; Iwasaki, Masayuki; Piloto, Obdulio; Solow-Cordero, David E; Bouley, Donna M; Rau, Rachel; Brown, Patrick; McManus, Michael T; Weissman, Jonathan S; Cleary, Michael L

2013-11-21

71

IDENTIFYING COMPOUNDS USING SOURCE CID ON AN ORTHOGONAL ACCELERATION TIME-OF-FLIGHT MASS SPECTROMETER  

EPA Science Inventory

Exact mass libraries of ESI and APCI mass spectra are not commercially available In-house libraries are dependent on CID parameters and are instrument specific. The ability to identify compounds without reliance on mass spectral libraries is therefore more crucial for liquid sam...

72

A NEW MASS SPECTROMETRIC TECHNIQUE FOR IDENTIFYING TRACE-LEVEL ORGANIC COMPOUNDS IN COMPLEX MIXTURES  

EPA Science Inventory

Most organic compounds are not found in mass spectral libraries and cannot be easily identified from low resolution mass spectra. Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer in a new way to determine exact mas...

73

Cyclodextrin-based chemical microsensors for Volatile Organic Compounds (VOCs)  

SciTech Connect

This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). This project addressed the development of surface-acoustic-wave (SAW)-based chemical sensors for remote, real-time sensing in air, groundwater, and possibly soil, of chlorinated and aromatic hydrocarbons using innovative molecular self-assembly techniques. Our goal is parts per billion (ppb) sensitivity to specific aromatic and chlorinated hydrocarbons using cyclodextrin as the selective layer of a SAW-based mass sensor. We have demonstrated that SAW sensors can differentiate between compounds with similar composition, structure, and polarity. These efforts, however, can be enhanced by using sensor arrays and smart data processing systems. Secondly, ionic interactions provide a convenient way to fabricate thin films for sensor applications. The potential of these thin films for sensor applications is currently being evaluated. 3 figs.

Li, DeQuan

1998-12-31

74

[Physical, chemical and bioactive compounds of tree tomato (Cyphomandra betacea)].  

PubMed

Tree tomato (Cyphomandra betacea) is appreciated for its excellent nutritional qualities, being considered a good source of antioxidants compounds, calcium, phosphorus, potassium and iron, sugars, organic acids, pectins and flavonoids. In this study, were evaluated physical parameters (weight, size, compression strength and humidity) and chemical (degrees Brix, titratable acidity, pH, protein, dietary fiber, ash, minerals and their bioaccesibility, pectin, antioxidants compounds) of the fruit from the Aragua State, Venezuela, as a contribution to stimulate and diversify the consumption of the tree tomato. The characterization showed that the fruits were at the ripening stage for consumption (degrees Brix 10.51, pH 3.5, acidity 0.02 g/100ml and 4.32 Kgf/cm2 compression strength) gave a yield of 74% pulp. The analytical results of the ripped pulp showed a content of 30 Kcal/100 g, dietary fiber (4.10 g/100 g), and minerals such as phosphorous, calcium, magnesium, potassium and iron (331.32, 21.25, 21.18, 17.03 and 7.44 mg/100 g, respectively). Bioaccesibility values of 6.71 and 1.86% were reported for calcium and iron. The extracted pectin (1.00 g/100 g) was classified as high methoxyl with high degree of esterification. The antioxidant capacity of the ripped pulp (EC50 of 165.00 g/g DPPH and reducing power of 0.07 mmol Fe +2/100 g), could be attributed to the presence of ascorbic acid (23.32 mg/100 g), lycopene (1.22 mg/100 g), and phenolic compounds (1.39 mg GAE/g), anthocyanins (0.29 mg cyanidin/g) and tannins (0.40 mg catechin/100 g).The results obtained encourage the nutritional benefits and suggest applications as a functional ingredient in food product development. PMID:24020259

Torres, Alexia

2012-12-01

75

Detailed Chemical Kinetic Reaction Mechanisms for Incineration of Organophosphorus and Fluoro-Organophosphorus Compounds  

SciTech Connect

A detailed chemical kinetic reaction mechanism is developed to describe incineration of the chemical warfare nerve agent sarin (GB), based on commonly used principles of bond additivity and hierarchical reaction mechanisms. The mechanism is based on previous kinetic models of organophosphorus compounds such as TMP, DMMP and DIMP that are often used as surrogates to predict incineration of GB. Kinetic models of the three surrogates and GB are then used to predict their consumption in a perfectly stirred reactor fueled by natural gas to simulate incineration of these chemicals. Computed results indicate that DIMP is the only one of these surrogates that adequately describes combustion of GB under comparable conditions. The kinetic pathways responsible for these differences in reactivity are identified and discussed. The most important reaction in GB and DIMP that makes them more reactive than TMP or DMMP is found to be a six-center molecular elimination reaction producing propene.

Glaude, P A; Melius, C; Pitz, W J; Westbrook, C K

2001-12-13

76

Historical trends in organochlorine compounds in river basins identified using sediment cores from reservoirs  

USGS Publications Warehouse

This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DDT (DDT + DDD + DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat hogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.This study used chemical analyses of dated sediment cores from reservoirs to define historical trends in water quality in the influent river basins. This work applies techniques from paleolimnology to reservoirs, and in the process, highlights differences between sediment-core interpretations for reservoirs and natural lakes. Sediment cores were collected from six reservoirs in the central and southeastern United States, sectioned, and analyzed for 137Cs and organochlorine compounds. 137Cs analyses were used to demonstrate limited post-depositional mixing, to indicate sediment deposition dates, and to estimate sediment focusing factors. Relative lack of mixing, high sedimentation rates, and high focusing factors distinguish reservoir sediment cores from cores collected in natural lakes. Temporal trends in concentrations of PCBs, total DOT (DDT+DDD+DDE), and chlordane reflect historical use and regulation of these compounds and differences in land use between reservoir drainages. PCB and total DDT core burdens, normalized for sediment focusing, greatly exceed reported cumulative regional atmospheric fallout of PCBs and total DDT estimated using cores from peat bogs and natural lakes, indicating the dominance of fluvial inputs of both groups of compounds to the reservoirs.

Van Metre, P.C.; Callender, E.; Fuller, C.C.

1997-01-01

77

High-confidence mapping of chemical compounds and protein complexes reveals novel aspects of chemical stress response in yeastw  

E-print Network

High-confidence mapping of chemical compounds and protein complexes reveals novel aspects of chemical stress response in yeastw Thiago M. Venancio,*a S. Balajiab and L. Aravind*a Received 16th June.1039/b911821g Chemical genetics in yeast has shown great potential for clarifying the pharmacology

78

Machine learning of molecular electronic properties in chemical compound space  

NASA Astrophysics Data System (ADS)

The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning model, trained on a database of ab initio calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity and excitation energies. The machine learning model is based on a deep multi-task artificial neural network, exploiting the underlying correlations between various molecular properties. The input is identical to ab initio methods, i.e. nuclear charges and Cartesian coordinates of all atoms. For small organic molecules, the accuracy of such a ‘quantum machine’ is similar, and sometimes superior, to modern quantum-chemical methods—at negligible computational cost.

Montavon, Grégoire; Rupp, Matthias; Gobre, Vivekanand; Vazquez-Mayagoitia, Alvaro; Hansen, Katja; Tkatchenko, Alexandre; Müller, Klaus-Robert; Anatole von Lilienfeld, O.

2013-09-01

79

Bioautography and chemical characterization of antimicrobial compound(s) in commercial water-soluble annatto extracts.  

PubMed

Annatto preparations based on extracts of the seed of tropical bush Bixa orellana L consist of carotenoid-type pigments. Previous reports indicate that commercial annatto extracts have biological activities against microorganisms of significance to food fermentation, preservation, and safety. The objective of this study was to separate and identify the compound(s) responsible for the antimicrobial activity of annatto preparations. Commercial water-soluble annatto extracts were screened by thin-layer chromatography and bioautography followed by liquid chromatography/photodiode array/mass spectrometry (LC/PDA/MS) analysis of active fractions. Bioautography revealed two fractions with antimicrobial activity against Staphylococcus aureus. LC/PDA/MS analysis of both fractions revealed 9'-cis-norbixin (UV(max) 460 and 489 nm) and all-trans-norbixin (UV(max) 287, 470, and 494 nm) as the major components. Structure confirmation was achieved by (1)H NMR spectroscopy. Results indicate that 9'-cis-norbixin and all-trans-norbixin are responsible for the antimicrobial properties of annatto. PMID:15796589

Galindo-Cuspinera, Veronica; Rankin, Scott A

2005-04-01

80

Pilot-Scale Compound Screening against RNA Editing Identifies Trypanocidal Agents.  

PubMed

Most mitochondrial messenger RNAs in trypanosomatid pathogens undergo a unique type of posttranscriptional modification involving insertion and/or deletion of uridylates. This process, RNA editing, is catalyzed by a multiprotein complex (~1.6 MDa), the editosome. Knockdown of core editosome proteins compromises mitochondrial function and, ultimately, parasite viability. Hence, because the editosome is restricted to trypanosomatids, it serves as a unique drug target in these pathogens. Currently, there is a lack of editosome inhibitors for antitrypanosomatid drug development or that could serve as unique tools for perturbing and characterizing editosome interactions or RNA editing reaction stages. Here, we screened a library of pharmacologically active compounds (LOPAC1280) using high-throughput screening to identify RNA editing inhibitors. We report that aurintricarboxylic acid, mitoxantrone, PPNDS, and NF449 are potent inhibitors of deletion RNA editing (IC50 range, 1-5 µM). However, none of these compounds could specifically inhibit the catalytic steps of RNA editing. Mitoxantrone blocked editing by inducing RNA-protein aggregates, whereas the other three compounds interfered with editosome-RNA interactions to varying extents. Furthermore, NF449, a suramin analogue, was effective at killing Trypanosoma brucei in vitro. Thus, new tools for editosome characterization and downstream RNA editing inhibitor have been identified. PMID:25170016

Moshiri, Houtan; Mehta, Vaibhav; Yip, Chun Wai; Salavati, Reza

2015-01-01

81

The Use of Functional Chemical-Protein Associations to Identify Multi-Pathway Renoprotectants  

PubMed Central

Typically, most nephropathies can be categorized as complex human diseases in which the cumulative effect of multiple minor genes, combined with environmental and lifestyle factors, determines the disease phenotype. Thus, multi-target drugs would be more likely to facilitate comprehensive renoprotection than single-target agents. In this study, functional chemical-protein association analysis was performed to retrieve multi-target drugs of high pathway wideness from the STITCH 3.1 database. Pathway wideness of a drug evaluated the efficiency of regulation of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in quantity. We identified nine experimentally validated renoprotectants that exerted remarkable impact on KEGG pathways by targeting a limited number of proteins. We selected curcumin as an illustrative compound to display the advantage of multi-pathway drugs on renoprotection. We compared curcumin with hemin, an agonist of heme oxygenase-1 (HO-1), which significantly affects only one KEGG pathway, porphyrin and chlorophyll metabolism (adjusted p?=?1.5×10?5). At the same concentration (10 µM), both curcumin and hemin equivalently mitigated oxidative stress in H2O2-treated glomerular mesangial cells. The benefit of using hemin was derived from its agonistic effect on HO-1, providing relief from oxidative stress. Selective inhibition of HO-1 completely blocked the action of hemin but not that of curcumin, suggesting simultaneous multi-pathway intervention by curcumin. Curcumin also increased cellular autophagy levels, enhancing its protective effect; however, hemin had no effects. Based on the fact that the dysregulation of multiple pathways is implicated in the etiology of complex diseases, we proposed a feasible method for identifying multi-pathway drugs from compounds with validated targets. Our efforts will help identify multi-pathway agents capable of providing comprehensive protection against renal injuries. PMID:24830678

Xu, Jia; Meng, Kexin; Zhang, Rui; Yang, He; Liao, Chang; Zhu, Wenliang; Jiao, Jundong

2014-01-01

82

Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus  

PubMed Central

De novo molecular design and in silico prediction of polypharmacological profiles are emerging research topics that will profoundly affect the future of drug discovery and chemical biology. The goal is to identify the macromolecular targets of new chemical agents. Although several computational tools for predicting such targets are publicly available, none of these methods was explicitly designed to predict target engagement by de novo-designed molecules. Here we present the development and practical application of a unique technique, self-organizing map–based prediction of drug equivalence relationships (SPiDER), that merges the concepts of self-organizing maps, consensus scoring, and statistical analysis to successfully identify targets for both known drugs and computer-generated molecular scaffolds. We discovered a potential off-target liability of fenofibrate-related compounds, and in a comprehensive prospective application, we identified a multitarget-modulating profile of de novo designed molecules. These results demonstrate that SPiDER may be used to identify innovative compounds in chemical biology and in the early stages of drug discovery, and help investigate the potential side effects of drugs and their repurposing options. PMID:24591595

Reker, Daniel; Rodrigues, Tiago; Schneider, Petra; Schneider, Gisbert

2014-01-01

83

The use of stable isotopes to identify reactive metabolites and target macromolecules associated with toxicities of halogenated hydrocarbon compounds.  

PubMed

1. Halogenated compounds, such as the inhalation anaesthetics, halothane and enflurane, and the chemicals chloroform, carbon tetrachloride, and bromotrichloromethane can cause hepatotoxicity, nephrotoxicity, and inactivation of cytochromes P-450. Each of these toxicities is mediated by reactive metabolites. 2. Stable isotopes of hydrogen, carbon, chlorine and oxygen have been used in conjunction with mass spectrometry and n.m.r. spectrometry to identify the structures of these metabolites, to elucidate the mechanisms of their formation, and to characterize the structures of their macromolecular adducts. 3. In a number of cases, oxidative pathways of metabolism to toxic metabolites have been defined by kinetic deuterium isotope effects. 4. Recently, we have found that the trichloromethyl radical metabolite of bromotrichloromethane can activate myoglobin by causing the covalent cross-linking of haem to protein. The structure of a haem-myoglobin adduct has been defined by the use of stable isotope studies. PMID:1441605

Osawa, Y; Highet, R J; Pohl, L R

1992-01-01

84

Gas chromatograph-mass spectrometer (GC/MS) system for quantitative analysis of reactive chemical compounds  

DOEpatents

Described is a new gas chromatograph-mass spectrometer (GC/MS) system and method for quantitative analysis of reactive chemical compounds. All components of such a GC/MS system external to the oven of the gas chromatograph are programmably temperature controlled to operate at a volatilization temperature specific to the compound(s) sought to be separated and measured.

Grindstaff, Quirinus G. (Oak Ridge, TN)

1992-01-01

85

Environmental Fate of Organophosphorus Compounds Related to Chemical Weapons  

SciTech Connect

Man-made organophosphorus compounds have been widely distributed throughout our environment as pesticides since their development during and after WWII. Many important studies have documented their relative persistence and toxicity. Development and use of some organophosphorus compounds as nerve agents gave rise to a separate but parallel effort to understand environmental persistence. In this latter case, the experiments have focused mainly on evaporation rates and first-order reaction kinetics. However, because organophosphorus compounds are easily polarized, the ionic content of a surrounding media directly factors into these reaction rates, but limited work in this regard has been done under environmentally relevant conditions. Furthermore, limited experiments investigating persistence of these agents on soil has resulted in widely varying degradation rates. Not surprisingly, no studies have investigated affinities of organophosphorus nerve agents to mineral or organic matter typically found in soil. As a result, we initiated laboratory experiments on dilute concentrations of nerve agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) to quantify persistence in simulated environmental aqueous conditions. A quantitative analytical method was developed for VX and its degradation products using High Performance Liquid Chromatography-Electrospray Ionization-Mass Spectrometry (HPLC-ESI-MS). VX hydrolysis rate is known to have a pH-dependency, however, the type of buffer and the relative proportion of different nucleophiles in solution significantly affect the overall rate and mechanism of degradation. For example, dissolved carbonate, a weak nucleophile dominating natural water, yielded pseudo-first order rate constants of {approx} 8 x 10{sup -3}/hr at pH 5 and 2 x 10{sup -2}/hr at pH 11. This small pH-dependent variation departs significantly from widely accepted rates at this pH range (4 x 10{sup -4}/hr to 8 x 10{sup -2}/hr) that were based on chloride and hydroxyl (strong nucleophile) dominated experimental solutions. Because of its overwhelming abundance in solution relative to hydroxyl ion, bicarbonate likely effectively competes in nucleophilic attack on phosphorus. The addition of natural dissolved organic matter at 100 mg/L in pH 7 bicarbonate buffered solution slowed VX hydrolysis rates {approx}2 times relative to controls, suggesting hydrophobic interaction. Adsorption experiments derived isotherms from batch aqueous experiments on montmorillonite clay, iron-oxyhydroxide goethite, and on amorphous silica. VX had moderate affinity for montmorillonite and amorphous silica, and very low affinity toward goethite. The addition of dissolved organic matter into solution enhanced VX adsorption to goethite, consistent with its high affinity for hydrophobic organic matter (log K{sub oc} = 2.52). Diisopropylaminoethylthiol (DESH), a hydrolysis product of VX showed equivalent adsorption to montmorillonite, and poor affinity to goethite and silica. However, hydrolysis products O-Ethylmethylphosphonic acid (EMPA) and methylphosphonic acid (MPA) strongly adsorbed on goethite, but not on montmorillonite or silica, suggesting a ligand-exchange mechanism. VX degraded rapidly when completely dried onto goethite followed by rehydration, consistent with an irreversible chemical adsorption mechanism.

Davisson, M L; Love, A H; Vance, A; Reynolds, J G

2005-02-08

86

Emission and Chemical Transformation of Biogenic Volatile Organic Compounds (echo)  

NASA Astrophysics Data System (ADS)

Forests are complex sources of biogenic volatile organic compounds (VOC) in the planetary boundary layer. The impact of biogenic VOC on tropospheric photochem- istry, air quality, and the formation of secondary products affects our climate on a regional and global scale but is far from being understood. A considerable lack of knowledge exists concerning a forest stand as a net source of reactive trace com- pounds, which are transported directly into the planetary boundary layer (PBL). In particular, little is known about the amounts of VOC which are processed within the canopy. The goal of ECHO, which is presented in this poster, is to investigate these questions and to improve our understanding of biosphere-atmosphere interactions and their effects on the PBL. The investigation of emissions, chemical processing and vertical transport of biogenic VOC will be carried out in and above a mixed forest stand in Jülich, Germany. A large set of trace gases, free radicals and meteorologi- cal parameters will be measured at different heights in and above the canopy, covering concentrations of VOC, CO, O3, organic nitrates und NOx as well as organic aerosols. For the first time concentration profiles of OH, HO2, RO2 und NO3 radicals will be measured as well together with the actinic UV radiation field and photolysis frequen- cies of all relevant radical precursors (O3, NO2, peroxides, oxygenated VOC). The different tasks of the field experiments will be supported by simulation experiments investigating the primary emission and the uptake of VOC by the plants in stirred tank reactors, soil parameters and soil emissions in lysimeter experiments, and the chem- ical processing of the trace gases as observed in and above the forest stand in the atmosphere simulation chamber SAPHIR. The planning and interpretation of the field experiments is supported by simulations of the field site in a wind tunnel.

Koppmann, R.; Hoffmann, T.; Kesselmeier, J.; Schatzmann, M.

87

Chemical Genomic Profiling via Barcode Sequencing to Predict Compound Mode of Action.  

PubMed

Chemical genomics is an unbiased, whole-cell approach to characterizing novel compounds to determine mode of action and cellular target. Our version of this technique is built upon barcoded deletion mutants of Saccharomyces cerevisiae and has been adapted to a high-throughput methodology using next-generation sequencing. Here we describe the steps to generate a chemical genomic profile from a compound of interest, and how to use this information to predict molecular mechanism and targets of bioactive compounds. PMID:25618354

Piotrowski, Jeff S; Simpkins, Scott W; Li, Sheena C; Deshpande, Raamesh; McIlwain, Sean J; Ong, Irene M; Myers, Chad L; Boone, Charlie; Andersen, Raymond J

2015-01-01

88

Polyphenolic compounds as chemical markers of wine ageing in contact with cherry, chestnut, false acacia, ash and oak wood.  

PubMed

The nonanthocyanic phenolic composition of four red wines, one white, and one rosé aged using barrels and chips of cherry, chestnut, false acacia, ash and oak wood was studied by LC-DAD-ESI/MS, to identify the phenolic compounds that woods other than oak contribute to wines, and if some of them can be used as chemical markers of ageing with them. A total of 68 nonanthocyanic phenolic compounds were identified, 15 found only in wines aged with acacia wood, 6 with cherry wood, and 1 with chestnut wood. Thus, the nonanthocyanic phenolic profile could be a useful tool to identify wines aged in contact with these woods. In addition, some differences in the nonanthocyanic phenolic composition of wines were detected related to both the levels of compounds provided by each wood species and the different evolution of flavonols and flavanols in wines during ageing in barrels or in contact with chips. PMID:24054214

Fernández de Simón, B; Sanz, M; Cadahía, E; Martínez, J; Esteruelas, E; Muñoz, A M

2014-01-15

89

A cell-based fascin bioassay identifies compounds with potential anti-metastasis or cognition-enhancing functions  

PubMed Central

SUMMARY The actin-bundling protein fascin is a key mediator of tumor invasion and metastasis and its activity drives filopodia formation, cell-shape changes and cell migration. Small-molecule inhibitors of fascin block tumor metastasis in animal models. Conversely, fascin deficiency might underlie the pathogenesis of some developmental brain disorders. To identify fascin-pathway modulators we devised a cell-based assay for fascin function and used it in a bidirectional drug screen. The screen utilized cultured fascin-deficient mutant Drosophila neurons, whose neurite arbors manifest the ‘filagree’ phenotype. Taking a repurposing approach, we screened a library of 1040 known compounds, many of them FDA-approved drugs, for filagree modifiers. Based on scaffold distribution, molecular-fingerprint similarities, and chemical-space distribution, this library has high structural diversity, supporting its utility as a screening tool. We identified 34 fascin-pathway blockers (with potential anti-metastasis activity) and 48 fascin-pathway enhancers (with potential cognitive-enhancer activity). The structural diversity of the active compounds suggests multiple molecular targets. Comparisons of active and inactive compounds provided preliminary structure-activity relationship information. The screen also revealed diverse neurotoxic effects of other drugs, notably the ‘beads-on-a-string’ defect, which is induced solely by statins. Statin-induced neurotoxicity is enhanced by fascin deficiency. In summary, we provide evidence that primary neuron culture using a genetic model organism can be valuable for early-stage drug discovery and developmental neurotoxicity testing. Furthermore, we propose that, given an appropriate assay for target-pathway function, bidirectional screening for brain-development disorders and invasive cancers represents an efficient, multipurpose strategy for drug discovery. PMID:22917928

Kraft, Robert; Kahn, Allon; Medina-Franco, José L.; Orlowski, Mikayla L.; Baynes, Cayla; López-Vallejo, Fabian; Barnard, Kobus; Maggiora, Gerald M.; Restifo, Linda L.

2013-01-01

90

Exposure levels for chemical threat compounds: information to facilitate chemical incident response.  

PubMed

Although not widely known, a robust set of peer-reviewed public health and occupational exposure levels presently exist for key chemical warfare agents (CWAs) and certain acutely toxic industrial chemicals (TICs) identified as terrorist attack threats. Familiarity with these CWA and TIC exposure levels and their historic applications has facilitated emergency management decision-making by public and environmental health decision-makers. Specifically, multiple air, soil, and water exposure levels for CWAs and TICs summarized here have been extensively peer-reviewed and published; many have been recognized and are in use by federal and state health agencies as criteria for hazard zone prediction and assessment, occupational safety, and "how clean is clean enough" decisions. The key, however, is to know which criteria are most appropriate for specific decisions. While public safety is critical, high levels of concern often associated with perceived or actual proximity to extremely toxic chemical agents could result in overly cautious decisions that generate excessive delays, expenditure of scarce resources, and technological difficulties. Rapid selection of the most appropriate chemical exposure criteria is recommended to avoid such problems and expedite all phases of chemical incident response and recovery. PMID:24340456

Hauschild, Veronique D; Watson, Annetta

2013-01-01

91

Novel Dual-Reporter Preclinical Screen for Anti-Astrocytoma Agents Identifies Cytostatic and Cytotoxic Compounds  

PubMed Central

Astrocytoma/glioblastoma is the most common malignant form of brain cancer and is often unresponsive to current pharmacological therapies and surgical interventions. Despite several potential therapeutic agents against astrocytoma and glioblastoma (1), there are currently no effective therapies for astrocytoma, creating a great need for the identification of effective anti-tumor agents. We have developed a novel dual-reporter system in Trp53/Nf1-null astrocytoma cells to simultaneously and rapidly assay cell viability and cell cycle progression as evidenced by activity of the human E2F1 promoter in vitro. The dual-reporter high-throughput assay was used to screen experimental therapeutics for activity in Trp53/Nf1-null astrocytoma. Several compounds were identified demonstrating selectivity for astrocytoma over primary astrocytes. The dual-reporter system described here may be a valuable tool for identifying potential anti-tumor treatments that specifically target astrocytoma. PMID:18664715

Hawes, Jessica J.; Nerva, John D.; Reilly, Karlyne M.

2009-01-01

92

Analogue Experiments Identify Possible Precursor Compounds for Chlorohydrocarbons Detected in SAM  

NASA Astrophysics Data System (ADS)

Since landing at Gale Crater on August 6, 2012, the Sample Analysis at Mars (SAM) instrument suite, aboard the Curiosity Rover, has conducted multiple analyses of scooped and drilled samples and has identified a suite of chlorohydrocarbons including chloromethane, dichloromethane, trichloromethane, chloromethylpropene, and chlorobenzene (Glavin et al., 2013; Leshin et al., 2013). These compounds were identified after samples were pyrolysed at temperatures up to ~835°C through a combination of Evolved Gas Analysis (EGA) and Gas Chromatography Mass Spectrometry (GCMS). Since these chlorinated species were well above the background levels determined by empty cup blanks analyzed prior to solid sample analyses, thermal degradation of oxychlorine phases, such as perchlorate, present in the Martian soil, are the most likely source of chlorine needed to generate these chlorohydrocarbons. Laboratory analogue experiments show that terrestrial organics internal to SAM, such as N-methyl-N(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), a derivatization agent, can react with perchlorates to produce all of the chlorohydrocarbons detected by SAM. However, in pyrolysis-trap-GCMS laboratory experiments with MTBSTFA, C4 compounds are the predominant chlorohydrocarbon observed, whereas on SAM the C1 chlorohydrocarbons dominate (Glavin et al., 2013). This, in addition to the previous identification of chloromethane and dichloromethane by the 1976 Viking missions (Biemann et al., 1977), suggest that there could be another, possibly Martian, source of organic carbon contributing to the formation of the C1 chlorohydrocarbons, or other components of the solid samples analyzed by SAM are having a catalytic effect on chlorohydrocarbon generation. Laboratory analogue experiments investigated a suite of organic compounds that have the potential to accumulate on Mars (Benner et al., 2000) and thus serve as sources of carbon for the formation of chlorohydrocarbons detected by the SAM and Viking GCMS instruments. Experiments were conducted under SAM-like conditions using a commercial pyroprobe equipped with a SAM-like hydrocarbon trap and coupled to a GCMS. In general, when pyrolyzed with 1 wt.% calcium perchlorate, the C1 organic compounds (e.g. methanol, formic acid, and formaldehyde) produced only C1 chlorinated compounds while propanol and butyric acid formed only C3 chlorinated compounds. All of the pyrolysis experiments produced chlorobenzene, suggesting that it forms from chlorine, released during calcium perchlorate decomposition, reacting with benzene and toluene, released from the Tenax component of the hydrocarbon trap. Pyrolysis of phthalic acid however, produces a higher abundance of chlorobenzene than could be attributed to the Tenax alone and also forms C1 chlorohydrocarbons. Additional analogue experiments to identify potential precursor compounds for the chlorohydrocarbons detected by SAM are ongoing. Benner et al., 2000, PNAS, 97(6), 2425-2430 Biemann et al., 1977, JGR, 82(28), 4641-4658 Glavin et al., 2013, JGR-Planets, accepted for publication Leshin et al., 2013, Science, in press

Miller, K.; Summons, R. E.; Eigenbrode, J. L.; Freissinet, C.; Glavin, D. P.; Martin, M. G.; Team, M.

2013-12-01

93

Compounds identified in-flight by ROSETTA-COSIMA before the comet encounter  

NASA Astrophysics Data System (ADS)

Secondary ion mass spectrometry (SIMS) is a laboratory surface analyzing technique and, with the COSIMA instrument onboard ROSETTA, it will be applied for the first time to in-situ measurements of cometary grains, once ROSETTA encounters its target comet, 67P/Churyumov-Gerasimenko, in the September 2014. The COmetary Secondary Ion Mass analyzer (COSIMA) onboard ROSETTA will expose metal targets, collect cometary dust grains in the inner coma and analyze these with an optical microscope as well as secondary ion mass spectrometry [1]. The COSIMA instrument has been operated in-flight for commissioning in the first months after launch in March 2004 and on a regular basis during the passive and active spacecraft check-out time intervals up to ROSETTA hibernation from June 2011 onwards. The secondary ion mass spectra background and /or contamination level of the COSIMA metal targets has been identified prior to launch and these had been selected accordingly to avoid masking of single elements or compounds by carrying different metal targets for cometary grain collection. The main compounds identified in-flight are silicon polymers and hydrocarbons. We will discuss the surface analysis results with COSIMA, carried out far off any comet or asteroid in interplanetary space, their time evolution and their potential sources within ROSETTA.

Hilchenbach, M.; Fischer, H.; Krüger, H.; Thirkell, L.; Rynö, J.

2013-09-01

94

Apatite formation: why it may not work as planned, and how to conclusively identify apatite compounds.  

PubMed

Calcium phosphate apatites are inorganic compounds encountered in many different mineralized tissues. Bone mineral, for example, is constituted of nanocrystalline nonstoichiometric apatite, and the production of "analogs" through a variety of methods is frequently reported. In another context, the ability of solid surfaces to favor the nucleation and growth of "bone-like" apatite upon immersion in supersaturated fluids such as SFB is commonly used as one evaluation index of the "bioactivity" of such surfaces. Yet, the compounds or deposits obtained are not always thoroughly characterized, and their apatitic nature is sometimes not firmly assessed by appropriate physicochemical analyses. Of particular importance are the "actual" conditions in which the precipitation takes place. The precipitation of a white solid does not automatically indicate the formation of a "bone-like carbonate apatite layer" as is sometimes too hastily concluded: "all that glitters is not gold." The identification of an apatite phase should be carefully demonstrated by appropriate characterization, preferably using complementary techniques. This review considers the fundamentals of calcium phosphate apatite characterization discussing several techniques: electron microscopy/EDX, XRD, FTIR/Raman spectroscopies, chemical analyses, and solid state NMR. It also underlines frequent problems that should be kept in mind when making "bone-like apatites." PMID:23984373

Drouet, Christophe

2013-01-01

95

Process for preparing a chemical compound enriched in isotope content. [nitrogen 15-enriched nitric acid  

DOEpatents

A process to prepare a chemical enriched in isotope content includes: a chemical exchange reaction between a first and second compound which yields an isotopically enriched first compound and an isotopically depleted second compound; the removal of a portion of the first compound as product and the removal of a portion of the second compound as spent material; the conversion of the remainder of the first compound to the second compound for reflux at the product end of the chemical exchange reaction region; the conversion of the remainder of the second compound to the first compound for reflux at the spent material end of the chemical exchange region; and the cycling of the additional chemicals produced by one conversion reaction to the other conversion reaction, for consumption therein. One of the conversion reactions is an oxidation reaction, and the energy that it yields is used to drive the other conversion reaction, a reduction. The reduction reaction is carried out in a solid polymer electrolyte electrolytic reactor. The overall process is energy efficient and yields no waste by-products. A particular embodiment of the process in the production of nitrogen-15-enriched nitric acid.

Michaels, E.D.

1981-02-25

96

Potent Plasmodium falciparum Gametocytocidal Activity of Diaminonaphthoquinones, Lead Antimalarial Chemotypes Identified in an Antimalarial Compound Screen.  

PubMed

Forty percent of the world's population is threatened by malaria, which is caused by Plasmodium parasites and results in an estimated 200 million clinical cases and 650,000 deaths each year. Drug resistance has been reported for all commonly used antimalarials and has prompted screens to identify new drug candidates. However, many of these new candidates have not been evaluated against the parasite stage responsible for transmission, gametocytes. If Plasmodium falciparum gametocytes are not eliminated, patients continue to spread malaria for weeks after asexual parasite clearance. Asymptomatic individuals can also harbor gametocyte burdens sufficient for transmission, and a safe, effective gametocytocidal agent could also be used in community-wide malaria control programs. Here, we identify 15 small molecules with nanomolar activity against late-stage gametocytes. Fourteen are diaminonaphthoquinones (DANQs), and one is a 2-imino-benzo[d]imidazole (IBI). One of the DANQs identified, SJ000030570, is a lead antimalarial candidate. In contrast, 94% of the 650 compounds tested are inactive against late-stage gametocytes. Consistent with the ineffectiveness of most approved antimalarials against gametocytes, of the 19 novel compounds with activity against known anti-asexual-stage targets, only 3 had any strong effect on gametocyte viability. These data demonstrate the distinct biology of the transmission stages and emphasize the importance of screening for gametocytocidal activity. The potent gametocytocidal activity of DANQ and IBI coupled with their efficacy against asexual parasites provides leads for the development of antimalarials with the potential to prevent both the symptoms and the spread of malaria. PMID:25512421

Tanaka, Takeshi Q; Guiguemde, W Armand; Barnett, David S; Maron, Maxim I; Min, Jaeki; Connelly, Michele C; Suryadevara, Praveen Kumar; Guy, R Kiplin; Williamson, Kim C

2015-03-01

97

Effects-driven chemical fractionation of heavy fuel oil to isolate compounds toxic to trout embryos.  

PubMed

Heavy fuel oil (HFO) spills account for approximately 60% of ship-source oil spills and are up to 50 times more toxic than medium and light crude oils. Heavy fuel oils contain elevated concentrations of polycyclic aromatic hydrocarbons (PAHs) and alkyl-PAHs, known to be toxic to fish; however, little direct characterization of HFO toxicity has been reported. An effects-driven chemical fractionation was conducted on HFO 7102 to separate compounds with similar chemical and physical properties, including toxicity, to isolate the groups of compounds most toxic to trout embryos. After each separation, toxicity tests directed the next phase of fractionation, and gas chromatography-mass spectrometry analysis correlated composition with toxicity, with a focus on PAHs. Low-temperature vacuum distillation permitted the separation of HFO into 3 fractions based on boiling point ranges. The most toxic of these fractions underwent wax precipitation to remove long-chain n-alkanes. The remaining PAH-rich extract was further separated using open column chromatography, which provided distinct fractions that were grouped according to increasing aromatic ring count. The most toxic of these fractions was richest in PAHs and alkyl-PAHs. The results of the present study were consistent with previous crude oil studies that identified PAH-rich fractions as the most toxic. PMID:24375845

Bornstein, Jason M; Adams, Julie; Hollebone, Bruce; King, Thomas; Hodson, Peter V; Brown, R Stephen

2014-04-01

98

compounds, sampling and chemical analysis on-site, chemical analysis off-site, destruction of CW and its  

E-print Network

compounds, sampling and chemical analysis on-site, chemical analysis off-site, destruction of CW and its verification, chemistry education and outreach and the technical capabilities of the Secretariat, Ambassador Tóth, noted at his Press Conference following the adjournment, the Review Conference had been

Sussex, University of

99

Investigation of chemical compounds, antioxidant and antimicrobial properties of teucrium arduini L. (lamiaceae).  

PubMed

In this paper chemical composition of the essential oil (analysed by GC and GC-MS), the content of phenolic compounds (analysed by HPLC), quantity of total phenols and total flavonoids (analysed by UV/Vis spectrophotometer), antioxidant and antimicrobial activities of ethanolic extracts were investigated in endemic Teucrium arduini L. in population of Mt Biokovo (Croatia). The oil was characterized by a high concentration of sesquiterpene hydrocarbons (70.4%) of which ?-caryophyllene (35.2%) and germacrene D (18.7%) being the major compounds. Three phenolic compounds (quercetin, ferulic acid and rosmarinic acid) were identified and quantified in ethanolic extract of T. arduini using HPLC. The results also showed that T. arduini is a source of polyphenolic and other antioxidants with radical-scavenging and chelating properties. The ethanol extracts prepared from the leaf of T. arduini showed broad spectrum of antimicrobial activity on Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus brasiliensis, which are susceptible on concentration below or equal to 4.00 mg/mL, whilst Microsporum gypseum was resistant at investigated concentrations. PMID:23597042

Kremer, Dario; Kosir, Iztok Joze; Kosalec, Ivan; Koncic, Marijana Zovko; Potocnik, Tanja; Cerenak, Andreja; Bezic, Nada; Srecec, Sinisa; Dunkic, Valerija

2013-08-01

100

The adsorption of selected chemical compounds on soil clays  

E-print Network

factors have made the large use of missile fuel significant to mankind. First, many of the fuel components are soluble in water; second, some of the fuels, or the de- composition products of the fuels, are often toxic to plant and animal life..., toxicity, and immense Both compounds are commonly found in missile fuels. amounts of the compounds used are threats to both the under- ground water supplies as well as the surface reservoirs. It is conceivable, therefore, that contamination...

Hoover, William Leroy

1964-01-01

101

Microscopic physical and chemical properties of graphite intercalation compounds  

SciTech Connect

Optical spectroscopy (Raman, FTIR and Reflection ) was used to study a variety of acceptor- and donor-type compounds synthesized to determine the microscopic models consistent with the spectrocsopic results. General finding is that the electrical conduction properties of these compounds can be understood on the basis that the intercalation of atomic and/or molecular species between the host graphite layers either raises or lowers the Fermi level (E{sub F)} in a graphitic band structure. This movement of E{sub F} is accomplished via a charge transfer of electrons from the intercalate layers to the graphitic layers (donor compounds), or vice versa (acceptor compounds). Furthermore, the band structure must be modified to take into account the layers of charge that occur as a result of the charge transfer. This charge layering introduces additional bands of states near E{sub F}, which are discussed. Charge-transfer also induces a perturbation of the graphitic normal mode frequencies which can be understood as the result of a contraction (acceptor compounds) or expansion (donor compounds) of the intralayer C-C bonds. Ab-initio calculations support this view and are in reasonable agreement with experimental data.

Eklund, P.C.

1992-08-24

102

LOW VOLATILE ORGANIC COMPOUND (VOC) CHEMICAL AGENT RESISTANT COATING (CARC)  

EPA Science Inventory

Chemical warfare causes many problems on the battlefield, among which is decontamination of exposed equipment. Because of this threat, the US Army ahs required the use of a Chemical Agent Resistant Coating (CARC) system on its equipment, beginning in FY 85. The equipment covere...

103

Virtual screening for LPA2-specific agonists identifies a nonlipid compound with antiapoptotic actions.  

PubMed

Lysophosphatidic acid (LPA) is a highly potent endogenous lipid mediator that protects and rescues cells from programmed cell death. Earlier work identified the LPA? G protein-coupled receptor subtype as an important molecular target of LPA mediating antiapoptotic signaling. Here we describe the results of a virtual screen using single-reference similarity searching that yielded compounds 2-((9-oxo-9H-fluoren-2-yl)carbamoyl)benzoic acid (NSC12404), 2-((3-(1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)propyl)thio)benzoic acid (GRI977143), 4,5-dichloro-2-((9-oxo-9H-fluoren-2-yl)carbamoyl)benzoic acid (H2L5547924), and 2-((9,10-dioxo-9,10-dihydroanthracen-2-yl)carbamoyl) benzoic acid (H2L5828102), novel nonlipid and drug-like compounds that are specific for the LPA? receptor subtype. We characterized the antiapoptotic action of one of these compounds, GRI977143, which was effective in reducing activation of caspases 3, 7, 8, and 9 and inhibited poly(ADP-ribose)polymerase 1 cleavage and DNA fragmentation in different extrinsic and intrinsic models of apoptosis in vitro. Furthermore, GRI977143 promoted carcinoma cell invasion of human umbilical vein endothelial cell monolayers and fibroblast proliferation. The antiapoptotic cellular signaling responses were present selectively in mouse embryonic fibroblast cells derived from LPA(1&2) double-knockout mice reconstituted with the LPA? receptor and were absent in vector-transduced control cells. GRI977143 was an effective stimulator of extracellular signal-regulated kinase 1/2 activation and promoted the assembly of a macromolecular signaling complex consisting of LPA?, Na? - H? exchange regulatory factor 2, and thyroid receptor interacting protein 6, which has been shown previously to be a required step in LPA-induced antiapoptotic signaling. The present findings indicate that nonlipid LPA?-specific agonists represent an excellent starting point for development of lead compounds with potential therapeutic utility for preventing the programmed cell death involved in many types of degenerative and inflammatory diseases. PMID:22968304

Kiss, Gyöngyi N; Fells, James I; Gupte, Renuka; Lee, Sue-Chin; Liu, Jianxiong; Nusser, Nóra; Lim, Keng G; Ray, Ramesh M; Lin, Fang-Tsyr; Parrill, Abby L; Sümegi, Balázs; Miller, Duane D; Tigyi, Gabor

2012-12-01

104

EVALUATION USING AN ORGANOPHILIC CLAY TO CHEMICALLY STABILIZE WASTE CONTAINING ORGANIC COMPOUNDS  

EPA Science Inventory

A modified clay (organophilic) was utilized to evaluate the potential for chemically stabilizing a waste containing organic compounds. hemical bonding between the binder and the contaminants was indicated. eachate testing also indicated strong binding. Copy available at NTIS as ...

105

ESTIMATION OF PHYSICAL PROPERTIES AND CHEMICAL REACTIVITY PARAMETERS OF ORGANIC COMPOUNDS  

EPA Science Inventory

The computer program SPARC (Sparc Performs Automated Reasoning in Chemistry)has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms ...

106

Cyanobacterium sp. host cell and vector for production of chemical compounds in cyanobacterial cultures  

SciTech Connect

A cyanobacterial host cell, Cyanobacterium sp., that harbors at least one recombinant gene for the production of a chemical compounds is provided, as well as vectors derived from an endogenous plasmid isolated from the cell.

Piven, Irina; Friedrich, Alexandra; Duhring, Ulf; Uliczka, Frank; Baier, Kerstin; Inaba, Masami; Shi, Tuo; Wang, Kui; Enke, Heike; Kramer, Dan

2014-09-30

107

Chemical process for the catalytic oxidation of formaldehyde and other organic compounds  

SciTech Connect

The invention discusses a chemical process for the catalytic oxidation of formaldehyde and other organic compounds contained in a dilute aqueous solution, particularly waste water. The inventive feature resides in the use of a cobalt catalyst to increase the rate of oxidation of the organic compounds when hypochlorous acid is the oxidant. The latter may be provided by a chlorine compound, such as sodium hypochlorite, calcium hypochlorite or chlorine gas dissolved in water.

Murphy, A.P.

1991-01-01

108

Heteropteran chemical repellents identified in the citrus odor of a seabird (crested auklet: Aethia cristatella): evolutionary convergence in chemical ecology  

NASA Astrophysics Data System (ADS)

The exogenous application of chemical repellents is widespread in birds, but endogenous production is exceedingly rare. We herein report a new class of avian defensive compounds isolated from the feathers and volatile odor of the crested auklet ( Aethia cristatella). Mass spectra indicate that n-hexanal, n-octanal, n-decanal, Z-4-decenal and a 12-carbon unsaturated aldehyde comprise the auklet odorant. Octanal and hexanal are also secreted in the repugnant metasternal gland emissions of heteropteran insects and are known to be potent invertebrate repellents. We suggest that the auklet odorant functions as an ectoparasite repellent and a signal of mate quality. This would represent a rare and direct link between vigor, quality and parasite resistance, one of several putative bases for mate selection. This is the first report of defensive compounds produced by a seabird or colonial bird and one of the few examples of chemical defense in a polar or subpolar marine vertebrate.

Douglas, H. D.; Co, J. E.; Jones, T. H.; Conner, W. E.

2001-08-01

109

Antimalarial efficacy of dynamic compound of plumbagin chemical constituent from Plumbago zeylanica Linn (Plumbaginaceae) against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae).  

PubMed

In the present investigation, the effective root compound of plumbagin of Plumbago zeylanica (Plumbaginaceae) was evaluated for chemical constituent and antimalarial effect against the fourth instar larvae of Anopheles stephensi Liston (Diptera). In the chromatographic analyses of root compound with Rf value of 0.788 and NMR analyses also revealed that the effective compound contain naphthoquinone plumbagin were identified as the major chemical constituent. Larval mortality was observed after 3 h of exposure period. The plumbagin compound showed remarkable larvicidal activity against A. stephensi (LC50 32.65 and LC9072.27 ppm). Histopathological effects of compound was observed in the treated larvae. Based on the results, the plumbagin compound of P. zeylanica can be considered as a new source of natural larvicide for the control of malarial vector. PMID:25028206

Pradeepa, Venkatraman; Sathish-Narayanan, Subbiah; Kirubakaran, Suyambulingam Arunachalam; Senthil-Nathan, Sengottayan

2014-08-01

110

Identifying Alternative Conceptions of Chemical Kinetics among Secondary School and Undergraduate Students in Turkey  

ERIC Educational Resources Information Center

This study identifies some alternative conceptions of chemical kinetics held by secondary school and undergraduate students (N = 191) in Turkey. Undergraduate students who participated are studying to become chemistry teachers when they graduate. Students' conceptions about chemical kinetics were elicited through a series of written tasks and…

Cakmakci, Gultekin

2010-01-01

111

Radiation induced chemical changes of phenolic compounds in strawberries  

NASA Astrophysics Data System (ADS)

In unirradiated strawberries four phenolic acids (gallic acid, p-coumaric acid, caffeic acid and 4-hydroxybenzoic acid), the flavonoids (+)-catechin, (-)-epicatechin and glycosides from kaempferol and quercetin were determined by reversed phase chromatography with diode array detection. Characteristic linear dose/concentration relationships were found for 4-hydroxybenzoic acid and two unidentified compounds. One of them may be usable as marker to prove an irradiation treatment.

Breitfellner, F.; Solar, S.; Sontag, G.

2003-06-01

112

Potential hazards to embryo implantation: A human endometrial in vitro model to identify unwanted antigestagenic actions of chemicals  

SciTech Connect

Embryo implantation is a crucial step in human reproduction and depends on the timely development of a receptive endometrium. The human endometrium is unique among adult tissues due to its dynamic alterations during each menstrual cycle. It hosts the implantation process which is governed by progesterone, whereas 17?-estradiol regulates the preceding proliferation of the endometrium. The receptors for both steroids are targets for drugs and endocrine disrupting chemicals. Chemicals with unwanted antigestagenic actions are potentially hazardous to embryo implantation since many pharmaceutical antiprogestins adversely affect endometrial receptivity. This risk can be addressed by human tissue-specific in vitro assays. As working basis we compiled data on chemicals interacting with the PR. In our experimental work, we developed a flexible in vitro model based on human endometrial Ishikawa cells. Effects of antiprogestin compounds on pre-selected target genes were characterized by sigmoidal concentration–response curves obtained by RT-qPCR. The estrogen sulfotransferase (SULT1E1) was identified as the most responsive target gene by microarray analysis. The agonistic effect of progesterone on SULT1E1 mRNA was concentration-dependently antagonized by RU486 (mifepristone) and ZK137316 and, with lower potency, by 4-nonylphenol, bisphenol A and apigenin. The negative control methyl acetoacetate showed no effect. The effects of progesterone and RU486 were confirmed on the protein level by Western blotting. We demonstrated proof of principle that our Ishikawa model is suitable to study quantitatively effects of antiprogestin-like chemicals on endometrial target genes in comparison to pharmaceutical reference compounds. This test is useful for hazard identification and may contribute to reduce animal studies. -- Highlights: ? We compare progesterone receptor-mediated endometrial effects of chemicals and drugs. ? 4-Nonylphenol, bisphenol A and apigenin exert weak antigestagenic activity. ? SULT1E1 is a significant marker for endometrial antiprogestin effects. ? Ishikawa cells are a tissue-specific approach for characterization of SPRMs. ? Chemicals acting as progesterone receptor antagonists may exert antifertility effects.

