These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Identifying disease associated genes by network propagation  

PubMed Central

Background Genome-wide association studies have identified many individual genes associated with complex traits. However, pathway and network information have not been fully exploited in searches for genetic determinants, and including this information may increase our understanding of the underlying biology of common diseases. Results In this study, we propose a framework to address this problem in a principled way, with the underlying hypothesis that complex disease operates through multiple connected genes. Associations inferred from GWAS are translated into prior scores for vertices in a protein-protein interaction network, and these scores are propagated through the network. Permutation is used to select genes that are guilty-by-association and thus consistently obtain high scores after network propagation. We apply the approach to data of Crohn's disease and call candidate genes that have been reported by other independent GWAS, but not in the analysed data set. A prediction model based on these candidate genes show good predictive power as measured by Area Under the Receiver Operating Curve (AUC) in 10 fold cross-validations. Conclusions Our network propagation method applied to a genome-wide association study increases association findings over other approaches. PMID:24565229

2014-01-01

2

Functional screening in Drosophila identifies Alzheimer's disease susceptibility genes  

E-print Network

Functional screening in Drosophila identifies Alzheimer's disease susceptibility genes and implicates Tau-mediated mechanisms Joshua M. Shulman1,2,3, , Selina Imboywa4,5,7,10, Nikolaos Giagtzoglou1; Accepted September 20, 2013 Using a Drosophila model of Alzheimer's disease (AD), we systematically

Perrimon, Norbert

3

Identifying modifier genes of monogenic disease: strategies and difficulties  

PubMed Central

Substantial clinical variability is observed in many Mendelian diseases, so that patients with the same mutation may develop a very severe form of disease, a mild form or show no symptoms at all. Among the factors that may explain these differences in disease expression are modifier genes. In this paper, we review the different strategies that can be used to identify modifier genes and explain their advantages and limitations. We focus mainly on the statistical aspects but illustrate our points with a variety of examples from the literature. PMID:18784943

Genin, Emmanuelle; Feingold, Josué; Clerget-Darpoux, Françoise

2008-01-01

4

Identifying Mendelian disease genes with the Variant Effect Scoring Tool  

PubMed Central

Background Whole exome sequencing studies identify hundreds to thousands of rare protein coding variants of ambiguous significance for human health. Computational tools are needed to accelerate the identification of specific variants and genes that contribute to human disease. Results We have developed the Variant Effect Scoring Tool (VEST), a supervised machine learning-based classifier, to prioritize rare missense variants with likely involvement in human disease. The VEST classifier training set comprised ~ 45,000 disease mutations from the latest Human Gene Mutation Database release and another ~45,000 high frequency (allele frequency >1%) putatively neutral missense variants from the Exome Sequencing Project. VEST outperforms some of the most popular methods for prioritizing missense variants in carefully designed holdout benchmarking experiments (VEST ROC AUC = 0.91, PolyPhen2 ROC AUC = 0.86, SIFT4.0 ROC AUC = 0.84). VEST estimates variant score p-values against a null distribution of VEST scores for neutral variants not included in the VEST training set. These p-values can be aggregated at the gene level across multiple disease exomes to rank genes for probable disease involvement. We tested the ability of an aggregate VEST gene score to identify candidate Mendelian disease genes, based on whole-exome sequencing of a small number of disease cases. We used whole-exome data for two Mendelian disorders for which the causal gene is known. Considering only genes that contained variants in all cases, the VEST gene score ranked dihydroorotate dehydrogenase (DHODH) number 2 of 2253 genes in four cases of Miller syndrome, and myosin-3 (MYH3) number 2 of 2313 genes in three cases of Freeman Sheldon syndrome. Conclusions Our results demonstrate the potential power gain of aggregating bioinformatics variant scores into gene-level scores and the general utility of bioinformatics in assisting the search for disease genes in large-scale exome sequencing studies. VEST is available as a stand-alone software package at http://wiki.chasmsoftware.org and is hosted by the CRAVAT web server at http://www.cravat.us PMID:23819870

2013-01-01

5

Hum Genet . Author manuscript Identifying modifier genes of monogenic disease: strategies and  

E-print Network

Hum Genet . Author manuscript Page /1 11 Identifying modifier genes of monogenic disease modifier gene, Mendelian disorders, disease expression, linkage, association Introduction Genetic factors determined diseases, and this variability may itself involve genetic factors, the so-called modifier genes

Boyer, Edmond

6

Contemporary Approaches for Identifying Rare Bone Disease Causing Genes  

PubMed Central

Recent improvements in the speed and accuracy of DNA sequencing, together with increasingly sophisticated mathematical approaches for annotating gene networks, have revolutionized the field of human genetics and made these once time consuming approaches assessable to most investigators. In the field of bone research, a particularly active area of gene discovery has occurred in patients with rare bone disorders such as osteogenesis imperfecta (OI) that are caused by mutations in single genes. In this perspective, we highlight some of these technological advances and describe how they have been used to identify the genetic determinants underlying two previously unexplained cases of OI. The widespread availability of advanced methods for DNA sequencing and bioinformatics analysis can be expected to greatly facilitate identification of novel gene networks that normally function to control bone formation and maintenance.

Farber, Charles R.; Clemens, Thomas L.

2015-01-01

7

Genes to diseases (G2D) computational method to identify asthma candidate genes.  

PubMed

Asthma is a complex trait for which different strategies have been used to identify its environmental and genetic predisposing factors. Here, we describe a novel methodological approach to select candidate genes for asthma genetic association studies. In this regard, the Genes to Diseases (G2D) computational tool has been used in combination with a genome-wide scan performed in a sub-sample of the Saguenay-Lac-St-Jean (SLSJ) asthmatic familial collection (n = 609) to identify candidate genes located in two suggestive loci shown to be linked with asthma (6q26) and atopy (10q26.3), and presenting differential parent-of-origin effects. This approach combined gene selection based on the G2D data mining analysis of the bibliographic and protein public databases, or according to the genes already known to be associated with the same or a similar phenotype. Ten genes (LPA, NOX3, SNX9, VIL2, VIP, ADAM8, DOCK1, FANK1, GPR123 and PTPRE) were selected for a subsequent association study performed in a large SLSJ sample (n = 1167) of individuals tested for asthma and atopy related phenotypes. Single nucleotide polymorphisms (n = 91) within the candidate genes were genotyped and analysed using a family-based association test. The results suggest a protective association to allergic asthma for PTPRE rs7081735 in the SLSJ sample (p = 0.000463; corrected p = 0.0478). This association has not been replicated in the Childhood Asthma Management Program (CAMP) cohort. Sequencing of the regions around rs7081735 revealed additional polymorphisms, but additional genotyping did not yield new associations. These results demonstrate that the G2D tool can be useful in the selection of candidate genes located in chromosomal regions linked to a complex trait. PMID:18682798

Tremblay, Karine; Lemire, Mathieu; Potvin, Camille; Tremblay, Alexandre; Hunninghake, Gary M; Raby, Benjamin A; Hudson, Thomas J; Perez-Iratxeta, Carolina; Andrade-Navarro, Miguel A; Laprise, Catherine

2008-01-01

8

Genomic convergence: identifying candidate genes for Parkinson's disease by combining serial analysis of gene expression and genetic linkage  

Microsoft Academic Search

We present a multifactorial,multistep approach called genomic convergence that combines gene expression with genomic linkage analysis to identify and prioritize candidate susceptibility genes for Parkinson's disease (PD). To initiate this process,we used serial analysis of gene expression (SAGE) to identify genes expressed in two normal substantia nigras (SN) and adjacent midbrain tissue. This identified over 3700 transcripts,including the three most

Michael A. Hauser; Yi-Ju Li; Satoshi Takeuchi; Robert Walters; Maher Noureddine; Melinda Maready; Tiffany Darden; Christine Hulette; Eden Martin; Elizabeth Hauser; Hong Xu; Don Schmechel; Judith E. Stenger; Fred Dietrich; Jeffery Vance

2003-01-01

9

GeneFriends: An online co-expression analysis tool to identify novel gene targets for aging and complex diseases  

PubMed Central

Background Although many diseases have been well characterized at the molecular level, the underlying mechanisms are often unknown. Nearly half of all human genes remain poorly studied, yet these genes may contribute to a number of disease processes. Genes involved in common biological processes and diseases are often co-expressed. Using known disease-associated genes in a co-expression analysis may help identify and prioritize novel candidate genes for further study. Results We have created an online tool, called GeneFriends, which identifies co-expressed genes in over 1,000 mouse microarray datasets. GeneFriends can be used to assign putative functions to poorly studied genes. Using a seed list of disease-associated genes and a guilt-by-association method, GeneFriends allows users to quickly identify novel genes and transcription factors associated with a disease or process. We tested GeneFriends using seed lists for aging, cancer, and mitochondrial complex I disease. We identified several candidate genes that have previously been predicted as relevant targets. Some of the genes identified are already being tested in clinical trials, indicating the effectiveness of this approach. Co-expressed transcription factors were investigated, identifying C/ebp genes as candidate regulators of aging. Furthermore, several novel candidate genes, that may be suitable for experimental or clinical follow-up, were identified. Two of the novel candidates of unknown function that were co-expressed with cancer-associated genes were selected for experimental validation. Knock-down of their human homologs (C1ORF112 and C12ORF48) in HeLa cells slowed growth, indicating that these genes of unknown function, identified by GeneFriends, may be involved in cancer. Conclusions GeneFriends is a resource for biologists to identify and prioritize novel candidate genes involved in biological processes and complex diseases. It is an intuitive online resource that will help drive experimentation. GeneFriends is available online at: http://genefriends.org/. PMID:23039964

2012-01-01

10

Identification of rod- and cone-specific expression signatures to identify candidate genes for retinal disease.  

PubMed

Recent advances in technology have greatly increased our ability to identify genetic variants in individuals with retinal disease. However, determining which are likely to be pathogenic remains a challenging task. Using a transgenic coneless (cl) mouse model, together with rodless (rd/rd) and rodless/coneless (rd/rd cl) mice, we have characterised patterns of gene expression in the rod and cone photoreceptors at a genome-wide level. We examined the expression of >27,000 genes in the mice lacking rods, cones or both and compared them with wild type animals. We identified a list of 418 genes with highly significant changes in expression in one or more of the transgenic strains. Pathway analysis confirmed that expected Gene Ontology terms such as phototransduction were over-represented amongst these genes. However, many of these genes have no previously known function in the retina. Gene set enrichment analysis further demonstrated that the mouse orthologues of known human retinal disease genes were significantly enriched amongst those genes with decreased expression. Comparison of our data to human disease loci with no known causal genetic changes has highlighted genes with significant changes in expression making these strong candidates for further screening. These data add to the current literature through the utilisation of the specific cl and rd/rd cl models. Moreover, this study identifies genes that appear to be implicated in photoreceptor function thereby providing a valuable filter for variants identified by high-throughput sequencing in individuals with retinal disease. PMID:25579607

Holt, Richard; Brown, Laurence; Broadgate, Suzanne; Butler, Rachel; Jagannath, Aarti; Downes, Susan; Peirson, Stuart; Halford, Stephanie

2015-03-01

11

ABSTRACT Genomics and bioinformatics have the vast potential to identify genes that cause disease by investigating  

E-print Network

ABSTRACT Genomics and bioinformatics have the vast potential to identify genes that cause disease and organic acids. In cre- ating integrative databases of metabolites for bioinformatic investigation, bioinformatics, agriculture, medicine, nutrition INTRODUCTION There is little doubt that improving

Hammock, Bruce D.

