Science.gov

Sample records for identifying bearing rotordynamic

  1. Identifying Bearing Rotordynamic Coefficients using an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Miller, Bard A.; Howard, Samuel A.

    2008-01-01

    An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor-dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter s performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor-bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.

  2. A test apparatus and facility to identify the rotordynamic coefficients of high-speed hydrostatic bearings

    NASA Technical Reports Server (NTRS)

    Childs, Dara; Hale, Keith

    1994-01-01

    A facility and apparatus are described which determine stiffness, damping, and added-mass rotordynamic coefficients plus steady-state operating characteristics of high speed hydrostatic journal bearings. The apparatus has a current top speed of 29,800 rpm with a bearing diameter of 7.62 cm (3 in.). Purified warm water, 55 C (130 F), is used as a test fluid to achieve elevated Reynolds numbers during operation. The test-fluid pump yields a bearing maximum inlet pressure of 6.9 Mpa (1000 psi). Static load on the bearing is independently controlled and measured. Orthogonally mounted external shakers are used to excite the test stator in the direction of, and perpendicular to, the static load. The apparatus can independently calculate all rotordynamic coefficients at a given operating condition.

  3. A parameter identification method for the rotordynamic coefficients of a high Reynolds number hydrostatic bearing

    NASA Technical Reports Server (NTRS)

    Rouvas, C.; Childs, D. W.

    1993-01-01

    In identifying the rotordynamic coefficients of a high-Reynolds-number hydrostatic bearing, fluid-flow induced forces present a unique problem, in that they provide an unmeasureable and uncontrollable excitation to the bearing. An analysis method is developed that effectively eliminates the effects of fluid-flow induced excitation on the estimation of the bearing rotordynamic coefficients, by using power spectral densities. In addition to the theoretical development, the method is verified experimentally by single-frequency testing, and repeatability tests. Results obtained for a bearing are the twelve rotordynamic coefficients (stiffness, damping, and inertia coefficients) as functions of eccentricity ratio, speed, and supply pressure.

  4. Rotordynamics and bearing design of turbochargers

    NASA Astrophysics Data System (ADS)

    Chen, Wen Jeng

    2012-05-01

    Turbochargers have gained significant attention in recent years. They are already widely used in automotive, locomotive, and marine applications with diesel engines. They are also applied in the aerospace application to increase the engine performance now. The turbochargers used in automotive and aerospace industry are very light-weight with operating speeds above 100,000 rpm. The turbochargers used in locomotive and marine applications are relatively heavy in size and power compared to the automotive and aerospace applications, and the maximum continuous operating speeds are around 30,000 rpm depending on the diesel engine power rating. Floating ring bushings, semi-floating dampers, ball bearings, and ball bearings with dampers are commonly used in automotive applications for small turbochargers. However, these bearings may not be appropriate for large turbochargers in locomotive and marine applications. Instead, multi-lobed bearings with and without squeeze film dampers are commonly used in these heavy-duty turbochargers. This paper deals with the rotordynamic characteristics of larger turbochargers in locomotive and marine applications. Various bearing designs are discussed. Bearing design parameters are studied and optimal values are suggested. Test results are also presented to support the analytical simulation.

  5. A technique to measure rotordynamic coefficients in hydrostatic bearings

    NASA Technical Reports Server (NTRS)

    Capaldi, Russell J.

    1993-01-01

    An experimental technique is described for measuring the rotordynamic coefficients of fluid film journal bearings. The bearing tester incorporates a double-spool shaft assembly that permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit. This configuration yields data that enables determination of the full linear anisotropic rotordynamic coefficient matrices. The dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. Some results are presented for a four-recess, oil-fed hydrostatic journal bearing.

  6. A technique to measure rotordynamic coefficients in hydrostatic bearings

    NASA Astrophysics Data System (ADS)

    Capaldi, Russell J.

    1993-11-01

    An experimental technique is described for measuring the rotordynamic coefficients of fluid film journal bearings. The bearing tester incorporates a double-spool shaft assembly that permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit. This configuration yields data that enables determination of the full linear anisotropic rotordynamic coefficient matrices. The dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. Some results are presented for a four-recess, oil-fed hydrostatic journal bearing.

  7. Rotordynamic analysis of a bearing tester

    NASA Technical Reports Server (NTRS)

    Zalik, Richard A.

    1988-01-01

    The properties of the solutions of a system of four coupled nonlinear differential equations that model the behavior of the rotating shaft of a bearing tester are studied. In particular, it is shown how the bounds for the rotations of these equations can be obtained from bounds for the solutions of the linearized equations. By studying the behavior of the Fourier transforms of the solution, the approach to the stability boundary can also be predicted. These conclusions are verified by means of numerical solutions of the equations, and of power spectrum density (PSD) plots.

  8. Rotordynamic characteristics of flexure-pivot tilting-pad journal bearings

    NASA Astrophysics Data System (ADS)

    Armentrout, Richard W.; Paquette, Donald J.

    1993-07-01

    Many of today's modern turbomachines, especially those running at high speeds and high power ratings, require the superior stability characteristics of tilting-pad journal bearings to prevent rotor-dynamic instabilities. Until now, the design complexity of tilting-pad bearings has precluded their use in many small, high-volume applications where cost and size are important. This paper introduces a new one-piece journal bearing design, the flexure-pivot bearing, that offers many of the beneficial rotor-dynamic advantages of tilting-pad bearings, without the complexities of a multi-piece design. Performance data for a flexure-pivot bearing is shown for an application requiring a highly stable design, illustrating the effectiveness of the flexure-pivot bearing in offering rotordynamic stability approaching that of a tilting-pad bearing.

  9. A New Analysis Tool Assessment for Rotordynamic Modeling of Gas Foil Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; SanAndres, Luis

    2010-01-01

    Gas foil bearings offer several advantages over traditional bearing types that make them attractive for use in high-speed turbomachinery. They can operate at very high temperatures, require no lubrication supply (oil pumps, seals, etc.), exhibit very long life with no maintenance, and once operating airborne, have very low power loss. The use of gas foil bearings in high-speed turbomachinery has been accelerating in recent years, although the pace has been slow. One of the contributing factors to the slow growth has been a lack of analysis tools, benchmarked to measurements, to predict gas foil bearing behavior in rotating machinery. To address this shortcoming, NASA Glenn Research Center (GRC) has supported the development of analytical tools to predict gas foil bearing performance. One of the codes has the capability to predict rotordynamic coefficients, power loss, film thickness, structural deformation, and more. The current paper presents an assessment of the predictive capability of the code, named XLGFBTH (Texas A&M University). A test rig at GRC is used as a simulated case study to compare rotordynamic analysis using output from the code to actual rotor response as measured in the test rig. The test rig rotor is supported on two gas foil journal bearings manufactured at GRC, with all pertinent geometry disclosed. The resulting comparison shows that the rotordynamic coefficients calculated using XLGFBTH represent the dynamics of the system reasonably well, especially as they pertain to predicting critical speeds.

  10. Rotordynamic Modelling and Response Characteristics of an Active Magnetic Bearing Rotor System

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1996-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied. These results are presented and discussed.

  11. Rotordynamic Influence on Rolling ELement Bearing Selection and Operation

    NASA Technical Reports Server (NTRS)

    Queitzsch, Gilbert K., Jr.; Fleming, David P.

    2001-01-01

    Three case studies are presented that illustrate the importance of dynamic considerations in the design of machinery supported by rolling element bearings. The first case concerns a milling spindle that experienced internal rubs and high bearing loads, and required retrofit of an additional . damped bearing. The second case deals with a small high-speed generator that suffered high vibration due to flexible mounting. The third case is a propulsion fan simulator rig whose bearings failed catastrophically due to improper bearing installation (which resulted in inadequate dynamic bearing stiffness) and lack of health monitoring instrumentation.

  12. Rotordynamic Instability Problems in High-Performance Turbomachinery

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Diagnostic and remedial methods concerning rotordynamic instability problems in high performance turbomachinery are discussed. Instabilities due to seal forces and work-fluid forces are identified along with those induced by rotor bearing systems. Several methods of rotordynamic control are described including active feedback methods, the use of elastometric elements, and the use of hydrodynamic journal bearings and supports.

  13. Rotordynamic Characterization of a Hybrid Superconductor Magnet Bearing

    NASA Technical Reports Server (NTRS)

    Ma, Ki B.; Xia, Zule H.; Cooley, Rodger; Fowler, Clay; Chu, Wei-Kan

    1996-01-01

    A hybrid superconductor magnet bearing uses magnetic forces between permanent magnets to provide lift and the flux pinning force between permanent magnets and superconductors to stabilize against instabilities intrinsic to the magnetic force between magnets. We have constructed a prototype kinetic energy storage system, using a hybrid superconductor magnet bearing to support a 42 lb. flywheel at the center. With five sensors on the periphery of the flywheel, we have monitored the position and attitude of the flywheel during its spin down. The results indicate low values of stiffnesses for the bearing. The implications of this and other consequences will be discussed.

  14. Active magnetic bearing control loop modeling for a finite element rotordynamics code

    NASA Technical Reports Server (NTRS)

    Genta, Giancarlo; Delprete, Cristiana; Carabelli, Stefano

    1994-01-01

    A mathematical model of an active electromagnetic bearing which includes the actuator, the sensor and the control system is developed and implemented in a specialized finite element code for rotordynamic analysis. The element formulation and its incorporation in the model of the machine are described in detail. A solution procedure, based on a modal approach in which the number of retained modes is controlled by the user, is then shown together with other procedures for computing the steady-state response to both static and unbalance forces. An example of application shows the numerical results obtained on a model of an electric motor suspended on a five active-axis magnetic suspension. The comparison of some of these results with the experimental characteristics of the actual system shows the ability of the present model to predict its performance.

  15. Active magnetic bearing control loop modeling for a finite element rotordynamics code

    NASA Astrophysics Data System (ADS)

    Genta, Giancarlo; Delprete, Cristiana; Carabelli, Stefano

    1994-05-01

    A mathematical model of an active electromagnetic bearing which includes the actuator, the sensor and the control system is developed and implemented in a specialized finite element code for rotordynamic analysis. The element formulation and its incorporation in the model of the machine are described in detail. A solution procedure, based on a modal approach in which the number of retained modes is controlled by the user, is then shown together with other procedures for computing the steady-state response to both static and unbalance forces. An example of application shows the numerical results obtained on a model of an electric motor suspended on a five active-axis magnetic suspension. The comparison of some of these results with the experimental characteristics of the actual system shows the ability of the present model to predict its performance.

  16. Status Update on the Seal/bearing Rotordynamics Test Facility at Case Western Reserve University

    NASA Technical Reports Server (NTRS)

    Adams, Michael L.

    1991-01-01

    The CWRU Seal/Bearing test facility is shown along with the revised force measuring system. This facility has recently been retrofitted with a high pressure, high flow oil system. The high pressure high flow water system remains in place to test seals. Also, a new high flow air system is now installed. Thus, testing to determine static and dynamic properties can now be performed using oil, water, or air on this single facility. The oil system is currently being used to determine rotordynamic properties of a NASA four pocket hydrostatic journal bearing. The revised dual system force measuring configuration is performing with excellent accuracy. That is, the dynamic force measurements are made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. The difference is less than 2 pct. between these two sets of load cell measurements on recent tests with a static eccentricity set close to zero and an orbit radius of 0.0004 inch. The extracted stiffness, damping and inertia coefficients is given for the test conditions shown, as extracted from the two independent dynamic force measurements.

  17. System Being Developed to Measure the Rotordynamic Characteristics of Air Foil Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    Because of the many possible advantages of oil-free engine operation, interest in using air lubricated foil-bearing technology in advanced oil-free engine concepts has recently increased. The Oil-Free Turbomachinery Program at the NASA Glenn Research Center at Lewis Field has partially driven this recent push for oil-free technology. The program's goal of developing an innovative, practical, oil-free gas turbine engine for aeropropulsion began with the development of NASA's high-temperature solid-lubricant coating, PS304. This coating virtually eliminates the life-limiting wear that occurs during the startup and shutdown of the bearings. With practically unlimited life, foil air bearings are now very attractive to rotating machinery designers for use in turbomachinery. Unfortunately, the current knowledge base of these types of bearings is limited. In particular, the understanding of how these types of bearings contribute to the rotordynamic stability of turbomachinery is insufficient for designers to design with confidence. Recent work in oil-free turbomachinery has concentrated on advancing the understanding of foil bearings. A high-temperature fiber-optic displacement probe system and measurement method were developed to study the effects of speed, load, temperature, and other environmental issues on the stiffness characteristics of air foil bearings. Since high temperature data are to be collected in future testing, the testing method was intentionally simplified to minimize the need for expensive test hardware. The method measures the displacement induced upon a bearing in response to an applied perturbation load. The early results of these studies, which are shown in the accompanying figure, indicate trends in steady state stiffness that suggest stiffness increases with load and decreases with speed. It can be seen, even from these data, that stiffness is not expected to change by orders of magnitude over the normal operating range of most turbomachinery; a

  18. Modifications to Marshall's Annular Seal Test (MAST) Rig and Facility for Improved Rotordynamic Coefficient Testing of Annular Seals and Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    Darden, J. M.; Earhart, E. M.

    2011-01-01

    The limits of rotordynamic stability continue to be pushed by the high power densities and rotational speeds of modern rocket engine turbomachinery. Destabilizing forces increase dramatically with rotor speed. Rotordynamic stability is lost when these destabilizing forces overwhelm the stabilizing forces. The vibration from the unstable rotor grows until it is limited by some nonlinearity. For example, a rolling element bearing with a stiffness characteristic that increases with deflection may limit the vibration amplitude. The loads and deflections resulting from this limit cycle vibration (LCV) can lead to bearing and seal damage which promotes ever increasing levels of subsynchronous vibration. Engineers combat LCV by introducing rotordynamic elements that generate increased stabilizing forces and reduced destabilizing forces. For example, replacing a labyrinth seal with a damping seal results in substantial increases in the damping and stiffness rotordynamic coefficients. Adding a swirl brake to the damping seal greatly reduces the destabilizing cross-coupled forces generated by the damping seal for even further increases in the stabilizing capacity. Marshall?s Annular Seal Test (MAST) rig is designed to experimentally measure the stabilizing capacity of new annular seal designs. The rig has been moved to a new facility and outfitted with a new slave bearing to allow increased test durations and to enable the testing of fluid film bearings. The purpose of this paper is to describe the new facility and the new bearing arrangement. Several novel seal and bearing designs will also be discussed.

  19. Preliminary design of mesoscale turbocompressor and rotordynamics tests of rotor bearing system

    NASA Astrophysics Data System (ADS)

    Hossain, Md Saddam

    2011-12-01

    A mesoscale turbocompressor spinning above 500,000 RPM is evolutionary technology for micro turbochargers, turbo blowers, turbo compressors, micro-gas turbines, auxiliary power units, etc for automotive, aerospace, and fuel cell industries. Objectives of this work are: (1) to evaluate different air foil bearings designed for the intended applications, and (2) to design & perform CFD analysis of a micro-compressor. CFD analysis of shrouded 3-D micro compressor was conducted using Ansys Bladegen as blade generation tool, ICEM CFD as mesh generation tool, and CFX as main solver for different design and off design cases and also for different number of blades. Comprehensive experimental facilities for testing the turbocompressor system have been also designed and proposed for future work.

  20. SSME turbopump technology improvements via transient rotordynamic analysis

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1975-01-01

    The rotordynamic behavior of the high pressure oxygen turbopump and high pressure fuel pump was analyzed for the Space Shuttle Main Engine. The identification of potential rotordynamic problem areas which might arise during operation of these units prior to their testing was accomplished. Alternative procedures for correcting potential rotordynamic problems should they occur were investigated. An adequate analytic and physical understanding of the turbopump rotordynamics was developed to improve the probability of a correct diagnosis of rotordynamic problems from test data. Transient rotordynamic models were developed for both turbopumps. The transient models model the hydrodynamic forces of the turbopump seals. A linear stability analysis was performed for the turbopump rotordynamics models, which included gyroscopic effects, seal forces, speed-dependent bearing characteristics, and internal rotor damping. Results are presented and discussed.

  1. A classifier neural network for rotordynamic systems

    NASA Astrophysics Data System (ADS)

    Ganesan, R.; Jionghua, Jin; Sankar, T. S.

    1995-07-01

    A feedforward backpropagation neural network is formed to identify the stability characteristic of a high speed rotordynamic system. The principal focus resides in accounting for the instability due to the bearing clearance effects. The abnormal operating condition of 'normal-loose' Coulomb rub, that arises in units supported by hydrodynamic bearings or rolling element bearings, is analysed in detail. The multiple-parameter stability problem is formulated and converted to a set of three-parameter algebraic inequality equations. These three parameters map the wider range of physical parameters of commonly-used rotordynamic systems into a narrow closed region, that is used in the supervised learning of the neural network. A binary-type state of the system is expressed through these inequalities that are deduced from the analytical simulation of the rotor system. Both the hidden layer as well as functional-link networks are formed and the superiority of the functional-link network is established. Considering the real time interpretation and control of the rotordynamic system, the network reliability and the learning time are used as the evaluation criteria to assess the superiority of the functional-link network. This functional-link network is further trained using the parameter values of selected rotor systems, and the classifier network is formed. The success rate of stability status identification is obtained to assess the potentials of this classifier network. The classifier network is shown that it can also be used, for control purposes, as an 'advisory' system that suggests the optimum way of parameter adjustment.

  2. Rotordynamics analysis for the HPFTP (High Pressure Fuel Turbopump) of the SSME (Space Shuttle Main Engine). SSME turbopump technology improvements via transient rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1980-01-01

    The results of both linear (stability and synchronous response) and transient nonlinear analyses are reported. Dynamic coefficients were developed for the HPFTP interstage seals, and introduced into the rotordynamic model. The influence on HPFTP rotordynamics of a change in interstage seals from the smooth stepped design to a smooth straight configuration was examined. The sensitivity of the stability and synchronous results to changes in bearing stiffnesses and damping was determined. The influence on rotordynamic stability of a change from the stiff symmetric bearing carrier design to an asymmetric bearing carrier configuration was also studied.

  3. Practical Use of Rotordynamic Analysis to Correct a Vertical Long Shaft Pump's Whirl Problem

    SciTech Connect

    Leishear, R.A.

    2002-05-10

    The use of long shaft vertical pumps is common practice in the nuclear waste processing industry. Unfortunately, when such pumps employ plain cylindrical journal bearings, they tend to suffer from rotordynamic instability problems due to the inherent lightly-loaded condition that the vertical orientation places on the bearings. This paper describes a case study in which the authors utilized rotordynamic analysis and experimental vibration analysis to diagnose such a problem and designed replacement tilting-pad bearings to solve the problem.

  4. Rotordynamics and Design Methods of an Oil-Free Turbocharger

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    1999-01-01

    The feasibility of supporting a turbocharger rotor on air foil bearings is investigated based upon predicted rotordynamic stability, load accommodations, and stress considerations. It is demonstrated that foil bearings offer a plausible replacement for oil-lubricated bearings in diesel truck turbochargers. Also, two different rotor configurations are analyzed and the design is chosen which best optimizes the desired performance characteristics. The method of designing machinery for foil bearing use and the assumptions made are discussed.

  5. Synchronous dynamics of a coupled shaft/bearing/housing system with auxiliary support from a clearance bearing: Analysis and experiment

    NASA Technical Reports Server (NTRS)

    Lawen, James, Jr.; Flowers, George T.

    1992-01-01

    This study examines the response of a flexible rotor supported by load sharing between linear bearings and an auxiliary clearance bearing. The objective of the work is to develop a better understanding of the dynamical behavior of a magnetic bearing supported rotor system interacting with auxiliary bearings during a critical operating condition. Of particular interest is the effect of coupling between the bearing/housing and shaft vibration on the rotordynamical responses. A simulation model is developed and a number of studies are performed for various parametric configurations. An experimental investigation is also conducted to compare and verify the rotordynamic behavior predicted by the simulation studies. A strategy for reducing synchronous shaft vibration through appropriate design of coupled shaft/bearing/housing vibration modes is identified. The results are presented and discussed.

  6. Synchronous dynamics of a coupled shaft/bearing/housing system with auxiliary support from a clearance bearing: Analysis and experiment

    NASA Technical Reports Server (NTRS)

    Lawen, James L., Jr.; Flowers, George T.

    1995-01-01

    This study examines the response of a flexible rotor supported by load sharing between linear bearings and an auxiliary clearance bearing. The objective is to develop a better understanding of the dynamical behavior of a magnetic bearing supported rotor system interacting with auxiliary bearings during a critical operating condition. Of particular interest is the effect of coupling between the bearing/housing and shaft vibration on the rotordynamical responses. A simulation model is developed and a number of studies are performed for various parametric configurations. An experimental investigation is also conducted to compare and verify the rotordynamic behavior predicted by the simulation studies. A strategy for reducing synchronous shaft vibration through appropriate design of coupled shaft/bearing/housing vibration modes is identified.

  7. Determination of Rotordynamic Coefficients for Labyrinth Seals and Application to Rotordynamic Design Calculations

    NASA Technical Reports Server (NTRS)

    Weiser, P.; Nordmann, R.

    1991-01-01

    In today's rotordynamic calculations, the input parameters for a finite element analysis (FEA) determine very much the reliability of eigenvalue and eigenmode predictions. While modeling of an elastic structure by means of beam elements etc. is relatively straightforward to perform and the input data for journal bearings are usually known exactly enough, the determination of stiffness and damping for labyrinth seals is still the subject of many investigations. Therefore, the rotordynamic influence of labyrinths is often not included in FEA for rotating machinery because of a lack of computer programs to calculate these parameters. This circumstance can give rise to severe vibration problems especially for high performance turbines or compressors, resulting in remarkable economic losses. The forces generated in labyrinths can be described for small motions around the seal center with a linearized force-motion relationship. Several years ago, we started with the development of computer codes for the determination of rotordynamic seal coefficients. Our different approaches to evaluate the dynamic fluid forces generated by turbulent, compressible seal flow are introduced.

  8. Annular honeycomb seals: Test results for leakage and rotordynamic coefficients - Comparisons to labyrinth and smooth configurations

    NASA Technical Reports Server (NTRS)

    Childs, D.; Elrod, D.; Hale, K.

    1989-01-01

    Test results are presented for leakage and rotordynamic coefficients for seven honeycomb seals. All seals have the same radius, length, and clearance; however, the cell depths and diameters are varied. Rotordynamic data, which are presented, consist of the direct and cross-coupled stiffness coefficients and the direct damping coefficients. The rotordynamic-coefficient data show a considerable sensitivity to changes in cell dimensions; however, no clear trends are identifiable. Comparisons of test data for the honeycomb seals with labyrinth and smooth annular seals shows the honeycomb seal had the best sealing (minimum leakage) performance, followed in order by the labyrinth and smooth seals. For prerotated fluids entering the seal, in the direction of shaft rotation, the honeycomb seal has the best rotordynamic stability followed in order by the labyrinth and smooth. For no prerotation, or fluid prerotation against shaft rotation, the labyrinth seal has the best rotordynamic stability followed in order by the smooth and honeycomb seals.

  9. Annular honeycomb seals: Test results for leakage and rotordynamic coefficients; comparisons to labyrinth and smooth configurations

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.; Elrod, David; Hale, Keith

    1989-01-01

    Test results are presented for leakage and rotordynamic coefficients for seven honeycomb seals. All seals have the same radius, length, and clearance; however, the cell depths and diameters are varied. Rotordynamic data, which are presented, consist of the direct and cross-coupled stiffness coefficients and the direct damping coefficients. The rotordynamic-coefficient data show a considerable sensitivity to changes in cell dimensions; however, no clear trends are identifiable. Comparisons of test data for the honeycomb seals with labyrinth and smooth annular seals show the honeycomb seal had the best sealing (minimum leakage) performance, followed in order by the labyrinth and smooth seals. For prerotated fluid entering the seal, in the direction of shaft rotation, the honeycomb seal has the best rotordynamic stability followed in order by the labyrinth and smooth. For no prerotation, or fluid prerotation against shaft rotation, the labyrinth seal has the best rotordynamic stability followed in order by the smooth and honeycomb seals.

  10. Nonlinear rotordynamics analysis

    NASA Technical Reports Server (NTRS)

    Day, W. B.

    1985-01-01

    The special nonlinearities of the Jeffcott equations in rotordynamics are examined. The immediate application of this analysis is directed toward understanding the excessive vibrations recorded in the LOX pump of the SSME during hot firing ground testing. Deadband, side force and rubbing are three possible sources of inducing nonlinearity in the Jeffcott equations. The present analysis initially reduces these problems to the same mathematical description. A special frequency, named the nonlinear natural frequency is defined and used to develop the solutions of the nonlinear Jeffcott equations as asympotic expansions. This nonlinear natural frequency which is the ratio of the cross-stiffness and the damping, plays a major role in determining response frequencies. Numerical solutions are included for comparison with the analysis. Also, nonlinear frequency-response tables are made for a typical range of values.

  11. Rotordynamic Instability Problems in High-Performance Turbomachinery 1996

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The first rotordynamics workshop proceedings emphasized a feeling of uncertainty in predicting the stability of characteristics of high-performance turbomachinery. In the second workshop proceedings these uncertainties were reduced through programs established to systematically resolve problems, with emphasis on experimental validation of the forces that influence rotordynamics. In the third proceedings many programs for predicting or measuring forces and force coefficients in high-performance turbomachinery produced results. Data became available for designing new machines with enhanced stability characteristics or for upgrading existing machines. In the fourth proceedings there emerged trends towards a more unified view of rotordynamic instability problems and several encouraging new analytical developments. The fifth workshop supported the continuing trend toward a unified view with several new developments in the design and manufacture of new turbomachineries with enhanced stability characteristics along with new data and associated numerical/theoretical results. The sixth workshop report provided field experience and experimental results, and expanded the use of computational and control techniques with integration of damper, bearing, and eccentric seal operation results. The seventh workshop report provided field experiences, numerical, theoretical, and experimental results and control methods for seals, bearings, and dampers with some attention given to variable thermophysical properties and turbulence measurements, and introduction of two-phase flow results. In the present workshop, active magnetic bearings (AMB's) evolve into a new method of measuring rotordynamic coefficients with discussions on honeycomb seals, drop of magnetically supported rotors, seals, bearings and dampers with new data being reported. The intent of the workshop and this proceedings is to provide a continuing impetus for an understanding and resolution of these problems.

  12. Experimental rotordynamic coefficient results for honeycomb seals

    NASA Technical Reports Server (NTRS)

    Elrod, David A.; Childs, Dara W.