Fischer, L.; Deppert, W.R. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany)] [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Pfeifer, D. [Department of Hematology and Oncology, University Hospital Freiburg (Germany)] [Department of Hematology and Oncology, University Hospital Freiburg (Germany); Stanzel, S.; Weimer, M. [Department of Biostatistics, German Cancer Research Center, Heidelberg (Germany)] [Department of Biostatistics, German Cancer Research Center, Heidelberg (Germany); Hanjalic-Beck, A.; Stein, A.; Straßer, M.; Zahradnik, H.P. [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany)] [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany); Schaefer, W.R., E-mail: wolfgang.schaefer@uniklinik-freiburg.de [Department of Obstetrics and Gynecology, University Hospital Freiburg (Germany)

2012-05-01

113

Gametocytocidal screen identifies novel chemical classes with Plasmodium falciparum transmission blocking activity.  

PubMed

Discovery of transmission blocking compounds is an important intervention strategy necessary to eliminate and eradicate malaria. To date only a small number of drugs that inhibit gametocyte development and thereby transmission from the mosquito to the human host exist. This limitation is largely due to a lack of screening assays easily adaptable to high throughput because of multiple incubation steps or the requirement for high gametocytemia. Here we report the discovery of new compounds with gametocytocidal activity using a simple and robust SYBR Green I- based DNA assay. Our assay utilizes the exflagellation step in male gametocytes and a background suppressor, which masks the staining of dead cells to achieve healthy signal to noise ratio by increasing signal of viable parasites and subtracting signal from dead parasites. By determining the contribution of exflagellation to fluorescent signal and using appropriate cutoff values, we were able to screen for gametocytocidal compounds. After assay validation and optimization, we screened an FDA approved drug library of approximately 1500 compounds, as well as the 400 compound MMV malaria box and identified 44 gametocytocidal compounds with sub to low micromolar IC50s. Major classes of compounds with gametocytocidal activity included quaternary ammonium compounds with structural similarity to choline, acridine-like compounds similar to quinacrine and pyronaridine, as well as antidepressant, antineoplastic, and anthelminthic compounds. Top drug candidates showed near complete transmission blocking in membrane feeding assays. This assay is simple, reproducible and demonstrated robust Z-factor values at low gametocytemia levels, making it amenable to HTS for identification of novel and potent gametocytocidal compounds. PMID:25157792

Sanders, Natalie G; Sullivan, David J; Mlambo, Godfree; Dimopoulos, George; Tripathi, Abhai K

2014-01-01

114

Gametocytocidal Screen Identifies Novel Chemical Classes with Plasmodium falciparum Transmission Blocking Activity  

PubMed Central

Discovery of transmission blocking compounds is an important intervention strategy necessary to eliminate and eradicate malaria. To date only a small number of drugs that inhibit gametocyte development and thereby transmission from the mosquito to the human host exist. This limitation is largely due to a lack of screening assays easily adaptable to high throughput because of multiple incubation steps or the requirement for high gametocytemia. Here we report the discovery of new compounds with gametocytocidal activity using a simple and robust SYBR Green I- based DNA assay. Our assay utilizes the exflagellation step in male gametocytes and a background suppressor, which masks the staining of dead cells to achieve healthy signal to noise ratio by increasing signal of viable parasites and subtracting signal from dead parasites. By determining the contribution of exflagellation to fluorescent signal and using appropriate cutoff values, we were able to screen for gametocytocidal compounds. After assay validation and optimization, we screened an FDA approved drug library of approximately 1500 compounds, as well as the 400 compound MMV malaria box and identified 44 gametocytocidal compounds with sub to low micromolar IC50s. Major classes of compounds with gametocytocidal activity included quaternary ammonium compounds with structural similarity to choline, acridine-like compounds similar to quinacrine and pyronaridine, as well as antidepressant, antineoplastic, and anthelminthic compounds. Top drug candidates showed near complete transmission blocking in membrane feeding assays. This assay is simple, reproducible and demonstrated robust Z-factor values at low gametocytemia levels, making it amenable to HTS for identification of novel and potent gametocytocidal compounds. PMID:25157792

Sanders, Natalie G.; Sullivan, David J.; Mlambo, Godfree; Dimopoulos, George; Tripathi, Abhai K.

2014-01-01

115

Pharmacophore modeling, molecular docking, and molecular dynamics simulation approaches for identifying new lead compounds for inhibiting aldose reductase 2.  

PubMed

Aldose reductase 2 (ALR2), which catalyzes the reduction of glucose to sorbitol using NADP as a cofactor, has been implicated in the etiology of secondary complications of diabetes. A pharmacophore model, Hypo1, was built based on 26 compounds with known ALR2-inhibiting activity values. Hypo1 contains important chemical features required for an ALR2 inhibitor, and demonstrates good predictive ability by having a high correlation coefficient (0.95) as well as the highest cost difference (128.44) and the lowest RMS deviation (1.02) among the ten pharmacophore models examined. Hypo1 was further validated by Fisher's randomization method (95%), test set (r = 0.91), and the decoy set shows the goodness of fit (0.70). Furthermore, during virtual screening, Hypo1 was used as a 3D query to screen the NCI database, and the hit leads were sorted by applying Lipinski's rule of five and ADME properties. The best-fitting leads were subjected to docking to identify a suitable orientation at the ALR2 active site. The molecule that showed the strongest interactions with the critical amino acids was used in molecular dynamics simulations to calculate its binding affinity to the candidate molecules. Thus, Hypo1 describes the key structure-activity relationship along with the estimated activities of ALR2 inhibitors. The hit molecules were searched against PubChem to find similar molecules with new scaffolds. Finally, four molecules were found to satisfy all of the chemical features and the geometric constraints of Hypo1, as well as to show good dock scores, PLPs and PMFs. Thus, we believe that Hypo1 facilitates the selection of novel scaffolds for ALR2, allowing new classes of ALR2 inhibitors to be designed. PMID:22249747

Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; Lee, Keun Woo

2012-07-01

116

An isogenic cell panel identifies compounds that inhibit proliferation of mTOR-pathway addicted cells by different mechanisms.  

PubMed

The mTOR pathway is a critical integrator of nutrient and growth factor signaling. Once activated, mTOR promotes cell growth and proliferation. Several components of the mTOR pathway are frequently deregulated in tumors, leading to constitutive activation of the pathway and thus contribute to uncontrolled cell growth. We performed a high-throughput screen with an isogenic cell line system to identify compounds specifically inhibiting proliferation of PTEN/mTOR-pathway addicted cells. We show here the characterization and mode of action of two such compound classes. One compound class inhibits components of the PTEN/mTOR signaling pathway, such as S6 ribosomal protein phosphorylation, and leads to cyclin D3 downregulation. These compounds are not adenosine triphosphate competitive inhibitors for kinases in the pathway, nor do they require FKBP12 for activity like rapamycin. The other compound class turned out to be a farnesylation inhibitor, blocking the activity of GTPases, as well as an inducer of oxidative stress. Our results demonstrate that an isogenic cell system with few specific mutations in oncogenes and tumor suppressor genes can identify different classes of compounds selectively inhibiting proliferation of PTEN/mTOR pathway-addicted isogenic clones. The identified mechanisms are in line with the known cellular signaling networks activated by the altered oncogenes and suppressor genes in the isogenic system. PMID:23954931

Wyder Peters, Lorenza; Molle, Klaus D; Thiemeyer, Anke; Knopf, Agnes; Goxe, Marie; Guerry, Philippe; Brodbeck, Daniela; Colombi, Marco; Hall, Michael N; Moroni, Christoph; Regenass, Urs

2014-01-01

117

Anti-trypanosomal activities and structural chemical properties of selected compound classes.  

PubMed

Potent compounds do not necessarily make the best drugs in the market. Consequently, with the aim to describe tools that may be fundamental for refining the screening of candidates for animal and preclinical studies and further development, molecules of different structural classes synthesized within the frame of a broad screening platform were evaluated for their trypanocidal activities, cytotoxicities against murine macrophages J774.1 and selectivity indices, as well as for their ligand efficiencies and structural chemical properties. To advance into their modes of action, we also describe the morphological and ultrastructural changes exerted by selected members of each compound class on the parasite Trypanosoma brucei. Our data suggest that the potential organelles targeted are either the flagellar pocket (compound 77, N-Arylpyridinium salt; 15, amino acid derivative with piperazine moieties), the endoplasmic reticulum membrane systems (37, bisquaternary bisnaphthalimide; 77, N-Arylpyridinium salt; 68, piperidine derivative), or mitochondria and kinetoplasts (88, N-Arylpyridinium salt; 68, piperidine derivative). Amino acid derivatives with fumaric acid and piperazine moieties (4, 15) weakly inhibiting cysteine proteases seem to preferentially target acidic compartments. Our results suggest that ligand efficiency indices may be helpful to learn about the relationship between potency and chemical characteristics of the compounds. Interestingly, the correlations found between the physico-chemical parameters of the selected compounds and those of commercial molecules that target specific organelles indicate that our rationale might be helpful to drive compound design toward high activities and acceptable pharmacokinetic properties for all compound families. PMID:25416330

Ponte-Sucre, Alicia; Bruhn, Heike; Schirmeister, Tanja; Cecil, Alexander; Albert, Christian R; Buechold, Christian; Tischer, Maximilian; Schlesinger, Susanne; Goebel, Tim; Fuß, Antje; Mathein, Daniela; Merget, Benjamin; Sotriffer, Christoph A; Stich, August; Krohne, Georg; Engstler, Markus; Bringmann, Gerhard; Holzgrabe, Ulrike

2015-02-01

118

Large-scale neurochemical metabolomics analysis identifies multiple compounds associated with methamphetamine exposure  

PubMed Central

Methamphetamine (MA) is an illegal stimulant drug of abuse with serious negative health consequences. The neurochemical effects of MA have been partially characterized, with a traditional focus on classical neurotransmitter systems. However, these directions have not yet led to novel drug treatments for MA abuse or toxicity. As an alternative approach, we describe here the first application of metabolomics to investigate the neurochemical consequences of MA exposure in the rodent brain. We examined single exposures at 3 mg/kg and repeated exposures at 3 mg/kg over 5 days in eight common inbred mouse strains. Brain tissue samples were assayed using high-throughput gas and liquid chromatography mass spectrometry, yielding quantitative data on >300 unique metabolites. Association testing and false discovery rate control yielded several metabolome-wide significant associations with acute MA exposure, including compounds such as lactate (p = 4.4 × 10?5, q = 0.013), tryptophan (p = 7.0 × 10?4, q = 0.035) and 2-hydroxyglutarate (p = 1.1 × 10?4, q = 0.022). Secondary analyses of MA-induced increase in locomotor activity showed associations with energy metabolites such as succinate (p = 3.8 × 10?7). Associations specific to repeated (5 day) MA exposure included phosphocholine (p = 4.0 × 10?4, q = 0.087) and ergothioneine (p = 3.0 × 10?4, q = 0.087). Our data appear to confirm and extend existing models of MA action in the brain, whereby an initial increase in energy metabolism, coupled with an increase in behavioral locomotion, gives way to disruption of mitochondria and phospholipid pathways and increased endogenous antioxidant response. Our study demonstrates the power of comprehensive MS-based metabolomics to identify drug-induced changes to brain metabolism and to develop neurochemical models of drug effects. PMID:23554582

Adkins, Daniel E.; Vunck, Sarah A.; Batman, Angela M.; Vann, Robert E.; Clark, Shaunna L.; Beardsley, Patrick M.; van den Oord, Edwin J. C. G.

2012-01-01

119

Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes  

PubMed Central

Objective To determine the repellent and pupicidal activities of Pogostemon cablin (P. cablin) chemical compositions were assayed for their toxicity against selected important vector mosquitoes, viz., Aedes aegypti (Ae. aegypti), Anopheles stephensi (An. stephensi) and Culex quinquefasciatus (Cx. quinquefasciatus) (Diptera: Culicidae). Methods The plants dry aerial parts were subjected to hydrodistillation using a modified Clevenger-type apparatus. The composition of the essential oil was analyzed by Gas Chromatography (GC) and GC mass spectrophotometry. Evaluation was carried out in a net cage (45 cm×30 cm×45 cm) containing 100 blood starved female mosquitoes and were assayed in the laboratory condition by using the protocol of WHO 2010. The repellent activity of P. cablin chemical compositions at concentration of 2mg/cm2were applied on skin of fore arm in man and exposed against adult female mosquitoes. The pupicidal activity was determined against selected important vector mosquitoes to concentration of 100 mg/L and mortality of each pupa was recorded after 24 h of exposure to the compounds. Results Chemical constituents of 15 compounds were identified in the oil of P.cablin compounds representing to 98.96%. The major components in essential oil were â-patchoulene, á-guaiene, ã-patchoulene, á-bulnesene and patchouli alcohol. The repellent activity of patchouli alcohol compound was found to be most effective for repellent activity and 2 mg/cm2 concentration provided 100% protection up to 280 min against Ae. aegypti, An. stephensi and Cx. quinquefasciatus, respectively. Similarly, pupae exposed to 100 mg/L concentrations of P. cablin chemical compositions. Among five compounds tested patchouli alcoholwas found to be most effective for pupicidal activity provided 28.44, 26.28 and 25.36 against Ae.aegypti, An.stephensi and Cx. quinquefasciatus, respectively. The percent adult emergence was inversely proportional to the concentration of compounds and directly proportional to the pupal mortality. Conclusion These results suggest that the P. cablin chemical compositions have the potential to be used as an ideal eco-friendly approach for the control of mosquitoes. This is the first report on the mosquito repellent and pupicidal activities of the reported P. cablin chemical compositions.

Gokulakrishnan, J; Kuppusamy, Elumalai; Shanmugam, Dhanasekaran; Appavu, Anandan; Kaliyamoorthi, Krishnappa

2013-01-01

120

Prediction of the rodent carcinogenicity of organic compounds from their chemical structures using the FALS method.  

PubMed Central

Fuzzy adaptive least-squares (FALS), a pattern recognition method recently developed in our laboratory for correlating structure with activity rating, was used to generate quantitative structure-activity relationship (QSAR) models on the carcinogenicity of organic compounds of several chemical classes. Using the predictive models obtained from the chemical class-based FALS QSAR approach, the rodent carcinogenicity or noncarcinogenicity of a group of organic chemicals currently being tested by the U.S. National Toxicology Program was estimated from their chemical structures. PMID:8933054

Moriguchi, I; Hirano, H; Hirono, S

1996-01-01

121

Compounds blocking mutant huntingtin toxicity identified using a Huntington's disease neuronal cell model.  

PubMed

Neuronal cell death in HD is believed to be largely a dominant cell-autonomous effect of the mutant huntingtin protein. We previously developed an inducible PC12 cell model which expresses an N-terminal huntingtin fragment with an expanded poly Q repeat (N63-148Q) under the control of the tet-off system. In order to evaluate the ability of compounds to protect against mutant huntingtin toxicity in our model, we measured LDH released by dead cells into the medium. We have now screened the library of 1040 compounds from the NINDS Custom Collection as part of a National Institute of Neurological Disorders and Stroke (NINDS) collaborative project. Each positive compound was tested at 3-8 concentrations. Five compounds significantly attenuated mutant huntingtin (htt)-induced LDH release without affecting the expression level of huntingtin and independent of effect on aggregates. We also tested a broad spectrum caspase inhibitor Z-VAD-fmk and previously proposed candidate compounds. This cell model can provide a method to screen potential therapeutic compounds for treating Huntington's disease. PMID:15908226

Wang, Wenfei; Duan, Wenzhen; Igarashi, Shuichi; Morita, Hokuto; Nakamura, Masayuki; Ross, Christopher A

2005-11-01

122

Identifying new small molecule anti-invasive compounds for glioma treatment  

PubMed Central

Glioblastoma is a disease with poor survival rates after diagnosis. Treatment of the disease involves debulking of the tumor, which is limited by the degree of invasiveness of the disease. Therefore, a treatment to halt the invasion of glioma is desirable for clinical implementation. There have been several candidate compounds targeting specific aspects of invasion, including cell adhesions, matrix degradation, and cytoskeletal rearrangement, but they have failed clinically for a variety of reasons. New targets against glioma invasion include upstream mediators of these classical targets in an effort to better inhibit invasion with more specificity for cancer. Included in these treatments is a new class of compounds inhibiting the generation of reactive oxygen species by targeting the NADPH oxidases. These compounds stand to inhibit multiple pathways, including nuclear factor kappa B and Akt. By conducting a screen of compounds thought to inhibit these pathways, a new compound to halt invasion was found that may have a beneficial effect against glioma, based on recent publications. Further, there are still limitations to the treatment of glioblastoma regardless of the discovery of new targets and compounds that should be addressed to better the therapies against this deadly cancer. PMID:24067366

Munson, Jennifer; Bonner, Michael; Fried, Levi; Hofmekler, Jonathan; Arbiser, Jack; Bellamkonda, Ravi

2013-01-01

123

Identification and quantitative analysis of chemical compounds based on multiscale linear fitting of terahertz spectra  

NASA Astrophysics Data System (ADS)

Terahertz (THz) time-domain spectroscopy is considered as an attractive tool for the analysis of chemical composition. The traditional methods for identification and quantitative analysis of chemical compounds by THz spectroscopy are all based on full-spectrum data. However, intrinsic features of the THz spectrum only lie in absorption peaks due to existence of disturbances, such as unexpected components, scattering effects, and barrier materials. We propose a strategy that utilizes Lorentzian parameters of THz absorption peaks, extracted by a multiscale linear fitting method, for both identification of pure chemicals and quantitative analysis of mixtures. The multiscale linear fitting method can automatically remove background content and accurately determine Lorentzian parameters of the absorption peaks. The high recognition rate for 16 pure chemical compounds and the accurate predicted concentrations for theophylline-lactose mixtures demonstrate the practicability of our approach.

Qiao, Lingbo; Wang, Yingxin; Zhao, Ziran; Chen, Zhiqiang

2014-07-01

124

Chemical compounds from the preanal gland secretions of the male tree agama (Acanthocercus atricollis) (fam. Agamidae).  

PubMed

Chemical signals have an important role in the reproductive behaviour of many lizards. However, the compounds secreted by their femoral or preanal glands, which may be used as sexual signals, are mainly known for lizard species within the Scleroglossa clade, whereas compounds in secretions of lizards within the Iguania clade are much less studied. Based on mass spectra, obtained by GC-MS, we found 60 lipophilic compounds in preanal gland secretions of the male tree agama (Acanthocercus atricollis) (fam. Agamidae), including steroids (mainly cholesterol, cholest-3-ene, and some of their derivatives), fatty acids ranging between n-C12 and n-C18 (mainly hexadecanoic and octadecenoic acids), ketones from n-C17 to n-C25, and other minor compounds, such as tocopherol, squalene, waxy esters, and furanones. We compare the compounds found with those present in other lizard species and discuss their potential function in social behaviour. PMID:23923623

Martín, José; Ortega, Jesús; López, Pilar

2013-01-01

125

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both radioactive materials  

E-print Network

Identifying Mixed Chemical and Radioactive Waste Mixed waste is: any waste material containing both as noted on the list, you do not have a mixed waste and it may be managed as a normal radioactive waste radioactive waste after initially dating the container, the hold for decay time is extended, but you cannot

Straight, Aaron

126

USE OF THE RIBONUCLEASE PROTECTION ASSAY FOR IDENTIFYING CHEMICALS WHICH ELLICIT HYPERSENSITIVITY RESPONSES  

EPA Science Inventory

Use of the Ribonuclease Protection Assay (RPA) for Identifying Chemicals that Elicit Hypersensitivity Responses. L.M. Plitnick, 1, D.M. Sailstad, 2, and R.J. Smialowicz, 2 1UNC, Curriculum in Toxicology, Chapel Hill, NC and 2USEPA, NHEERL, RTP, NC. The incidence of aller...

127

Journal of Chromatography A, 1071 (2005) 263269 Computer language for identifying chemicals with comprehensive  

E-print Network

Journal of Chromatography A, 1071 (2005) 263­269 Computer language for identifying chemicals with comprehensive two-dimensional gas chromatography and mass spectrometry Stephen E. Reichenbacha,, Visweswara with comprehensive two-dimensional gas chromatography paired with mass spectrometry (GC�GC­MS) and presents computer

Reichenbach, Stephen E.

128

Drug Discovery for Schistosomiasis: Hit and Lead Compounds Identified in a Library of Known Drugs by Medium-Throughput Phenotypic Screening  

PubMed Central

Background Praziquantel (PZQ) is the only widely available drug to treat schistosomiasis. Given the potential for drug resistance, it is prudent to search for novel therapeutics. Identification of anti-schistosomal chemicals has traditionally relied on phenotypic (whole organism) screening with adult worms in vitro and/or animal models of disease—tools that limit automation and throughput with modern microtiter plate-formatted compound libraries. Methods A partially automated, three-component phenotypic screen workflow is presented that utilizes at its apex the schistosomular stage of the parasite adapted to a 96-well plate format with a throughput of 640 compounds per month. Hits that arise are subsequently screened in vitro against adult parasites and finally for efficacy in a murine model of disease. Two GO/NO GO criteria filters in the workflow prioritize hit compounds for tests in the animal disease model in accordance with a target drug profile that demands short-course oral therapy. The screen workflow was inaugurated with 2,160 chemically diverse natural and synthetic compounds, of which 821 are drugs already approved for human use. This affords a unique starting point to ‘reposition’ (re-profile) drugs as anti-schistosomals with potential savings in development timelines and costs. Findings Multiple and dynamic phenotypes could be categorized for schistosomula and adults in vitro, and a diverse set of ‘hit’ drugs and chemistries were identified, including anti-schistosomals, anthelmintics, antibiotics, and neuromodulators. Of those hits prioritized for tests in the animal disease model, a number of leads were identified, one of which compares reasonably well with PZQ in significantly decreasing worm and egg burdens, and disease-associated pathology. Data arising from the three components of the screen are posted online as a community resource. Conclusions To accelerate the identification of novel anti-schistosomals, we have developed a partially automated screen workflow that interfaces schistosomula with microtiter plate-formatted compound libraries. The workflow has identified various compounds and drugs as hits in vitro and leads, with the prescribed oral efficacy, in vivo. Efforts to improve throughput, automation, and rigor of the screening workflow are ongoing. PMID:19597541

Wolff, Brian; Snedecor, June; Lim, Kee-Chong; Xu, Fengyun; Renslo, Adam R.; Williams, Janice; McKerrow, James H.; Caffrey, Conor R.

2009-01-01

129

Current status of chemical-thermodynamic measurements for technetium and its inorganic compounds and aqueous species  

SciTech Connect

From the viewpoint of having an adequate chemical-thermodynamic data base for geochemical modeling, the most critically needed thermodynamic data for solid compounds are values of C{sub p,m}{sup 0}(T) and S{sub m}{sub 0}(T.) for Tc(cr), TcO{sub 2}(cr), Tc{sub 2}0{sub 7}(cr), TcS{sub 2}(cr) and Tc{sub 2}S{sub 7}(cr); {Delta}{sub f}H{sub m}{sup 0}(T{sub 0}) for TcS{sub 2}(cr), Tc{sub 2}S{sub 7}(cr), TcF{sub 6}(cr)and TcO{sub 2}(cr); and more accurate {Delta}{sub f}G{sub m}{sup 0}(T{sub 0}) for Tc(OH){sub 3}(cr). For the solution phase the most critical needs are for {Delta}{sub f}H{sub m}{sup 0}(T{sub 0}) of the aqueousspecies, and for equilibrium constants of complexes of TC(4) and TC(3) with all of the anions normally found in groundwater. In certain cases (especially the phosphates) the actual solution species need to be identified.

Rard, J.A.

1993-04-01

130

Current status of chemical-thermodynamic measurements for technetium and its inorganic compounds and aqueous species  

SciTech Connect

From the viewpoint of having an adequate chemical-thermodynamic data base for geochemical modeling, the most critically needed thermodynamic data for solid compounds are values of C[sub p,m][sup 0](T) and S[sub m][sub 0](T.) for Tc(cr), TcO[sub 2](cr), Tc[sub 2]0[sub 7](cr), TcS[sub 2](cr) and Tc[sub 2]S[sub 7](cr); [Delta][sub f]H[sub m][sup 0](T[sub 0]) for TcS[sub 2](cr), Tc[sub 2]S[sub 7](cr), TcF[sub 6](cr)and TcO[sub 2](cr); and more accurate [Delta][sub f]G[sub m][sup 0](T[sub 0]) for Tc(OH)[sub 3](cr). For the solution phase the most critical needs are for [Delta][sub f]H[sub m][sup 0](T[sub 0]) of the aqueousspecies, and for equilibrium constants of complexes of TC(4) and TC(3) with all of the anions normally found in groundwater. In certain cases (especially the phosphates) the actual solution species need to be identified.

Rard, J.A.

1993-01-01

131

What are greenhouse gases? Many chemical compounds in the atmosphere act as  

E-print Network

What are greenhouse gases? Many chemical compounds in the atmosphere act as greenhouse gases the atmosphere1 . They absorb some and radiate it back down to the Earth. This phenomenon, called the greenhouse. Without the greenhouse effect, the Earth's average surface temperature would be about 60° Fahrenheit

132

Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET)  

E-print Network

Chemical compounds and toxicological assessments of drinking water stored in polyethylene to restrictions and/or specifications according to their toxicological data. Despite this, the analysis of PET in bottled water have been suggested as the source of these toxicological effects. Furthermore, sample

Short, Daniel

133

Determining the chemical activity of hydrophobic organic compounds in soil using polymer coated vials  

Microsoft Academic Search

BACKGROUND: In soils contaminated by hydrophobic organic compounds, the concentrations are less indicative of potential exposure and distribution than are the associated chemical activities, fugacities and freely dissolved concentrations. The latter can be measured by diffusive sampling into thin layers of polymer, as in, for example, solid phase micro-extraction. Such measurements require equilibrium partitioning of analytes into the polymer while

Fredrik Reichenberg; Foppe Smedes; Jan-Åke Jönsson; Philipp Mayer

2008-01-01

134

Importance of molding compound chemical shrinkage in the stress and warpage analysis of PQFPs  

Microsoft Academic Search

This paper addresses the use of finite element (FE) techniques to predict residual warpage in plastic quad flat packs (PQFPs) after encapsulation. Experimental measurements of package warpage are used to validate FE models of the packages. Failure to incorporate mold compound chemical shrinkage into the FE analysis leads to erroneous predictions of package warpage. The warpage sensitivity of different packages

G. Kelly; C. Lyden; W. Lawton; J. Barrett; A. Saboui; H. Pape; H. J. B. Peters

1996-01-01

135

Characterization of Spatial Repellent, Contact Irritant and Toxicant Chemical Actions of Standard Vector Control Compounds  

Technology Transfer Automated Retrieval System (TEKTRAN)

A previously described modular high-throughput screening system (HITTS) was used to characterize the spatial repellent, contact irritant and toxicant chemical actions of 14 compounds with a history of use in vector control. The response of F1-F4 Aedes aegypti to various concentrations of four organo...

136

Antibacterial activity of coffee extracts and selected coffee chemical compounds against enterobacteria.  

PubMed

The in vitro antimicrobial activity of commercial coffee extracts and chemical compounds was investigated on nine strains of enterobacteria. The antimicrobial activity investigated by the disc diffusion method was observed in both the extracts and tested chemical compounds. Even though pH, color, and the contents of trigonelline, caffeine, and chlorogenic acids differed significantly among the coffee extracts, no significant differences were observed in their antimicrobial activity. Caffeic acid and trigonelline showed similar inhibitory effect against the growth of the microorganisms. Caffeine, chlorogenic acid, and protocatechuic acid showed particularly strong effect against Serratia marcescens and Enterobacter cloacae. The IC(50) and IC(90) for the compounds determined by the microtiter plate method indicated that trigonelline, caffeine, and protocatechuic acids are potential natural antimicrobial agents against Salmonella enterica. The concentrations of caffeine found in coffee extracts are enough to warrant 50% of the antimicrobial effect against S. enterica, which is relevant to human safety. PMID:17090115

Almeida, Ana Amélia P; Farah, Adriana; Silva, Daniela A M; Nunan, Elzíria A; Glória, M Beatriz A

2006-11-15

137

Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes.  

PubMed

Natural bioactive compounds have been studied for a long time for their chemopreventive and therapeutic potential in several chronic inflammatory diseases, including cancer. However, their physicochemical properties generally result in poor chemical stability and lack of in vivo bioavailability. Very few human clinical trials have addressed absorption, distribution, metabolism, and excretion of these compounds in relation to efficacy. This limits the use of these valuable natural compounds in the clinic. In this study, we examined caffeic acid (derivatives), carvacrol (derivatives), thymol, pterostilbene (derivatives), and N-(3-oxo-dodecanoyl)-l-homoserine lactone. These are natural compounds with strong anti-inflammatory properties derived from plants and bacteria. However, these compounds have poor water solubility or are chemically unstable. To overcome these limitations we have prepared liposomal formulations. Our results show that lipophilic 3-oxo-C(12)-homoserine lactone and stilbene derivatives can be loaded into liposomal lipid bilayer with efficiencies of 50-70%. Thereby, the liposomes solubilize these compounds, allowing intravenous administration without use of solvents. When compounds could not be loaded into the lipid bilayer (carvacrol and thymol) or are rapidly extracted from the liposomes in the presence of serum albumin (3-oxo-C(12)-homoserine lactone and pterostilbene derivatives), derivatization of the compound into a water-soluble prodrug was shown to improve loading efficiency and encapsulation stability. The phosphate forms of carvacrol and pterostilbene were loaded into the aqueous interior of the liposomes and encapsulation was unaffected by the presence of serum albumin. Chemical instability of resveratrol was improved by liposome-encapsulation, preventing inactivating cis-trans isomerization. For caffeic acid, liposomal encapsulation did not prevent oxidation into a variety of products. Still, by derivatization into a phenyl ester, the compound could be stably encapsulated without chemical degradation. Despite the instability of liposome-association of 3-oxo-C(12)-homoserine lactone and resveratrol, intravenous administration of these compounds inhibited tumor growth for approximately 70% in a murine tumor model, showing that simple solubilization can have important therapeutic benefits. PMID:21291975

Coimbra, Maria; Isacchi, Benedetta; van Bloois, Louis; Torano, Javier Sastre; Ket, Aldo; Wu, Xiaojie; Broere, Femke; Metselaar, Josbert M; Rijcken, Cristianne J F; Storm, Gert; Bilia, Rita; Schiffelers, Raymond M

2011-09-20

138

Genetic and environmental factors affecting host response to drugs and other chemical compounds in our environment.  

PubMed Central

Compared to laboratory animals, humans are extremely heterogenous with respect to the many factors that can influence the distribution and biological effects of toxic chemicals. This heterogeneity can prevent an accurate assessment of the impact of a particular toxic compound on the health of an individual subject. Some of the factors that can significantly modify the host response to certain drugs, which serve in this review as a model for environmental chemicals, are enumerated and discussed. Although the mechanisms by which many of these factors modify the biological effects of certain environmental chemicals and drugs have been determined in some cases, better definition of the nature of interactions between these factors and environmental chemicals in a particular individual is required at a biochemical and molecular level. Recommendations are offered for the further development of our knowledge concerning interactions between environmental chemicals and such factors in a particular individual. PMID:598349

Vesell, E S; Passananti, G T

1977-01-01

139

Image-Based Chemical Screening Identifies Drug Efflux Inhibitors In Lung Cancer Cells  

PubMed Central

Cancer cells with active drug-efflux capability are multidrug resistant and pose a significant obstacle for the efficacy of chemotherapy. Moreover, recent evidence suggests that high drug-efflux cancer cells (HDECCs) may be selectively enriched with stem-like cancer cells, which are believed to be the cause for tumor initiation and recurrence. There is a great need for therapeutic reagents that are capable of eliminating HDECCs. We developed an image-based high-content screening (HCS) system to specifically identify and analyze the HDECC population in lung cancer cells. Using the system, we screened 1,280 pharmacologically active compounds which identified twelve potent HDECC inhibitors. It is shown that these inhibitors are able to overcome MDR and sensitize HDECCs to chemotherapeutic drugs, or directly reduce the tumorigenicity of lung cancer cells possibly by affecting stem-like cancer cells. The HCS system we established provides a new approach for identifying therapeutic reagents overcoming MDR. The compounds identified by the screening may potentially be used as potential adjuvant to improve the efficacy of chemotherapeutic drugs. PMID:20841476

Xia, Xiaofeng; Yang, Jian; Li, Fuhai; Li, Ying; Zhou, Xiaobo; Dai, Yue; Wong, Stephen T C

2010-01-01

140

76 FR 63304 - Guidance for Industry on Incorporation of Physical-Chemical Identifiers Into Solid Oral Dosage...  

Federal Register 2010, 2011, 2012, 2013, 2014

...DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and...Physical-Chemical Identifiers Into Solid Oral Dosage Form Drug Products for...Physical-Chemical Identifiers Into Solid Oral Dosage Form Drug Products for...identifiers (PCIDs) into solid oral dosage forms (SODFs),...

2011-10-12

141

Prediction of compounds in different local structure-activity relationship environments using emerging chemical patterns.  

PubMed

Active compounds can participate in different local structure-activity relationship (SAR) environments and introduce different degrees of local SAR discontinuity, depending on their structural and potency relationships in data sets. Such SAR features have thus far mostly been analyzed using descriptive approaches, in particular, on the basis of activity landscape modeling. However, compounds in different local SAR environments have not yet been predicted. Herein, we adapt the emerging chemical patterns (ECP) method, a machine learning approach for compound classification, to systematically predict compounds with different local SAR characteristics. ECP analysis is shown to accurately assign many compounds to different local SAR environments across a variety of activity classes covering the entire range of observed local SARs. Control calculations using random forests and multiclass support vector machines were carried out and a variety of statistical performance measures were applied. In all instances, ECP calculations yielded comparable or better performance than controls. The approach presented herein can be applied to predict compounds that complement local SARs or prioritize compounds with different SAR characteristics. PMID:24803014

Namasivayam, Vigneshwaran; Gupta-Ostermann, Disha; Balfer, Jenny; Heikamp, Kathrin; Bajorath, Jürgen

2014-05-27

142

Electrophysiological and behavioral responses of female Helicoverpa armigera to compounds identified in flowers of African marigold, Tagetes erecta.  

PubMed

Seven electrophysiologically active compounds were detected in air-entrained headspace samples of live flowers of Tagetes erecta analyzed by gas chromatography (GC) linked to a female Helicoverpa armigera electroantennograph (EAG) using polar and nonpolar capillary columns. These compounds were subsequently identified using GC linked to mass spectrometry as benzaldehyde, (S)-(-)-limonene, (R,S)-(+/-)-linalool, (E)-myroxide, (Z)-beta-ocimene, phenylacetaldehyde, and (R)-(-)-piperitone. Electrophysiological activity was confirmed by EAG with a 1-microg dose of each compound on filter paper eliciting EAG responses that were significantly greater than the solvent control response from female moths. Wind-tunnel bioassays with T. erecta headspace samples, equivalent to 0.4 flower/hr emission from a live flower, elicited a significant increase in the number of upwind approaches from female H. armigera relative to a solvent control. Similarly, a seven-component synthetic blend of EAG-active compounds identified from T. erecta presented in the same ratio (1.0:1.6:0.7:1.4:0.4:5.0:2.7, respectively) and concentration (7.2 microg) as found in the natural sample elicited a significant increase in the number of upwind approaches relative to a solvent control during a 12-min bioassay that was equivalent to that elicited by the natural T. erecta floral volatiles. PMID:11504018

Bruce, T J; Cork, A

2001-06-01

143

Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile.  

PubMed

Thirty-nine non-volatile compounds in seven ready-to-drink (RTD) green tea samples were analysed and quantified using liquid chromatography. Taste reconstruction experiments using thirteen selected compounds were conducted to identify the key non-volatile tastants. Taste profiles of the reconstructed samples did not differ significantly from the RTD tea samples. To investigate the taste contribution and significance of individual compounds, omission experiments were carried out by removing individual or a group of compounds. Sensory evaluation revealed that the astringent- and bitter-tasting (-)-epigallocatechin gallate, bitter-tasting caffeine, and the umami-tasting l-glutamic acid were the main contributors to the taste of RTD green tea. Subsequently, the taste profile of the reduced recombinant, comprising of a combination of these three compounds and l-theanine, was found to not differ significantly from the sample recombinant and RTD tea sample. Lastly, regression models were developed to objectively predict and assess the intensities of bitterness and astringency in RTD green teas. PMID:24594147

Yu, Peigen; Yeo, Angelin Soo-Lee; Low, Mei-Yin; Zhou, Weibiao

2014-07-15

144

Chemical and sensorial aroma characterization of freshly distilled Calvados. 2. Identification of volatile compounds and key odorants.  

PubMed

Eight samples of freshly distilled Calvados were extracted using pentane. Gas chromatography with either a mass spectrometer or flame ionization detector was used to determine the volatile compounds composition of the extracts. More than 120 molecules were identified in Calvados and then correlated with results obtained by olfactometric analysis in our earlier work [Guichard, H.; Lemesle, S.; Ledauphin, J.; Barillier, D.; Picoche, B. Chemical and Sensorial Aroma Characterization of Freshly Distilled Calvados. 1. Evaluation of Quality and Defects on the Basis of Key Odorants by Olfactometry and Sensory Analysis. J. Agric. Food Chem. 2002, 50, 424-432 (preceding paper in this issue)]. Of these, 16 of the 19 molecules that constitute the "aroma skeleton" were identified, including 5 esters, 2 ketones, 5 phenolic derivatives, 2 alcohols, and 2 carboxylic acids. Numerous compounds were also associated with odors found in part 1. These molecules can be considered as being responsible for the good quality of Calvados or, in contrast, for defects. Relative levels of some major olfactive compounds were also estimated and tentatively compared with olfactometric indices found in part 1. A good correlation was found in many cases. Two important markers of defects in Calvados were also identified. 3-Methylbut-2-en-1-ol leads to an "herbaceous" defect, and 1,1,3-triethoxypropane seems to give an "acrolein" defect in the product. "Floral" notes of the aroma of freshly distilled Calvados seem to be due to the presence of phenolic derivatives such as 2-phenylethanol and 2-phenylethyl acetate. Low-molecular-weight esters such as ethyl 2-methylpropanoate, ethyl 2-methylbutanoate, and 3-methylbutyl acetate give, in general, the "fruity" notes. However, the overall aroma of Calvados seems likely to be a subtle balance of various functionalized compounds. PMID:12517107

Ledauphin, Jérôme; Guichard, Hugues; Saint-Clair, Jean-François; Picoche, Bernard; Barillier, Daniel

2003-01-15

145

Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds.  

PubMed

A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species. PMID:24747583

Kagan, Isabelle A; Flythe, Michael D

2014-01-01

146

Targeting the Wnt pathway in zebrafish as a screening method to identify novel therapeutic compounds.  

PubMed

Activating mutations in the Wnt signaling pathway account for the initiation of greater than 90% of all colorectal cancers and this pathway has been implicated in numerous other diseases. Therefore, identifying small molecule inhibitors of this pathway is of critical importance towards identifying clinically relevant drugs. Numerous screens have been employed to identify therapeutic reagents, but none have made it to advanced clinical trials, suggesting that traditional screening methods are ineffective at identifying clinically relevant targets. Here, we describe a novel in vivo screen to identify small molecule inhibitors of the Wnt pathway. Specifically, treatment of zebrafish embryos with LiCl inhibits GSK3 kinase function, resulting in hyperactivation of the signaling pathway and an eyeless phenotype at 1 day post fertilization. Using the small molecule XAV939, a known inhibitor of Wnt signaling, we rescued the LiCl induced eyeless phenotype, confirming efficacy of the screen. We next tested our assay with 400 known small molecule kinase inhibitors, none of which should inhibit Wnt signaling below the level of GSK3 based on their known targets. Accordingly, none of these small molecules rescued the eyeless phenotype, which demonstrates the stringency of the assay. However, several of these small molecule kinase inhibitors did generate a non-Wnt phenotype in accordance with the kinase they targeted. Therefore, combining the efficacy, sensitivity, and stringency of this preliminary screen, this model will provide an alternative to the traditional in vitro screen, generating potentially clinical relevant drugs in a rapid and cost-effective way. PMID:24414478

Robertson, Joshua K; Danzmann, Kestral; Charles, Sherise; Blake, Katherine; Olivares, Annia; Bamikole, Solape; Olson, Meghan; Van Raay, Terence J

2014-02-01

147

Volatile Organic Compounds Identified in Post-Flight Air Analysis of the Multipurpose Logistics Module from International Space Station  

NASA Astrophysics Data System (ADS)

Bioregenerative systems involve storing and processing waste along with atmospheric management. The MPLM, Multipurpose Logistics Module, is a reusable logistics carrier and primary delivery system used to resupply the International Space Station (ISS) and return Station cargo that requires a pressurized environment. The cylindrical module is approximately 6.4 meters long, 4.6 meters in diameter, and weighs almost 4,082kg. The module provides storage and additional workspace for up to two astronauts when docked to the ISS. It can carry up to 9,072 kg of supplies, science experiments, spare parts and other logistical components for ISS. There is concern for a potentially hazardous condition caused by contamination of the atmosphere in the MPLM upon return from orbit. This would be largely due to unforeseen spills or container leakage. This has led to the need for special care in handling the returned module prior to processing the module for its next flight. Prior to opening the MPLM, atmospheric samples are analyzed for trace volatile organic compounds, VOC's. It is noted that our analyses also reflect the atmosphere in the ISS on that day of closure. With the re turn of STS-108, 12th ISS Flight (UF1), the analysis showed 24 PPM of methane. This corresponds to the high levels on space station during a time period when the air filtration system was shut off. Chemical characterization of atmospheres on the ISS and MPLM provide useful information for concerns with plant growth experiments on ISS. Work with closed plant growth chambers show potential for VOC's to accumulate to toxic levels for plants. The ethylene levels for 4 MPLM analyses over the course on one year were measured at, 0.070, 0.017, 0.012 and 0.007 PPM. Phytochemical such as ethylene are detected with natural plant physiological events such as flowering and as a result of plant damage or from decaying food. A build up of VOC's may contribute to phytotoxic effects for the plant growth experiments or health problems for humans. Other identified components from the MPLM are quite similar to those found from off gassing of construction material and laboratory reagents characterized in ground based studies with closed plant growth chambers.

Peterson, B.; Wheeler, R.

148

Thin film synthesis of superconducting chemical compounds. Final report 1 January 1981-30 December 1983  

SciTech Connect

The objective of this research was to define the chemical factors that affect onset of superconductivity in ternary compounds: to determine how small changes in stoichiometry and microstructure influence critical temperature, how the number and placing of magnetic ions act to quench superconductivity, and how the crystal structure can be modified to enhance superconductivity. The approach was to synthesize, from ultrapure starting elements, ternary borides, silicides, sulfides and selenides of the second and third row transition elements, to characterize the new compounds for x-ray structure, electric and magnetic behavior, and then compare them with doped materials. Four kinds of compounds were investigated: rare earth diosmium disilicides, rare earth osmium-iridium borides, layered structure transition metal dichalcogenides, and Chevrel type molybdenum ternaries. Both the rare earth osmium-iridium borides and rare earth diosmium disilicides were synthesized by arc melting. The crystal structures were refined and magnetic susceptibility studies revealed conventional Hund's rule behavior in the disilicides while the (Pr, Nd) (Os, Ir) 4B4 compounds are characterized by Van Vleck paramagnetism of closely spaced multiplets. Only LaOs/sub 2/Si/sub 2/ and LuOs/sub 2/Si/sub 2/ compounds are superconducting with Tc's in the 2-4K range. In the layered compounds, lithium intercalated ZrS/sub 2/, ZrSe/sub 2/, NbS/sub 2/, and NbSe/sub 2/ were studied.

Sienko, M.J.; Hoffmann, R.; Newman, J.A.; Burlitch, J.M.

1984-05-31

149

Chemical mechanisms for skin sensitization by aromatic compounds with hydroxy and amino groups.  

PubMed

It is well-known that aromatic diamino-, dihydroxy-, and amino-hydroxy compounds, with NH(2) and OH groups in ortho- or para-positions relative to each other, are strong skin sensitizers. In this paper, we analyze published potency and cross-reactivity data, whereby animals sensitized to one of these compounds are challenged with other compounds. The data are consistent with two parallel chemical reaction mechanisms: oxidation to electrophilic (protein reactive) quinones or quinone imines or formation of protein-reactive free radicals such as the Wurster salt, which can be formed by para-phenylene diamine. Compounds with NH(2) and OH groups meta to each other have also been found to be skin sensitizers, in some cases quite strong sensitizers. For these compounds, direct formation of quinones or quinone imines is not possible, and free radicals of the Wurster salt type are not favored. Here, we present a molecular mechanism to rationalize the sensitization potential of such compounds and, using the results of quantum mechanics calculations, show how this mechanism can explain observed structure-potency trends. PMID:19678610

Aptula, Aynur O; Enoch, Steven J; Roberts, David W

2009-09-01

150

Micro- and Nanostructured Metal Oxide Chemical Sensors for Volatile Organic Compounds  

NASA Technical Reports Server (NTRS)

Aeronautic and space applications warrant the development of chemical sensors which operate in a variety of environments. This technical memorandum incorporates various kinds of chemical sensors and ways to improve their performance. The results of exploratory investigation of the binary composite polycrystalline thick-films such as SnO2-WO3, SnO2-In2O3, SnO2-ZnO for the detection of volatile organic compound (isopropanol) are reported. A short review of the present status of the new types of nanostructured sensors such as nanobelts, nanorods, nanotube, etc. based on metal oxides is presented.

Alim, M. A.; Penn, B. G.; Currie, J. R., Jr.; Batra, A. K.; Aggarwal, M. D.

2008-01-01

151

Crystal chemical and quantum chemical studies of Ba(Sr)-Nb oxide compounds  

NASA Technical Reports Server (NTRS)

The information available on the BaO(SrO)-NbO-NbO2 system with the niobium atom in the lower oxidation degree is very limited. Very few compounds have been found previously in this system. They are BaNbO3, SrxNbO3(0,7=x=1), Ba2Nb2O9, SrNb8O14; and some suggestions on the BaNb8O14 existence have been made also. At the same time Nb-based oxide compounds could be quite interesting in the search of new noncopper high T(sub c) superconductors Researchers studied Ba(Sr) NbxO2x-2 and Ba2(Sr2)-NbxO2x-1 compositions in the phase diagram of BaO(SrO)-NbO-NbO2 system. The synthesis of the materials was carried out in vacuum at the temperatures of 1000 to 1500 C. Barium carbonate and niobium pentoxide were used as initial components. X-ray analysis was carried out.

Zubkov, V. G.; Turzhevsky, S. A.; Pereliaev, V. A.; Liechtenstein, A. I.; Gubanov, V. A.