12

Using the BITOLA system to identify candidate genes for Parkinson’s disease  

PubMed Central

Complexity of multifactorial diseases as Parkinson’s disease (PD) often complicate identifying causal genetic factors by traditional approaches such as positional cloning and candidate gene analyses. PD is etiologically and genetically complex disease and second most common neurodegenerative disorder after Alzheimer’s disease. The most cases of PD are idiopathic and small growing subset of individuals have single gene defect as the cause. The main goal of this research was to identify the potential candidate genes for idiopathic PD by using biomedical discovery support system (BITOLA). For detecting the potential candidate genes for PD was used opened system of bioinformatics tool BITOLA. Data of chromosome location, tissue specific expression of potential candidate genes and their potential association with PD were obtained from Medline, Locus Link, Gene Cards and OMIM. By using BITOLA system is identified 17 genes as potential candidate genes for PD. The role of three genes (MAPT, PARK2, UCHL1) in PD were confirmed earlier. Discovering the novel candidate genes for multifactiorial diseases by using specially mentioned bioinformatics tool BITOLA could offer the new opportunity for researching genetics base of PD without using tissue samples of patients. PMID:21875422

Kari?, Amela; Kari?, Alen

2011-01-01

13

IDENTIFYING DISEASE RESISTANCE GENES AND PATHWAYS THROUGH HOST-PATHOGEN PROTEIN INTERACTIONS  

Technology Transfer Automated Retrieval System (TEKTRAN)

A major objective of both animal and plant genomics research is to identify disease resistance genes and pathways. Popular approaches to achieve this goal include candidate gene testing, genome-wide QTL screens, and DNA microarrays. We argue that the two-hybrid assay, which detects protein-protein...

14

A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene  

Microsoft Academic Search

The inflammatory bowel diseases Crohn's disease and ulcerative colitis are common, chronic disorders that cause abdominal pain, diarrhea, and gastrointestinal bleeding. To identify genetic factors that might contribute to these disorders, we performed a genome-wide association study. We found a highly significant association between Crohn's disease and the IL23R gene on chromosome 1p31, which encodes a subunit of the receptor

Richard H. Duerr; Kent D. Taylor; Steven R. Brant; John D. Rioux; Mark S. Silverberg; Mark J. Daly; A. Hillary Steinhart; Clara Abraham; Miguel Regueiro; Anne Griffiths; Themistocles Dassopoulos; Alain Bitton; Huiying Yang; Stephan Targan; Lisa Wu Datta; Emily O. Kistner; L. Philip Schumm; Annette T. Lee; Peter K. Gregersen; M. Michael Barmada; Jerome I. Rotter; Dan L. Nicolae; Judy H. Cho

2006-01-01

15

Fatigue-related HIV Disease Gene-Networks identified in CD14+ cells isolated from HIV  

E-print Network

1 Fatigue-related HIV Disease Gene-Networks identified in CD14+ cells isolated from HIV to solve the issue of limited experimental data to generate new hypotheses in CD14 cells of HIV of low versus high fatigued, NRTI-treated HIV patients to healthy controls (n=5 each). With novel

Dobra, Adrian

16

A Special Local Clustering Algorithm for Identifying the Genes Associated With Alzheimer’s Disease  

PubMed Central

Clustering is the grouping of similar objects into a class. Local clustering feature refers to the phenomenon whereby one group of data is separated from another, and the data from these different groups are clustered locally. A compact class is defined as one cluster in which all similar elements cluster tightly within the cluster. Herein, the essence of the local clustering feature, revealed by mathematical manipulation, results in a novel clustering algorithm termed as the special local clustering (SLC) algorithm that was used to process gene microarray data related to Alzheimer’s disease (AD). SLC algorithm was able to group together genes with similar expression patterns and identify significantly varied gene expression values as isolated points. If a gene belongs to a compact class in control data and appears as an isolated point in incipient, moderate and/or severe AD gene microarray data, this gene is possibly associated with AD. Application of a clustering algorithm in disease-associated gene identification such as in AD is rarely reported. PMID:20089478

Pang, Chao-Yang; Hu, Wei; Hu, Ben-Qiong; Shi, Ying; Vanderburg, Charles R.; Rogers, Jack T.

2010-01-01

17

DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease  

PubMed Central

The central nervous system has a pattern of gene expression that is closely regulated with respect to functional and anatomical regions. DNA methylation is a major regulator of transcriptional activity, and aberrations in the distribution of this epigenetic mark may be involved in many neurological disorders, such as Alzheimer’s disease. Herein, we have analysed 12 distinct mouse brain regions according to their CpG 5’-end gene methylation patterns and observed their unique epigenetic landscapes. The DNA methylomes obtained from the cerebral cortex were used to identify aberrant DNA methylation changes that occurred in two mouse models of Alzheimer’s disease. We were able to translate these findings to patients with Alzheimer’s disease, identifying DNA methylation-associated silencing of three targets genes: thromboxane A2 receptor (TBXA2R), sorbin and SH3 domain containing 3 (SORBS3) and spectrin beta 4 (SPTBN4). These hypermethylation targets indicate that the cyclic AMP response element-binding protein (CREB) activation pathway and the axon initial segment could contribute to the disease. PMID:24030951

Sanchez-Mut, Jose V.; Aso, Ester; Panayotis, Nicolas; Lott, Ira; Dierssen, Mara; Rabano, Alberto; Urdinguio, Rocio G.; Fernandez, Agustin F.; Astudillo, Aurora; Martin-Subero, Jose I.; Balint, Balazs; Fraga, Mario F.; Gomez, Antonio; Gurnot, Cecile; Roux, Jean-Christophe; Avila, Jesus; Hensch, Takao K.; Ferrer, Isidre

2013-01-01

18

Functional screening in Drosophila identifies Alzheimer's disease susceptibility genes and implicates Tau-mediated mechanisms.  

PubMed

Using a Drosophila model of Alzheimer's disease (AD), we systematically evaluated 67 candidate genes based on AD-associated genomic loci (P < 10(-4)) from published human genome-wide association studies (GWAS). Genetic manipulation of 87 homologous fly genes was tested for modulation of neurotoxicity caused by human Tau, which forms neurofibrillary tangle pathology in AD. RNA interference (RNAi) targeting 9 genes enhanced Tau neurotoxicity, and in most cases reciprocal activation of gene expression suppressed Tau toxicity. Our screen implicates cindr, the fly ortholog of the human CD2AP AD susceptibility gene, as a modulator of Tau-mediated disease mechanisms. Importantly, we also identify the fly orthologs of FERMT2 and CELF1 as Tau modifiers, and these loci have been independently validated as AD susceptibility loci in the latest GWAS meta-analysis. Both CD2AP and FERMT2 have been previously implicated with roles in cell adhesion, and our screen additionally identifies a fly homolog of the human integrin adhesion receptors, ITGAM and ITGA9, as a modifier of Tau neurotoxicity. Our results highlight cell adhesion pathways as important in Tau toxicity and AD susceptibility and demonstrate the power of model organism genetic screens for the functional follow-up of human GWAS. PMID:24067533

Shulman, Joshua M; Imboywa, Selina; Giagtzoglou, Nikolaos; Powers, Martin P; Hu, Yanhui; Devenport, Danelle; Chipendo, Portia; Chibnik, Lori B; Diamond, Allison; Perrimon, Norbert; Brown, Nicholas H; De Jager, Philip L; Feany, Mel B

2014-02-15

19

Molecular profiling of experimental endometriosis identified gene expression patterns in common with human disease  

PubMed Central

OBJECTIVE To validate a rat model of endometriosis using cDNA microarrays by identifying common gene expression patterns beween experimental and natural disease. DESIGN Autotransplantation rat model. SETTING Medical school department. ANIMALS Female Sprague-Dawley rats. INTERVENTIONS Endometriosis was surgically-induced by suturing uterine horn implants next to the small intestine’s mesentery. Control rats received sutures with no implants. After 60 days, endometriotic implants and uterine horn were obtained. MAIN OUTCOME MEASURES Gene expression levels determined by cDNA microarrays and QRT-PCR. METHODS Cy5-labeled cDNA was synthesized from total RNA obtained from endometriotic implants. Cy3-labeled cDNA was synthesized using uterine RNA from a control rat. Gene expression levels were analyzed after hybridizing experimental and control labeled cDNA to PIQOR™ Toxicology Rat Microarrays (Miltenyi Biotec) containing 1,252 known genes. Cy5/Cy3 ratios were determined and genes with >2-fold higher or <0.5-fold lower expression levels were selected. Microarray results were validated by QRT-PCR. RESULTS We observed differential expression of genes previously shown to be upregulated in patients, including growth factors, inflammatory cytokines/receptors, tumor invasion/metastasis factors, adhesion molecules, and anti-apoptotic factors. CONCLUSIONS This study presents evidence in support of using this rat model to study the natural history of endometriosis and test novel therapeutics for this incurable disease. PMID:17478174

Flores, Idhaliz; Rivera, Elizabeth; Ruiz, Lynnette A.; Santiago, Olga I.; Vernon, Michael W.; Appleyard, Caroline B.

2007-01-01

20

Genomic convergence and network analysis approach to identify candidate genes in Alzheimer's disease  

PubMed Central

Background Alzheimer’s disease (AD) is one of the leading genetically complex and heterogeneous disorder that is influenced by both genetic and environmental factors. The underlying risk factors remain largely unclear for this heterogeneous disorder. In recent years, high throughput methodologies, such as genome-wide linkage analysis (GWL), genome-wide association (GWA) studies, and genome-wide expression profiling (GWE), have led to the identification of several candidate genes associated with AD. However, due to lack of consistency within their findings, an integrative approach is warranted. Here, we have designed a rank based gene prioritization approach involving convergent analysis of multi-dimensional data and protein-protein interaction (PPI) network modelling. Results Our approach employs integration of three different AD datasets- GWL,GWA and GWE to identify overlapping candidate genes ranked using a novel cumulative rank score (SR) based method followed by prioritization using clusters derived from PPI network. SR for each gene is calculated by addition of rank assigned to individual gene based on either p value or score in three datasets. This analysis yielded 108 plausible AD genes. Network modelling by creating PPI using proteins encoded by these genes and their direct interactors resulted in a layered network of 640 proteins. Clustering of these proteins further helped us in identifying 6 significant clusters with 7 proteins (EGFR, ACTB, CDC2, IRAK1, APOE, ABCA1 and AMPH) forming the central hub nodes. Functional annotation of 108 genes revealed their role in several biological activities such as neurogenesis, regulation of MAP kinase activity, response to calcium ion, endocytosis paralleling the AD specific attributes. Finally, 3 potential biochemical biomarkers were found from the overlap of 108 AD proteins with proteins from CSF and plasma proteome. EGFR and ACTB were found to be the two most significant AD risk genes. Conclusions With the assumption that common genetic signals obtained from different methodological platforms might serve as robust AD risk markers than candidates identified using single dimension approach, here we demonstrated an integrated genomic convergence approach for disease candidate gene prioritization from heterogeneous data sources linked to AD. PMID:24628925

2014-01-01

21

Comparative gene expression analysis in mouse models for multiple sclerosis, Alzheimer’s disease and stroke for identifying commonly regulated and disease-specific gene changes  

PubMed Central

The brain responds to injury and infection by activating innate defense and tissue repair mechanisms. Working upon the hypothesis that the brain defense response involves common genes and pathways across diverse pathologies, we analysed global gene expression in brain from mouse models representing three major central nervous system disorders, cerebral stroke, multiple sclerosis and Alzheimer’s disease compared to normal brain using DNA microarray expression profiling. A comparison of dysregulated genes across disease models revealed common genes and pathways including key components of estrogen and TGF-? signaling pathways that have been associated with neuroprotection as well as a neurodegeneration mediator, TRPM7. Further, for each disease model, we discovered collections of differentially expressed genes that provide novel insight into the individual pathology and its associated mechanisms. Our data provide a resource for exploring the complex molecular mechanisms that underlie brain neurodegeneration and a new approach for identifying generic and disease-specific targets for therapy. PMID:20435134

Tseveleki, Vivian; Rubio, Renee; Vamvakas, Sotiris-Spyros; White, Joseph; Taoufik, Era; Petit, Edwige; Quackenbush, John; Probert, Lesley

2014-01-01

22

Genome Screen to Identify Susceptibility Genes for Parkinson Disease in a Sample without parkin Mutations  