    1988-01-01

    Test results (leakage and rotordynamic coefficients) are presented for seven honeycomb-stator smooth-rotor seals. Tests were carried out with air at rotor speeds up to 16,000 cpm and supply pressures up to 8.2 bars. Test results for the seven seals are compared, and the most stable configuration is identified based on the whirl frequency ratio. Results from tests of a smooth-rotor/smooth-stator seal, a teeth-on-stator labyrinth seal, and the most stable honeycomb seal are compared.

  13. 21 CFR 801.20 - Label to bear a unique device identifier.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Label to bear a unique device identifier. 801.20... bear a unique device identifier. (a) In general. (1) The label of every medical device shall bear a.... (2) Every device package shall bear a UDI that meets the requirements of this subpart and part 830...

  14. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.

  15. Identifying Bearing Rotodynamic Coefficients Using an Extended Kalman Filter

    NASA Technical Reports Server (NTRS)

    Miller, Brad A.; Howard, Samuel A.

    2008-01-01

    An Extended Kalman Filter is developed to estimate the linearized direct and indirect stiffness and damping force coefficients for bearings in rotor dynamic applications from noisy measurements of the shaft displacement in response to imbalance and impact excitation. The bearing properties are modeled as stochastic random variables using a Gauss-Markov model. Noise terms are introduced into the system model to account for all of the estimation error, including modeling errors and uncertainties and the propagation of measurement errors into the parameter estimates. The system model contains two user-defined parameters that can be tuned to improve the filter's performance; these parameters correspond to the covariance of the system and measurement noise variables. The filter is also strongly influenced by the initial values of the states and the error covariance matrix. The filter is demonstrated using numerically simulated data for a rotor bearing system with two identical bearings, which reduces the number of unknown linear dynamic coefficients to eight. The filter estimates for the direct damping coefficients and all four stiffness coefficients correlated well with actual values, whereas the estimates for the cross-coupled damping coefficients were the least accurate.

  16. Evaluation of Rotordynamic Stability of a Steam Turbine Due to Labyrinth Seal Force

    NASA Astrophysics Data System (ADS)

    Hirano, Toshio; Sasaki, Takashi; Sakakida, Hitoshi; Uchida, Tatsuro; Tsutsui, Masaji; Ikeda, Kazunori

    This paper describes the evaluation of unstable vibration caused by the seal force, which is known as "Steam Whirl" in a steam turbine. Stability of a steam turbine is evaluated by complex eigenvalue analysis of rotordynamics model considering the dynamics of seals, rotor, bearings and pedestals. A commercial CFD program is employed to estimate the dynamic coefficients of labyrinth seal. The labyrinth seal of a large scales steam turbine is taken as an object of analysis and a 3D model with eccentric rotor is solved to obtain the rotordynamic force components. The rotordynamic force is derived by integrating the pressure on the rotor surface. Evaluation formula is formed from the results of numerical calculation, which is used to predict the dynamic coefficient of each seal in a steam turbine. Then rotordynamics model of total system including seal is constructed and stability is evaluated by complex eigenvalue analysis. This procedure is applied to the design of steam turbines and enables the optimization of the turbine structure considering the efficiency and stability.

  17. Synchronous critical speed tracking in hydrostatic bearing supported rotors

    NASA Technical Reports Server (NTRS)

    Henderson, Thomas W.; Scharrer, Joseph K.

    1989-01-01

    Hydrostatic bearings used in advanced turbopump designs use the pumped propellant as the working fluid and supply the propellant to the bearing from pump discharge. The resulting rotordynamic coefficients are highly speed-dependent and in some instances can cause system natural frequencies to coincide with spin speed over a wide speed range. This paper discusses this 'synchronous tracking' phenomenon. The factors affecting it are defined, and specific examples are presented. Methods which identify synchronous tracking issues early in the design process are reported, and techniques for eliminating this undesirable characteristic are addressed.

  18. Rotordynamic Characteristics of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine)

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1984-01-01

    Rotational stability of turbopump components in the space shuttle main engine was studied via analysis of component and structural dynamic models. Subsynchronous vibration caused unacceptable migration of the rotor/housing unit with unequal load sharing of the synchronous bearings that resulted in the failure of the High Pressure Oxygen Turbopump. Linear analysis shows that a shrouded inducer eliminates the second critical speed and the stability problem, a stiffened rotor improves the rotordynamic characteristics of the turbopump, and installing damper boost/impeller seals reduces bearing loads. Nonlinear analysis shows that by increasing the "dead band' clearances, a marked reduction in peak bearing loads occurs.

  19. Modeling and evaluation of damping coefficient of eddy current dampers in rotordynamic applications

    NASA Astrophysics Data System (ADS)

    Detoni, J. G.; Cui, Q.; Amati, N.; Tonoli, A.

    2016-07-01

    Eddy current dampers (ECD) can be used to introduce damping in rotordynamic applications. ECDs are contactless in nature and can be made to introduce negligible drag force, thus being a perfect match for passive magnetic bearings such as permanent magnet bearings and superconducting bearings. However, modeling and estimating the amount of damping introduced by an ECD is a difficult task due to complicated geometry and working conditions. The present study presents a novel method for modeling and identification of the damping characteristics of ECDs for rotordynamic applications. The proposed method employs an analytical dynamic model of the ECD and curve fitting with results of electromagnetic finite element (FE) models to obtain the parameters characterizing the ECD's mechanical impedance. The damping coefficient can be obtained with great accuracy from a single FE solution in quasistatic conditions. The validity of the proposed method is limited to the case of ECDs employing an axisymmetric conductor, such as a disc or a cylinder, thus covering most cases in rotordynamic applications. Finally, the accuracy of the identification procedure is verified experimentally by comparing the model's results with experimental tests.

  20. Transient Vibration Prediction for Rotors on Ball Bearings Using Load-dependent Non-linear Bearing Stiffness

    NASA Technical Reports Server (NTRS)

    Fleming, David P.; Poplawski, J. V.

    2002-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic transient analysis requires bearing forces to be determined at each step of the transient solution. Analyses have been carried out to show the effect of accurate bearing transient forces (accounting for non-linear speed and load dependent bearing stiffness) as compared to conventional use of average rolling-element bearing stiffness. Bearing forces were calculated by COBRA-AHS (Computer Optimized Ball and Roller Bearing Analysis - Advanced High Speed) and supplied to the rotordynamics code ARDS (Analysis of Rotor Dynamic Systems) for accurate simulation of rotor transient behavior. COBRA-AHS is a fast-running 5 degree-of-freedom computer code able to calculate high speed rolling-element bearing load-displacement data for radial and angular contact ball bearings and also for cylindrical and tapered roller beatings. Results show that use of nonlinear bearing characteristics is essential for accurate prediction of rotordynamic behavior.

  1. Rotordynamic coefficients for stepped labyrinth gas seals

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph K.

    1989-01-01

    The basic equations are derived for compressible flow in a stepped labyrinth gas seal. The flow is assumed to be completely turbulent in the circumferential direction where the friction factor is determined by the Blasius relation. Linearized zeroth and first-order perturbation equations are developed for small motion about a centered position by an expansion in the eccentricity ratio. The zeroth-order pressure distribution is found by satisfying the leakage equation while the circumferential velocity distribution is determined by satisfying the momentum equations. The first order equations are solved by a separation of variables solution. Integration of the resultant pressure distribution along and around the seal defines the reaction force developed by the seal and the corresponding dynamic coefficients. The results of this analysis are presented in the form of a parametric study, since there are no known experimental data for the rotordynamic coefficients of stepped labyrinth gas seals. The parametric study investigates the relative rotordynamic stability of convergent, straight and divergent stepped labyrinth gas seals. The results show that, generally, the divergent seal is more stable, rotordynamically, than the straight or convergent seals. The results also show that the teeth-on-stator seals are not always more stable, rotordynamically, then the teeth-on-rotor seals as was shown by experiment by Childs and Scharrer (1986b) for a 15 tooth seal.

  2. The Space Shuttle Main Engine High-Pressure Fuel Turbopump rotordynamic instability problem

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1977-01-01

    The SSME (Space Shuttle Main Engine) HPFTP (High-Pressure Fuel Turbopump) has been subject to a rotordynamic instability problem, characterized by large and damaging subsynchronous whirling motion. The original design of the HPFTP (from a rotordynamic viewpoint) and the evolution of the HPFTP subsynchronous whirl problem are reviewed. The models and analysis which have been developed and utilized to explain the HPFTP instability and improve its stability performance are also reviewed. Elements of the rotordynamic model which are discussed in detail include the following: (a) hydrodynamic forces due to seals, (b) internal rotor damping, (c) bearing and casing support stiffness asymmetry, and (d) casing dynamics. The stability and synchronous response characteristics of the following two design alternatives are compared: (a) a 'stiff' symmetric bearing support design and (b) a damped asymmetric stiffness design. With appropriate interstage seal designs, both designs are shown, in theory to provide substantially improved stability and synchronous response characteristics in comparison to the original design. The asymmetric design is shown to have better stability and synchronous response characteristics than the stiffly supported design.

  3. Balancing low cost with reliable operation in the rotordynamic design of the ALS Liquid Hydrogen Fuel Turbopump

    NASA Technical Reports Server (NTRS)

    Greenhill, L. M.

    1990-01-01

    The Air Force/NASA Advanced Launch System (ALS) Liquid Hydrogen Fuel Turbopump (FTP) has primary design goals of low cost and high reliability, with performance and weight having less importance. This approach is atypical compared with other rocket engine turbopump design efforts, such as on the Space Shuttle Main Engine (SSME), which emphasized high performance and low weight. Similar to the SSME turbopumps, the ALS FTP operates supercritically, which implies that stability and bearing loads strongly influence the design. In addition, the use of low cost/high reliability features in the ALS FTP such as hydrostatic bearings, relaxed seal clearances, and unshrouded turbine blades also have a negative influence on rotordynamics. This paper discusses the analysis conducted to achieve a balance between low cost and acceptable rotordynamic behavior, to ensure that the ALS FTP will operate reliably without subsynchronous instabilities or excessive bearing loads.

  4. An Evolutionarily Young Polar Bear (Ursus maritimus) Endogenous Retrovirus Identified from Next Generation Sequence Data.

    PubMed

    Tsangaras, Kyriakos; Mayer, Jens; Alquezar-Planas, David E; Greenwood, Alex D

    2015-11-01

    Transcriptome analysis of polar bear (Ursus maritimus) tissues identified sequences with similarity to Porcine Endogenous Retroviruses (PERV). Based on these sequences, four proviral copies and 15 solo long terminal repeats (LTRs) of a newly described endogenous retrovirus were characterized from the polar bear draft genome sequence. Closely related sequences were identified by PCR analysis of brown bear (Ursus arctos) and black bear (Ursus americanus) but were absent in non-Ursinae bear species. The virus was therefore designated UrsusERV. Two distinct groups of LTRs were observed including a recombinant ERV that contained one LTR belonging to each group indicating that genomic invasions by at least two UrsusERV variants have recently occurred. Age estimates based on proviral LTR divergence and conservation of integration sites among ursids suggest the viral group is only a few million years old. The youngest provirus was polar bear specific, had intact open reading frames (ORFs) and could potentially encode functional proteins. Phylogenetic analyses of UrsusERV consensus protein sequences suggest that it is part of a pig, gibbon and koala retrovirus clade. The young age estimates and lineage specificity of the virus suggests UrsusERV is a recent cross species transmission from an unknown reservoir and places the viral group among the youngest of ERVs identified in mammals. PMID:26610552

  5. An Evolutionarily Young Polar Bear (Ursus maritimus) Endogenous Retrovirus Identified from Next Generation Sequence Data

    PubMed Central

    Tsangaras, Kyriakos; Mayer, Jens; Alquezar-Planas, David E.; Greenwood, Alex D.

    2015-01-01

    Transcriptome analysis of polar bear (Ursus maritimus) tissues identified sequences with similarity to Porcine Endogenous Retroviruses (PERV). Based on these sequences, four proviral copies and 15 solo long terminal repeats (LTRs) of a newly described endogenous retrovirus were characterized from the polar bear draft genome sequence. Closely related sequences were identified by PCR analysis of brown bear (Ursus arctos) and black bear (Ursus americanus) but were absent in non-Ursinae bear species. The virus was therefore designated UrsusERV. Two distinct groups of LTRs were observed including a recombinant ERV that contained one LTR belonging to each group indicating that genomic invasions by at least two UrsusERV variants have recently occurred. Age estimates based on proviral LTR divergence and conservation of integration sites among ursids suggest the viral group is only a few million years old. The youngest provirus was polar bear specific, had intact open reading frames (ORFs) and could potentially encode functional proteins. Phylogenetic analyses of UrsusERV consensus protein sequences suggest that it is part of a pig, gibbon and koala retrovirus clade. The young age estimates and lineage specificity of the virus suggests UrsusERV is a recent cross species transmission from an unknown reservoir and places the viral group among the youngest of ERVs identified in mammals. PMID:26610552

  6. Physical, behavioral, and psychological traits of gay men identifying as bears.

    PubMed

    Moskowitz, David A; Turrubiates, Jonathan; Lozano, Hector; Hajek, Christopher

    2013-07-01

    The Bear community exists as a subculture in reaction to the larger gay community. It rejects the normative idealized male beauty revered by mainstream gay men. While qualitative data document such self-identifiers as masculine-acting gay men who weigh more and have more body hair, there has to date been no quantitative analysis of this group's characteristics. In response, we conducted two large-scale studies of gay men identifying as Bears (n = 469) to survey their self-reported physical, behavioral, and psychological traits. Our studies indicated that Bears were more likely to be hairier, heavier, and shorter than mainstream gay men. They reported wanting partners who were hairier and heavier. They were less likely to reject sexual partners and the partners they did reject were more likely to be young or weigh too little (i.e., were not bearish). Bears were more likely than mainstream gay men to enact diverse sexual behaviors (e.g., fisting, voyeurism) and were comparatively more masculine. Bears had lower self-esteem but were no less (or more) hypermasculine than non-Bears. We concluded that Bears are intensely sexual. We speculate that Bears are viewed as less attractive than what is traditionally considered to be attractive. The partners they can attract may be limited and, in response to this limitation, they may be particularly attuned to seek out partners who will not reject them. This condition may produce the low self-esteem exhibited and may explain how the Bear culture developed to ensure that even the heaviest, hairiest, and/or shortest individual can partner. Future analyses of the community's health are warranted. PMID:23613138

  7. Influence of Back-Up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1996-01-01

    This report presents a synopsis of the research work. Specific accomplishments are itemized below: (1) Experimental facilities have been developed. This includes a magnetic bearing test rig and an auxiliary bearing test rig. In addition, components have been designed, constructed, and tested for use with a rotordynamics test rig located at NASA Lewis Research Center. (2) A study of the rotordynamics of an auxiliary bearing supported T-501 engine model was performed. (3) An experimental/simulation study of auxiliary bearing rotordynamics has been performed. (4) A rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects has been developed and simulation studies performed.(5) A finite element model for a foil bearing has been developed and studies of a rotor supported by foil bearings have been performed. (6) Two students affiliated with this project have graduated with M.S. degrees.

  8. Rotordynamic Instability Problems in High-Performance Turbomachinery

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Rotordynamics and predictions on the stability of characteristics of high performance turbomachinery were discussed. Resolutions of problems on experimental validation of the forces that influence rotordynamics were emphasized. The programs to predict or measure forces and force coefficients in high-performance turbomachinery are illustrated. Data to design new machines with enhanced stability characteristics or upgrading existing machines are presented.

  9. Identifying polar bear resource selection patterns to inform offshore development in a dynamic and changing Arctic

    USGS Publications Warehouse

    Wilson, Ryan R.; Horne, Jon S.; Rode, Karyn D.; Regehr, Eric V.; Durner, George M.

    2014-01-01

    Although sea ice loss is the primary threat to polar bears (Ursus maritimus), little can be done to mitigate its effects without global efforts to reduce greenhouse gas emissions. Other factors, however, could exacerbate the impacts of sea ice loss on polar bears, such as exposure to increased industrial activity. The Arctic Ocean has enormous oil and gas potential, and its development is expected to increase in the coming decades. Estimates of polar bear resource selection will inform managers how bears use areas slated for oil development and to help guide conservation planning. We estimated temporally-varying resource selection patterns for non-denning adult female polar bears in the Chukchi Sea population (2008–2012) at two scales (i.e., home range and weekly steps) to identify factors predictive of polar bear use throughout the year, before any offshore development. From the best models at each scale, we estimated scale-integrated resource selection functions to predict polar bear space use across the population's range and determined when bears were most likely to use the region where offshore oil and gas development in the United States is slated to occur. Polar bears exhibited significant intra-annual variation in selection patterns at both scales but the strength and annual patterns of selection differed between scales for most variables. Bears were most likely to use the offshore oil and gas planning area during ice retreat and growth with the highest predicted use occurring in the southern portion of the planning area. The average proportion of predicted high-value habitat in the planning area was >15% of the total high-value habitat for the population during sea ice retreat and growth and reached a high of 50% during November 2010. Our results provide a baseline on which to judge future changes to non-denning adult female polar bear resource selection in the Chukchi Sea and help guide offshore development in the region. Lastly, our study provides a

  10. Nonlinear rotordynamics analysis. [Space Shuttle Main Engine turbopumps

    NASA Technical Reports Server (NTRS)

    Noah, Sherif T.

    1991-01-01

    Effective analysis tools were developed for predicting the nonlinear rotordynamic behavior of the Space Shuttle Main Engine (SSME) turbopumps under steady and transient operating conditions. Using these methods, preliminary parametric studies were conducted on both generic and actual HPOTP (high pressure oxygen turbopump) models. In particular, a novel modified harmonic balance/alternating Fourier transform (HB/AFT) method was developed and used to conduct a preliminary study of the effects of fluid, bearing and seal forces on the unbalanced response of a multi-disk rotor in the presence of bearing clearances. The method makes it possible to determine periodic, sub-, super-synchronous and chaotic responses of a rotor system. The method also yields information about the stability of the obtained response, thus allowing bifurcation analyses. This provides a more effective capability for predicting the response under transient conditions by searching in proximity of resonance peaks. Preliminary results were also obtained for the nonlinear transient response of an actual HPOTP model using an efficient, newly developed numerical method based on convolution integration. Currently, the HB/AFT is being extended for determining the aperiodic response of nonlinear systems. Initial results show the method to be promising.

  11. Analysis of SSME HPOTP rotordynamics subsynchronous whirl

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The causes and remedies of vibration and subsynchronous whirl problems encountered in the Shuttle Main Engine SSME turbomachinery are analyzed. Because the nonlinear and linearized models of the turbopumps play such an important role in the analysis process, the main emphasis is concentrated on the verification and improvement of these tools. It has been the goal of our work to validate the equations of motion used in the models are validated, including the assumptions upon which they are based. Verification of th SSME rotordynamics simulation and the developed enhancements, are emphasized.

  12. Transient rotordynamic analysis for the space-shuttle main engine high-pressure oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Childs, D. W.

    1974-01-01

    A simulation study was conducted to examine the transient rotordynamics of the space shuttle main engine (SSME) high pressure oxygen turbopump (HPOTP) with the objective of identifying, anticipating, and avoiding rotordynamic problem areas. Simulations were performed for steady state operations at emergency power levels and for critical speed transitions. No problems are indicated in steady state operation of the HPOTP emergency power levels, although the results indicated that a rubbing condition will be experienced during critical speed transition at shutdown, particularly involving rotor deceleration rate and imbalance distribution rubbing at the turbine floating-ring seals. The condition is correctable by either reducing the imbalance at the HPOTP hot gas turbine wheels, or by a more rapid deceleration of the rotor through it critical speed.

  13. Event Tracking Model of Adhesion Identifies Load-bearing Bonds in Rolling Leukocytes

    PubMed Central

    POSPIESZALSKA, MARIA K.; ZARBOCK, ALEXANDER; PICKARD, JOHN E.; LEY, KLAUS

    2009-01-01

    Objectives P-selectin binding to P-selectin glycoprotein ligand (PSGL)-1 mediates leukocyte rolling under conditions of inflammation and injury. The objectives were to develop an efficient, high temporal resolution model for direct simulation of leukocyte rolling, and then to conduct a study of load-bearing bonds using the model. Methods A stochastic π-calculus-driven Event Tracking Model of Adhesion was developed and compared with experimental data. Multiple simulations for each case were conducted to obtain high confidence numerical characteristics of leukocyte rolling. Results Leukocyte rolling and the underlying P-selectin—PSGL-1 bonds were studied under low wall shear rate (25-50 s-1) conditions from measured parameters of leukocyte rolling and bond properties. For the first time, the location, number, lifetime, history, and kinetics of load-bearing bonds and their influence on cell rolling are identified. Instantaneous cell displacements, translational and rotational velocities, and cell-endothelium distances are derived. The model explains the commonly observed “stop-start” type rolling behavior and reveals that a few load-bearing bonds are sufficient to support rolling while a large number of bonds dissociate before becoming load-bearing. Conclusions The presented model provides a method for precise and direct simulation of leukocyte rolling, and sets a foundation upon which further refinements can be introduced. PMID:19023690

  14. Sensors and Rotordynamics Health Management Research for Aircraft Turbine Engines

    NASA Technical Reports Server (NTRS)

    Lekki, J.; Abdul-Aziz, A.; Adamovsky, G.; Berger, D.; Fralick, G.; Gyekenyesi, A.; Hunter, G.; Tokars, R.; Venti, M.; Woike, M.; Wrbanek, J.; Wrbanek, S.

    2011-01-01

    Develop Advanced Sensor Technology and rotordynamic structural diagnostics to address existing Aviation Safety Propulsion Health Management needs as well as proactively begin to address anticipated safety issues for new technologies.

  15. Rotordynamic forces on centrifugal pump impellers

    NASA Technical Reports Server (NTRS)

    Franz, R.; Arndt, N.; Caughey, T. K.; Brennen, C. E.; Acosta, A. J.

    1987-01-01

    The asymmetric flow around an impeller in a volute exerts a force upon the impeller. To study the rotordynamic force on an impeller which is vibrating around its machine axis of rotation, the impeller, mounted on a dynamometer, is made to whirl in a circular orbit within the volute. The measured force is expressed as the sum of a steady radial force and an unsteady force due to the eccentric motion of the impeller. These forces were measured in separate tests on a centrifugal pump with radically increased shroud clearance, a two-dimensional impeller, and an impeller with an inducer, the impeller of the HPOTP (High Pressure Oxygen Turbopump) of the SSME (Space Shuttle Main Engine). In each case, a destabilizing force was observed over a region of positive whirl.

  16. Model Of Bearing With Hydrostatic Damper

    NASA Technical Reports Server (NTRS)

    Goggin, David G.

    1991-01-01

    Improved mathematical model of rotational and vibrational dynamics of bearing package in turbopump incorporates effects of hydrostatic damper. Part of larger finite-element model representing rotational and vibrational dynamics of rotor and housing of pump. Includes representations of deadband and nonlinear stiffness and damping of ball bearings, nonlinear stiffness and damping of hydrostatic film, and stiffness of bearing support. Enables incorporation of effects of hydrostatic damper into overall rotor-dynamic mathematical model without addition of mathematical submodel of major substructure.

  17. Controlling rotordynamic response without squeeze-film dampers (SFDs)

    NASA Astrophysics Data System (ADS)

    Jiffri, S.; Garvey, S.

    2009-08-01

    SFDs are widely used in rotating machinery to provide damping in order to control rotordynamic response. Although popular, under certain conditions SFDs pose problems such as causing non-synchronous vibration arising from unbalance forces interacting with fluid-film forces affected by cavitation. Furthermore, in the interests of moving towards oil-free rotating machines, the need arises to find alternative means of rotordynamic response control. In choosing a new vibration control technology, it is first necessary to consider certain general, configuration-independent criteria. For example, does the actuation method provide a limited stroke (eg. piezoelectric or giant magnetostrictive) or is the stroke a "motorised" solution (eg. an ultrasonic motor directly driving the actuator or a pump acting to vary the fill level of closed deformable volumes with incompressible fluid) Is the work per stroke per unit mass of the actuator material sufficient to provide the maximum stroke and force required for the control? What is the bandwidth of the actuator? In the case of electromechanical actuation, what is the coupling factor? Can the elements of the actuator withstand the high temperatures of the operating environment? Is the solution an active or passive one? What are the fatigue properties of the materials used in the actuator? These are some of the questions that need to be considered when evaluating a new control method. Once the significant properties have been identified, it is necessary to consider each of these in the context of the intended application. If one considers the actuation type, in the limited stroke case it will be required for the actuation to take place at synchronous frequency and the work per stroke per unit mass will determine the quantity of material required. For some applications - particularly aero-engines - one seeks to minimise overall mass and therefore materials with high values of work per stroke per unit mass are attractive. By contrast

  18. Identifying X- and Y-chromosome-bearing sperm by DNA content: retrospective perspectives and prospective opinions

    SciTech Connect

    Gledhill, B.L.; Pinkel, D.; Garner, D.L.

    1982-03-05

    Theoretically, since DNA should be the most constant component, quantitatively, of normal sperm, then genotoxic agents arising from energy production and consumption, and chemical and physical mutagens, could be identified by measuring variability in the DNA content of individual sperm from exposed men or test animals. The difference between the DNA content of X and Y sperm seemed a biologically significant benchmark for the measurement technology. Several methods are available for determining the genetic activity of agents in male germ cells, but these tests are generally laborious. Sperm-based methods provide an attractive alternate since they are not invasive, and are directly applicable to the study of human exposure. Slide-based assay of DNA content suggests that human sperm with X, Y, or YY chromosome constitutions can be distinguished by their fluorescence with quinacrine. Subsequent measurement of the dry mass of human sperm heads is performed. Dry mass is proportional to DNA content. While the study showed that human sperm with none and one quinacrine-fluorescent spot are X- and Y-bearing, respectively, the dry mass measurements indicated that many of the sperm with two quinacrine-fluorescent spots are not YY-bearing. While several reports on the initial application of flow cytometry of sperm to the investigation of mammalian infertility have appeared recently, emphasis here has been on the development of an in vivo sperm-based flow cytometric bioassay for mutations, and has not centered on andrological applications. In this review, the ability to differentiate between two equally sized populations of sperm, one bearing X and the other Y chromosomes with mean DNA content differing by about 3 to 4% is described. It has direct application to the preselection of sex of offspring, and could likely have a profound impact on animal improvement. (ERB)

  19. Rotordynamic Instability Problems in High-Performance Turbomachinery, 1986

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The first rotordynamics workshop proceedings (NASA CP-2133, 1980) emphasized a feeling of uncertainty in predicting the stability of characteristics of high-performance turbomachinery. In the second workshop proceedings (NASA CP-2250, 1982) these uncertainities were reduced through programs established to systematically resolve problems, with emphasis on experimental validiation of the forces that influence rotordynamics. In third proceedings (NASA CP-2338, 1984) many programs for predicting or measuring forces and force coefficients in high-performance turbomachinery produced results. Data became available for designing new machines with enhanced stability characteristics or for upgrading existing machines. The present workshop proceedings illustrates a continued trend toward a more unified view of rotordynamic instability problems and several encouraging new analytical developments.