1990-01-01

152

In Vivo Rapid Assessment of Compound Exposure (RACE) for Profiling the Pharmacokinetics of Novel Chemical Probes  

PubMed Central

The RACE assay is an easy and efficient method for estimating the exposure of novel chemical probe compounds in mice. RACE is a truncated and compressed version of a traditional comprehensive in vivo pharmacokinetics study. The method uses a single standard formulation, dose, route of administration, and a small cohort of mice (n=4). Standardized protocols and an abbreviated sample collection scheme reduce the labor needed to perform both the in life and bioanalytical phases of the study. The procedure reduces the complexity of data analysis by eliminating all but one calculated pharmacokinetic parameter; estimated exposure (eAUC20-120), a parameter that is sufficient to rank order compounds based on exposure, but is also easily determined by most software using the simple trapezoidal rule. The RACE assay protocol is readily applicable to early/exploratory studies of most compounds, and is intended to be employed by laboratories with limited expertise in pharmacology and pharmacokinetics. PMID:23788556

McAnally, Danielle; Vicchiarelli, Michael; Siddiquee, Khandaker

2013-01-01

153

Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry  

DOEpatents

A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

Mowry, Curtis Dale (Albuquerque, NM); Thornberg, Steven Michael (Peralta, NM)

1999-01-01

154

Characterization of Spatial Repellent, Contact Irritant, and Toxicant Chemical Actions of Standard Vector Control Compounds 1  

Microsoft Academic Search

2 ABSTRACT. A previously described modular high-throughput screening system was used to characterize the spatial repellent, contact irritant, and toxicant chemical actions of 14 compounds historically used or under investigation for vector control. The response of F1-F4 Aedes aegypti (Thailand strain) to various concentrations of 4 organochlorines (chlordane, DDT, dieldrin, methoxychlor); 4 pyrethroids (alphacy- permethrin, cypermethrin, deltamethrin, permethrin); 3 organophosphates

Nicole L. Achee; Michael R. Sardelis; Isabelle Dusfour; Kamlesh R. Chauhan; John P. Grieco

2009-01-01

155

Mathematical model simulating the growth of compound semiconductor thin films via chemical bath deposition  

Microsoft Academic Search

Chemical bath deposition is a thin film technique in which compound semiconductor thin films of typically 0.02–1?m thickness are deposited on the substrates immersed in dilute baths containing metal ions and a source of sulfide or selenide ions. Many I–VI, II–VI, IV–VI, and V–VI semiconductors are included in the list of materials deposited by this technique. However, a mathematical model

P. K Nair; P Parmananda; M. T. S Nair

1999-01-01

156

Metal organic chemical vapor deposition of 111-v compounds on silicon  

DOEpatents

Expitaxial composite comprising thin films of a Group III-V compound semiconductor such as gallium arsenide (GaAs) or gallium aluminum arsenide (GaAlAs) on single crystal silicon substrates are disclosed. Also disclosed is a process for manufacturing, by chemical deposition from the vapor phase, epitaxial composites as above described, and to semiconductor devices based on such epitaxial composites. The composites have particular utility for use in making light sensitive solid state solar cells.

Vernon, Stanley M. (Wellesley, MA)

1986-01-01

157

Optical methods for creating delivery systems of chemical compounds to plant roots  

NASA Astrophysics Data System (ADS)

Spectrophotometric and fluorescence methods have been used for creation and investigation of various systems of target delivery of chemical compounds to roots of plants. The possibility of using liposomes, incrusted by polysaccharides of the external surface of nitrogen-fixing rizospheric bacteria Azospirillum brasilense SP 245, and nanoparticles incrusted by polysaccharides of wheat roots, as the named systems has been shown. The important role of polysaccharide-polysaccharide interaction in the adsorption processes of bacteria on wheat roots has been demonstrated.

Kuznetsov, Pavel E.; Rogacheva, Svetlana M.; Arefeva, Oksana A.; Minin, Dmitryi V.; Tolmachev, Sergey A.; Kupadze, Machammad S.

2004-08-01

158

Chemical genetic screen identifies Toxoplasma DJ-1 as a regulator of parasite secretion, attachment, and invasion  

PubMed Central

Toxoplasma gondii is a member of the phylum Apicomplexa that includes several important human pathogens, such as Cryptosporidium and Plasmodium falciparum, the causative agent of human malaria. It is an obligate intracellular parasite that can cause severe disease in congenitally infected neonates and immunocompromised individuals. Despite the importance of attachment and invasion to the success of the parasite, little is known about the underlying mechanisms that drive these processes. Here we describe a screen to identify small molecules that block the process of host cell invasion by the T. gondii parasite. We identified a small molecule that specifically and irreversibly blocks parasite attachment and subsequent invasion of host cells. Using tandem orthogonal proteolysis–activity-based protein profiling, we determined that this compound covalently modifies a single cysteine residue in a poorly characterized protein homologous to the human protein DJ-1. Mutation of this key cysteine residue in the native gene sequence resulted in parasites that were resistant to inhibition of host cell attachment and invasion by the compound. Further analysis of the invasion phenotype confirmed that modification of Cys127 on TgDJ-1 resulted in a block of microneme secretion and motility, even in the presence of direct stimulators of calcium release. Together, our results suggest that TgDJ-1 plays an important role that is likely downstream of the calcium flux required for microneme secretion, parasite motility, and subsequent invasion of host cells. PMID:21670272

Hall, Carolyn I.; Reese, Michael L.; Weerapana, Eranthie; Child, Matthew A.; Bowyer, Paul W.; Albrow, Victoria E.; Haraldsen, Jeralyn D.; Phillips, MacDonald R.; Sandoval, Edgar Deu; Ward, Gary E.; Cravatt, Benjamin F.; Boothroyd, John C.; Bogyo, Matthew

2011-01-01

159

Disputable issues in interpreting the results of chemical extraction of iron compounds from soils  

NASA Astrophysics Data System (ADS)

In Russia, iron is chemically fractionated according to a parallel scheme. Pyrophosphate-soluble iron (Fepyr) is considered to participate in organomineral complexes, oxalate-soluble iron (Feox) is believed to enter amorphous + poorly crystallized compounds, and dithionite-soluble iron (Fedit) is meant to represent the free (nonsilicate) compounds. However, the investigations prove that the commonly used subtraction operations (Feox - Fepyr) and (Fedit - Feox) are invalid because of the nonadditive action of the reagents in the parallel scheme of extraction. The low selectivity of reagents requires a new interpretation of chemically extracted iron compounds. In automorphic soils, the content of oxalate-soluble iron should be interpreted as the amount of Fe(III) capable of complexing with organic ligands; in hydromorphic soils with a stagnant moisture regime, it should be interpreted as the amount of iron (III) capable of being reduced in a short time. The content of dithionite-soluble compounds should be regarded as the amount of iron (III) within both (hydr)oxides and silicates potentially prone to reduction.

Vodyanitskii, Yu. N.; Shoba, S. A.

2014-06-01

160

40 CFR 721.9970 - o-Xylene compound (generic name).  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false o-Xylene compound (generic name). 721...Specific Chemical Substances § 721.9970 o-Xylene compound (generic name). ...chemical substance identified generically as an o -xylene compound (PMN...

2010-07-01

161

Solvent Extraction of Chemical Attribution Signature Compounds from Painted Wall Board: Final Report  

SciTech Connect

This report summarizes work that developed a robust solvent extraction procedure for recovery of chemical attribution signature (CAS) compound dimethyl methyl phosphonate (DMMP) (as well as diethyl methyl phosphonate (DEMP), diethyl methyl phosphonothioate (DEMPT), and diisopropyl methyl phosphonate (DIMP)) from painted wall board (PWB), which was selected previously as the exposed media by the chemical attribution scientific working group (CASWG). An accelerated solvent extraction approach was examined to determine the most effective method of extraction from PWB. Three different solvent systems were examined, which varied in solvent strength and polarity (i.e., 1:1 dichloromethane : acetone,100% methanol, and 1% isopropanol in pentane) with a 1:1 methylene chloride : acetone mixture having the most robust and consistent extraction for four original target organophosphorus compounds. The optimum extraction solvent was determined based on the extraction efficiency of the target analytes from spiked painted wallboard as determined by gas chromatography x gas chromatography mass spectrometry (GCxGC-MS) analysis of the extract. An average extraction efficiency of approximately 60% was obtained for these four compounds. The extraction approach was further demonstrated by extracting and detecting the chemical impurities present in neat DMMP that was vapor-deposited onto painted wallboard tickets.

Wahl, Jon H.; Colburn, Heather A.

2009-10-29

162

Miniaturized sequential injection analyzer for the monitoring and quantitation of chemical weapons degradation compounds  

NASA Astrophysics Data System (ADS)

The ability to monitor and detect chemical warfare agents and their degradation compounds continues to be of utmost importance. Remote on-site field analysis of these compounds is also extremely important as it relates to treaty verification for the Chemical Weapons Convention, as well as the minimization and elimination of human exposure. A portable instrument has been developed and miniaturized that allows for the detection of these compounds in the field with better quantitative results and higher reproducibility than traditional field test kits. All sample and reagent manipulations are conducted in a completely automated fashion. Quantitative results may be determined colorimetrically using the molybdenum blue reaction for the final degradation product of phosphonic acid based chemical warfare agents with a detection limit of 0.05 ppm. The instrument is based on the flow analysis technique of sequential injection analysis (SIA). The benefits of this approach are that the method provides rapid response, high reproducibility of results, high sensitivity and minimal waste production.

Lancaster, Herbert L., III; Postlethwaite, Timothy A.; Zhang, Peng; Sorrells, Richard

2002-06-01

163

Estrogenic activity assessment of environmental chemicals using in vitro assays: identification of two new estrogenic compounds.  

PubMed Central

Environmental chemicals with estrogenic activities have been suggested to be associated with deleterious effects in animals and humans. To characterize estrogenic chemicals and their mechanisms of action, we established in vitro and cell culture assays that detect human estrogen receptor [alpha] (hER[alpha])-mediated estrogenicity. First, we assayed chemicals to determine their ability to modulate direct interaction between the hER[alpha] and the steroid receptor coactivator-1 (SRC-1) and in a competition binding assay to displace 17ss-estradiol (E(2)). Second, we tested the chemicals for estrogen-associated transcriptional activity in the yeast estrogen screen and in the estrogen-responsive MCF-7 human breast cancer cell line. The chemicals investigated in this study were o,p'-DDT (racemic mixture and enantiomers), nonylphenol mixture (NPm), and two poorly analyzed compounds in the environment, namely, tris-4-(chlorophenyl)methane (Tris-H) and tris-4-(chlorophenyl)methanol (Tris-OH). In both yeast and MCF-7 cells, we determined estrogenic activity via the estrogen receptor (ER) for o,p'-DDT, NPm, and for the very first time, Tris-H and Tris-OH. However, unlike estrogens, none of these xenobiotics seemed to be able to induce ER/SRC-1 interactions, most likely because the conformation of the activated receptor would not allow direct contacts with this coactivator. However, these compounds were able to inhibit [(3)H]-E(2) binding to hER, which reveals a direct interaction with the receptor. In conclusion, the test compounds are estrogen mimics, but their molecular mechanism of action appears to be different from that of the natural hormone as revealed by the receptor/coactivator interaction analysis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:10903615

Lascombe, I; Beffa, D; Rüegg, U; Tarradellas, J; Wahli, W

2000-01-01

164

Automated strategies to identify compounds on the basis of GC/EI-MS and calculated properties.  

PubMed

The identification of unknown compounds based on GC/EI-MS spectrum and structure generation techniques has been improved by combining a number of strategies into a programmed sequence. The program MOLGEN-MS is used to determine the molecular formula and incorporate substructural information to generate all structures matching the mass spectral information. Mass spectral fragments are then predicted for each structure and compared with the experimental spectrum using a match value. Additional data are then calculated automatically for each candidate to allow exclusion of candidates that did not match other analytical information. The effectiveness of these "exclusion criteria", as well as the programming sequence, was tested using a case study of 29 isomers of formula C(12)H(10)O(2). The default classifier precision resulted in the generation of too many structures in some cases, which was improved by up to several orders of magnitude by including additional classifiers or restrictions. Combining this with the exclusion of candidates based on a Lee retention index/boiling point correlation, octanol-water partitioning coefficients, steric energies, and finally spectral match values limited the number of candidate structures further from over 1 billion without any restrictions down to less than 6 structures in 10 cases and below 35 in all but 3 cases. This method can be used in the absence of matching database spectra and brings unknown identification based on MS interpretation and structure generation techniques a step closer to practical reality. PMID:21226466

Schymanski, Emma L; Meringer, Markus; Brack, Werner

2011-02-01

165

A Novel System for Rapidly Identifying Toxic Chemicals During Emergencies UROP Student: Arunkumaar Ganesan (Electrical Engineering and Computer Science)  

E-print Network

A Novel System for Rapidly Identifying Toxic Chemicals During Emergencies UROP Student: ArunkumaarAcknowledgements · Tosavelivesduringemergenciessuchas9/11,thereisacritical need for the rapid identification of toxic chemicals · Unfortunately the chemicals · AniterativeBinary Search algorithm will significantly reduce the number of symptoms required

Bhavnani, Suresh K.

166

Laboratory Infrared Spectroscopy to Identify New Compounds on Icy Moon Surfaces  

NASA Astrophysics Data System (ADS)

We are exploring the value of mid-infrared spectroscopy for identifying non-H2O constituents of icy moon surfaces. Recently we reported evidence for a new emissivity feature identified on Iapetus using Cassini’s Composite Infrared Spectrometer [1]. This 11.7 ?m feature is consistent with emissivity minima (transparency features) of very fine-grained silicates. Its position and shape may be diagnostic of silicate type, but most lab data at these wavelengths have been acquired using coarser grains and/or at Earth surface pressures and temperatures. Infrared spectra can change substantially under low-temperature, vacuum conditions [e.g., 2,3].We prepared sieved (<0.4 mm) and very fine-grained (few ?m) powders of six different silicates and measured their VNIR (0.35-2.5 ?m) reflectance spectra under ambient air, and mid-IR (1.2-20 ?m) spectra in a purged N2 glovebox. All silicates exhibited mid-IR transparency features (and loss of other features) in micronized form that were not observed for the coarser grain sizes. Muscovite, a phyllosilicate mineral possibly similar to those tentatively identified on Europa [4], provided the closest match to Iapetus in the mid-IR--although clear VNIR features of muscovite have not been identified on Iapetus [5]--and therefore we measured muscovite across the same wavelength range under Iapetus-like conditions (T=125 K, P<3x10^-8 torr). We will report on our ongoing analysis and plans for additional future measurements in JPL’s Icy Worlds Simulation Lab. [1] Young, C.L., et al. (2014), Workshop on the Habitability of Icy Worlds, Abstract #4038.[2] Logan, L.M., et al. (1973), J. Geophys. Res., 78(23), 4983-5003.[3] Donaldson Hanna, K.L., et al. (2012), J. Geophys. Res., 117, E00H05.[4] Shirley, J.H., et al. (2013), AGU Fall Meeting, Abstract #P54A-07.[5] Clark, R.N., et al. (2012), Icarus, 218, 831-860.

Wray, James J.; Young, Cindy L.; Hand, Kevin P.; Poston, Michael J.; Carlson, Robert W.; Clark, Roger N.; Spencer, John R.; Jennings, Donald E.

2014-11-01

167

Conserved valproic-acid-induced lipid droplet formation in Dictyostelium and human hepatocytes identifies structurally active compounds  

PubMed Central

SUMMARY Lipid droplet formation and subsequent steatosis (the abnormal retention of lipids within a cell) has been reported to contribute to hepatotoxicity and is an adverse effect of many pharmacological agents including the antiepileptic drug valproic acid (VPA). In this study, we have developed a simple model system (Dictyostelium discoideum) to investigate the effects of VPA and related compounds in lipid droplet formation. In mammalian hepatocytes, VPA increases lipid droplet accumulation over a 24-hour period, giving rise to liver cell damage, and we show a similar effect in Dictyostelium following 30 minutes of VPA treatment. Using 3H-labelled polyunsaturated (arachidonic) or saturated (palmitic) fatty acids, we shown that VPA treatment of Dictyostelium gives rise to an increased accumulation of both types of fatty acids in phosphatidylcholine, phosphatidylethanolamine and non-polar lipids in this time period, with a similar trend observed in human hepatocytes (Huh7 cells) labelled with [3H]arachidonic acid. In addition, pharmacological inhibition of ?-oxidation in Dictyostelium phenocopies fatty acid accumulation, in agreement with data reported in mammalian systems. Using Dictyostelium, we then screened a range of VPA-related compounds to identify those with high and low lipid-accumulation potential, and validated these activities for effects on lipid droplet formation by using human hepatocytes. Structure-activity relationships for these VPA-related compounds suggest that lipid accumulation is independent of VPA-catalysed teratogenicity and inositol depletion. These results suggest that Dictyostelium could provide both a novel model system for the analysis of lipid droplet formation in human hepatocytes and a rapid method for identifying VPA-related compounds that show liver toxicology. PMID:22003123

Elphick, Lucy M.; Pawolleck, Nadine; Guschina, Irina A.; Chaieb, Leila; Eikel, Daniel; Nau, Heinz; Harwood, John L.; Plant, Nick J.; Williams, Robin S. B.

2012-01-01

168

Selective targeting of neuroblastoma tumour-initiating cells by compounds identified in stem cell-based small molecule screens  

PubMed Central

Neuroblastoma (NB) is the most deadly extra-cranial solid tumour in children necessitating an urgent need for effective and less toxic treatments. One reason for the lack of efficacious treatments may be the inability of existing drugs to target the tumour-initiating or cancer stem cell population responsible for sustaining tumour growth, metastases and relapse. Here, we describe a strategy to identify compounds that selectively target patient-derived cancer stem cell-like tumour-initiating cells (TICs) while sparing normal paediatric stem cells (skin-derived precursors, SKPs) and characterize two therapeutic candidates. DECA-14 and rapamycin were identified as NB TIC-selective agents. Both compounds induced TIC death at nanomolar concentrations in vitro, significantly reduced NB xenograft tumour weight in vivo, and dramatically decreased self-renewal or tumour-initiation capacity in treated tumours. These results demonstrate that differential drug sensitivities between TICs and normal paediatric stem cells can be exploited to identify novel, patient-specific and potentially less toxic therapies. PMID:20721990

Smith, Kristen M; Datti, Alessandro; Fujitani, Mayumi; Grinshtein, Natalie; Zhang, Libo; Morozova, Olena; Blakely, Kim M; Rotenberg, Susan A; Hansford, Loen M; Miller, Freda D; Yeger, Herman; Irwin, Meredith S; Moffat, Jason; Marra, Marco A; Baruchel, Sylvain; Wrana, Jeffrey L; Kaplan, David R

2010-01-01

169

New test structure to identify step coverage mechanisms in chemical vapor deposition of silicon dioxide  

NASA Astrophysics Data System (ADS)

A new test structure has been developed to identify unambiguously the main mechanism which determines the profiles of thin films deposited by low-pressure chemical vapor deposition (LPCVD) in structures such as steps, trenches, and via-holes. The two mechanisms considered are reemission due to a low surface reaction probability and surface diffusion. Experimental results using silane, diethylsilane (DES), tetraethoxysilane (TEOS), and tetramethylcyclotetrasiloxane (TMCTS) as the silicon sources for oxide deposition by LPCVD show that indirect deposition from reemission is the major contributing factor in determining the step coverage.

Cheng, Lie-Yea; McVittie, James P.; Saraswat, Krishna C.

1991-05-01

170

Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits.  

PubMed

This study aimed to evaluate the chemical composition, identify the bioactive compounds and measure the antioxidant activity present in blackberry, red raspberry, strawberry, sweet cherry and blueberry fruits produced in the subtropical areas of Brazil and to verify that the chemical properties of these fruit are similar when compared to the temperate production zones. Compared with berries and cherries grown in temperate climates, the centesimal composition and physical chemical characteristics found in the Brazilian berries and cherries are in agreement with data from the literature. For the mineral composition, the analyzed fruits presented lower concentrations of P, K, Ca, Mg and Zn and higher levels of Fe. The values found for the bioactive compounds generally fit the ranges reported in the literature with minor differences. The greatest difference was found in relation to ascorbic acid, as all fruits analyzed showed levels well above those found in the literature. PMID:24629981

de Souza, Vanessa Rios; Pereira, Patrícia Aparecida Pimenta; da Silva, Thais Lomônaco Teodoro; de Oliveira Lima, Luiz Carlos; Pio, Rafael; Queiroz, Fabiana

2014-08-01

171

On the chemical bonding features in boron containing compounds: a combined QTAIM/ELF topological analysis.  

PubMed

The nature of chemical bonding in four classes of boron-containing compounds has been investigated using two topological approaches: the "quantum theory of atoms in molecules (QTAIM)" and "electron localization function (ELF)". It has been shown that the bonding in these compounds could be described in terms of familiar schemes (covalent single, double or triple bonds, dative bond, etc.) and be rationalized from the QTAIM tools. The ELF analysis is the bridge between two worlds: classical donor-acceptor and delocalization in the one hand, and the quantum chemical concepts obtained from the charge and its Laplacian topology. Particularly, we have shown that: (1) in the case of boron-boron bonding, although the V(B,B) basins are similar to the V(C,C) ones, but the V(B,B) population is always smaller than the corresponding V(C,C). (2) In the planar tetracoordinate boron species, each boron atom is characterized by three chemical bonds despite four neighboring atoms. (3). In the [RuH2(?(2):?(2)-H2BMes)(PCy3)2] compound, the B-Ru bonding belongs to the closed-shell interaction, and there is no BCP between the hydrogen bridge atoms (H(B)) and the ruthenium center despite the close contact of the atoms. (4) In the case of the XH···M···HX hydrogen bonding, we found a complex bonding mode involving not only the two hydrogen atoms, but also the two boron atoms. The presence of an RCP in the center of the B-H-Cr-H-B five-membered cycle confers to the compound the potential to evolve under perturbation. PMID:23812504

Alikhani, M Esmaïl

2013-08-14

172

Identifying chemical carcinogens and assessing potential risk in short-term bioassays using transgenic mouse models.  

PubMed

Cancer is a worldwide public health concern. Identifying carcinogens and limiting their exposure is one approach to the problem of reducing risk. Currently, epidemiology and rodent bioassays are the means by which putative human carcinogens are identified. Both methods have intrinsic limitations: they are slow and expensive processes with many uncertainties. The development of methods to modify specific genes in the mammalian genome has provided promising new tools for identifying carcinogens and characterizing risk. Transgenic mice may provide advantages in shortening the time required for bioassays and improving the accuracy of carcinogen identification; transgenic mice might now be included in the testing armamentarium without abandoning the two-year bioassay, the current standard. We show that mutagenic carcinogens can be identified with increased sensitivity and specificity using hemizygous p53 mice in which one allele of the p53 gene has been inactivated. Furthermore, the TG.AC transgenic model, carrying a v-Ha-ras construct, has developed papillomas and malignant tumors in response to a number of mutagenic and nonmutagenic carcinogens and tumor promoters, but not to noncarcinogens. We present a decision-tree approach that permits, at modest extra cost, the testing of more chemicals with improved ability to extrapolate from rodents to humans. PMID:8529591

Tennant, R W; French, J E; Spalding, J W

1995-10-01

173

Chemical probes identify a role for histone deacetylase 3 in Friedreich’s ataxia gene silencing  

PubMed Central

SUMMARY We recently identified a novel class of pimelic diphenylamide histone deacetylase (HDAC) inhibitors that show promise as therapeutics in the neurodegenerative diseases Friedreich’s ataxia (FRDA) and Huntington’s disease. Here we describe chemical approaches to identify the HDAC enzyme target of these inhibitors. Incubation of a trifunctional activity-based probe with a panel of class I and class II recombinant HDAC enzymes, followed by click chemistry addition of a fluorescent dye and gel electrophoresis, identifies HDAC3 as a unique high-affinity target of the probe. Photoaffinity labeling in a nuclear extract prepared from human lymphoblasts with the trifunctional probe, followed by biotin addition through click chemistry, streptavidin enrichment and western blotting also identifies HDAC3 as the preferred cellular target of the inhibitor. Additional inhibitors with different HDAC specificity profiles were synthesized and results from transcription experiments in FRDA cells point to a unique role for HDAC3 in gene silencing in Friedreich’s ataxia. PMID:19778726

Xu, Chunping; Soragni, Elisabetta; Chou, C. James; Herman, David; Plasterer, Heather L.; Rusche, James R.; Gottesfeld, Joel M.

2010-01-01

174

Identifying chemicals with potential therapy of HIV based on protein-protein and protein-chemical interaction network.  

PubMed

Acquired immune deficiency syndrome (AIDS) is a severe infectious disease that causes a large number of deaths every year. Traditional anti-AIDS drugs directly targeting the HIV-1 encoded enzymes including reverse transcriptase (RT), protease (PR) and integrase (IN) usually suffer from drug resistance after a period of treatment and serious side effects. In recent years, the emergence of numerous useful information of protein-protein interactions (PPI) in the HIV life cycle and related inhibitors makes PPI a new way for antiviral drug intervention. In this study, we identified 26 core human proteins involved in PPI between HIV-1 and host, that have great potential for HIV therapy. In addition, 280 chemicals that interact with three HIV drugs targeting human proteins can also interact with these 26 core proteins. All these indicate that our method as presented in this paper is quite promising. The method may become a useful tool, or at least plays a complementary role to the existing method, for identifying novel anti-HIV drugs. PMID:23762317

Li, Bi-Qing; Niu, Bing; Chen, Lei; Wei, Ze-Jun; Huang, Tao; Jiang, Min; Lu, Jing; Zheng, Ming-Yue; Kong, Xiang-Yin; Cai, Yu-Dong

2013-01-01

175

Identifying Chemicals with Potential Therapy of HIV Based on Protein-Protein and Protein-Chemical Interaction Network  

PubMed Central

Acquired immune deficiency syndrome (AIDS) is a severe infectious disease that causes a large number of deaths every year. Traditional anti-AIDS drugs directly targeting the HIV-1 encoded enzymes including reverse transcriptase (RT), protease (PR) and integrase (IN) usually suffer from drug resistance after a period of treatment and serious side effects. In recent years, the emergence of numerous useful information of protein-protein interactions (PPI) in the HIV life cycle and related inhibitors makes PPI a new way for antiviral drug intervention. In this study, we identified 26 core human proteins involved in PPI between HIV-1 and host, that have great potential for HIV therapy. In addition, 280 chemicals that interact with three HIV drugs targeting human proteins can also interact with these 26 core proteins. All these indicate that our method as presented in this paper is quite promising. The method may become a useful tool, or at least plays a complementary role to the existing method, for identifying novel anti-HIV drugs. PMID:23762317

Chen, Lei; Wei, Ze-Jun; Huang, Tao; Jiang, Min; Lu, Jing; Zheng, Ming-Yue; Kong, Xiang-Yin; Cai, Yu-Dong

2013-01-01

176

Design and characterization of chemical space networks for different compound data sets.  

PubMed

Chemical Space Networks (CSNs) are generated for different compound data sets on the basis of pairwise similarity relationships. Such networks are thought to complement and further extend traditional coordinate-based views of chemical space. Our proof-of-concept study focuses on CSNs based upon fingerprint similarity relationships calculated using the conventional Tanimoto similarity metric. The resulting CSNs are characterized with statistical measures from network science and compared in different ways. We show that the homophily principle, which is widely considered in the context of social networks, is a major determinant of the topology of CSNs of bioactive compounds, designed as threshold networks, typically giving rise to community structures. Many properties of CSNs are influenced by numerical features of the conventional Tanimoto similarity metric and largely dominated by the edge density of the networks, which depends on chosen similarity threshold values. However, properties of different CSNs with constant edge density can be directly compared, revealing systematic differences between CSNs generated from randomly collected or bioactive compounds. PMID:25465052

Zwierzyna, Magdalena; Vogt, Martin; Maggiora, Gerald M; Bajorath, Jürgen

2015-02-01

177

A chemical screen identifies anisomycin as an anoikis sensitizer that functions by decreasing FLIP protein synthesis.  

PubMed

Malignant epithelial cells with metastatic potential resist apoptosis that normally occurs upon loss of anchorage from the extracellular matrix, a process termed "anoikis." Resistance to anoikis enables malignant cells to survive in an anchorage-independent manner, which leads to the formation of distant metastases. To understand the regulation of anoikis, we designed, automated, and conducted a high-throughput chemical screen for anoikis sensitizers. PPC-1 anoikis-resistant prostate cancer cells were seeded in hydrogel-coated ultralow binding plates for suspension conditions and standard tissue culture plates to promote adhesion. After seeding, cells were treated with aliquots from a library of previously characterized small molecules, and viability was assessed using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt, assay. From this chemical screen, we identified anisomycin that induced apoptosis in suspension conditions, but was not toxic to these cells grown under adherent conditions. Anisomycin sensitized cells to anoikis by decreasing levels of the caspase-8 inhibitor FLIP and subsequently activating the death receptor pathway of caspase activation. Although anisomycin activated c-Jun-NH(2)-kinase and p38, these kinases were not functionally important for the effect of anisomycin on anoikis and FLIP. Rather, anisomycin decreased FLIP and sensitized cells to anoikis by inhibiting its protein synthesis. Finally, we showed that anisomycin decreased distal tumor formation in a mouse model of prostate cancer metastases. Thus, a novel chemical screen identified anisomycin as an anoikis sensitizer that acts by decreasing FLIP protein synthesis. Our results suggest that FLIP is a suppressor of anoikis and inhibiting FLIP protein synthesis may be a useful antimetastatic strategy. PMID:17804746

Mawji, Imtiaz A; Simpson, Craig D; Gronda, Marcela; Williams, Moyo A; Hurren, Rose; Henderson, Clare J; Datti, Alessandro; Wrana, Jeffrey L; Schimmer, Aaron D

2007-09-01

178

Symbolic, neural, and Bayesian machine learning models for predicting carcinogenicity of chemical compounds.  

PubMed

Experimental programs have been underway for several years to determine the environmental effects of chemical compounds, mixtures, and the like. Among these programs is the National Toxicology Program (NTP) on rodent carcinogenicity. Because these experiments are costly and time-consuming, the rate at which test articles (i.e., chemicals) can be tested is limited. The ability to predict the outcome of the analysis at various points in the process would facilitate informed decisions about the allocation of testing resources. To assist human experts in organizing an empirical testing regime, and to try to shed light on mechanisms of toxicity, we constructed toxicity models using various machine learning and data mining methods, both existing and those of our own devising. These models took the form of decision trees, rule sets, neural networks, rules extracted from trained neural networks, and Bayesian classifiers. As a training set, we used recent results from rodent carcinogenicity bioassays conducted by the NTP on 226 test articles. We performed 10-way cross-validation on each of our models to approximate their expected error rates on unseen data. The data set consists of physical-chemical parameters of test articles, alerting chemical substructures, salmonella mutagenicity assay results, subchronic histopathology data, and information on route, strain, and sex/species for 744 individual experiments. These results contribute to the ongoing process of evaluating and interpreting the data collected from chemical toxicity studies. PMID:10955517

Bahler, D; Stone, B; Wellington, C; Bristol, D W

2000-01-01

179

Real-time monitoring of volatile organic compounds using chemical ionization mass spectroscopy: Final report  

SciTech Connect

Volatile organic compound (VOC) emission to the atmosphere is of great concern to semiconductor manufacturing industries, research laboratories, the public, and regulatory agencies. Some industries are seeking ways to reduce emissions by reducing VOCs at the point of use (or generation). This paper discusses the requirements, design, calibration, and use of a sampling inlet/quadrupole mass spectrometer system for monitoring VOCs in a semiconductor manufacturing production line. The system uses chemical ionization to monitor compounds typically found in the lithography processes used to manufacture semiconductor devices (e.g., acetone, photoresist). The system was designed to be transportable from tool to tool in the production line and to give the operator real-time feedback so the process(es) can be adjusted to minimize VOC emissions. Detection limits ranging from the high ppb range for acetone to the low ppm range fore other lithography chemicals were achieved using chemical ionization mass spectroscopy at a data acquisition rate of approximately 1 mass spectral scan (30 to 200 daltons) per second. A demonstration of exhaust VOC monitoring was performed at a working semiconductor fabrication facility during actual wafer processing.

Thornberg, S.M.; Mowry, C.D.; Keenan, M.R.; Bender, S.F.A. [Sandia National Labs., Albuquerque, NM (United States). Gas Analysis Lab.; Owen, T. [Intel Corp., Rio Rancho, NM (United States)

1997-04-01

180

Biological and chemical investigation of Allium cepa L. response to selenium inorganic compounds.  

PubMed

The aim of this study was to evaluate the biological and chemical response of Allium cepa L. exposed to inorganic selenium compounds. Besides the investigation of the total content of selenium as well as its chemical speciation, the Allium test was used to evaluate the growth of onion roots and mitotic activity in the roots' meristem. The total content of selenium was determined by inductively coupled plasma mass spectrometry (ICP MS). High-performance liquid chromatography (HPLC), coupled to ICP MS, was used for the selenium chemical speciation. Results indicated that A. cepa plants are able to biotransform inorganic selenium compounds into their organic derivatives, e.g., Se-methylselenocysteine from the Se(IV) inorganic precursor. Although the differences in the biotransformation of selenium are due mainly to the oxidation state of selenium, the experiment has also shown a fine effect of counter ions (H(+), Na(+), NH4 (+)) on the response of plants and on the specific metabolism of selenium. PMID:24652154

Michalska-Kacymirow, M; Kurek, E; Smolis, A; Wierzbicka, M; Bulska, E

2014-06-01

181

System and method for preconcentrating, identifying, and quantifying chemical and biological substances  

DOEpatents

A system and method for preconcentrating, identifying, and quantifying chemical and biological substances is disclosed. An input valve directs a first volume of a sample gas to a surface acoustic wave (SAW) device. The SAW device preconcentrates and detects a mass of a substance within the sample gas. An output valve receives a second volume of the sample gas containing the preconcentrated substance from the SAW device and directs the second volume to a gas chromatograph (GC). The GC identifies the preconcentrated substance within the sample gas. A shunt valve exhausts a volume of the sample gas equal to the first volume minus the second volume away from the SAW device and the GC. The method of the present invention includes the steps of opening an input valve for passing a first volume of a sample gas to a SAW device; preconcentrating and detecting a mass of a substance within the sample gas using the SAW device; opening an output valve for passing a second volume of the sample gas containing the preconcentrated substance to a gas chromatograph (GC); and then identifying the preconcentrated substance within the sample gas using the GC.

Yu, Conrad M. (Antioch, CA); Koo, Jackson C. (San Ramon, CA)

2000-01-01

182

Detection of dopaminergic modulators in a tier I screening battery for identifying endocrine-active compounds (EACs).  

PubMed

Apomorphine (APO; D(2) receptor agonist), haloperidol (HAL; D(2) receptor antagonist), and reserpine (RES; a dopamine depletor that acts to lower brain dopamine levels by depleting central nervous system monoamines via disrupting storage vesicle function) have been examined in a Tier I screening battery, which has been designed to detect endocrine-active compounds (EACs). The Tier I battery incorporates two short-term in vivo tests (a 5-day ovariectomized female battery and a 15-day intact male battery using Sprague-Dawley rats) and an in vitro yeast transactivation system (YTS). In addition, two blood collection procedures were evaluated for their utility in detecting HAL-induced increases in serum prolactin (PRL) levels (i.e., the stress associated with each procedure). In the in vivo female battery, both HAL and RES increased serum PRL concentrations as expected, although the increase caused by RES was marginal. Increases in serum PRL levels are enhanced when daily dosages are administered via multiple-daily dosing of the test compound, which results in higher sustained blood levels of the test compounds. APO failed to decrease serum PRL concentrations in the female battery. In the in vivo male battery, HAL increased serum PRL concentrations as expected. However, APO and RES failed to affect serum PRL concentrations. The blood collection comparison experiment demonstrated that possible confounding of the data can occur with serum PRL concentrations when animals are exposed to stress. Basal levels of PRL were approximately fourfold higher in animals that were bled via the tail vein procedure when compared to PRL levels from animals that were bled under CO(2) anesthesia at euthanization. As a result of the higher basal PRL levels, the HAL-induced increase in serum PRL concentrations was completely attenuated in the tail-vein bled animals (1.3-fold). In contrast, HAL produced a fivefold increase in serum PRL in animals where blood was collected under CO(2) anesthesia at euthanization. Hence, collection of blood from animals under CO(2) anesthesia at euthanization is an acceptable approach for detection of compounds that increase PRL. In summary, HAL-like compounds would be identified in the Tier I male and female battery primarily via increased serum PRL concentrations. RES-like compounds would be identified in the Tier I male battery via decreased gonadotropins and steroids and possibly in the Tier I female battery by a minimal increase in serum PRL concentrations. Compounds that produce a marginal increase in serum PRL when administered using single daily dosing can also be confirmed in an in vivo female battery with multiple dosing because this regimen increases the magnitude of the PRL increase. APO, a D(2) receptor agonist, was not detected in the in vivo male or female batteries, but in both instances the top dosage produced minimal decreases in body weight (99 to 96% of control). Hence, the proposed Tier I battery needs to be further evaluated with higher dosages of APO and other D(2) receptor agonists to determine whether it is capable of detecting such agents. PMID:10838120

O'Connor, J C; Davis, L G; Frame, S R; Cook, J C

2000-01-01

183

Stereoregularity of poly (lactic acid) and their model compounds as studied by NMR and quantum chemical calculations  

Technology Transfer Automated Retrieval System (TEKTRAN)

In order to understand the origin of the tacticity splitting in the NMR spectrum of poly(lactic acid), monomer model compound and dimer model compounds (both isotactic and syndiotactic) were synthesized and their 1H and 13C NMR chemical shifts observed. Two energetically stable conformations were o...

184

Determination of octane numbers of gasoline compounds from their chemical structure by 13C NMR spectroscopy and neural networks  

Microsoft Academic Search

A new theoretical model has been developed which explains the association between the molecular structure and the knock resistance of individual gasoline compounds convincingly. The constitutions of more than 300 individual gasoline components were correlated with their knock rating (Blending Research Octane Number, BRON) simultaneously. 13C NMR spectra of all compounds were binned in 28 chemical shift regions of different

R. Meusinger; R. Moros

2001-01-01

185

DETERMINATION OF CHEMICAL CLASSES FROM MASS SPECTRA OF TOXIC ORGANIC COMPOUNDS BY SIMCA PATTERN RECOGNITION AND INFORMATION THEORY  

EPA Science Inventory

The low resolution mass spectra of a set of 78 toxic volatile organic compounds were examined for information concerning chemical classes. These compounds were predominately chloro- and/or bromoaromatics, -alkanes, or -alkenes, which are routinely sought at trace levels in ambien...

186

Triacylglycerols profiling as a chemical tool to identify mushrooms submitted to gamma or electron beam irradiation.  

PubMed

In order to define irradiation treatment as a routine conservation methodology, it is imperative to develop chemometric indicators with the ability to distinguish irradiated from unirradiated foodstuffs. Electron spin resonance, photostimulated luminescence and thermoluminescence methods were employed to monitor radiation-induced markers, as well as different chemical compounds produced from the lipidic fraction of different foodstuffs. Apart from these methods, the specificity of triacylglycerol profiles has previously been detected in mushroom species, as has the effect of irradiation treatment in the triacylglycerol profiles of chestnut. Accordingly, the feasibility of using this as a chemometric indicator of irradiated mushrooms was evaluated. In line with the obtained results in literature, the effects of each type of irradiation were significantly different, as can be concluded from the correlations among discriminant functions and variables within each statistical test. Triacylglycerol profiling proved to be a useful tool to detect irradiated mushrooms, independently of the species or irradiation source, especially for doses above 1 kGy. PMID:24767073

Fernandes, Ângela; Barreira, João C M; Antonio, Amilcar L; Martins, Anabela; Ferreira, Isabel C F R; Oliveira, M Beatriz P P

2014-09-15

187

Ligand-based virtual screening and molecular docking studies to identify the critical chemical features of potent cathepsin D inhibitors.  

PubMed

Cathepsin D is a major component of lysosomes and plays a major role in catabolism and degenerative diseases. The quantitative structure-activity relationship study was used to explore the critical chemical features of cathepsin D inhibitors. Top 10 hypotheses were built based on 36 known cathepsin D inhibitors using HypoGen/Discovery Studio v2.5. The best hypothesis Hypo1 consists of three hydrophobic, one hydrogen bond acceptor lipid, and one hydrogen bond acceptor features. The selected Hypo1 model was cross-validated using Fischer's randomization method to identify the strong correlation between experimental and predicted activity value as well as the test set and decoy sets used to validate its predictability. Moreover, the best hypothesis was used as a 3D query in virtual screening of Scaffold database. Subsequently, the screened hit molecules were filtered by applying Lipinski's rule of five, absorption, distribution, metabolism, and toxicity, and molecular docking studies. Finally, 49 compounds were obtained as potent cathepsin D inhibitors based on the consensus scoring values, critical interactions with protein active site residues, and predicted activity values. Thus, we suggest that the application of Hypo1 could assist in the selection of potent cathepsin D leads from various databases. Hence, this model was used as a valuable tool to design new candidate for cathepsin D inhibitors. PMID:22269155

Sakkiah, Sugunadevi; Thangapandian, Sundarapandian; Lee, Keun Woo

2012-07-01

188

Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification  

DOEpatents

A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule.

Holzrichter, John F. (Berkeley, CA); Siekhaus, Wigbert J. (Berkeley, CA)

1997-01-01

189

Method for identifying biochemical and chemical reactions and micromechanical processes using nanomechanical and electronic signal identification  

DOEpatents

A scanning probe microscope, such as an atomic force microscope (AFM) or a scanning tunneling microscope (STM), is operated in a stationary mode on a site where an activity of interest occurs to measure and identify characteristic time-varying micromotions caused by biological, chemical, mechanical, electrical, optical, or physical processes. The tip and cantilever assembly of an AFM is used as a micromechanical detector of characteristic micromotions transmitted either directly by a site of interest or indirectly through the surrounding medium. Alternatively, the exponential dependence of the tunneling current on the size of the gap in the STM is used to detect micromechanical movement. The stationary mode of operation can be used to observe dynamic biological processes in real time and in a natural environment, such as polymerase processing of DNA for determining the sequence of a DNA molecule. 6 figs.

Holzrichter, J.F.; Siekhaus, W.J.

1997-04-15

190

Chemical compound of a snow cover in taiga zone territory of the European northeast of Russia  

NASA Astrophysics Data System (ADS)

Receipt of substances from atmosphere plays an important role in geochemical balance of ecosystems. Atmosphere participates participate in an exchange and substance redistribution for the Earth, and its chemical compound gives the objective information on quality of the air environment. The snow cover acts as the effective store of substances which remain in it in an invariable condition within winter. Chemical compound of snow reflects the valid size of dry both damp losses and quantitative parametres of pollution of ecosystems. Sensitivity of a snow cover to change of industrial conditions in region allows to estimate a state of environment objectively. Distinction of areas on natural receipt macro- and microcomponents from atmosphere causes of an estimation of their background receipt on spreading surface. The purpose of the present work is studying of a chemical compound of a snow cover and spatial distribution of macrocomponents to a taiga zone territories of the European northeast (Republic Komi). It is established that average value of a mineralization of thawed snow, has made 2.8 mg/dm3 and tends to reduction with width increase. Our results have shown that thawed snow water in a taiga zone is characterised by subacidic reaction. Average value ?? has made 4.7 ± 0.1. The oxidation of snow cover is observed from the north on the south. Formation of acidity of a snow cover estimated through the relation of the sum of concentration anions (A = [SO42-] + [N?3-] + [?l-]) to the sum of cations concentration (K = [NH4+] + [Ca2+] + [Mg2+] + [Na+] + [K+]). The received data follows that thawed snow of a taiga zone is characterised by values ?/? <1 at increase in the given relation from the south on the north from 0.42 till (average value equally 0.58). Thus, the acid-base properties of a taiga zone snow cover are defined by deficiency of neutralised connections and prevalence in thawed snow of ions of hydrogen that corresponds to the general situation in the European territory of Russia. Differentiation in distribution macro- and microcomponents in snow from the south on the north is observed statistically authentic latitude: the total maintenance of cations increases in and reduction of anions. The raised receipt of substances is characteristic for southwest and east borders of the investigated territory. Atmospheric precipitation plays an important role in receipt of the basic biogenic substances on a taiga zone territory. Accumulation of organic carbon makes 20 % from the general module of substances. Share reduction of carbon and the general nitrogen in a snow cover from the south on the north is noted. Formation of a snow cover chemical compound of a taiga zone background territories occurs, mainly, at the expense of soluble connections of elements. Factors of enrichment by elements of soluble fraction much more, than for fraction fixed connections also are close to values of accumulation factors of atmospheric aerosol. Chemical compound of snow cover of a taiga zone background territories is formed mainly at the expense of distant carryings over, influence of local sources is slightly. The cartographical basis of spatial distribution of chemical components in a snow cover is created.

Mariya, Vasilevich

2013-04-01

191

A Yeast-Based Chemical Screen Identifies a PDE Inhibitor That Elevates Steroidogenesis in Mouse Leydig Cells via PDE8 and PDE4 Inhibition  

PubMed Central

A cell-based high-throughput screen (HTS) was developed to detect phosphodiesterase 8 (PDE8) and PDE4/8 combination inhibitors. By replacing the Schizosaccharomyces pombe PDE gene with the murine PDE8A1 gene in strains lacking adenylyl cyclase, we generated strains whose protein kinase A (PKA)-stimulated growth in 5-fluoro orotic acid (5FOA) medium reflects PDE8 activity. From our previously-identified PDE4 and PDE7 inhibitors, we identified a PDE4/8 inhibitor that allowed us to optimize screening conditions. Of 222,711 compounds screened, ?0.2% displayed composite Z scores of >20. Additional yeast-based assays using the most effective 367 compounds identified 30 candidates for further characterization. Among these, compound BC8-15 displayed the lowest IC50 value for both PDE4 and PDE8 inhibition in in vitro enzyme assays. This compound also displays significant activity against PDE10A and PDE11A. BC8-15 elevates steroidogenesis in mouse Leydig cells as a single pharmacological agent. Assays using BC8-15 and two structural derivatives support a model in which PDE8 is a primary regulator of testosterone production by Leydig cells, with an additional role for PDE4 in this process. BC8-15, BC8-15A, and BC8-15C, which are commercially available compounds, display distinct patterns of activity against PDE4, PDE8, PDE10A, and PDE11A, representing a chemical toolkit that could be used to examine the biological roles of these enzymes in cell culture systems. PMID:23967182

Demirbas, Didem; Wyman, Arlene R.; Shimizu-Albergine, Masami; Cakici, Ozgur; Beavo, Joseph A.; Hoffman, Charles S.