PubMed Central

Parkinson disease (PD) is a common neurodegenerative disorder characterized by bradykinesia, resting tremor, muscular rigidity, and postural instability, as well as by a clinically significant response to treatment with levodopa. Mutations in the ?-synuclein gene have been found to result in autosomal dominant PD, and mutations in the parkin gene produce autosomal recessive juvenile-onset PD. We have studied 203 sibling pairs with PD who were evaluated by a rigorous neurological assessment based on (a) inclusion criteria consisting of clinical features highly associated with autopsy-confirmed PD and (b) exclusion criteria highly associated with other, non-PD pathological diagnoses. Families with positive LOD scores for a marker in an intron of the parkin gene were prioritized for parkin-gene testing, and mutations in the parkin gene were identified in 22 families. To reduce genetic heterogeneity, these families were not included in subsequent genome-screen analysis. Thus, a total of 160 multiplex families without evidence of a parkin mutation were used in multipoint nonparametric linkage analysis to identify PD-susceptibility genes. Two models of PD affection status were considered: model I included only those individuals with a more stringent diagnosis of verified PD (96 sibling pairs from 90 families), whereas model II included all examined individuals as affected, regardless of their final diagnostic classification (170 sibling pairs from 160 families). Under model I, the highest LOD scores were observed on chromosome X (LOD score 2.1) and on chromosome 2 (LOD score 1.9). Analyses performed with all available sibling pairs (model II) found even greater evidence of linkage to chromosome X (LOD score 2.7) and to chromosome 2 (LOD score 2.5). Evidence of linkage was also found to chromosomes 4, 5, and 13 (LOD scores >1.5). Our findings are consistent with those of other linkage studies that have reported linkage to chromosomes 5 and X. PMID:12058349

Pankratz, Nathan; Nichols, William C.; Uniacke, Sean K.; Halter, Cheryl; Rudolph, Alice; Shults, Cliff; Conneally, P. Michael; Foroud, Tatiana

2002-01-01

23

Large-Scale Gene-Centric Analysis Identifies Novel Variants for Coronary Artery Disease  

PubMed Central

Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ?2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10?33; LPA:p<10?19; 1p13.3:p<10?17) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10?7). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06–1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ?4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity?=?0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and clarified the literature with regard to many previously suggested genes. PMID:21966275

2011-01-01

24

Genome-Wide association study identifies candidate genes for Parkinson's disease in an Ashkenazi Jewish population  

PubMed Central

Background To date, nine Parkinson disease (PD) genome-wide association studies in North American, European and Asian populations have been published. The majority of studies have confirmed the association of the previously identified genetic risk factors, SNCA and MAPT, and two studies have identified three new PD susceptibility loci/genes (PARK16, BST1 and HLA-DRB5). In a recent meta-analysis of datasets from five of the published PD GWAS an additional 6 novel candidate genes (SYT11, ACMSD, STK39, MCCC1/LAMP3, GAK and CCDC62/HIP1R) were identified. Collectively the associations identified in these GWAS account for only a small proportion of the estimated total heritability of PD suggesting that an 'unknown' component of the genetic architecture of PD remains to be identified. Methods We applied a GWAS approach to a relatively homogeneous Ashkenazi Jewish (AJ) population from New York to search for both 'rare' and 'common' genetic variants that confer risk of PD by examining any SNPs with allele frequencies exceeding 2%. We have focused on a genetic isolate, the AJ population, as a discovery dataset since this cohort has a higher sharing of genetic background and historically experienced a significant bottleneck. We also conducted a replication study using two publicly available datasets from dbGaP. The joint analysis dataset had a combined sample size of 2,050 cases and 1,836 controls. Results We identified the top 57 SNPs showing the strongest evidence of association in the AJ dataset (p < 9.9 × 10-5). Six SNPs located within gene regions had positive signals in at least one other independent dbGaP dataset: LOC100505836 (Chr3p24), LOC153328/SLC25A48 (Chr5q31.1), UNC13B (9p13.3), SLCO3A1(15q26.1), WNT3(17q21.3) and NSF (17q21.3). We also replicated published associations for the gene regions SNCA (Chr4q21; rs3775442, p = 0.037), PARK16 (Chr1q32.1; rs823114 (NUCKS1), p = 6.12 × 10-4), BST1 (Chr4p15; rs12502586, p = 0.027), STK39 (Chr2q24.3; rs3754775, p = 0.005), and LAMP3 (Chr3; rs12493050, p = 0.005) in addition to the two most common PD susceptibility genes in the AJ population LRRK2 (Chr12q12; rs34637584, p = 1.56 × 10-4) and GBA (Chr1q21; rs2990245, p = 0.015). Conclusions We have demonstrated the utility of the AJ dataset in PD candidate gene and SNP discovery both by replication in dbGaP datasets with a larger sample size and by replicating association of previously identified PD susceptibility genes. Our GWAS study has identified candidate gene regions for PD that are implicated in neuronal signalling and the dopamine pathway. PMID:21812969

2011-01-01

25

Functional genomics complements quantitative genetics in identifying disease-gene associations.  

PubMed

An ultimate goal of genetic research is to understand the connection between genotype and phenotype in order to improve the diagnosis and treatment of diseases. The quantitative genetics field has developed a suite of statistical methods to associate genetic loci with diseases and phenotypes, including quantitative trait loci (QTL) linkage mapping and genome-wide association studies (GWAS). However, each of these approaches have technical and biological shortcomings. For example, the amount of heritable variation explained by GWAS is often surprisingly small and the resolution of many QTL linkage mapping studies is poor. The predictive power and interpretation of QTL and GWAS results are consequently limited. In this study, we propose a complementary approach to quantitative genetics by interrogating the vast amount of high-throughput genomic data in model organisms to functionally associate genes with phenotypes and diseases. Our algorithm combines the genome-wide functional relationship network for the laboratory mouse and a state-of-the-art machine learning method. We demonstrate the superior accuracy of this algorithm through predicting genes associated with each of 1157 diverse phenotype ontology terms. Comparison between our prediction results and a meta-analysis of quantitative genetic studies reveals both overlapping candidates and distinct, accurate predictions uniquely identified by our approach. Focusing on bone mineral density (BMD), a phenotype related to osteoporotic fracture, we experimentally validated two of our novel predictions (not observed in any previous GWAS/QTL studies) and found significant bone density defects for both Timp2 and Abcg8 deficient mice. Our results suggest that the integration of functional genomics data into networks, which itself is informative of protein function and interactions, can successfully be utilized as a complementary approach to quantitative genetics to predict disease risks. All supplementary material is available at http://cbfg.jax.org/phenotype. PMID:21085640

Guan, Yuanfang; Ackert-Bicknell, Cheryl L; Kell, Braden; Troyanskaya, Olga G; Hibbs, Matthew A

2010-01-01

26

Systematic Association Mapping Identifies NELL1 as a Novel IBD Disease Gene  

PubMed Central

Crohn disease (CD), a sub-entity of inflammatory bowel disease (IBD), is a complex polygenic disorder. Although recent studies have successfully identified CD-associated genetic variants, these susceptibility loci explain only a fraction of the heritability of the disease. Here, we report on a multi-stage genome-wide scan of 393 German CD cases and 399 controls. Among the 116,161 single-nucleotide polymorphisms tested, an association with the known CD susceptibility gene NOD2, the 5q31 haplotype, and the recently reported CD locus at 5p13.1 was confirmed. In addition, SNP rs1793004 in the gene encoding nel-like 1 precursor (NELL1, chromosome 11p15.1) showed a consistent disease-association in independent German population- and family-based samples (942 cases, 1082 controls, 375 trios). Subsequent fine mapping and replication in an independent sample of 454 French/Canadian CD trios supported the authenticity of the NELL1 association. Further confirmation in a large German ulcerative colitis (UC) sample indicated that NELL1 is a ubiquitous IBD susceptibility locus (combined p<10?6; OR?=?1.66, 95% CI: 1.30–2.11). The novel 5p13.1 locus was also replicated in the French/Canadian sample and in an independent UK CD patient panel (453 cases, 521 controls, combined p<10?6 for SNP rs1992660). Several associations were replicated in at least one independent sample, point to an involvement of ITGB6 (upstream), GRM8 (downstream), OR5V1 (downstream), PPP3R2 (downstream), NM_152575 (upstream) and HNF4G (intron). PMID:17684544

Franke, Andre; Hampe, Jochen; Rosenstiel, Philip; Becker, Christian; Wagner, Florian; Häsler, Robert; Little, Randall D.; Huse, Klaus; Ruether, Andreas; Balschun, Tobias; Wittig, Michael; ElSharawy, Abdou; Mayr, Gabriele; Albrecht, Mario; Prescott, Natalie J.; Onnie, Clive M.; Fournier, Hélène; Keith, Tim; Radelof, Uwe; Platzer, Matthias; Mathew, Christopher G.; Stoll, Monika; Krawczak, Michael; Nürnberg, Peter; Schreiber, Stefan

2007-01-01

27

Novel applications of motif-directed profiling to identify disease resistance genes in plants  

PubMed Central

Background Molecular profiling of gene families is a versatile tool to study diversity between individual genomes in sexual crosses and germplasm. Nucleotide binding site (NBS) profiling, in particular, targets conserved nucleotide binding site-encoding sequences of resistance gene analogs (RGAs), and is widely used to identify molecular markers for disease resistance (R) genes. Results In this study, we used NBS profiling to identify genome-wide locations of RGA clusters in the genome of potato clone RH. Positions of RGAs in the potato RH and DM genomes that were generated using profiling and genome sequencing, respectively, were compared. Largely overlapping results, but also interesting discrepancies, were found. Due to the clustering of RGAs, several parts of the genome are overexposed while others remain underexposed using NBS profiling. It is shown how the profiling of other gene families, i.e. protein kinases and different protein domain-coding sequences (i.e., TIR), can be used to achieve a better marker distribution. The power of profiling techniques is further illustrated using RGA cluster-directed profiling in a population of Solanum berthaultii. Multiple different paralogous RGAs within the Rpi-ber cluster could be genetically distinguished. Finally, an adaptation of the profiling protocol was made that allowed the parallel sequencing of profiling fragments using next generation sequencing. The types of RGAs that were tagged in this next-generation profiling approach largely overlapped with classical gel-based profiling. As a potential application of next-generation profiling, we showed how the R gene family associated with late blight resistance in the SH*RH population could be identified using a bulked segregant approach. Conclusions In this study, we provide a comprehensive overview of previously described and novel profiling primers and their genomic targets in potato through genetic mapping and comparative genomics. Furthermore, it is shown how genome-wide or fine mapping can be pursued by choosing different sets of profiling primers. A protocol for next-generation profiling is provided and will form the basis for novel applications. Using the current overview of genomic targets, a rational choice can be made for profiling primers to be employed. PMID:24099459

2013-01-01

28

Large-scale gene-centric analysis identifies novel variants for coronary artery disease  

Microsoft Academic Search

Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in approximately 2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases

A. S. Butterworth; P. S. Braund; R. J. Hardwick; D. Saleheen; J. F. Peden; N. Soranzo; J. C. Chambers; M. E. Kleber; B. Keating; A. Qasim; N. Klopp; J. Erdmann; H. Basart; J. H. Baumert; C. R. Bezzina; B. O. Boehm; J. Brocheton; P. Bugert; F. Cambien; R. Collins; D. Couper; J. S. de Jong; P. Diemert; K. Ejebe; C. C. Elbers; P. Elliott; M. Fornage; P. Frossard; S. Garner; S. E. Hunt; J. J. Kastelein; O. H. Klungel; H. Kluter; K. Koch; I. R. Konig; A. S. Kooner; K. Liu; R. McPherson; M. D. Musameh; S. Musani; G. Papanicolaou; A. Peters; B. J. Peters; S. Potter; B. M. Psaty; A. Rasheed; J. Scott; U. Seedorf; J. S. Sehmi; N. Sotoodehnia; K. Stark; J. Stephens; C. E. van der Schoot; Y. T. van der Schouw; P. van der Harst; R. S. Vasan; A. A. Wilde; C. Willenborg; B. R. Winkelmann; M. Zaidi; W. Zhang; A. Ziegler; W. Koenig; W. Matz; M. D. Trip; M. P. Reilly; S. Kathiresan; H. Schunkert; A. Hamsten; A. S. Hall; J. S. Kooner; S. G. Thompson; J. R. Thompson; H. Watkins; J. Danesh; T. Barnes; S. Rafelt; V. Codd; N. Bruinsma; L. R. Dekker; J. P. Henriques; R. J. de Winter; M. Alings; C. F. Allaart; A. P. Gorgels; F. W. A. Verheugt; M. Mueller; C. Meisinger; S. DerOhannessian; N. N. Mehta; J. Ferguson; H. Hakonarson; W. Matthai; R. Wilensky; J. C. Hopewell; S. Parish; P. Linksted; J. Notman; H. Gonzalez; A. Young; T. Ostley; A. Munday; N. Goodwin; V. Verdon; S. Shah; C. Edwards; C. Mathews; R. Gunter; J. Benham; C. Davies; M. Cobb; L. Cobb; J. Crowther; A. Richards; M. Silver; S. Tochlin; S. Mozley; S. Clark; M. Radley; K. Kourellias; P. Olsson; S. Barlera; G. Tognoni; S. Rust; G. Assmann; S. Heath; D. Zelenika; I. Gut; F. Green; M. Farrall; A. Goel; H. Ongen; M. G. Franzosi; M. Lathrop; R. Clarke; A. Aly; K. Anner; K. Bjorklund; G. Blomgren; B. Cederschiold; K. Danell-Toverud; P. Eriksson; U. Grundstedt; M. Heinonen; M. L. Hellenius; F. van't Hooft; K. Husman; J. Lagercrantz; A. Larsson; M. Larsson; M. Mossfeldt; A. Malarstig; G. Olsson; M. Sabater-Lleal; B. Sennblad; A. Silveira; R. Strawbridge; B. Soderholm; J. Ohrvik; K. S. Zaman; N. H. Mallick; M. Azhar; A. Samad; M. Ishaq; N. Shah; M. Samuel; T. L. Assimes; H. Holm; M. Preuss; A. F. Stewart; M. Barbalic; C. Gieger; D. Absher; Z. Aherrahrou; H. Allayee; D. Altshuler; S. Anand; K. Andersen; J. L. Anderson; D. Ardissino; S. G. Ball; A. J. Balmforth; L. C. Becker; D. M. Becker; K. Berger; J. C. Bis; S. M. Boekholdt; E. Boerwinkle; M. J. Brown; M. S. Burnett; I. Buysschaert; J. F. Carlquist; L. Chen; R. W. Davies; G. Dedoussis; A. Dehghan; S. Demissie; J. Devaney; A. Doering; N. E. El Mokhtari; S. G. Ellis; R. Elosua; J. C. Engert; S. Epstein; U. de Faire; M. Fischer; A. R. Folsom; J. Freyer; B. Gigante; D. Girelli; S. Gretarsdottir; V. Gudnason; J. R. Gulcher; S. Tennstedt; E. Halperin; N. Hammond; S. L. Hazen; A. Hofman; B. D. Horne; T. Illig; C. Iribarren; G. T. Jones; J. W. Jukema; M. A. Kaiser; L. M. Kaplan; K. T. Khaw; J. W. Knowles; G. Kolovou; A. Kong; R. Laaksonen; D. Lambrechts; K. Leander; M. Li; W. Lieb; G. Lettre; C. Loley; A. J. Lotery; P. M. Mannucci; N. Martinelli; P. P. McKeown; T. Meitinger; O. Melander; P. A. Merlini; V. Mooser; T. Morgan; Muhleisen T. W; J. B. Muhlestein; K. Musunuru; J. Nahrstaedt; M. M. Nothen; O. Olivieri; F. Peyvandi; R. S. Patel; C. C. Patterson; L. Qu; A. A. Quyyumi; D. J. Rader; L. S. Rallidis; C. Rice; F. R. Roosendaal; D. Rubin; V. Salomaa; M. L. Sampietro; M. S. Sandhu; E. Schadt; A. Schafer; A. Schillert; S. Schreiber; J. Schrezenmeir; S. M. Schwartz; D. S. Siscovick; M. Sivananthan; S. Sivapalaratnam; A. V. Smith; T. B. Smith; J. D. Snoep; J. A. Spertus; K. Stefansson; K. Stirrups; M. Stoll; W. H. Tang; G. Thorgeirsson; G. Thorleifsson; M. Tomaszewski; A. G. Uitterlinden; A. M. van Rij; B. F. Voight; N. J. Wareham; G. AWells; H. E. Wichmann; J. C. Witteman; B. J. Wright; S. Ye; L. A. Cupples; T. Quertermous; W. Marz; S. Blankenberg; U. Thorsteinsdottir; R. Roberts; C. J. O'Donnell; N. C. Onland-Moret; J. van Setten; P. I. de Bakker; W. M. Verschuren; J. M. Boer; C. Wijmenga; M. H. Hofker; A. H. Maitland-van der Zee; A. de Boer; D. E. Grobbee; T. Attwood; S. Belz; J. Cooper; A. Crisp-Hihn; P. Deloukas; N. Foad; A. H. Goodall; J. Gracey; E. Gray; R. Gwilliams; S. Heimerl; C. Hengstenberg; J. Jolley; U. Krishnan; H. Lloyd-Jones; I. Lugauer; P. Lundmark; S. Maouche; J. S. Moore; D. Muir; E. Murray; C. P. Nelson; J. Neudert; D. Niblett; K. O'Leary; W. H. Ouwehand; H. Pollard; A. Rankin; H. Sager; N. J. Samani; J. Sambrook; G. Schmitz; M. Scholz; L. Schroeder; A. C. Syvannen; C. Wallace

2011-01-01

29

Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes  

Microsoft Academic Search

The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide analysis of RNA transcript levels

Viktor Stolc; Manoj Pratim Samanta; Waraporn Tongprasit; Wallace F. Marshall

2005-01-01

30

Next generation exome sequencing of paediatric inflammatory bowel disease patients identifies rare and novel variants in candidate genes  

PubMed Central

Background Multiple genes have been implicated by association studies in altering inflammatory bowel disease (IBD) predisposition. Paediatric patients often manifest more extensive disease and a particularly severe disease course. It is likely that genetic predisposition plays a more substantial role in this group. Objective To identify the spectrum of rare and novel variation in known IBD susceptibility genes using exome sequencing analysis in eight individual cases of childhood onset severe disease. Design DNA samples from the eight patients underwent targeted exome capture and sequencing. Data were processed through an analytical pipeline to align sequence reads, conduct quality checks, and identify and annotate variants where patient sequence differed from the reference sequence. For each patient, the entire complement of rare variation within strongly associated candidate genes was catalogued. Results Across the panel of 169 known IBD susceptibility genes, approximately 300 variants in 104 genes were found. Excluding splicing and HLA-class variants, 58 variants across 39 of these genes were classified as rare, with an alternative allele frequency of <5%, of which 17 were novel. Only two patients with early onset Crohn's disease exhibited rare deleterious variations within NOD2: the previously described R702W variant was the sole NOD2 variant in one patient, while the second patient also carried the L1007 frameshift insertion. Both patients harboured other potentially damaging mutations in the GSDMB, ERAP2 and SEC16A genes. The two patients severely affected with ulcerative colitis exhibited a distinct profile: both carried potentially detrimental variation in the BACH2 and IL10 genes not seen in other patients. Conclusion For each of the eight individuals studied, all non-synonymous, truncating and frameshift mutations across all known IBD genes were identified. A unique profile of rare and potentially damaging variants was evident for each patient with this complex disease. PMID:22543157

Christodoulou, Katja; Wiskin, Anthony E; Gibson, Jane; Tapper, William; Willis, Claire; Afzal, Nadeem A; Upstill-Goddard, Rosanna; Holloway, John W; Simpson, Michael A; Beattie, R Mark; Collins, Andrew

2013-01-01

31

A genome-wide association study identifies RNF213 as the first Moyamoya disease gene  

Microsoft Academic Search

Moyamoya disease (MMD) shows progressive cerebral angiopathy characterized by bilateral internal carotid artery stenosis and abnormal collateral vessels. Although ?15% of MMD cases are familial, the MMD gene(s) remain unknown. A genome-wide association study of 785 720 single-nucleotide polymorphisms (SNPs) was performed, comparing 72 Japanese MMD patients with 45 Japanese controls and resulting in a strong association of chromosome 17q25-ter

Fumiaki Kamada; Yoko Aoki; Ayumi Narisawa; Yu Abe; Shoko Komatsuzaki; Atsuo Kikuchi; Junko Kanno; Tetsuya Niihori; Masao Ono; Naoto Ishii; Yuji Owada; Miki Fujimura; Yoichi Mashimo; Yoichi Suzuki; Akira Hata; Shigeru Tsuchiya; Teiji Tominaga; Yoichi Matsubara; Shigeo Kure

2011-01-01

32

Systematic Association Mapping Identifies NELL1 as a Novel IBD Disease Gene  

Microsoft Academic Search

Crohn disease (CD), a sub-entity of inflammatory bowel disease (IBD), is a complex polygenic disorder. Although recent studies have successfully identified CD-associated genetic variants, these susceptibility loci explain only a fraction of the heritability of the disease. Here, we report on a multi-stage genome-wide scan of 393 German CD cases and 399 controls. Among the 116,161 single-nucleotide polymorphisms tested, an

Andre Franke; Jochen Hampe; Philip Rosenstiel; Christian Becker; Florian Wagner; Robert Häsler; Randall D. Little; Klaus Huse; Andreas Ruether; Tobias Balschun; Michael Wittig; Abdou ElSharawy; Gabriele Mayr; Mario Albrecht; Natalie J. Prescott; Clive M. Onnie; Hélène Fournier; Tim Keith; Uwe Radelof; Matthias Platzer; Christopher G. Mathew; Monika Stoll; Michael Krawczak; Peter Nürnberg; Stefan Schreiber

2007-01-01

33

Real-Time qPCR Identifies Suitable Reference Genes for Borna Disease Virus-Infected Rat Cortical Neurons  

PubMed Central

Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is the most commonly-used technique to identify gene expression profiles. The selection of stably expressed reference genes is a prerequisite to properly evaluating gene expression. Here, the suitability of commonly-used reference genes in normalizing RT-qPCR assays of mRNA expression in cultured rat cortical neurons infected with Borna disease virus (BDV) was assessed. The expressions of eight commonly-used reference genes were comparatively analyzed in BDV-infected rat cortical neurons and non-infected control neurons mainly across 9 and 12 days post-infection. These reference genes were validated by RT-qPCR and separately ranked by four statistical algorithms: geNorm, NormFinder, BestKeeper and the comparative delta-Ct method. Then, the RankAggreg package was used to construct consensus rankings. ARBP was found to be the most stable internal control gene at Day 9, and ACTB at Day 12. As the assessment of the validity of the selected reference genes confirms the suitability of applying a combination of the two most stable references genes, combining the two most stable genes for normalization of RT-qPCR studies in BDV-infected rat cortical neurons is recommended at each time point. This study can contribute to improving BDV research by providing the means by which to obtain more reliable and accurate gene expression measurements. PMID:25431926

Zhang, Lujun; Liu, Siwen; Zhang, Liang; You, Hongmin; Huang, Rongzhong; Sun, Lin; He, Peng; Chen, Shigang; Zhang, Hong; Xie, Peng

2014-01-01

34

Transcriptional Profiling of Human Liver Identifies Sex-Biased Genes Associated with Polygenic Dyslipidemia and Coronary Artery Disease  

PubMed Central

Sex-differences in human liver gene expression were characterized on a genome-wide scale using a large liver sample collection, allowing for detection of small expression differences with high statistical power. 1,249 sex-biased genes were identified, 70% showing higher expression in females. Chromosomal bias was apparent, with female-biased genes enriched on chrX and male-biased genes enriched on chrY and chr19, where 11 male-biased zinc-finger KRAB-repressor domain genes are distributed in six clusters. Top biological functions and diseases significantly enriched in sex-biased genes include transcription, chromatin organization and modification, sexual reproduction, lipid metabolism and cardiovascular disease. Notably, sex-biased genes are enriched at loci associated with polygenic dyslipidemia and coronary artery disease in genome-wide association studies. Moreover, of the 8 sex-biased genes at these loci, 4 have been directly linked to monogenic disorders of lipid metabolism and show an expression profile in females (elevated expression of ABCA1, APOA5 and LDLR; reduced expression of LIPC) that is consistent with the lower female risk of coronary artery disease. Female-biased expression was also observed for CYP7A1, which is activated by drugs used to treat hypercholesterolemia. Several sex-biased drug-metabolizing enzyme genes were identified, including members of the CYP, UGT, GPX and ALDH families. Half of 879 mouse orthologs, including many genes of lipid metabolism and homeostasis, show growth hormone-regulated sex-biased expression in mouse liver, suggesting growth hormone might play a similar regulatory role in human liver. Finally, the evolutionary rate of protein coding regions for human-mouse orthologs, revealed by dN/dS ratio, is significantly higher for genes showing the same sex-bias in both species than for non-sex-biased genes. These findings establish that human hepatic sex differences are widespread and affect diverse cell metabolic processes, and may help explain sex differences in lipid profiles associated with sex differential risk of coronary artery disease. PMID:21858147

Zhang, Yijing; Klein, Kathrin; Sugathan, Aarathi; Nassery, Najlla; Dombkowski, Alan; Zanger, Ulrich M.; Waxman, David J.