  20. Foil bearings

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1993-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  1. Field experiences with rotordynamic instability in high-performance turbomachinery. [oil and natural gas recovery

    NASA Technical Reports Server (NTRS)

    Doyle, H. E.

    1980-01-01

    Two field situations illustrate the consequences of rotordynamic instability in centrifugal compressors. One involves the reinjection of produced gas into a North Sea oil formation for the temporary extraction of crude. The other describes on-shore compressors used to deliver natural gas from off-shore wells. The problems which developed and the remedies attempted in each case are discussed. Instability problems resulted in lost production, extended construction periods and costs, and heavy maintenance expenditures. The need for effective methods to properly identify the problem in the field and in the compressor design stage is emphasized.

  2. Rotordynamic Feasibility of a Conceptual Variable-Speed Power Turbine Propulsion System for Large Civil Tilt-Rotor Applications

    NASA Technical Reports Server (NTRS)

    Howard, Samuel

    2012-01-01

    A variable-speed power turbine concept is analyzed for rotordynamic feasibility in a Large Civil Tilt-Rotor (LCTR) class engine. Implementation of a variable-speed power turbine in a rotorcraft engine would enable high efficiency propulsion at the high forward velocities anticipated of large tilt-rotor vehicles. Therefore, rotordynamics is a critical issue for this engine concept. A preliminary feasibility study is presented herein to address this concern and identify if variable-speed is possible in a conceptual engine sized for the LCTR. The analysis considers critical speed placement in the operating speed envelope, stability analysis up to the maximum anticipated operating speed, and potential unbalance response amplitudes to determine that a variable-speed power turbine is likely to be challenging, but not impossible to achieve in a tilt-rotor propulsion engine.

  3. Measurements of the rotordynamic shroud forces for centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Guinzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1990-01-01

    An experiment was designed to measure the rotordynamic shroud forces on a centrifugal pump impeller. The measurements were done for various whirl/impeller speed ratios and for different flow rates. A destabilizing tangential force was measured for small positive whirl ratios and this force decreased with increasing flow rate.

  4. Electromechanical interaction in rotordynamics of cage induction motors

    NASA Astrophysics Data System (ADS)

    Holopainen, Timo P.; Tenhunen, Asmo; Arkkio, Antero

    2005-06-01

    Eccentric rotor motion induces an unbalanced magnetic pull between the rotor and stator of cage induction motors. Recently, a linear parametric model of this eccentricity force due to the arbitrary rotor motion was presented. The purpose of this study is to combine this electromagnetic force model with a simple mechanical rotor model, and further, to demonstrate the rotordynamic response induced by this electromechanical interaction. An electromechanical rotor model is derived on the basis of the Jeffcott rotor with two additional variables for the harmonic currents of the rotor cage. Applying this model, the rotordynamic effects of electromechanical interaction were studied. Three induction motors were used in the numerical examples. The electromechanical parameters of these motors were estimated from the numerical simulations carried out separately. The results obtained show that the electromechanical interaction may decrease the natural frequencies of the rotor, induce additional damping or cause rotordynamic instability. These interaction effects are most significant in motors operating at or near the first bending critical speed. Excluding the potential rotordynamic instability, the numerical results indicate that the electromechanical interaction reduces effectively the unbalance response close to the first bending critical speed.

  5. An improved multiscale noise tuning of stochastic resonance for identifying multiple transient faults in rolling element bearings

    NASA Astrophysics Data System (ADS)

    Wang, Jun; He, Qingbo; Kong, Fanrang

    2014-12-01

    Stochastic resonance (SR), a noise-assisted tool, has been proved to be very powerful in weak signal detection. The multiscale noise tuning SR (MSTSR), which breaks the restriction of the requirement of small parameters and white noise in classical SR, has been applied to identify the characteristic frequency of a bearing. However, the multiscale noise tuning (MST), which is originally based on discrete wavelet transform (DWT), limits the signal-to-noise ratio (SNR) improvement of SR and the performance in identifying multiple bearing faults. In this paper, the wavelet packet transform (WPT) is developed and incorporated into the MSTSR method to overcome its shortcomings and to further enhance its capability in multiple faults detection of bearings. The WPT-based MST can achieve a finer tuning of multiscale noise and aims at detecting multiple target frequencies separately. By introducing WPT into the MST of SR, this paper proposes an improved SR method particularly suited for the identification of multiple transient faults in rolling element bearings. Simulated and practical bearing signals carrying multiple characteristic frequencies are employed to validate the performance improvement of the proposed method as compared to the original DWT-based MSTSR method. The results confirm the good capability of the proposed method in multi-fault diagnosis of rolling element bearings.

  6. Rotational Remanent Magnetization (RRM) to Identify Pyrrhotite in Natural Iron-Sulfide-Bearing Samples

    NASA Astrophysics Data System (ADS)

    Slotznick, S. P.; Kirschvink, J. L.; Fischer, W. W.; Webb, S. M.

    2014-12-01

    Pyrrhotite has been known for several decades to have anomalous demagnetization behavior when using tumbling AF techniques. This was quantified by Thomson (1990) to show that pyrrhotite can acquire rotational remanent magnetization (RRM) similar to the more intensely-studied iron sulfide, greigite. Use of RRM as an identification tool in natural samples has not become standard practice, perhaps due to the decrease in use of tumbling AF techniques. However, using the 2G SQuID magnetometer with in-line AF/ARM coils and RAPID automated protocols (Kirschvink et al. 2008), one can easily produce and measure RRM. This method of measuring RRM has been used to identify greigite (Suzuki et al. 2006), but not pyrrhotite. We present room temperature RRM measurements for samples spinning from -20 to +20 rev/sec, perpendicular to peak AF fields of 90mT (at 950 Hz) in iron-sulfide-bearing shales, argillites, and carbonates throughout Earth History (Miocene, Cretaceous, Mesoproterozoic, Late Archean). Presence of pyrrhotite was confirmed using AF demagnetization of NRM (GRM), IRM acquisition/AF demagnetization (Cisowski plots), Kappabridge thermal susceptibility, ultra-high resolution scanning SQuID microscopy (UHRSSM), and/or X-ray absorption near edge spectroscopy (XANES)/multiple energy X-ray fluorescence (XRF) imaging. Although the total absence of pyrrhotite cannot be proven, the same techniques were applied to rocks that do not gain RRM easily to identify their iron sulfides and ferromagnetic minerals, and no magnetic iron sulfides were found. The RRM signal for pyrrhotite is distinct from that of greigite, suggesting it could be used as a tool for distinguishing these magnetic iron sulfides from each other. Further work on room temperature RRM could define a unique non-destructive rock magnetic test for pyrrhotite.

  7. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses

    PubMed Central

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A.; Janke, Axel

    2015-01-01

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166

  8. Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses.

    PubMed

    Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A; Janke, Axel

    2015-07-01

    The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166

  9. Rotordynamic forces in labyrinth seals: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Millsaps, Knox T.; Martinez-Sanchez, Manuel

    1994-01-01

    A theoretical and experimental investigation of the aerodynamic forces generated by a single gland labyrinth seal executing a simultaneous spinning/whirling motion has been conducted. A lumped parameter model for a single gland seal with coupling to an upstream cavity with leakage is developed along with an appropriate solution technique. From this theory, it is shown that the presence of the upstream cavity can, in some cases, augment the cross-stiffness and direct damping by a factor of four. The parameters that govern the coupling are presented along with predictions on their influence. A simple uncoupled model is used to identify the mechanisms responsible for cross force generation. This reduced system is nondimensionalized and the physical significance of the reduced parameters is discussed. Closed form algebraic formulas are given for some simple limiting cases. It is also shown that the total cross-force predicted by the uncoupled model can be represented as the sum of an ideal component due to an inviscid flow with entry swirl and a viscous part due to the change in swirl created by friction inside the gland. The frequency dependent ideal part is solely responsible for the rotordynamic direct damping. The facility designed and built to measure these frequency dependent forces is described. Experimental data confirm the validity and usefulness of this ideal/viscous decomposition. A method for calculating the damping coefficients based on the force decomposition using only the static measurements is presented. Experimental results supporting the predicted cross force augmentation due to the effect of upstream coupling are presented.

  10. Research Capabilities for Oil-Free Turbomachinery Expanded by New Rotordynamic Simulator Facility

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2004-01-01

    fixture that rotates to accommodate a laserbased alignment system. This can measure the misalignment of the bearing centers in each of 2 translational degrees of freedom and 2 rotational degrees of freedom. In the initial configuration, with roughly a 30.5-cm- (12-in.-) long shaft, two simulated aerocomponent disks, and two 50.8-cm (2-in.) foil journal bearings, the rig can operate at 65,000 rpm at room temperature. The test facility can measure shaft displacements in both the vertical and horizontal directions at each bearing location. Horizontal and vertical structural vibrations are monitored using accelerometers mounted on the bearing support structures. This information is used to determine system rotordynamic response, including critical speeds, mode shapes, orbit size and shape, and potentially the onset of instabilities. Bearing torque can be monitored as well to predict the power loss in the foil bearings. All of this information is fed back and forth between NASA and the foil bearing designers in an iterative fashion to converge on a final bearing and shaft design for a given engine application. In addition to its application development capabilities, the test rig offers several unique capabilities for basic bearing research. Using the laser alignment system mentioned earlier, the facility will be used to map foil air journal bearing performance. A known misalignment of increasing severity will be induced to determine the sensitivity of foil bearings to misalignment. Other future plans include oil-free integral starter generator testing and development, and dynamic load testing of foil journal bearings.

  11. Stability Issues in Ambient-Temperature Passive Magnetic Bearing Systems

    SciTech Connect

    Post, R.F.

    2000-02-17

    The ambient-temperature passive magnetic bearing system developed at the Lawrence Livermore National Laboratory achieves rotor-dynamic stability by employing special combinations of levitating and stabilizing elements. These elements, energized by permanent magnet material, create the magnetic and electrodynamic forces that are required for the stable levitation of rotating systems, such as energy-storage flywheels. Stability criteria, derived from theory, describe the bearing element parameters, i.e., stiffnesses and damping coefficients, that are required both to assure stable levitation (''Earnshaw-stability''), and stability against whirl-type rotor-dynamic instabilities. The work described in this report concerns experimental measurements and computer simulations that address some critical aspects of this overall stability problem. Experimentally, a test device was built to measure the damping coefficient of dampers that employ eddy currents induced in a metallic disc. Another test device was constructed for the purpose of measuring the displacement-dependent drag coefficient of annular permanent magnet bearing elements. In the theoretical developments a computer code was written for the purpose of simulating the rotor-dynamics of our passive bearing systems. This code is capable of investigating rotor-dynamic stability effects for both small-amplitude transient displacements (i.e., those within the linear regime), and for large-amplitude displacements, where non-linear effects can become dominant. Under the latter conditions a bearing system that is stable for small-amplitude displacements may undergo a rapidly growing rotor-dynamic instability once a critical displacement is exceeded. A new result of the study was to demonstrate that stiffness anisotropy of the bearing elements (which can be designed into our bearing system) is strongly stabilizing, not only in the linear regime, but also in the non-linear regime.

  12. A history of development in rotordynamics: A manufacturer's perspective

    NASA Technical Reports Server (NTRS)

    Shemeld, David E.

    1987-01-01

    The subject of rotordynamics and instability problems in high performance turbomachinery has been a topic of considerable industry discussion and debate over the last 15 or so years. This paper reviews an original equipment manufacturer's history of development of concepts and equipment as applicable to multistage centrifugal compressors. The variety of industry user compression requirements and resultant problematical situations tends to confound many of the theories and analytical techniques set forth. The experiences and examples described herein support the conclusion that the successful addressing of potential rotordynamics problems is best served by a fundamental knowledge of the specific equipment. This in addition to having the appropriate analytical tools. Also, that the final proof is in the doing.

  13. Bob Bear: A Strategy for Improving Behaviors of Preschoolers Identified as At Risk or Developmentally Delayed

    ERIC Educational Resources Information Center

    Michael, Meredith; Meese, Ruth L.; Keith, Stephen; Mathews, Rachel

    2009-01-01

    Social learning theory, sociodramatic play, and the use of puppets and stuffed animals may be beneficial for improving social behaviors of preschoolers with and without disabilities. Therefore, this action research study is developed on the belief that a stuffed animal (Bob Bear) will enhance appropriate behaviors for preschool children when used…

  14. Calculating rotordynamic coefficients of seals by finite-difference techniques

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1987-01-01

    For modelling the turbulent flow in a seal the Navier-Stokes equations in connection with a turbulence (kappa-epsilon) model are solved by a finite-difference method. A motion of the shaft round the centered position is assumed. After calculating the corresponding flow field and the pressure distribution, the rotor-dynamic coefficients of the seal can be determined. These coefficients are compared with results obtained by using the bulk flow theory of Childs and with experimental results.

  15. Unbalance Response Prediction for Rotors on Ball Bearings Using Speed and Load Dependent Nonlinear Bearing Stiffness

    NASA Technical Reports Server (NTRS)

    Fleming, David P.; Poplawski, J. V.

    2003-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. For this work bearing forces were calculated by COBRA-AHS, a recently developed rolling-element bearing analysis code. Bearing stiffness was found to be a strong function of bearing deflection, with higher deflection producing markedly higher stiffness. Curves fitted to the bearing data for a range of speeds and loads were supplied to a flexible rotor unbalance response analysis. The rotordynamic analysis showed that vibration response varied nonlinearly with the amount of rotor imbalance. Moreover, the increase in stiffness as critical speeds were approached caused a large increase in rotor and bearing vibration amplitude over part of the speed range compared to the case of constant bearing stiffness. Regions of bistable operation were possible, in which the amplitude at a given speed was much larger during rotor acceleration than during deceleration. A moderate amount of damping will eliminate the bistable region, but this damping is not inherent in ball bearings.

  16. Unbalance Response Prediction for Accelerating Rotors With Load-Dependent Nonlinear Bearing Stiffness

    NASA Technical Reports Server (NTRS)

    Fleming, David P.; Sawicki, Jaezy T.; Poplawski, J. V.

    2005-01-01

    Rolling-element bearing forces vary nonlinearly with bearing deflection. Thus an accurate rotordynamic analysis requires that bearing forces corresponding to the actual bearing deflection be utilized. Previous papers have explored the transient effect of suddenly applied imbalance and the steady-state unbalance response, using bearing forces calculated by the rolling-element bearing analysis code COBRA-AHS. The present work considers the acceleration of a rotor through one or more critical speeds. The rotordynamic analysis showed that for rapid acceleration rates the maximum response amplitude may be considerably less than predicted by steady-state analysis. Above the critical speed, transient vibration at the rotor natural frequency occurs, similar to that predicted for a Jeffcott rotor with constant-stiffness bearings. A moderate amount of damping will markedly reduce the vibration amplitude, but this damping is not inherent in ball bearings.

  17. The effect of inlet swirl on the rotordynamic shroud forces in a centrifugal pump

    NASA Astrophysics Data System (ADS)

    Ginzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1992-06-01

    The role played by fluid forces in determining the rotordynamic stability of a centrifugal pump is gaining increasing attention. The present research investigates the contributions to the rotordynamic forces from the discharge-to-suction leakage flows between the front shroud of the rotating impeller and the stationary pump casing. In particular, the dependency of the rotordynamic characteristics of leakage flows on the swirl at the inlet to the leakage path was examined. An inlet guide vane was designed for the experiment so that swirl could be introduced at the leakage flow inlet. The data demonstrates substantial rotordynamic effects and a destabilizing tangential force for small positive whirl ratios; this force decreased with increasing flow rate. The effect of swirl on the rotordynamic forces was found to be destabilizing.

  18. The effect of inlet swirl on the rotordynamic shroud forces in a centrifugal pump

    NASA Technical Reports Server (NTRS)

    Ginzburg, A.; Brennen, C. E.; Acosta, A. J.; Caughey, T. K.

    1992-01-01

    The role played by fluid forces in determining the rotordynamic stability of a centrifugal pump is gaining increasing attention. The present research investigates the contributions to the rotordynamic forces from the discharge-to-suction leakage flows between the front shroud of the rotating impeller and the stationary pump casing. In particular, the dependency of the rotordynamic characteristics of leakage flows on the swirl at the inlet to the leakage path was examined. An inlet guide vane was designed for the experiment so that swirl could be introduced at the leakage flow inlet. The data demonstrates substantial rotordynamic effects and a destabilizing tangential force for small positive whirl ratios; this force decreased with increasing flow rate. The effect of swirl on the rotordynamic forces was found to be destabilizing.

  19. An equivalent unbalance identification method for the balancing of nonlinear squeeze-film damped rotordynamic systems

    NASA Astrophysics Data System (ADS)

    Torres Cedillo, Sergio G.; Bonello, Philip

    2016-01-01

    The high pressure (HP) rotor in an aero-engine assembly cannot be accessed under operational conditions because of the restricted space for instrumentation and high temperatures. This motivates the development of a non-invasive inverse problem approach for unbalance identification and balancing, requiring prior knowledge of the structure. Most such methods in the literature necessitate linear bearing models, making them unsuitable for aero-engine applications which use nonlinear squeeze-film damper (SFD) bearings. A previously proposed inverse method for nonlinear rotating systems was highly limited in its application (e.g. assumed circular centered SFD orbits). The methodology proposed in this paper overcomes such limitations. It uses the Receptance Harmonic Balance Method (RHBM) to generate the backward operator using measurements of the vibration at the engine casing, provided there is at least one linear connection between rotor and casing, apart from the nonlinear connections. A least-squares solution yields the equivalent unbalance distribution in prescribed planes of the rotor, which is consequently used to balance it. The method is validated on distinct rotordynamic systems using simulated casing vibration readings. The method is shown to provide effective balancing under hitherto unconsidered practical conditions. The repeatability of the method, as well as its robustness to noise, model uncertainty and balancing errors, are satisfactorily demonstrated and the limitations of the process discussed.

  20. Extending the life of the SSME HPOTP through the use of annular hydrostatic bearings

    NASA Astrophysics Data System (ADS)

    Scharrer, Joseph K.; Hibbs, Robert I., Jr.; Nolan, Steven A.; Tabibzadeh, Ramin

    1992-07-01

    A new fluid film bearing package is presented for incorporation into the Space Shuttle Main Engine High Pressure Oxygen Turbopump. This fluid film element functions as both the pump end bearing and the preburner pump rear wear ring seal. Most importantly, it replaces the duplex ball bearing package which has been the primary life limiting component in the turbopump. The design constraints and solutions are presented along with the effects of the bearing package on the hydrodynamic and rotordynamic performance of the turbopump.

  1. Using image processing techniques on proximity probe signals in rotordynamics

    NASA Astrophysics Data System (ADS)

    Diamond, Dawie; Heyns, Stephan; Oberholster, Abrie

    2016-06-01

    This paper proposes a new approach to process proximity probe signals in rotordynamic applications. It is argued that the signal be interpreted as a one dimensional image. Existing image processing techniques can then be used to gain information about the object being measured. Some results from one application is presented. Rotor blade tip deflections can be calculated through localizing phase information in this one dimensional image. It is experimentally shown that the newly proposed method performs more accurately than standard techniques, especially where the sampling rate of the data acquisition system is inadequate by conventional standards.

  2. Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life.

    PubMed

    Kim, Eunsoo; Harrison, James W; Sudek, Sebastian; Jones, Meredith D M; Wilcox, Heather M; Richards, Thomas A; Worden, Alexandra Z; Archibald, John M

    2011-01-25

    The use of molecular methods is altering our understanding of the microbial biosphere and the complexity of the tree of life. Here, we report a newly discovered uncultured plastid-bearing eukaryotic lineage named the rappemonads. Phylogenies using near-complete plastid ribosomal DNA (rDNA) operons demonstrate that this group represents an evolutionarily distinct lineage branching with haptophyte and cryptophyte algae. Environmental DNA sequencing revealed extensive diversity at North Atlantic, North Pacific, and European freshwater sites, suggesting a broad ecophysiology and wide habitat distribution. Quantitative PCR analyses demonstrate that the rappemonads are often rare but can form transient blooms in the Sargasso Sea, where high 16S rRNA gene copies mL(-1) were detected in late winter. This pattern is consistent with these microbes being a member of the rare biosphere, whose constituents have been proposed to play important roles under ecosystem change. Fluorescence in situ hybridization revealed that cells from this unique lineage were 6.6 ± 1.2 × 5.7 ± 1.0 μm, larger than numerically dominant open-ocean phytoplankton, and appear to contain two to four plastids. The rappemonads are unique, widespread, putatively photosynthetic algae that are absent from present-day ecosystem models and current versions of the tree of life. PMID:21205890

  3. Dynamic modelling and response characteristics of a magnetic bearing rotor system with auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1995-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotordynamic model which describes the dynamic behavior of a flexible rotor system with magnetic bearings including auxiliary bearings. The model is based upon an experimental test facility. Some simulation studies are presented to illustrate the behavior of the model. In particular, the effects of introducing sideloading from the magnetic bearing when one coil fails is studied.

  4. Dynamic modelling and response characteristics of a magnetic bearing rotor system including auxiliary bearings

    NASA Technical Reports Server (NTRS)

    Free, April M.; Flowers, George T.; Trent, Victor S.

    1993-01-01

    Auxiliary bearings are a critical feature of any magnetic bearing system. They protect the soft iron core of the magnetic bearing during an overload or failure. An auxiliary bearing typically consists of a rolling element bearing or bushing with a clearance gap between the rotor and the inner race of the support. The dynamics of such systems can be quite complex. It is desired to develop a rotor-dynamic model and assess the dynamic behavior of a magnetic bearing rotor system which includes the effects of auxiliary bearings. Of particular interest is the effects of introducing sideloading into such a system during failure of the magnetic bearing. A model is developed from an experimental test facility and a number of simulation studies are performed. These results are presented and discussed.

  5. Rotordynamic and leakage characteristics of a 4-stage brush seal

    NASA Astrophysics Data System (ADS)

    Conner, K. J.; Childs, D. W.

    1992-12-01

    Experimental results are presented for the direct and cross-coupled stiffness and damping coefficients as well as the leakage performance for a 4-stage brush seal. Variable test parameters include the inlet pressure, pressure ratio, shaft speed, fluid prerotation, and seal spacing. Direct damping is shown to increase with running speed; otherwise, the rotordynamic coefficients are relatively insensitive to changes in the test parameters. Cross-coupled stiffness is generally unchanged by increasing the inlet tangential velocity to the seals, suggesting that the brush seal is not affected by inlet swirl. Direct stiffness is shown to increase with frequency; however, the magnitudes of direct stiffness are always positive. Cross-coupled stiffness increases slightly with frequency; yet not as drastically as direct stiffness. Comparisons of test results for the 4-stage brush seal with an 8-cavity labyrinth showed superior rotordynamics performance for the brush seal; viz., large values for direct stiffness and lower values for the (destabilizing) cross-coupled stiffness coefficient. The damping for brush seals is smaller, but comparable to labyrinth seals. The whirl-frequency ratio is always smaller for the brush seal.

  6. Fe-Bearing Phases Identified by the Moessbauer Spectrometers on the Mars Exploration Rovers: An Overview

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Klingelhoefer, G.; Rodionov, D.; Yen, A.; Gellert, R.

    2006-01-01

    The twin Mars Exploration Rovers Spirit and Opportunity have explored the martian surface at Gusev Crater (GC) and Meridiani Planum (MP), respectively, for about two Earth years. The Moessbauer (MB) spectrometers on both rovers have analyzed an aggregate of 200 surface targets and have returned to Earth information on the oxidation state of iron, the mineralogical composition of Febearing phases, and the distribution of Fe among oxidation states and phases at the two landing sites [1-7]. To date, 15 component subspectra (10 doublets and 5 sextets) have been identified and most have been assigned to mineralogical compositions. Two subspectra are assigned to phases (jarosite and goethite) that are marker minerals for aqueous processes because they contain hydroxide anion in their structures. In this paper, we give an overview of the Febearing phases identified and their distributions at Gusev crater and Meridiani Planum.

  7. Incorporating general race and housing flexibility and deadband in rolling element bearing analysis

    NASA Technical Reports Server (NTRS)

    Davis, R. R.; Vallance, C. S.

    1989-01-01

    Methods for including the effects of general race and housing compliance and outer race-to-housing deadband (clearance) in rolling element bearing mechanics analysis is presented. It is shown that these effects can cause significant changes in bearing stiffness characteristics, which are of major importance in rotordynamic response of turbomachinery and other rotating systems. Preloading analysis is demonstrated with the finite element/contact mechanics hybrid method applied to a 45 mm angular contact ball bearing.

  8. Cryogenic Fluid Film Bearing Tester Development Study

    NASA Technical Reports Server (NTRS)

    Scharrer, Joseph K. (Editor); Murphy, Brian T.; Hawkins, Lawrence A.

    1993-01-01

    Conceptual designs were developed for the determination of rotordynamic coefficients of cryogenic fluid film bearings. The designs encompassed the use of magnetic and conventional excitation sources as well as the use of magnetic bearings as support bearings. Test article configurations reviewed included overhung, floating housing, and fixed housing. Uncertainty and forced response analyses were performed to assess quality of data and suitability of each for testing a variety of fluid film bearing designs. Development cost and schedule estimates were developed for each design. Facility requirements were reviewed and compared with existing MSFC capability. The recommended configuration consisted of a fixed test article housing centrally located between two magnetic bearings. The magnetic bearings would also serve as the excitation source.