2013-01-01

192

An Automated High-Throughput Cell-Based Multiplexed Flow Cytometry Assay to Identify Novel Compounds to Target Candida albicans Virulence-Related Proteins  

PubMed Central

Although three major classes of systemic antifungal agents are clinically available, each is characterized by important limitations. Thus, there has been considerable ongoing effort to develop novel and repurposed agents for the therapy of invasive fungal infections. In an effort to address these needs, we developed a novel high-throughput, multiplexed screening method that utilizes small molecules to probe candidate drug targets in the opportunistic fungal pathogen Candida albicans. This method is amenable to high-throughput automated screening and is based upon detection of changes in GFP levels of individually tagged target proteins. We first selected four GFP-tagged membrane-bound proteins associated with virulence or antifungal drug resistance in C. albicans. We demonstrated proof-of-principle that modulation of fluorescence intensity can be used to assay the expression of specific GFP-tagged target proteins to inhibitors (and inducers), and this change is measurable within the HyperCyt automated flow cytometry sampling system. Next, we generated a multiplex of differentially color-coded C. albicans strains bearing C-terminal GFP-tags of each gene encoding candidate drug targets incubated in the presence of small molecules from the Prestwick Chemical Library in 384-well microtiter plate format. Following incubation, cells were sampled through the HyperCyt system and modulation of protein levels, as indicated by changes in GFP-levels of each strain, was used to identify compounds of interest. The hit rate for both inducers and inhibitors identified in the primary screen did not exceed 1% of the total number of compounds in the small-molecule library that was probed, as would be expected from a robust target-specific, high-throughput screening campaign. Secondary assays for virulence characteristics based on null mutant strains were then used to further validate specificity. In all, this study presents a method for the identification and verification of new antifungal drugs targeted to fungal virulence proteins using C. albicans as a model fungal pathogen. PMID:25350399

Bernardo, Stella M.; Allen, Christopher P.; Waller, Anna; Young, Susan M.; Oprea, Tudor; Sklar, Larry A.; Lee, Samuel A.

2014-01-01

193

Cell-Based Small-Molecule Compound Screen Identifies Fenretinide as Potential Therapeutic for Translocation-Positive Rhabdomyosarcoma  

PubMed Central

A subset of paediatric sarcomas are characterized by chromosomal translocations encoding specific oncogenic transcription factors. Such fusion proteins represent tumor specific therapeutic targets although so far it has not been possible to directly inhibit their activity by small-molecule compounds. In this study, we hypothesized that screening a small-molecule library might identify already existing drugs that are able to modulate the transcriptional activity of PAX3/FOXO1, the fusion protein specifically found in the pediatric tumor alveolar rhabdomyosarcoma (aRMS). Towards this end, we established a reporter cell line based on the well characterized PAX3/FOXO1 target gene AP2ß. A library enriched in mostly FDA approved drugs was screened using specific luciferase activity as read-out and normalized for cell viability. The most effective inhibitor identified from this screen was Fenretinide. Treatment with this compound resulted in down-regulation of PAX3/FOXO1 mRNA and protein levels as well as in reduced expression of several of its direct target genes, but not of wild-type FOXO1, in a dose- and time-dependent manner. Moreover, fenretinide induced reactive oxygen species and apoptosis as shown by caspase 9 and PARP cleavage and upregulated miR-9. Importantly, it demonstrated a significant anti-tumor effect in vivo. These results are similar to earlier reports for two other pediatric tumors, namely neuroblastoma and Ewing sarcoma, where fenretinide is under clinical development. Our results suggest that fenretinide might represent a novel treatment option also for translocation-positive rhabdomyosarcoma. PMID:23372815

Herrero Martín, David; Boro, Aleksandar; Schäfer, Beat W.

2013-01-01

194

Chemical kinetic study of the oxidation of toluene and related cyclic compounds  

SciTech Connect

Chemical kinetic models of hydrocarbons found in transportation fuels are needed to simulate combustion in engines and to improve engine performance. The study of the combustion of practical fuels, however, has to deal with their complex compositions, which generally involve hundreds of compounds. To provide a simplified approach for practical fuels, surrogate fuels including few relevant components are used instead of including all components. Among those components, toluene, the simplest of the alkyl benzenes, is one of the most prevalent aromatic compounds in gasoline in the U.S. (up to 30%) and is a promising candidate for formulating gasoline surrogates. Unfortunately, even though the combustion of aromatics been studied for a long time, the oxidation processes relevant to this class of compounds are still matter of discussion. In this work, the combustion of toluene is systematically approached through the analysis of the kinetics of some important intermediates contained in its kinetic submechanism. After discussing the combustion chemistry of cyclopentadiene, benzene, phenol and, finally, of toluene, the model is validated against literature experimental data over a wide range of operating conditions.

Mehl, M; Frassoldati, A; Fietzek, R; Faravelli, T; Pitz, W; Ranzi, E

2009-10-01

195

Quinones and Aromatic Chemical Compounds in Particulate Matter Induce Mitochondrial Dysfunction: Implications for Ultrafine Particle Toxicity  

PubMed Central

Particulate pollutants cause adverse health effects through the generation of oxidative stress. A key question is whether these effects are mediated by the particles or their chemical compounds. In this article we show that aliphatic, aromatic, and polar organic compounds, fractionated from diesel exhaust particles (DEPs), exert differential toxic effects in RAW 264.7 cells. Cellular analyses showed that the quinone-enriched polar fraction was more potent than the polycyclic aromatic hydrocarbon (PAH)–enriched aromatic fraction in O2•? generation, decrease of membrane potential (??m), loss of mitochondrial membrane mass, and induction of apoptosis. A major effect of the polar fraction was to promote cyclosporin A (CsA)–sensitive permeability transition pore (PTP) opening in isolated liver mitochondria. This opening effect is dependent on a direct effect on the PTP at low doses as well as on an effect on ??m at high doses in calcium (Ca2+)-loaded mitochondria. The direct PTP effect was mimicked by redox-cycling DEP quinones. Although the aliphatic fraction failed to perturb mitochondrial function, the aromatic fraction increased the Ca2+ retention capacity at low doses and induced mitochondrial swelling and a decrease in ??m at high doses. This swelling effect was mostly CsA insensitive and could be reproduced by a mixture of PAHs present in DEPs. These chemical effects on isolated mitochondria could be reproduced by intact DEPs as well as ambient ultrafine particles (UFPs). In contrast, commercial polystyrene nanoparticles failed to exert mitochondrial effects. These results suggest that DEP and UFP effects on the PTP and ??m are mediated by adsorbed chemicals rather than the particles themselves. PMID:15471724

Xia, Tian; Korge, Paavo; Weiss, James N.; Li, Ning; Venkatesen, M. Indira; Sioutas, Constantinos; Nel, Andre

2004-01-01

196

Big data in chemical toxicity research: the use of high-throughput screening assays to identify potential toxicants.  

PubMed

High-throughput screening (HTS) assays that measure the in vitro toxicity of environmental compounds have been widely applied as an alternative to in vivo animal tests of chemical toxicity. Current HTS studies provide the community with rich toxicology information that has the potential to be integrated into toxicity research. The available in vitro toxicity data is updated daily in structured formats (e.g., deposited into PubChem and other data-sharing web portals) or in an unstructured way (papers, laboratory reports, toxicity Web site updates, etc.). The information derived from the current toxicity data is so large and complex that it becomes difficult to process using available database management tools or traditional data processing applications. For this reason, it is necessary to develop a big data approach when conducting modern chemical toxicity research. In vitro data for a compound, obtained from meaningful bioassays, can be viewed as a response profile that gives detailed information about the compound's ability to affect relevant biological proteins/receptors. This information is critical for the evaluation of complex bioactivities (e.g., animal toxicities) and grows rapidly as big data in toxicology communities. This review focuses mainly on the existing structured in vitro data (e.g., PubChem data sets) as response profiles for compounds of environmental interest (e.g., potential human/animal toxicants). Potential modeling and mining tools to use the current big data pool in chemical toxicity research are also described. PMID:25195622

Zhu, Hao; Zhang, Jun; Kim, Marlene T; Boison, Abena; Sedykh, Alexander; Moran, Kimberlee

2014-10-20

197

Portable sequential injection analyzer for onsite screening for chemical weapons degradation compounds  

NASA Astrophysics Data System (ADS)

In many circumstances, the ability to perform on-site, point-of-collection analysis can play a pivotal role in the goals or requirements of the inquiry. Toward this end, the use of commercial or customized kits, which require the analyst to manually perform the metering and mixing of reagents with the sample and the subsequent visual, spectrophotometric or other interpretation of the results, has become widespread. Often, these methods can suffer from poor reproducibility and sensitivity in addition to being tedious and time consuming. Flow analysis methods, such as traditional flow injection analysis (FIA) and the more recent sequential injection analysis (SIA), have found widespread use in the automation of sample and reagent handling and subsequent analysis for many important analytes. These methods can be completely automated and offer excellent reproducibility, minimized analysis time, and in certain configurations, very high sensitivity. We have developed a miniaturized, fully portable SIA-based instrument for on-site screening for chemical weapons degradation products during challenge inspections under the Chemical Weapons Convention, as well as for the sensitive analysis of other important environmental analytes. In this paper, we will discuss our portable SIA design, the analytical approaches utilized, and results obtained for the analysis of representative chemical weapons degradation compounds.

Postlethwaite, Timothy A.; Zhang, Peng; Lancaster, Herbert L., III; Bacon, Christina P.; Mensch, David

2002-02-01

198

Identification of compounds in heavy fuel oil that are chronically toxic to rainbow trout embryos by effects-driven chemical fractionation.  

PubMed

The present study isolated and identified compounds in heavy fuel oil 7102 (HFO 7102) that are bioavailable and chronically toxic to rainbow trout embryos (Oncorhynchus mykiss). An effects-driven chemical fractionation combined the chemical separation of oil with toxicity testing and chemical analyses of each fraction to identify the major classes of compounds associated with embryo toxicity. Toxicity was assessed with 2 exposure methods, a high-energy chemical dispersion of oil in water, which included oil droplets in test solutions, and water accommodated fractions which were produced by oiled gravel desorption columns, and which did not contain visible oil droplets. Fractions of HFO with high concentrations of naphthalenes, alkanes, asphaltenes, and resins were nontoxic to embryos over the range of concentrations tested. In contrast, fractions enriched with 3- to 4-ringed alkyl polycyclic aromatic hydrocarbons (PAHs) were embryotoxic, consistent with published studies of crude oils and individual alkyl PAHs. The rank order of fraction toxicity did not vary between the exposure methods and was consistent with their PAH content; fractions with higher-molecular weight alkyl PAHs were the most toxic. Exposure of juvenile trout to most fractions of HFO induced higher activities of cytochrome P450 enzymes, with a rank order of potency that varied with exposure method and differed somewhat from that of embryotoxicity. Induction reflected the bioavailability of PAHs but did not accurately predict embryotoxicity. PMID:24375932

Adams, Julie; Bornstein, Jason M; Munno, Keenan; Hollebone, Bruce; King, Thomas; Brown, R Stephen; Hodson, Peter V

2014-04-01

199

Chemical composition and major odor-active compounds of essential oil from PINELLIA TUBER (dried rhizome of Pinellia ternata) as crude drug.  

PubMed

The chemical composition of the essential oil from PINELLIA TUBER (Japanese name: Hange), the dried rhizome of Pinellia ternata, was investigated by capillary gas chromatography (GC) and GC-mass spectrometry (MS) analyses. The oil obtained from Pinellia tuber was revealed the presence of 114 compounds, representing 90.6% of the total oil identified. This colorless oil had a spicy and woody odor. The main components of the oil were ?-cubebene (8.8%), atractylon (7.8%), methyl eugenol (6.2%), and ?-cadinene (5.3%). Fifteen major odor-active compounds were identified in the essential oil from PINELLIA TUBER by the GC-olfactometry (GC-O) and aroma extract dilution analysis (AEDA). Among these, safrole (spicy) and ?-vatirenene (woody) showed the highest flavor dilution (FD) factor (128), followed by paeonol (FD = 64; woody, spicy), ?-humulene (FD = 64; woody), and ?-phenylnaphthalene (FD = 64; spicy). PMID:24500103

Iwasa, Megumi; Iwasaki, Toshiki; Ono, Toshirou; Miyazawa, Mitsuo

2014-01-01

200

On-bead combinatorial synthesis and imaging of chemical exchange saturation transfer magnetic resonance imaging agents to identify factors that influence water exchange.  

PubMed

The sensitivity of magnetic resonance imaging (MRI) contrast agents is highly dependent on the rate of water exchange between the inner sphere of a paramagnetic ion and bulk water. Normally, identifying a paramagnetic complex that has optimal water exchange kinetics is done by synthesizing and testing one compound at a time. We report here a rapid, economical on-bead combinatorial synthesis of a library of imaging agents. Eighty different 1,4,7,10-tetraazacyclododecan-1,4,7,10-tetraacetic acid (DOTA)-tetraamide peptoid derivatives were prepared on beads using a variety of charged, uncharged but polar, hydrophobic, and variably sized primary amines. A single chemical exchange saturation transfer image of the on-bead library easily distinguished those compounds having the most favorable water exchange kinetics. This combinatorial approach will allow rapid screening of libraries of imaging agents to identify the chemical characteristics of a ligand that yield the most sensitive imaging agents. This technique could be automated and readily adapted to other types of MRI or magnetic resonance/positron emission tomography agents as well. PMID:21793515

Napolitano, Roberta; Soesbe, Todd C; De León-Rodríguez, Luis M; Sherry, A Dean; Udugamasooriya, D Gomika

2011-08-24

201

ION COMPOSITION ELUCIDATION (ICE): A HIGH RESOLUTION MASS SPECTROMETRIC TOOL FOR IDENTIFYING ORGANIC COMPOUNDS IN COMPLEX EXTRACTS OF ENVIRONMENTAL SAMPLES  

EPA Science Inventory

Unidentified Organic Compounds. For target analytes, standards are purchased, extraction and clean-up procedures are optimized, and mass spectra and retention times for the chromatographic separation are obtained for comparison to the target compounds in environmental sample ...

202

Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics  

SciTech Connect

Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast Trade-Mark-Sign chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoA biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox Registered-Sign model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: Black-Right-Pointing-Pointer We tested 11 environmental compounds in a hESC metabolomics platform. Black-Right-Pointing-Pointer Significant changes in secreted small molecule metabolites were observed. Black-Right-Pointing-Pointer Perturbed mass features map to pathways critical for normal development and pregnancy. Black-Right-Pointing-Pointer Arginine, proline, nicotinate, nicotinamide and glutathione pathways were affected.

Kleinstreuer, N.C., E-mail: kleinstreuer.nicole@epa.gov [NCCT, US EPA, RTP, NC 27711 (United States); Smith, A.M.; West, P.R.; Conard, K.R.; Fontaine, B.R. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States)] [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); Weir-Hauptman, A.M. [Covance, Inc., Madison, WI 53704 (United States)] [Covance, Inc., Madison, WI 53704 (United States); Palmer, J.A. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States)] [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); Knudsen, T.B.; Dix, D.J. [NCCT, US EPA, RTP, NC 27711 (United States)] [NCCT, US EPA, RTP, NC 27711 (United States); Donley, E.L.R. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States)] [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); Cezar, G.G. [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States) [Stemina Biomarker Discovery, Inc., Madison, WI 53719 (United States); University of Wisconsin-Madison, Madison, WI 53706 (United States)

2011-11-15

203

Reconstitution of anti-allergic activities of PG102 derived from Actinidia arguta by combining synthetic chemical compounds.  

PubMed

PG102, a water-soluble extract from an edible fruit, Actinidia arguta, has previously been shown to control various factors involved in allergy pathogenesis. It was investigated whether the original activities of PG102 could be reconstituted by mixing chemical compounds present in PG102. Six compounds present in PG102 were, individually or in the form of mixtures, tested for their effects on the expression of various Th2 cytokines and inflammatory mediators in the cell-based assay. Each chemical inhibited IL-4 expression to varying degrees. The chemical compounds were combined at a ratio present in PG102, resulting in two formulations, CQMIIH and CQM, consisting of all or the first three of the following chemicals, citric, quinic, and malic acids, myo-inositol, isoquercitrin, and 5-hydroxymethyl-2-furaldehyde. The mixtures reconstituted original activities of PG102 to a significant level. In the murine asthma model, CQM ameliorated asthmatic symptoms and significantly decreased the level of IgE and IL-5. The decreased phosphorylation of ERK1/2 was observed in cells and mice treated with PG102 and the mixtures. Our data indicated that the substantial portion of PG102's anti-allergic activities could be reconstituted, in vitro and in vivo, by mixing six chemical compounds, suggesting the possibility of developing a new type of anti-allergic agent. This approach may be useful for developing chemically defined functional products from complex botanical extracts. PMID:23918875

Kim, Donghyun; Choi, Jinyong; Kim, Mi-Jeong; Kim, Seon Hee; Cho, Sang Heon; Kim, Sunyoung

2013-06-01

204

DESI-MS/MS of Chemical Warfare Agents and Related Compounds  

NASA Astrophysics Data System (ADS)

Solid phase microextraction (SPME) fibers were used to headspace ­sample chemical warfare agents and their hydrolysis products from glass vials and glass vials containing spiked media, including Dacron swabs, office carpet, paper and fabric. The interface of the Z-spray source was modified to permit safe introduction of the SPME fibers for desorption electrospray ionization mass spectrometric (DESI-MS) analysis. A "dip and shoot" method was also developed for the rapid sampling and DESI-MS analysis of chemical warfare agents and their hydrolysis products in liquid samples. Sampling was performed by simply dipping fused silica, stainless steel or SPME tips into the organic or aqueous samples. Replicate analyses were completed within several minutes under ambient conditions with no sample pre-treatment, resulting in a significant increase in sample throughput. The developed sample handling and analysis method was applied to the determination of chemical warfare agent content in samples containing unknown chemical and/or biological warfare agents. Ottawa sand was spiked with sulfur mustard, extracted with water and autoclaved to ensure sterility. Sulfur mustard was completely hydrolysed during the extraction/autoclave step and thiodiglycol was identified by DESI-MS, with analyses generally being completed within 1 min using the "dip and shoot" method.

D'Agostino, Paul A.

205

Effects of Chemical Speciation on the Mineralization of Organic Compounds by Microorganisms  

PubMed Central

The mineralization of 1.0 to 100 ng each of four complexing compounds—oxalate, citrate, nitrilotriacetate (NTA), and EDTA—per ml was tested in media prepared in accordance with equilibrium calculations by a computer program so that the H, Ca, Mg, Fe, or Al complex (chemical species) was predominant. Sewage microorganisms mineralized calcium citrate more rapidly than iron, aluminum, or hydrogen citrate, and magnesium citrate was degraded slowest. Aluminum, hydrogen, and iron oxalates were mineralized more rapidly than calcium oxalate, and magnesium oxalate was decomposed slowest. Sewage microorganisms mineralized calcium NTA but not aluminum, magnesium, hydrogen, or iron NTA or any of the EDTA complexes. Pseudomonas sp. mineralized calcium and iron citrates but had no activity on hydrogen, aluminum, or magnesium citrate. Pseudomonas pseudoalcaligenes mineralized calcium, iron, hydrogen, and aluminum citrates but had little activity on magnesium citrate. Pseudomonas alcaligenes used calcium, iron, hydrogen, and aluminum oxalates readily, but it used magnesium oxalate at a slower rate. Listeria sp. destroyed calcium NTA but had no effect on hydrogen, iron, or magnesium NTA. Increasing the Ca concentration in the medium enhanced the breakdown of NTA by Listeria sp. The different activities of the bacterial isolates were not a result of the toxicity of the complexes or the lack of availability of a nutrient element. NTA mineralization was not enhanced by the addition of Ca to Beebe Lake water, but it was enhanced when Ca and an NTA-degrading inoculum were added to water from an oligotrophic lake. The data show that chemical speciation influences the mineralization of organic compounds by naturally occurring microbial communities and by individual bacterial populations. PMID:16346854

Madsen, E. L.; Alexander, Martin

1985-01-01

206

[A comparative study of the antiviral activity of chemical compounds concerning the orthopoxviruses experiments in vivo].  

PubMed

In the experiments using intranasal (i/n) infection of mice with the ectromelia virus (EV) in a dose 10 LD50/head (10 x 50% lethal doselhead) or with the monkaypox virus (MPXV) in a dose 10 ID50/head (10 x 50% infective dose/ head) it was demonstrated that the antiviral efficiency of chemical compounds - the condensed derivatives of pyrrolidin-2,5-dion, as well as their predecessors and the nearest analogues, synthesized in Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences (NIOCH SB RAS) was observed. As a positive control we used the antipoxvirus chemical preparation ST-246 available from SIGA Technologies Inc. (USA), synthesized in NIOCH SB RAS by the technique suggested by the authors. It was demonstrated that the compound NIOCH-14 (7-[N'-(4-Trifluoromethylbenzoil)-hydrazidecarbonil]-tricyclo[3.2.2.02,4]non-8-en-6-carbonic acid) possessed comparable with ST-246 antiviral activity concerning EV and MPXV on all indicators used. Therefore, at infection of mice with EV (strain K-1) and peroral administration of NIOCH-14 and ST-246 in a dose 50 mkg/g of mouse weight (12-14 g) within 10 days the survival rate and average life expectancy of mice authentically exceeded the control levels. EV titers in lungs through 6 days after infection in the same groups were lower than in the control. In addition to that, after 7 days of infection of mice with MPXV (strain V79-1-005) and daily peroral administration of NIOCH-14 and ST-246 in a dose 60 mkg/g of mouse weight (9-11 g) authentic decrease in a part of infected animals and MPXV titers in lungs was observed. PMID:24354064

Kabanov, A S; Sergeev, Al A; Shishkina, L N; Bulychev, L E; Skarnovich, M O; Sergeev, Ar A; Bormotov, N I; P'iankov, O V; Serova, O A; Bodnev, S A; Selivanov, B A; Tikhonov, A Ia; Agafonov, A P; Sergeev, A N

2013-01-01

207

compounds  

NASA Astrophysics Data System (ADS)

Size is the key factor of nanostructured materials, since all the structural, transport, electrical, magnetic and other physical properties can be tuned by this factor of materials. Only the condition is to choose appropriate inexpensive scale-processing method for material synthesis which offers good control over the stoichiometry, morphology and particle size distribution. Present communication deals with the studies on the sol-gel grown Y0.95Ca0.05MnO3 (YCMO) nanostructured compounds for their size-induced tuning of dielectric behavior. Structural studies reveal the single phasic nature with improved crystallite size with sintering temperature. Dielectric constant (real and imaginary) is found to increase with temperature and crystallite size/sintering temperature. High dielectric loss has been observed in the present system. Size dependent activation energy ( E a), obtained from modulus measurement, showing the increase in E a with crystallite size. The variation in various dielectric parameters and E a has been discussed in the light of crystallite size, crystallite boundaries, oxygen vacancies and charge carrier hopping.

Shah, N. A.

2014-10-01

208

Antiarrhythmic activity of alpha-tocopherol nicotinate and related compounds and their physico-chemical properties.  

PubMed

The effect of alpha-tocopherol nicotinate (Renascin), alpha-tocopherol and dodecanoic acid (lauric acid) on the positive inotropic action of ouabain and digoxin and on cardiac glycoside induced arrhythmias has been tested in isolated guinea-pig left atria and in anaesthetized guinea-pigs. alpha-Tocopherol nicotinate and dodecanoic acid significantly decrease the positive inotropic action of digoxin, but not that of ouabain in isolated guinea-pig atria. Ouabain and digoxin induced arrhythmias are suppressed by the three compounds in isolated guinea-pig atria and in anaesthetized guinea-pigs: alpha-tocopherol nicotinate has the highest antiarrhythmic activity followed by dodecanoic acid and alpha-tocopherol. These results are further evidence for the dissociation between the positive inotropic and arrhythmogenic action of cardiac glycosides. The antiarrhythmic activity of the three compounds and the physico-chemical properties, as measured in liposomes, are compared with that of quinidine and aprindine. As nicotinic acid does not show any effect on cardiac glycoside induced arrhythmias, the ester linkage in alpha-tocopherol nicotinate seems to be of particular importance for its antiarrhythmic activity. PMID:3675687

Schlieper, P; Tawfik, H

1987-08-01

209

Catalytic Conversion of Carbon-Containing Compounds into Valuable Chemicals and Fuels  

NASA Astrophysics Data System (ADS)

Conversion of carbon-containing compounds, especially C1 compounds such as carbon dioxide and methane, to valuable chemicals and fuels will hopefully address concerns over decreasing supplies of fossil fuels and mitigate the eects of greenhouse gas emissions on global climate change. Many challenges, however, remain to be addressed before these technologies may be adopted on an industrial scale. Chiefly, catalysts must be developed to activate carbon-containing compounds from their thermodynamically stable ground states, using hydrogen, electrons, or heat as energy sources. We chose as model catalytic systems: 1) Metathesis of ethene and 2-butene; 2) Methane dehydrogenation and carbon dioxide hydrogenation. We developed three computational methodologies to study these processes across a range of length and time scales. First, we investigated how electronic structure affects the properties and reactivity of these catalyst systems; by computing the partial electronic density of states, electronic localization function, and excess spin density, we showed how redox supports, such as ceria, promote electron transfer reactions. We applied this to the studies of methane activation and carbon dioxide activation. Second, we developed a non-equilibrium thermodynamics approach to calculate energies of activation at nite temperatures, based on the Bronsted-Evans-Polanyi principle and the Nudged Elastic Band method. Third, we developed an approach to numerically compute heat capacities and other thermodynamic properties on extended catalytic systems that are comparable in accuracy and precision to methods that have been well-developed for gas-phase molecules. We applied these to the studies of metathesis propagation and carbon dioxide hydrogenation. We gained mechanistic, thermodynamic, and kinetic insight into the elementary steps that comprise larger reaction networks of interest to the broader catalysis community. Ultimately, these theoretical and computational predictions can be used to guide experimental design, synthesis, and characterization of new catalyst systems.

Cheng, Zhuo

210

Xlink-Identifier: An Automated Data Analysis Platform for Confident Identifications of Chemically Cross-linked Peptides using Tandem Mass Spectrometry  

SciTech Connect

Chemical cross-linking combined with mass spectrometry provides a powerful method for identifying protein-protein interactions and probing the structure of protein complexes. Cross-linking is the process of covalently joining two proteins using cross-linking reagents. After proteolytic cleavage, the cross-linked peptides can be identified using tandem mass spectrometry. A number of strategies have been reported that take advantage of the high sensitivity and high resolution of modern mass spectrometers. Approaches typically include synthesis of novel cross-linking compounds and/or isotopic labelling of the cross-linkering reagent and/or protein to aid both identification and quantitation. However, these approaches have various limitations. These limitations can be overcome with a label-free approach and application of associated data analysis algorithms described in this work.

Du, Xiuxia; Chowdhury, Saiful M.; Manes, Nathan P.; Wu, Si; Mayer, M. Uljana; Adkins, Joshua N.; Anderson, Gordon A.; Smith, Richard D.

2011-03-04

211

High-Resolution Transcriptional Profiling of Chemical-Stimulated Dendritic Cells Identifies Immunogenic Contact Allergens, but Not Prohaptens  

Microsoft Academic Search

Allergic contact dermatitis is a complex syndrome and knowledge about the in vitro detection of small-molecular-weight compounds, particularly prohaptens, is limited. Therefore, we investigated chemical-induced gene expression changes in human antigen-presenting cells upon stimulation with immunogenic contact allergens, prohaptens and irritants. Monocyte-derived dendritic cells (moDCs) and THP-1 cells were stimulated with the prohapten cinnamic alcohol (CAlc), the hapten cinnamic aldehyde

H. Ott; T. Wiederholt; M. Andresen Bergström; R. Heise; C. Skazik; K. Czaja; Y. Marquardt; A.-T. Karlberg; H.-F. Merk; J. M. Baron

2010-01-01

212

Clinical breath analysis: Discriminating between human endogenous compounds and exogenous (environmental) chemical confounders  

EPA Science Inventory

Volatile organic compounds (VOCs) in exhaled breath originate from current or previous environmental exposures (exogenous compounds) and internal metabolic anabolic and catabolic) production (endogenous compounds). The origins of certain VOCs in breath presumed to be endogenous ...

213

Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area  

SciTech Connect

The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGE-Mex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to reproduce the general features of the daytime cycle of the VOC OH reactivity distribution showing that NMHCs dominate the distribution except in the afternoon hours and that the VOC OH reactivity peaks in the early morning due to high morning emissions from the city into a shallow boundary layer. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height. In addition, a plume was studied in which air was advected out of the MCMA and intercepted downwind with the DOE G1 on 18 March and the NCAR C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind. Ozone and many OVOCs were photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial and temporal extent of the 19 March plume and to help interpret the OH reactivity in the downwind plume. The model results generally showed good agreement with experimental results for the total VOC OH reactivity downwind and gave insight into the distributions of VOC chemical classes downwind. A box model with detailed gas phase chemistry (NCAR Master Mechanism), initialized with concentrations observed at one of the ground sites in the MCMA, was used to examine the expected evolution of specific VOCs over a 1-2 day period. The models clearly supported the experimental evidence for NMHC oxidation leading to the formation of OVOCs downwind, which then become the primary fuel for ozone production far away from the MCMA.

Apel, E.; Springston, S.; Karl, T.; Emmons, L.; Flocke, F.; Hills, A. J.; Madronich, S.; Lee-Taylor, J.; Fried, A.; Weibring, P.; Walega, J.; Richter, D., Tie, X.; Mauldin, L.; Campos, T.; Sive, B.; Kleinman, L.; Springston, S., Zaveri, R.; deGouw, J.; Zheng, J.; Zhang, R.; Rudolph, J.; Junkermann, W.; Riemer, D. D.

2009-11-01

214

Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.  

ERIC Educational Resources Information Center

Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

Bretherick, Leslie

1989-01-01

215

Acute toxicity to Daphnia pulex of six classes of chemical compounds potentially hazardous to Great Lakes aquatic biota  

SciTech Connect

Of the six classes of chemicals potentially hazardous to Great Lakes aquatic biota, derivatives of polyaromatic hydrocarbons (PAHs) were the most acutely toxic (48-h EC 50) to Daphnia pulex. The other classes, listed in order of decreasing toxicity, were alkyl halides, nitrogen-containing compounds, cyclic alkanes, heterocyclic nitrogen compounds, silicon-containing compounds. Of the 41 compounds representing the six chemical classes, 6 were extremely toxic (> 0.01-0.1 mg/L), 11 highly toxic (> 0.1 {minus} 1.0 mg/L), 20 moderately toxic (> 1.0 {minus} 10.0 mg/L), and 4 slightly toxic (> 10 {minus} 100 mg/L). The reference compound, p, p'DDT, was super toxic (< 0.01 mg/L). Based on toxicity and relative abundance (hazard ranking) of the 21 compounds that were detected in tissue of Great Lakes fishes, the classes of compounds that present the greatest threat to Great Lakes aquatic biota are PAH derivatives, alkyl halides, and cyclic alkanes.

Smith, S.B.; Savino, J.F.; Blouin, M.A. (Fish and Wildlife Service, Ann Arbor, MI (USA))

1988-01-01

216

Acute toxicity of Daphnia pulex to six classes of chemical compounds potentially hazardous to Great Lakes aquatic biota  

USGS Publications Warehouse

Of the six classes of chemicals potentially hazardous to Great Lakes aquatic biota, derivatives of polyaromatic hydrocarbons (PAHs) were the most acutely toxic (48-h EC 50) to Daphnia pulex. The other classes, listed in order of decreasing toxicity were alkyl halides, nitrogen-containing compounds, cyclic alkanes, heterocyclic nitrogen compounds, silicon-containing compounds. O f the 41 compounds representing the six chemical classes, 6 were extremely toxic (> 0.01 - 0.1 mg/L), 11 highly toxic (> 01. - 1.0 mg/L), 20 moderately toxic (> 1.0 - 10.0 mg/L), and 4 slightly toxic (>10 - 100 mg/L). The reference compound, p, p'DDT, was super toxic (< 0.01 mg/L). Based on toxicity and relative abundance (hazard ranking) of the 21 compounds that were detected in tissue of Great Lakes fishes, the classes of compounds that present the greatest threat to Great Lakes aquatic biota are PAH derivatives, alkyl halides, and cyclic aklanes.

Smith, Stephen B.; Savino, Jacqueline F.; Blouin, Marc A.

1988-01-01

217

Using in Vitro High Throughput Screening Assays to Identify Potential Endocrine-Disrupting Chemicals  

EPA Science Inventory

Over the past 20 years, an increased focus on detecting environmental chemicals posing a risk of adverse effects due to endocrine disruption has driven the creation of the U.S. EPA Endocrine Disruptor Screening Program (EDSP). Thousands of chemicals are subject to the EDSP, whic...

218

Identifying the Source of Mystery Waterborne Oil Spills—A Case for Quantitative Chemical Fingerprinting  

Microsoft Academic Search

Oil spills of unknown origin, so-called “mystery” spills, occur routinely in rivers, open water, and navigable coastal waterways. The natural resources damage (NRD) liability associated with even a small volume of oil released into the environment warrants that a thorough chemical characterization of the spilled oil be conducted by agencies and potentially responsible parties (PRPs). Chemical fingerprinting methods have played

Scott A. Stout; Gregory S. Douglas; Allen D. Uhler; Kevin J. McCarthy; Stephen D. Emsbo-Mattingly

2005-01-01

219

Self-assembled host monolayer based chemical microsensors for volatile organic compounds  

SciTech Connect

The interaction of organic vapors with self-assembled host monolayers on the surface of 200 MHz surface acoustic wave (SAW) resonators is studied as a method of tracking toxins in the gas phase. Molecular self-assembly techniques were employed to achieve covalent surface-attachment of two families of {open_quotes}bucket{close_quotes} molecules - cyclodextrins and calix[n]arenes - to native oxides on Si<100> and single-crystal ST-cut quartz. The formation of the covalently-bound functionalized bucket monolayers on oxide surfaces was characterized by polarized, variable-angle, internal attenuated total reflection infrared spectroscopy and surface acoustic mass transduction. SAW based sensors were capable of detecting volatile organic compounds (VOCs) down to ppb levels. Pattern recognition with an array of complementary microsensors appears to be a viable approach for identifying and quantifying a particular VOC.

Shi, Jing-Xuan; Moore, L.W.; Springer, K.N. [Los Alamos National Lab., NM (United States)] [and others

1995-12-01

220

Chemical Composition and Biological Activity of Four Salvia Essential Oils and Individual Compounds against Two Species of Mosquitoes.  

PubMed

The chemical compositions of essential oils obtained from four species of genus Salvia were analyzed by gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The main compounds identified from Salvia species essential oils were as follows: 1,8-cineole (71.7%), ?-pinene (5.1%), camphor (4.4%), and ?-pinene (3.8%) in Salvia apiana; borneol (17.4%), ?-eudesmol (10.4%), bornyl acetate (5%), and guaiol (4.8%) in Salvia elegans; bornyl acetate (11.4%), ?-caryophyllene (6.5%), caryophyllene oxide (13.5%), and spathulenol (7.0%) in Salvia leucantha; ?-thujene (25.8%), viridiflorol (20.4%), ?-thujene (5.7%), and camphor (6.4%) in Salvia officinalis. In biting-deterrent bioassays, essential oils of S. leucantha and S. elegans at 10 ?g/cm(2) showed activity similar to that of DEET (97%, N, N-diethyl-m-toluamide) in two species of mosquitoes, whereas the activities of S. officinalis and S. apiana essential oils were lower than those of the other oils or DEET. Pure compounds ?-eudesmol and guaiol showed biting-deterrent activity similar to DEET at 25 nmol/cm(2), whereas the activity of 13-epi-manool, caryophyllene oxide, borneol, bornyl acetate, and ?-caryophyllene was significantly lower than that of ?-eudesmol, guaiol, or DEET. All essential oils showed larvicidal activity except that of S. apiana, which was inactive at the highest dose of 125 ppm against both mosquito species. On the basis of 95% CIs, all of the essential oils showed higher toxicity in Anopheles quadrimaculatus than in Aedes aegypti. The essential oil of S. leucantha with an LC50 value of 6.2 ppm showed highest toxicity in An. quadrimaculatus. PMID:25531412

Ali, Abbas; Tabanca, Nurhayat; Demirci, Betul; Blythe, Eugene K; Ali, Zulfiqar; Baser, K Husnu Can; Khan, Ikhlas A

2015-01-21

221

Development of a Fundamental Understanding of Chemical Bonding and Electronic Structure in Spinel Compounds  

Microsoft Academic Search

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos national Laboratory (LANL). Hundreds of ceramic compounds possess the spinel crystal structure and exhibit a remarkable variety of properties, ranging from compounds that are electrical insulators to compounds that are superconducting, or from compounds with ferri- and antiferromagnetic behavior to materials with

K. E. Sickafus; J. M. Wills; S.-P. Chen; Terry J. H. Jr; T. Hartmann; R. I. Sheldon

1999-01-01

222

Development of a Fundamental Understanding of Chemical Bonding and Electronic Structure in Spinel Compounds  

Microsoft Academic Search

This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Hundreds of ceramic compounds possess the spinel crystal structure and exhibit a remarkable variety of properties, ranging from compounds that are electrical insulators to compounds that are superconducting, or from compounds with ferri- and antiferromagnetic behavior to materials with

K. E. Sickafus; J. M. Wills; S.-P. Chen; Terry J. H. Jr; T. Hartmann; R. I. Sheldon

1999-01-01

223

Electrocatalytic processing of renewable biomass-derived compounds for production of chemicals, fuels and electricity  

NASA Astrophysics Data System (ADS)

The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while achieving renewable electricity storage. Meanwhile, ORR that is often coupled in AEMFCs on the cathode was investigated on non-PGM electrocatalyst with comparable activity to commercial Pt/C. The electro-biorefinery process could be coupled with traditional biorefinery operation and will play a significant role in our energy and chemical landscape.

Xin, Le

224

Micro-Spectroscopic Chemical Imaging of Individual Identified Marine Biogenic and Ambient Organic Ice Nuclei (Invited)  

NASA Astrophysics Data System (ADS)

Atmospheric ice formation represents one of the least understood atmospheric processes with important implications for the hydrological cycle and climate. Current freezing descriptions assume that ice active sites on the particle surface initiate ice nucleation, however, the nature of these sites remains elusive. Here, we present a new experimental method that allows us to relate physical and chemical properties of individual particles with observed water uptake and ice nucleation ability using a combination of micro-spectroscopic and optical single particle analytical techniques. We apply this method to field-collected particles and particles generated via bursting of bubbles produced by glass frit aeration and plunging water impingement jets in a mesocosm containing artificial sea water and bacteria and/or phytoplankton. The most efficient ice nuclei (IN) within a particle population are identified and characterized. Single particle characterization is achieved by computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy. A vapor controlled cooling-stage coupled to an optical microscope is used to determine the onsets of water uptake, immersion freezing, and deposition ice nucleation of the individual particles as a function of temperature (T) as low as 200 K and relative humidity (RH) up to water saturation. In addition, we perform CCSEM/EDX to obtain on a single particle level the elemental composition of the entire particle population. Thus, we can determine if the IN are exceptional in nature or belong to a major particle type class with respect to composition and size. We find that ambient and sea spray particles are coated by organic material and can induce ice formation under tropospheric relevant conditions. Micro-spectroscopic single particle analysis of the investigated particle samples invokes a potential paradigm shift: Individual ice nucleating particle composition indicates that IN are similar to the majority of particles in the population and not exceptional. This suggests that composition alone may not be a determinant for IN identification. Furthermore, the results suggest that particle abundance may be a crucial parameter for IN efficiency when predicting cloud glaciation processes. These findings would have important consequences for cloud modeling, laboratory ice nucleation experiments, and field measurements.

Knopf, D. A.; Alpert, P. A.; Wang, B.; OBrien, R. E.; Moffet, R. C.; Aller, J. Y.; Laskin, A.; Gilles, M.

2013-12-01

225

The correlation between photocatalytic oxidation performance and chemical/physical properties of indoor volatile organic compounds  

NASA Astrophysics Data System (ADS)

In this study, six species of volatile organic compounds (VOCs), n-hexane, iso-butanol, toluene, p-xylene, m-xylene, and mesitylene, were selected as the target pollutants to investigate how the photocatalytic oxidation (PCO) performance is related to their physical/chemical properties. The PCO kinetics were well fit by a Langmuir-Hinshelwood (L-H) model for bimolecular surface reaction and competitive adsorption at gas flow rate above 1000 mL min -1 (reaction-controlling region), where the gas-phase mass transfer effect was negligible. The rate constants of PCO for toluene, p-xylene, m-xylene, and mesitylene ranged from 1.22 to 4.00 ?mol m -2 s -1, and were proportional to VOC-hydroxyl radical rate constant ( kOH). The Langmuir adsorption constants of the four aromatic VOCs investigated and water ranged from 0.95 to 1.35 ppm -1 and from 5.61×10 -3 to 1.44×10 -3 ppm -1, respectively. A strongly linear positive relationship was found between the reciprocal of the Langmuir adsorption constants of the four aromatic VOCs investigated and Henry's Law constants. Conversely, the reciprocal of Langmuir adsorption constants of water showed a strong negative relationship with Henry's Law constants (in units kPa m 3 mol -1) of the four aromatic VOCs investigated. The relationships noted above were not found between different classes of VOCs ( n-hexane, iso-butanol, and aromatic VOCs investigated). The percentage of residual intermediates (partially oxidized and incompletely mineralized organic compound from the primary VOCs) decreased as the inlet VOCs concentration decreased.

Yu, Kuo-Pin; Lee, Grace W. M.; Huang, Wei-Ming; Wu, Chihcheng; Yang, Shinhao

226

Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition  

NASA Technical Reports Server (NTRS)

The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.

Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.

2000-01-01

227

Natural chemical markers identify source and date of introduction of an exotic species: lake trout ( Salvelinus namaycush ) in Yellowstone Lake  

Microsoft Academic Search

Exotic species invasions pose a pervasive threat to aquatic ecosystems worldwide, yet fundamental questions about the geographic origin and timing of invasions or introductions are frequently difficult to answer. We used natural chemical markers (Sr:Ca ratios) in otoliths to identify probable source and date of introduction of exotic lake trout (Salvelinus namaycush) into Yellowstone Lake, Wyoming, USA. Otolith Sr:Ca ratios

Andrew R. Munro; Thomas E. McMahon; James R. Ruzycki

2005-01-01

228

ASSESSMENT OF A FATHEAD MINNOW REPRODUCTION ASSAY FOR IDENTIFYING ENDOCRINE-DISRUPTING CHEMICALS WITH DIVERSE MODES OF ACTION  

EPA Science Inventory

The US EPA has developed a short-term reproduction test with the fathead minnow to identify potential endocrine disrupting chemicals (EDCs). The assay is initiated by collecting baseline spawning data from reproductively-active adult fathead minnows for 21 d, followed by a 21 d e...

229

Adverse Outcome Pathways for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptor  

EPA Science Inventory

Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

230

INTRODUCTION Asphalt is a mixture of a wide variety of chemical compounds that include aliphatic hydrocarbons and highly fused  

E-print Network

INTRODUCTION Asphalt is a mixture of a wide variety of chemical compounds that include aliphatic) and maltenes (low molecular weight).To improve the final properties of an asphalt binder, a high molecular) and SBR (polystyrene-polybutadiene rubber) polymer-modified asphalt cements (PMACs), the polymer

Harms, Kyle E.

231

Overview of Toxicity Data and Risk Assessment Methods for Evaluating the Chemical Effects of Depleted Uranium Compounds  

Microsoft Academic Search

In the United States, depleted uranium is handled or used in several chemical forms by both governmental agencies and private industry (primarily companies producing and machining depleted uranium metal for military applications). Human exposure can occur as a result of handling these compounds, routine low-level effluent releases to the environment from processing facilities, or materials being accidentally released from storage

Heidi M. Hartmann; Frederick A. Monette; Halil I. Avci

2000-01-01

232

40 CFR 721.10154 - Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides, reaction products with silica.  

Code of Federal Regulations, 2010 CFR

... 2010-07-01 false Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides...Substances § 721.10154 Quaternary ammonium compounds, dicoco alkyldimethyl, chlorides...chemical substance identified as quaternary ammonium compounds, dicoco...

2010-07-01

233

CFam: a chemical families database based on iterative selection of functional seeds and seed-directed compound clustering.  

PubMed

Similarity-based clustering and classification of compounds enable the search of drug leads and the structural and chemogenomic studies for facilitating chemical, biomedical, agricultural, material and other industrial applications. A database that organizes compounds into similarity-based as well as scaffold-based and property-based families is useful for facilitating these tasks. CFam Chemical Family database http://bidd2.cse.nus.edu.sg/cfam was developed to hierarchically cluster drugs, bioactive molecules, human metabolites, natural products, patented agents and other molecules into functional families, superfamilies and classes of structurally similar compounds based on the literature-reported high, intermediate and remote similarity measures. The compounds were represented by molecular fingerprint and molecular similarity was measured by Tanimoto coefficient. The functional seeds of CFam families were from hierarchically clustered drugs, bioactive molecules, human metabolites, natural products, patented agents, respectively, which were used to characterize families and cluster compounds into families, superfamilies and classes. CFam currently contains 11 643 classes, 34 880 superfamilies and 87 136 families of 490 279 compounds (1691 approved drugs, 1228 clinical trial drugs, 12 386 investigative drugs, 262 881 highly active molecules, 15 055 human metabolites, 80 255 ZINC-processed natural products and 116 783 patented agents). Efforts will be made to further expand CFam database and add more functional categories and families based on other types of molecular representations. PMID:25414339

Zhang, Cheng; Tao, Lin; Qin, Chu; Zhang, Peng; Chen, Shangying; Zeng, Xian; Xu, Feng; Chen, Zhe; Yang, Sheng Yong; Chen, Yu Zong

2015-01-28

234

Nature of the chemical bond and prediction of radiation tolerance in pyrochlore and defect fluorite compounds  

SciTech Connect

The radiation tolerance of synthetic pyrochlore and defect fluorite compounds has been studied using ion irradiation. We show that the results can be quantified in terms of the critical temperature for amorphization, structural parameters, classical Pauling electronegativity difference, and disorder energies. Our results demonstrate that radiation tolerance is correlated with a change in the structure from pyrochlore to defect fluorite, a smaller unit cell dimension, and lower cation-anion disorder energy. Radiation tolerance is promoted by an increase in the Pauling cation-anion electronegativity difference or, in other words, an increase in the ionicity of the chemical bonds. A further analysis of the data indicates that, of the two possible cation sites in ideal pyrochlore, the smaller B-site cation appears to play the major role in bonding. This result is supported by ab initio calculations of the structure and bonding, showing a correlation between the Mulliken overlap populations of the B-site cation and the critical temperature. - Graphical abstract: Three-dimensional representation of the predicted critical amorphization temperature in pyrochlores.

Lumpkin, Gregory R. [Cambridge Centre for Ceramic Immobilisation, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234 (Australia)], E-mail: grl@ansto.gov.au; Pruneda, Miguel [Cambridge Centre for Ceramic Immobilisation, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Rios, Susana [Cambridge Centre for Ceramic Immobilisation, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Smith, Katherine L. [Institute of Materials and Engineering Science, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234 (Australia); Trachenko, Kostya [Cambridge Centre for Ceramic Immobilisation, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Whittle, Karl R. [Cambridge Centre for Ceramic Immobilisation, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ (United Kingdom); Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD (United Kingdom); Zaluzec, Nestor J. [Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

2007-04-15

235

Catalytic conversion of biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5.  