2011-01-01

35

CARD15 gene polymorphisms in patients with spondyloarthropathies identify a specific phenotype previously related to Crohn's disease  

PubMed Central

Background: The association between spondyloarthropathy and Crohn's disease is well known. A risk for evolution to Crohn's disease has already been shown in the subgroup of patients with spondyloarthropathy associated with chronic gut inflammation. Objective: To investigate whether the reported polymorphisms in the CARD15 gene, a susceptibility gene for Crohn's disease, are associated with the presence of preclinical intestinal inflammation observed in spondyloarthropathies. Methods: 104 patients with spondyloarthropathies were studied. All underwent ileocolonoscopy with biopsies between 1983 and 2004. The prevalence of three single nucleotide polymorphisms in the CARD15 gene (R702W, G908R, and 1007fs) was assessed using restriction fragment length polymorphism–polymerase chain reaction (RFLP-PCR); the patients were compared with an ethnically matched Crohn's disease population and a control population. Results: The carrier frequency of R702W, G908R, or 1007fs variants in the spondyloarthropathy populations (20%) was similar to the control population (17%), but increased to 38% in the spondyloarthropathy subgroup with chronic gut inflammation. This frequency was significantly higher than in the other spondyloarthropathy subgroups (p = 0.001) or the control group (p = 0.006), but not different from the Crohn's disease group (49%) (NS). This indicates that CARD15 polymorphisms are associated with a higher risk for development of chronic gut inflammation. Conclusions: CARD15 gene polymorphisms clearly identify a subgroup of patients with spondyloarthropathies associated with chronic intestinal inflammation. PMID:15539413

Laukens, D; Peeters, H; Marichal, D; Vander, C; Mielants, H; Elewaut, D; Demetter, P; Cuvelier, C; Van Den Berghe, M; Rottiers, P; Veys, E; Remaut, E; Steidler, L; De Keyser, F; De Vos, M

2005-01-01

36

Integrated whole transcriptome and DNA methylation analysis identifies gene networks specific to late-onset Alzheimer's disease.  

PubMed

Previous transcriptome studies observed disrupted cellular processes in late-onset Alzheimer's disease (LOAD), yet it is unclear whether these changes are specific to LOAD, or are common to general neurodegeneration. In this study, we address this question by examining transcription in LOAD and comparing it to cognitively normal controls and a cohort of "disease controls." Differential transcription was examined using RNA-seq, which allows for the examination of protein coding genes, non-coding RNAs, and splicing. Significant transcription differences specific to LOAD were observed in five genes: C10orf105, DIO2, a lincRNA, RARRES3, and WIF1. These findings were replicated in two independent publicly available microarray data sets. Network analyses, performed on 2,504 genes with moderate transcription differences in LOAD, reveal that these genes aggregate into seven networks. Two networks involved in myelination and innate immune response specifically correlated to LOAD. FRMD4B and ST18, hub genes within the myelination network, were previously implicated in LOAD. Of the five significant genes, WIF1 and RARRES3 are directly implicated in the myelination process; the other three genes are located within the network. LOAD specific changes in DNA methylation were located throughout the genome and substantial changes in methylation were identified within the myelination network. Splicing differences specific to LOAD were observed across the genome and were decreased in all seven networks. DNA methylation had reduced influence on transcription within LOAD in the myelination network when compared to both controls. These results hint at the molecular underpinnings of LOAD and indicate several key processes, genes, and networks specific to the disease. PMID:25380588

Humphries, Crystal E; Kohli, Martin A; Nathanson, Lubov; Whitehead, Patrice; Beecham, Gary; Martin, Eden; Mash, Deborah C; Pericak-Vance, Margaret A; Gilbert, John

2015-01-01

37

Exome Sequencing Identifies DLG1 as a Novel Gene for Potential Susceptibility to Crohn's Disease in a Chinese Family Study  

PubMed Central

Background Genetic variants make some contributions to inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC). More than 100 susceptibility loci were identified in Western IBD studies, but susceptibility gene has not been found in Chinese IBD patients till now. Sequencing of individuals with an IBD family history is a powerful approach toward our understanding of the genetics and pathogenesis of IBD. The aim of this study, which focuses on a Han Chinese CD family, is to identify high-risk variants and potentially novel loci using whole exome sequencing technique. Methods Exome sequence data from 4 individuals belonging to a same family were analyzed using bioinformatics methods to narrow down the variants associated with CD. The potential risk genes were further analyzed by genotyping and Sanger sequencing in family members, additional 401 healthy controls (HC), 278 sporadic CD patients, 123 UC cases, a pair of monozygotic CD twins and another Chinese CD family. Results From the CD family in which the father and daughter were affected, we identified a novel single nucleotide variant (SNV) c.374T>C (p.I125T) in exon 4 of discs large homolog 1 (DLG1), a gene has been reported to play mutiple roles in cell proliferation, T cell polarity and T cell receptor signaling. After genotyping among case and controls, a PLINK analysis showed the variant was of significance (P<0.05). 4 CD patients of the other Chinese family bore another non-synonymous variant c.833G>A (p.R278Q) in exon 9 of DLG1. Conclusions We have discovered novel genetic variants in the coding regions of DLG1 gene, the results support that DLG1 is a novel potential susceptibility gene for CD in Chinese patients. PMID:24937328

Song, Lu; NG, Siew Chien; Wang, Xiaobing; Chen, Liping; Yi, Fengming; Ran, Zhihua; Zhou, Rui; Xia, Bing

2014-01-01

38

Genome-wide linkage scan identifies two novel genetic loci for coronary artery disease: in GeneQuest families.  

PubMed

Coronary artery disease (CAD) is the leading cause of death worldwide. Recent genome-wide association studies (GWAS) identified >50 common variants associated with CAD or its complication myocardial infarction (MI), but collectively they account for <20% of heritability, generating a phenomena of "missing heritability". Rare variants with large effects may account for a large portion of missing heritability. Genome-wide linkage studies of large families and follow-up fine mapping and deep sequencing are particularly effective in identifying rare variants with large effects. Here we show results from a genome-wide linkage scan for CAD in multiplex GeneQuest families with early onset CAD and MI. Whole genome genotyping was carried out with 408 markers that span the human genome by every 10 cM and linkage analyses were performed using the affected relative pair analysis implemented in GENEHUNTER. Affected only nonparametric linkage (NPL) analysis identified two novel CAD loci with highly significant evidence of linkage on chromosome 3p25.1 (peak NPL ?=?5.49) and 3q29 (NPL ?=?6.84). We also identified four loci with suggestive linkage on 9q22.33, 9q34.11, 17p12, and 21q22.3 (NPL ?=?3.18-4.07). These results identify novel loci for CAD and provide a framework for fine mapping and deep sequencing to identify new susceptibility genes and novel variants associated with risk of CAD. PMID:25485937

Gao, Hanxiang; Li, Lin; Rao, Shaoqi; Shen, Gongqing; Xi, Quansheng; Chen, Shenghan; Zhang, Zheng; Wang, Kai; Ellis, Stephen G; Chen, Qiuyun; Topol, Eric J; Wang, Qing K

2014-01-01

39

Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease.  

PubMed

Ciliopathies are genetically heterogeneous disorders characterized by variable expressivity and overlaps between different disease entities. This is exemplified by the short rib-polydactyly syndromes, Jeune, Sensenbrenner, and Mainzer-Saldino chondrodysplasia syndromes. These three syndromes are frequently caused by mutations in intraflagellar transport (IFT) genes affecting the primary cilia, which play a crucial role in skeletal and chondral development. Here, we identified mutations in IFT140, an IFT complex A gene, in five Jeune asphyxiating thoracic dystrophy (JATD) and two Mainzer-Saldino syndrome (MSS) families, by screening a cohort of 66 JATD/MSS patients using whole exome sequencing and targeted resequencing of a customized ciliopathy gene panel. We also found an enrichment of rare IFT140 alleles in JATD compared with nonciliopathy diseases, implying putative modifier effects for certain alleles. IFT140 patients presented with mild chest narrowing, but all had end-stage renal failure under 13 years of age and retinal dystrophy when examined for ocular dysfunction. This is consistent with the severe cystic phenotype of Ift140 conditional knockout mice, and the higher level of Ift140 expression in kidney and retina compared with the skeleton at E15.5 in the mouse. IFT140 is therefore a major cause of cono-renal syndromes (JATD and MSS). The present study strengthens the rationale for IFT140 screening in skeletal ciliopathy spectrum patients that have kidney disease and/or retinal dystrophy. PMID:23418020

Schmidts, Miriam; Frank, Valeska; Eisenberger, Tobias; Al Turki, Saeed; Bizet, Albane A; Antony, Dinu; Rix, Suzanne; Decker, Christian; Bachmann, Nadine; Bald, Martin; Vinke, Tobias; Toenshoff, Burkhard; Di Donato, Natalia; Neuhann, Theresa; Hartley, Jane L; Maher, Eamonn R; Bogdanovi?, Radovan; Peco-Anti?, Amira; Mache, Christoph; Hurles, Matthew E; Joksi?, Ivana; Gu?-Š?eki?, Marija; Dobricic, Jelena; Brankovic-Magic, Mirjana; Bolz, Hanno J; Pazour, Gregory J; Beales, Philip L; Scambler, Peter J; Saunier, Sophie; Mitchison, Hannah M; Bergmann, Carsten

2013-05-01

40

Combined NGS Approaches Identify Mutations in the Intraflagellar Transport Gene IFT140 in Skeletal Ciliopathies with Early Progressive Kidney Disease  

PubMed Central

Ciliopathies are genetically heterogeneous disorders characterized by variable expressivity and overlaps between different disease entities. This is exemplified by the short rib-polydactyly syndromes, Jeune, Sensenbrenner, and Mainzer-Saldino chondrodysplasia syndromes. These three syndromes are frequently caused by mutations in intraflagellar transport (IFT) genes affecting the primary cilia, which play a crucial role in skeletal and chondral development. Here, we identified mutations in IFT140, an IFT complex A gene, in five Jeune asphyxiating thoracic dystrophy (JATD) and two Mainzer-Saldino syndrome (MSS) families, by screening a cohort of 66 JATD/MSS patients using whole exome sequencing and targeted resequencing of a customized ciliopathy gene panel. We also found an enrichment of rare IFT140 alleles in JATD compared with nonciliopathy diseases, implying putative modifier effects for certain alleles. IFT140 patients presented with mild chest narrowing, but all had end-stage renal failure under 13 years of age and retinal dystrophy when examined for ocular dysfunction. This is consistent with the severe cystic phenotype of Ift140 conditional knockout mice, and the higher level of Ift140 expression in kidney and retina compared with the skeleton at E15.5 in the mouse. IFT140 is therefore a major cause of cono-renal syndromes (JATD and MSS). The present study strengthens the rationale for IFT140 screening in skeletal ciliopathy spectrum patients that have kidney disease and/or retinal dystrophy. PMID:23418020