  9. Validation of mercury tip-switch and accelerometer activity sensors for identifying resting and active behavior in bears

    USGS Publications Warehouse

    Jasmine Ware; Rode, Karyn D.; Pagano, Anthony M.; Bromaghin, Jeffrey; Charles T Robbins; Joy Erlenbach; Shannon Jensen; Amy Cutting; Nicole Nicassio-Hiskey; Amy Hash; Owen, Megan A.; Heiko Jansen

    2015-01-01

    Activity sensors are often included in wildlife transmitters and can provide information on the behavior and activity patterns of animals remotely. However, interpreting activity-sensor data relative to animal behavior can be difficult if animals cannot be continuously observed. In this study, we examined the performance of a mercury tip-switch and a tri-axial accelerometer housed in collars to determine whether sensor data can be accurately classified as resting and active behaviors and whether data are comparable for the 2 sensor types. Five captive bears (3 polar [Ursus maritimus] and 2 brown [U. arctos horribilis]) were fitted with a collar specially designed to internally house the sensors. The bears’ behaviors were recorded, classified, and then compared with sensor readings. A separate tri-axial accelerometer that sampled continuously at a higher frequency and provided raw acceleration values from 3 axes was also mounted on the collar to compare with the lower resolution sensors. Both accelerometers more accurately identified resting and active behaviors at time intervals ranging from 1 minute to 1 hour (≥91.1% accuracy) compared with the mercury tip-switch (range = 75.5–86.3%). However, mercury tip-switch accuracy improved when sampled at longer intervals (e.g., 30–60 min). Data from the lower resolution accelerometer, but not the mercury tip-switch, accurately predicted the percentage of time spent resting during an hour. Although the number of bears available for this study was small, our results suggest that these activity sensors can remotely identify resting versus active behaviors across most time intervals. We recommend that investigators consider both study objectives and the variation in accuracy of classifying resting and active behaviors reported here when determining sampling interval.

  10. Active magnetic bearings used as exciters for rolling element bearing outer race defect diagnosis.

    PubMed

    Xu, Yuanping; Di, Long; Zhou, Jin; Jin, Chaowu; Guo, Qintao

    2016-03-01

    The active health monitoring of rotordynamic systems in the presence of bearing outer race defect is considered in this paper. The shaft is assumed to be supported by conventional mechanical bearings and an active magnetic bearing (AMB) is used in the mid of the shaft location as an exciter to apply electromagnetic force to the system. We investigate a nonlinear bearing-pedestal system model with the outer race defect under the electromagnetic force. The nonlinear differential equations are integrated using the fourth-order Runge-Kutta algorithm. The simulation and experimental results show that the characteristic signal of outer race incipient defect is significantly amplified under the electromagnetic force through the AMBs, which is helpful to improve the diagnosis accuracy of rolling element bearing׳s incipient outer race defect. PMID:26803551

  11. Hybrid hydrostatic/ball bearings in high-speed turbomachinery

    NASA Technical Reports Server (NTRS)

    Nielson, C. E.

    1983-01-01

    A high speed, high pressure liquid hydrogen turbopump was designed, fabricated, and tested under a previous contract. This design was then modified to incorporate hybrid hydrostatic/ball bearings on both the pump end and turbine end to replace the original conventional ball bearing packages. The design, analysis, turbopump modification, assembly, and testing of the turbopump with hybrid bearings is presented here. Initial design considerations and rotordynamic performance analysis was made to define expected turbopump operating characteristics and are reported. The results of testing the turbopump to speeds of 9215 rad/s (88,000 rpm) using a wide range of hydrostatic bearing supply pressures are presented. The hydrostatic bearing test data and the rotordynamic behavior of the turbopump was closely analyzed and are included in the report. The testing of hybrid hydrostatic/ball bearings on a turbopump to the high speed requirements has indicated the configuration concept is feasible. The program has presented a great deal of information on the technology requirements of integrating the hybrid bearing into high speed turbopump designs for improved bearing life.

  12. Effects of bearing outer clearance on the dynamic behaviours of the full floating ring bearing supported turbocharger rotor

    NASA Astrophysics Data System (ADS)

    Tian, L.; Wang, W. J.; Peng, Z. J.

    2012-08-01

    As a high speed rotating device, the modern turbocharger rotor is commonly supported by floating ring bearings (FRBs). The high nonlinearity there can always lead to quite complex and interesting phenomena rarely observed in other rotating applications. Using the run-up and run-down simulation method, this paper originally and systematically discusses the effect of bearing outer clearance on the rotordynamic characteristics of a realistic turbocharger rotor over the speed range up to 3000 Hz. The rotor is discretized by the Finite Element Method and supported by analytically calculated bearing forces. The linear analysis is proved to be effective in predicting the first two nonlinear jumps but inadequate to study the rotordynamic characteristics at higher rotor speeds. The nonlinearly simulated results show the appearances of distinct and interesting phenomena within the considered range of FRB outer clearance, which can be further divided into four groups. Within the same group, the simulation results are qualitatively similar to each other but quite dissimilar from the results from different groups. Moreover, the unwelcome Critical Limit Cycle Oscillation can be avoided by increasing the outer clearance size. Additionally, in some cases, the run-down simulations reveal distinct frequency maps as compared to the corresponding run-ups. Furthermore, it is seen that ring speed ratios can be considerably affected by the nonlinear jumps. Therefore, FRB outer clearance should be thoroughly examined to achieve the best rotordynamic performance.

  13. Interaction Dynamics Between a Flexible Rotor and an Auxiliary Clearance Bearing

    NASA Technical Reports Server (NTRS)

    Lawen, James L., Jr.; Flowers, George T.

    1996-01-01

    This study investigates the application of synchronous interaction dynamics methodology to the design of auxiliary bearing systems. The technique is applied to a flexible rotor system and comparisons are made between the behavior predicted by this analysis method and the observed simulation response characteristics. Of particular interest is the influence of coupled shaft/bearing vibration modes on rotordynamical behavior. Experimental studies are also perFormed to validate the simulation results and provide insight into the expected behavior of such a system.

  14. Labyrinth seal rotordynamic forces using a three-dimensional Navier-Stokes code

    NASA Astrophysics Data System (ADS)

    Rhode, D. L.; Hensel, S. J.; Guidry, M. J.

    1992-10-01

    A finite difference method for determining rotordynamic forces on an eccentric whirling labyrinth cavity has been developed. A coordinate-transformation was applied to the Reynolds time-averaged Navier-Stokes equations in order to use the modified bipolar coordinate system. The SIMPLER algorithm with QUICK differencing and the high Reynolds number k-epsilon turbulence model are used to compute the complex turbulent flowfield. A circular whirl orbit about the geometric center of the housing was specified for simplicity. The new model was tested against the rotordynamic force measurements, and close agreement was found. For the cases considered, the radial and tangential force components become rotordynamically less desirable with increasing inlet swirl. Also, circumferential pressure variations are included for enhanced insight into the flowfield.

  15. Development of a set of equations for incorporating disk flexibility effects in rotordynamical analyses

    NASA Technical Reports Server (NTRS)

    Flowers, George T.; Ryan, Stephen G.

    1991-01-01

    Rotordynamical equations that account for disk flexibility are developed. These equations employ free-free rotor modes to model the rotor system. Only transverse vibrations of the disks are considered, with the shaft/disk system considered to be torsionally rigid. Second order elastic foreshortening effects that couple with the rotor speed to produce first order terms in the equations of motion are included. The approach developed in this study is readily adaptable for usage in many of the codes that are current used in rotordynamical simulations. The equations are similar to those used in standard rigid disk analyses but with additional terms that include the effects of disk flexibility. An example case is presented to demonstrate the use of the equations and to show the influence of disk flexibility on the rotordynamical behavior of a sample system.

  16. Analysis for leakage and rotordynamic coefficients of surface roughened tapered annular gas seals

    NASA Technical Reports Server (NTRS)

    Nelson, C. C.

    1984-01-01

    In order to soften the effects of rub, the smooth stators of turbine gas seals are sometimes replaced by a honeycomb surface. This deliberately roughened stator and smooth rotor combination retards the seal leakage and may lead to enhanced rotor stability. However, many factors determine the rotordynamic coefficients and little is known as to the effectiveness of these honeycomb seals under various changes in the independent seal parameters. An analytical-computational method to solve for the rotordynamic coefficients of this type of compressible-flow seal is developed. The governing equations for surface roughned tapered annular gas seals are based on a modified Hirs' turbulent bulk flow model. A perturbation analysis is employed to develop zeroth and first-order perturbation equations. These equations are numerically integrated to solve for the leakage, pressure, density, and velocity for small motion of the shaft about the centered position. The resulting pressure distribution is then integrated to find the corresponding rotor-dynamic coefficients.

  17. A Literature Survey to Identify Potentially Volatile Iodine-Bearing Species Present in Off-Gas Streams

    SciTech Connect

    Bruffey, S. H.; Spencer, B. B.; Strachan, D. M.; Jubin, R. T.; Soelberg, N. R.; Riley, B. J.

    2015-06-30

    Four radionuclides have been identified as being sufficiently volatile in the reprocessing of nuclear fuel that their gaseous release needs to be controlled to meet regulatory requirements (Jubin et al. 2011, 2012). These radionuclides are 3H, 14C, 85Kr, and 129I. Of these, 129I has the longest half-life and potentially high biological impact. Accordingly, control of the release of 129I is most critical with respect to the regulations for the release of radioactive material in stack emissions. It is estimated that current EPA regulations (EPA 2010) would require any reprocessing plant in the United States to limit 129I release to less than 0.05 Ci/MTIHM for a typical fuel burnup of 55 gigawatt days per metric tonne (GWd/t) (Jubin 2011). The study of inorganic iodide in off-gas systems has been almost exclusively limited to I2 and the focus of organic iodide studies has been CH3I. In this document, we provide the results of an examination of publically available literature that is relevant to the presence and sources of both inorganic and organic iodine-bearing species in reprocessing plants. We especially focus on those that have the potential to be poorly sequestered with traditional capture methodologies. Based on the results of the literature survey and some limited thermodynamic modeling, the inorganic iodine species hypoiodous acid (HOI) and iodine monochloride (ICl) were identified as potentially low-sorbing iodine species that could present in off-gas systems. Organic species of interest included both short chain alkyl iodides such as methyl iodide (CH3I) and longer alkyl iodides up to iodododecane (C10H21I). It was found that fuel dissolution may provide conditions conducive to HOI formation and has been shown to result in volatile long-chain alkyl iodides, though these may not volatilize until later in the reprocessing sequence. Solvent extraction processes were found to be significant sources of various organic iodine-bearing species; formation of these

  18. Rotordynamics on the PC: Transient Analysis With ARDS

    NASA Technical Reports Server (NTRS)

    Fleming, David P.

    1997-01-01

    Personal computers can now do many jobs that formerly required a large mainframe computer. An example is NASA Lewis Research Center's program Analysis of RotorDynamic Systems (ARDS), which uses the component mode synthesis method to analyze the dynamic motion of up to five rotating shafts. As originally written in the early 1980's, this program was considered large for the mainframe computers of the time. ARDS, which was written in Fortran 77, has been successfully ported to a 486 personal computer. Plots appear on the computer monitor via calls programmed for the original CALCOMP plotter; plots can also be output on a standard laser printer. The executable code, which uses the full array sizes of the mainframe version, easily fits on a high-density floppy disk. The program runs under DOS with an extended memory manager. In addition to transient analysis of blade loss, step turns, and base acceleration, with simulation of squeeze-film dampers and rubs, ARDS calculates natural frequencies and unbalance response.

  19. A comparison of experimental and theoretical results for rotordynamic coefficients of four annular gas seals

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. C.; Elrod, D.; Nicks, C.

    1985-01-01

    The test facility and initial test program developed to experimentally measure the fluid forces induced by annular gas seals is described. A comparison of theoretically predicted and experimentally obtained data for smooth and honeycomb seals is provided. And a comparison of experimental data from the tests of three smooth-rotor/smooth-stator seals is provided. The leakage of the working fluid through the seal, the pressure gradient along the seal length, entrance pressure-loss data, and rotordynamic coefficients provide a basis for comparison. A short discussion on seal theory is included, and various rotordynamic coefficient identification schemes are described.

  20. Theory versus experiment for the rotordynamic coefficients of annular gas seals. I - Test facility and apparatus

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J.; Elrod, D.

    1985-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in.). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  1. Comparison of rotordynamic fluid forces in axial inducers and centrifugal turbopump impellers

    NASA Astrophysics Data System (ADS)

    d'Agostino, Luca

    2016-05-01

    The paper illustrates and compares the results of the experimental campaigns carried out in the Cavitating Pump Rotordynamic Test Facility (CPRTF) at Alta, Italy, under ESA funding for the characterization of the lateral rotordynamic fluid forces acting on high-head axial inducers and centrifugal turbopump impellers for space propulsion applications. The configurations presented here refer to a three-bladed tapered-hub, variable-pitch, inducer (DAPROT3) and a single-stage centrifugal pump (VAMPIRE) with vaneless diffuser and single spiral volute. Both the centrifugal pump and the inducer have been designed by means of reduced order models specifically developed by the author and his collaborators for the geometric definition and performance prediction of this kind of hydraulic turbomachinery. Continuous spectra of the rotordynamic forces acting on the impellers as functions of the whirl frequency have been obtained by means of the novel technique recently developed and demonstrated at Alta. The influence of the rotor whirl motion, flow rate, cavitating conditions, and liquid temperature (thermal cavitation effects) on the rotordynamic fluid forces is illustrated and the observed differences in their behavior in axial inducers and centrifugal turbpumps are discussed and interpreted in the light of the outcome of recent cavitation visualization experiments carried out by the Chemical Propulsion Team at Alta.

  2. Identifying and managing an adverse food reaction in a polar bear (Ursus maritimus) by an elimination diet trial.

    PubMed

    Monson, Sara; Minter, Larry J; Krouse, Marissa; De Voe, Ryan S

    2014-06-01

    A 16-yr-old polar bear (Ursus maritimus) presented with severe diarrhea shortly following transfer to the North Carolina Zoological Park. Multiple diagnostic procedures were performed over several months and the cause of the chronic diarrhea was inconclusive. Histologically, colonic mucosal biopsies were consistent with severe chronic eosinophilic and lymphoplasmacytic colitis with no evidence of etiologic agents present. A dietary elimination trial was conducted and an adverse food reaction to the dog chow in the diet was confirmed. PMID:25000711

  3. Orbit transfer vehicle engine technology program. Task B-6 high speed turbopump bearings

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Bearing types were evaluated for use on the Orbit Transfer Vehicle (OTV) high pressure fuel pump. The high speed, high load, and long bearing life requirements dictated selection of hydrostatic bearings as the logical candidate for this engine. Design and fabrication of a bearing tester to evaluate these cryogenic hydrostatic bearings was then conducted. Detailed analysis, evaluation of bearing materials, and design of the hydrostatic bearings were completed resulting in fabrication of Carbon P5N and Kentanium hydrostatic bearings. Rotordynamic analyses determined the exact bearing geometry chosen. Instrumentation was evaluated and data acquisition methods were determined for monitoring shaft motion up to speeds in excess of 200,000 RPM in a cryogenic atmosphere. Fabrication of all hardware was completed, but assembly and testing was conducted outside of this contract.

  4. Experimental rotordynamic coefficient results for teeth-on-rotor and teeth-on-stator labyrinth gas seals

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.; Scharrer, Joseph K.

    1987-01-01

    An experimental test facility is used to measure the rotordynamic coefficients of teeth-on-rotor and teeth-on-stator labyrinth gas seals. Direct damping coefficients are presented for these seals for the first time. The results are presented for the two seal configurations at identical operating conditions, and show that, in a rotordynamic sense, the teeth-on-stator seal is more stable than the teeth-on-rotor seal, for inlet tangential velocity in the direction of rotation.

  5. Experimental rotordynamic coefficient results for teeth-on-rotor and teeth-on-stator labyrinth gas seals

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Scharrer, J. K.

    1986-01-01

    An experimental test facility is used to measure the rotordynamic coefficients of teeth-on-rotor and teeth-on-stator labyrinth gas seals. Direct damping coefficients are presented for these seals for the first time. The results are presented for the two seal configurations at identical operating conditions, and show that, in a rotordynamic sense, the teeth-on-stator seal is more stable than the teeth-on-rotor seal, for inlet tangential velocity in the direction of rotation.

  6. Theory versus experiment for the rotordynamic coefficients of annular gas seals. Part 1: Test facility and apparatus

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Nelson, C. E.; Nicks, C.; Scharrer, J. K.; Elrod, D.; Hale, K.

    1983-01-01

    A facility and apparatus are described for determining the rotordynamic coefficients and leakage characteristics of annular gas seals. The apparatus has a current top speed of 8000 cpm with a nominal seal diameter of 15.24 cmn (6 in). The air supply unit yields a seal pressure ratio of approximately 7. An external shaker is used to excite the test rotor. The capability to independently calculate all rotordynamic coefficients at a given operating condition with one excitation frequency are discussed.

  7. Rotordynamic Design Analysis of an Oil-Free Turbocharger

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    1997-01-01

    Modern heavy duty diesel engines utilize turbochargers for increased power output. Also, a wide range of power levels can be achieved with one engine displacement through the use of different turbocharger configurations, eliminating the need for several different sized engines. These are the reasons that virtually all diesel truck engines currently marketed use turbochargers. However, because these turbochargers rely on ring seals and oil-lubricated floating sleeve bearings, they often suffer breakdowns. These turbochargers operate at elevated temperatures which often causes the oil to degrade and even coke to the bearing surfaces. This can lead to catastrophic failure, increased particulate emissions from oil leaks, and, in extreme cases, engine fires. Replacing the oil lubricated bearings from these turbochargers with some other device is desirable to eliminate these inherent problems. Foil bearings are compliant selecting bearings lubricated by air and are well suited to high speed, light load applications. Thus, foil bearings present one potential replacement for oil-lubricated sleeve bearings. Their use as such is investigated in this work.

  8. Comparison of Code Predictions to Test Measurements for Two Orifice Compensated Hydrostatic Bearings at High Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Keba, John E.

    1996-01-01

    Rotordynamic coefficients obtained from testing two different hydrostatic bearings are compared to values predicted by two different computer programs. The first set of test data is from a relatively long (L/D=1) orifice compensated hydrostatic bearing tested in water by Texas A&M University (TAMU Bearing No.9). The second bearing is a shorter (L/D=.37) bearing and was tested in a lower viscosity fluid by Rocketdyne Division of Rockwell (Rocketdyne 'Generic' Bearing) at similar rotating speeds and pressures. Computed predictions of bearing rotordynamic coefficients were obtained from the cylindrical seal code 'ICYL', one of the industrial seal codes developed for NASA-LeRC by Mechanical Technology Inc., and from the hydrodynamic bearing code 'HYDROPAD'. The comparison highlights the difference the bearing has on the accuracy of the predictions. The TAMU Bearing No. 9 test data is closely matched by the predictions obtained for the HYDROPAD code (except for added mass terms) whereas significant differences exist between the data from the Rocketdyne 'Generic' bearing the code predictions. The results suggest that some aspects of the fluid behavior in the shorter, higher Reynolds Number 'Generic' bearing may not be modeled accurately in the codes. The ICYL code predictions for flowrate and direct stiffness approximately equal those of HYDROPAD. Significant differences in cross-coupled stiffness and the damping terms were obtained relative to HYDROPAD and both sets of test data. Several observations are included concerning application of the ICYL code.

  9. Rotordynamic Instability Problems in High-Performance Turbomachinery, 1993

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Numerical, theoretical, and experimental results and control methods for seals, bearings, and dampers with some attention given to variable thermospherical properties and turbulence measurements are reported along with field experiences.

  10. Nonlinear effects in a plain journal bearing. I - Analytical study. II - Results

    NASA Technical Reports Server (NTRS)

    Choy, F. K.; Braun, M. J.; Hu, Y.

    1991-01-01

    In the first part of this work, a numerical model is presented which couples the variable-property Reynolds equation with a rotor-dynamics model for the calculation of a plain journal bearing's nonlinear characteristics when working with a cryogenic fluid, LOX. The effects of load on the linear/nonlinear plain journal bearing characteristics are analyzed and presented in a parametric form. The second part of this work presents numerical results obtained for specific parametric-study input variables (lubricant inlet temperature, external load, angular rotational speed, and axial misalignment). Attention is given to the interrelations between pressure profiles and bearing linear and nonlinear characteristics.

  11. An Unsteady Long Bearing Squeeze Film Damper Model. Part 1; Circular Centered Orbits

    NASA Technical Reports Server (NTRS)

    Schallhorn, P. A.; Elrod, D. A.; Goggin, D. G.; Majumdar, A. K.

    2000-01-01

    This paper, the first of a two-part series, presents results of an unsteady rotordynamic analysis of a long-bearing squeeze film damper executing circular centered orbits using a fluid circuit approach. A series of nodes and branches represent the geometry of the flow circuit. The mass and momentum conservation equations are solved to predict the pressure distribution in the squeeze film. The motion of the bearing is simulated by the variation of geometry within the flow path. The modeling methodology is benchmarked against published experimental long-bearing squeeze film damper test results. The model provides good agreement with the experimental damping coefficient.

  12. Rotordynamic coefficient test results for a four-stage brush seal

    NASA Astrophysics Data System (ADS)

    Conner, Kelly J.; Childs, Dara W.

    1993-06-01

    Experimental results are presented for the direct and cross-coupled stiffness and direct damping coefficients for a four-stage brush seal. Variable test parameters include the inlet pressure, pressure ratio, shaft speed, fluid prerotation, and seal spacing. Direct damping slightly increases with running speed; otherwise, the rotordynamic coefficients are relatively insensitive to changes in the test parameters. Cross-coupled stiffness is generally unchanged by increasing the inlet tangential velocity to the seals, in contrast to conventional labyrinth seals. Comparisons of test results for the four-stage brush seal with an eight-cavity labyrinth showed superior rotordynamic performance for the brush seal, namely, larger values for direct stiffness and lower values for the (destabilizing) cross-coupled stiffness coefficient.

  13. Three-dimensional computations of rotordynamic force distributions in a labyrinth seal

    NASA Astrophysics Data System (ADS)

    Rhode, D. L.; Hensel, S. J.; Guidry, M. J.

    1993-07-01

    A numerical method employing a finite volume approach for calculating the rotordynamic force on eccentric, whirling labyrinth seals is presented. The SIMPLER algorithm is used to calculate the three-dimensional flowfield within a seal. The modified bipolar coordinate system used accurately describes the geometry of an eccentric seal. The turbulent flow form of the fully elliptic Navier-Stokes equations was solved. A 3-percent eccentric, single labyrinth cavity rotating at 7000 cpm was investigated for three different inlet swirl conditions, each with and without a whirl orbit frequency of 3500 cpm. It was found that the circumferential pressure variation around the downstream tooth periphery is by far the most important contribution to both rotordynamic force components. Thus, the flowfield details near each tooth throttling should be carefully considered. Further, a substantial increase of shaft whirl frequency was found to decrease and increase the effect of cavity inlet swirl on Ft and Fr, respectively.

  14. A finite-volume numerical method to calculate fluid forces and rotordynamic coefficients in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1992-01-01

    A numerical method to calculate rotordynamic coefficients of seals is presented. The flow in a seal is solved by using a finite-volume formulation of the full Navier-Stokes equations with appropriate turbulence models. The seal rotor is perturbed along a diameter such that the position of the rotor is a sinusoidal function of time. The resulting flow domain changes with time, and the time-dependent flow in the seal is solved using a space conserving moving grid formulation. The time-varying fluid pressure reaction forces are then linked with the rotor center displacement, velocity and acceleration to yield the rotordynamic coefficients. Results for an annular seal are presented, and compared with experimental data and other more simplified numerical methods.

  15. Disk flexibility effects on the rotordynamics of the SSME high pressure turbopumps

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1990-01-01

    Rotordynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that it may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbopumps. Finite element analyses were performed for a simplified free-free flexible disk rotor models and the modes and frequencies compared to those of a rigid disk model. Equations were developed to account for disk flexibility in rotordynamical analysis. Simulation studies were conducted to assess the influence of disk flexibility on the HPOTP. Some recommendations are given as to the importance of disk flexibility and for how this project should proceed.

  16. Analysis of eccentric annular incompressible seals. II - Effects of eccentricity on rotordynamic coefficients

    NASA Technical Reports Server (NTRS)

    Nelson, C. C.; Nguyen, D. T.

    1987-01-01

    A new analysis procedure has been presented which solves for the flow variables of an annular pressure seal in which the rotor has a large static displacement (eccentricity) from the centered position. The present paper incorporates the solutions to investigate the effect of eccentricity on the rotordynamic coefficients. The analysis begins with a set of governing equations based on a turbulent bulk-flow model and Moody's friction factor equation. Perturbations of the flow variables yields a set of zeroth- and first-order equations. After integration of the zeroth-order equations, the resulting zeroth-order flow variables are used as input in the solution of the first-order equations. Further integration of the first order pressures yields the eccentric rotordynamic coefficients. The results from this procedure compare well with available experimental and theoretical data, with accuracy just as good or slightly better than the predictions based on a finite-element model.

  17. Analysis of rotordynamic coefficients of helically-grooved turbulent annular seals

    NASA Technical Reports Server (NTRS)

    Kim, C.-H.; Childs, D. W.

    1986-01-01

    An analysis for helically-grooved turbulent annular seals is developed to predict leakage and dynamic coefficients, as related to rotordynamics. The grooved surface pattern is formulated as an inhomogeneous directivity in surface shear stress. The zeroth-order equations define the steady-state leakage and the circumferential velocity development due to wall shear for a centered rotor position. The first-order equations define perturbations in the pressure and axial and circumferential velocity fields due to small motion of the rotor about the centered position. Numerical results are presented for proposed grooved seals in the High Pressure Oxygen Turbopump (HPTOP) of the Space Shuttle Main Engine (SSME) and for a water-pump application. The results show that an optimum helix angle exists from a rotordynamic stability viewpoint. Further, a properly designed helically-grooved stator is predicted to have pronounced stability advantages over other currently used seals.

  18. Angled injection: Hybrid fluid film bearings for cryogenic applications

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1995-01-01

    A computational bulk-flow analysis for prediction of the force coefficients of hybrid fluid film bearings with angled orifice injection is presented. Past measurements on water-lubricated hybrid bearings with angle orifice injection have demonstrated improved rotordynamic performance with virtual elimination of cross-coupled stiffness coefficients and nul or negative whirl frequency ratios. A simple analysis reveals that the fluid momentum exchange at the orifice discharge produces a pressure rise in the recess which retards the shear flow induced by journal rotation, and consequently, reduces cross-coupling forces. The predictions from the model correlate well with experimental measurements from a radial and 45 deg angled orifice injection, five recess water hybrid bearings (C = 125 microns) operating at 10.2, 17.4, and 24.6 krpm and with nominal supply pressures equal to 4, 5.5, and 7 MPa. An application example for a liquid oxygen six recess/pad hybrid journal bearing shows the advantages of tangential orifice injection on the rotordynamic force coefficients and stability indicator for forward whirl motions and without performance degradation on direct stiffness and damping coefficients. The computer program generated, 'hydrojet,' extends and complements previously developed codes.