PubMed

Chemical liquid deposition (CLD) with KH550, TEOS and methyl silicone oil as the modifiers was used to modify ZSM-5 and deposit its external acid sites. The characteristics of modified catalysts were tested by catalytic conversion of biomass pyrolysis-derived compounds. The effects of different modifying conditions (deposited amount, temperature, and time) on the product yields and selectivities were investigated. The results show KH550 modified ZSM-5 (deposited amount of 4%, temperature of 20°C and time of 6h) produced the maximum yields of aromatics (24.5%) and olefins (16.5%), which are much higher than that obtained with original ZSM-5 catalyst (18.8% aromatics and 9.8% olefins). The coke yield decreased from 44.1% with original ZSM-5 to 26.7% with KH550 modified ZSM-5. The selectivities of low-molecule-weight hydrocarbons (ethylene and benzene) decreased, while that of higher molecule-weight hydrocarbons (propylene, butylene, toluene, and naphthalene) increased comparing with original ZSM-5. PMID:24413482

Zhang, Huiyan; Luo, Mengmeng; Xiao, Rui; Shao, Shanshan; Jin, Baosheng; Xiao, Guomin; Zhao, Ming; Liang, Junyu

2014-03-01

236

Two-Dimensional Carbon Compounds Derived from Graphyne with Chemical Properties Superior to Those of Graphene  

PubMed Central

Computational studies considering both thermodynamic and kinetic aspects revealed that graphyne, a carbon material that has recently been of increasing interest, favours unprecedented homogeneous “in-plane” addition reactions. The addition of dichlorocarbene to the C(sp)-C(sp) bond, a site with outstanding regioselectivity in graphyne, proceeds via a stepwise mechanism. Due to their homogeneous nature, additions occurring at C(sp)-C(sp) bonds yield structurally ordered two-dimensional carbon compounds (2DCCs). 2DCCs have electronic band structures near the Fermi level that are similar to those of graphene and are either electrically semi-conductive or metallic depending on whether the reactions break the hexagonal symmetry. Notably, 2DCCs can be further functionalised through substitution reactions with little damage to the extended ?-electron conjugation system. These results suggest that 2DCCs derived from graphyne have physical properties comparable to those of graphene and chemical properties superior to those of graphene. Therefore, 2DCCs are expected to be better suited to practical applications. PMID:23429350

Zheng, Jia-Jia; Zhao, Xiang; Zhao, Yuliang; Gao, Xingfa

2013-01-01

237

Application of yeast-two hybrid assay to chemical genomic screens: a high-throughput system to identify novel molecules modulating plant hormone receptor complexes.  

PubMed

Phytohormones are endogenous signalling molecules that regulate plant development, adaptation to the environment, and survival. Upon internal or external stimuli, hormones are quickly accumulated and perceived, which in turn activates specific signalling cascades regulating the appropriate physiological responses. In the last decade, great advances in understanding plant hormone perception mechanisms have been achieved. Among different methodological approaches, yeast-two hybrid (Y2H) assays played a pivotal role in the identification and analysis of plant hormone perception complexes. The Y2H assay is a rapid and straightforward technique that can be easily employed to identify small molecules directly modulating plant hormone perception complexes in a high-throughput manner. However, an Y2H chemical screen tends to isolate false positive molecules, and therefore a secondary in planta screen is required to confirm the genuine bioactivity of putative positive hits. This two-step screening approach can substantially save time and manual labor. This chapter focuses on the prospects of Y2H-based chemical genomic high-throughput screens applied to plant hormone perception complexes. Specifically, the method employed to carry out a chemical genomic screen to identify agonist and antagonist molecules of the phytohormone jasmonic acid in its conjugated form jasmonic acid-isoleucine (JA-Ile) is described. An easy in planta confirmation assay is also illustrated. However, this methodology can be easily extended to detect novel chemical compounds perturbing additional plant hormone receptor complexes. Finally, the high-throughput approach described here can also be implemented for the identification of molecules interfering with protein-protein interaction of plant complexes other than hormone receptors. PMID:24306860

Chini, Andrea

2014-01-01

238

Comparison of predicted and derived measures of volatile organic compounds inside four relocatable classrooms due to identified interior finish sources  

SciTech Connect

Indoor exposures to toxic and odorous volatile organic compounds (VOCs) are of general concern. Recently, VOCs in portable or relocatable classrooms (RCs) have received particular attention. However, very little was known about indoor environmental quality (IEQ) and the sources, composition, and indoor concentrations of VOCs in RCs. This project task focused on developing and demonstrating a process for selecting interior finish materials for RCs that have relatively low impacts with respect to their emissions of toxic and odorous VOCs. This task was part of a larger project to demonstrate the potential for simultaneous improvements in IEQ and energy efficiency in four new RCs equipped both with a continuously ventilating advanced heating, ventilating, and air conditioning system (HVAC) and a standard HVAC system. These HVACs were operated on alternate weeks. One RC per pair was constructed with standard interior finish materials, and the other included alternate interior materials identified in our prior laboratory study to have low VOC emissions. The RCs were sited in side-by-side pairs at two elementary schools in distinct northern California climate zones. Classroom VOC emission rates (mg hr{sup -1}) and concentrations were predicted based on VOC emission factors ({micro}g m{sup -2} hr{sup -1}) measured for individual materials in the laboratory, the quantities of installed materials and design ventilation rates. Predicted emission rates were compared to values derived from classroom measurements of VOC concentrations and ventilation rates made at pre-occupancy, eight weeks, and 27 weeks. Predicted concentrations were compared to measured integrated VOC indoor minus outdoor concentrations during school hours in the fall cooling season with the advanced HVAC operated. These measured concentrations also were compared between standard and material-modified RCs. Our combined laboratory and field process proved effective by correctly predicting that IEQ impacts of material VOC emissions would be minor when RCs were ventilated at or above code-minimum requirements. Assuming code-minimum ventilation rates are maintained, the benefits attributable to the use of alternate interior finish materials in RC's constructed by the manufacturer associated with this study are small, implying that it is not imperative to use such alternative finishing materials. However, it is essential to avoid materials that can degrade IEQ, and the results of this study demonstrate that laboratory-based material testing combined with modeling and field validation can help to achieve that aim.

Hodgson, Alfred T.; Shendell, Derek G.; Fisk, William J.; Apte, Michael G.

2003-06-01

239

Control of the chemical state change of sulfur in solid compound targets during high-resolution PIXE measurements  

NASA Astrophysics Data System (ADS)

A high-energy-resolution wavelength-dispersive (WD) X-ray spectrometer in the Johansson geometry, which allowed energy resolution below the natural linewidth of the K ? lines was employed in measurements of the proton-induced K ? X-ray emission spectra for six typical sulfur compounds (CdS, Na2SO3, Na2 S2O5, NaHSO3, (NH4)2SO4, and Na2SO4) to investigate the chemical state change during 2.4-MeV proton irradiation with a current density of 7.5 nA/mm2. We found that the chemical state change of each compound depended on the various factors affecting the surface temperature increase, such as target thickness, mounting method, and existence of active cooling during the measurement. The chemical state of sulfur on the target surface of S4+ compounds was gradually changed into S6+ without exception through irradiation under poor cooling conditions. Sulfur compounds of the S0 and S6+ states with closed shell structures were proven to be chemically stable against proton bombardment, as expected. However, (NH4)2SO4 was found to be most sensitive to proton irradiation among the sulfur compounds, and S0, one of the reaction products, became a major element at doses higher than 3 × 108 Gy. If thick targets were mounted by using a carbon adhesive tape, chemical state change could be observed in some cases even with lowtemperature cooling down to -80 °C, however, the chemical state change seemed to be remarkably suppressed by using very thin targets mounted with a silver paste even without active cooling. In conclusion, the chemical states of sulfur compounds could be preserved without significant change for an accumulated dose of about 3 × 107 Gy, equivalent to a typical high-resolution PIXE scanning period, by adopting a proper target preparation scheme to discharge proton-induced thermal energy effectively from the irradiated target surface.

Woo, Hyung-Joo; Choi, Han-Woo; Kim, Gi-Dong; Kim, Joon-Kon

2012-07-01

240

IDENTIFYING INDICATORS OF REACTIVITY FOR CHEMICAL REDUCTANTS IN ANOXIC AND ANAEROBIC SEDIMENTS  

EPA Science Inventory

To develop reaction transport models describing the movement of redox-active organic contaminants through contaminated sediments and aquifers, it is imperative to know the identity and reactivity of chemical reductants in natural sediments and to associate their reactivity with p...

241

Identifying multiple eruption phases from a compound tephra blanket: an example of the AD1256 Al-Madinah eruption, Saudi Arabia  

NASA Astrophysics Data System (ADS)

Complex eruption episodes commonly produce several phases of tephra fall and/or concurrent falls from multiple vents. Phases of eruption are challenging to reconstruct from the geological record, especially where there is a lack of distinct physical or chemical variations during an eruption episode. A statistical method is proposed for identifying the most likely combination of multiple fall lobes for composite tephra deposits, using a new high-resolution tephra fall map from the basaltic AD1256 Harrat Al-Madinah fissure eruption in Saudi Arabia. This dominantly effusive eruption episode lasted 52 days periodically producing tephra from several vents along the fissure. Most tephra was produced from high Hawaiian fountains and dispersed under differing wind conditions. The widest-dispersed tephra occurred under phases of the highest fountains, at least 500 m high and probably closer to 1000 m. These high fountains produced pyroclasts with a broad range of vesicularity. Similar total versus lobe-specific grain size determinations showed little systematic variation of maximum fountain-height phases. Individual tephra lobe properties (vesicle form, density, particle shape and particle-size distribution) in different sectors around the volcano varied only subtly. From the statistical distribution of spot fall-thickness measurements, a semi-empirical tephra fallout model, modified to account for weathering, wind remobilisation and settling, was fitted using maximum likelihood estimation. A range of likely eruption-event scenarios were evaluated, concluding that the AD1256 eruption most likely comprised three separate fall-producing eruptions from its northern vent under differing wind conditions. The first of these occurred concurrently with high-fountaining events from two other major vents southward along the fissure, producing overlapping fall lobes. Applying this method to other similar compound tephra deposits will help elucidate more realistic eruption scenarios and event reconstructions from the geological record.

Kawabata, E.; Cronin, S. J.; Bebbington, M. S.; Moufti, M. R. H.; El-Masry, N.; Wang, T.

2015-01-01

242

Screening of novel chemical compounds as possible inhibitors of carbonic anhydrase and photosynthetic activity of photosystem II.  

PubMed

Thirty novel chemical compounds were designed and synthesized expecting that they would be possible inhibitors. From this number eleven were organic bases, twenty-four were their organic derivatives and fourteen were metal complexes. Screening of these chemicals by their action on photosynthetic electron transfer (PET) and carbonic anhydrase (CA) activity (CAA) of photosystem II (PSII), ?-CA, as well as ?-CA was done. Several groups were revealed among them. Some of them are capable to suppress either one, two, three, or even all of the measured activities. As example, one of the Cu(II)-phenyl sulfonylhydrazone complexes (compound 25) suppresses CAA of ?-CA by 88%, CAA of ?-CA by 100% inhibition; CAA of PSII by 100% and the PSII photosynthetic activity by 66.2%. The Schiff base compounds (12, 15) and Cu(II)-phenyl sulfonylhydrazone complexes (25, 26) inhibited the CAA and PET of PSII significantly. The obtained data indicate that the PSII donor side is a target of the inhibitory action of these agents. Some physico- or electrochemical properties such as diffusion coefficient, number of transferred electrons, peak potential and heterogeneous standard rate constants of the compounds were determined in nonaqueous media. pKa values were also determined in nonaqueous and aqueous media. Availability in the studied group of novel chemical agents possessing different inhibitory activity allow in future to isolate the "active part" in the structure of the inhibitors responsible for different inhibitory mechanisms, as well as to determine the influence of side substituters on its inhibitory efficiency. PMID:24418071

Karacan, Mehmet Say?m; Zharmukhamedov, Sergei K; Mama?, Serhat; Kupriyanova, Elena V; Shitov, Alexandr V; Klimov, Vyacheslav V; Özbek, Neslihan; Özmen, Ümmühan; Gündüzalp, Ayla; Schmitt, Franz-Josef; Karacan, Nurcan; Friedrich, Thomas; Los, Dmitry A; Carpentier, Robert; Allakhverdiev, Suleyman I

2014-08-01

243

Chemical genetics identify eIF2? kinase heme-regulated inhibitor as an anticancer target  

Microsoft Academic Search

Translation initiation plays a critical role in cellular homeostasis, proliferation, differentiation and malignant transformation. Consistently, increasing the abundance of the eIF2–GTP–tRNAiMet translation initiation complex transforms normal cells and contributes to cancer initiation and the severity of some anemias. The chemical modifiers of the eIF2–GTP–tRNAiMet ternary complex are therefore invaluable tools for studying its role in the pathobiology of human disorders

Ting Chen; Duygu Ozel; Yuan Qiao; Fred Harbinski; Limo Chen; Séverine Denoyelle; Xiaoying He; Nela Zvereva; Jeffrey G Supko; Michael Chorev; Jose A Halperin; Bertal H Aktas

2011-01-01

244

Small Fish Models for Identifying and Assessing the Effects of Endocrine-disrupting Chemicals  

Microsoft Academic Search

Endocrine-disrupting chemicals (EDCs), particularly those that affect the hypothalamic-pituitary-gonadal (HPG) axis of vertebrates, have become a focus of regulatory screening and testing throughout the world. Small fish species, prin- cipally the fathead minnow (Pimephales promelas), Japa- nese medaka (Oryzias latipes), and zebrafish (Danio rerio), are used as model organisms for several of these testing programs. Fish are appropriate models for

Gerald T. Ankley; Rodney D. Johnson

2004-01-01

245

An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway  

PubMed Central

Misregulated ?-catenin responsive transcription (CRT) has been implicated in the genesis of various malignancies, including colorectal carcinomas, and it is a key therapeutic target in combating various cancers. Despite significant effort, successful clinical implementation of CRT inhibitory therapeutics remains a challenging goal. This is, in part, because of the challenge of identifying inhibitory compounds that specifically modulate the nuclear transcriptional activity of ?-catenin while not affecting its cytoskeletal function in stabilizing adherens junctions at the cell membrane. Here, we report an RNAi-based modifier screening strategy for the identification of CRT inhibitors. Our data provide support for the specificity of these inhibitory compounds in antagonizing the transcriptional function of nuclear ?-catenin. We show that these inhibitors efficiently block Wnt/?-catenin–induced target genes and phenotypes in various mammalian and cancer cell lines. Importantly, these Wnt inhibitors are specifically cytotoxic to human colon tumor biopsy cultures as well as colon cancer cell lines that exhibit deregulated Wnt signaling. PMID:21393571

Gonsalves, Foster C.; Klein, Keren; Carson, Brittany B.; Katz, Shauna; Ekas, Laura A.; Evans, Steve; Nagourney, Robert; Cardozo, Timothy; Brown, Anthony M. C.; DasGupta, Ramanuj

2011-01-01

246

Hot wire chemical vapor deposition chemistry in the gas phase and on the catalyst surface with organosilicon compounds.  

PubMed

Conspectus Hot wire chemical vapor deposition (HWCVD), also referred to as catalytic CVD (Cat-CVD), has been used to produce Si-containing thin films, nanomaterials, and functional polymer coatings that have found wide applications in microelectronic and photovoltaic devices, in automobiles, and in biotechnology. The success of HWCVD is largely due to its various advantages, including high deposition rate, low substrate temperatures, lack of plasma-induced damage, and large-area uniformity. Film growth in HWCVD is induced by reactive species generated from primary decomposition on the metal wire or from secondary reactions in the gas phase. In order to achieve a rational and efficient optimization of the process, it is essential to identify the reactive species and to understand the chemical kinetics that govern the production of these precursor species for film growth. In this Account, we report recent progress in unraveling the complex gas-phase reaction chemistry in the HWCVD growth of silicon carbide thin films using organosilicon compounds as single-source precursors. We have demonstrated that laser ionization mass spectrometry is a powerful diagnostic tool for studying the gas-phase reaction chemistry when combined with the methods of isotope labeling and chemical trapping. The four methyl-substituted silane molecules, belonging to open-chain alkylsilanes, dissociatively adsorb on W and Ta filaments to produce methyl radical and H2 molecule. Under the typical deposition pressures, with increasing number of methyl substitution, the dominant chemistry occurring in the gas phase switches from silylene/silene reactions to free-radical short chain reactions. This change in dominant reaction intermediates from silylene/silene to methyl radicals explains the observation from thin film deposition that silicon carbide films become more C-rich with a decreasing number of Si-H bonds in the four precursor molecules. In the case of cyclic monosilacyclobutanes, we have shown that ring-opening reactions play a vital role in characterizing the reaction chemistry. On the other hand, exocyclic Si-H(CH3) bond cleavages are more important in the less-puckered disilacyclobutane molecules. Metal filaments are essential in HWCVD since they serve as catalysts to decompose precursor gases to reactive species, which initiate gas-phase reaction chemistry and thin film growth. We discuss the structural changes in metal filaments when exposed to various precursor gases. Depending on the nature of the radical intermediates formed from the hot-wire decomposition and subsequent gas-phase reactions, metal silicides and carbides can be formed. Overall, study of the gas-phase reaction chemistry in HWCVD provides important knowledge of the chemical species produced prior to their deposition on a substrate surface. This helps in identifying the major contributor to alloy formation on the filament itself and the film growth, and consequently, in determining the properties of the deposited films. An integrated knowledge of the gas-phase reaction chemistry, filament alloy formation, and thin film deposition is required for an efficient deposition of high-quality thin films and nanomaterials. PMID:25586211

Shi, Yujun

2015-02-17

247

Exome sequencing identifies compound heterozygous mutations in C12orf57 in two siblings with severe intellectual disability, hypoplasia of the corpus callosum, chorioretinal coloboma, and intractable seizures.  

PubMed

In patients with genetically heterogeneous disorders such as intellectual disability or epilepsy, exome sequencing is a powerful tool to elucidate the underlying genetic cause. Homozygous and compound heterozygous mutations in C12orf57 have recently been described to cause an autosomal recessive syndromic form of intellectual disability, including agenesis/hypoplasia of the corpus callosum, optic coloboma, and intractable seizures. Here, we report on two siblings from nonconsanguineous parents harboring two compound heterozygous loss-of-function mutations in C12orf57 identified by exome sequencing, including a novel nonsense mutation, and review the patients described in the literature. PMID:24798461

Platzer, Konrad; Hüning, Irina; Obieglo, Carolin; Schwarzmayr, Thomas; Gabriel, Rainer; Strom, Tim M; Gillessen-Kaesbach, Gabriele; Kaiser, Frank J

2014-08-01

248

Deduction of the chemical state and the electronic structure of Nd2Fe14B compound from X-ray photoelectron spectroscopy core-level and valence-band spectra  

NASA Astrophysics Data System (ADS)

Characterization of chemical state and electronic structure of the technologically important Nd2Fe14B compound is attractive for understanding the physical nature of its excellent magnetic properties. X-ray photoelectron spectroscopy (XPS) study of such rare-earth compound is important and also challenging due to the easy oxidation of surface and small photoelectron cross-sections of rare-earth 4f electrons and B 2p electrons, etc. Here, we reported an investigation based on XPS spectra of Nd2Fe14B compound as a function of Ar ion sputtering time. The chemical state of Fe and that of B in Nd2Fe14B compound can be clearly determined to be 0 and -3, respectively. The Nd in Nd2Fe14B compound is found to have the chemical state of close to +3 instead of +3 as compared with the Nd in Nd2O3. In addition, by comparing the valence-band spectrum of Nd2Fe14B compound to that of the pure Fe, the contributions from Nd, Fe, and B to the valence-band structure of Nd2Fe14B compound is made more clear. The B 2p states and B 2s states are identified to be at ˜11.2 eV and ˜24.6 eV, respectively, which is reported for the first time. The contribution from Nd 4f states can be identified both in XPS core-level spectrum and XPS valence-band spectrum. Although Nd 4f states partially hybridize with Fe 3d states, Nd 4f states are mainly localized in Nd2Fe14B compound.

Wang, Jing; Liang, Le; Zhang, Lanting; Sun, Limin; Hirano, Shinichi

2014-10-01

249

Improving the accuracy of determination of line energies by ESCA: Chemical state plots for silicon-aluminum compounds  

NASA Astrophysics Data System (ADS)

Reproducibility of charge-referenced line energy data can be markedly improved by (1) calibrating the instrument voltage scale with natural lines, and (2) gathering data in such a way that drifts in charging can be corrected. Data on a variety of aluminum-silicon-oxygen compounds appear to be reproducible among different laboratories to within 0.10 eV. Such reproducibility, combined with recording of Auger energies by using the bremsstrahlung component of the radiation, makes possible identification of most such chemical states by line energies alone, even though the ranges in chemical shifts are only 2-3 eV.

Wagner, C. D.; Six, H. A.; Jansen, W. T.; Taylor, J. A.

250

Natural chemical markers identify source and date of introduction of an exotic species: lake trout  

E-print Network

(Salvelinus namaycush) in Yellowstone Lake Andrew R. Munro, Thomas E. McMahon, and James R. Ruzycki Abstract of introduction of exotic lake trout (Salvelinus namaycush) into Yellowstone Lake, Wyoming, USA. Otolith Sr identifier la source probable et la date d'introduction des touladis (Salvelinus namaycush) exoti- ques du

McMahon, Thomas E.

251

Model for the Vaporization of Mixed Organometallic Compounds in the Metalorganic Chemical Vapor Deposition of High Temperature Superconducting Films  

NASA Technical Reports Server (NTRS)

A model of the vaporization and mass transport of mixed organometallics from a single source for thin film metalorganic chemical vapor deposition is presented. A stoichiometric gas phase can be obtained from a mixture of the organometallics in the desired mole ratios, in spite of differences in the volatilities of the individual compounds. Proper film composition and growth rates are obtained by controlling the velocity of a carriage containing the organometallics through the heating zone of a vaporizer.

Meng, Guangyao; Zhou, Gang; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

1993-01-01

252

The chemical composition of plant galls: are levels of nutrients and secondary compounds controlled by the gall-former?  

Microsoft Academic Search

The chemical composition of galled and ungalled plant tissue was compared in a series of experiments. Gall and adjacent plant\\u000a tissue was analysed for 20 species of gall-former on 11 different plant species. There were clear differences between galled\\u000a and ungalled tissue in levels of nutrients and secondary compounds. Gall tissue generally contained lower levels of nitrogen\\u000a and higher levels

S. E. Hartley

1998-01-01

253

Effect of Selected Chemical Compounds on the Lubrication of Silicon Nitride  

Microsoft Academic Search

Successful use of advanced ceramics in many tribological applications requires an understanding of the physical, chemical, and mechanical properties of the material. Physical and mechanical data are relatively abundant for most ceramics. However, information on the chemical interactions of ceramics is scarce. This is especially true for chemical interactions with regard to lubrication of these materials.This paper investigates the influence

Richard S. Gates; Stephen M. Hsu

1991-01-01

254

A model explaining and predicting lamb flavour from the aroma-active chemical compounds released upon grilling light lamb loins.  

PubMed

The objective of the work is to understand the role of the different aroma compounds in the perception of the local "lamb flavour" concept. For this, a set of 70 loins (Longissimus dorsi) from approximately seventy day-old Rasa Aragonesa male lambs were grilled and the aroma-active chemicals released during the grilling process were trapped and analyzed. Carbonyl compounds were derivatizated and determined by GC-NCI-MS, whereas other aromatic compounds were directly analyzed by GC-GC-MS. Odour activity values (OAVs) were calculated using their odour threshold values in air. Lamb flavour could be satisfactory explained by a partial least-squares model (74% explained variance in cross-validation) built by the OAVs of 32 aroma-active chemical compounds. The model demonstrates that the lamb flavour concept is the result of a complex balance. Its intensity critically and positively depends to the levels of volatile fatty acids and several dimethylpyrazines while is negatively influenced by the different alkenals and alkadienals. (E,E)-2,4-decadienal and (E)-2-nonenal showed top OAVs. PMID:25089786

Bueno, Mónica; Campo, M Mar; Cacho, Juan; Ferreira, Vicente; Escudero, Ana

2014-12-01

255

Bacterial release of arsenic ions and organoarsenic compounds from soil contaminated by chemical warfare agents  

Microsoft Academic Search

The objective of this paper was to investigate possible participation of microorganisms in the release of soluble arsenical compounds from organoarsenic warfare agents in contaminated soil.A number of bacterial strains were isolated with high resistance against As3+ and As5+ ions which are able to degrade the water insoluble compounds triphenylarsine (TP) and triphenylarsineoxide (TPO). These strains belong to different genera

Manfred Köhler; Klaus Hofmann; Fernando Völsgen; Kerstin Thurow; Andreas Koch

2001-01-01

256

Extraction, chemical characterization and biological activity determination of broccoli health promoting compounds.  

PubMed

Broccoli (Brassica oleracea L. var. Italica) contains substantial amount of health-promoting compounds such as vitamins, glucosinolates, phenolic compounds, and dietary essential minerals; thus, it benefits health beyond providing just basic nutrition, and consumption of broccoli has been increasing over the years. This review gives an overview on the extraction and separation techniques, as well as the biological activity of some of the above mentioned compounds which have been published in the period January 2008 to January 2013. The work has been distributed according to the different families of health promoting compounds discussing the extraction procedures and the analytical techniques employed for their characterization. Finally, information about the different biological activities of these compounds has been also provided. PMID:23899380

Ares, Ana M; Nozal, María J; Bernal, José

2013-10-25

257

Screening for inhibition of Vibrio cholerae VipA-VipB interaction identifies small-molecule compounds active against type VI secretion.  

PubMed

The type VI secretion system (T6SS) is the most prevalent bacterial secretion system and an important virulence mechanism utilized by Gram-negative bacteria, either to target eukaryotic cells or to combat other microbes. The components show much variability, but some appear essential for the function, and two homologues, denoted VipA and VipB in Vibrio cholerae, have been identified in all T6SSs described so far. Secretion is dependent on binding of an ?-helical region of VipA to VipB, and in the absence of this binding, both components are degraded within minutes and secretion is ceased. The aim of the study was to investigate if this interaction could be blocked, and we hypothesized that such inhibition would lead to abrogation of T6S. A library of 9,600 small-molecule compounds was screened for their ability to block the binding of VipA-VipB in a bacterial two-hybrid system (B2H). After excluding compounds that showed cytotoxicity toward eukaryotic cells, that inhibited growth of Vibrio, or that inhibited an unrelated B2H interaction, 34 compounds were further investigated for effects on the T6SS-dependent secretion of hemolysin-coregulated protein (Hcp) or of phospholipase A1 activity. Two compounds, KS100 and KS200, showed intermediate or strong effects in both assays. Analogues were obtained, and compounds with potent inhibitory effects in the assays and desirable physicochemical properties as predicted by in silico analysis were identified. Since the compounds specifically target a virulence mechanism without affecting bacterial replication, they have the potential to mitigate the virulence with minimal risk for development of resistance. PMID:24798289

Sun, Kun; Bröms, Jeanette; Lavander, Moa; Gurram, Bharat Kumar; Enquist, Per-Anders; Andersson, C David; Elofsson, Mikael; Sjöstedt, Anders

2014-07-01

258

Sampling criteria for identifying human biomonitoring chemical differences in the Canadian Arctic  

PubMed Central

Human biomonitoring studies in the Canadian Arctic have measured a wide range of metals and persistent organic pollutants in Aboriginal and non-Aboriginal mothers during two time periods in the Northwest Territories and Nunavut. This analysis provides preliminary estimates on sample sizes and sampling frequencies required to measure significant changes in maternal blood concentrations for PCB 153 and total mercury. For example, sample sizes of 35–40 mothers permit the detection of a 40% decrease in these chemical concentrations between two groups (e.g. communities or regions). Improvements in method sensitivity can be achieved by on-going sampling over multiple time periods (e.g. 4 or 5) in these regions, or increasing sample sizes. PMID:24624369

Curren, Meredith S.; Davis, Karelyn; Van Oostdam, Jay

2014-01-01

259

A High-Resolution Genetic Map of Yellow Monkeyflower Identifies Chemical Defense QTLs and Recombination Rate Variation  

PubMed Central

Genotyping-by-sequencing methods have vastly improved the resolution and accuracy of genetic linkage maps by increasing both the number of marker loci as well as the number of individuals genotyped at these loci. Using restriction-associated DNA sequencing, we construct a dense linkage map for a panel of recombinant inbred lines derived from a cross between divergent ecotypes of Mimulus guttatus. We used this map to estimate recombination rate across the genome and to identify quantitative trait loci for the production of several secondary compounds (PPGs) of the phenylpropanoid pathway implicated in defense against herbivores. Levels of different PPGs are correlated across recombinant inbred lines suggesting joint regulation of the phenylpropanoid pathway. However, the three quantitative trait loci identified in this study each act on a distinct PPG. Finally, we map three putative genomic inversions differentiating the two parental populations, including a previously characterized inversion that contributes to life-history differences between the annual/perennial ecotypes. PMID:24626287

Holeski, Liza M.; Monnahan, Patrick; Koseva, Boryana; McCool, Nick; Lindroth, Richard L.; Kelly, John K.

2014-01-01

260

Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine.  

PubMed

Glycyrrhizic Acid (GL) is the major bioactive triterpene glycoside of licorice root (Glycyrrhiza Radix) extracts possessing a wide range of pharmacological properties (anti-inflammatory, anti-ulcer, anti-allergic, anti-dote, anti-oxidant, anti-tumor, anti-viral etc.). Official sources of GL are Glycyrrhiza glabra L. and Gl. uralensis Fish. (Leguminosae). The content of GL in licorice root is 2-24% of the dry weight. GL is one of the leading natural compounds for clinical trials of chronic active viral hepatitis and HIV infections (preparation Stronger Neo-Minophagen C, SNMC), and its monoammonium salt (glycyram, tussilinar) is used as an anti-inflammatory and anti-allergic remedy. The synthetic transformations of GL on carboxyl and hydroxyl groups were carried out to produce new bioactive derivatives for medicine. GL esters were produced containing fragments of bioactive acids (4-nitrobenzoic, cinnamic, salycilic, acetylsalycilic, nicotinic, isonicotinic). Bioactive amides of GL were synthesized using chloroanhydride technique and N,N'-diciclohexylcarbodiimide (DCC) method. The synthesis of acylthioureids and semicarbazones was carried out via the reaction of triacylisothiocianate of penta-O-acetyl-GL with primary amines and hydrazines. The chain of transformations of trichloranhydride of penta-O-acetyl-GL was made with the introduction of diazoketone groups in the molecule. A new group of GL derivatives to be triterpene glycopeptides was prepared by the activated esters method (N-hydrohysuccinimide-DCC or N-hydroxybenzotriazol-DCC) using alkyl (methyl, ethyl, propyl, butyl, tert-butyl) or benzyl (4-nitrobenzyl) esters of amino acids. The glycyrrhizyl analogs of the known immunostimulator, N-acetyl-muramoyldipeptide (MDP), were synthesized using Reagent Woodward K. A series of ureids and carbamates of GL was synthesized containing 5-amino-5-desoxy-D-xylopyranose units. The synthesis of 4-nitro-4-desoxy-glycosides, modified analogs of GL, was carried out by the oxidative splitting of the carbohydrate part of GL with NaIO(4). Triterpene 2-desoxy-D-glycosides, analogs of GL, were prepared by the glycal method in the presence of iodine-containing promoters or sulfonic acid cation-exchange resin KU-2-8 (H+) and LiBr. New anti-inflammatory and anti-ulcer agents were found among GL derivatives such as esters, amides, ureids, carbamates, thioureids and glycopeptides. GL glycopeptides are of interest as immunomodulators. Some of the chemically modified GL derivatives (salts, amides, glycopeptides) were potent HIV-1 and HIV-2 inhibitors in vitro. Preparation niglizin (penta-O-nicotinate of GL) was studied clinically as an anti-inflammatory agent and is of interest for studies as hepatoprotector and HIV inhibitor. PMID:12570715

Baltina, L A

2003-01-01

261

Identifying Rhodamine Dye Plume Sources in Near-Shore Oceanic Environments by Integration of Chemical and Visual Sensors  

PubMed Central

This article presents a strategy for identifying the source location of a chemical plume in near-shore oceanic environments where the plume is developed under the influence of turbulence, tides and waves. This strategy includes two modules: source declaration (or identification) and source verification embedded in a subsumption architecture. Algorithms for source identification are derived from the moth-inspired plume tracing strategies based on a chemical sensor. The in-water test missions, conducted in November 2002 at San Clemente Island (California, USA) in June 2003 in Duck (North Carolina, USA) and in October 2010 at Dalian Bay (China), successfully identified the source locations after autonomous underwater vehicles tracked the rhodamine dye plumes with a significant meander over 100 meters. The objective of the verification module is to verify the declared plume source using a visual sensor. Because images taken in near shore oceanic environments are very vague and colors in the images are not well-defined, we adopt a fuzzy color extractor to segment the color components and recognize the chemical plume and its source by measuring color similarity. The source verification module is tested by images taken during the CPT missions. PMID:23507823

Tian, Yu; Kang, Xiaodong; Li, Yunyi; Li, Wei; Zhang, Aiqun; Yu, Jiangchen; Li, Yiping

2013-01-01

262

Novel curcumin- and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells  

PubMed Central

Background Inhibition of the COP9 signalosome (CSN) associated kinases CK2 and PKD by curcumin causes stabilization of the tumor suppressor p53. It has been shown that curcumin induces tumor cell death and apoptosis. Curcumin and emodin block the CSN-directed c-Jun signaling pathway, which results in diminished c-Jun steady state levels in HeLa cells. The aim of this work was to search for new CSN kinase inhibitors analogue to curcumin and emodin by means of an in silico screening method. Methods Here we present a novel method to identify efficient inhibitors of CSN-associated kinases. Using curcumin and emodin as lead structures an in silico screening with our in-house database containing more than 106 structures was carried out. Thirty-five compounds were identified and further evaluated by the Lipinski's rule-of-five. Two groups of compounds can be clearly discriminated according to their structures: the curcumin-group and the emodin-group. The compounds were evaluated in in vitro kinase assays and in cell culture experiments. Results The data revealed 3 compounds of the curcumin-group (e.g. piceatannol) and 4 of the emodin-group (e.g. anthrachinone) as potent inhibitors of CSN-associated kinases. Identified agents increased p53 levels and induced apoptosis in tumor cells as determined by annexin V-FITC binding, DNA fragmentation and caspase activity assays. Conclusion Our data demonstrate that the new in silico screening method is highly efficient for identifying potential anti-tumor drugs. PMID:16083495

Füllbeck, Melanie; Huang, Xiaohua; Dumdey, Renate; Frommel, Cornelius; Dubiel, Wolfgang; Preissner, Robert

2005-01-01

263

Thymine vanadyl(II) compound as a diabetic drug model: chemical spectroscopic and antimicrobial assessments.  

PubMed

The aim of this study was to synthesize a novel bifunctionalized thymine vanadyl(II) compound. The solid vanadyl(II) compound has been characterized by elemental analyses (CHN), Raman laser, infrared spectra, molar conductivity, electronic spectra, thermogravimetric analyses (TGA), scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) studies. Electronic and magnetic measurements have confirmed that the speculated geometry of vanadyl(II) compound is square pyramidal geometry. The microbial test was performed for the vanadyl complex against some kinds of bacteria and fungi. The results suggested that [VO(Thy)2] adduct has an anti-diabetic profile. PMID:24785088

El-Sayed, Mohamed Y; Refat, Moamen S

2014-09-15

264

Thymine vanadyl(II) compound as a diabetic drug model: Chemical spectroscopic and antimicrobial assessments  

NASA Astrophysics Data System (ADS)

The aim of this study was to synthesize a novel bifunctionalized thymine vanadyl(II) compound. The solid vanadyl(II) compound has been characterized by elemental analyses (CHN), Raman laser, infrared spectra, molar conductivity, electronic spectra, thermogravimetric analyses (TGA), scanning electron microscopy (SEM) and X-ray powder diffraction (XRD) studies. Electronic and magnetic measurements have confirmed that the speculated geometry of vanadyl(II) compound is square pyramidal geometry. The microbial test was performed for the vanadyl complex against some kinds of bacteria and fungi. The results suggested that [VO(Thy)2] adduct has an anti-diabetic profile.

El-Sayed, Mohamed Y.; Refat, Moamen S.

2014-09-01

265

Merging bioactivity with liquid chromatography-mass spectrometry-based chemometrics to identify minor immunomodulatory compounds from a Micronesian adaptogen, Phaleria nisidai.  

PubMed

This study presents a strategy based on repeatable reversed-phase LC-TOF-MS methods and chemometric statistical tools, including untargeted PCA and supervised OPLS-DA models, to identify low-yielding compounds with potent immunostimulant activity in Phaleria nisidai (Thymelaeaceae), a plant with a history of use as an adaptogen on the islands of Palau in Micronesia. IFN? ELISA assays were used to classify chromatographic fractions according to imunomodulatory activity prior to LC-TOF-MS chemometric analysis to target and identify compounds likely to contribute to observed activity. Simplexin, a daphnane diterpene ester, was identified for the first time from this genus and caused an increase in the production of cytokines (IFN?, IL1?, IL6, and IL13) by peripheral blood mononuclear cells. Five other daphnane diterpene esters were tentatively identified for the first time from this plant based on mass spectral data and are marker metabolites distinguishing active from inactive fractions. This analytical approach increased the efficiency of bioactivity-guided fractionation and has the potential to minimize redundant isolation and identify minor constituents with potent activity from a complex matrix. PMID:25218635

Kulakowski, Daniel M; Wu, Shi-Biao; Balick, Michael J; Kennelly, Edward J

2014-10-17

266

Using the chemical equilibrium partitioning space to explore factors influencing the phase distribution of compounds involved in secondary organic aerosol formation  

NASA Astrophysics Data System (ADS)

Many atmospheric and chemical variables influence the partitioning equilibrium between gas phase and condensed phases of compounds implicated in the formation of secondary organic aerosol (SOA). The large number of factors and their interaction makes it often difficult to assess their relative importance and concerted impact. Here we introduce a two-dimensional space, which maps regions of dominant atmospheric phase distribution within a coordinate system defined by equilibrium partitioning coefficients between the gas phase, an aqueous phase and a water insoluble organic matter (WIOM) phase. Placing compounds formed from the oxidation of n-alkanes, terpenes and mono-aromatic hydrocarbons on the maps based on their predicted partitioning properties allows for a simple graphical assessment of their equilibrium phase distribution behaviour. Specifically, it allows for the simultaneous visualization and quantitative comparison of the impact on phase distribution of changes in atmospheric parameters (such as temperature, salinity, WIOM phase polarity, organic aerosol load, and liquid water content), and chemical properties (such as oxidation state, molecular size, functionalization, and dimerisation). The graphical analysis reveals that the addition of hydroxyl, carbonyl and carboxyl groups increases the affinity of aliphatic, alicyclic and aromatic hydrocarbons for the aqueous phase more rapidly than their affinity for WIOM, suggesting that the aqueous phase may often be relevant even for substances that are considerably larger than the C2 and C3 compounds that are typically believed to be associated with aqueous SOA. In particular, the maps identify some compounds that contribute to SOA formation if partitioning to both WIOM and aqueous phase is considered, but would remain in the gas phase if either condensed phase were neglected. For example, many semi-volatile ?-pinene oxidation products will contribute to aqueous SOA under the high liquid water content conditions encountered in clouds, but would remain vapours in wet aerosol. It is conceivable to develop parameterizations of "partitioning basis sets" that group compounds with comparable partitioning properties, which - when combined with data on the abundance of those groups of compounds - could serve in the simulation of SOA formation.

Wania, F.; Lei, Y. D.; Wang, C.; Abbatt, J. P. D.; Goss, K.-U.

2014-10-01

267

Transport of chemical and microbial compounds from known wastewater discharges: Potential for use as indicators of human fecal contamination  

USGS Publications Warehouse

The quality of drinking and recreational water is currently (2005) determined using indicator bacteria. However, the culture tests used to analyze forthese bacteria require a long time to complete and do not discriminate between human and animal fecal material sources. One complementary approach is to use chemicals found in human wastewater, which would have the advantages of (1) potentially shorter analysis times than the bacterial culture tests and (2) being selected for human-source specificity. At 10 locations, water samples were collected upstream and at two successive points downstream from a wastewaster treatment plant (WWTP); a treated effluent sample was also collected at each WWTP. This sampling plan was used to determine the persistence of a chemically diverse suite of emerging contaminants in streams. Samples were also collected at two reference locations assumed to have minimal human impacts. Of the 110 chemical analytes investigated in this project, 78 were detected at least once. The number of compounds in a given sample ranged from 3 at a reference location to 50 in a WWTP effluent sample. The total analyte load at each location varied from 0.018 ??g/L at the reference location to 97.7 ??g/L in a separate WWTP effluent sample. Although most of the compound concentrations were in the range of 0.01-1.0 ??g/L, in some samples, individual concentrations were in the range of 5-38 ??g/L The concentrations of the majority of the chemicals present in the samples generally followed the expected trend: they were either nonexistent or at trace levels in the upstream samples, had their maximum concentrations in the WWTP effluent samples, and then declined in the two downstream samples. This research suggests that selected chemicals are useful as tracers of human wastewater discharge. ?? 2005 American Chemical Society.

Glassmeyer, S.T.; Furlong, E.T.; Kolpin, D.W.; Cahill, J.D.; Zaugg, S.D.; Werner, S.L.; Meyer, M.T.; Kryak, D.D.

2005-01-01

268

Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed.  

PubMed

A declaration of conformity according to European regulation No. 10/2011 is required to ensure the safety of plastic materials in contact with foodstuffs. This regulation established a positive list of substances that are authorized for use in plastic materials. Some compounds are subject to restrictions and/or specifications according to their toxicological data. Despite this, the analysis of PET reveals some non-intentionally added substances (NIAS) produced by authorized initial reactants and additives. Genotoxic and estrogenic activities in PET-bottled water have been reported. Chemical mixtures in bottled water have been suggested as the source of these toxicological effects. Furthermore, sample preparation techniques, such as solid-phase extraction (SPE), to extract estrogen-like compounds in bottled water are controversial. It has been suggested that inappropriate extraction methods and sample treatment may result in false-negative or positive responses when testing water extracts in bioassays. There is therefore a need to combine chemical analysis with bioassays to carry out hazard assessments. Formaldehyde, acetaldehyde and antimony are clearly related to migration from PET into water. However, several studies have shown other theoretically unexpected substances in bottled water. The origin of these compounds has not been clearly established (PET container, cap-sealing resins, background contamination, water processing steps, NIAS, recycled PET, etc.). Here, we surveyed toxicological studies on PET-bottled water and chemical compounds that may be present therein. Our literature review shows that contradictory results for PET-bottled water have been reported, and differences can be explained by the wide variety of analytical methods, bioassays and exposure conditions employed. PMID:22196043

Bach, Cristina; Dauchy, Xavier; Chagnon, Marie-Christine; Etienne, Serge

2012-03-01

269

Quantitative comparison of chemical, biological and mechanical induction of secondary compounds in Pinus pinaster seedlings  

Microsoft Academic Search

Chemical elicitors and mechanical treatments simulating real insect herbivory have been increasingly used to study induced\\u000a defensive responses in woody plants. However, simultaneous quantitative comparisons of plant chemical defences elicited by\\u000a real and simulated herbivory have received little attention. In this paper we compared the effects of real herbivory, simulated\\u000a herbivory using two chemical elicitors, and mechanical damage treatments on

Xoaquín Moreira; Rafael Zas; Luis Sampedro

270

Chemical Communication in the German Cockroach: Pheromones and Heterospecific Courtship Eliciting Compounds.  

E-print Network

??Sexual communication is vital for the reproductive success of many species. Chemical communication is considered highly effective in being both species-specific and indicative of reproductive… (more)

Eliyahu, Dorit

2007-01-01

271

Isolation and Chemical Structural Characterisation of a Compound with Antioxidant Activity from the Roots of Senna italica  

PubMed Central

Senna italica, a member of the Fabaceae family (subfamily Caesalpiniaceae), is widely used in South African traditional medicine to treat a number of disease conditions. Aqueous extracts of the plant are mainly used to treat sexually transmitted infections and intestinal complications. The roots of S. italica were ground to a fine powder and sequentially extracted with n-hexane, dichloromethane, acetone, and methanol using serial exhaustive extraction (SEE) method. Thin layer chromatography was used to analyse the phytochemical composition of the extracts and DPPH radical scavenging method to detect the presence of antioxidant compounds. The bioassay guided fractionation of the acetone fraction afforded an antioxidant compound with free radical scavenging activity. The isolated compound was subsequently identified as 3,4?,5-trihydroxystilbene (resveratrol). This study represents the first report of the stilbene resveratrol in S. italica. PMID:23843877

Mokgotho, Matlou Phineas; Gololo, Stanley Sechene; Masoko, Peter; Shai, Leshwene Jeremiah; Bagla, Victor Patrick; Eloff, Jacobus Nicolaas

2013-01-01

272

CHEMICAL AND ULTRASTRUCTURAL IDENTIFICATION OF 5-HYDROXYTRYPTAMINE IN AN IDENTIFIED NEURON  

PubMed Central

The two largest cells in a typical ganglion of the leech (Hirudo medicinalis) nervous system are the colossal cells of Retzius. These cells show a positive chromaffin reaction, and it has been suggested that they contain 5-hydroxytryptamine (5-HT). In this study, the presence of 5-HT in the colossal cells was confirmed by microspectrofluorometry and by thin-layer chromatography and spectrofluorometry of extracts of individually dissected and pooled colossal cell bodies. A single colossal cell body was found to contain, on the average, 3.8 x 10-10 g (6mM) 5-HT. Electron microscopy shows that the colossal cells are distinguished by the presence of 1000 A granules with irregular, electron-opaque cores. Since the granules are distributed in the same pattern as the 5-HT fluorescence, we have suggested that they contain 5-HT. Furthermore, a chromaffin reaction modified for the electron microscope provides evidence that 5-HT is present in the granule cores. These data can now serve as a basis for further studies on the metabolism, distribution, and function of 5-HT in these identified neurons. PMID:4305885

Rude, Sonia; Coggeshall, Richard E.; Van Orden, Lucas S.

1969-01-01

273

Chemical genetics of TOR identifies an SCF family E3 ubiquitin ligase inhibitor  

PubMed Central

The target of rapamycin (TOR) plays a central role in eukaryotic cell growth control1. With prevalent hyper-activation of the mTOR pathway in human cancers2, novel strategies to enhance TOR pathway inhibition are highly desirable. We used a yeast-based platform to identify small-molecule enhancers of rapamycin (SMERs) and discovered an inhibitor of the SCFMet30 ubiquitin ligase (SMER3). The large SCF (Skp1-Cullin-F-box) family of ubiquitin ligases performs important functions in diverse cellular processes including transcription, cell-cycle control, and immune response3. Accordingly, there would be great value in developing SCF ligase inhibitors that act by a defined mechanism to specifically inactivate ligase activity. We show here that SMER3 selectively inhibits SCFMet30 in vivo and in vitro, but not the closely related SCFCdc4. Our results demonstrate that there is no fundamental barrier to obtaining specific inhibitors to modulate function of individual SCF complexes, and suggest new strategies for combination therapy with rapamycin. PMID:20581845

Aghajanyy, Mariam; Jonai, Nao; Flick, Karin; Fu, Fei; Luo, Manlin; Cai, Xiaolu; Ouni, Ikram; Pierce, Nathan; Tang, Xiaobo; Lomenick, Brett; Damoiseaux, Robert; Hao, Rui; del Moral, Pierre M.; Verma, Rati; Li, Ying; Li, Cheng; Houk, Kendall N.; Jung, Michael E.; Zheng, Ning; Huang, Lan; Deshaies, Raymond J.; Kaiser, Peter; Huang, Jing

2010-01-01

274

Students' Predictions about the Sensory Properties of Chemical Compounds: Additive versus Emergent Frameworks  

ERIC Educational Resources Information Center

We investigated general chemistry students' intuitive ideas about the expected properties of the products of a chemical reaction. In particular, we analyzed college chemistry students' predictions about the color, smell, and taste of the products of chemical reactions represented at the molecular level. The study was designed to explore the extent…

Talanquer, Vicente

2008-01-01

275

Identifying signature of chemical applications on indigenous and invasive nontarget arthropod communities in vineyards.  