Schmidts, Miriam; Frank, Valeska; Eisenberger, Tobias; al Turki, Saeed; Bizet, Albane A.; Antony, Dinu; Rix, Suzanne; Decker, Christian; Bachmann, Nadine; Bald, Martin; Vinke, Tobias; Toenshoff, Burkhard; Donato, Natalia Di; Neuhann, Theresa; Hartley, Jane L.; Maher, Eamonn R.; Bogdanovi?, Radovan; Peco-Anti?, Amira; Mache, Christoph; Hurles, Matthew E.; Joksi?, Ivana; Gu?-Š?eki?, Marija; Dobricic, Jelena; Brankovic-Magic, Mirjana; Bolz, Hanno J.; Pazour, Gregory J.; Beales, Philip L.; Scambler, Peter J.; Saunier, Sophie; Mitchison, Hannah M.; Bergmann, Carsten

2014-01-01

41

Whole-Exome Sequencing to Identify a Novel LMNA Gene Mutation Associated with Inherited Cardiac Conduction Disease  

PubMed Central

Background Inherited cardiac conduction diseases (CCD) are rare but are caused by mutations in a myriad of genes. Recently, whole-exome sequencing has successfully led to the identification of causal mutations for rare monogenic Mendelian diseases. Objective To investigate the genetic background of a family affected by inherited CCD. Methods and Results We used whole-exome sequencing to study a Chinese family with multiple family members affected by CCD. Using the pedigree information, we proposed a heterozygous missense mutation (c.G695T, Gly232Val) in the lamin A/C (LMNA) gene as a candidate mutation for susceptibility to CCD in this family. The mutation is novel and is expected to affect the conformation of the coiled-coil rod domain of LMNA according to a structural model prediction. Its pathogenicity in lamina instability was further verified by expressing the mutation in a cellular model. Conclusions Our results suggest that whole-exome sequencing is a feasible approach to identifying the candidate genes underlying inherited conduction diseases. PMID:24349489

Hsieh, Wen-Ping; Kuo, Chi-Tai; Wang, Wen-Ching; Chu, Chia-Han; Hung, Chiu-Lien; Cheng, Chia-Yang; Tsai, Hsin-Yi; Lee, Jia-Lin; Tang, Chuan-Yi; Hsu, Lung-An

2013-01-01

42

Genetic Analysis of Fin Development in Zebrafish Identifies Furin and Hemicentin1 as Potential Novel Fraser Syndrome Disease Genes  

PubMed Central

Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the disease's aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease. PMID:20419147

Carney, Thomas J.; Feitosa, Natália Martins; Sonntag, Carmen; Slanchev, Krasimir; Kluger, Johannes; Kiyozumi, Daiji; Gebauer, Jan M.; Coffin Talbot, Jared; Kimmel, Charles B.; Sekiguchi, Kiyotoshi; Wagener, Raimund; Schwarz, Heinz; Ingham, Phillip W.; Hammerschmidt, Matthias

2010-01-01

43

DNA methylation map of mouse and human brain identifies target genes in Alzheimer's disease  

E-print Network

tau hyperphosphorylation, a common finding in Alzheimer’sin a Drosophila Alzheimer’s disease model also enhances tauAlzheimer’s disease, the integrity of the axon initial segment is necessary to maintain the axonal localization of tau (

2013-01-01

44

Saccharomyces Fungemia Associated with Esophageal Disease Identified by D1/D2 Ribosomal RNA Gene Sequence  

Technology Transfer Automated Retrieval System (TEKTRAN)

Disseminated Saccharomyces infection has been reported in immunosuppressed patients treated with probiotics, but disseminated Saccharomyces cerevisiae infection associated with underlying esophageal disease is not previously described. Saccharomyces cerevisiae (which occasionally colonizes the gast...

45

Identifying Relationships among Genomic Disease Regions: Predicting Genes at Pathogenic SNP  

E-print Network

Associations and Rare Deletions Soumya Raychaudhuri1,2,3 *, Robert M. Plenge1,3,4 , Elizabeth J. Rossin1: Raychaudhuri S, Plenge RM, Rossin EJ, Ng ACY, International Schizophrenia Consortium, et al. (2009) Identifying

Raychaudhuri, Soumya

46

Genome-Wide Gene-Environment Study Identifies Glutamate Receptor Gene GRIN2A as a Parkinson's Disease Modifier Gene via Interaction with Coffee  

PubMed Central

Our aim was to identify genes that influence the inverse association of coffee with the risk of developing Parkinson's disease (PD). We used genome-wide genotype data and lifetime caffeinated-coffee-consumption data on 1,458 persons with PD and 931 without PD from the NeuroGenetics Research Consortium (NGRC), and we performed a genome-wide association and interaction study (GWAIS), testing each SNP's main-effect plus its interaction with coffee, adjusting for sex, age, and two principal components. We then stratified subjects as heavy or light coffee-drinkers and performed genome-wide association study (GWAS) in each group. We replicated the most significant SNP. Finally, we imputed the NGRC dataset, increasing genomic coverage to examine the region of interest in detail. The primary analyses (GWAIS, GWAS, Replication) were performed using genotyped data. In GWAIS, the most significant signal came from rs4998386 and the neighboring SNPs in GRIN2A. GRIN2A encodes an NMDA-glutamate-receptor subunit and regulates excitatory neurotransmission in the brain. Achieving P2df?=?10?6, GRIN2A surpassed all known PD susceptibility genes in significance in the GWAIS. In stratified GWAS, the GRIN2A signal was present in heavy coffee-drinkers (OR?=?0.43; P?=?6×10?7) but not in light coffee-drinkers. The a priori Replication hypothesis that “Among heavy coffee-drinkers, rs4998386_T carriers have lower PD risk than rs4998386_CC carriers” was confirmed: ORReplication?=?0.59, PReplication?=?10?3; ORPooled?=?0.51, PPooled?=?7×10?8. Compared to light coffee-drinkers with rs4998386_CC genotype, heavy coffee-drinkers with rs4998386_CC genotype had 18% lower risk (P?=?3×10?3), whereas heavy coffee-drinkers with rs4998386_TC genotype had 59% lower risk (P?=?6×10?13). Imputation revealed a block of SNPs that achieved P2df<5×10?8 in GWAIS, and OR?=?0.41, P?=?3×10?8 in heavy coffee-drinkers. This study is proof of concept that inclusion of environmental factors can help identify genes that are missed in GWAS. Both adenosine antagonists (caffeine-like) and glutamate antagonists (GRIN2A-related) are being tested in clinical trials for treatment of PD. GRIN2A may be a useful pharmacogenetic marker for subdividing individuals in clinical trials to determine which medications might work best for which patients. PMID:21876681

Hamza, Taye H.; Chen, Honglei; Hill-Burns, Erin M.; Rhodes, Shannon L.; Montimurro, Jennifer; Kay, Denise M.; Tenesa, Albert; Kusel, Victoria I.; Sheehan, Patricia; Eaaswarkhanth, Muthukrishnan; Yearout, Dora; Samii, Ali; Roberts, John W.; Agarwal, Pinky; Bordelon, Yvette; Park, Yikyung; Wang, Liyong; Gao, Jianjun; Vance, Jeffery M.; Kendler, Kenneth S.; Bacanu, Silviu-Alin; Scott, William K.; Ritz, Beate; Nutt, John; Factor, Stewart A.; Zabetian, Cyrus P.; Payami, Haydeh

2011-01-01

47

Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5  

PubMed Central

Background Coronary artery disease (CAD), and one of its intermediate risk factors, dyslipidemia, possess a demonstrable genetic component, although the genetic architecture is incompletely defined. We previously reported a linkage peak on chromosome 5q31-33 for early-onset CAD where the strength of evidence for linkage was increased in families with higher mean low density lipoprotein-cholesterol (LDL-C). Therefore, we sought to fine-map the peak using association mapping of LDL-C as an intermediate disease-related trait to further define the etiology of this linkage peak. The study populations consisted of 1908 individuals from the CATHGEN biorepository of patients undergoing cardiac catheterization; 254 families (N = 827 individuals) from the GENECARD familial study of early-onset CAD; and 162 aorta samples harvested from deceased donors. Linkage disequilibrium-tagged SNPs were selected with an average of one SNP per 20 kb for 126.6-160.2 MB (region of highest linkage) and less dense spacing (one SNP per 50 kb) for the flanking regions (117.7-126.6 and 160.2-167.5 MB) and genotyped on all samples using a custom Illumina array. Association analysis of each SNP with LDL-C was performed using multivariable linear regression (CATHGEN) and the quantitative trait transmission disequilibrium test (QTDT; GENECARD). SNPs associated with the intermediate quantitative trait, LDL-C, were then assessed for association with CAD (i.e., a qualitative phenotype) using linkage and association in the presence of linkage (APL; GENECARD) and logistic regression (CATHGEN and aortas). Results We identified four genes with SNPs that showed the strongest and most consistent associations with LDL-C and CAD: EBF1, PPP2R2B, SPOCK1, and PRELID2. The most significant results for association of SNPs with LDL-C were: EBF1, rs6865969, p = 0.01; PPP2R2B, rs2125443, p = 0.005; SPOCK1, rs17600115, p = 0.003; and PRELID2, rs10074645, p = 0.0002). The most significant results for CAD were EBF1, rs6865969, p = 0.007; PPP2R2B, rs7736604, p = 0.0003; SPOCK1, rs17170899, p = 0.004; and PRELID2, rs7713855, p = 0.003. Conclusion Using an intermediate disease-related quantitative trait of LDL-C we have identified four novel CAD genes, EBF1, PRELID2, SPOCK1, and PPP2R2B. These four genes should be further examined in future functional studies as candidate susceptibility loci for cardiovascular disease mediated through LDL-cholesterol pathways. PMID:22369142

2012-01-01

48

Whole blood transcriptional profiling in ankylosing spondylitis identifies novel candidate genes that might contribute to the inflammatory and tissue-destructive disease aspects  

PubMed Central

Introduction A number of genetic-association studies have identified genes contributing to ankylosing spondylitis (AS) susceptibility but such approaches provide little information as to the gene activity changes occurring during the disease process. Transcriptional profiling generates a 'snapshot' of the sampled cells' activity and thus can provide insights into the molecular processes driving the disease process. We undertook a whole-genome microarray approach to identify candidate genes associated with AS and validated these gene-expression changes in a larger sample cohort. Methods A total of 18 active AS patients, classified according to the New York criteria, and 18 gender- and age-matched controls were profiled using Illumina HT-12 whole-genome expression BeadChips which carry cDNAs for 48,000 genes and transcripts. Class comparison analysis identified a number of differentially expressed candidate genes. These candidate genes were then validated in a larger cohort using qPCR-based TaqMan low density arrays (TLDAs). Results A total of 239 probes corresponding to 221 genes were identified as being significantly different between patients and controls with a P-value <0.0005 (80% confidence level of false discovery rate). Forty-seven genes were then selected for validation studies, using the TLDAs. Thirteen of these genes were validated in the second patient cohort with 12 downregulated 1.3- to 2-fold and only 1 upregulated (1.6-fold). Among a number of identified genes with well-documented inflammatory roles we also validated genes that might be of great interest to the understanding of AS progression such as SPOCK2 (osteonectin) and EP300, which modulate cartilage and bone metabolism. Conclusions We have validated a gene expression signature for AS from whole blood and identified strong candidate genes that may play roles in both the inflammatory and joint destruction aspects of the disease. PMID:21470430

2011-01-01

49

Multistudy Fine Mapping of Chromosome 2q Identifies XRCC5 as a Chronic Obstructive Pulmonary Disease Susceptibility Gene  

PubMed Central

Rationale: Several family-based studies have identified genetic linkage for lung function and airflow obstruction to chromosome 2q. Objectives: We hypothesized that merging results of high-resolution single nucleotide polymorphism (SNP) mapping in four separate populations would lead to the identification of chronic obstructive pulmonary disease (COPD) susceptibility genes on chromosome 2q. Methods: Within the chromosome 2q linkage region, 2,843 SNPs were genotyped in 806 COPD cases and 779 control subjects from Norway, and 2,484 SNPs were genotyped in 309 patients with severe COPD from the National Emphysema Treatment Trial and 330 community control subjects. Significant associations from the combined results across the two case-control studies were followed up in 1,839 individuals from 603 families from the International COPD Genetics Network (ICGN) and in 949 individuals from 127 families in the Boston Early-Onset COPD Study. Measurements and Main Results: Merging the results of the two case-control analyses, 14 of the 790 overlapping SNPs had a combined P < 0.01. Two of these 14 SNPs were consistently associated with COPD in the ICGN families. The association with one SNP, located in the gene XRCC5, was replicated in the Boston Early-Onset COPD Study, with a combined P = 2.51 × 10?5 across the four studies, which remains significant when adjusted for multiple testing (P = 0.02). Genotype imputation confirmed the association with SNPs in XRCC5. Conclusions: By combining data from COPD genetic association studies conducted in four independent patient samples, we have identified XRCC5, an ATP-dependent DNA helicase, as a potential COPD susceptibility gene. PMID:20463177

Hersh, Craig P.; Pillai, Sreekumar G.; Zhu, Guohua; Lomas, David A.; Bakke, Per; Gulsvik, Amund; DeMeo, Dawn L.; Klanderman, Barbara J.; Lazarus, Ross; Litonjua, Augusto A.; Sparrow, David; Reilly, John J.; Agusti, Alvar; Calverley, Peter M. A.; Donner, Claudio F.; Levy, Robert D.; Make, Barry J.; Paré, Peter D.; Rennard, Stephen I.; Vestbo, Jørgen; Wouters, Emiel F. M.; Scholand, Mary Beth; Coon, Hilary; Hoidal, John; Silverman, Edwin K.