  19. B.E.A.R. GeneInfo: A tool for identifying gene-related biomedical publications through user modifiable queries

    PubMed Central

    Zhou, Guohui; Wen, Xinyu; Liu, Hang; Schlicht, Michael J; Hessner, Martin J; Tonellato, Peter J; Datta, Milton W

    2004-01-01

    Background Once specific genes are identified through high throughput genomics technologies there is a need to sort the final gene list to a manageable size for validation studies. The triaging and sorting of genes often relies on the use of supplemental information related to gene structure, metabolic pathways, and chromosomal location. Yet in disease states where the genes may not have identifiable structural elements, poorly defined metabolic pathways, or limited chromosomal data, flexible systems for obtaining additional data are necessary. In these situations having a tool for searching the biomedical literature using the list of identified genes while simultaneously defining additional search terms would be useful. Results We have built a tool, BEAR GeneInfo, that allows flexible searches based on the investigators knowledge of the biological process, thus allowing for data mining that is specific to the scientist's strengths and interests. This tool allows a user to upload a series of GenBank accession numbers, Unigene Ids, Locuslink Ids, or gene names. BEAR GeneInfo takes these IDs and identifies the associated gene names, and uses the lists of gene names to query PubMed. The investigator can add additional modifying search terms to the query. The subsequent output provides a list of publications, along with the associated reference hyperlinks, for reviewing the identified articles for relevance and interest. An example of the use of this tool in the study of human prostate cancer cells treated with Selenium is presented. Conclusions This tool can be used to further define a list of genes that have been identified through genomic or genetic studies. Through the use of targeted searches with additional search terms the investigator can limit the list to genes that match their specific research interests or needs. The tool is freely available on the web at [1], and the authors will provide scripts and database components if requested mdatta@mcw.edu PMID

  20. Investigation and Control of Rotordynamic Instability in Typical Large Turbogenerators

    NASA Technical Reports Server (NTRS)

    Lu, Songyuan

    1991-01-01

    Described here are the investigation and results of recent studies to solve oil whip in typical large turbogenerators. Included are calculations of the instability speeds and system damping of rotor-bearing systems. The polynomial-transfer matrix method which was developed by the author during the last few years is used in the calculations. Vibration measurements and data indicate the stability of these units. Research indicates that the cause of the instability lies in the three-bole offset bearings. Work was done to solve these problems, and industry tests were performed on one of these abnormal systems.

  1. Crack-Detection Experiments on Simulated Turbine Engine Disks in NASA Glenn Research Center's Rotordynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.; Abdul-Aziz, Ali

    2010-01-01

    The development of new health-monitoring techniques requires the use of theoretical and experimental tools to allow new concepts to be demonstrated and validated prior to use on more complicated and expensive engine hardware. In order to meet this need, significant upgrades were made to NASA Glenn Research Center s Rotordynamics Laboratory and a series of tests were conducted on simulated turbine engine disks as a means of demonstrating potential crack-detection techniques. The Rotordynamics Laboratory consists of a high-precision spin rig that can rotate subscale engine disks at speeds up to 12,000 rpm. The crack-detection experiment involved introducing a notch on a subscale engine disk and measuring its vibration response using externally mounted blade-tip-clearance sensors as the disk was operated at speeds up to 12 000 rpm. Testing was accomplished on both a clean baseline disk and a disk with an artificial crack: a 50.8-mm- (2-in.-) long introduced notch. The disk s vibration responses were compared and evaluated against theoretical models to investigate how successful the technique was in detecting cracks. This paper presents the capabilities of the Rotordynamics Laboratory, the baseline theory and experimental setup for the crack-detection experiments, and the associated results from the latest test campaign.

  2. Rotordynamic Instability Problems in High-Performance Turbomachinery, 1988

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The continuing trend toward a unified view is supported with several developments in the design and manufacture of turbomachines with enhanced stability characteristics along with data and associated numerical/theoretical results. The intent is to provide a continuing impetus for an understanding and resolution of these problems. Topics addressed include: field experience, dampers, seals, impeller forces, bearings, and compressor and rotor modeling.

  3. Rotordynamic Instability Problems in High-Performance Turbomachinery, 1990

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The present workshop continues to report field experience and experimental results, and it expands the use of computational and control techniques with the integration of damper, bearing, and eccentric seal operation results. The intent of the workshop was to provide a continuing impetus for an understanding and resolution of these problems.

  4. Thermohydrodynamic Analysis of Cryogenic Liquid Turbulent Flow Fluid Film Bearings

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1996-01-01

    Computational programs developed for the thermal analysis of tilting and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings are described. The motion of a cryogenic liquid on the thin film annular region of a fluid film bearing is described by a set of mass and momentum conservation, and energy transport equations for the turbulent bulk-flow velocities and pressure, and accompanied by thermophysical state equations for evaluation of the fluid material properties. Zeroth-order equations describe the fluid flow field for a journal static equilibrium position, while first-order (linear) equations govern the fluid flow for small amplitude-journal center translational motions. Solution to the zeroth-order flow field equations provides the bearing flow rate, load capacity, drag torque and temperature rise. Solution to the first-order equations determines the rotordynamic force coefficients due to journal radial motions.

  5. Integrated Approach (Geophysics and Remote Sensing) to identify Water-bearing Dyke Swarms and Fractured Basement in the Sinai Peninsula, Egypt

    NASA Astrophysics Data System (ADS)

    Mohamed, L.; Sultan, M.; Ahmed, M. E.; Sauck, W.; Abouelmagd, A. A.; Chouinard, K.

    2012-12-01

    An integrated approach utilizing Very Low Frequency (VLF) and magnetic field surveying and temporal remote sensing data including: (1) Advanced Space Borne Thermal Emission and Reflection (ASTER) data, (2) European Remote Sensing (ERS-1 and ERS-2) radar imagery, and (3) Tropical Rainfall Measuring Mission (TRMM) was used to delineate water-bearing sub-vertical shear zones within the basement complex of the Sinai Peninsula. The following steps were undertaken: (1) the shear zones and dyke swarms within the basement complex were delineated using false color ASTER band and band ratio images; (2) the spatial and temporal precipitation events over the basement complex were then identified from TRMM data, and (3) finally, observations extracted from temporal radar and thermal ASTER bands were used to identify the water-bearing shear zones and dyke swarms. A fracture or dyke was deemed to be water bearing if: (1) it witnessed a large increase in its reflectivity and emissivity compared to its surroundings following a precipitation event, and maintained such differences for periods ranging from days to months. Field observations and VLF investigations were then applied to test the validity of our satellite-based methodologies for locating targeted aquifer types and for refining the satellite-based selections. The VLF detects conductive water-saturated subvertical breccia zones in bedrock. Thirty two VLF transects were collected in September of 2011 and July of 2012 along with 10 magnetic profiles at the same VLF locations. Both VLF and magnetic transects were acquired along a traverse perpendicular to the dike orientations with station separations ranging from 10 to 25 m. The VLF receiver (T-VLF) measures the distortion of the normally horizontal electromagnetic flux lines by local electrical conductors. At each VLF station, and for each frequency used, the following were measured: the tilt of the electromagnetic field, from the horizontal (given in percentage), the

  6. Blood metal ion testing is an effective screening tool to identify poorly performing metal-on-metal bearing surfaces

    PubMed Central

    Sidaginamale, R. P.; Joyce, T. J.; Lord, J. K.; Jefferson, R.; Blain, P. G.; Nargol, A. V. F.; Langton, D. J.

    2013-01-01

    Objectives The aims of this piece of work were to: 1) record the background concentrations of blood chromium (Cr) and cobalt (Co) concentrations in a large group of subjects; 2) to compare blood/serum Cr and Co concentrations with retrieved metal-on-metal (MoM) hip resurfacings; 3) to examine the distribution of Co and Cr in the serum and whole blood of patients with MoM hip arthroplasties; and 4) to further understand the partitioning of metal ions between the serum and whole blood fractions. Methods A total of 3042 blood samples donated to the local transfusion centre were analysed to record Co and Cr concentrations. Also, 91 hip resurfacing devices from patients who had given pre-revision blood/serum samples for metal ion analysis underwent volumetric wear assessment using a coordinate measuring machine. Linear regression analysis was carried out and receiver operating characteristic curves were constructed to assess the reliability of metal ions to identify abnormally wearing implants. The relationship between serum and whole blood concentrations of Cr and Co in 1048 patients was analysed using Bland-Altman charts. This relationship was further investigated in an in vitro study during which human blood was spiked with trivalent and hexavalent Cr, the serum then separated and the fractions analysed. Results Only one patient in the transfusion group was found to have a blood Co > 2 µg/l. Blood/Serum Cr and Co concentrations were reliable indicators of abnormal wear. Blood Co appeared to be the most useful clinical test, with a concentration of 4.5 µg/l showing sensitivity and specificity for the detection of abnormal wear of 94% and 95%, respectively. Generated metal ions tended to fill the serum compartment preferentially in vivo and this was replicated in the in vitro study when blood was spiked with trivalent Cr and bivalent Co. Conclusions Blood/serum metal ion concentrations are reliable indicators of abnormal wear processes. Important differences exist

  7. Design review and analysis for a Pratt and Whitney fluid-film bearing and seal testing rig

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.

    1994-01-01

    A design review has been completed for a Pratt and Whitney (P&W)-designed fluid-film bearing and annular-seal test rig to be manufactured and installed at George C. Marshall Space Flight Center (MSFC). Issues covered in this study include: (1) the capacity requirements of the drive unit; (2) the capacity and configuration of the static loading system; (3) the capacity and configuration of the dynamic excitation system; (4) the capacity, configuration, and rotordynamic stability of a test bearing, support bearings, and shaft; and (5) the characteristics and configuration of the measurement transducers and data channels.

  8. Designs and analyses of flywheel energy storage systems using high- Tc superconductor bearings

    NASA Astrophysics Data System (ADS)

    Sung, T. H.; Han, S. C.; Han, Y. H.; Lee, J. S.; Jeong, N. H.; Hwang, S. D.; Choi, S. K.

    2002-06-01

    A horizontal axle-type flywheel energy storage system was manufactured using high- Tc superconductor bearings. The system running in a vacuum chamber mainly consists of a composite flywheel rotor, superconductor bearings, a motor/generator and its controller. The present system was designed to have an energy storage capacity of 440 W h at its operating speed of 40,000 rpm, which is way above two rigid body mode critical speeds. Rotordynamic analysis was performed on this system. Another flywheel system with vertical axis was conceptualized, which uses a hybrid superconductor bearing set to carry the wheel part load. The models for permanent magnet parts of the bearing set were designed using numerical magnetostatic analysis tool. The vertical magnetic force characteristics of the bearing set were experimentally measured. These results were discussed in regard of application to the flywheel system with a passive hybrid superconductor bearing set.

  9. Nonlinear Dynamics of a Foil Bearing Supported Rotor System: Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Li, Feng; Flowers, George T.

    1996-01-01

    Foil bearings provide noncontacting rotor support through a number of thin metal strips attached around the circumference of a stator and separated from the rotor by a fluid film. The resulting support stiffness is dominated by the characteristics of the foils and is a nonlinear function of the rotor deflection. The present study is concerned with characterizing this nonlinear effect and investigating its influence on rotordynamical behavior. A finite element model is developed for an existing bearing, the force versus deflection relation characterized, and the dynamics of a sample rotor system are studied. Some conclusions are discussed with regard to appropriate ranges of operation for such a system.

  10. An Unsteady Long Bearing Squeeze Film Damper Model. Part 2; Statically Eccentric Operation

    NASA Technical Reports Server (NTRS)

    Schallhorn, P. A.; Elrod, D. A.; Goggin, D. G.; Majumdar, A. K.

    2000-01-01

    This paper, the second of a two-part series, presents results of an unsteady rotordynamic analysis of a long-bearing squeeze film damper executing orbits about an off center position using a fluid circuit approach. A series of nodes and branches represent the geometry of the flow circuit. The mass and momentum conservation equations are solved to predict the pressure distribution in the squeeze film. The motion of the bearing is simulated by the variation of geometry within the flow path. This effort represents the first modeling approach which allows for an arbitrary orbit size about an arbitrary position.

  11. Experimental and theoretical rotordynamic stiffness coefficients for a three-stage brush seal

    NASA Astrophysics Data System (ADS)

    Pugachev, A. O.; Deckner, M.

    2012-08-01

    Experimental and theoretical results are presented for a multistage brush seal. Experimental stiffness is obtained from integrating circumferential pressure distribution measured in seal cavities. A CFD analysis is used to predict seal performance. Bristle packs are modeled by the porous medium approach. Leakage is predicted well by the CFD method. Theoretical stiffness coefficients are in reasonable agreement with the measurements. Experimental results are also compared with a three-teeth-on-stator labyrinth seal. The multistage brush seal gives about 60% leakage reduction over the labyrinth seal. Rotordynamic stiffness coefficients are also improved: the brush seal has positive direct stiffness and smaller cross-coupled stiffness.

  12. The rotordynamic forces on a centrifugal pump impeller in the presence of cavitation

    NASA Technical Reports Server (NTRS)

    Franz, R.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1990-01-01

    Fluid-induced rotordynamic forces on a centrifugal pump impeller whirling along a trajectory eccentric to its undeflected position in the presence of cavitation were measured using the experimental facility described by Jery (1987). The force measured is a combination of a steady radial force due to the volute asymmetries and an unsteady force due to the eccentric motion of the rotor. It was found that, compared to the noncavitation condition, a cavitation corresponding to a head loss of 3 percent had little effect upon the unsteady force. However, a lesser degree of cavitation at the design point, was found to increase the destabilizing force for a particular set of whirl ratios.

  13. Large deflection analysis of a tension-foil bearing

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1996-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are as follows: rolling or sliding contact within the bearing has life-limiting consequences; and REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's. CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contacts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exist for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. Recently, a new tension-foil bearing configuration has been proposed for turbomachinery applications.

  14. Bearing system

    DOEpatents

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  15. Development of a 22,000 RPM magnetic bearing system for the SSME HPOTP

    SciTech Connect

    Artinian, V.

    1995-12-31

    The design, fabrication, and testing of a permanent magnet bias, homopolar radial magnetic bearing is described. The current flight version of the SSME HPOTP (Space Shuttle Main Engine High Pressure Oxygen Turbo Pump) was used as a baseline, to define the magnetic bearing performance requirements. The HPOTP magnetic bearing system is a full five axis levitation support system with two 1,800 pound load capacity radial bearings and one 300 pound thrust bearing. The system is designed to operate at 22,000 rpm, in a cryogenic temperature of {minus}321{degrees}F. A rotordynamic model for a magnetic bearing version of the HPOTP was developed to determine the static and dynamic loads on the bearing. The electromechanical design followed a parametric analysis, performed with AVCON`s magnetic bearing program PERAMCON and magnetic Finite Element Analysis (FEA) software. The use of three different materials on the rotor (9% nickel, stainless steel, and cobalt steel) required extensive stress and thermal analysis to ensure the interference fits were maintained during operation at 22,000 rpm and {minus}300{degrees}F. The rotordynamic stability analysis of the coupled rotor/housing/bearing system also provided the controller transfer function. An AVCON developed digital controller was utilized to implement the transfer function and control algorithm. AVCON proprietary sensors for position input and pulse-width modulated (PWM) power amplifiers for output were also implemented in the system. A HPOTP simulator test rig was designed and built to perform operational and partial load testing of the bearings at cryogenic temperatures and spin speeds up to 20,000 rpm. Fabrication of the HPOTP simulator with magnetic bearings was completed at the end of 1994. Testing of the HPOTP simulator is ongoing.

  16. Conceptual Design and Feasibility of Foil Bearings for Rotorcraft Engines: Hot Core Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2007-01-01

    Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include oil-free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit.. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This overview presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section. In addition, system level foil bearing testing capabilities at NASA Glenn Research Center are presented along with analysis work being conducted under NRA Cooperative Agreements.

  17. The Rocketdyne Multifunction Tester. Part 2: Operation of a Radial Magnetic Bearing as an Excitation Source

    NASA Technical Reports Server (NTRS)

    Hawkins, L. A.; Murphy, Brian T.; Lang, K. W.

    1991-01-01

    The operation of the magnetic bearing used as an excitation source in the Rocketdyne Multifunction Tester is described. The tester is scheduled for operation during the summer of 1990. The magnetic bearing can be used in two control modes: (1) open loop mode, in which the magnetic bearing operates as a force actuator; and (2) closed loop mode, in which the magnetic bearing provides shaft support. Either control mode can be used to excite the shaft; however, response of the shaft in the two control modes is different due to the alteration of the eigenvalues by closed loop mode operation. A rotordynamic model is developed to predict the frequency response of the tester due to excitation in either control mode. Closed loop mode excitation is shown to be similar to the excitation produced by a rotating eccentricity in a conventional bearing. Predicted frequency response of the tester in the two control modes is compared, and the maximum response is shown to be the same for the two control modes when synchronous unbalance loading is not considered. The analysis shows that the response of this tester is adequate for the extraction of rotordynamic stiffness, damping, and inertia coefficients over a wide range of test article stiffnesses.

  18. Rotordynamic analysis using the Complex Transfer Matrix: An application to elastomer supports using the viscoelastic correspondence principle

    NASA Astrophysics Data System (ADS)

    Varney, Philip; Green, Itzhak

    2014-11-01

    Numerous methods are available to calculate rotordynamic whirl frequencies, including analytic methods, finite element analysis, and the transfer matrix method. The typical real-valued transfer matrix (RTM) suffers from several deficiencies, including lengthy computation times and the inability to distinguish forward and backward whirl. Though application of complex coordinates in rotordynamic analysis is not novel per se, specific advantages gained from using such coordinates in a transfer matrix analysis have yet to be elucidated. The present work employs a complex coordinate redefinition of the transfer matrix to obtain reduced forms of the elemental transfer matrices in inertial and rotating reference frames, including external stiffness and damping. Application of the complex-valued state variable redefinition results in a reduction of the 8×8 RTM to the 4×4 Complex Transfer Matrix (CTM). The CTM is advantageous in that it intrinsically separates forward and backward whirl, eases symbolic manipulation by halving the transfer matrices’ dimension, and provides significant improvement in computation time. A symbolic analysis is performed on a simple overhung rotor to demonstrate the mathematical motivation for whirl frequency separation. The CTM's utility is further shown by analyzing a rotordynamic system supported by viscoelastic elastomer rings. Viscoelastic elastomer ring supports can provide significant damping while reducing the cost and complexity associated with conventional components such as squeeze film dampers. The stiffness and damping of a viscoelastic damper ring are determined herein as a function of whirl frequency using the viscoelastic correspondence principle and a constitutive fractional calculus viscoelasticity model. The CTM is then employed to obtain the characteristic equation, where the whirl frequency dependent stiffness and damping of the elastomer supports are included. The Campbell diagram is shown, demonstrating the CTM

  19. Active magnetic bearings: As applied to centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Nelik, Lev; Cooper, Paul; Jones, Graham; Galecki, Dennis; Pinckney, Frank; Kirk, Gordon

    1992-01-01

    Application of magnetic bearings to boiler feed pumps presents various attractive features, such as longer bearing life, lower maintenance costs, and improved operability through control of the rotordynamics. Magnetic bearings were fitted to an eight-stage, 600 hp boiler feed pump, which generates 2600 ft of heat at 680 gpm and 3560 rpm. In addition to the varied and severe operating environment in steady state operation of this pump in a power plant, it is also subjected to transient loads during frequent starts and stops. These loads can now be measured by the in-built instrumentation of the magnetic bearings. Following site installation, a follow-up bearing tune-up was performed, and pump transient response testing was conducted. The bearing response was completely satisfactory, ensuring trouble-free pump operation even in the range of reduced load. The experience gained so far through design and testing proves feasibility of magnetic bearings for boiler feed pumps, which sets the stage for application of even higher energy centrifugal pumps equipped with magnetic bearings.

  20. Theory versus experiment for the rotordynamic coefficients of labyrinth gas seals. II - A comparison to experiment

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Scharrer, J. K.

    1987-01-01

    An experimental test facility is used to measure the leakage and rotordynamic coefficients of teeth-on-rotor and teeth-on-stator labyrinth gas seals. The test results are presented along with the theoretically predicted values for the two seal configurations at three different radial clearances and shaft speeds to 16,000 cpm. The test results show that the theory accurately predicts the cross-coupled stiffness for both seal configurations and shows improvement in the prediction of the direct damping for the teeth-on-rotor seal. The theory fails to predict a decrease in the direct damping coefficient for an increase in the radial clearance for the teeth-on-stator seal.

  1. Rotordynamic coefficients and leakage flow of parallel grooved seals and smooth seals

    NASA Technical Reports Server (NTRS)

    Nordmann, R.; Dietzen, F. J.; Janson, W.; Frei, A.; Florjancic, S.

    1987-01-01

    Based on Childs finite length solution for annular plain seals an extension of the bulk flow theory is derived to calculate the rotordynamic coefficients and the leakage flow of seals with parallel grooves in the stator. Hirs turbulent lubricant equations are modified to account for the different friction factors in circumferential and axial direction. Furthermore an average groove depth is introduced to consider the additional circumferential flow in the grooves. Theoretical and experimental results are compared for the smooth constant clearance seal and the corresponding seal with parallel grooves. Compared to the smooth seal the direct and cross-coupled stiffness coefficients as well as the direct damping coefficients are lower in the grooved seal configuration. Leakage is reduced by the grooving pattern.

  2. Comparison of Hirs' equation of Moody's equation for determining rotordynamic coefficients of annular pressure seals

    NASA Technical Reports Server (NTRS)

    Nelson, Clayton C.; Nguyen, Dung T.

    1987-01-01

    The rotordynamic coefficients of an incompressible-flow annular pressure seal were determined using a bulk-flow model in conjunction with two different friction factor relationships. The first, Hirs' equation, assumes the friction factor is a function of Reynolds number only. The second, Moody's equation, approximates Moody's diagram and assumes the friction factor is a function of both Reynolds number and relative roughness. For each value of relative roughness, Hirs' constants were determined so that both equations gave the same magnitude and slope of the friction factor. For smooth seals, both relationships give the same results. For rough seals (e/2 H sub 0 = 0.05) Moody's equation predicts 44% greater direct stiffness, 35% greater cross-coupled stiffness, 19% smaller cross-coupled damping, 59% smaller cross-coupled inertia, and nominally the same direct damping and direct inertia.

  3. A study of the effects of disk flexibility on the rotordynamics of the space shuttle main engine turbo-pumps

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1989-01-01

    Rotor dynamical analyses are typically performed using rigid disk models. Studies of rotor models in which the effects of disk flexibility were included indicate that is may be an important effect for many systems. This issue is addressed with respect to the Space Shuttle Main Engine high pressure turbo-pumps. Finite element analyses have been performed for a simplified free-free flexible disk rotor model and the modes and frequencies compared to those of a rigid disk model. The simple model was then extended to a more sophisticated HPTOP rotor model and similar results were observed. Equations were developed that are suitable for modifying the current rotordynamical analysis program to account for disk flexibility. Some conclusions are drawn from the results of this work as to the importance of disk flexibility on the HPTOP rotordynamics and some recommendations are given for follow-up research in this area.

  4. The application of automatic differentiation techniques for the prediction of rotor-dynamic coefficients of labyrinth seals

    NASA Astrophysics Data System (ADS)

    Fürst, Jiří

    2016-03-01

    The article describes the development of bulk-flow code for the prediction of rotor-dynamic coefficients of labyrinth seals. The code is based on the so-called single control volume approach by Childs and Scharrer [1] and the the forces are evaluated using the automatic differentiation technique. The resulting code is very simple and provides reasonable predictions of stiffness and damping coefficients at short computational time.

  5. Theory versus experiment for the rotordynamic coefficients of annular gas seals. Part 2: Constant clearance and convergent-tapered geometry

    NASA Technical Reports Server (NTRS)

    Nelson, C. C.; Childs, D. W.; Nicks, C.; Elrod, D.

    1985-01-01

    The leakage and rotordynamic coefficients of constant-clearance and convergent-tapered annular gas seals were measured in an experimental test facility. The results are presented along with the theoretically predicted values. Of particular interest is the prediction that optimally tapered seals have significantly larger direct siffness than straight seals. The experimental results verify this prediction. Generally the theory does quite well, but fails to predict the large increase in direct stiffness when the fluid is pre-rotated.

  6. Theory versus experiment for the rotordynamic coefficients of annular gas seals. II - Constant-clearance and convergent-tapered geometry

    NASA Technical Reports Server (NTRS)

    Nelson, C. C.; Childs, D. W.; Nicks, C.; Elrod, D.

    1985-01-01

    The leakage and rotordynamic coefficients of constant-clearance and convergent-tapered annular gas seals were measured in an experimental test facility. The results are presented along with the theoretically predicted values. Of particular interest is the prediction that optimally tapered seals have significantly larger direct stiffness than straight seals. The experimental results verify this prediction. Generally the theory does quite well, but fails to predict the large increase in direct stiffness when the fluid is pre-rotated.

  7. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  8. A comparison of experimental and theoretical results for leakage, pressure distribution, and rotordynamic coefficients for annular gas seals

    NASA Technical Reports Server (NTRS)

    Nicks, C. O.; Childs, D. W.

    1984-01-01

    The importance of seal behavior in rotordynamics is discussed and current annular seal theory is reviewed. A Nelson's analytical-computational method for determining rotordynamic coefficients for this type of compressible-flow seal is outlined. Various means for the experimental identification of the dynamic coefficients are given, and the method employed at the Texas A and M University (TAMU) test facility is explained. The TAMU test apparatus is described, and the test procedures are discussed. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and rotordynamic coefficients for a smooth and a honeycomb constant-clearance seal are presented and compared to theoretical results from Nelson's analysis. The results for both seals show little sensitivity to the running speed over the test range. Agreement between test results and theory for leakage through the seal is satisfactory. Test results for direct stiffness show a greater sensitivity to fluid pre-rotation than predicted. Results also indicate that the deliberately roughened surface of the honeycomb seal provides improved stability versus the smooth seal.