PubMed

Communities of arthropods providing ecosystem services (e.g., pest control, pollination, and soil nutrient cycling) to agricultural production systems are influenced by pesticide inputs, yet the impact of pesticide applications on nontarget organisms is normally evaluated through standardized sets of laboratory tests involving individual pesticides applied to a few representative species. By combining season-long pesticide applications of various insecticides and fungicides into a metric based on the International Organization for Biological and Integrated Control (IOBC) toxicity ratings, we evaluate season-long pesticide impacts on communities of indigenous and exotic arthropods across 61 vineyards assessed for an entire growing season. The composition of arthropod communities, identified mostly at the family level, but in some cases at the species level, was altered depending on season-long pesticide use. Numbers of mostly indigenous parasitoids, predatory mites, and coccinellids in the canopy, as well as carabid/tenebrionid beetles and some spider families on the ground, were decreased at higher cumulative pesticide metric scores. In contrast, numbers of one invasive millipede species (Ommatoiulus moreletti Lucas, Julida: Julidae) increased under higher cumulative pesticide metric scores. These changing community patterns were detected despite the absence of broad-spectrum insecticide applications in the vineyards. Pesticide effects were mostly due to indoxacarb and sulphur, applied as a fungicide. The reduction of beneficial arthropods and increase in an invasive herbivorous millipede under high cumulative pesticide metric scores highlights the need to manage nontarget season-long pesticide impacts in vineyards. A cumulative pesticide metric, based on IOBC toxicity ratings, provides a way of assessing overall toxicity effects, giving managers a means to estimate and consider potential negative season-long pesticide impacts on ecosystem services provided through arthropod communities. PMID:20945768

Nash, Michael A; Hoffmann, Ary A; Thomson, Linda J

2010-09-01

276

Liquid chromatography, chemical oxidation, and online carbon isotope dilution mass spectrometry as a universal quantification system for nonvolatile organic compounds.  

PubMed

A procedure for the universal detection and quantification of polar organic compounds separated by liquid chromatography (LC) based on postcolumn carbon isotope dilution mass spectrometry (IDMS) was developed. The eluent from the LC column is mixed online with a continuous flow of (13)C-enriched sodium bicarbonate, and the sodium persulfate oxidation reaction in acidic media is employed to achieve isotope equilibration. All carbon-containing compounds eluting from the column are oxidized to (12)CO(2) and (13)CO(2), respectively, and the carbon dioxide is separated from the aqueous phase using a gas-permeable membrane. The gaseous carbon dioxide is then carried to the mass spectrometer for isotope ratio measurements. Different water-soluble organic compounds were evaluated using a flow injection configuration to assess the efficiency of the oxidation process. Most water-soluble organic compounds tested showed quantitative oxidation. However, chemical structures involving conjugated C?N double bounds and guanidinium-like structures were found to be resistant to the oxidation and were further studied. For this purpose, (13)C(1)-labeled creatine (with the isotopic label in the guanidinium group) was employed as model compound. Specific conditions for the quantitative oxidation of these compounds required lower flow rates and the addition of metallic catalysts. This novel approach was tested as a universal detection and quantification system for LC. A simple standard mixture of four amino acids was separated under 100% aqueous conditions and quantified without the need for specific standards with good accuracy and precision using potassium hydrogen phthalate as internal standard. The main field of application of the developed method is for the purity assessment of organic standards with direct traceability to the International System of Units (SI). PMID:23252800

Díaz, Sergio Cueto; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo; Alonso, J Ignacio García

2013-02-01

277

hERGAPDbase: a database documenting hERG channel inhibitory potentials and APD-prolongation activities of chemical compounds.  

PubMed

Drug-induced QT interval prolongation is one of the most common reasons for the withdrawal of drugs from the market. In the past decade, at least nine drugs, i.e. terfenadine, astemizole, grepafloxacin, terodiline, droperidol, lidoflazine, sertindole, levomethadyl and cisapride, have been removed from the market or their use has been severely restricted because of drug-induced QT interval prolongation. Therefore, this irregularity is a major safety concern in the case of drugs submitted for regulatory approval. The most common mechanism of drug-induced QT interval prolongation may be drug-related inhibition of the human ether-á-go-go-related gene (hERG) channel, which subsequently results in prolongation of the cardiac action potential duration (APD). hERGAPDbase is a database of electrophysiological experimental data documenting potential hERG channel inhibitory actions and the APD-prolongation activities of chemical compounds. All data entries are manually collected from scientific papers and curated by a person. With hERGAPDbase, we aim to provide useful information for chemical and pharmacological scientists and enable easy access to electrophysiological experimental data on chemical compounds. Database URL: http://www.grt.kyushu-u.ac.jp/hergapdbase/. PMID:21586548

Hishigaki, Haretsugu; Kuhara, Satoru

2011-01-01

278

Anti-Prion Activity of a Panel of Aromatic Chemical Compounds: In Vitro and In Silico Approaches  

PubMed Central

The prion protein (PrP) is implicated in the Transmissible Spongiform Encephalopathies (TSEs), which comprise a group of fatal neurodegenerative diseases affecting humans and other mammals. Conversion of cellular PrP (PrPC) into the scrapie form (PrPSc) is the hallmark of TSEs. Once formed, PrPSc aggregates and catalyzes PrPC misfolding into new PrPSc molecules. Although many compounds have been shown to inhibit the conversion process, so far there is no effective therapy for TSEs. Besides, most of the previously evaluated compounds failed in vivo due to poor pharmacokinetic profiles. In this work we propose a combined in vitro/in silico approach to screen for active anti-prion compounds presenting acceptable drugability and pharmacokinetic parameters. A diverse panel of aromatic compounds was screened in neuroblastoma cells persistently infected with PrPSc (ScN2a) for their ability to inhibit PK-resistant PrP (PrPRes) accumulation. From ?200 compounds, 47 were effective in decreasing the accumulation of PrPRes in ScN2a cells. Pharmacokinetic and physicochemical properties were predicted in silico, allowing us to obtain estimates of relative blood brain barrier permeation and mutagenicity. MTT reduction assays showed that most of the active compounds were non cytotoxic. Compounds that cleared PrPRes from ScN2a cells, were non-toxic in the MTT assay, and presented a good pharmacokinetic profile were investigated for their ability to inhibit aggregation of an amyloidogenic PrP peptide fragment (PrP109–149). Molecular docking results provided structural models and binding affinities for the interaction between PrP and the most promising compounds. In summary, using this combined in vitro/in silico approach we have identified new small organic anti-scrapie compounds that decrease the accumulation of PrPRes in ScN2a cells, inhibit the aggregation of a PrP peptide, and possess pharmacokinetic characteristics that support their drugability. These compounds are attractive candidates for prion disease therapy. PMID:24400098

Ferreira, Natalia C.; Marques, Icaro A.; Conceição, Wesley A.; Macedo, Bruno; Machado, Clarice S.; Mascarello, Alessandra; Chiaradia-Delatorre, Louise Domeneghini; Yunes, Rosendo Augusto; Nunes, Ricardo José; Hughson, Andrew G.; Raymond, Lynne D.; Pascutti, Pedro G.; Caughey, Byron; Cordeiro, Yraima

2014-01-01

279

A facile and sensitive detection of organophosphorus chemicals by rapid aggregation of gold nanoparticles using organic compounds.  

PubMed

Organophosphorus (OP) chemicals are highly effective insecticides and germicides, and are the most widely used in agriculture. Unfortunately, OP compounds are some of the most toxic substances to humans, even at very low doses. Because detecting OP residues in agricultural products is essential, simple, sensitive, and particularly rapid on-site detection methods are required. Gold nanoparticles (AuNPs) have been used as signal-enhancing detection probes in the field of biosensors due to their size-dependent optical properties. When imidazole was added to AuNPs mixed with OP compounds, the AuNPs was aggregated and their color changed to purple. This caused the appearance of a new peak at 660-670nm, which could be measured within approximately 30s. Therefore, this method allows the detection of OP compounds, including diazinon, iprobenfos, and edifenphos, on-site at part-per-billion (ppb) concentrations, and also affords a straightforward method. Furthermore, the method was successfully applied in the determination of OP compound in a real sample (river water) with satisfactory results. PMID:25216978

Kim, Myung Sun; Kim, Gi Wook; Park, Tae Jung

2015-05-15

280

The Arctic seasonal snow pack as a transfer mechanism and a reactor for lower atmosphere chemical compounds (Invited)  

NASA Astrophysics Data System (ADS)

The Polar Regions are snow covered for two thirds of the year (or longer) and in many locations there are few melt events during the winter. As a consequence, the late winter snow pack presents a spatial and temporal archive of the previous winter's precipitation, snow-atmosphere exchange, and within snow pack physical and chemical processes. However, to use the snow pack as a 'sensor' we have to understand the physical and chemical exchange processes between atmospheric compounds and snow and ice surfaces. Of equal importance is knowledge of the reactions that occur in and on snow and ice particle surfaces. Recent research has provided insights on the pathways individual compounds take from the lower atmosphere to snow and on the physical and chemical processes occurring within the snow pack at a variety of scales. Snow on or near sea ice has markedly higher major ion concentrations than snow on the terrestrial snow pack, most notably for chloride and bromide. This difference in chemical composition can be dramatic even in coastal regions where the land is only hundreds of meters away. As a consequence, we have to treat chemical cycling processes in/on snow on sea ice and snow on land differently. Since these halogens, particularly bromine, play critical roles in the spring time photochemical reactions that oxidize ozone and mercury their presence and fate on the sea ice snow pack is of particular interest. A future Arctic is expected to have a thinner, more dynamic sea ice cover that will arrive later and melt earlier. The areal extent of young ice production will likely increase markedly. This would lead to a different snow depositional and chemical regime on sea ice with potential ramifications for chemical exchange with the lower atmosphere. The roles of clear sky precipitation ('diamond dust') and surface hoar deposition in providing a unique lower atmospheric 'reactor' and potential source of water equivalence have been largely overlooked. This despite the fact that the highest mercury concentrations measured in surface snow or ice precipitation have been from diamond dust. Yet diamond dust has extremely low concentrations of major ions. This discrepancy may yield clues into how reactive aerosol particles sorb to falling ice crystals or how reactive aerosols provide a nucleation site around which ice accumulates. This presentation will cover recent field measurements addressing these topics with an eye toward how snow physical and chemical processes may be altered as a result of a projected warmer Arctic. Team Environment Canada and Team Desert Research Institute working on the sea ice north of Barrow, Alaska during the BROMEX 2012 field campaign.

Douglas, T. A.

2013-12-01

281

Feasibility studies on newly identified LiCrP2O7 compound for lithium insertion behavior  

NASA Astrophysics Data System (ADS)

A new category of lithium intercalating cathode candidates, namely LiCrP2O7, was synthesized at 800°C using a citric acid assisted modified (CAM) sol-gel method and examined for possible lithium insertion behavior. The formation of a phase pure and monoclinic LiCrP2O7 compound with finer crystallite size was confirmed from the X-ray diffraction patterns. The presence of nano-sized particles as observed from a transmittance electron microscope image of LiCrP2O7 and the presence of a preferred local cation environment, evidenced from Fourier transform infra-red and 7Li nuclear magnetic resonance studies, are the added advantages of the present study. Further, cyclic voltametry study performed on 2016 coin cells consisting of the synthesized LiCrP2O7 cathode revealed an excellent cycling reversibility and structural stability. Hence, CAM sol-gel synthesized LiCrP2O7 is found to possess desirable physical as well as electrochemical properties, leading one to consider the same as a possible lithium intercalating cathode material.

Gangulibabu; Bhuvaneswari, D.; Kalaiselvi, N.

2009-08-01

282

Quantitative chemical proteomics identifies novel targets of the anti-cancer multi-kinase inhibitor E-3810.  

PubMed

Novel drugs are designed against specific molecular targets, but almost unavoidably they bind non-targets, which can cause additional biological effects that may result in increased activity or, more frequently, undesired toxicity. Chemical proteomics is an ideal approach for the systematic identification of drug targets and off-targets, allowing unbiased screening of candidate interactors in their natural context (tissue or cell extracts). E-3810 is a novel multi-kinase inhibitor currently in clinical trials for its anti-angiogenic and anti-tumor activity. In biochemical assays, E-3810 targets primarily vascular endothelial growth factor and fibroblast growth factor receptors. Interestingly, E-3810 appears to inhibit the growth of tumor cells with low to undetectable levels of these proteins in vitro, suggesting that additional relevant targets exist. We applied chemical proteomics to screen for E-3810 targets by immobilizing the drug on a resin and exploiting stable isotope labeling by amino acids in cell culture to design experiments that allowed the detection of novel interactors and the quantification of their dissociation constant (Kd imm) for the immobilized drug. In addition to the known target FGFR2 and PDGFR?, which has been described as a secondary E-3810 target based on in vitro assays, we identified six novel candidate kinase targets (DDR2, YES, LYN, CARDIAK, EPHA2, and CSBP). These kinases were validated in a biochemical assay and-in the case of the cell-surface receptor DDR2, for which activating mutations have been recently discovered in lung cancer-cellular assays. Taken together, the success of our strategy-which integrates large-scale target identification and quality-controlled target affinity measurements using quantitative mass spectrometry-in identifying novel E-3810 targets further supports the use of chemical proteomics to dissect the mechanism of action of novel drugs. PMID:24696502

Colzani, Mara; Noberini, Roberta; Romanenghi, Mauro; Colella, Gennaro; Pasi, Maurizio; Fancelli, Daniele; Varasi, Mario; Minucci, Saverio; Bonaldi, Tiziana

2014-06-01

283

A study of the tropospheric oxidation of volatile organic compounds using chemical ionization mass spectrometry  

E-print Network

The mechanisms and kinetics of reactions important to the troposphere have been investigated using a high pressure, turbulent, discharge-flow technique coupled to a chemical ionization mass spectrometer. The ability to ...

Broekhuizen, Keith Edward, 1974-

2002-01-01

284

EXPOSURE-DOSE-EFFECT LINKAGES FOR CHEMICALLY REACTIVE AIR TOXIC COMPOUNDS  

EPA Science Inventory

This project represents a multidisciplinary collaboration to develop and test methods for more precisely predicting human exposure-dose-response relationships of respiratory tract irritants. These irritants have the unique property of reacting chemically with proteins and lipids ...

285

Combustion chemical kinetics of biodiesel and related compounds (methyl and ethyl esters): Experiments and  

E-print Network

toward clean and efficient combustion in diesel engines. After briefly outlining the synergy between and ethyl biodiesels; Combustion; Diesel engine; Performance and emission; Chemical kinetics of oxidation energy and renewable materials. According to the International Energy Outlook of 2011, which

Paris-Sud XI, Université de

286

Kinetics of chemically modified lignin peroxidase and enzymatic oxidation of aromatic nitrogen-containing compounds  

Microsoft Academic Search

Lignin peroxidase from the white-rot fungus Phanerochaete chrysosporium was chemically modified by reductive alkylation with benzyl, naphthyl and anthracyl moieties, thereby increasing its superficial hydrophobicity. The three chemical modifications altered the kinetic behaviour of the enzyme in 10% acetonitrile with four different substrates: carbazole, pinacyanol, pyrene and veratryl alcohol. Benzyl modification of lignin peroxidase increased the catalytic efficiency (kcat\\/Km,app) 2.7

R. Vazquez-Duhalt; D. W. S. Westlake; P. M. Fedorak

1995-01-01

287

Stimulation of Ideas through Compound-Based Bibliometrics: Counting and Mapping Chemical Compounds for Analyzing Research Topics in Chemistry, Physics, and Materials Science.  

PubMed

Counting compounds (rather than papers or citations) offers a new perspective for quantitative analyses of research activities. First of all, we can precisely define (compound-related) research topics and access the corresponding publications (scientific papers as well as patents) as a measure of research activity. We can also establish the time evolution of the publications dealing with specific compounds or compound classes. Moreover, the mapping of compounds by establishing compound-based landscapes has some potential to visualize the compound basis of research topics for further research activities. We have analyzed the rare earth compounds to give an example of a broad compound class. We present the number of the currently existing compounds and of the corresponding publications as well as the time evolution of the papers and patents. Furthermore, we have analyzed the rare earth cuprates (copper oxides) as an example of a narrower compound class to demonstrate the potential of mapping compounds by compound-based landscapes. We have quantified the various element combinations of the existing compounds and revealed all element combinations not yet realized in the synthesis within this compound class. Finally, we have analyzed the quasicrystal compound category as an example of a compound class that is not defined by a specific element combination or a molecular structure. PMID:24551517

Barth, Andreas; Marx, Werner

2012-12-01

288

A NOVEL ENERGY-EFFICIENT PLASMA CHEMICAL PROCESS FOR THE DESTRUCTION OF VOLATILE TOXIC COMPOUNDS  

EPA Science Inventory

Removal of low-concentrations (below several percent) of toxic volatile compounds from contaminated air streams is encountered at DOE waste sites in two instances:(i) off-gases resulting from air-stripping of contaminated soils and (ii) effluent from the incineration of highly-co...

289

Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata  

PubMed Central

Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase) is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of 1H and 13C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl)-ethanol (Tyrosol). Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential. PMID:24031942

Specian, Vânia; Sarragiotto, Maria Helena; Pamphile, João Alencar; Clemente, Edmar

2012-01-01

290

ANALYSIS OF AMBIENT POLAR VOLATILE ORGANIC COMPOUNDS USING CHEMICAL IONIZATION -- ION TRAP DETECTOR  

EPA Science Inventory

The current approach to measuring trace levels of volatile organic compounds (VOCs) in ambient air requires cryogenic trapping of the analytes, followed by thermal desorption and low-temperature refocussing onto a column for analysis by capillary gas chromatography/mass spectrome...

291

EVALUATION OF THE SEMIVOST METHOD FOR HALOGENATED COMPOUNDS AT A CHEMICAL MANUFACTURING FACILITY  

EPA Science Inventory

A field test was conducted to determine the applicability of the SemiVOST method (SW-846 Method 0010 (Sampling), SW-846 Draft Method 3542 (Sample Preparation), and SW-846 Method 8270 (Analysis)) to semivolatile halogenated organic compounds listed in Title Ill of the 1990 Clean A...

292

Potassium Tris (Oxalato) Ferrate (III): A Versatile Compound to Illustrate the Principles of Chemical Equilibria  

ERIC Educational Resources Information Center

The potassium salt is an easy product to synthesize in an introductory course on inorganic chemistry and the students are required to prepare this product in order to improve their laboratory skills and as an introduction to the synthesis of coordination compounds. The complex potassium tris (oxalato) ferrate (III) is used to illustrate the…

Gonzalez, Gabriel; Seco, Miquel

2004-01-01

293

ISOTOPIC (14C) AND CHEMICAL COMPOSITION OF ATMOSPHERIC VOLATILE ORGANIC COMPOUND FRACTIONS - PRECURSORS TO OZONE FORMATION  

EPA Science Inventory

Atmospheric volatile organic compounds (VOCs) are an important factor in the production of ozone near ground level [3]. Many hydrocarbons originate from auto exhaust. However, a number of VOCs, e.g., isoprene, are known to be natural in origin. To develop reliable models for un...

294

Chemical characterization of bioactive compounds from the endophytic fungus Diaporthe helianthi isolated from Luehea divaricata.  

PubMed

Endophytic microorganisms, defined as fungi or bacteria that colonize the interior of plants without causing any immediate negative effects or damages, have reciprocal relationships with host plants. In some cases their presence is beneficial to the host due to the synthesis of bioactive compounds, among which several alcohols, esters, ketones and others that may react with other compounds and may be lethal to pathogenic microorganisms. Diaporthe helianthi (Phomopsis helianthi in its anamorphic phase) is available worldwide, especially in Europe, Asia and America. Isolated in Europe as an agent of the sunflower stem cancer, it has also been endophytically isolated from tropical and temperate plants. A D. helianthi strain isolated from Luehea divaricata has been employed in current research. An investigation of the secondary metabolite from D. helianthi by CC and NMR of (1)H and (13)C yielded the separation of 10 fractions and the identification of the phenolic compound 2(-4 hydroxyphenyl)-ethanol (Tyrosol). Its antimicrobial reaction was tested and the ensuing antagonistic effects on the human pathogenic bacteria Enterococcus hirae, Escherichia coli, Micrococcus luteus, Salmonella typhi, Staphylococcus aureus, phytopathogenic Xanthomonas asc. phaseoli and phytopathogenic fungi were demonstrated. Results show that bioactive compounds and Tyrosol produced by D. helianthi have a biotechnological potential. PMID:24031942

Specian, Vânia; Sarragiotto, Maria Helena; Pamphile, João Alencar; Clemente, Edmar

2012-07-01

295

Development of a chemical genetic approach for human aurora B kinase identifies novel substrates of the chromosomal passenger complex.  

PubMed

To understand how the chromosomal passenger complex ensures chromosomal stability, it is crucial to identify its substrates and to find ways to specifically inhibit the enzymatic core of the complex, Aurora B. We therefore developed a chemical genetic approach to selectively inhibit human Aurora B. By mutating the gatekeeper residue Leu-154 in the kinase active site, the ATP-binding pocket was enlarged, but kinase function was severely disrupted. A unique second site suppressor mutation was identified that rescued kinase activity in the Leu-154 mutant and allowed the accommodation of bulky N(6)-substituted adenine analogs. Using this analog-sensitive Aurora B kinase, we found that retention of the chromosomal passenger complex at the centromere depends on Aurora B kinase activity. Furthermore, analog-sensitive Aurora B was able to use bulky ATP?S analogs and could thiophosphorylate multiple proteins in cell extracts. Utilizing an unbiased approach for kinase substrate mapping, we identified several novel substrates of Aurora B, including the nucleosomal-binding protein HMGN2. We confirmed that HMGN2 is a bona fide Aurora B substrate in vivo and show that its dynamic association to chromatin is controlled by Aurora B. PMID:22267324

Hengeveld, Rutger C C; Hertz, Nicholas T; Vromans, Martijn J M; Zhang, Chao; Burlingame, Alma L; Shokat, Kevan M; Lens, Susanne M A

2012-05-01

296

Development of a Chemical Genetic Approach for Human Aurora B Kinase Identifies Novel Substrates of the Chromosomal Passenger Complex*  

PubMed Central

To understand how the chromosomal passenger complex ensures chromosomal stability, it is crucial to identify its substrates and to find ways to specifically inhibit the enzymatic core of the complex, Aurora B. We therefore developed a chemical genetic approach to selectively inhibit human Aurora B. By mutating the gatekeeper residue Leu-154 in the kinase active site, the ATP-binding pocket was enlarged, but kinase function was severely disrupted. A unique second site suppressor mutation was identified that rescued kinase activity in the Leu-154 mutant and allowed the accommodation of bulky N6-substituted adenine analogs. Using this analog-sensitive Aurora B kinase, we found that retention of the chromosomal passenger complex at the centromere depends on Aurora B kinase activity. Furthermore, analog-sensitive Aurora B was able to use bulky ATP?S analogs and could thiophosphorylate multiple proteins in cell extracts. Utilizing an unbiased approach for kinase substrate mapping, we identified several novel substrates of Aurora B, including the nucleosomal-binding protein HMGN2. We confirmed that HMGN2 is a bona fide Aurora B substrate in vivo and show that its dynamic association to chromatin is controlled by Aurora B. PMID:22267324

Hengeveld, Rutger C. C.; Hertz, Nicholas T.; Vromans, Martijn J. M.; Zhang, Chao; Burlingame, Alma L.; Shokat, Kevan M.; Lens, Susanne M. A.

2012-01-01

297

Pharmacophore modeling and molecular dynamics simulation to identify the critical chemical features against human sirtuin 2 inhibitors  

NASA Astrophysics Data System (ADS)

Sirtuin 2 (SIRT2) is one of the emerging targets in chemotherapy field and mainly associated with many diseases such as cancer and Parkinson's. Hence, quantitative hypothesis was developed using Discovery Studio v2.5. Top ten resultant hypotheses were generated, among them Hypo1 was selected as a best hypothesis based on the statistical parameters like high cost difference (52), lowest RMS (0.71), and good correlation coefficient (0.96). Hypo1 has been validated by using well known methodologies such as Fischer's randomization method (95% confidence level), test set which has shown the correlation coefficient of 0.93 as well as the goodness of hit (0.65), and enrichment factor (8.80). All the above statistical validations confirm that the chemical features in Hypo1 (1 hydrogen bond acceptor, 1 hydrophobic, and 2 ring aromatic features) was able to inhibit the function of SIRT2. Hence, Hypo1 was used as a query in virtual screening to find a novel scaffolds by screening the various chemical databases. The screened molecules from the databases were checked for the ADMET as well as the drug-like properties. Due to the lack of SIRT2-ligand complex structure in PDB, molecular docking and molecular dynamics (MD) simulation was carried out to find the suitable orientation of ligand in the active site. The representative structure from MD simulations was used as a receptor to dock the molecules which passed the drug-like properties from the virtual screening. Finally, 29 compounds were selected as a potent candidate leads based on the interactions with the active site residues of SIRT2. Thus, the resultant pharmacophore can be used to discover and design the SIRT2 inhibitors with desired biological activity.

Sakkiah, Sugunadevi; Baek, Ayoung; Lee, Keun Woo

2012-03-01

298

Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening  

PubMed Central

Mitochondrial production of reactive oxygen species is often considered an unavoidable consequence of aerobic metabolism and currently cannot be manipulated without perturbing oxidative phosphorylation. Antioxidants are widely used to suppress effects of reactive oxygen species after formation, but they can never fully prevent immediate effects at the sites of production. To identify site-selective inhibitors of mitochondrial superoxide/H2O2 production that do not interfere with mitochondrial energy metabolism, we developed a robust small-molecule screen and secondary profiling strategy. We describe the discovery and characterization of a compound (N-cyclohexyl-4-(4-nitrophenoxy)benzenesulfonamide; CN-POBS) that selectively inhibits superoxide/H2O2 production from the ubiquinone-binding site of complex I (site IQ) with no effects on superoxide/H2O2 production from other sites or on oxidative phosphorylation. Structure/activity studies identified a core structure that is important for potency and selectivity for site IQ. By employing CN-POBS in mitochondria respiring on NADH-generating substrates, we show that site IQ does not produce significant amounts of superoxide/H2O2 during forward electron transport on glutamate plus malate. Our screening platform promises to facilitate further discovery of direct modulators of mitochondrially-derived oxidative damage and advance our ability to understand and manipulate mitochondrial reactive oxygen species production in both normal and pathological conditions. PMID:23994103

Orr, Adam L.; Ashok, Deepthi; Sarantos, Melissa R.; Shi, Tong; Hughes, Robert E.; Brand, Martin D.

2013-01-01

299

Chemical composition and phenolic compound profile of mortiño (Vaccinium floribundum Kunth).  

PubMed

The phenolic compounds in mortiño (Vaccinium floribundum Kunth, family Ericaceae) from the páramos of Ecuador were studied by LC-DAD-MS/MS for the first time. (-)-Epicatechin, one dimer A and one trimer A were found at a total concentration of 18 mg/100 g FW. Of the flavonol glycosides (38 mg/100 g FW), quercetin and myricetin were found as -3-O-hexosides, -3-O-pentosides and -3-O-deoxyhexosides. Chlorogenic and neochlorogenic acids together with caffeic/ferulic acid derivatives were found as predominant components among the hydroxycinnamic acids in the berry. Anthocyanins, including cyanidin and delphinidin derivatives, were the major phenolic compound class quantified (345 mg cyanidin-3-O-glucoside/100 g FW). PMID:19719139

Vasco, Catalina; Riihinen, Kaisu; Ruales, Jenny; Kamal-Eldin, Afaf

2009-09-23

300

Separation of sulfur containing chemical warfare related compounds in aqueous samples by micellar electrokinetic chromatography  

Microsoft Academic Search

A method is described in which micellar electrokinetic chromatography (MEKC) is used to separate thiodiglycol, 2,2?-sulfinyldiethanol, 1,4-dithiane, 1,4-thioxane, O-isobutyl methylphosphonothioic acid and O-ethyl methylphosphonothioic acid in aqueous samples. Detection limits range from 1 to 10 ?g\\/ml and the calibration curves are linear over two orders of magnitude. The compounds are separated in under 10 min. The method fulfills our requirements

Richard L. Cheicante; H. Dupont Durst

1995-01-01

301

Selective growth-inhibiting effects of compounds identified in Tabebuia impetiginosa inner bark on human intestinal bacteria.  

PubMed

The growth-inhibiting activity of anthraquinone-2-carboxylic acid and lapachol identified in the inner bark of taheebo, Tabebuia impetiginosa, toward 10 human intestinal bacteria was evaluated by using a paper disk diffusion bioassay and compared to those of seven lapachol congeners (1,4-naphthoquinone, naphthazarin, menadione, lawsone, plumbagin, juglone, and dichlone) as well as two commercially available antibiotics, chloramphenicol and tetracycline. Anthraquinone-2-carboxylic acid exhibited very strong growth inhibition of Clostridium paraputrificum at 1 microg/disk while 100 microg/disk of lapachol was needed for moderate growth inhibition of the same organism. These two isolates exhibited weak inhibition of Clostridium perfringens and Escherichia coli at 100 microg/disk while no adverse effects were observed on the growth of Bifidobacterium adolescentis, Bifidobacterium bifidum, Bifidobacterium infantis, Lactobacillus acidophilus, and Lactobacillus casei at 1000 microg/disk. Structure-activity relationships indicate that a methyl group in the C-2 position of 1,4-naphthoquinone derivatives might play an important role in antibacterial activity. PMID:15713033

Park, Byeoung-Soo; Kim, Jun-Ran; Lee, Sung-Eun; Kim, Kyoung Soon; Takeoka, Gary R; Ahn, Young-Joon; Kim, Jeong-Han

2005-02-23

302

RESPONSE OF PORTABLE VOC (VOLATILE ORGANIC COMPOUNDS) ANALYZERS TO CHEMICAL MIXTURES  

EPA Science Inventory

The report gives the responses of two types of portable VOC analyzers (Century Systems OVA-108 and Bacharach TLV Sniffer), calibrated with methane and used to measure a variety of chemical vapor mixtures. Instrument response data for both binary and ternary mixtures of selected c...

303

IDENTIFICATION OF COMPOUNDS ASSOCIATED WITH TESTOSTERONE DEPRESSIONS IN FISH EXPOSED TO BLEACHED KRAFT PULP AND PAPER MILL CHEMICAL RECOVERY CONDENSATES  

Microsoft Academic Search

Abstract—In previous experiments, bleached kraft chemical recovery condensates generated during softwood pulp production have been identified as a primary,source of substances causing testosterone depressions,in mummichog,(Fundulus heteroclitus,), three diterpenoids, and a dimethoxy stilbene. Concentrations of confirmed condensate extractives were consistent in all samples,collected. Spiking experiments,of confirmed,extractives revealed substantial losses following,high-pressure liquid chromatographic,fractionation and three different methods,of fraction preparation. In an effort

Andrew M. Belknap; Keith R. Solomon; Deborah L. MacLatchy; Monique G. Dubé; L. Mark Hewitt

2006-01-01

304

New Approach to Evaluate the Antennal Response of an Adult Predator Insect to Different Volatile Chemical Compounds by using Electroantennogram Technique  

NASA Astrophysics Data System (ADS)

The antennal response of adult syrphid flies to selected plant volatile chemical compounds was investigated in the present study. The main chemical classes and their chemical compounds were aldehydes (nonanal and benzaldehyde), monoterpene-alcohols (linalool and alpha-terpineol), ketones (6-methyl-5-heptene-2-one and 2-undecanone), hydrocarbons (tetradecane) and benzoids (methyl salicylate). Electroantennogram (EAG) records showed that the syrphid antennae were strongly responded to linalool, 6-methyl-5-heptene-2-one and methyl salicylate even at low concentrations, in addition to the high dose concentration of nonanal comparably to the other chemical compounds. The antennae of old syrphid adults were more responsive and elicited higher levels of responses to all compounds rather than young syrphid adults. The antennal sensitivity may differ from one compound to another according to the sex. The difference in responses could be attributed to the sensitivity of olfactory receptors and/or the characterization of binding protein(s). The quality of biocontrol agent could be improved if the chemical interaction between beneficial natural enemies and the surrounding environment is intensively studied and we clearly understand the chemical ecology of each natural enemy.

Shonouda, Mourad L.

305

Attomole detection of isotope-labeled compounds in chemical defense research  

SciTech Connect

AMS detects 14C at zeptomole to femtomole sensitivities. We detected the effect of ChE-blocking pyridostigmine bromide on the CNS uptake of a pyrethroid insecticide at scaled human-equivalent exposures in rats. Significant blood to brain protection from permethrin dosed at 5mg/kg is seen in the CNS of rats receiving pyridostigmine bromide pretreatments in chow at 2mg/kg/day. The synergy of these compounds was suggested as a precursor to some symptoms of `Gulf War Syndrome`.

Vogel, J.S.; Buchholz, B.A.; Pawley, N.H.; Mauthe, R.E.; Dingley, K.; Turteltaub, K.

1996-11-01

306

Hiding in plain sight: cuticular compound profile matching conceals a larval tortoise beetle in its host chemical cloud.  

PubMed

Larvae of tortoise beetles are postulated to have fecal shields as the main defensive strategy against predators. Such a device protects beetles both physically and chemically. In order to examine how larvae Chelymorpha reimoseri are protected against predatory ants, which frequently visit extrafloral nectaries in their host plant, the morning glory Ipomoea carnea, we conducted anti-predation bioassays with live 5th instars. In the field, larvae in contact with ants had survival between 40 and 73 %, independently of shield presence. In the laboratory, when exposed to Camponotus crassus, larvae with shields had significantly higher survival (85 %) than those without shields (64 %). In both scenarios, larval survival was significantly higher when compared with palatable Spodoptera frugiperda larvae, as the latter were all consumed. We also observed that when C. reimoseri larvae showed no movement, the ants walked on them without attacking. We hypothesized that if the larval integument has a pattern of cuticular compounds (CCs) similar to that of its host plant, larvae would be rendered chemically camouflaged. In the field and laboratory, the freeze-dried palatable larvae of S. frugiperda treated with CCs of 5th instar C. reimoseri and left on I. carnea leaves were significantly less removed by ants than controls without these compounds. We also found a similarity of approximately 50 % between the CCs in C. reimoseri larvae and I. carnea host leaves. Both findings provide evidence in support of the hypothesis that chemical camouflage plays an important role in larval defense, which is reported for the first time in an ectophagous leaf beetle larva. PMID:24744044

Massuda, Kamila Ferreira; Trigo, José Roberto

2014-04-01

307

In planta biocatalysis screen of P450s identifies 8-methoxypsoralen as a substrate for the CYP82C subfamily, yielding original chemical structures.  

PubMed

An in vivo plant screen that allows for the analysis of exogenously applied substrates against transgenic Arabidopsis lines overexpressing individual cytochrome P450s has been developed. By deploying this screen with a subset of 91 P450s, we have identified an original substrate for members of the CYP82C subfamily. The therapeutic compound 8-methoxypsoralen was hydroxylated by plants overexpressing CYP82C2 or CYP82C4, forming 5-hydroxy-8-methoxypsoralen. Additionally, plants further modified this product to create a glycosylated compound, likely the compound 5-O-beta-D-glucopyranosyl-8-methoxypsoralen. The discovery of adducts of therapeutic compounds demonstrates the potential of this biocatalysis screening approach to create compounds that may be of pharmacological value. Additionally, this platform provides a means to expand the general knowledge base of P450 enzyme/substrate combinations and may provide valuable tools for a vast array of biocatalytic and bioremediation processes. PMID:18291319

Kruse, Tanya; Ho, Kwongling; Yoo, Hye-Dong; Johnson, Thomas; Hippely, Matt; Park, Joon-Hyun; Flavell, Richard; Bobzin, Steve

2008-02-01

308

Ultrafast magnetization dynamics in Co-based Heusler compounds with tuned chemical ordering  

NASA Astrophysics Data System (ADS)

We have studied thin film samples of C{{o}_{2}}FeSi and C{{o}_{2}}MnSi with different degrees of chemical ordering using the time-resolved magneto-optical Kerr effect to elucidate the influence of defects in the crystal structure on magnetization dynamics. Surprisingly, we find that the presence of defects does not influence the optically induced magnetization dynamics on the ultrashort timescale (some 100 fs). However, we observe a second demagnetization stage with a timescale of tens of picoseconds in C{{o}_{2}}MnSi for low chemical ordering; that is, a large number of defects. We interpret this second demagnetization step as originating from scattering of mostly thermalized majority electrons into unoccupied minority defect states.

Steil, D.; Schmitt, O.; Fetzer, R.; Kubota, T.; Naganuma, H.; Oogane, M.; Ando, Y.; Suszka, A. K.; Idigoras, O.; Wolf, G.; Hillebrands, B.; Berger, A.; Aeschlimann, M.; Cinchetti, M.

2014-06-01

309

L III Absorption edge in holmium metal and its chemical shift in compounds  

Microsoft Academic Search

Measurements of L-absorption spectra of hohnium are not known in the literature. In fact, pure holmium element has been only recently isolated. Earher measurements (1.2) were made either on Ho2(S04)3+a q or on Ho20 a. It is well known that, when a chemical bond is formed, there occurs a redistribution of density of valence electrons and a corresponding small change

B. R. K. Agarwal; L. P. Verma

1971-01-01

310

The effect of probiotic microorganisms and bioactive compounds on chemically induced carcinogenesis in rats.  

PubMed

Diet interventions and natural bioactive supplements have now been extensively studied to reduce risks of colon cancer, which is one of the major public health problem throughout the world. The objective of our investigation was to study the effects of probiotic, prebiotic, nutritional plant extract, and plant oil on selected biochemical and immunological parameters in rats with colon cancer induced by N,N dimethylhydrazine (DMH). Male and female Wistar albino rats were were fed by a high-fat (HF) diet (10% fat in the diet) and were divided into 9 groups: Control group; PRO group - HF diet supplemented with probiotic Lactobacillus plantarum to provide 3 x 109 c.f.u. of strain/1 ml of medium; PRE group - HF diet supplemented with inulin enriched with oligofructose (2% of HF diet); HES group - HF diet supplemented with plant extract of Aesculus hippocastanum L. (1% of HF diet); OIL group - HF diet comprised Linioleum virginale (2% of HF diet); and combination of probiotic microorganisms and bioactive compounds in the groups - PRO-PRE, PRO-HES, PRO-OIL, PRE-OIL. Carcinogenesis was initiated with subcutaneous injection of DMH (20 mg/kg) two times at week interval and dietary treatments were continued for the six weeks. Application of probiotic microorganisms and bioactive compounds in all treated groups significantly decreased the activities of bacterial enzymes (p<0.001), the fecal bile acids concentration (p<0.01; p<0.001) and significantly increased serum TNFalpha level (p<0.001) in comparison to the control rats. The number of coliforms was reduced in PRO, PRO-PRE, PRO-OIL and PRE-OIL groups and significantly higher count of lactobacilli (p<0.05) was observed in PRO-PRE, PRO-OIL and PRE-OIL groups in compare with the controls. In conclusion, the results of this study indicate that probiotic microorganisms and bioactive compounds could exert a preventive effect on colon carcinogenesis induced by DMH. PMID:20568896

Bertkova, I; Hijova, E; Chmelarova, A; Mojzisova, G; Petrasova, D; Strojny, L; Bomba, A; Zitnan, R

2010-01-01

311

Chemical shifts of N14 in the NMR spectra of nitrates, nitrites, and nitro-compounds  

Microsoft Academic Search

The nuclear magnetic resonances of N14 in the nitrate groups LiNO3, NaNO3, KNO3, AgNO3, Ag(NH3)2NO3, Zn(NO3)2, Pb(NO3)2, Cd(NO3)2, UO2(NO3)2, and Al(NO3)3 have a zero chemical shift with respect to the N14 peak in the nitrate group of NH4NO3 ; the line widths of these resonances are the same. The N14 peak in HNO3 is of comparable width but has a

Bernhard M. Schmidt; L. Carlton Brown; Dudley Williams

1958-01-01

312

Lysergic acid diethylamide antagonizes shaking induced in rats by five chemically different compounds  

Microsoft Academic Search

Thyrotropin-releasing hormone (TRH), sodium valproate, AG-3-5 (1-[2-hydroxyphenyl]-4-[3-nitrophenyl]-1,2,3,6-tetrahydropyrimidine-2-one), RX336-M (7,8-dihydro-5', 6'-dimethylcyclohex-5'-eno-1',2',8',14 codeinone), and Sgd 8473 (a-[(4-chlorobenzylideneamino)-oxy]-isobutyric acid) each induced repetitive shaking of the body of rats after intraperitoneal injection. This action of the five diverse chemicals appears to be subserved by a common pharmacological component, because pretreatment with d-lysergic acid diethylamide (0.03–1.0 mg kg-1, s.c.) attenuated the shaking behavior in a

Alan Cowan; Trevor Watson

1978-01-01

313

Gas Chromatography Analysis with Olfactometric Detection (GC-O) as a Useful Methodology for Chemical Characterization of Odorous Compounds  

PubMed Central

The gas chromatography-olfactometry (GC-O) technique couples traditional gas chromatographic analysis with sensory detection in order to study complex mixtures of odorous substances and to identify odor active compounds. The GC-O technique is already widely used for the evaluation of food aromas and its application in environmental fields is increasing, thus moving the odor emission assessment from the solely olfactometric evaluations to the characterization of the volatile components responsible for odor nuisance. The aim of this paper is to describe the state of the art of gas chromatography-olfactometry methodology, considering the different approaches regarding the operational conditions and the different methods for evaluating the olfactometric detection of odor compounds. The potentials of GC-O are described highlighting the improvements in this methodology relative to other conventional approaches used for odor detection, such as sensoristic, sensorial and the traditional gas chromatographic methods. The paper also provides an examination of the different fields of application of the GC-O, principally related to fragrances and food aromas, odor nuisance produced by anthropic activities and odorous compounds emitted by materials and medical applications. PMID:24316571

Brattoli, Magda; Cisternino, Ezia; Dambruoso, Paolo Rosario; de Gennaro, Gianluigi; Giungato, Pasquale; Mazzone, Antonio; Palmisani, Jolanda; Tutino, Maria

2013-01-01

314

Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture.  

PubMed

Coronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar previously unknown coronavirus emerged, Middle East respiratory syndrome coronavirus (MERS-CoV), thus far causing over 650 laboratory-confirmed infections, with an unexplained steep rise in the number of cases being recorded over recent months. The human MERS fatality rate of ? 30% is alarmingly high, even though many deaths were associated with underlying medical conditions. Registered therapeutics for the treatment of coronavirus infections are not available. Moreover, the pace of drug development and registration for human use is generally incompatible with strategies to combat emerging infectious diseases. Therefore, we have screened a library of 348 FDA-approved drugs for anti-MERS-CoV activity in cell culture. If such compounds proved sufficiently potent, their efficacy might be directly assessed in MERS patients. We identified four compounds (chloroquine, chlorpromazine, loperamide, and lopinavir) inhibiting MERS-CoV replication in the low-micromolar range (50% effective concentrations [EC(50)s], 3 to 8 ?M). Moreover, these compounds also inhibit the replication of SARS coronavirus and human coronavirus 229E. Although their protective activity (alone or in combination) remains to be assessed in animal models, our findings may offer a starting point for treatment of patients infected with zoonotic coronaviruses like MERS-CoV. Although they may not necessarily reduce viral replication to very low levels, a moderate viral load reduction may create a window during which to mount a protective immune response. PMID:24841269

de Wilde, Adriaan H; Jochmans, Dirk; Posthuma, Clara C; Zevenhoven-Dobbe, Jessika C; van Nieuwkoop, Stefan; Bestebroer, Theo M; van den Hoogen, Bernadette G; Neyts, Johan; Snijder, Eric J

2014-08-01

315

Screening of an FDA-Approved Compound Library Identifies Four Small-Molecule Inhibitors of Middle East Respiratory Syndrome Coronavirus Replication in Cell Culture  

PubMed Central

Coronaviruses can cause respiratory and enteric disease in a wide variety of human and animal hosts. The 2003 outbreak of severe acute respiratory syndrome (SARS) first demonstrated the potentially lethal consequences of zoonotic coronavirus infections in humans. In 2012, a similar previously unknown coronavirus emerged, Middle East respiratory syndrome coronavirus (MERS-CoV), thus far causing over 650 laboratory-confirmed infections, with an unexplained steep rise in the number of cases being recorded over recent months. The human MERS fatality rate of ?30% is alarmingly high, even though many deaths were associated with underlying medical conditions. Registered therapeutics for the treatment of coronavirus infections are not available. Moreover, the pace of drug development and registration for human use is generally incompatible with strategies to combat emerging infectious diseases. Therefore, we have screened a library of 348 FDA-approved drugs for anti-MERS-CoV activity in cell culture. If such compounds proved sufficiently potent, their efficacy might be directly assessed in MERS patients. We identified four compounds (chloroquine, chlorpromazine, loperamide, and lopinavir) inhibiting MERS-CoV replication in the low-micromolar range (50% effective concentrations [EC50s], 3 to 8 ?M). Moreover, these compounds also inhibit the replication of SARS coronavirus and human coronavirus 229E. Although their protective activity (alone or in combination) remains to be assessed in animal models, our findings may offer a starting point for treatment of patients infected with zoonotic coronaviruses like MERS-CoV. Although they may not necessarily reduce viral replication to very low levels, a moderate viral load reduction may create a window during which to mount a protective immune response. PMID:24841269

de Wilde, Adriaan H.; Jochmans, Dirk; Posthuma, Clara C.; Zevenhoven-Dobbe, Jessika C.; van Nieuwkoop, Stefan; Bestebroer, Theo M.; van den Hoogen, Bernadette G.

2014-01-01

316

Remote Continuous Wave and Pulsed Laser Raman Detection of Chemical Warfare Agents Simulants and Toxic Industrial Compounds  

NASA Astrophysics Data System (ADS)

This study describes the design, assembly, testing and comparison of two Remote Raman Spectroscopy (RRS) systems intended for standoff detection of hazardous chemical liquids. Raman spectra of Chemical Warfare Agents Simulants (CWAS) and Toxic Industrial Compounds (TIC) were measured in the laboratory at a 6.6 m source-target distance using continuous wave (CW) laser detection. Standoff distances for pulsed measurements were 35 m for dimethyl methylphosphonate (DMMP) detection and 60, 90 and 140 m for cyclohexane detection. The prototype systems consisted of a Raman spectrometer equipped with a CCD detector (for CW measurements) and an I-CCD camera with time-gated electronics (for pulsed laser measurements), a reflecting telescope, a fiber optic assembly, a single-line CW laser source (514.5, 488.0, 351.1 and 363.8 nm) and a frequency-doubled single frequency Nd:YAG 532 nm laser (5 ns pulses at 10 Hz). The telescope was coupled to the spectrograph using an optical fiber, and filters were used to reject laser radiation and Rayleigh scattering. Two quartz convex lenses were used to collimate the light from the telescope from which the telescope-focusing eyepiece was removed, and direct it to the fiber optic assembly. To test the standoff sensing system, the Raman Telescope was used in the detection of liquid TIC: benzene, chlorobenzene, toluene, carbon tetrachloride, cyclohexane and carbon disulfide. Other compounds studied were CWAS: dimethylmethyl phosphonate, 2-chloroethyl ethyl sulfide and 2-(butylamino)-ethanethiol. Relative Raman scattering cross sections of liquid CWAS were measured using single-line sources at 532.0, 488.0, 363.8 and 351.1 nm. Samples were placed in glass and quartz vials at the standoff distances from the telescope for the Remote Raman measurements. The mass of DMMP present in water solutions was also quantified as part of the system performance tests.