2010-01-01

50

IDENTIFYING CANDIDATE GENES FOR RAINBOW TROUT ONCORHYNCHUS MYKISS AQUACULTURE RESEARCH  

Technology Transfer Automated Retrieval System (TEKTRAN)

Candidate gene approaches are often used to identify genes which affect characteristics of interest. In aquaculture research, investigators are often interested in identifying genes associated with production traits such as growth, feed efficiency, stress tolerance, reproduction, and disease resist...

51

Genome-wide haplotype association study identifies the SLC22A3-LPAL2-LPA gene cluster as a risk locus for coronary artery disease.  

PubMed

We identify the SLC22A3-LPAL2-LPA gene cluster as a strong susceptibility locus for coronary artery disease (CAD) through a genome-wide haplotype association (GWHA) study. This locus was not identified from previous genome-wide association (GWA) studies focused on univariate analyses of SNPs. The proposed approach may have wide utility for analyzing GWA data for other complex traits. PMID:19198611

Trégouët, David-Alexandre; König, Inke R; Erdmann, Jeanette; Munteanu, Alexandru; Braund, Peter S; Hall, Alistair S; Grosshennig, Anika; Linsel-Nitschke, Patrick; Perret, Claire; DeSuremain, Maylis; Meitinger, Thomas; Wright, Ben J; Preuss, Michael; Balmforth, Anthony J; Ball, Stephen G; Meisinger, Christa; Germain, Cécile; Evans, Alun; Arveiler, Dominique; Luc, Gérald; Ruidavets, Jean-Bernard; Morrison, Caroline; van der Harst, Pim; Schreiber, Stefan; Neureuther, Katharina; Schäfer, Arne; Bugert, Peter; El Mokhtari, Nour E; Schrezenmeir, Jürgen; Stark, Klaus; Rubin, Diana; Wichmann, H-Erich; Hengstenberg, Christian; Ouwehand, Willem; Ziegler, Andreas; Tiret, Laurence; Thompson, John R; Cambien, Francois; Schunkert, Heribert; Samani, Nilesh J

2009-03-01

52

Positively Selected Disease Response Orthologous Gene Sets in the Cereals Identified Using Sorghum bicolor L. Moench Expression Profiles and Comparative Genomics  

PubMed Central

Disease response genes (DRGs) diverge under recurrent positive selection as a result of a molecular arms race between hosts and pathogens. Most of these studies were conducted in animals, and few defense genes have been shown to evolve adaptively in plants. To test for adaptation in the molecules mediating disease resistance in the cereals, we first combined information from the expression pattern of Sorghum bicolor genes and from divergence to the full genome of rice to identify candidate DRGs. We then used evolutionary analyses of orthologous gene sets from several grass species, to determine whether the DRGs show signals of positive selection and the residues targeted. We found 140 divergent genes upregulated under biotic stress in S. bicolor by evaluating the relative abundance of expressed sequence tags in different libraries and comparing them with rice genes. For 10 of these genes, we found sets of orthologs including sequences from rice and three other cereals; six genes showed a pattern of substitution that was consistent with positive selection. Three of these genes, a thaumatin, a peroxidase, and a barley mlo homolog, are known antifungal proteins. The other three genes with evidence of positive selection were a MCM-1 agamous deficiens SRF- (MADS) box transcription factor, an eIF5 translation initiation factor, and a gene of unknown function but with evidence of expression during stress. Permutation analyses, using different ortholog and paralog sequences, consistently identified five positively selected codons in the peroxidase, a member of a cluster of genes and a large gene family. We mapped the positively selected residues onto the structure of the peroxidase and thaumatin and found that all sites are on the surface of these proteins and several are close to biochemically determined active sites. Identifying new positively selected plant disease resistance genes and the critical amino acid sites provides a basis for functional studies that may increase our understanding of their underlying molecular mechanisms of action. Additionally, it may lead to the identification of individuals having variation at functionally important sites, as well as eventually using this information in the rational design and engineering of proteins involved in plant disease resistance. PMID:19506000

Zamora, Alejandro; Sun, Qi; Hamblin, Martha T.; Aquadro, Charles F.; Kresovich, Stephen

2009-01-01

53

Whole-genome conditional two-locus analysis identifies novel candidate genes for late-onset Parkinson’s disease  

Microsoft Academic Search

Whole-genome epistasis analysis may add a new layer of knowledge to whole-genome association studies, permitting the identification\\u000a of new candidate genes which are completely transparent during conventional single-locus analysis. We present the first whole-genome\\u000a conditional two-locus analysis in Parkinson’s disease (PD). We scanned the entire genome and selected markers that interacted\\u000a with a set of well-known loci previously associated to

A. González-Pérez; J. Gayán; J. Marín; J. J. Galán; M. E. Sáez; L. M. Real; C. Antúnez; A. Ruiz

2009-01-01

54

A diVIsive Shuffling Approach (VIStA) for gene expression analysis to identify subtypes in Chronic Obstructive Pulmonary Disease  

PubMed Central

Background An important step toward understanding the biological mechanisms underlying a complex disease is a refined understanding of its clinical heterogeneity. Relating clinical and molecular differences may allow us to define more specific subtypes of patients that respond differently to therapeutic interventions. Results We developed a novel unbiased method called diVIsive Shuffling Approach (VIStA) that identifies subgroups of patients by maximizing the difference in their gene expression patterns. We tested our algorithm on 140 subjects with Chronic Obstructive Pulmonary Disease (COPD) and found four distinct, biologically and clinically meaningful combinations of clinical characteristics that are associated with large gene expression differences. The dominant characteristic in these combinations was the severity of airflow limitation. Other frequently identified measures included emphysema, fibrinogen levels, phlegm, BMI and age. A pathway analysis of the differentially expressed genes in the identified subtypes suggests that VIStA is capable of capturing specific molecular signatures within in each group. Conclusions The introduced methodology allowed us to identify combinations of clinical characteristics that correspond to clear gene expression differences. The resulting subtypes for COPD contribute to a better understanding of its heterogeneity. PMID:25032995

2014-01-01

55

Pooled Sequencing of 531 Genes in Inflammatory Bowel Disease Identifies an Associated Rare Variant in BTNL2 and Implicates Other Immune Related Genes  

PubMed Central

The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn’s disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10?10, OR = 2.3[95% CI = 1.75–3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (<1%) and low frequency (1–5%) variants in 3 additional genes showed suggestive association (p<0.005) with either an increased risk (ARIH2 c.338-6C>T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis. PMID:25671699

Prescott, Natalie J.; Lehne, Benjamin; Stone, Kristina; Lee, James C.; Taylor, Kirstin; Knight, Jo; Papouli, Efterpi; Mirza, Muddassar M.; Simpson, Michael A.; Spain, Sarah L.; Lu, Grace; Fraternali, Franca; Bumpstead, Suzannah J.; Gray, Emma; Amar, Ariella; Bye, Hannah; Green, Peter; Chung-Faye, Guy; Hayee, Bu’Hussain; Pollok, Richard; Satsangi, Jack; Parkes, Miles; Barrett, Jeffrey C.; Mansfield, John C.; Sanderson, Jeremy; Lewis, Cathryn M.; Weale, Michael E.; Schlitt, Thomas; Mathew, Christopher G.

2015-01-01

56

Pooled sequencing of 531 genes in inflammatory bowel disease identifies an associated rare variant in BTNL2 and implicates other immune related genes.  

PubMed

The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn's disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10-10, OR = 2.3[95% CI = 1.75-3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (<1%) and low frequency (1-5%) variants in 3 additional genes showed suggestive association (p<0.005) with either an increased risk (ARIH2 c.338-6C>T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis. PMID:25671699

Prescott, Natalie J; Lehne, Benjamin; Stone, Kristina; Lee, James C; Taylor, Kirstin; Knight, Jo; Papouli, Efterpi; Mirza, Muddassar M; Simpson, Michael A; Spain, Sarah L; Lu, Grace; Fraternali, Franca; Bumpstead, Suzannah J; Gray, Emma; Amar, Ariella; Bye, Hannah; Green, Peter; Chung-Faye, Guy; Hayee, Bu'Hussain; Pollok, Richard; Satsangi, Jack; Parkes, Miles; Barrett, Jeffrey C; Mansfield, John C; Sanderson, Jeremy; Lewis, Cathryn M; Weale, Michael E; Schlitt, Thomas; Mathew, Christopher G

2015-02-01

57

New mutation of the desmin gene identified in an extended Indian pedigree presenting with distal myopathy and cardiac disease.  

PubMed

In this report, we describe a new mutation located in the coiled 1B domain of desmin and associated with a predominant cardiac involvement and a high degree of cardiac sudden death in a large Indian pedigree with 12 affected members. The index cases was 38-year-old man who presented with progressive difficulty in gripping footwear of 5 years duration with the onset in the left lower limb followed by right lower limb in 6 months. 3 years from onset, he developed lower limb proximal and truncal muscle weakness. There was mild atrophy of the shoulder girdle muscles with grade 3 weakness, moderate wasting of thigh and anterior leg muscles with proximal muscle weakness and foot drop. At 40 years, he had a pacemaker implanted. The 9 exons and intronic boundaries of the desmin gene were sequenced and a heterozygous nucleotide change c. 734A > G in exon 3 was identified. PMID:24441330

Nalini, Atchayaram; Gayathri, Narayanappa; Richard, Pascale; Cobo, Ana-Maria; Urtizberea, J Andoni

2013-01-01

58

Functional analysis of Avr9/Cf-9 rapidly elicited genes identifies a protein kinase, ACIK1, that is essential for full Cf-9-dependent disease resistance in tomato.  