  9. Journal bearing

    DOEpatents

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  10. Transient Response of Rotor on Rolling-Element Bearings with Clearance

    NASA Technical Reports Server (NTRS)

    Fleming, David P.; Murphy, Brian T.; Sawicki, Jerzy T.; Poplawski, J. V.

    2006-01-01

    Internal clearance in rolling element bearings is usually present to allow for radial and axial growth of the rotor-bearing system and to accommodate bearing fit-up. The presence of this clearance also introduces a "dead band" into the load-deflection behavior of the bearing. Previous studies demonstrated that the presence of dead band clearance might have a significant effect on synchronous rotor response. In this work, the authors investigate transient response of a rotor supported on rolling element bearings with internal clearance. In addition, the stiffness of the bearings varies nonlinearly with bearing deflection and with speed. Bearing properties were accurately calculated with a state of the art rolling bearing analysis code. The subsequent rotordynamics analysis shows that for rapid acceleration rates the maximum response amplitude may be less than predicted by steady-state analysis. The presence of clearance may shift the critical speed location to lower speed values. The rotor vibration response exhibits subharmonic components which are more prominent with bearing clearance.

  11. Numerical modelling of a high-speed rigid rotor in a single-aerostatic bearing using modified Euler equations of motion

    NASA Astrophysics Data System (ADS)

    Frew, D. A.; Scheffer, C.

    2008-01-01

    Accurate rotordynamic analysis is critical in the achievement of efficient rotary machine design, however the majority of models concern flexible shafts with concentrated supports. The modified Euler equations of motion are used in a numerical model to calculate the natural frequencies and whirl amplitudes of a rigid rotor supported by a single-aerostatic bearing. The bearing is modelled with a non-constant stiffness distribution along its length and a non-symmetric centre of gravity. The results are compared with experimental modal analysis (EMA).

  12. Grizzly bear

    USGS Publications Warehouse

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  13. A seal test facility for the measurement of isotropic and anisotropic linear rotordynamic characteristics

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Yang, T.; Pace, S. E.

    1989-01-01

    A new seal test facility for measuring high-pressure seal rotor-dynamic characteristics has recently been made operational at Case Western Reserve University (CWRU). This work is being sponsored by the Electric Power Research Institute (EPRI). The fundamental concept embodied in this test apparatus is a double-spool-shaft spindle which permits independent control over the spin speed and the frequency of an adjustable circular vibration orbit for both forward and backward whirl. Also, the static eccentricity between the rotating and non-rotating test seal parts is easily adjustable to desired values. By accurately measuring both dynamic radial displacement and dynamic radial force signals, over a wide range of circular orbit frequency, one is able to solve for the full linear-anisotropic model's 12 coefficients rather than the 6 coefficients of the more restrictive isotropic linear model. Of course, one may also impose the isotropic assumption in reducing test data, thereby providing a valid qualification of which seal configurations are well represented by the isotropic model and which are not. In fact, as argued in reference (1), the requirement for maintaining a symmetric total system mass matrix means that the resulting isotropic model needs 5 coefficients and the anisotropic model needs 11 coefficients.

  14. Distributed model for electromechanical interaction in rotordynamics of cage rotor electrical machines

    NASA Astrophysics Data System (ADS)

    Laiho, Antti; Holopainen, Timo P.; Klinge, Paul; Arkkio, Antero

    2007-05-01

    In this work the effects of the electromechanical interaction on rotordynamics and vibration characteristics of cage rotor electrical machines were considered. An eccentric rotor motion distorts the electromagnetic field in the air-gap between the stator and rotor inducing a total force, the unbalanced magnetic pull, exerted on the rotor. In this paper a low-order parametric model for the unbalanced magnetic pull is coupled with a three-dimensional finite element structural model of the electrical machine. The main contribution of the work is to present a computationally efficient electromechanical model for vibration analysis of cage rotor machines. In this model, the interaction between the mechanical and electromagnetic systems is distributed over the air gap of the machine. This enables the inclusion of rotor and stator deflections into the analysis and, thus, yields more realistic prediction for the effects of electromechanical interaction. The model was tested by implementing it for two electrical machines with nominal speeds close to one of the rotor bending critical speeds. Rated machine data was used in order to predict the effects of the electromechanical interaction on vibration characteristics of the example machines.

  15. Test results for rotordynamic coefficients of anti-swirl self-injection seals

    NASA Technical Reports Server (NTRS)

    Kim, C. H.; Lee, Y. B.

    1994-01-01

    Test results are presented for rotordynamic coefficients and leakage for three annular seals which use anti-swirl self-injection concept to yield significant improvement in whirl frequency ratios as compared to smooth and damper seals. A new anti-swirl self-inection mechanism is achieved by deliberately machining self-injection holes inside the seal stator mechanism which is used to achieve effective reduction of the tangential flow which is considered as a prime cause of rotor instability in high performance turbomachinery. Test results show that the self-injection mechanism significantly improves whirl frequency ratios; however, the leakage performance degrades due to the introduction of the self-injection mechanism. Through a series of the test program, an optimum anti-swirl self-injection seal which uses a labyrinth stator surface with anti-axial flow injections is selected to obtain a significant improvement in the whirl frequency ratio as compared to a damper seal, while showing moderate leakage performance. Best whirl frequency ratio is achieved by an anti-swirl self-injection seal of 12 holes anti-swirl and 6 degree anti-leakage injection with a labyrinth surface configuration. When compared to a damper seal, the optimum configuration outperforms the whirl frequency ratio by a factor of 2.

  16. Limiting critical speed response on the SSME Alternate High Pressure Fuel Turbopump (ATD HPFTP) with bearing deadband

    NASA Astrophysics Data System (ADS)

    Goggin, David G.; Darden, J. M.

    1992-07-01

    Yammamoto (1954) described the influence of bearing deadband on the critical speed response of a rotor-bearing system. Practical application of these concepts to limit critical speed response of turbopump rotors is described. Nonlinear rotordynamic analyses are used to define the effect of bearing deadband and rotor unbalance on the Space Shuttle Main Engine Alternate High Pressure Fuel Turbopump. Analysis results are used with hot fire test data to verify the presence of a lightly damped critical speed within the operating speed range. With the proper control of rotor unbalance and bearing deadband, the response of this critical speed is reduced to acceptable levels without major design modifications or additional sources of damping.

  17. Polar Bear

    USGS Publications Warehouse

    Amstrup, S.D.; DeMaster

    1988-01-01

    Polar bears are long-lived, late-maturing carnivores that have relatively low rates of reproduction and natural mortality. Their populations are susceptible to disturbance from human activities, such as the exploration and development of mineral resources or hunting. Polar bear populations have been an important renewable resource available to coastal communities throughout the Arctic for thousands of years.

  18. Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    AVCON, Inc. produces advanced magnetic bearing systems for industrial use, offering a unique technological approach based on contract work done at Marshall Space Flight Center and Lewis Research Center. Designed for the turbopump of the Space Shuttle main engine, they are now used in applications such as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. Magnetic bearings support moving machinery without physical contact; AVCON's homopolar approach is a hybrid of permanent and electromagnets which are one-third the weight, smaller and more power- efficient than previous magnetic bearings.

  19. Roller bearing geometry design

    NASA Technical Reports Server (NTRS)

    Savage, M.; Pinkston, B. H. W.

    1976-01-01

    A theory of kinematic stabilization of rolling cylinders is extended and applied to the design of cylindrical roller bearings. The kinematic stabilization mechanism puts a reverse skew into the rolling elements by changing the roller taper. Twelve basic bearing modification designs are identified amd modeled. Four have single transverse convex curvature in their rollers while eight have rollers which have compound transverse curvature made up of a central cylindrical band surrounded by symmetric bands with slope and transverse curvature. The bearing designs are modeled for restoring torque per unit axial displacement, contact stress capacity, and contact area including dynamic loading, misalignment sensitivity and roller proportion. Design programs are available which size the single transverse curvature roller designs for a series of roller slopes and load separations and which design the compound roller bearings for a series of slopes and transverse radii of curvature. The compound rollers are proportioned to have equal contact stresses and minimum size. Design examples are also given.

  20. Identifying and directly dating Plio-Pleistocene geomagnetic reversals and events from speleothems at South African archaeological and fossil bearing palaeocaves: implications for extending archaeomagnetic records

    NASA Astrophysics Data System (ADS)

    Herries, A. I.; Pickering, R.; Kappen, P.

    2013-05-01

    In the last 10 years palaeomagnetic research on speleothems from archaeological and fossil bearing palaeokarst in northern South Africa has led to the identification of apparent short geomagnetic field events that were initially thought to represent one or both of the Réunion events. More recently the development of uranium-lead dating techniques for speleothem in the 5 Ma to 500 ka time range has allowed us to directly date these events for the first time, as well as date more recently discovered events and reversals. This work now indicates that the same reversals events are often found in speleothems in different caves throughout the region. An event has been directly dated at two sites to between 2.047 and 2.0005 Ma and likely represents what has been termed the 'Huckleberry Ridge' event at other localities. Another event sometime between 2.33 and 2.15 Ma likely represents the Réunion event while another between 1.111 to 1.087 Ma is thought to represent the Punaruu event. X-ray Fluorescence Microscopy work at the Australian Synchrotron has been used to map the iron distribution in the speleothems and in tandem with the demagnetisation spectra has enabled the mineralogy and mode of acquisition of remanence to be determined and the potential effects of recrystalisation on the palaeomagnetic signal to be accessed. Further work on speleothem sequences in the caves has the potential to refine the ages of geomagnetic field reversals, events and excursions over almost any time range for which speleothems exist, if certain conditions are met. Given the rapid lock-in time of the remanence and low alteration rates and effects of speleothems they provide a powerful new medium for reconstructing Plio-Pleistocene geomagnetic field variation.

  1. A New High-Speed Oil-Free Turbine Engine Rotordynamic Simulator Test Rig

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2007-01-01

    A new test rig has been developed for simulating high-speed turbomachinery rotor systems using Oil-Free foil air bearing technology. Foil air bearings have been used in turbomachinery, primarily air cycle machines, for the past four decades to eliminate the need for oil lubrication. The goal of applying this bearing technology to other classes of turbomachinery has prompted the fabrication of this test rig. The facility gives bearing designers the capability to test potential bearing designs with shafts that simulate the rotating components of a target machine without the high cost of building "make-and-break" hardware. The data collected from this rig can be used to make design changes to the shaft and bearings in subsequent design iterations. This paper describes the new test rig and demonstrates its capabilities through the initial run with a simulated shaft system.

  2. An experimental and theoretical comparison of rotordynamic coefficients for sawtooth-pattern damper seals. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nolan, Steven Anthony

    1987-01-01

    A brief review of the annular seal theory as related to rotordynamics for liquid seals is presented. Also included is an overview of Childs and Kim's current theory for calculating empirical turbulence coefficients and predicting stiffness and damping coefficients for surface roughened damper seals. The designation sawtooth-pattern refers to a seal stator with a roughness pattern whose cross section normal to the seal axis resembles a sawtooth with the teeth directed against the flow. The net stiffness and damping coefficients for the eleven seals are compared to each other, a smooth seal, and the optimum-configuration damper seal previously tested. The experimental force coefficients, the net damping, and the net stiffness coefficients for four of the sawtooth seals are compared to the predictions of Childs and Kim's analysis. The sawtooth-pattern seal had less net damping than the hole-pattern seal but more than the smooth seal. The stiffness was comparable to the hole-pattern. Both the sawtooth and hole-pattern seals leaked less than the smooth seal, while the sawtooth-pattern seal with maximum damping leaked more than the hole-pattern seal. The theoretical predictions compared relatively poorly to the experimental results obtained for the rotordynamic coefficients of the seals investigation.

  3. A comparison of experimental and theoretical results for leakage, pressure gradients, and rotordynamic coefficients for tapered annular gas seal

    NASA Technical Reports Server (NTRS)

    Elrod, D. A.; Childs, D. W.

    1986-01-01

    A brief review of current annular seal theory and a discussion of the predicted effect on stiffness of tapering the seal stator are presented. An outline of Nelson's analytical-computational method for determining rotordynamic coefficients for annular compressible-flow seals is included. Modifications to increase the maximum rotor speed of an existing air-seal test apparatus at Texas A&M University are described. Experimental results, including leakage, entrance-loss coefficients, pressure distributions, and normalized rotordynamic coefficients, are presented for four convergent-tapered, smooth-rotor, smooth-stator seals. A comparison of the test results shows that an inlet-to-exit clearance ratio of 1.5 to 2.0 provides the maximum direct stiffness, a clearance ratio of 2.5 provides the greatest stability, and a clearance ratio of 1.0 provides the least stability. The experimental results are compared to theoretical results from Nelson's analysis with good agreement. Test results for cross-coupled stiffness show less sensitivity of fluid prerotation than predicted.

  4. Seismic bearing

    NASA Astrophysics Data System (ADS)

    Power, Dennis

    2009-05-01

    Textron Systems (Textron) has been using geophones for target detection for many years. This sensing capability was utilized for detection and classification purposes only. Recently Textron has been evaluating multiaxis geophones to calculate bearings and track targets more specifically personnel. This capability will not only aid the system in locating personnel in bearing space or cartesian space but also enhance detection and reduce false alarms. Textron has been involved in the testing and evaluation of several sensors at multiple sites. One of the challenges of calculating seismic bearing is an adequate signal to noise ratio. The sensor signal to noise ratio is a function of sensor coupling to the ground, seismic propagation and range to target. The goals of testing at multiple sites are to gain a good understanding of the maximum and minimum ranges for bearing and detection and to exploit that information to tailor sensor system emplacement to achieve desired performance. Test sites include 10A Site Devens, MA, McKenna Airfield Ft. Benning, GA and Yuma Proving Ground Yuma, AZ. Geophone sensors evaluated include a 28 Hz triax spike, a 15 Hz triax spike and a hybrid triax spike consisting of a 10 Hz vertical geophone and two 28 Hz horizontal geophones. The algorithm uses raw seismic data to calculate the bearings. All evaluated sensors have triaxial geophone configuration mounted to a spike housing/fixture. The suite of sensors also compares various types of geophones to evaluate benefits in lower bandwidth. The data products of these tests include raw geophone signals, seismic features, seismic bearings, seismic detection and GPS position truth data. The analyses produce Probability of Detection vs range, bearing accuracy vs range, and seismic feature level vs range. These analysis products are compared across test sites and sensor types.

  5. Experimental Characterization and Analytical Comparison of Rolling Element Bearing Radial Stiffness

    NASA Technical Reports Server (NTRS)

    Earhart, Eric; Darden, Mark; Strong, Nunley; Chilcoat, Thaddeus; Becht, David

    2010-01-01

    Rocket engine turbopumps often employ rolling element bearings for rotor support. These bearings frequently provide the primary mechanical interface between the stationary and rotating parts, and are relied upon to provide an adequate stiffness characteristic to ensure small rotor deflection due to a variety of sources of radial load. The rotordynamic design of a turbopump, however, requires a more detailed understanding of the bearing's load-deflection characteristic, to accurately predict critical speed location and response. Accordingly, engineers have developed tools to predict the load-deflection relationship for rolling element bearings. These tools allow the engineer to account for rolling element bearing geometric parameters as well as operational parameters, many of which have been shown to significantly influence a bearing's force-deflection characteristics. To that end, a static test rig has been designed, built, and tested to experimentally measure the radial stiffness of a rolling element bearing in a realistic mounting configuration. The objective of this paper is to report these experimental results and provide a comparison to analytical predictions.

  6. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    PubMed

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. PMID:25775930

  7. Whole Genome Pathway Analysis Identifies an Association of Cadmium Response Gene Loss with Copy Number Variation in Mutant p53 Bearing Uterine Endometrial Carcinomas

    PubMed Central

    Stupack, Dwayne G

    2016-01-01

    Background Massive chromosomal aberrations are a signature of advanced cancer, although the factors promoting the pervasive incidence of these copy number alterations (CNAs) are poorly understood. Gatekeeper mutations, such as p53, contribute to aneuploidy, yet p53 mutant tumors do not always display CNAs. Uterine Corpus Endometrial Carcinoma (UCEC) offers a unique system to begin to evaluate why some cancers acquire high CNAs while others evolve another route to oncogenesis, since about half of p53 mutant UCEC tumors have a relatively flat CNA landscape and half have 20–90% of their genome altered in copy number. Methods We extracted copy number information from 68 UCEC genomes mutant in p53 by the GISTIC2 algorithm. GO term pathway analysis, via GOrilla, was used to identify suppressed pathways. Genes within these pathways were mapped for focal or wide distribution. Deletion hotspots were evaluated for temporal incidence. Results Multiple pathways contributed to the development of pervasive CNAs, including developmental, metabolic, immunological, cell adhesion and cadmium response pathways. Surprisingly, cadmium response pathway genes are predicted as the earliest loss events within these tumors: in particular, the metallothionein genes involved in heavy metal sequestration. Loss of cadmium response genes were associated with copy number changes and poorer prognosis, contrasting with 'copy number flat' tumors which instead exhibited substantive mutation. Conclusion Metallothioneins are lost early in the development of high CNA endometrial cancer, providing a potential mechanism and biological rationale for increased incidence of endometrial cancer with cadmium exposure. Developmental and metabolic pathways are altered later in tumor progression. PMID:27391266

  8. System for testing bearings

    NASA Astrophysics Data System (ADS)

    Gibson, John C.

    1993-07-01

    Disclosed here is a system for testing bearings wherein a pair of spaced bearings provides support for a shaft on which is mounted a bearing to be tested, this bearing being mounted in a bearing holder spaced from and in alignment with the pair of bearings. The bearing holder is provided with an annular collar positioned in an opening in the bearing holder for holding the bearing to be tested. A screw threaded through the bearing holder into engagement with the annular collar can be turned to force the collar radially out of alignment with the pair of bearings to apply a radial load to the bearing.

  9. Bearing development program for a 25 kWe solar-powered organic Rankine-cycle engine

    NASA Technical Reports Server (NTRS)

    Nesmith, B.

    1985-01-01

    The bearing development program is summarized for a 25-kWe power conversion subsystem (PCS) consisting of an organic Rankine-cycle engine, and permanent magnetic alternator (PMA) and rectifier to be used in a 100-kWe point-focusing distributed receiver solar power plant. The engine and alternator were hermetically sealed and used toluene as the working fluid. The turbine, alternator, and feed pump (TAP) were mounted on a single shaft operating at speeds up to 60,000 rev/min. Net thermal-to-electric efficiencies in the range of 21 to 23% were demonstrated at the maximum working fluid temperature of 400 C (750 F). A chronological summary of the bearing development program is presented. The primary causes of bearing wear problems were traced to a combination of rotordynamic instability and electrodynamic discharge across the bearing surfaces caused by recirculating currents from the PMA. These problems were resolved by implementing an externally supplied, flooded-bearing lubrication system and by electrically insulating all bearings from the TAP housing. This program resulted in the successful development of a stable, high-speed, toluene-lubricated five-pad tilting-pad journal bearing and Rayleigh step thrust bearing system capable of operating at all inclinations between horizontal and vertical.

  10. CUSHIONED BEARING

    DOEpatents

    Rushing, F.C.

    1960-09-01

    A vibration damping device effective to dampen vibrations occurring at the several critical speeds encountered in the operation of a high-speed centrifuge is described. A self-centering bearing mechanism is used to protect both the centrifuge shaft and the damping mechanism. The damping mechanism comprises spaced-apant, movable, and stationary sleeve members arranged concentrically of a rotating shaft with a fluid maintained between the members. The movable sleeve member is connected to the shaft for radial movement therewith.

  11. Tooling Converts Stock Bearings To Custom Bearings

    NASA Technical Reports Server (NTRS)

    Fleenor, E. N., Jr.

    1983-01-01

    Technique for reworking stock bearings saves time and produces helicopter-rotor bearings ground more precisely. Split tapered ring at one end of threaded bolt expands to hold inside of inner race bearing assembly; nut, at other end of bolt, adjusts amount of spring tension. Piece of hardware grasps bearing firmly without interfering with grinding operation. Operation produces bearing of higher quality than commercially available bearings.

  12. Theoretical and experimental steady-state rotordynamics of an adaptive Air Film Damper with Metal Rubber

    NASA Astrophysics Data System (ADS)

    Yanhong, Ma; Zhichao, Liang; Hong, Wang; Dayi, Zhang; Jie, Hong

    2013-10-01

    An Air Film Damper (AFD) made with a highly damping material called Metal Rubber (MR) as the outer ring is a novel damping structure that aims to reduce the remarkable vibrations produced by a flexible rotor system. The mechanism of an AFD is firstly put forward and the mechanical model describing the fluid structure interaction is constructed. Taking into consideration the complex whirl of the rotor and the precession of the floating ring, the Reynolds equation of AFDs is derived and the air film pressure is obtained. Based on these calculations, the selection of MR stiffness is introduced and the adaptive properties of AFD are analyzed. Then the effects of AFD on the rotordynamics are studied based on the characterization of the parameters of a rotor system in the steady state. The mechanism and the effects of AFD on a rotor system are verified through rotating experimental tests. The theoretical and experimental results both show that AFD can adjust the air film clearance adaptively according to the vibration of the rotor; this can not only decrease the friction between the journal and the floating ring, but can also provide additional stiffness and damping to the rotor system, thus yielding additional vibration control. The mechanism of an AFD is obtained by theoretical and experimental investigations. Due to the elastic MR serving as the outer ring, an AFD can adjust the air film clearance adaptively according to the vibration of the rotor; this not only decreases the friction between the journal and the floating ring, but also provides additional stiffness and damping to the rotor system, as a function of vibration control. Taking into consideration the complex whirl of the rotor and the precession of the floating ring, the Reynolds equation of an AFD is derived and the mechanical model is established, based on the fluid structure interaction. Moreover, based on the maximum radial displacement during the entire operational process and the minimum thickness of

  13. Oil-Free Shaft Support System Rotordynamics: Past, Present, and Future Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2011-01-01

    Recent breakthroughs in Oil-Free technologies have enabled new high-speed rotor systems and turbomachinery. Such technologies can include compliant-surface gas bearings, magnetic bearings, and advanced solid lubricants and tribo-materials. This presentation briefly reviews critical technology developments and the current state-of-the-art, emerging Oil-Free rotor systems and discusses obstacles preventing more widespread use. Key examples of "best practices" for deploying Oil-Free technologies will be presented and remaining major technical questions surrounding Oil-Free technologies will be brought forward.

  14. Combined passive magnetic bearing element and vibration damper

    DOEpatents

    Post, Richard F.

    2001-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium and dampen transversely directed vibrations. Mechanical stabilizers are provided to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. In a improvement over U.S. Pat. No. 5,495,221, a magnetic bearing element is combined with a vibration damping element to provide a single upper stationary dual-function element. The magnetic forces exerted by such an element, enhances levitation of the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations, and suppresses the effects of unbalance or inhibits the onset of whirl-type rotor-dynamic instabilities. Concurrently, this equilibrium is made stable against displacement-dependent drag forces of the rotating object from its equilibrium position.

  15. Stable isotopes to detect food-conditioned bears and to evaluate human-bear management

    USGS Publications Warehouse

    Hopkins, John B., III; Koch, Paul L.; Schwartz, Charles C.; Ferguson, Jake M.; Greenleaf, Schuyler S.; Kalinowski, Steven T.

    2012-01-01

    We used genetic and stable isotope analysis of hair from free-ranging black bears (Ursus americanus) in Yosemite National Park, California, USA to: 1) identify bears that consume human food, 2) estimate the diets of these bears, and 3) evaluate the Yosemite human–bear management program. Specifically, we analyzed the isotopic composition of hair from bears known a priori to be food-conditioned or non-food-conditioned and used these data to predict whether bears with an unknown management status were food-conditioned (FC) or non-food-conditioned (NFC). We used a stable isotope mixing model to estimate the proportional contribution of natural foods (plants and animals) versus human food in the diets of FC bears. We then used results from both analyses to evaluate proactive (population-level) and reactive (individual-level) human–bear management, and discussed new metrics to evaluate the overall human–bear management program in Yosemite. Our results indicated that 19 out of 145 (13%) unknown bears sampled from 2005 to 2007 were food-conditioned. The proportion of human food in the diets of known FC bears likely declined from 2001–2003 to 2005–2007, suggesting proactive management was successful in reducing the amount of human food available to bears. In contrast, reactive management was not successful in changing the management status of known FC bears to NFC bears, or in reducing the contribution of human food to the diets of FC bears. Nine known FC bears were recaptured on 14 occasions from 2001 to 2007; all bears were classified as FC during subsequent recaptures, and human–bear management did not reduce the amount of human food in the diets of FC bears. Based on our results, we suggest Yosemite continue implementing proactive human–bear management, reevaluate reactive management, and consider removing problem bears (those involved in repeated bear incidents) from the population.

  16. Radium bearing waste disposal

    SciTech Connect

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A.; Schofield, W.D.

    1995-07-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach.

  17. Fluid lubricated bearing construction

    DOEpatents

    Dunning, John R.; Boorse, Henry A.; Boeker, Gilbert F.

    1976-01-01

    1. A fluid lubricated thrust bearing assembly comprising, in combination, a first bearing member having a plain bearing surface, a second bearing member having a bearing surface confronting the bearing surface of said first bearing member and provided with at least one spiral groove extending inwardly from the periphery of said second bearing member, one of said bearing members having an axial fluid-tight well, a source of fluid lubricant adjacent to the periphery of said second bearing member, and means for relatively rotating said bearing members to cause said lubricant to be drawn through said groove and to flow between said bearing surfaces, whereby a sufficient pressure is built up between said bearing surfaces and in said well to tend to separate said bearing surfaces.

  18. Cryogenic turbopump bearing materials

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.

    1989-01-01

    Materials used for modern cryogenic turbopump bearings must withstand extreme conditions of loads and speeds under marginal lubrication. Naturally, these extreme conditions tend to limit the bearing life. It is possible to significantly improve the life of these bearings, however, by improving the fatigue and wear resistance of bearing alloys, and improving the strength, liquid oxygen compatibility and lubricating ability of the bearing cage materials. Improved cooling will also help to keep the bearing temperatures low and hence prolong the bearing life.

  19. Control of rotordynamic instability in a typical gas turbine's power system

    NASA Technical Reports Server (NTRS)

    Veikos, N. M.; Page, R. H.; Tornillo, E. J.

    1984-01-01

    The effect of rotor internal friction on the system's stability was studied when operated above the first critical speed. This internal friction is commonly caused by sliding press fits or sliding splines. Under conditions of high speed and low bearing damping, these systems will occassionally whirl at a frequency less than the shaft's rotational speed. This subsynchronous precession is a self excited phenomenon and stress reversals are created. This phenomenon was observed during engine testing. The reduction of spline friction and/or the inclusion of squeeze film damping have controlled the instability. Case history and the detail design of the squeeze film dampers is discussed.