Ortiz-Rivera, William; Pacheco-Londoño, Leonardo C.; Hernández-Rivera, Samuel P.

2010-09-01

317

The environmental behavior and chemical fate of energetic compounds (TNT, RDX, tetryl) in soil and plant systems  

SciTech Connect

Munitions materials can accumulate or cycle in terrestrial environs at production and manufacturing facilities and thus pose potential heath and environmental concerns. To address questions related to food chain accumulation, the environmental behavior of energetic compounds (2,4,6-trinitrotoluene,TNT; hexahydro-1,3,5-trinitro-1,3,5-triazine, RDX; 2,4,6-trinitrophenylmethylnitramine, tetryl) was evaluated. Emphasis was placed on determining the potential for soil/plant transfer of munitions residues, translocation and distribution within the plant, the extent to which compounds were metabolized following accumulation, and the chemical nature and form of accumulated residues. Both TNT and tetryl undergo extensive chemical transformation in soil, forming aminodinitrotoluene isomers and N-methyl-2,4,6-trinitroaniline residues, respectively, along with a series of unknowns. After 60 days, only 30% of the amended TNT and 8% of the amended tetryl remained unchanged in the soil. In contrast, 78% of the soil-amended RDX remained unchanged after 60 days. After 60 days, plants grown in soils containing 10 ppm residues contained from 5 {mu}g TNT/g to 600 {mu}g RDX/G fresh wt. tissue. TNT and tetryl residues were primarily accumulated in roots (75%), while RDX was concentrated in leaves and seed. The principal transport form for TNT (root to shoot) was an acid labile conjugate of aminodinitrotoluene; RDX was transported unchanged. On accumulation in roots and leaves, highly polar and non-extractable TNT metabolites dominated, with the aminodinitrotoluene isomers accounting for less than 20% of the residues present. Only a few percent were present as the parent TNT. RDX was partitioned similarly to TNT, with 8 to 30% of the RDX appearing as polar metabolites, 20--50% as parent RDX, and the balance as non-extractable residues. Tetryl was metabolized to N-methyl-2,4,6-trinitroaniline and a variety of polar metabolites.

Cataldo, D.A.; Harvey, S.D.; Fellows, R.J.

1993-06-01

318

Rapid characterization of chemical compounds in liquid and solid states using thermal desorption electrospray ionization mass spectrometry.  

PubMed

Rapid characterization of thermally stable chemical compounds in solid or liquid states is achieved through thermal desorption electrospray ionization mass spectrometry (TD-ESI/MS). A feature of this technique is that sampling, desorption, ionization, and mass spectrometric detection are four separate events with respect to time and location. A metal probe was used to sample analytes in their solid or liquid states. The probe was then inserted in a preheated oven to thermally desorb the analytes on the probe. The desorbed analytes were carried by a nitrogen gas stream into an ESI plume, where analyte ions were formed via interactions with charged solvent species generated in the ESI plume. The analyte ions were subsequently detected by a mass analyzer attached to the TD-ESI source. Quantification of acetaminophen in aqueous solutions using TD-ESI/MS was also performed in which a linear response for acetaminophen was obtained between 25 and 500 ppb (R(2) = 0.9978). The standard deviation for a reproducibility test for ten liquid samples was 9.6%. Since sample preparation for TD-ESI/MS is unnecessary, a typical analysis can be completed in less than 10 s. Analytes such as the active ingredients in over-the-counter drugs were rapidly characterized regardless of the different physical properties of said drugs, which included liquid eye drops, viscous cold syrup solution, ointment cream, and a drug tablet. This approach was also used to detect trace chemical compounds in illicit drugs and explosives, in which samples were obtained from the surfaces of a cell phone, piece of luggage made from hard plastic, business card, and wooden desk. PMID:24050317

Huang, Min-Zong; Zhou, Chi-Chang; Liu, De-Lin; Jhang, Siou-Sian; Cheng, Sy-Chyi; Shiea, Jentaie

2013-10-01

319

Trace level detection of compounds related to the chemical weapons convention by 1H-detected 13C NMR spectroscopy executed with a sensitivity-enhanced, cryogenic probehead.  

PubMed

Two-dimensional 1H-13C HSQC (heteronuclear single quantum correlation) and fast-HMQC (heteronuclear multiple quantum correlation) pulse sequences were implemented using a sensitivity-enhanced, cryogenic probehead for detecting compounds relevant to the Chemical Weapons Convention present in complex mixtures. The resulting methods demonstrated exceptional sensitivity for detecting the analytes at trace level concentrations. 1H-13C correlations of target analytes at < or = 25 microg/mL were easily detected in a sample where the 1H solvent signal was approximately 58,000-fold more intense than the analyte 1H signals. The problem of overlapping signals typically observed in conventional 1H spectroscopy was essentially eliminated, while 1H and 13C chemical shift information could be derived quickly and simultaneously from the resulting spectra. The fast-HMQC pulse sequences generated magnitude mode spectra suitable for detailed analysis in approximately 4.5 h and can be used in experiments to efficiently screen a large number of samples. The HSQC pulse sequences, on the other hand, required roughly twice the data acquisition time to produce suitable spectra. These spectra, however, were phase-sensitive, contained considerably more resolution in both dimensions, and proved to be superior for detecting analyte 1H-13C correlations. Furthermore, a HSQC spectrum collected with a multiplicity-edited pulse sequence provided additional structural information valuable for identifying target analytes. The HSQC pulse sequences are ideal for collecting high-quality data sets with overnight acquisitions and logically follow the use of fast-HMQC pulse sequences to rapidly screen samples for potential target analytes. Use of the pulse sequences considerably improves the performance of NMR spectroscopy as a complimentary technique for the screening, identification, and validation of chemical warfare agents and other small-molecule analytes present in complex mixtures and environmental samples. PMID:18345646

Cullinan, David B; Hondrogiannis, George; Henderson, Terry J

2008-04-15

320

Occurrence of downy mildews on ornamental plants and their control by chemical compounds.  

PubMed

The downy mildew on Coreopsis grandiflora caused by Plasmopara halstedii was observed during summer, mainly in July and August. Symptoms of the disease were first seen on external leaves and progressively spread to inner parts of plant rosette. On Alyssum saxatile downy mildew symptoms induced by Peronospora parasitica were observed during whole vegetation period with the strongest expression in early spring and late summer. Amistar 250 SC (25% azoxystrobine), Mildex 711,9 WG (66.7% phosethyl aluminium + 4.4% fenamidone), Previcur Energy 840 SL (530 g/l propamocarb + 310 g/l phosetyl aluminium) and Tanos 50 WG (25% cymoxanil + 25% famoxate) were used for pathogens control. In the protection of Coreopsis grandiflora against P. halstedii all tested compounds, applied curatively, decreased sporulation of the pathogen. On treaded plants at least 4-time less leaves were diseased. In the control of P. parasitica on Alyssum saxatile, the smallest number of swallowed structures on leaves was noticed on plants treated with azoxystrobine at conc. 250 microg/cm3. PMID:18396813

Skrzypczak, C

2007-01-01

321

Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes.  

PubMed

Chemical conditioners are often used to enhance sewage sludge dewaterability through altering sludge properties and flocs structure, both affect odorous compounds emissions not only during sludge conditioning but also in subsequent sludge disposal. This study was to investigate emission characteristics of ammonia (NH(3)), sulfur dioxide (SO(2)), hydrogen sulfide (H(2)S) and carbonyl sulfide (COS) generated from sewage sludge conditioned by three representative conditioners, i.e., organic polymers, iron salts and skeleton builders, F-S (Fenton's reagent and skeleton builders) composite conditioner. The results demonstrate that polyacrylamide (PAM) has an insignificant effect on emission characteristics of nitrogen- and sulfur-containing odorous compounds, because the properties, sulfur and nitrogen speciations are similar in PAM-conditioned sludge and raw sludge (RS). Significant increases of SO(2) and H(2)S emissions in the H(2)SO(4) conditioning process were observed due to the accelerated decomposition of sulfur-containing amino acids in acidic environment. Fenton peroxidation facilitates the formation of COS. CaO can reduce sulfur-containing gases emission via generation of calcium sulfate. However, under strong alkaline conditions, free ammonia or protonated amine in sludge can be easily converted to volatile ammonia, resulting in a significant release of NH(3). PMID:22902143

Liu, Huan; Luo, Guang-Qian; Hu, Hong-Yun; Zhang, Qiang; Yang, Jia-Kuan; Yao, Hong

2012-10-15

322

40 CFR 721.9668 - Organotin lithium compound.  

Code of Federal Regulations, 2014 CFR

...2014-07-01 2014-07-01 false Organotin lithium compound. 721.9668 Section 721...Substances § 721.9668 Organotin lithium compound. (a) Chemical substance...generically identified as an organotin lithium compound (PMN P-93-1119) is...

2014-07-01

323

40 CFR 721.9668 - Organotin lithium compound.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Organotin lithium compound. 721.9668 Section 721...Substances § 721.9668 Organotin lithium compound. (a) Chemical substance...generically identified as an organotin lithium compound (PMN P-93-1119) is...

2010-07-01

324

40 CFR 721.9668 - Organotin lithium compound.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Organotin lithium compound. 721.9668 Section 721...Substances § 721.9668 Organotin lithium compound. (a) Chemical substance...generically identified as an organotin lithium compound (PMN P-93-1119) is...

2011-07-01

325

40 CFR 721.9668 - Organotin lithium compound.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Organotin lithium compound. 721.9668 Section 721...Substances § 721.9668 Organotin lithium compound. (a) Chemical substance...generically identified as an organotin lithium compound (PMN P-93-1119) is...

2013-07-01

326

40 CFR 721.9668 - Organotin lithium compound.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Organotin lithium compound. 721.9668 Section 721...Substances § 721.9668 Organotin lithium compound. (a) Chemical substance...generically identified as an organotin lithium compound (PMN P-93-1119) is...

2012-07-01

327

Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics  

EPA Science Inventory

Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast? chemical screening and prioritization research project. Metabolites from hES cultur...

328

Fun with Compound Words  

NSDL National Science Digital Library

Identify and create compound words We will be studying compound words! First we need to find out what a compound word is, go to this website and read about compound words.What is a compound word Now that you have read about compound words lets do some fun activities to help us review. First go to Compound word flashcards, here you will ...

Ms. Huggins

2012-04-12

329

ADAPTATION OF NATURAL MICROBIAL MMUNITIES TO DEGRADATION OF XENOBIOTIC COMPOUNDS: EFFECTS OF CONCENTRATION, EXPOSURE TIME, INOCULUM, AND CHEMICAL STRUCTURE  

EPA Science Inventory

Adaptation of microbial populations to degrade xenobiotic compounds faster after exposure to the compound was studied in eco-cores. Radiolabeled test compounds were added to cores that contained natural water and sediment samples. Adaptation was detected by comparing mineralizati...

330

Distribution of volatile organic compounds (VOCs) in surface water, soil, and groundwater within a chemical industry park in Eastern China.  

PubMed

This paper focuses on the distribution of volatile organic compounds (VOCs) in the surface water, soil, and groundwater within a chemical industry park in Eastern China. At least one VOC was detected in each of the 20 sampling sites, and the maximum number of VOCs detected in the surface water, groundwater, and soil were 13, 16, and 14, respectively. Two of the 10 VOCs with elevated concentrations detected in surface water, groundwater, and soil were chloroform and 1,2-dichloroethane. The characteristics of VOCs, which include volatility, boiling point, and solubility, could significantly affect their distribution in surface water, soil, and groundwater. However, due to the direct discharging of chemical industry wastewater into surface water, higher concentrations of VOCs (except chloroform) were detected in surface water than in soil and groundwater. Fortunately, the higher volatility of VOCs prevents the VOCs from impacting groundwater, which helps to maintain a lower concentration of VOCs in the groundwater than in both surface water and soil. This is because pollutants with relatively higher boiling points and lower solubilities have higher detection frequencies in soil, and contaminants with relatively lower boiling points and higher solubilities have higher detection frequencies in water, notably in surface water. PMID:25633950

Liu, Benhua; Chen, Liang; Huang, Linxian; Wang, Yongseng; Li, Yuehua

2015-01-01

331

Discovery of Compounds Blocking the Proliferation of Toxoplasma gondii and Plasmodium falciparum in a Chemical Space Based on Piperidinyl-Benzimidazolone Analogs  

PubMed Central

A piperidinyl-benzimidazolone scaffold has been found in the structure of different inhibitors of membrane glycerolipid metabolism, acting on enzymes manipulating diacylglycerol and phosphatidic acid. Screening a focus library of piperidinyl-benzimidazolone analogs might therefore identify compounds acting against infectious parasites. We first evaluated the in vitro effects of (S)-2-(dibenzylamino)-3-phenylpropyl 4-(1,2-dihydro-2-oxobenzo[d]imidazol-3-yl)piperidine-1-carboxylate (compound 1) on Toxoplasma gondii and Plasmodium falciparum. In T. gondii, motility and apical complex integrity appeared to be unaffected, whereas cell division was inhibited at compound 1 concentrations in the micromolar range. In P. falciparum, the proliferation of erythrocytic stages was inhibited, without any delayed death phenotype. We then explored a library of 250 analogs in two steps. We selected 114 compounds with a 50% inhibitory concentration (IC50) cutoff of 2 ?M for at least one species and determined in vitro selectivity indexes (SI) based on toxicity against K-562 human cells. We identified compounds with high gains in the IC50 (in the 100 nM range) and SI (up to 1,000 to 2,000) values. Isobole analyses of two of the most active compounds against P. falciparum indicated that their interactions with artemisinin were additive. Here, we propose the use of structure-activity relationship (SAR) models, which will be useful for designing probes to identify the target compound(s) and optimizations for monotherapy or combined-therapy strategies. PMID:24550329

Saïdani, Nadia; Botté, Cyrille Y.; Deligny, Michael; Bonneau, Anne-Laure; Reader, Janette; Lasselin, Ronald; Merer, Goulven; Niepceron, Alisson; Brossier, Fabien; Cintrat, Jean-Christophe; Rousseau, Bernard; Birkholtz, Lyn-Marie; Cesbron-Delauw, Marie-France; Dubremetz, Jean-François; Mercier, Corinne; Vial, Henri; Lopez, Roman

2014-01-01

332

Chemical interactions of polycyclic organic compounds with coal fly ash and related solid surfaces  

SciTech Connect

The interactions of polycyclic aromatic hydrocarbons (PAHs) with particulate surfaces (especially those of coal fly ash) have been investigated, and the influence of coal ash surface properties on the photochemical transformation of adsorbed PAHs has been studied. The overall objective of the work has been to characterize the effects of adsorption onto atmospheric particulate matter on the chemical behavior of PAHs released into the atmosphere via combustion processes. Progress is reported in the following areas of effort: (a) Major emphasis has been devoted to the interactions of PAHs with the different particulate phases that are found in heterogeneous coal ash samples. Techniques have been developed and thoroughly characterized for the fractionation of coal ashes into carbonaceous, mineral-magnetic, and mineral-nonmagnetic subfractions. Heats of adsorption for pyrene on such subfractions have been measured by gas-solid chromatography, and the photoreactivity of pyrene and benz[a]anthracene on ash subfractions has been examined. Carbonaceous particles exhibit the highest affinity for vapor-phase PAHS; mineral magnetic particles usually exhibit the smallest tendency to sorb PAHs from the vapor phase. Adsorption of PAHs on carbonaceous particles suppresses, virtually completely, their tendency to undergo photochemical transformation. For coal ashes that contain few carbonaceous particles, the adsorption and photochemical transformation of PAHs tend to be dominated by the mineral nonmagnetic particles; PAHs adsorbed on these particles tend to exhibit relatively efficient phototransformation.

Mamantov, G.; Wehry, E.L.

1990-03-01

333

Data Analysis of Multi-Laser Standoff Spectral identification of chemical and biological compounds  

SciTech Connect

With the availability of tunable broadband coherent sources that emit mid-infrared radiation with well-defined beam characteristics, spectroscopies that were traditionally not practical for standoff detection1 or for develop- ment of miniaturized infrared detectors2, 3 have renewed interest. While obtaining compositional information for objects from a distance remains a major challenge in chemical and biological sensing, recently we demonstrated that capitalizing on mid-infrared excitation of target molecules by using quantum cascade lasers and invoking a pump probe scheme can provide spectral fingerprints of substances from a variable standoff distance.3 However, the standoff data is typically associated with random fluctuations that can corrupt the fine spectral features and useful data. To process the data from standoff experiments toward better recognition we consider and apply two types of denoising techniques, namely, spectral analysis and Karhunen-Loeve Transform (KLT). Using these techniques, infrared spectral data have been effectively improved. The result of the analysis illustrates that KLT can be adapted as a powerful data denoising tool for the presented pump-probe infrared standoff spectroscopy.

Farahi, R H [ORNL; Zaharov, Viktor [ORNL; Tetard, Laurene [ORNL; Thundat, Thomas George [ORNL; Passian, Ali [ORNL

2013-01-01

334

Carbon Doping of Compound Semiconductor Epitaxial Layers Grown by Metalorganic Chemical Vapor Deposition Using Carbon Tetrachloride.  

NASA Astrophysics Data System (ADS)

A dilute mixture of CCl_4 in high purity H_2 has been used as a carbon dopant source for rm Al_ {x}Ga_{1-x}As grown by low pressure metalorganic chemical vapor deposition (MOCVD). To understand the mechanism for carbon incorporation from CCl_4 doping and to provide experimental parameters for the growth of carbon doped device structures, the effects of various crystal growth parameters on CCl _4 doping have been studied, including growth temperature, growth rate, V/III ratio, Al composition, and CCl_4 flow rate. Although CCl _4 is an effective p-type dopant for MOCVD rm Al_{x}Ga_ {1-x}As, injection of CCl_4 into the reactor during growth of InP resulted in no change in the carrier concentration or carbon concentration. Abrupt, heavy carbon doping spikes in GaAs have been obtained using CCl_4 without a dopant memory effect. By annealing samples with carbon doping spikes grown within undoped, n-type, and p-type GaAs, the carbon diffusion coefficient in GaAs at 825 ^circC has been estimated and has been found to depend strongly on the GaAs background doping. Heavily carbon doped rm Al_{x}Ga _{1-x}As/GaAs superlattices have been found to be more stable against impurity induced layer disordering (IILD) than Mg or Zn doped superlattices, indicating that the low carbon diffusion coefficient limits the IILD process. Carbon doping has been used in the base region on an Npn AlGaAs/GaAs heterojunction bipolar transistor (HBT). Transistors with 3 x 10 ?m self-aligned emitter fingers have been fabricated which exhibit a current gain cutoff frequency of f_ {rm t} = 26 GHz.

Cunningham, Brian Thomas

1990-01-01

335

Lending a helping hand, screening chemical libraries for compounds that enhance ?-hexosaminidase A activity in GM2 gangliosidosis cells  

PubMed Central

Enzyme enhancement therapy is an emerging therapeutic approach that has the potential to treat many genetic diseases. Candidate diseases are those associated with a mutant protein that has difficulty folding and/or assembling into active oligomers in the endoplasmic reticulum. Many lysosomal storage diseases are candidates for enzyme enhancement therapy and have the additional advantage of requiring only 5–10% of normal enzyme levels to reduce and/or prevent substrate accumulation. Our long experience in working with the ?-hexosaminidase (EC 3.2.1.52) isozymes system and its associated deficiencies (Tay-Sachs and Sandhoff disease) lead us to search for possible enzyme enhancement therapy-agents that could treat the chronic forms of these diseases which express 2–5% residual activity. Pharmacological chaperones are enzyme enhancement therapy-agents that are competitive inhibitors of the target enzyme. Each of the known ?-hexosaminidase inhibitors (low ?M IC50) increased mutant enzyme levels to ? 10% in chronic Tay-Sachs fibroblasts and also attenuated the thermo-denaturation of ?-hexosaminidase. To expand the repertoire of pharmacological chaperones to more ‘drug-like’ compounds, we screened the Maybridge library of 50 000 compounds using a real-time assay for non-carbohydrate-based ?-hexosaminidase inhibitors and identified several that functioned as pharmacological chaperones in patient cells. Two of these inhibitors had derivatives that had been tested in humans for other purposes. These observations lead us to screen the NINDS library of 1040 Food and Drug Administration approved compounds for pharmacological chaperones. Pyrimethamine, an antimalarial drug with well documented pharmacokinetics, was confirmed as a ?-hexosaminidase pharmacological chaperone and compared favorably with our best carbohydrate-based pharmacological chaperone in patient cells with various mutant genotypes. PMID:17894780

Tropak, Michael B.; Mahuran, Don

2010-01-01

336

Photocatalytic and chemical oxidation of organic compounds in supercritical carbon dioxide. Progress report for FY97  

SciTech Connect

'The background for the project is briefly reviewed and the work done during the nine months since funding was received is documented. Work began in January, 1997. A post doctoral fellow joined the team in April. The major activities completed this fiscal year were: staffing the project, design of the experimental system, procurement of components, assembly of the system. preparation of the Safe Operating Procedure and ES and H compliance, pressure testing, establishing data collection and storage methodology, and catalyst preparation. Objective The objective of the project is to develop new chemistry for the removal of organic contaminants from supercritical carbon dioxide. This has application in processes used for continuous cleaning and extraction of parts and waste materials. A secondary objective is to increase the fundamental understanding of photocatalytic chemistry. Cleaning and extraction using supercritical carbon dioxide (scCO{sub 2}) can be applied to the solution of a wide range of environmental and pollution prevention problems in the DOE complex. Work is being done that explores scCO{sub 2} in applications ranging from cleaning contaminated soil to cleaning components constructed from plutonium. The rationale for use of scCO{sub 2} are based on the benign nature, availability and low cost, attractive solvent properties, and energy efficient separation of the extracted solute from the solvent by moderate temperature or pressure changes. To date, R and D has focussed on the methods and applications of the extraction steps of the process. Little has been done that addresses methods to polish the scCO{sub 2} for recycle in the cleaning or extraction operations. In many applications it will be desirable to reduce the level of contamination from that which would occur at steady state operation of a process. This proposal addresses chemistry to achieve that. This would be an alternative to removing a fraction of the contaminated scCO{sub 2} for disposal and using makeup scCO{sub 2}. A chemical polishing operation can reduce the release of CO{sub 2} from the process. It can also reduce the consumption of reagents that may be used in the process to enhance extraction and cleaning. A polishing operation will also reduce or avoid formation of an additional waste stream. Photocatalytic and other photochemical oxidation chemistry have not been investigated in scCO{sub 2}. The large base of information for these reactions in water, organic solvents, or air suggest that the chemistry will work in carbon dioxide. There are compelling reasons to believe that the properties of scCO{sub 2} should increase the performance of photocatalytic chemistry over that found in more conventional fluid phases.'

Blake, D.M.; Bryant, D.L.; Reinsch, V.

1997-09-30

337

Measurements of Oxidized Organic Compounds during SOAS 2013 using nitrate ion chemical ionization coupled with High Resolution Time-of-Flight Mass Spectrometry  

NASA Astrophysics Data System (ADS)

We present ambient measurements of gaseous organic compounds by means of a High Resolution Time-of-Flight Chemical Ionization Mass Spectrometry (HR-ToF-CIMS) using nitrate ion (NO3-) chemistry. This technique allows to selectively detect oxidized gas-phase species, e.g., oxidized organic molecules and sulfuric acid via clustering with NO3- and its high order clusters. The capability of making such measurements is important because both sulfuric acid and organic gas molecules have a recognized key role in new particle formation (NPF) processes and likely have an important role in particulate phase chemistry and formation of secondary organic aerosols (SOA). The HR-ToF-CIMS was deployed during the Southern Oxidant and Aerosol Study (SOAS) at the forest supersite in Centreville, AL, from June 1 to July 15, 2013. The main goal of the SOAS campaign was to investigate the composition and sources of SOA in the Southeast US, where emissions are mainly represented by biogenic volatile organic compounds (BVOC) emissions and in less extent by anthropogenic emissions (AVOC). During SOAS, the HR-ToF-CIMS detected a range of organic ions that based on previous literature could be identified as oxidation products of both isoprene and terpenes. The isoprene products were 5 to 10 times more abundant than the terpene products. The isoprene-related molecules showed a diurnal cycle with a day time peak, typically after 1500 local time, while the terpene products were higher at night (between 2000 and 0600 local time). These results are consistent with the diurnal trends of primary BVOC emissions from other co-located instruments. The ambient data are also compared to laboratory measurements where oxidized organic vapors are produced using a Potential Aerosol Mass (PAM) flow reactor by the OH oxidation of biogenic gas-phase precursors (isoprene, a-pinene) over multiple days of equivalent atmospheric exposure.

Massoli, P.; Stark, H.; Cnagaratna, M.; Junninen, H.; Hakala, J. P.; Mauldin, R.; Ehn, M.; Sipila, M.; Krechmer, J.; Kimmel, J.; Jimenez, J. L.; Jayne, J. T.; Worsnop, D. R.

2013-12-01

338

Chemical and electronic structure of surfaces and interfaces in compound semiconductors  

NASA Astrophysics Data System (ADS)

The interface formation between two different materials is important in applications for optoelectronic devices. Often, the success or performance of these devices is dependent on the formation of these heterojunctions. In this work, the surface and interfaces in such materials for optoelectronic devices are investigated by a suite of X-ray analytical techniques including X-ray photoelectron (XPS), X-ray excited Auger electron (XAES), and X-ray emission (XES) spectroscopies to provide novel insight. For the group III-nitrides (e.g., AlxGa 1-xN) used in many light emitting devices, a significant challenge exists to form an Ohmic contact. The electron affinities and band gaps of GaN and AlN are different, and thus it is difficult to find one contact scheme compatible for the entire AlxGa1-xN system. Contact schemes are empirically derived such that they result in optimal electrical properties, and thus this work focuses on providing a deeper understanding of the empirically derived contact-schemes. For the n-doped alloys, the presence of VN was identified at the V-AlxGa1-xN interface after contact formation. The amount of VN present varied for n-GaN and n-AlN, and was indicative of the VN dependency of the n-AlxGa1-xN composition. These findings provide detailed insight into the contact formation of (Al,Ga)N-based devices and the performance of V-based contacts. Next generation thin film solar cells based on CdS/Cu(In,Ga)Se2 and CdTe/CdS heterojunctions, which are expected to replace the current Si-based technologies within a decade, are constantly driven to improve their device efficiencies. However, to optimize the entire device, the interfaces and layers within such a device must be understood. The interface formation between high-efficiency Cu(In,Ga)Se2 absorbers and CdS buffer layer was followed, and the findings suggest the presence of a S-containing interlayer between Cu(In,Ga)Se2 and CdS. For CdTe/CdS solar cells, post-absorber deposition processing (CdCl2 activation and back contact treatment) is necessary. The findings demonstrate that the CdCl2 activation drives the sulfur atoms from the CdS layer towards the back contact. While both of the processing steps influence the morphology of the back contact, the spectroscopic results suggest that the CdCl2 activation has a larger impact on the surface and interface composition involved in CdTe solar cells. The surface and interface structure are complex in these optoelectronic devices, and they are expected to influence the electrical properties (and thus performance) of the final device. The goal of this dissertation is to provide new insight and physical explanations which could aid in future optimization and designs of heterojunctions.

Pookpanratana, Sujitra

339

Reactive Transport Modeling of Chemical and Isotope Data to Identify Degradation Processes of Chlorinated Ethenes in a Diffusion-Dominated Media  

NASA Astrophysics Data System (ADS)

Chlorinated ethenes are among the most widespread contaminants in the subsurface and a major threat to groundwater quality at numerous contaminated sites. Many of these contaminated sites are found in low-permeability media, such as clay tills, where contaminant transport is controlled by diffusion. Degradation and transport processes of chlorinated ethenes are not well understood in such geological settings, therefore risk assessment and remediation at these sites are particularly challenging. In this work, a combined approach of chemical and isotope analysis on core samples, and reactive transport modeling has been used to identify the degradation processes occurring at the core scale. The field data was from a site located at Vadsby, Denmark, where chlorinated solvents were spilled during the 1960-70's, resulting in contamination of the clay till and the underlying sandy layer (15 meters below surface). The clay till is heavily contaminated between 4 and 15 mbs, both with the mother compounds PCE/TCE and TCA and the daughter products (DCE, VC, ethene, DCA), indicating the occurrence of natural dechlorination of both PCE/TCE and TCA. Intact core samples of length 0.5m were collected from the source zone (between 6 and 12 mbs). Concentrations and stable isotope ratios of the mother compounds and their daughter products, as well as redox parameters, fatty acids and microbial data, were analyzed with discrete sub-sampling along the cores. More samples (each 5 mm) were collected around the observed higher permeability zones such as sand lenses, sand stringers and fractures, where a higher degradation activity was expected. This study made use of a reactive transport model to investigate the appropriateness of several conceptual models. The conceptual models considered the location of dechlorination and degradation pathways (biotic reductive dechlorination or abiotic ?-elimination with iron minerals) in three core profiles. The model includes diffusion in the matrix, sequential reductive dechlorination, abiotic degradation, isotope fractionation due to degradation and due to diffusion in the clay matrix, as heavier isotopes are expected to diffuse slower than lighter ones. The isotope data are shown to be crucial to distinguish between the tested conceptual models for transport and degradation, and made it possible to select a unique conceptual model for each core profile. This study reveals that biotic and abiotic degradation occurred concurrently in several zones inside the clay matrix, and that abiotic degradation of cis-DCE was the dominant attenuation process in the cores. Furthermore reductive dechlorination of cis-DCE to VC, and further to ethene, was documented in several zones in the low-permeability media. Previous studies have shown that degradation might be limited to high permeability zones in clay tills, thus limiting the applicability of remediation strategies based on enhanced biodegradation. Therefore the occurrence of degradation inside the clay matrix is an important finding, that is further supported by microbial and chemical data. Improved understanding of degradation processes in clay tills is useful for improving the reliability of risk assessment and the design of remediation schemes for chlorinated solvents.

Chambon, J. C.; Damgaard, I.; Jeannottat, S.; Hunkeler, D.; Broholm, M. M.; Binning, P. J.; Bjerg, P. L.

2012-12-01

340

Machine Learning of Molecular Electronic Properties in Chemical Compound Space Gregoire Montavon,1 Matthias Rupp,2 Vivekanand Gobre,3 Alvaro Vazquez-Mayagoitia,4 Katja  

E-print Network

Machine Learning of Molecular Electronic Properties in Chemical Compound Space Gr´egoire Montavon,1, Klaus-Robert M¨uller,1, 6, and O. Anatole von Lilienfeld4, 1Machine Learning Group, Technical that are synthetically accessible. Here, we present a machine learning (ML) model, trained on a data base of ab initio

341

Magnesium compounds  

USGS Publications Warehouse

Seawater and natural brines accounted for about 60 percent of U.S. magnesium compounds production during 2002. Dead-burned and caustic-calcined magnesias were recovered from seawater by Premier Chemicals in Florida. They were also recovered from well brines in Michigan by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And they were recovered from magnesite in Nevada by Premier Chemicals.

Kramer, D.A.

2003-01-01

342

Aspherical-Atom Modeling of Coordination Compounds by Single-Crystal X-ray Diffraction Allows the Correct Metal Atom To Be Identified.  

PubMed

Single-crystal X-ray diffraction (XRD) is often considered the gold standard in analytical chemistry, as it allows element identification as well as determination of atom connectivity and the solid-state structure of completely unknown samples. Element assignment is based on the number of electrons of an atom, so that a distinction of neighboring heavier elements in the periodic table by XRD is often difficult. A computationally efficient procedure for aspherical-atom least-squares refinement of conventional diffraction data of organometallic compounds is proposed. The iterative procedure is conceptually similar to Hirshfeld-atom refinement (Acta Crystallogr. Sect. A- 2008, 64, 383-393; IUCrJ. 2014, 1,61-79), but it relies on tabulated invariom scattering factors (Acta Crystallogr. Sect. B- 2013, 69, 91-104) and the Hansen/Coppens multipole model; disordered structures can be handled as well. Five linear-coordinate 3d metal complexes, for which the wrong element is found if standard independent-atom model scattering factors are relied upon, are studied, and it is shown that only aspherical-atom scattering factors allow a reliable assignment. The influence of anomalous dispersion in identifying the correct element is investigated and discussed. PMID:25393218

Dittrich, Birger; Wandtke, Claudia M; Meents, Alke; Pröpper, Kevin; Mondal, Kartik Chandra; Samuel, Prinson P; Amin Sk, Nurul; Singh, Amit Pratap; Roesky, Herbert W; Sidhu, Navdeep

2014-11-13

343

Influences of biomass burning during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment identified by the regional chemical transport model  

Microsoft Academic Search

Using a regional chemical transport model, STEM 2K1, and the emission inventory for the Transport and Chemical Evolution Over the Pacific (TRACE-P) period [Woo et al., Streets et al., this issue], we successfully simulated important features of the biomass burning (BB) CO outflow. Simulated results agree well with the TRACE-P aircraft measurements and Thailand surface observations. On the basis of

Youhua Tang; Gregory R. Carmichael; Jung-Hun Woo; Narisara Thongboonchoo; Gakuji Kurata; Itsushi Uno; David G. Streets; Donald R. Blake; Rodney J. Weber; Robert W. Talbot; Yutaka Kondo; Hanwant B. Singh; Tao Wang

2003-01-01

344

Application of 31P NMR Spectroscopy and Chemical Derivatization for Metabolite Profiling of Lipophilic Compounds in Human Serum  

PubMed Central

New methods for obtaining metabolic fingerprints of biological samples with improved resolution and sensitivity are highly sought for early disease detection, studies of human health and pathophysiology, and for better understanding systems biology. Considering the complexity of biological samples, interest in biochemical class selection through the use of chemoselective probes for improved resolution and quantitation is increasing. Considering the role of lipids in the pathogenesis of a number of diseases, in this study fingerprinting of lipid metabolites was achieved by 31P labeling using the derivatizing agent 2-chloro-4,4,5,5-tetramethyldioxaphospholane. Lipids containing hydroxyl, aldehyde and carboxyl groups were selectively tagged with 31P and then detected with good resolution using 31P NMR by exploiting the 100% natural abundance and wide chemical shift range of 31P. After standardizing the reaction conditions using representative compounds, the derivatization approach was used to profile lipids in human serum. The results show that the 31P derivatization approach is simple, reproducible and highly quantitative, and has the potential to profile a number of important lipids in complex biological samples. PMID:19610016

DeSilva, M. Aruni; Shanaiah, Narasimhamurthy; Gowda, G. A. Nagana; Rosa-Pérez, Kellymar; Hanson, Bryan A.; Raftery, Daniel

2010-01-01

345

Adverse Outcome Pathway for Embryonic Vascular Disruption and Alternative Methods to Identify Chemical Vascular Disruptors During Development  

EPA Science Inventory

Chemically induced vascular toxicity during embryonic development can result in a wide range of adverse prenatal outcomes. We used information from genetic mouse models linked to phenotypic outcomes and a vascular toxicity knowledge base to construct an embryonic vascular disrupt...

346

NMR Fingerprints of the Drug-like Natural-Product Space Identify Iotrochotazine A: A Chemical Probe to Study Parkinson’s Disease**  

PubMed Central

The NMR spectrum of a mixture of small molecules is a fingerprint of all of its components. Herein, we present an NMR fingerprint method that takes advantage of the fact that fractions contain simplified NMR profiles, with minimal signal overlap, to allow the identification of unique spectral patterns. The approach is exemplified in the identification of a novel natural product, iotrochotazine A (1), sourced from an Australian marine sponge Iotrochota sp. Compound 1 was used as a chemical probe in a phenotypic assay panel based on human olfactory neurosphere-derived cells (hONS) from idiopathic Parkinson’s disease patients. Compound 1 at 1 ?m was not cytotoxic but specifically affected the morphology and cellular distribution of lysosomes and early endosomes. PMID:24737726

Grkovic, Tanja; Pouwer, Rebecca H; Vial, Marie-Laure; Gambini, Luca; Noël, Alba; Hooper, John N A; Wood, Stephen A; Mellick, George D; Quinn, Ronald J

2014-01-01

347

The use of a housecleaning product in an indoor environment leading to oxygenated polar compounds and SOA formation: Gas and particulate phase chemical characterization  

NASA Astrophysics Data System (ADS)

This work investigates Secondary Organic Aerosol (SOA) formed by limonene ozonolysis using a housecleaning product in indoor environment. This study combines simulation chamber ozonolysis experiments and field studies in an experimental house allowing different scenarios of housecleaning product use in real conditions. Chemical speciation has been performed using a new method based on simultaneous sampling of both gas and particulate phases on sorbent tubes and filters. This method allowed the identification and quantification of about 35 products in the gas and particulate phases. Among them, products known to be specific from limonene ozonolysis such as limononaldehyde, ketolimonene and ketolimonic acid have been detected. Some other compounds such as 2-methylbutanoic acid had never been detected in previous limonene ozonolysis studies. Some compounds like levulinic acid had already been detected but their formation remained unexplained. Potential reaction pathways are proposed in this study for these compounds. For each experiment, chemical data are coupled together with physical characterization of formed particles: mass and size and number distribution evolution which allowed the observation of new particles formation (about 87,000 particle cm-3). The chemical speciation associated to aerosol size distribution results confirmed that limonene emitted by the housecleaning product was responsible for SOA formation. To our knowledge, this work provides the most comprehensive analytical study of detected compounds in a single experiment for limonene ozonolysis in both gaseous and particulate phases in real indoor environment.

Rossignol, S.; Rio, C.; Ustache, A.; Fable, S.; Nicolle, J.; Même, A.; D'Anna, B.; Nicolas, M.; Leoz, E.; Chiappini, L.

2013-08-01

348

Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds  

Microsoft Academic Search

Although organic compounds typically constitute a substantial fraction of the fine particulate matter (PM) in the atmosphere, their molecular composition remains poorly characterized. This is largely because atmospheric particles contain a myriad of diverse organic compounds, not all of which extract in a single solvent or elute through a gas chromatograph; therefore, a substantial portion typically remains unanalyzed. Most often

Pradeep Saxena; Lynn M. Hildemann

1996-01-01

349

Relationship between gas chromatographic retention indices and chemical shifts in the 13C NMR spectra of structural isomers of compounds of tetracoordinated phosphorus  

NASA Astrophysics Data System (ADS)

A method for determining the gas chromatographic retention indices of structural isomers of compounds of tetracoordinated phosphorus, based on the correlation between chemical shifts in 13C nuclear magnetic resonance (NMR) spectra and the retention indices of the structural isomers, and on the theory of intermolecular interactions, is proposed. The capabilities of the method are demonstrated for structural isomers of O-alkylmethylfluorophosphonates, which are typical representatives of compounds from the class of tetracoordinated phosphonates. The results from using the correlation approach are compared to experimental data.

Zhokhov, A. K.; Fomenko, P. V.; Aparkin, A. M.; Belousov, E. B.

2015-01-01

350

Fast gas chromatography negative chemical ionization tandem mass spectrometry of explosive compounds using dynamic collision-induced dissociation  

NASA Astrophysics Data System (ADS)

The analysis of nine explosive compounds by gas chromatography tandem mass spectrometry (GC-MS/MS) using negative chemical ionization (NCI) was performed under two different conditions: first, a conventional GC separation coupled with a standard ion dissociation method in a quadrupole ion trap (QIT) was performed in segmented selected reaction monitoring mode; second, a fast GC separation on a microbore capillary column was combined with a faster method of collisional activation in ion traps wherein fragmentation is deliberately accomplished during the mass acquisition scan. The conventional GC-MS/MS method provided separation times in 10 min with detection limits between 0.8 and 280 pg on column. The fast GC method with dynamic collision-induced dissociation (DCID) offered a confirmatory method for the analysis of high explosives with separation times under 2.5 min and detection limits between 0.5 and 5 pg on column, without any hardware modifications to the instrument. The implementation of DCID in combination with three-times-faster mass scanning allows the acquisition of tandem mass spectra to at least 5 Hz (while averaging three scans per spectrum). Although detection limits for GC-NCI-MS/MS using conventional CID or DCID are not quite on par with LODs achieved by GC-ECD, the combination of NCI with DCID tandem MS leads to detection limits at least comparable, if not superior, to other mass spectrometric methods. Selected reaction monitoring in the negative ionization mode is anticipated to offer the most selective approach to detecting explosives and eliminating potential interferences, which could ultimately lead to the best detection limits for real, contaminated samples.

Collin, Olivier L.; Zimmermann, Carolyn M.; Jackson, Glen P.

2009-01-01

351

Chemical composition and cytotoxicity evaluation of essential oil from leaves of Casearia sylvestris, its main compound ?-zingiberene and derivatives.  

PubMed

Casearia sylvestris (Salicaceae), popularly known as "guaçatonga", is a plant widely used in folk medicine to treat various diseases, including cancer. The present work deals with the chemical composition as well as the cytotoxic evaluation of its essential oil, its main constituent and derivatives. Thus, the crude essential oil from leaves of C. sylvestris was obtained using a Clevenger type apparatus and analyzed by GC/MS. This analysis afforded the identification of 23 substances, 13 of which corresponded to 98.73% of the total oil composition, with sesquiterpene a-zingiberene accounting for 50% of the oil. The essential oil was evaluated for cytotoxic activity against several tumor cell lines, giving IC50 values ranging from 12 to 153 mg/mL. Pure a-zingiberene, isolated from essential oil, was also evaluated against the tumor cell lines showing activity for HeLa, U-87, Siha and HL60 cell lines, but with IC50 values higher than those determined for the crude essential oil. Aiming to evaluate the effect of the double bonds of a-zingiberene on the cytotoxic activity, partially hydrogenated a-zingiberene (PHZ) and fully hydrogenated a-zingiberene (THZ) derivatives were obtained. For the partially hydrogenated derivative only cytotoxic activity to the B16F10-Nex2 cell line (IC50 65 mg/mL) was detected, while totally hydrogenated derivative showed cytotoxic activity for almost all cell lines, with B16F10-Nex2 and MCF-7 as exceptions and with IC50 values ranging from 34 to 65 mg/mL. These results indicate that cytotoxic activity is related with the state of oxidation of compound. PMID:23966073

Bou, Diego Dinis; Lago, João Henrique G; Figueiredo, Carlos R; Matsuo, Alisson L; Guadagnin, Rafael C; Soares, Marisi G; Sartorelli, Patricia

2013-01-01

352

D-fructose-6-phosphate aldolase in organic synthesis: cascade chemical-enzymatic preparation of sugar-related polyhydroxylated compounds.  

PubMed

Novel aldol addition reactions of dihydroxyacetone (DHA) and hydroxyacetone (HA) to a variety of aldehydes catalyzed by D-fructose-6-phosphate aldolase (FSA) are presented. In a chemical-enzymatic cascade reaction approach, 1-deoxynojirimycin and 1-deoxymannojirimycin were synthesized starting from (R)- and (S)-3-(N-Cbz-amino)-2-hydroxypropanal, respectively. Furthermore, 1,4-dideoxy-1,4-imino-D-arabinitol and 1,4,5-trideoxy-1,4-imino-D-arabinitol were prepared from N-Cbz-glycinal. 1-Deoxy-D-xylulose was also synthesized by using HA as the donor and either 2-benzyloxyethanal or 2-hydroxyethanal as acceptors. In both cases the enzymatic aldol addition reaction was fully stereoselective, but with 2-hydroxyethanal 17 % of the epimeric product at C2, 1-deoxy-D-erythro-2-pentulose, was observed due to enolization/epimerization during the isolation steps. It was also observed that D-(-)-threose is a good acceptor substrate for FSA, opening new synthetic possibilities for the preparation of important novel complex carbohydrate-related compounds from aldoses. To illustrate this, 1-deoxy-D-ido-hept-2-ulose was obtained stereoselectively by the addition of HA to D-(-)-threose, catalyzed by FSA. It was found that the reaction performance depended strongly on the donor substrate, HA being the one that gave the best conversions to the aldol adduct. The examples presented in this work show the valuable synthetic potential of FSA for the construction of chiral complex polyhydroxylated sugar-type structures. PMID:19222084

Concia, Alda Lisa; Lozano, Carles; Castillo, José A; Parella, Teodor; Joglar, Jesús; Clapés, Pere

2009-01-01

353

The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates  

PubMed Central

We investigated the severity of the inhibitory effects of 13 phenolic compounds usually found in spruce hydrolysates (4-hydroxy-3-methoxycinnamaldehyde, homovanilyl alcohol, vanillin, syringic acid, vanillic acid, gallic acid, dihydroferulic acid, p-coumaric acid, hydroquinone, ferulic acid, homovanillic acid, 4-hydroxybenzoic acid and vanillylidenacetone). The effects of the selected compounds on cell growth, biomass yield and ethanol yield were studied and the toxic concentration threshold was defined for each compound. Using Ethanol Red, the popular industrial strain of Saccharomyces cerevisiae, we found the most toxic compound to be 4-hydroxy-3-methoxycinnamaldehyde which inhibited growth at a concentration of 1.8 mM. We also observed that toxicity did not generally follow a trend based on the aldehyde, acid, ketone or alcohol classification of phenolic compounds, but rather that other structural properties such as additional functional groups attached to the compound may determine its toxicity. Three distinctive growth patterns that effectively clustered all the compounds involved in the screening into three categories. We suggest that the compounds have different cellular targets, and that. We suggest that the compounds have different cellular targets and inhibitory mechanisms in the cells, also compounds who share similar pattern on cell growth may have similar inhibitory effect and mechanisms of inhibition. PMID:24949277

2014-01-01

354

A comparison of the chemical properties of drugs and FEMA\\/FDA notified GRAS chemical compounds used in the food industry  

Microsoft Academic Search

The range of molecular properties of generally recognized as safe (GRAS) compounds that are typically used in food and beverage products is compared to marketed drugs. It is observed that GRAS compounds differ from marketed drugs with respect to several molecular descriptors, including molecular weight, H-bond acceptor count, H-bond donor count, aromatic ring count, basic group count, acidic group count,

D. G. Sprous; F. R. Salemme

2007-01-01

355

Estimation of Secondary Compounds Concentrations Contributed by Biogenic VOC With Chemical Transport Model in the Central Area of Japan  

NASA Astrophysics Data System (ADS)

Biogenic VOC (BVOC) has comparably large contribution to generation of secondary air pollutants, such as photochemical oxidant or urban aerosol. In this study a BVOC emission inventory in the Kansai area, which is located in the central part of Japan, based on the field observation was developed. Some validations of the inventory were conducted by estimating the concentration distribution of oxidants with this developed and an existing BVOC emission inventory in Kansai area by meteorological model MM5 and atmospheric chemical transport model CMAQ. In the development of BVOC emission, the vegetation map by the Biodiversity Center of Japan which had been arranged as basic information on natural environmental preservation in a regional standard mesh (the third mesh) in 1999 was used. In this study isoprene and the mono-terpene were taken up as BVOC. Quercus crispula and Quercus serrata were selected as the source of isoprene, and Cryptomeria japonica, Chamaecyparis obtuse, Quercus phillyraeoides, Pinus densiflora, and Pinus thunbergii were selected as sources of mono-terpene. The parameter of the basic emission rate included in the model was decided by arranging the result of the observation in Kansai Research Center of Forestry and Forest Products Research Institute in each season. This emission flux from each species were calculated by G93 model by Guenther et al. and meteorological fields for the model, such as temperatures and sunlight intensities, were renewed hour by hour, therefore, this emission inventory has a high time resolution according to the season and time. In calculating meteorological fields, meteorological model MM5 Ver.3.7 was conducted in Japanese standard mesh in the selected five days of April, July, and October in 2004, and January 2005 respectively, and taking out the result of wind velocities and temperatures for substituting to the G93 model. Then atmospheric chemical transport model CMAQ Ver.4.6 with the emission inventories and meteorological fields was used for estimating secondary produced compounds concentration in the Kansai region. While the emission amount data of BVOC is also included in the EAGrid-Japan database, constructed by A. Kannari et al., another simulation with this existing BVOC emission inventory was conducted. As for other emission inventories of precursors, EAGrid-Japan was also used in both simulations. According to the result of estimation of BVOC emission, the total amount of BVOC is almost same as that of EAGrid-Japan, however, the ratio of isoprene to total BVOC emission is quite low in our estimation, due to the used vegetation map in this study, and the configuration of basic emission parameter in Autumn and Winter which is set to zero. According to the result of atmospheric chemical transport simulation with this developed BVOC inventory, oxidant concentrations are lower than observed values. This result suggests that the amount of isoprene emission strongly affected on the concentrations of oxidants, therefore, more accurate vegetation map data as a basis of BVOC emissions should be developed.