  20. The Influence of Swirl Brakes and a Tip Discharge Orifice on the Rotordynamic Forces Generated by Discharge-to-Suction Leakage Flows in Shrouded Centrifugal Pumps

    NASA Technical Reports Server (NTRS)

    Sivo, Joseph M.; Acosta, A. J.; Brennen, C. E.; Caughey, T. K.

    1993-01-01

    Recent experiments conducted in the Rotor Force Test Facility at the California Institute of Technology have examined the effects of a tip leakage restriction and swirl brakes on the rotordynamic forces due to leakage flows on an impeller undergoing a prescribed circular whirl. The experiments simulate the leakage flow conditions and geometry of the Alternate Turbopump Design (ATD) of the Space Shuttle High Pressure Oxygen Turbopump and are critical to evaluating the pump's rotordynamic instability problems. Previous experimental and analytical results have shown that discharge-to-suction leakage flows in the annulus of a shrouded centrifugal pump contribute substantially to the fluid induced rotordynamic forces. Also, previous experiments have shown that leakage inlet (pump discharge) swirl can increase the cross-coupled stiffness coefficient and hence increase the range of positive whirl for which the tangential force is destabilizing. In recent experimental work, the present authors demonstrated that when the swirl velocity within the leakage path is reduced by the introduction of ribs or swirl brakes, then a substantial decrease in both the destabilizing normal and tangential forces could be achieved. Motivation for the present research is that previous experiments have shown that restrictions such as wear rings or orifices at pump inlets affect the leakage forces. Recent pump designs such as the Space Shuttle Alternate Turbopump Design (ATD) utilize tip orifices at discharge for the purpose of establishing axial thrust balance. The ATD has experienced rotordynamic instability problems and one may surmise that these tip discharge orifices may also have an important effect on the normal and tangential forces in the plane of impeller rotation. The present study determines if such tip leakage restrictions contribute to undesirable rotordynamic forces. Additional motivation for the present study is that the widening of the leakage path annular clearance and the

  1. Pratt and Whitney cryogenic turbopump bearing experience

    NASA Technical Reports Server (NTRS)

    Poole, W. E.; Bursey, R. W., Jr.

    1988-01-01

    Successful, reusable bearings require lubrication, traditionally, a transfer film from sacrificial cage wear. Early testing included materials screening programs to identify suitable cryogenic cage materials. A specially developed element tester that simulated the function of a ball bearing cage was used. Suitable materials must provide lubrication with an acceptably low wear rate, without abrading contacting surfaces. The most promising materials were tested in full scale bearings at speeds up to 4 MDN. Teflon, filled with 40 percent bronze powder, was the best performing material. A variety of bearings were designed and successfully tested in LH2 and LOX. Bearings with bronze filled Teflon cages were successfully tested for 150 hrs. In overload tests, the same design was tested for 5 hrs at maximum Hertz stresses above 450 ksi and an additional 5 hrs with a maximum Hertz stress exceeding 500 ksi. Four bearings were tested in LOX for 25 hrs, with a maximum time per bearing of 10 hrs.

  2. Development and Evaluation of Titanium Spacesuit Bearings

    NASA Technical Reports Server (NTRS)

    Rhodes, Richard; Battisti, Brian; Ytuarte, Raymond, Jr.; Schultz, Bradley

    2016-01-01

    The Z-2 Prototype Planetary Extravehicular Space Suit Assembly is a continuation of NASA's Z-series of spacesuits, designed with the intent of meeting a wide variety of exploration mission objectives, including human exploration of the Martian surface. Incorporating titanium bearings into the Z-series space suit architecture allows us to reduce mass by an estimated 23 lbs per suit system compared to the previously used stainless steel bearing race designs, without compromising suit functionality. There are two obstacles to overcome when using titanium for a bearing race- 1) titanium is flammable when exposed to the oxygen wetted environment inside the space suit and 2) titanium's poor wear properties are often challenging to overcome in tribology applications. In order to evaluate the ignitability of a titanium space suit bearing, a series of tests were conducted at White Sands Test Facility (WSTF) that introduced the bearings to an extreme test profile, with multiple failures imbedded into the test bearings. The testing showed no signs of ignition in the most extreme test cases; however, substantial wear of the bearing races was observed. In order to design a bearing that can last an entire exploration mission (approx. 3 years), design parameters for maximum contact stress need to be identified. To identify these design parameters, bearing test rigs were developed that allow for the quick evaluation of various bearing ball loads, ball diameters, lubricants, and surface treatments. This test data will allow designers to minimize the titanium bearing mass for a specific material and lubricant combination and design around a cycle life requirement for an exploration mission. This paper reviews the current research and testing that has been performed on titanium bearing races to evaluate the use of such materials in an enriched oxygen environment and to optimize the bearing assembly mass and tribological properties to accommodate for the high bearing cycle life for an

  3. Restoration of bearings

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.; Hanau, H.

    1977-01-01

    Process consisting of grinding raceways to oversize but original quality condition and installing new oversize balls or bearings restores wornout ball and roller bearings to original quality, thereby doubling their operating life. Evaluations reveal process results in restoration of 90% of replaced bearings at less than 50% of new-bearing costs.

  4. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  5. Rolling-Element Bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Anderson, W. J.

    1983-01-01

    Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.

  6. Introduction to ball bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    The purpose of a ball bearing is to provide a relative positioning and rotational freedom while transmitting a load between two structures, usually a shaft and a housing. For high rotational speeds (e.g., in gyroscope ball bearings) the purpose can be expanded to include rotational freedom with practically no wear in the bearing. This condition can be achieved by separating the bearing parts with a coherent film of fluid known as an elastohydrodynamic film. This film can be maintained not only when the bearing carries the load on a shaft, but also when the bearing is preloaded to position the shaft to within micro- or nano-inch accuracy and stability. Background information on ball bearings is provided, different types of ball bearings and their geometry and kinematics are defined, bearing materials, manufacturing processes, and separators are discussed. It is assumed, for the purposes of analysis, that the bearing carries no load.

  7. High efficiency magnetic bearings

    NASA Technical Reports Server (NTRS)

    Studer, Philip A.; Jayaraman, Chaitanya P.; Anand, Davinder K.; Kirk, James A.

    1993-01-01

    Research activities concerning high efficiency permanent magnet plus electromagnet (PM/EM) pancake magnetic bearings at the University of Maryland are reported. A description of the construction and working of the magnetic bearing is provided. Next, parameters needed to describe the bearing are explained. Then, methods developed for the design and testing of magnetic bearings are summarized. Finally, a new magnetic bearing which allows active torque control in the off axes directions is discussed.

  8. Molecular phylogeny and SNP variation of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) derived from genome sequences.

    PubMed

    Cronin, Matthew A; Rincon, Gonzalo; Meredith, Robert W; MacNeil, Michael D; Islas-Trejo, Alma; Cánovas, Angela; Medrano, Juan F

    2014-01-01

    We assessed the relationships of polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus) with high throughput genomic sequencing data with an average coverage of 25× for each species. A total of 1.4 billion 100-bp paired-end reads were assembled using the polar bear and annotated giant panda (Ailuropoda melanoleuca) genome sequences as references. We identified 13.8 million single nucleotide polymorphisms (SNP) in the 3 species aligned to the polar bear genome. These data indicate that polar bears and brown bears share more SNP with each other than either does with black bears. Concatenation and coalescence-based analysis of consensus sequences of approximately 1 million base pairs of ultraconserved elements in the nuclear genome resulted in a phylogeny with black bears as the sister group to brown and polar bears, and all brown bears are in a separate clade from polar bears. Genotypes for 162 SNP loci of 336 bears from Alaska and Montana showed that the species are genetically differentiated and there is geographic population structure of brown and black bears but not polar bears. PMID:24477675

  9. Effects of unbalance location on dynamic characteristics of high-speed gasoline engine turbocharger with floating ring bearings

    NASA Astrophysics Data System (ADS)

    Wang, Longkai; Bin, Guangfu; Li, Xuejun; Liu, Dingqu

    2016-03-01

    For the high-speed gasoline engine turbocharger rotor, due to the heterogeneity of multiple parts material, manufacturing and assembly errors, running wear in impeller and uneven carbon of turbine, the random unbalance usually can be developed which will induce excessive rotor vibration, and even lead to nonlinear vibration accidents. However, the investigation of unbalance location on the nonlinear high-speed turbocharger rotordynamic characteristics is less. In order to discuss the rotor unbalance location effects of turbocharger with nonlinear floating ring bearings(FRBs), the realistic turbocharger of gasoline engine is taken as a research object. The rotordynamic equations of motion under the condition of unbalance are derived by applied unbalance force and nonlinear oil film force of FRBs. The FE model of turbocharger rotor-bearing system is modeled which includes the unbalance excitation and nonlinear FRBs. Under the conditions of four different applied locations of unbalance, the nonlinear transient analyses are performed based on the rotor FEM. The differences of dynamic behavior are obvious to the turbocharger rotor systems for four conditions, and the bifurcation phenomena are different. From the results of waterfall and transient response analysis, the speed for the appearance of fractional frequency is not identical and the amplitude magnitude is different from the different unbalance locations, and the non-synchronous vibration does not occur in the turbocharger and the amplitude is relative stable and minimum under the condition 4. The turbocharger vibration and non-synchronous components could be reduced or suppressed by controlling the applied location of unbalance, which is helpful for the dynamic design, fault diagnosis and vibration control of the high-speed gasoline engine turbochargers.

  10. Investigations of a bearing fault detector for railroad bearings

    NASA Technical Reports Server (NTRS)

    Wilson, D. S.; Frarey, J. L.

    1975-01-01

    The laboratory tests are described which were conducted on new and damaged bearings to determine the feasibility of using high-frequency vibration as a diagnostic tool. A high-frequency band pass filter and demodulator was assembled to permit field measurements of the high-frequency vibrations. Field tests were conducted on an actual truck and on an axle assembly run in a grease test rig. These field tests were directed toward demonstration of the suitability and capabilities of the high-frequency technique for field application. Two specific areas of field application were identified as being cost effective for railroad use. One area is the examination of railroad roller bearings at a derailment site, and the second is as a wayside detector to supplement present hot box detectors for defective roller bearings.

  11. Mechanical spin bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1998-01-01

    A spin bearing assembly including, a pair of mutually opposing complementary bearing support members having mutually spaced apart bearing support surfaces which may be, for example, bearing races and a set of spin bearings located therebetween. Each spin bearing includes a pair of end faces, a central rotational axis passing through the end faces, a waist region substantially mid-way between the end faces and having a first thickness dimension, and discrete side surface regions located between the waist region and the end faces and having a second thickness dimension different from the first thickness dimension of the waist region and wherein the side surface regions further have respective curvilinear contact surfaces adapted to provide a plurality of bearing contact points on the bearing support members.

  12. Axial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  13. 1-Way Bearing

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2003-01-01

    A one-way bearing is provided having sprags and rolling bearings both disposed between an inner and an outer race. The sprags may comprise three-dimensional sprags for preventing rotation in a non-preferential direction. The roll- ing bearings may comprise thrust rollers for transmitting axial, tilt, and radial loads between the inner and outer races.

  14. Supertough Stainless Bearing Steel

    NASA Technical Reports Server (NTRS)

    Olson, Gregory B.

    1995-01-01

    Composition and processing of supertough stainless bearing steel designed with help of computer-aided thermodynamic modeling. Fracture toughness and hardness of steel exceeds those of other bearing steels like 440C stainless bearing steel. Developed for service in fuel and oxidizer turbopumps on Space Shuttle main engine. Because of strength and toughness, also proves useful in other applications like gears and surgical knives.

  15. Radial Clearance Found To Play a Key Role in the Performance of Compliant Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.

    2003-01-01

    Compliant foil air bearings are at the forefront of the Oil-Free turbomachinery revolution, which supports gas turbine engines with hydrodynamic bearings that use air instead of oil as the working fluid. These types of bearings have been around for almost 50 years and have found a home in several commercial applications, such as in air cycle machines, turbocompressors, and microturbines, but are now being aggressively pursued for use in small and midrange aircraft gas turbine engines. Benefits include higher operating speeds and temperatures, lower maintenance costs, and greater reliability. The Oil-Free Turbomachinery team at the NASA Glenn Research Center is working to foster the transition of Oil-Free technology into gas turbine engines by performing in-house experiments on foil air bearings in order to gain a greater insight into their complex operating principles. A research program recently undertaken at Glenn focused on the concept of radial clearance and its influence on bearing performance. The tests were conducted on foil bearings with different radial clearances. As defined for a foil bearing, radial clearance is a measure of the small amount of shaft radial motion that is present from play that exists in the elastic support structure, such as between the top and bump foils and the bump foils and bearing shell (see the drawing). With an insufficient amount of radial clearance, the bearing imparts a high preload on the shaft, which when excessive, can reduce the loadcarrying capability of the bearing. On the other hand, systems using foil bearings with excessive radial clearance may experience rotordynamic instabilities because of low bearing preload. Therefore, without a more thorough understanding of radial clearance, it is difficult to accurately predict the performance of a given bearing design. The test program demonstrated that there is a direct correlation between radial clearance and the performance of foil air bearings. As shown in the graph, an

  16. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  17. Bearings working group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The service life of the Space Shuttle Main Engine (SSME) turbomachinery bearings was a predominant factor in engine durability and maintenance problems. Recent data has indicated that bearing life is about one order of magnitude lower than the goal of seven and one-half hours particularly those in the High Pressure Oxidizer Turbopump (HPOTP). Bearing technology, primarily cryogenic turbomachinery bearing technology, is expanded by exploring the life and performance effects of design changes; design concept changes; materials changes; manufacturing technique changes; and lubrication system changes. Each variation is assessed against the current bearing design in full scale cryogenic tests.

  18. Spectral properties and identification of aerostatic bearings

    NASA Astrophysics Data System (ADS)

    Kozánek, Jan; Půst, Ladislav

    2011-02-01

    Modified rotor kit Bently Nevada was used for dynamic characteristics measurements of new developed aerostatic bearings. Mathematicalmodel of these bearings is considered as linear. Model was identified with the help of harmonic force excitation independently from the speed of journal rotation. The stiffness and damping matrices were identified for different air inlet pressures. The calculated spectral properties allow to determine the stability boundary for suitable variation of model parameters.

  19. Consideration of Alternate Working Fluid Properties in Gas Lubricated Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Smith, Matthew J.

    2004-01-01

    The Oil-Free Turbomachinery Program at the NASA Glenn Research center is committed to, revolutionary improvements in performance, efficiency and reliability of turbomachinery propulsion systems. One of the key breakthroughs by which this goal is being achieved is the maturation of air lubricated foil bearing technology. Through experimental testing, foil bearings have demonstrated a variety of exceptional qualities that show them to have an important role in the future of rotordynamic lubrication. Most of the work done with foil bearings thus far has considered ambient air at atmospheric pressure as the working fluid or lubricating fluid in the bearing. However, special applications of oil-free technology require the use of air at non- standard ambient conditions or completely different working fluids altogether. The NASA Jupiter Icy Moon Orbiter program presents power generation needs far beyond that of any previous space exploration effort. The proposed spacecraft will require significant power generation to provide the propulsion necessary to reach the moons of Jupiter and navigate between them. Once there, extensive scientific research will be conducted that will also present significant power requirements. Such extreme needs require exploring a new method for power generation in space. A proposed solution involves a Brayton cycle nuclear fission reactor. The nature of this application requires reliable performance of all reactor components for many years of operation under demanding conditions. This includes the bearings which will be operating with an alternative working fluid that is a combination of Helium and Xenon gases commonly known as HeXe. This fluid has transport and thermal properties that vary significantly from that of air and the effect of these property differences on bearing performance must be considered. One of the most promising applications of oil-free technology is in aircraft turbine engines. Eliminating the oil supply systems from

  20. Research on ambient temperature passive magnetic bearings at the Lawrence Livermore National Laboratory

    SciTech Connect

    Post, R.F.; Ryitov, D.D.` Smith, J.R.; Tung, L.S.

    1997-04-01

    Research performed at the Lawrence Livermore National Laboratory on the equilibrium and stability of a new class of ambient-temperature passive bearing systems is described. The basic concepts involved are: (1) Stability of the rotating system is only achieved in the rotating state. That is, disengaging mechanical systems are used to insure stable levitation at rest (when Earnshaw`s theorem applies). (2) Stable levitation by passive magnetic elements can be achieved if the vector sum of the force derivatives of the several elements of the system is net negative (i.e. restoring) for axial, transverse, and tilt-type perturbations from equilibrium. To satisfy the requirements of (2) using only permanent magnet elements we have employed periodic ``Halbach arrays.`` These interact with passive inductive loaded circuits and act as stabilizers, with the primary forces arising from axially symmetric permanent-magnet elements. Stabilizers and other elements needed to create compact passive magnetic bearing systems have been constructed. Novel passive means for stabilizing classes of rotor-dynamic instabilities in such systems have also been investigated.

  1. Seal-rotordynamic-coefficient Test Results for a Model SSME ATD-HPFTP Turbine Interstage Seal with and Without a Swirl Brake

    NASA Technical Reports Server (NTRS)

    Childs, Dara W.; Ramsey, Christopher

    1991-01-01

    The predictions of Scharrer's (1988) theory for rotordynamic coefficients of labyrinth gas seals were compared with measurements for a model SSME Alternate Turbopump Development High Pressure Fuel Turbopump with and without swirl brakes. Using the test apparatus described by Childs et al., tests were conducted with supply pressures up to 18.3 bars and speeds up to 16,000 rpm. Seal back pressure was controlled to provide four pressure ratios at all supply pressures. No measurable differences in leakage was detected for the seal with and without the swirl brakes. Comparisons of the measurement results for the seal without a swirl brake with the Scharrer theory showed that the theory can be used only to provide design guidelines; systematic differences were observed between theory and experiment due to changes in running speed, supply pressure, and pressure ratio.

  2. Seal-rotordynamic-coefficient test results for a model SSME ATD-HPFTP turbine interstate seal with and without a swirl brake

    NASA Technical Reports Server (NTRS)

    Childs, D. W.; Ramsey, C.

    1991-01-01

    The predictions of Scharrer's (1988) theory for rotordynamic coefficients of labyrinth gas seals were compared with measurements for a model SSME Alternate Turbopump Development High-Pressure Fuel Turbopump with and without swirl brakes. Using the test apparatus described by Childs et al. (1986, 1990), tests were conducted with supply pressures up to 18.3 bars and speeds up to 16,000 rpm. Seal back pressure was controlled to provide four pressure ratios at all supply pressures. No measurable difference in leakage was detected for the seal with and without the swirl brakes. Comparisons of the measurement results for the seal without a swirl brake with the Scharrer theory showed that the theory can be used only to provide design guidelines; systematic differences were observed between theory and experiment due to changes in running speed, supply pressure, and pressure ratio.

  3. Development of new materials for turbopump bearings

    NASA Technical Reports Server (NTRS)

    Maurer, R. E.; Pallini, R. A.

    1985-01-01

    The life requirement for the angular contact ball bearings in the Space Shuttle Main Engine (SSME) high pressure oxygen turbopump (HPOTP) is 7.5 hours. In actual operation, significantly shorter service life was experienced. The objective is to identify bearing materials and/or materials processing techniques offering signficant potential for extending HPOTP bearing performance life. Interactive thermomechanical analysis of the HPOTP bearing-shaft system was performed with the SHABERTH computer program. Bearing fatigue life, ball-race contact stress, heat generation rate, bulk ring temperatures and circumferential stress in the inner rings were quantified as functions of radial load, thrust load and ball-race contact friction. Criteria established from the output of this analysis are being used for material candidate selection.

  4. Bearings: Technology and needs

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1982-01-01

    A brief status report on bearing technology and present and near-term future problems that warrant research support is presented. For rolling element bearings a material with improved fracture toughness, life data in the low Lambda region, a comprehensive failure theory verified by life data and incorporated into dynamic analyses, and an improved corrosion resistant alloy are perceived as important needs. For hydrodynamic bearings better definition of cavitation boundaries and pressure distributions for squeeze film dampers, and geometry optimization for minimum power loss in turbulent film bearings are needed. For gas film bearings, foil bearing geometries that form more nearly optimum film shapes for maximum load capacity, and more effective surface protective coatings for high temperature operation are needed.

  5. Bear Spray Safety Program

    USGS Publications Warehouse

    Blome, C.D.; Kuzniar, R.L.

    2009-01-01

    A bear spray safety program for the U.S. Geological Survey (USGS) was officially initiated by the Firearms Safety Committee to address accident prevention and to promote personnel training in bear spray and its transportation, storage, and use for defense against wild animals. Used as part of a system including firearms, or used alone for those who choose not to carry a firearm, bear spray is recognized as an effective tool that can prevent injury in a wild animal attack.

  6. Linear magnetic bearing

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1983-01-01

    A linear magnetic bearing system having electromagnetic vernier flux paths in shunt relation with permanent magnets, so that the vernier flux does not traverse the permanent magnet, is described. Novelty is believed to reside in providing a linear magnetic bearing having electromagnetic flux paths that bypass high reluctance permanent magnets. Particular novelty is believed to reside in providing a linear magnetic bearing with a pair of axially spaced elements having electromagnets for establishing vernier x and y axis control. The magnetic bearing system has possible use in connection with a long life reciprocating cryogenic refrigerator that may be used on the space shuttle.

  7. Bearing restoration by grinding

    NASA Technical Reports Server (NTRS)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  8. Extending bearing life

    SciTech Connect

    Boyer, D.

    1997-08-01

    Long-term bearing operation cannot be achieved unless proper handling, storage, installation, and maintenance procedures are followed. These factors can shorten--sometimes drastically--expected bearing service life. Failures are generally related to improper lubrication or installation and induced conditions. Most major bearing manufacturers offer technical assistance in inspection, evaluation, and reporting on bearings which have failed in service. Actual percentages associated with each failure category vary, depending on the source, but generally they are 70% from lubrication and installation, 20% from induced factors, and 10% from reaching their fatigue limit or design life. The paper describes lubricant-related failures and procedures for the correct handling, storage, installation, and maintenance.

  9. Bulk-Flow Analysis of Hybrid Thrust Bearings for Advanced Cryogenic Turbopumps

    NASA Technical Reports Server (NTRS)

    SanAndres, Luis

    1998-01-01

    A bulk-flow analysis and computer program for prediction of the static load performance and dynamic force coefficients of angled injection, orifice-compensated hydrostatic/hydrodynamic thrust bearings have been completed. The product of the research is an efficient computational tool for the design of high-speed thrust bearings for cryogenic fluid turbopumps. The study addresses the needs of a growing technology that requires of reliable fluid film bearings to provide the maximum operating life with optimum controllable rotordynamic characteristics at the lowest cost. The motion of a cryogenic fluid on the thin film lands of a thrust bearing is governed by a set of bulk-flow mass and momentum conservation and energy transport equations. Mass flow conservation and a simple model for momentum transport within the hydrostatic bearing recesses are also accounted for. The bulk-flow model includes flow turbulence with fluid inertia advection, Coriolis and centrifugal acceleration effects on the bearing recesses and film lands. The cryogenic fluid properties are obtained from realistic thermophysical equations of state. Turbulent bulk-flow shear parameters are based on Hirs' model with Moody's friction factor equations allowing a simple simulation for machined bearing surface roughness. A perturbation analysis leads to zeroth-order nonlinear equations governing the fluid flow for the thrust bearing operating at a static equilibrium position, and first-order linear equations describing the perturbed fluid flow for small amplitude shaft motions in the axial direction. Numerical solution to the zeroth-order flow field equations renders the bearing flow rate, thrust load, drag torque and power dissipation. Solution to the first-order equations determines the axial stiffness, damping and inertia force coefficients. The computational method uses well established algorithms and generic subprograms available from prior developments. The Fortran9O computer program hydrothrust runs

  10. Simultaneous identification of residual unbalances and bearing dynamic parameters from impulse responses of rotor bearing systems

    NASA Astrophysics Data System (ADS)

    Tiwari, R.; Chakravarthy, V.

    2006-10-01

    An identification algorithm for simultaneous estimation of residual unbalances and bearing dynamic parameters by using impulse response measurements is presented for multi-degree-of-freedom ( mdofs) flexible rotor-bearing systems. The algorithm identifies speed-dependent bearing dynamic parameters for each bearing and residual unbalances at predefined balancing planes. Bearing dynamic parameters consist of four stiffness and four damping coefficients and residual unbalances contain the magnitude and phase information. Timoshenko beam with gyroscopic effects are included in the system finite element modelling. To overcome the practical difficulty of number of responses that can be measured, the standard condensation is used to reduce the number of degrees of freedom ( dofs) of the model. For illustration, responses in time domain are simulated due to impulse forces in the presence of residual unbalances from a rotor-bearing model and transformed to frequency domain. The identification algorithm uses these responses to estimate bearing dynamic parameters along with residual unbalances. The proposed algorithm has the flexibility to incorporate any type and any number of bearings including seals. The identification algorithm has been tested with the measurement noise in the simulated response. Identified parameters match quite well with assumed parameters used for the simulation of responses. The response reproduction capability of identified parameters has been found to be excellent.

  11. Bearing fatigue investigation 3

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.; Bamberger, E. N.; Signer, H. R.

    1982-01-01

    The operating characteristics of large diameter rolling-element bearings in the ultra high speed regimes expected in advanced turbine engines for high performance aircraft were investigated. A high temperature lubricant, DuPont Krytox 143 AC, was evaluated at bearing speeds to 3 million DN. Compared to the results of earlier, similar tests using a MIL-L-23699 (Type II) lubricant, bearings lubricated with the high density Krytox fluid showed significantly higher power requirements. Additionally, short bearing lives were observed when this fluid was used with AISI M50 bearings in an air atmosphere. The primary mode of failure was corrosion initiated surface distress (fatigue) on the raceways. The potential of a case-carburized bearing to sustain a combination of high-tangential and hertzian stresses without experiencing race fracture was also investigated. Limited full scale bearing tests of a 120 mm bore ball bearing at a speed of 25,000 rpm (3 million DN) indicated that a carburized material could sustain spalling fatigue without subsequent propagation to fracture. Planned life tests of the carburized material had to be aborted, however, because of apparent processing-induced material defects.