Yamamoto, K.; Kanemaru, A.; Okumura, M.; Tohno, S.

2008-12-01

356

Study of the relationship between chemical structure and antimicrobial activity in a series of hydrazine-based coordination compounds.  

PubMed

The dependence of antimicrobial activity on the structure of compounds is studied in a series of compounds based on hydrazine coordinated with ions of Cu(II), Ni(II) and Pd(II). The study has been carried out by means of the original electron-topological method developed earlier. A molecular fragment has been found that is only characteristic of biologically active compounds. Its spatial and electron parameters have been used for the quantitative assessment of the activity in view. The results obtained can be used for the antimicrobial activity prediction in a series of compounds with similar structures. PMID:10994159

Dobrova, B N; Dimoglo, A S; Chumakov, Y M

2000-08-01

357

Minocycline and doxycycline, but not other tetracycline-derived compounds, protect liver cells from chemical hypoxia and ischemia/reperfusion injury by inhibition of the mitochondrial calcium uniporter  

SciTech Connect

Minocycline, a tetracycline-derived compound, mitigates damage caused by ischemia/reperfusion (I/R) injury. Here, 19 tetracycline-derived compounds were screened in comparison to minocycline for their ability to protect hepatocytes against damage from chemical hypoxia and I/R injury. Cultured rat hepatocytes were incubated with 50 ?M of each tetracycline-derived compound 20 min prior to exposure to 500 ?M iodoacetic acid plus 1 mM KCN (chemical hypoxia). In other experiments, hepatocytes were incubated in anoxic Krebs–Ringer–HEPES buffer at pH 6.2 for 4 h prior to reoxygenation at pH 7.4 (simulated I/R). Tetracycline-derived compounds were added 20 min prior to reperfusion. Ca{sup 2+} uptake was measured in isolated rat liver mitochondria incubated with Fluo-5N. Cell killing after 120 min of chemical hypoxia measured by propidium iodide (PI) fluorometry was 87%, which decreased to 28% and 42% with minocycline and doxycycline, respectively. After I/R, cell killing at 120 min decreased from 79% with vehicle to 43% and 49% with minocycline and doxycycline. No other tested compound decreased killing. Minocycline and doxycycline also inhibited mitochondrial Ca{sup 2+} uptake and suppressed the Ca{sup 2+}-induced mitochondrial permeability transition (MPT), the penultimate cause of cell death in reperfusion injury. Ru360, a specific inhibitor of the mitochondrial calcium uniporter (MCU), also decreased cell killing after hypoxia and I/R and blocked mitochondrial Ca{sup 2+} uptake and the MPT. Other proposed mechanisms, including mitochondrial depolarization and matrix metalloprotease inhibition, could not account for cytoprotection. Taken together, these results indicate that minocycline and doxycycline are cytoprotective by way of inhibition of MCU. - Highlights: • Minocycline and doxycycline are the only cytoprotective tetracyclines of those tested • Cytoprotective tetracyclines inhibit the MPT and mitochondrial calcium and iron uptake. • Cytoprotective tetracyclines protect by inhibiting the MCU.

Schwartz, Justin; Holmuhamedov, Ekhson; Zhang, Xun; Lovelace, Gregory L.; Smith, Charles D. [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC (United States); Lemasters, John J., E-mail: JJLemasters@musc.edu [Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC (United States); Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC (United States)

2013-11-15

358

Investigating the potential of high-performance liquid chromatography with atmospheric pressure chemical ionization-mass spectrometry as an alternative method for the speciation analysis of organotin compounds.  

PubMed

Liquid chromatography with atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS) was applied for the determination of butyl- and phenyltin compounds. Chromatography was performed on a 30 x 2 mm, 3 microm C18 column, enabling the separation of mono-, di- and trisubstituted butyl- and phenyltin compounds in less than 10 min using a water/1% trifluoroacetic acid/methanol gradient. While satisfactory retention and resolution is achieved for the di- and trisubstituted butyl- and phenyltin compounds, monobutyltin and monophenyltin cannot be resolved chromatographically. Depending on the parameter values of the interface, APCI-MS detection allows both specific detection of the molecular ion or cluster ion at low to intermediate fragmentor voltages or quasi-element specific detection of the Sn+ ion released from the organotin compounds at high fragmentor voltages. The sensitivity of MS detection is similar for butyl- and phenyltin compounds, but varies largely from mono- to trisubstituted organotin compounds with tributyl- and triphenyltin being the most sensitively detectable compounds. Detection limits are in the 20-65 pg (abs.) range in SIM mode and in the 750-2000 pg (abs.) range in the scan mode for tributyl- and triphenyltin and for dibutyl- and diphenyltin, respectively. Monobutyl- and monophenyltin can be detected with much lower sensitivity which, together with their unfavorable chromatographic behavior, accounts for the fact that they cannot be analyzed at environmentally relevant concentrations. Although LC-APCI-MS is generally less sensitive than comparable GC methods, it is applicable to the analysis of environmental samples as demonstrated by the analysis of the PACS-2 sediment certified reference material. Although the derivatization of the ionic organotin compounds, which particularly in real samples is a potential source of error, is circumvented when LC-APCI-MS is used, the extraction step is still critical and may lead to underestimation when quantitation is not done by the method of standard addition. PMID:11220328

Rosenberg, E; Kmetov, V; Grasserbauer, M

2000-02-01

359

Using novel fluorescent polymers as sensory materials for above-ground sensing of chemical signature compounds emanating from buried landmines  

Microsoft Academic Search

Chemical vapors originating from the explosive charge within landmines and unexploded ordnance (UXO) form a chemical “signature” unique to these devices. The fact that canines can detect this signature was a primary motivation for the Defense Advanced Research Projects Agency's (DARPA) Dog's Nose Program. One goal of this program was to develop electronic chemical sensors that mimic the canine's ability

Colin J. Cumming; Craig Aker; Mark Fisher; M. Fok; Marcus J. la Grone; Dennis Reust; Mark G. Rockley; Timothy M. Swager; Eric Towers; Vance Williams

2001-01-01

360

Determination of conformational and spectroscopic features of ethyl trans-alfa-cyano-3-indole-acrylate compound: An experimental and quantum chemical study  

NASA Astrophysics Data System (ADS)

The optimized geometrical structure, vibrational and electronic transitions, chemical shifts and non-linear optical properties of ethyl trans-alfa-cyano-3-indole-acrylate (C14H12N2O2) compound were presented in this study. The ground state geometrical structure and vibrational wavenumbers were carried out by using density functional (DFT/B3LYP) method with 6-311++G(d,p) as basis set. The vibrational spectra of title compound were recorded in solid state with FT-IR and FT-Raman in the range of 4000-400 cm-1 and 4000-10 cm-1, respectively. The fundamental assignments were done on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanical (SQM) method. The 1H, 13C and DEPT NMR spectra were recorded in DMSO solution, and gauge-invariant atomic orbitals (GIAO) method was used to predict the isotropic chemical shifts. The UV-Vis absorption spectra of the compound were recorded in the range of 200-800 nm in various solvents of different polarity (acetone, benzene, chlorobenzene, chloroform, DMSO, ethanol, methanol and toluene). Solvent effects were calculated using TD-DFT and CIS method. To investigate the non-linear optical properties, the polarizability, anisotropy of polarizability and molecular first hyperpolarizability were computed. A detailed description of spectroscopic behaviors of compound was given based on the comparison of experimental measurements and theoretical computations.

Cinar, Mehmet; Karabacak, Mehmet

2013-03-01

361

Direct Quantification of Chemical Warfare Agents and Related Compounds at Low ppt Levels: Comparing Active Capillary Dielectric Barrier Discharge Plasma Ionization and Secondary Electrospray Ionization Mass Spectrometry.  

PubMed

A novel active capillary dielectric barrier discharge plasma ionization (DBDI) technique for mass spectrometry is applied to the direct detection of 13 chemical warfare related compounds, including sarin, and compared to secondary electrospray ionization (SESI) in terms of selectivity and sensitivity. The investigated compounds include an intact chemical warfare agent and structurally related molecules, hydrolysis products and/or precursors of highly toxic nerve agents (G-series, V-series, and "new" nerve agents), and blistering and incapacitating warfare agents. Well-defined analyte gas phase concentrations were generated by a pressure-assisted nanospray with consecutive thermal evaporation and dilution. Identification was achieved by selected reaction monitoring (SRM). The most abundant fragment ion intensity of each compound was used for quantification. For DBDI and SESI, absolute gas phase detection limits in the low ppt range (in MS/MS mode) were achieved for all compounds investigated. Although the sensitivity of both methods was comparable, the active capillary DBDI sensitivity was found to be dependent on the applied AC voltage, thus enabling direct tuning of the sensitivity and the in-source fragmentation, which may become a key feature in terms of field applicability. Our findings underline the applicability of DBDI and SESI for the direct, sensitive detection and quantification of several CWA types and their degradation products. Furthermore, they suggest the use of DBDI in combination with hand-held instruments for CWAs on-site monitoring. PMID:25427190

Wolf, Jan-Christoph; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato

2015-01-01

362

Chemical effects on K?/K? X-ray intensity ratios of Mo, Ag, Cd, Ba, La, Ce compounds and total mass attenuation coefficients of Fe and Cu  

NASA Astrophysics Data System (ADS)

The K?/K? intensity ratios for pure Mo, Ag, Cd, Ba, La and Ce elements and for some of their compounds were investigated. The vacancies in the K shell were created by 59.5-keV ?-rays from a heavily filtered 241Am radioactive source. K X-rays were measured using a Si(Li) detector with a resolution of 155 eV at 5.9 keV. We observed chemical effects on K?/K? intensity ratios of Mo, Ag, Cd, Ba, La and Ce compounds. Detailed interpretation of data obtained from X-ray transmission measurements usually depends on the assumption that the contribution of each element is additive. This assumption yields the mixture rule for X-ray attenuation coefficients which is valid if molecular and chemical effects are negligible. We measured the total mass attenuation coefficients of Fe and Cu in various compounds. Self-absorption corrections were carried out on data for ligands in the different compounds. Our values were compared with the theoretical values for pure elements.

Sögüt, Ö.; Seven, S.; Baydas, E.; Büyükkasap, E.; Küçükönder, A.

2001-08-01

363

Atherosclerotic risks from chemicals: part II. A RASH analysis of in vitro and in vivo bioassay data to evaluate 45 potentially hazardous compounds.  

PubMed

As reviewed in the Part I companion manuscript by Basavaraju and Jones (Arch Environ Contam Toxicol), atherosclerosis and carcinogenesis may share some common mechanisms of toxicological action. On that hypothesis, standardized test data taken from the Registry of Toxic Effects of Chemical Substances (RTECS) were used to compute relative potency factors for chemical compounds associated with increased risk of atherosclerosis to humans. Potencies of the different compounds were computed relative to each of six reference compounds comprised of benzo(a)pyrene, nicotine, cisplatin, adriamycin, estrogen, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Reference-specific potencies were all converted to a common numerical scale adjusted to unit potency for B(a)P. Because the list of compounds contained several antibiotics, amino acids, hormones, chemotherapeutic agents, polynuclear aromatics, alkaloids, metals, and vitamins, the standardized estimates of potency varied significantly depending on which of the six reference compounds are considered as standards of comparison. For the n - 1 other substances. Estimates of relative potency, risk coefficients, and generalized risk equations are estimated for cigarette smoke condensate, dietary cholesterol, ethanol, and carbon disulfide. From data on atherosclerosis as a result of cigarette smoking, a tentative risk was estimated as Increased Relative Risk = S (mg/kg-day)-1 x dose (mg/kg-day) x RP, where the dose is chronic intake per kilogram of body weight per day, RP is the potency of the compound of interest relative to that of benzo(a)pyrene, and S is 0.83, 0.25, 0.20, or 13 depending on whether cigarette smoke, cholesterol, ethanol, or carbon disulfide epidemiological data were used as a standard of comparison. PMID:9601935

Jones, T D; Morris, M D; Basavaraju, S R

1998-07-01

364

Volume 203, number 4 CHEMICAL PHYSICS LETTERS 26 February 1993 Lanthanide-and actinide-based fullerite compounds  

E-print Network

formation enthalpies indicate that the most likely superconducting phase of the Yb compound. Ybi molecules as anions. We calculate the formation enthalpy of these ful- lerite intercalation compounds using+C«r, is metastable and may decompose into the insulatingYb^Cio" and pristine C60 phases. Apart from the formation

365

CARBON-13 NUCLEAR MAGNETIC RESONANCE. 13C CHEMICAL SHIFTS AND 13C-199HG COUPLING CONSTANTS FOR SOME ORGANOMERCURY COMPOUNDS  

EPA Science Inventory

The (13)C shieldings and (13)C-(199)Hg coupling constants of fourteen phenyl- and seven alkyl- and alkenyl-mercury compounds have been obtained. Substituent effects on the (13)C shieldings are similar to those in nonmercurated phenyl compounds, with a similar relationship between...

366

Selection of quantum chemical descriptors by chemometric methods in the study of antioxidant activity of flavonoid compounds  

NASA Astrophysics Data System (ADS)

In the present study, the aim was to select electronic properties responsible for free radical scavenging ability of a set of 25 flavonoid compounds employing chemometric methods. Electronic parameters were calculated using the AM1 semiempirical method, and chemometric methods (principal component analysis, hierarchical cluster analysis, and k-nearest neighbor) were used with the aim to build models able to find relationships between electronic features and the antioxidant activity presented by the compounds studied. According to these models, four electronic variables can be considered important to discriminate more and less antioxidant flavonoid compounds: polarizability (?), charge at carbon 3 (QC3), total charge at substituent 5 (QS5), and total charge at substituent 3' (QS3'). The features found as being responsible for the antioxidant activity of the flavonoid compounds studied are consistent with previous results found in the literature. The results obtained can also bring improvements in the search for better antioxidant flavonoid compounds.

Weber, K. C.; Honório, K. M.; da Silva, S. L.; Mercadante, R.; da Silva, A. B. F.

367

Chemical synthesis of two series of nerve agent model compounds and their stereoselective interaction with human acetylcholinesterase and human butyrylcholinesterase  

PubMed Central

Both G- and V-type nerve agents possess a center of chirality about phosphorus. The Sp-enantiomers are generally more potent inhibitors than their Rp-counterparts toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). To develop model compounds with defined centers of chirality that mimic the target nerve agent structures, we synthesized both the Sp and Rp stereoisomers of two series of G-type nerve agent model compounds in enantiomerically enriched form. The two series of model compounds contained identical substituents on the phosphorus as the G-type agents, except that thiomethyl (CH3-S-) and thiocholine ((CH3)3NCH2CH2-S-) groups were used to replace the traditional nerve agent leaving groups (i.e., fluoro for GB, GF, and GD; and cyano for GA). Inhibition kinetic studies of the thiomethyl- and thiocholine-substituted series of nerve agent model compounds revealed that the Sp enantiomers of both series of compounds showed greater inhibition potency toward AChE and BChE. The level of stereoselectivity, as indicated by the ratio of the bimolecular inhibition rate constants between Sp and Rp enantiomers, was greatest for the GF model compounds in both series. The thiocholine analogs were much more potent than the corresponding thiomethyl analogs. With the exception of the GA model compounds, both series showed greater potency against AChE than BChE. The stereoselectivity (i.e., Sp > Rp), enzyme selectivity, and dynamic range of inhibition potency contributed from these two series of compounds suggest that the combined application of these model compounds will provide useful research tools for understanding interactions of nerve agents with cholinesterase and other enzymes involved in nerve agent and organophosphate pharmacology. The potential of and limitations for using these model compounds in the development of biological therapeutics against nerve agent toxicity are also discussed. PMID:19715346

Barakat, Nora H.; Zheng, Xueying; Gilley, Cynthia B.; MacDonald, Mary; Okolotowicz, Karl; Cashman, John R.; Vyas, Shubham; Beck, Jeremy M.; Hadad, Christopher M.; Zhang, Jun

2009-01-01

368

A human stem cell-based model for identifying adverse effects of organic and inorganic chemicals on the developing nervous system.  

PubMed

The aim of our study was to investigate whether a human neural stem cell line derived from umbilical cord blood (HUCB-NSC) can serve as a reliable test model for developmental neurotoxicity (DNT). We assessed the sensitivity of HUCB-NSCs at different developmental stages to a panel of neurotoxic (sodium tellurite, methylmercury chloride, cadmium chloride, chlorpyrifos, and L-glutamate) and non-neurotoxic (acetaminophen, theophylline, and D-glutamate) compounds. In addition, we investigated the effect of some compounds on key neurodevelopmental processes like cell proliferation, apoptotic cell death, and neuronal and glial differentiation. Less differentiated HUCB-NSCs were generally more sensitive to neurotoxicants, with the notable exception of L-glutamate, which showed a higher toxicity to later stages. The relative potencies of the compounds were: cadmium chloride > methylmercury chloride > chlorpyrifos > L-glutamate. Fifty nanomolar methylmercury chloride (MeHgCl) inhibited proliferation and induced apoptosis in early-stage cells. At the differentiated stage, 1 muM MeHgCl induced selective loss of S100 beta-expressing astrocytic cells. One millimolar L-glutamate did not influence the early stages of HUCB-NSC development, but it affected late stages of neuronal differentiation. A valuable system for in vitro DNT assessment should be able to discriminate between neurotoxic and non-neurotoxic compounds and show different susceptibilities to chemicals according to developmental stage and cell lineage. Although not exhaustive, this work shows that the HUCB-NSC model fulfils these criteria and may serve as a human in vitro model for DNT priority setting. PMID:19609937

Buzanska, Leonora; Sypecka, Joanna; Nerini-Molteni, Silvia; Compagnoni, Anna; Hogberg, Helena T; del Torchio, Riccardo; Domanska-Janik, Krystyna; Zimmer, Jens; Coecke, Sandra

2009-10-01

369

Organic Compounds in Carbonaceous Meteorites  

NASA Technical Reports Server (NTRS)

Carbonaceous meteorites are relatively enriched in soluble organic compounds. To date, these compounds provide the only record available to study a range of organic chemical processes in the early Solar System chemistry. The Murchison meteorite is the best-characterized carbonaceous meteorite with respect to organic chemistry. The study of its organic compounds has related principally to aqueous meteorite parent body chemistry and compounds of potential importance for the origin of life. Among the classes of organic compounds found in Murchison are amino acids, amides, carboxylic acids, hydroxy acids, sulfonic acids, phosphonic acids, purines and pyrimidines (Table 1). Compounds such as these were quite likely delivered to the early Earth in asteroids and comets. Until now, polyhydroxylated compounds (polyols), including sugars (polyhydroxy aldehydes or ketones), sugar alcohols, sugar acids, etc., had not been identified in Murchison. Ribose and deoxyribose, five-carbon sugars, are central to the role of contemporary nucleic acids, DNA and RNA. Glycerol, a three-carbon sugar alcohol, is a constituent of all known biological membranes. Due to the relative lability of sugars, some researchers have questioned the lifetime of sugars under the presumed conditions on the early Earth and postulated other (more stable) compounds as constituents of the first replicating molecules. The identification of potential sources and/or formation mechanisms of pre-biotic polyols would add to the understanding of what organic compounds were available, and for what length of time, on the ancient Earth.

Cooper, Grorge

2001-01-01

370

40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Salt of a substituted sulfonated aryl azo compound...Specific Chemical Substances § 721.9597 Salt of a substituted sulfonated aryl azo compound...chemical substance identified generically as salt of a substituted sulfonated aryl...

2011-07-01

371

40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Salt of a substituted sulfonated aryl azo compound...Specific Chemical Substances § 721.9597 Salt of a substituted sulfonated aryl azo compound...chemical substance identified generically as salt of a substituted sulfonated aryl...

2012-07-01

372

40 CFR 721.9597 - Salt of a substituted sulfonated aryl azo compound (generic).  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Salt of a substituted sulfonated aryl azo compound...Specific Chemical Substances § 721.9597 Salt of a substituted sulfonated aryl azo compound...chemical substance identified generically as salt of a substituted sulfonated aryl...

2010-07-01

373

REACTPOOL: a code implementing a new multi-compound pool model that accounts for chemical reactions and changing composition for spills of water reactive chemicals  

Microsoft Academic Search

All chemicals that react violently with water or in contact with water liberate toxic gas are included in the list of substances covered by the majority of the international legislation on major hazards. This category includes a large number of chemicals that are used widely in the process industries. A survey of accidents that occurred in the last 10 years

T. Kapias; R. F. Griffiths; C. Stefanidis

2001-01-01

374

Complementary standoff chemical imaging to map and identify artist materials in an early italian renaissance panel painting.  

PubMed

Two imaging modalities based on molecular and elemental spectroscopy were used to characterize a painting by Cosimo Tura. Visible-to-near-infrared (400-1680?nm) reflectance imaging spectroscopy (RIS) and X-ray fluorescence (XRF) imaging spectroscopy were employed to identify pigments and determine their spatial distribution with higher confidence than from either technique alone. For example, Mary's red robe was modeled through the distribution of an insect-derived red lake (RIS map) and lead white (XRF lead map), rather than a layer of red lake on vermilion. The RIS image cube was also used to isolate the preparatory design by mapping the reflectance spectra associated with it. In conjunction with results from an earlier RIS study (1650-2500?nm) to map and identify the binding media, a more thorough understanding was gained of the materials and techniques used in the painting. PMID:25319091

Dooley, Kathryn A; Conover, Damon M; Glinsman, Lisha Deming; Delaney, John K

2014-12-01

375

Enhancement of electrochemical hydrogen storage in NiCl2-FeCl3-PdCl2-graphite intercalation compound effected by chemical exfoliation  

NASA Astrophysics Data System (ADS)

In the present work, a quaternary NiCl2-FeCl3-PdCl2-graphite intercalation compound (NiCl2-FeCl3-PdCl2-GIC) was successfully synthesized by molten salts method. A part of this compound was subsequently subjected to chemical exfoliation to obtain expanded compound (NiCl2-FeCl3-PdCl2-EGIC). The changes created in crystalline structure, morphology and chemical composition of GIC due to exfoliation were examined by XRD, SEM and EDS techniques and then related to electrochemical behaviour of electrodes made of the original and exfoliated compound. The results of electrochemical studies carried out by the cyclic voltammetry (CV) method in 6 M KOH solution showed that current charges of all the cathodic and anodic peaks recorded for NiCl2-FeCl3-PdCl2-EGIC are considerably higher already in the first two cycles as compared to those observed for the original NiCl2-FeCl3-PdCl2-GIC. This improvement is ascribed to chemical exfoliation leading to a tremendous development of surface area of the compound due to the splitting and wrinkling of graphite flakes followed by easier access of hydroxyl ions of the electrolyte to active species of intercalates preserved between the graphene interspaces as well as expelled from the graphite interspacing. A large anodic peak was recorded on CV curves after the potentiostatic polarization of electrodes at the potential of -1.2 V where the reaction of hydrogen sorption/evolution occurs and intercalates highly dispersed in the graphite matrix are reduced to a metal form. This peak mainly corresponding to the recovery of hydrogen stored in the electrode appeared to be over five times higher for electrode made of exfoliated compound. This significant enhancement of the hydrogen storage capacity is attributed to electrochemically active Pd nanoparticles highly dispersed in porous structure of exfoliated compound and likely functioning in synergy with Ni/Fe clusters.

Skowro?ski, J. M.; Rozmanowski, T.; Krawczyk, P.

2013-06-01

376

Mortality study of workers in 1,3-butadiene production units identified from a chemical workers cohort.  

PubMed Central

The International Agency for Research on Cancer has given the designations of "sufficient evidence" of carcinogenicity of 1,3-butadiene in experimental animals and "limited evidence" of carcinogenicity in humans. To investigate the carcinogenic effect in humans, we conducted a cohort mortality study among 364 men who were assigned to any of three 1,3-butadiene production units located within several chemical plants in the Kanawha Valley of West Virginia, including 277 men employed in a U.S. Rubber Reserve Plant which operated during World War II. The butadiene production units included in this study were selected from an index developed by the Union Carbide Corporation, which listed for each chemical production unit within their South Charleston, West Virginia and Institute, West Virginia, plants all products, by-products, and reactants. Departments included in the study were those where butadiene was a primary product and neither benzene nor ethylene oxide was present. A total of 185 deaths were observed; the standardized mortality ratio (SMR) for all causes of death was 91, reflecting lower mortality among the study population than the U.S. population. The study found a significantly elevated standardized mortality ratio (SMR) for lymphosarcoma and reticulosarcoma based on four observed cases (SMR = 577; 95% CI = 157-1480), which persisted in an analysis using county referent rates. An excess of lymphosarcoma and reticulosarcoma among all workers and among workers with routine exposure to 1,3-butadiene was also observed in the only other cohort of 1,3-butadiene production workers previously studied.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7556014

Ward, E M; Fajen, J M; Ruder, A M; Rinsky, R A; Halperin, W E; Fessler-Flesch, C A

1995-01-01

377

Magnesium compounds  

USGS Publications Warehouse

Seawater and natural brines accounted for about 63% of US magnesium compounds production during 2000. Premier Services in Florida, Dow Chemical in Michigan, Martin Marietta Magnesia Specialties, and Rohm & Haas recovered dead-burned and caustic-calcined magnesias from seawater. And Premier Services' recoveries, in Nevada, were from magnasite.

Kramer, D.A.

2001-01-01

378

40 CFR 721.5330 - Nickel salt of an organo compound containing nitrogen.  

Code of Federal Regulations, 2011 CFR

...2011-07-01 2011-07-01 false Nickel salt of an organo compound containing nitrogen...Chemical Substances § 721.5330 Nickel salt of an organo compound containing nitrogen...substance generically identified as nickel salt of an organo compound containing...

2011-07-01

379

40 CFR 721.5330 - Nickel salt of an organo compound containing nitrogen.  

Code of Federal Regulations, 2010 CFR

...2010-07-01 2010-07-01 false Nickel salt of an organo compound containing nitrogen...Chemical Substances § 721.5330 Nickel salt of an organo compound containing nitrogen...substance generically identified as nickel salt of an organo compound containing...

2010-07-01

380

40 CFR 721.5330 - Nickel salt of an organo compound containing nitrogen.  

Code of Federal Regulations, 2013 CFR

...2013-07-01 2013-07-01 false Nickel salt of an organo compound containing nitrogen...Chemical Substances § 721.5330 Nickel salt of an organo compound containing nitrogen...substance generically identified as nickel salt of an organo compound containing...

2013-07-01

381

40 CFR 721.5330 - Nickel salt of an organo compound containing nitrogen.  

Code of Federal Regulations, 2012 CFR

...2012-07-01 2012-07-01 false Nickel salt of an organo compound containing nitrogen...Chemical Substances § 721.5330 Nickel salt of an organo compound containing nitrogen...substance generically identified as nickel salt of an organo compound containing...

2012-07-01

382

Magnesium compounds  

USGS Publications Warehouse

Seawater and natural brines accounted for about 60% of US magnesium compounds production in 2001. Dead-burned and caustic-calcined magnesias were recovered from seawater in Florida by Premier Chemicals. They were also recovered from Michigan well brines by Dow Chemical, Martin Marietta Magnesia Specialties and Rohm & Haas. And Premier Chemicals recovered dead-burned and caustic-calcined magnesias from magnesite in Nevada. Reilly Industries and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah.

Kramer, D.A.

2002-01-01

383

Magnesium compounds  

USGS Publications Warehouse

Seawater and natural brines accounted for about 40 percent of U.S. magnesium compounds production in 2009. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Chemicals in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover, and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta from its operation mentioned above.

Kramer, D.A.

2010-01-01

384

Microscopic physical and chemical properties of graphite intercalation compounds. Final report, August 1, 1984--July 31, 1985  

SciTech Connect

Optical spectroscopy (Raman, FTIR and Reflection ) was used to study a variety of acceptor- and donor-type compounds synthesized to determine the microscopic models consistent with the spectrocsopic results. General finding is that the electrical conduction properties of these compounds can be understood on the basis that the intercalation of atomic and/or molecular species between the host graphite layers either raises or lowers the Fermi level (E{sub F)} in a graphitic band structure. This movement of E{sub F} is accomplished via a charge transfer of electrons from the intercalate layers to the graphitic layers (donor compounds), or vice versa (acceptor compounds). Furthermore, the band structure must be modified to take into account the layers of charge that occur as a result of the charge transfer. This charge layering introduces additional bands of states near E{sub F}, which are discussed. Charge-transfer also induces a perturbation of the graphitic normal mode frequencies which can be understood as the result of a contraction (acceptor compounds) or expansion (donor compounds) of the intralayer C-C bonds. Ab-initio calculations support this view and are in reasonable agreement with experimental data.

Eklund, P.C.

1992-08-24

385

A Novel Way To Identify Precursors That Degrade To Perfluourinated Compounds In Activated Sludge Using Ion-Trap Time-Of-Flight Mass Spectrometer  

EPA Science Inventory

An increasing number of studies have been conducted to investigate the environmental distribution of perfluorinated alkyl compounds (PFCs), many of which are known to be toxic in laboratory animals. Despite growing public concerns, the fate and transport of PFCs are little under...

386

A Novel Way To Identify Precursors That Degrade To Perfluorinated Compounds In Activated Sludge Using Ion-Trap Time-Of-Flight Mass Spectrometry  

EPA Science Inventory

An increasing number of studies have been conducted to investigate the environmental distribution of perfluorinated alkyl compounds (PFCs), many of which are known to be toxic in laboratory animals. Despite growing public concerns, fate and transport of PFCs are little known. M...

387

Integrating chemical and genetic silencing strategies to identify host kinase-phosphatase inhibitor networks that control bacterial infection.  

PubMed

Every year three million people die as a result of bacterial infections, and this number may further increase due to resistance to current antibiotics. These antibiotics target almost all essential bacterial processes, leaving only a few new targets for manipulation. The host proteome has many more potential targets for manipulation in order to control bacterial infection, as exemplified by the observation that inhibiting the host kinase Akt supports the elimination of different intracellular bacteria including Salmonella and M. tuberculosis. If host kinases are involved in the control of bacterial infections, phosphatases could be as well. Here we present an integrated small interference RNA and small molecule screen to identify host phosphatase-inhibitor combinations that control bacterial infection. We define host phosphatases inhibiting intracellular growth of Salmonella and identify corresponding inhibitors for the dual specificity phosphatases DUSP11 and 27. Pathway analysis places many kinases and phosphatases controlling bacterial infection in an integrated pathway centered around Akt. This network controls host cell metabolism, survival, and growth and bacterial survival and reflect a natural host cell response to bacterial infection. Inhibiting two enzyme classes with opposite activities-kinases and phosphatases-may be a new strategy to overcome infections by antibiotic-resistant bacteria. PMID:24274083

Albers, Harald M H G; Kuijl, Coenraad; Bakker, Jeroen; Hendrickx, Loes; Wekker, Sharida; Farhou, Nadha; Liu, Nora; Blasco-Moreno, Bernat; Scanu, Tiziana; den Hertog, Jeroen; Celie, Patrick; Ovaa, Huib; Neefjes, Jacques

2014-02-21

388

Integrating Chemical and Genetic Silencing Strategies To Identify Host Kinase-Phosphatase Inhibitor Networks That Control Bacterial Infection  

PubMed Central

Every year three million people die as a result of bacterial infections, and this number may further increase due to resistance to current antibiotics. These antibiotics target almost all essential bacterial processes, leaving only a few new targets for manipulation. The host proteome has many more potential targets for manipulation in order to control bacterial infection, as exemplified by the observation that inhibiting the host kinase Akt supports the elimination of different intracellular bacteria including Salmonella and M. tuberculosis. If host kinases are involved in the control of bacterial infections, phosphatases could be as well. Here we present an integrated small interference RNA and small molecule screen to identify host phosphatase-inhibitor combinations that control bacterial infection. We define host phosphatases inhibiting intracellular growth of Salmonella and identify corresponding inhibitors for the dual specificity phosphatases DUSP11 and 27. Pathway analysis places many kinases and phosphatases controlling bacterial infection in an integrated pathway centered around Akt. This network controls host cell metabolism, survival, and growth and bacterial survival and reflect a natural host cell response to bacterial infection. Inhibiting two enzyme classes with opposite activities–kinases and phosphatases–may be a new strategy to overcome infections by antibiotic-resistant bacteria. PMID:24274083

2013-01-01

389

The origins of light and heavy r-process elements identified by chemical tagging of metal-poor stars  

E-print Network

Growing interests in neutron star (NS) mergers as the origin of r-process elements have sprouted since the discovery of evidence for the ejection of these elements from a short-duration gamma-ray burst. The hypothesis of a NS merger origin is reinforced by a theoretical update of nucleosynthesis in NS mergers successful in yielding r-process nuclides with A>130. On the other hand, whether the origin of light r-process elements are associated with nucleosynthesis in NS merger events remains unclear. We find a signature of nucleosynthesis in NS mergers from peculiar chemical abundances of stars belonging to the Galactic globular cluster M15. This finding combined with the recent nucleosynthesis results implies a potential diversity of nucleosynthesis in NS mergers. Based on these considerations, we are successful in the interpretation of an observed correlation between [light r-process/Eu] and [Eu/Fe] among Galactic halo stars and accordingly narrow down the role of supernova nucleosynthesis in the r-process pr...

Tsujimoto, Takuji

2014-01-01

390

USE OF THE FUNGICIDE CARBENDAZIM AS A MODEL COMPOUND TO DETERMINE THE IMPACT OF ACUTE CHEMICAL EXPOSURE DURING OOCYTE MATURATION AND FERTILIZATION ON PREGNANCY OUTCOME IN THE HAMSTER  

EPA Science Inventory

Here we use a hamster animal model to identify early pregnancy loss due to an acute chemical exposure to the female during the perifertilization interval. The fungicide carbendazim (methyl 1H-benzimidazole-2-carbamate), a microtubule poison with antimitotic activity, was selected...

391

Crystallographic properties of fertilizer compounds  

SciTech Connect

This bulletin is a compilation of crystallographic data collected at NFERC on 450 fertilizer-related compounds. In TVA's fertilizer R and D program, petrographic examination, XRD, and infrared spectroscopy are combined with conventional chemical analysis methods in identifying the individual compounds that occur in fertilizer materials. This handbook brings together the results of these characterization studies and supplemental crystallographic data from the literature. It is in one-compound-per-page, loose-leaf format, ordered alphabetically by IUPAC name. Indexes provided include IUPAC name, formula, group, alternate formula, synonyms, x-ray data, optical data. Tables are given for solids, compounds in commercial MAP and DAP, and matrix materials in phosphate rock.

Frazier, A.W.; Dillard, E.F.; Thrasher, R.D.; Waerstad, K.R.; Hunter, S.R.; Kohler, J.J.; Scheib, R.M.

1991-02-01

392

Influence of cooking on the levels of bioactive compounds in Purple Majesty potato observed via chemical and spectroscopic means.  

PubMed

Tubers rich in phytochemicals can exhibit a potential health benefit. This work aims at studying the relative effect of different domestic cooking techniques by monitoring the level of total phenolic compounds (TP), total anthocyanins (TA) and anti-oxidant activity (AOA) on a variety of pigmented potatoes. Raw purple potatoes are a good source of anthocyanins (219 mg/kg FW) and the level of these compounds increased using different cooking techniques, with the exception of baking. However, the levels of phenolic compounds (originally 209 mg GAE/100 g FW) decreased in the cooked potatoes. Although potatoes contain different antioxidants in this work the antioxidant activity seems to be related to the levels of phenolic compounds present in the pigmented potato. The fact that some of the compounds present fluoresce enabled both steady state and time-resolved fluorescence techniques to be assessed as a non destructive means of monitoring. This elucidated the presence of different components (via spectral deconvolution and time-resolved emission spectra). Their relative contribution to the fluorescence emission was found to be affected by the different cooking process, with a longer wavelength emission appearing to relate to reflect the presence of anthocyanins. PMID:25466046

Lemos, M Adília; Aliyu, Maryam M; Hungerford, Graham

2015-04-15

393

Identification of a Novel Selenium-containing Compound, Selenoneine, as the Predominant Chemical Form of Organic Selenium in the Blood of Bluefin Tuna*  

PubMed Central

A novel selenium-containing compound having a selenium atom in the imidazole ring, 2-selenyl-N?,N?,N?-trimethyl-l-histidine, 3-(2-hydroseleno-1H-imidazol-5-yl)-2-(trimethylammonio)propanoate, was identified from the blood and other tissues of the bluefin tuna, Thunnus orientalis. The selenium-containing compound was purified from the tuna blood in several chromatographic steps. High resolution mass spectrometry and nuclear magnetic resonance spectroscopy showed that the exact mass of the [M+H]+ ion of the compound was 533.0562 and the molecular formula was C18H29N6O4Se2. Its gross structure was assigned as the oxidized dimeric form of an ergothioneine selenium analog in which the sulfur of ergothioneine is replaced by selenium. Therefore, we named this novel selenium-containing compound “selenoneine.” By speciation analysis of organic selenium compounds using liquid chromatography inductively coupled plasma mass spectrometry, selenoneine was found widely distributed in various tissues of the tuna, with the highest concentration in blood; mackerel blood contained similar levels. Selenoneine was measurable at 2–4 orders of magnitude lower concentration in a limited set of tissues from squid, tilapia, pig, and chicken. Quantitatively, selenoneine is the predominant form of organic selenium in tuna tissues. PMID:20388714

Yamashita, Yumiko; Yamashita, Michiaki

2010-01-01

394

Identification of a novel selenium-containing compound, selenoneine, as the predominant chemical form of organic selenium in the blood of bluefin tuna.  

PubMed

A novel selenium-containing compound having a selenium atom in the imidazole ring, 2-selenyl-N(alpha),N(alpha),N(alpha)-trimethyl-L-histidine, 3-(2-hydroseleno-1H-imidazol-5-yl)-2-(trimethylammonio)propanoate, was identified from the blood and other tissues of the bluefin tuna, Thunnus orientalis. The selenium-containing compound was purified from the tuna blood in several chromatographic steps. High resolution mass spectrometry and nuclear magnetic resonance spectroscopy showed that the exact mass of the [M+H](+) ion of the compound was 533.0562 and the molecular formula was C(18)H(29)N(6)O(4)Se(2). Its gross structure was assigned as the oxidized dimeric form of an ergothioneine selenium analog in which the sulfur of ergothioneine is replaced by selenium. Therefore, we named this novel selenium-containing compound "selenoneine." By speciation analysis of organic selenium compounds using liquid chromatography inductively coupled plasma mass spectrometry, selenoneine was found widely distributed in various tissues of the tuna, with the highest concentration in blood; mackerel blood contained similar levels. Selenoneine was measurable at 2-4 orders of magnitude lower concentration in a limited set of tissues from squid, tilapia, pig, and chicken. Quantitatively, selenoneine is the predominant form of organic selenium in tuna tissues. PMID:20388714

Yamashita, Yumiko; Yamashita, Michiaki

2010-06-11

395

Overview of the ECHO Project: Emissions and Chemical Transformation of Biogenic Volatile Organic Compounds - Investigations in and above a mixed forest stand  

NASA Astrophysics Data System (ADS)

Forests are complex sources of biogenic volatile organic compounds (VOC) in the planetary boundary layer. With estimated emission rates of 1150 TgC/year, biogenic emissions dominate over those from anthropogenic sources by one order of magnitude on a global scale. Due to their emission in large quantities and their high reactivity biogenic VOCs have a significant impact on the photochemical processes that lead to the formation of ozone and other photooxidants in the planetary boundary layer (PBL). A considerable lack of knowledge exists concerning a typical forest stand as a net source of reactive trace compounds, the amount of primary emitted VOC which are transported directly into the PBL, and the amount of VOC which are chemically processed within the canopy, the products of which are transported into the PBL. ECHO is an integrated project which investigates the role of forests as source and chemical reactor of reactive trace gases. It comprises of a combination of large field campaigns, simulation experiments, and laboratory studies to investigate net VOC emissions from plants, chemical reactions of the emitted VOCs in the atmosphere, and transport processes in and above a forest stand. Here we describe the aims and concept of ECHO and present first results of the 2002 Intense phase of the field campaign.

Komenda, M.; Echo Team

2003-04-01

396

Studies on cardiac ingredients of plants. XIII: Chemical modification of gitoxin to cardiotonic compounds without vascular effect.  

PubMed

Nitrated gitoxins (4) and bufotoxin homologues with various lengths of alkyl chain at C-3 of the steroid nucleus (10) were prepared from gitoxin (1). The pharmacological activities of the resulting compounds (4 and 10) were evaluated by measurement of inhibitory effect on NA+, K(+)-adenosine triphosphatase (ATPase) prepared from dog kidney, positive inotropic effect (PIE) on isolated guinea-pig papillary muscle preparations, and the effect on smooth muscle using the mesenteric artery from spontaneously hypertensive rats. Most of the compounds showed a smaller contractile effect on the arterial muscle. Among these compounds, gitoxin 3"-nitrate (4g) exhibited the most desirable biological activities, such as PIE comparable to that of 1, 1.25 times wider concentration-dependent range than 1, and lack of contractile activity on vascular muscle. PMID:9145499

Nagatsu, A; Nakamura, Y; Takemoto, K; Shibatomi, K; Nagai, S; Ueda, T; Sakakibara, J; Hidaka, H; Fujita, M; Hotta, Y; Takeya, K; Asano, M; Hashimoto, T; Asakawa, Y

1997-04-01

397

Beaver ( Castor canadensis ) responses to major phenolic and neutral compounds in castoreum  

Microsoft Academic Search

North American beaver (Castor canadensis) mark their territories with castoreum, a chemically complex secretion from their castor sacs. The phenolic and neutral fractions of castoreum have been shown to elicit specific behavioral responses from beavers in a field setting. Our objective was to identify compounds\\/mixtures that evoked responses similar to those stimulated by castoreum. We assayed recently identified phenolic compounds,

Bruce A. Schulte; Dietland Müller-Schwarze; Rong Tang; Francis X. Webster

1994-01-01

398

Profiling of the Tox21 Chemical Collection for Mitochondrial Function: I. Compounds that Decrease Mitochondrial Membrane Potential  

EPA Science Inventory

Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding how different environmental chemicals and drug-like molecules impact mitochondrial function rep...

399

QSAR study of anticoccidial activity for diverse chemical compounds: prediction and experimental assay of trans-2-(2-nitrovinyl)furan.  

PubMed

In this work we report a QSAR model that discriminates between chemically heterogeneous classes of anticoccidial and non-anticoccidial compounds. For this purpose we used the Markovian Chemicals in silico Design (MARCH-INSIDE) approach J. Mol. Mod.2002, 8, 237-245; J. Mol. Mod.2003, 9, 395-407]. Linear discriminant analysis allowed us to fit the discriminant function. This function correctly classifies 86.67% of anticoccidial compounds and 96.23% of inactive compounds in the training series. Overall classification is 94.12%. We validated the model by means of an external predicting series, with 86.96% of global predictability. Remarkably, the present model is based on topological as well as configuration-dependent molecular descriptors. Therefore, the model performs timely calculations and allows discrimination between Z/E and chiral isomers. Finally, to exemplify the use of the model in practice we report the prediction and experimental assay of trans-2-(2-nitrovinyl)furan. It is notable that lesion control was 72.86% at mg/kg of body weight with respect to 60% at 125 mg/kg for amprolium (control drug). The back-projection map for this compound predicts a high level of importance for the double bond and for the nitro group in the trans position. We conclude that the MARCH-INSIDE approach enables the accurate fast track identification of anticoccidial hits. Moreover, trans-2-(2-nitrovinyl)furan seems to be a promising drug for the treatment of coccidiosis. PMID:17081758

González-Díaz, Humberto; Olazábal, Ervelio; Santana, Lourdes; Uriarte, Eugenio; González-Díaz, Yenny; Castañedo, Nilo

2007-01-15

400

Monitoring surface compound formation with chemical-shift near-edge x-ray absorption fine structure  

NASA Astrophysics Data System (ADS)

Chemical-shift near-edge x-ray absorption fine structure (NEXAFS) has been used to follow the substrate-induced oxidation of phosphorus on Fe3 O4 (111) . The NEXAFS spectra from two coexisting species were deconvoluted into their component spectra by curve fitting the chemically shifted P K L2,3 L2,3 Auger features. An FeP-like overlayer is formed at room temperature, which is converted to a phosphate overlayer at elevated temperatures.

Woodhead, A. P.; Gutiérrez-Sosa, A.; Martinez-Escolano, P.; Thornton, G.

2004-11-01

401

Lithium Ethylene Dicarbonate Identified as the Primary Product ofChemical and Electrochemical Reduction of EC in EC:EMC/1.2M LiPF6Electrolyte  

SciTech Connect

Lithium ethylene dicarbonate (CH2OCO2Li)2 was chemically synthesized and its Fourier Transform Infrared (FTIR) spectrum was obtained and compared with that of surface films formed on Ni after cyclic voltammetry (CV) in 1.2M lithium hexafluorophosphate(LiPF6)/ethylene carbonate (EC): ethyl methyl carbonate (EMC) (3:7, w/w) electrolyte and on metallic lithium cleaved in-situ in the same electrolyte. By comparison of IR experimental spectra with that of the synthesized compound, we established that the title compound is the predominant surface species in both instances. Detailed analysis of the IR spectrum utilizing quantum chemical (Hartree-Fock) calculations indicates that intermolecular association through O...Li...O interactions is very important in this compound. It is likely that the title compound in passivation layer has a highly associated structure, but the exact intermolecular conformation could not be established based on analysis of the IR spectrum.

Zhuang, Guorong V.; Xu, Kang; Yang, Hui; Jow, T. Richard; RossJr., Philip N.

2005-05-11

402

PHEROMONAL ACTIVITY OF COMPOUNDS IDENTIFIED FROM MALE PHYLLOTRETA CRUCIFERAE: FIELD TESTS OF RACEMIC MIXTURES, PURE ENANTIOMERS, AND COMBINATIONS WITH ALLYL ISOTHIOCYANATE  

Technology Transfer Automated Retrieval System (TEKTRAN)

Four himachalene sesquiterpenes and (+)-'-cadinene, previously identified as possible pheromone components from males of a North American population of Phyllotreta cruciferae Goeze (Coleoptera, Chrysomelidae), were tested for attractiveness in field traps in Hungary. A mixture of the four synthetic...