  12. Passive Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1983-01-01

    Magnetic bearing for limited rotation devices requires no feedback control system to sense and correct shaft position. Passive Magnetic Torsion Bearing requires no power supply and has no rubbing parts. Torsion wire restrains against axial instability. Magnetic flux geometry chosen to assure lateral stability with radial restoring force that maintains alignment.

  13. Cylindrical bearing analysis

    NASA Technical Reports Server (NTRS)

    Kleckner, R. J.; Pirvics, J.

    1981-01-01

    Program CYBEAN computes behavior of rolling-element bearings including effects of bearing geometry, shaft misalinement, and temperature. Accurate assessment is possible for various outer-ring and housing configurations. CYBEAN is structured for coordinated execution of modules that perform specific analytical tasks. It is written in FORTRAN IV for use on the UNIVAC 1100/40 computer.

  14. Bearing servicing tool

    NASA Technical Reports Server (NTRS)

    Boyce, Rex A. (Inventor)

    1992-01-01

    A tool for removing and/or replacing bearings in situ is presented. The tool is comprised of a brace having a first end adapted to engage a first end of the bearing housing, and a second end adapted to engage a second end of the bearing housing. If the two ends of the bearing housing are different in configuration, then the respective ends of the brace are configured accordingly. An elongate guide member integral with the brace has two parts, each projecting endwise from a respective end of the brace. A removable pressure plate can be mounted on either part of the guide member for longitudinal movement therealong and has first and second ends of different configurations adapted to engage the first and second ends of the bearing. A threaded-type drive is cooperative between the guide and the pressure plate to move the pressure plate longitudinally along the guide and apply a force to the bearing, either to remove the bearing from its housing, or to emplace a new bearing in the housing.

  15. OTV bearing deflection investigation

    NASA Astrophysics Data System (ADS)

    Reimer, B. L.; Diepenbrock, R. T.; Millis, M. G.

    1993-04-01

    The primary goal of the Bearing Deflectometer Investigation was to gain experience in the use of fiber optic displacement probe technology for bearing health monitoring in a liquid hydrogen turbo pump. The work specified in this Task Order was conducted in conjunction with Air Force Rocket Propulsion Laboratory Contract F04611-86-C-0010. APD conducted the analysis and design coordination to provide a displacement probe design compatible with the XLR-134 liquid hydrogen turbo pump assembly (TPA). Specifications and requirements of the bearing deflectometer were established working with Mechanical Technology Instruments, Inc. (MTI). The TPA design accommodated positioning of the probe to measure outer race cyclic deflections of the pump inlet bearing. The fiber optic sensor was installed as required in the TPA and sensor output was recorded during the TPA testing. Data review indicated that no bearing deflection signature could be differentiated from the inherent system noise. Alternate sensor installations were not investigated, but might yield different results.

  16. Arcturus and the Bears

    NASA Astrophysics Data System (ADS)

    Antonello, E.

    2009-08-01

    Arcturus is the brightest star in Bootes. The ancient Greek name Arktouros means Bear Guard. The star, however, is not close to Ursa Maior (Big She-Bear) and Ursa Minor (Little She-Bear), as the name would suggest. This curious discrepancy could be explained by the star proper motion, assuming the name Bear Guard is a remote cultural heritage. The proper motion analysis could allow us to get an insight also into an ancient myth regarding Ursa Maior. Though we cannot explain scientifically such a myth, some interesting suggestions can be obtained about its possible origin, in the context of the present knowledge of the importance of the cult of the bear both during the Palaeolithic times and for several primitive populations of modern times, as shown by the ethnological studies.

  17. Touchdown Ball-Bearing System for Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Kingsbury, Edward P.; Price, Robert; Gelotte, Erik; Singer, Herbert B.

    2003-01-01

    The torque-limited touchdown bearing system (TLTBS) is a backup mechanical-bearing system for a high-speed rotary machine in which the rotor shaft is supported by magnetic bearings in steady-state normal operation. The TLTBS provides ball-bearing support to augment or supplant the magnetic bearings during startup, shutdown, or failure of the magnetic bearings. The TLTBS also provides support in the presence of conditions (in particular, rotational acceleration) that make it difficult or impossible to control the magnetic bearings or in which the magnetic bearings are not strong enough (e.g., when the side load against the rotor exceeds the available lateral magnetic force).

  18. Magnetically-controlled bearing lubrication

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.

    1977-01-01

    Proposed magnetic-lubricant ball-bearing assembly has permanently-magnetized bearing retainer fabricated of porous material. Pores of retainer are filled with ferrolubricant. Surface tension causes retainer to deliver sufficient lubricant to nonmagnetic ball bearings.

  19. Ball and Roller Bearings. A Teaching Reference.

    ERIC Educational Resources Information Center

    American Association for Vocational Instructional Materials, Athens, GA.

    The manual provides a subject reference for ball and roller bearings. The following topics are included: (1) bearing nomenclature, (2) bearing uses, (3) bearing capacities, (4) shop area working conditions, (5) bearing removal, (6) bearing cleaning and inspection, (7) bearing replacement, (8) bearing lubrication, (9) bearing installation, (10)…

  20. Ball Bearing Mechanics

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Load-deflection relationships for different types of elliptical contacts such as those found in a ball bearing are developed. Simplified expressions that allow quick calculations of deformation to be made simply from a knowledge of the applied load, the material properties, and the geometry of the contacting elements are presented. Ball bearings subjected to radial, thrust and combined ball loads are analyzed. A design criterion for fatigue life of ball bearings is developed. The section of a satisfactory lubricant, as well as describing systems that provide a constant flow of lubricant to the contact, is considered.

  1. Magnetic bearing update

    SciTech Connect

    Fowler, T.K.

    1995-05-25

    Stabilization of whirl instability by floppy, viscous bearing mounts is discussed and required material properties are estimated for the new tilt-whirl mode in eddy-current stabilized magnetic bearings. A relatively low Young`s modules Y {approximately} 10{sup 5} and high viscosity {zeta} {approximately} 10{sup 7} are required (both in MKS units), suggesting the need for careful mounting design. New information on periodic bearings shows that, thus far, Earshaw`s Theorem cannot be defeated by periodicity, despite the author`s earlier claims.

  2. Arkansas black bear hunter survey

    USGS Publications Warehouse

    Pharris, Larry D.; Clark, Joseph D.

    1987-01-01

    Questionnaires were mailed to black bear (Ursus americanus) hunters in Arkansas following the 1980-84 bear seasons to determine participation, hunter success, and number of bears observed by hunters. Man-days of hunting to harvest a bear ranged from 148 to 671 and hunter success ranged from 0.4% to 2.2%. With the exception of 1980, number of permits issued, man-days of bear hunting, and bears harvested appear affected by hunting permit cost. 

  3. Misalignment in Gas Foil Journal Bearings: An Experimental Study

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2008-01-01

    As gas foil journal bearings become more prevalent in production machines, such as small gas turbine propulsion systems and microturbines, system-level performance issues must be identified and quantified in order to provide for successful design practices. Several examples of system-level design parameters that are not fully understood in foil bearing systems are thermal management schemes, alignment requirements, balance requirements, thrust load balancing, and others. In order to address some of these deficiencies and begin to develop guidelines, this paper presents a preliminary experimental investigation of the misalignment tolerance of gas foil journal bearing systems. Using a notional gas foil bearing supported rotor and a laser-based shaft alignment system, increasing levels of misalignment are imparted to the bearing supports while monitoring temperature at the bearing edges. The amount of misalignment that induces bearing failure is identified and compared to other conventional bearing types such as cylindrical roller bearings and angular contact ball bearings. Additionally, the dynamic response of the rotor indicates that the gas foil bearing force coefficients may be affected by misalignment.

  4. AX-5 space suit bearing torque investigation

    NASA Technical Reports Server (NTRS)

    Loewenthal, Stuart; Vykukal, Vic; Mackendrick, Robert; Culbertson, Philip, Jr.

    1990-01-01

    The symptoms and eventual resolution of a torque increase problem occurring with ball bearings in the joints of the AX-5 space suit are described. Starting torques that rose 5 to 10 times initial levels were observed in crew evaluation tests of the suit in a zero-g water tank. This bearing problem was identified as a blocking torque anomaly, observed previously in oscillatory gimbal bearings. A large matrix of lubricants, ball separator designs and materials were evaluated. None of these combinations showed sufficient tolerance to lubricant washout when repeatedly cycled in water. The problem was resolved by retrofitting a pressure compensated, water exclusion seal to the outboard side of the bearing cavity. The symptoms and possible remedies to blocking are discussed.

  5. Magnetically levitated superconducting bearing

    SciTech Connect

    Weinberger, B.R.; Lynds, L. Jr.

    1993-10-26

    A magnetically levitated superconducting bearing includes a magnet mounted on a shaft that is rotatable around an axis of rotation and a Type II superconductor supported on a stator in proximity to the magnet. The superconductor is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet to produce an attractive force that levitates the magnet and supports a load on the shaft. The interaction between the superconductor and magnet also produces surface screening currents that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature. The bearing could also be constructed so the magnet is supported on the stator and the superconductor is mounted on the shaft. The bearing can be operated by cooling the superconductor to its superconducting state in the presence of a magnetic field. 6 figures.

  6. Deformable bearing seat

    NASA Technical Reports Server (NTRS)

    Moreman, O. S., III (Inventor)

    1977-01-01

    A deformable bearing seat is described for seating a bearing assembly in a housing. The seat includes a seating surface in the housing having a first predetermined spheroidal contour when the housing is in an undeformed mode. The seating surface is deformable to a second predetermined spherically contoured surface when the housing is in a deformed mode. The seat is particularly adaptable for application to a rotating blade and mounting ring assembly in a gas turbine engine.

  7. Hydrostatic bearing support

    NASA Technical Reports Server (NTRS)

    Cunningham, R. E. (Inventor)

    1977-01-01

    A hydrostatic bearing support system is provided which comprises a bearing housing having a polygonally configured outer surface which defines at least three symmetrically disposed working faces and a plurality of pressure plates, each of which is disposed relatively opposite a corresponding working face and spaced therefrom to define a gap therebetween. A hydrostatic support film is created in the gap for supporting the housing in spaced relationship to the pressure plates.

  8. Gear bearing drive

    NASA Technical Reports Server (NTRS)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  9. Magnetic bearing and motor

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1983-01-01

    A magnetic bearing for passively suspending a rotatable element subjected to axial and radial thrust forces is disclosed. The magnetic bearing employs a taut wire stretched along the longitudinal axis of the bearing between opposed end pieces and an intermediate magnetic section. The intermediate section is segmented to provide oppositely directed magnetic flux paths between the end pieces and may include either an axially polarized magnets interposed between the segments. The end pieces, separated from the intermediate section by air gaps, control distribution of magnetic flux between the intermediate section segments. Coaxial alignment of the end pieces with the intermediate section minimizes magnetic reluctance in the flux paths endowing the bearing with self-centering characteristics when subjected to radial loads. In an alternative embodiment, pairs of oppositely wound armature coils are concentrically interposed between segments of the intermediate section in concentric arcs adjacent to radially polarized magnets to equip a magnetic bearing as a torsion drive motor. The magnetic suspension bearing disclosed provides long term reliability without maintenance with application to long term space missions such as the VISSR/VAS scanning mirror instrument in the GOES program.

  10. Load responsive hydrodynamic bearing

    DOEpatents

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  11. Investigation of Pressurized Wave Bearings

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dimofte, Florin

    2003-01-01

    The wave bearing has been pioneered and developed by Dr. Dimofte over the past several years. This bearing will be the main focus of this research. It is believed that the wave bearing offers a number of advantages over the foil bearing, which is the bearing that NASA is currently pursuing for turbomachinery applications. The wave bearing is basically a journal bearing whose film thickness varies around the circumference approximately sinusoidally, with usually 3 or 4 waves. Being a rigid geometry bearing, it provides precise control of shaft centerlines. The wave profile also provides good load capacity and makes the bearing very stable. Manufacturing techniques have been devised that should allow the production of wave bearings almost as cheaply as conventional full-circular bearings.

  12. Conflict bear translocation: investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India.

    PubMed

    Mukesh; Sharma, Lalit Kumar; Charoo, Samina Amin; Sathyakumar, Sambandam

    2015-01-01

    The Asiatic black bear population in Dachigam landscape, Jammu and Kashmir is well recognized as one of the highest density bear populations in India. Increasing incidences of bear-human interactions and the resultant retaliatory killings by locals have become a serious threat to the survivorship of black bears in the Dachigam landscape. The Department of Wildlife Protection in Jammu and Kashmir has been translocating bears involved in conflicts, henceforth 'conflict bears' from different sites in Dachigam landscape to Dachigam National Park as a flagship activity to mitigate conflicts. We undertook this study to investigate the population genetics and the fate of bear translocation in Dachigam National Park. We identified 109 unique genotypes in an area of ca. 650 km2 and observed bear population under panmixia that showed sound genetic variability. Molecular tracking of translocated bears revealed that mostly bears (7 out of 11 bears) returned to their capture sites, possibly due to homing instincts or habituation to the high quality food available in agricultural croplands and orchards, while only four bears remained in Dachigam National Park after translocation. Results indicated that translocation success was most likely to be season dependent as bears translocated during spring and late autumn returned to their capture sites, perhaps due to the scarcity of food inside Dachigam National Park while bears translocated in summer remained in Dachigam National Park due to availability of surplus food resources. Thus, the current management practices of translocating conflict bears, without taking into account spatio-temporal variability of food resources in Dachigam landscape seemed to be ineffective in mitigating conflicts on a long-term basis. However, the study highlighted the importance of molecular tracking of bears to understand their movement patterns and socio-biology in tough terrains like Dachigam landscape. PMID:26267280

  13. Nonlinear effects of unbalance in the rotor-floating ring bearing system of turbochargers

    NASA Astrophysics Data System (ADS)

    Tian, L.; Wang, W. J.; Peng, Z. J.

    2013-01-01

    Turbocharger (TC) rotor-floating ring bearing (FRB) system is characterised by high speed as well as high non-linearity. Using the run-up and run-down simulation method, this paper systematically investigates the influence of unbalance on the rotordynamic characteristics of a real TC-FRB system over the speed range from 0 Hz to 3500 Hz. The rotor is discretized by the finite element method, and the desired oil film forces at each simulation step are calculated by an efficient analytical method. The imposed unbalance amount and distribution are the variables considered in the performed non-stationary simulations. The newly obtained results evidently show the distinct phenomena brought about by the variations of the unbalance offset, which confirms that the unbalance level is a critical parameter for the system response. In the meantime, the variations of unbalance distribution, i.e. out-of-phase and in-phase unbalance, can lead to entirely different simulation results as well, which proves the distribution of unbalance is not negligible during the dynamic analysis of the rotor-FRB system. Additionally, considerable effort has been placed on the description as well as discussion of a unique phenomenon termed Critical Limit Cycle Oscillation (CLC Oscillation), which is of great importance and interest to the TC research and development.

  14. Hydrodynamic Effects on Modeling and Control of a High Temperature Active Magnetic Bearing Pump with a Canned Rotor

    SciTech Connect

    Melin, Alexander M; Kisner, Roger A; Fugate, David L; Holcomb, David Eugene

    2015-01-01

    Embedding instrumentation and control Embedding instrumentation and control (I\\&C) at the component level in nuclear power plants can improve component performance, lifetime, and resilience by optimizing operation, reducing the constraints on physical design, and providing on-board prognostics and diagnostics. However, the extreme environments that many nuclear power plant components operate in makes embedding instrumentation and control at the component level difficult. Successfully utilizing embedded I\\&C requires developing a deep understanding of the system's dynamics and using that knowledge to overcome material and physical limitations imposed by the environment. In this paper, we will develop a coupled dynamic model of a high temperature (700 $^\\circ$C) canned rotor pump that incorporates rotordynamics, hydrodynamics, and active magnetic bearing dynamics. Then we will compare two control design methods, one that uses a simplified decoupled model of the system and another that utilizes the full coupled system model. It will be seen that utilizing all the available knowledge of the system dynamics in the controller design yield an order of magnitude improvement in the magnitude of the magnetic bearing response to disturbances at the same level of control effort, a large reduction in the settling time of the system, and a smoother control action.

  15. Climate Drives Polar Bear Origins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  16. Simple modeling of hydrostatic bearings

    NASA Astrophysics Data System (ADS)

    Hull, Charlie

    2014-07-01

    Hydrostatic bearings are a key component for many large telescopes due to their high load bearing capacity, stiffness and low friction. A simple technique is presented to model these bearings to understand the effects of geometry, oil viscosity, flow control, temperature, etc. on the bearings behavior.

  17. Magnetic Bearing Consumes Low Power

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1982-01-01

    Energy-efficient linear magnetic bearing maintains a precise small separation between its moving and stationary parts. Originally designed for cryogenic compressors on spacecraft, proposed magnetic bearing offers an alternative to roller or gas bearing in linear motion system. Linear noncontacting bearing operates in environments where lubricants cannot be used.

  18. Fluid lubricated bearing assembly

    DOEpatents

    Boorse, Henry A.; Boeker, Gilbert F.; Menke, John R.

    1976-01-01

    1. A support for a loaded rotatable shaft comprising in combination on a housing having a fluid-tight cavity encasing an end portion of said shaft, a thrust bearing near the open end of said cavity for supporting the axial thrust of said shaft, said thrust bearing comprising a thrust plate mounted in said housing and a thrust collar mounted on said shaft, said thrust plate having a central opening the peripheral portion of which is hermetically sealed to said housing at the open end of said cavity, and means for supplying a fluid lubricant to said thrust bearing, said thrust bearing having a lubricant-conducting path connecting said lubricant supplying means with the space between said thrust plate and collar intermediate the peripheries thereof, the surfaces of said plate and collar being constructed and arranged to inhibit radial flow of lubricant and, on rotation of said thrust collar, to draw lubricant through said path between the bearing surfaces and to increase the pressure therebetween and in said cavity and thereby exert a supporting force on said end portion of said shaft.

  19. Conflict Bear Translocation: Investigating Population Genetics and Fate of Bear Translocation in Dachigam National Park, Jammu and Kashmir, India

    PubMed Central

    Mukesh; Sharma, Lalit Kumar; Charoo, Samina Amin; Sathyakumar, Sambandam

    2015-01-01

    The Asiatic black bear population in Dachigam landscape, Jammu and Kashmir is well recognized as one of the highest density bear populations in India. Increasing incidences of bear-human interactions and the resultant retaliatory killings by locals have become a serious threat to the survivorship of black bears in the Dachigam landscape. The Department of Wildlife Protection in Jammu and Kashmir has been translocating bears involved in conflicts, henceforth ‘conflict bears’ from different sites in Dachigam landscape to Dachigam National Park as a flagship activity to mitigate conflicts. We undertook this study to investigate the population genetics and the fate of bear translocation in Dachigam National Park. We identified 109 unique genotypes in an area of ca. 650 km2 and observed bear population under panmixia that showed sound genetic variability. Molecular tracking of translocated bears revealed that mostly bears (7 out of 11 bears) returned to their capture sites, possibly due to homing instincts or habituation to the high quality food available in agricultural croplands and orchards, while only four bears remained in Dachigam National Park after translocation. Results indicated that translocation success was most likely to be season dependent as bears translocated during spring and late autumn returned to their capture sites, perhaps due to the scarcity of food inside Dachigam National Park while bears translocated in summer remained in Dachigam National Park due to availability of surplus food resources. Thus, the current management practices of translocating conflict bears, without taking into account spatio-temporal variability of food resources in Dachigam landscape seemed to be ineffective in mitigating conflicts on a long-term basis. However, the study highlighted the importance of molecular tracking of bears to understand their movement patterns and socio-biology in tough terrains like Dachigam landscape. PMID:26267280

  20. Radial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  1. Magnetic bearings for spacecraft

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1972-01-01

    Magnetic bearings have been successfully applied to motorized rotor systems in the multi-kilogram range, at speeds up to 1200 radians per second. These engineering models also indicated the need for continued development in specific areas to make them feasible for spacecraft applications. Significant power reductions have recently been attained. A unique magnetic circuit, combining permanent magnets with electromagnetic control, has a bidirectional forcing capability with improved current sensitivity. The multi-dimensional nature of contact-free rotor support is discussed. Stable continuous radial suspension is provided by a rotationally symmetric permanent magnet circuit. Two bearings, on a common shaft, counteract the normal instability perpendicular to the rotational axis. The axial direction is servoed to prevent contact. A new bearing technology and a new field of application for magnetics is foreseen.

  2. Solving bearing overheating problems

    SciTech Connect

    Jendzurski, T.

    1995-05-08

    Overheating is a major indicator, along with vibration and noise, of an underlying problem affecting a bearing or related components. Because normal operating temperatures vary widely from one application to another, no single temperature is a reliable sign of overheating in every situation. By observing an application when it is running smoothly, a technician can establish a benchmark temperature for a particular bearing arrangement. Wide deviations from this accepted norm generally indicate troublesome overheating. The list of possible causes of over-heating ranges from out-of-round housings and oversize shaft diameters to excessive lubrication and bearing preloading. These causes fall into two major categories: improper or faulty lubrication and mechanical problems, such as incorrect fits and tolerances. These are discussed along with solutions.

  3. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  4. Gene transcription in polar bears (Ursus maritimus) from disparate populations

    USGS Publications Warehouse

    Bowen, Lizabeth; Miles, A. Keith; Waters, Shannon C.; Meyerson, Randi; Rode, Karyn D.; Atwood, Todd C.

    2015-01-01

    Polar bears in the Beaufort (SB) and Chukchi (CS) Seas experience different environments due primarily to a longer history of sea ice loss in the Beaufort Sea. Ecological differences have been identified as a possible reason for the generally poorer body condition and reproduction of Beaufort polar bears compared to those from the Chukchi, but the influence of exposure to other stressors remains unknown. We use molecular technology, quantitative PCR, to identify gene transcription differences among polar bears from the Beaufort and Chukchi Seas as well as captive healthy polar bears. We identified significant transcriptional differences among a priori groups (i.e., captive bears, SB 2012, SB 2013, CS 2013) for ten of the 14 genes of interest (i.e., CaM, HSP70, CCR3, TGFβ, COX2, THRα, T-bet, Gata3, CD69, and IL17); transcription levels of DRβ, IL1β, AHR, and Mx1 did not differ among groups. Multivariate analysis also demonstrated separation among the groups of polar bears. Specifically, we detected transcript profiles consistent with immune function impairment in polar bears from the Beaufort Sea, when compared with Chukchi and captive polar bears. Although there is no strong indication of differential exposure to contaminants or pathogens between CS and SB bears, there are clearly differences in important transcriptional responses between populations. Further investigation is warranted to refine interpretation of potential effects of described stress-related conditions for the SB population.

  5. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  6. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  7. Modular gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  8. RUBBER BEARINGS FOR DOWN-HOLE PUMPS

    SciTech Connect

    Bob Sullivan Mammoth Pacific, L.P.

    2005-09-07

    Synopsis of project activity: 1998--Awarded cost share grant from DOE. 1st Qtr 1999--Developed fail safe lubricating system. 2nd Qtr 1999--Performed first large scale test with nitrile based bearings. It failed due to material swelling. Failure was blamed on improper tolerance. 3rd Qtr 1999--Material tests were performed with autoclaves and exposure tests to Casa Diablo fluids. Testing of Viton materials began. Alternate bearing designs were developed to limit risk of improper tolerances. 4th Qtr 1999--Site testing indicated a chemical attack on the bearing material caused the test failure and not improper bearing tolerance. 1st Qtr 2000--The assistance of Brookhaven National Laboratory was obtained in evaluating the chemical attack. The National Laboratory also began more elaborate laboratory testing on bearing materials. 2nd Qtr 2000--Testing indicated Viton was an inappropriate material due to degradation in Casa Diablo fluid. Testing of EPDM began. 3rd Qtr 2001--EPDM bearings were installed for another large scale test. Bearings failed again due to swelling. Further testing indicated that larger then expected oil concentrations existed in lubricating water geothermal fluid causing bearing failure. 2002-2003--Searched for and tested several materials that would survive in hot salt and oil solutions. Kalrez{reg_sign}, Viton{reg_sign}ETP 500 and Viton{reg_sign}GF were identified as possible candidates. 2003-2005--Kalrez{reg_sign}has shown superior resistance to downhole conditions at Casa Diablo from among the various materials tested. Viton ETP-500 indicated a life expectancy of 13 years and because it is significantly less expensive then Kalrez{reg_sign}, it was selected as the bearing material for future testing. Unfortunately during the laboratory testing period Dupont Chemical chose to stop manufacturing this specific formulation and replaced it with Viton ETP 600S. The material is available with six different fillers; three based on zinc oxide and three

  9. Composite Bear Canister

    NASA Technical Reports Server (NTRS)

    Chung, W. Richard; Jara, Steve; Suffel, Susan

    2003-01-01

    To many national park campers and mountain climbers saving their foods in a safe and unbreakable storage container without worrying being attacked by a bear is a challenging task. In some parks, the park rangers have mandated that park visitors rent a bear canister for their food storage. Commercially available bear canisters are made of ABS plastic, weigh 2.8 pounds, and have a 180 cubic inch capacity for food storage. A new design with similar capacity was conducted in this study to reduce its weight and make it a stiffer and stronger canister. Two prototypes incorporating carbon prepreg with and without honeycomb constructions were manufactured using hand lay-up and vacuum bag forming techniques. A 6061-T6-aluminum ring was machined to dimensions in order to reinforce the opening area of the canister. Physical properties (weight and volume) along with mechanical properties (flexural strength and specific allowable moment) of the newly fabricated canisters are compared against the commercial ones. The composite canister weighs only 56% of the ABS one can withstand 9 times of the force greater. The advantages and limitations of using composite bear canisters will be discussed in the presentation.

  10. History of ball bearings

    NASA Technical Reports Server (NTRS)

    Dowson, D.; Hamrock, B. J.

    1981-01-01

    The familiar precision rolling-element bearings of the twentieth century are products of exacting technology and sophisticated science. Their very effectiveness and basic simplicity of form may discourage further interest in their history and development. Yet the full story covers a large portion of recorded history and surprising evidence of an early recognition of the advantages of rolling motion over sliding action and progress toward the development of rolling-element bearings. The development of rolling-element bearings is followed from the earliest civilizations to the end of the eighteenth century. The influence of general technological developments, particularly those concerned with the movement of large building blocks, road transportation, instruments, water-raising equipment, and windmills are discussed, together with the emergence of studies of the nature of rolling friction and the impact of economic factors. By 1800 the essential features of ball and rolling-element bearings had emerged and it only remained for precision manufacture and mass production to confirm the value of these fascinating machine elements.