PubMed

Tomato (Lycopersicon esculentum) Cf genes confer resistance to the fungal pathogen Cladosporium fulvum through recognition of secreted avirulence (Avr) peptides. Plant defense responses, including rapid alterations in gene expression, are immediately activated upon perception of the pathogen. Previously, we identified a collection of Avr9/Cf-9 rapidly (15 to 30 min) elicited (ACRE) genes from tobacco (Nicotiana tabacum). Many of the ACRE genes encode putative signaling components and thus may play pivotal roles in the initial development of the defense response. To assess the requirement of 42 of these genes in the hypersensitive response (HR) induced by Cf-9/Avr9 or by Cf-4/Avr4, we used virus-induced gene silencing (VIGS) in N. benthamiana. Three genes were identified that when silenced compromised the Cf-mediated HR. We further characterized one of these genes, which encodes a Ser/Thr protein kinase called Avr9/Cf-9 induced kinase 1 (ACIK1). ACIK1 mRNA was rapidly upregulated in tobacco and tomato upon elicitation by Avr9 and by wounding. Silencing of ACIK1 in tobacco resulted in a reduced HR that correlated with loss of ACIK1 transcript. Importantly, ACIK1 was found to be required for Cf-9/Avr9- and Cf-4/Avr4-mediated HRs but not for the HR or resistance mediated by other resistance/Avr systems, such as Pto/AvrPto, Rx/Potato virus X, or N/Tobacco mosaic virus. Moreover, VIGS of LeACIK1 in tomato decreased Cf-9-mediated resistance to C. fulvum, showing the importance of ACIK1 in disease resistance. PMID:15598806

Rowland, Owen; Ludwig, Andrea A; Merrick, Catherine J; Baillieul, Fabienne; Tracy, Frances E; Durrant, Wendy E; Fritz-Laylin, Lillian; Nekrasov, Vladimir; Sjölander, Kimmen; Yoshioka, Hirofumi; Jones, Jonathan D G

2005-01-01

59

High-throughput screening identified disease-causing mutants and functional variants of ?-galactosidase A gene in Japanese male hemodialysis patients.  

PubMed

Fabry disease is a genetic disorder caused by deficient activity of lysosomal enzyme ?-galactosidase A (GLA) and end-stage renal disease (ESRD) will be present after accumulation of glycosphingolipids within the kidney. Undiagnosed atypical variants of Fabry disease, which are limited to renal involvement, were found in several ESRD patient populations. On the other hand, unexpectedly high frequencies of male subjects having the c.196G>C nucleotide change (p.E66Q) showing low ?-GLA activity have been reported on Japanese and Korean screening for Fabry disease. However, several evidences indicate the c.196G>C is not a pathogenic mutation but is a functional polymorphism. In the present study, high-throughput screening of serum GLA could successfully indentify two Fabry disease patients in a cohort consisted of 1080 male hemodialysis patients. Moreover, our serum assay was able to distinguish two patients with disease-causing genetic mutations (p.G195V and p.M296I) from eight functional variants that showed relatively decreased enzyme activity (p.E66Q). In conclusion, high-throughput serum enzyme assay distinctly identified disease-causing mutants and functional variants of GLA gene in Japanese male hemodialysis patients. In addition, our results underscore the high prevalence of not only undiagnosed Fabry patients but functional variants of p.E66Q among the ESRD population. PMID:22695894

Doi, Kent; Noiri, Eisei; Ishizu, Tomoko; Negishi, Kousuke; Suzuki, Yoshifumi; Hamasaki, Yoshifumi; Honda, Kenjiro; Fujita, Toshiro; Tsukimura, Takahiro; Togawa, Tadayasu; Saito, Seiji; Sakuraba, Hitoshi

2012-09-01

60

Genes and Disease  

NSDL National Science Digital Library

The National Center for Biotechnology Information of the National Library of Medicine (part of the National Institutes of Health) has posted this webpage, Genes and Disease, which provides information "for some 60 diseases associated with specific genes, and has links to the 1998 Gene Map as well as to PubMed, protein sequences, Online Mendelian Inheritance in Man, and associations related to each disease."

1998-01-01

61

Single-Cell Expression Profiling of Dopaminergic Neurons Combined with Association Analysis Identifies Pyridoxal Kinase as Parkinson’s Disease Gene  

PubMed Central

Objective The etiology of Parkinson disease (PD) is complex and multifactorial, with hereditary and environmental factors contributing. Monogenic forms have provided molecular clues to disease mechanisms but genetic modifiers of idiopathic PD are still to be determined. Methods We carried out whole-genome expression profiling of isolated human substantia nigra (SN) neurons from patients with PD vs. controls followed by association analysis of tagging single-nucleotide polymorphisms (SNPs) in differentially regulated genes. Association was investigated in a German PD sample and confirmed in Italian and British cohorts. Results We identified four differentially expressed genes located in PD candidate pathways, ie, MTND2 (mitochondrial, p = 7.14 × 10?7), PDXK (vitamin B6/dopamine metabolism, p = 3.27 × 10?6), SRGAP3 (axon guidance, p = 5.65 × 10?6), and TRAPPC4 (vesicle transport, p = 5.81 × 10?6). We identified a DNA variant (rs2010795) in PDXK associated with an increased risk of PD in the German cohort (p = 0.00032). This association was confirmed in the British (p = 0.028) and Italian (p = 0.0025) cohorts individually and reached a combined value of p = 1.2 × 10?7 (odds ratio [OR], 1.3; 95% confidence interval [CI], 1.18–1.44). Interpretation We provide an example of how microgenomic genome-wide expression studies in combination with association analysis can aid to identify genetic modifiers in neurodegenerative disorders. The detection of a genetic variant in PDXK, together with evidence accumulating from clinical studies, emphasize the impact of vitamin B6 status and metabolism on disease risk and therapy in PD. PMID:20035503

Elstner, Matthias; Morris, Christopher M.; Heim, Katharina; Lichtner, Peter; Bender, Andreas; Mehta, Divya; Schulte, Claudia; Sharma, Manu; Hudson, Gavin; Goldwurm, Stefano; Giovanetti, Alessandro; Zeviani, Massimo; Burn, David J.; McKeith, Ian G.; Perry, Robert H.; Jaros, E.; Krüger, Rejko; Wichmann, H.-Erich; Schreiber, Stefan; Campbell, Harry; Wilson, James F.; Wright, Alan F.; Dunlop, Malcolm; Pistis, Giorgio; Toniolo, Daniela; Chinnery, Patrick F.; Gasser, Thomas; Klopstock, Thomas; Meitinger, Thomas; Prokisch, Holger; Turnbull, Douglass M.

2014-01-01

62

Genome-Wide Analysis of Copy Number Variation Identifies Candidate Gene Loci Associated with the Progression of Non-Alcoholic Fatty Liver Disease  

PubMed Central

Between 10 and 25% of individuals with non-alcoholic fatty liver disease (NAFLD) develop hepatic fibrosis leading to cirrhosis and hepatocellular carcinoma (HCC). To investigate the molecular basis of disease progression, we performed a genome-wide analysis of copy number variation (CNV) in a total of 49 patients with NAFLD [10 simple steatosis and 39 non-alcoholic steatohepatitis (NASH)] and 49 matched controls using high-density comparative genomic hybridization (CGH) microarrays. A total of 11 CNVs were found to be unique to individuals with simple steatosis, whilst 22 were common between simple steatosis and NASH, and 224 were unique to NASH. We postulated that these CNVs could be involved in the pathogenesis of NAFLD progression. After stringent filtering, we identified four rare and/or novel CNVs that may influence the pathogenesis of NASH. Two of these CNVs, located at 13q12.11 and 12q13.2 respectively, harbour the exportin 4 (XPO4) and phosphodiesterase 1B (PDE1B) genes which are already known to be involved in the etiology of liver cirrhosis and HCC. Cross-comparison of the genes located at these four CNV loci with genes already known to be associated with NAFLD yielded a set of genes associated with shared biological processes including cell death, the key process involved in ‘second hit’ hepatic injury. To our knowledge, this pilot study is the first to provide CNV information of potential relevance to the NAFLD spectrum. These data could prove invaluable in predicting patients at risk of developing NAFLD and more importantly, those who will subsequently progress to NASH. PMID:24743702

Zain, Shamsul Mohd; Mohamed, Rosmawati; Cooper, David N.; Razali, Rozaimi; Rampal, Sanjay; Mahadeva, Sanjiv; Chan, Wah-Kheong; Anwar, Arif; Rosli, Nurul Shielawati Mohamed; Mahfudz, Anis Shafina; Cheah, Phaik-Leng; Basu, Roma Choudhury; Mohamed, Zahurin

2014-01-01

63

NIH Researchers Identify OCD Risk Gene  

MedlinePLUS

... News From NIH NIH Researchers Identify OCD Risk Gene Past Issues / Summer 2006 Table of Contents For ... and Alcoholism (NIAAA) have identified a previously unknown gene variant that doubles an individual's risk for obsessive- ...

64

Candidate genes for panhypopituitarism identified by gene expression profiling  

PubMed Central

Mutations in the transcription factors PROP1 and PIT1 (POU1F1) lead to pituitary hormone deficiency and hypopituitarism in mice and humans. The dysmorphology of developing Prop1 mutant pituitaries readily distinguishes them from those of Pit1 mutants and normal mice. This and other features suggest that Prop1 controls the expression of genes besides Pit1 that are important for pituitary cell migration, survival, and differentiation. To identify genes involved in these processes we used microarray analysis of gene expression to compare pituitary RNA from newborn Prop1 and Pit1 mutants and wild-type littermates. Significant differences in gene expression were noted between each mutant and their normal littermates, as well as between Prop1 and Pit1 mutants. Otx2, a gene critical for normal eye and pituitary development in humans and mice, exhibited elevated expression specifically in Prop1 mutant pituitaries. We report the spatial and temporal regulation of Otx2 in normal mice and Prop1 mutants, and the results suggest Otx2 could influence pituitary development by affecting signaling from the ventral diencephalon and regulation of gene expression in Rathke's pouch. The discovery that Otx2 expression is affected by Prop1 deficiency provides support for our hypothesis that identifying molecular differences in mutants will contribute to understanding the molecular mechanisms that control pituitary organogenesis and lead to human pituitary disease. PMID:21828248

Mortensen, Amanda H.; MacDonald, James W.; Ghosh, Debashis

2011-01-01

65

Experimental approaches for identifying schizophrenia risk genes.  

PubMed

Schizophrenia is a severe, debilitating and common psychiatric disorder, which directly affects approximately 1% of the population worldwide. Although previous studies have unequivocally shown that schizophrenia has a strong genetic component, our understanding of its pathophysiology remains limited. The precise genetic architecture of schizophrenia remains elusive and is likely to be complex. It is believed that multiple genetic variants, with each contributing a modest effect on disease risk, interact with environmental factors resulting in the phenotype. In this chapter, we summarise the main molecular genetic approaches that have been utilised in identifying susceptibility genes for schizophrenia and discuss the advantages and disadvantages of each approach. First, we detail the findings of linkage mapping in pedigrees (affected families), which analyse the co-segregation of polymorphic genetic markers with disease phenotype. Second, the contribution of targeted and genome-wide association studies, which compare differential allelic frequencies in schizophrenia cases and matched controls, is presented. Third, we discuss about the identification of susceptibility genes through analysis of chromosomal structural variation (gains and losses of genetic material). Lastly, we introduce the concept of re-sequencing, where the entire genome/exome is sequenced both in affected and unaffected individuals. This approach has the potential to provide a clarified picture of the majority of the genetic variation underlying disease pathogenesis. PMID:21312414

Mantripragada, Kiran K; Carroll, Liam S; Williams, Nigel M

2010-01-01

66

Identifying potential cancer driver genes by genomic data integration  

NASA Astrophysics Data System (ADS)

Cancer is a genomic disease associated with a plethora of gene mutations resulting in a loss of control over vital cellular functions. Among these mutated genes, driver genes are defined as being causally linked to oncogenesis, while passenger genes are thought to be irrelevant for cancer development. With increasing numbers of large-scale genomic datasets available, integrating these genomic data to identify driver genes from aberration regions of cancer genomes becomes an important goal of cancer genome analysis and investigations into mechanisms responsible for cancer development. A computational method, MAXDRIVER, is proposed here to identify potential driver genes on the basis of copy number aberration (CNA) regions of cancer genomes, by integrating publicly available human genomic data. MAXDRIVER employs several optimization strategies to construct a heterogeneous network, by means of combining a fused gene functional similarity network, gene-disease associations and a disease phenotypic similarity network. MAXDRIVER was validated to effectively recall known associations among genes and cancers. Previously identified as well as novel driver genes were detected by scanning CNAs of breast cancer, melanoma and liver carcinoma. Three predicted driver genes (CDKN2A, AKT1, RNF139) were found common in these three cancers by comparative analysis.

Chen, Yong; Hao, Jingjing; Jiang, Wei; He, Tong; Zhang, Xuegong; Jiang, Tao; Jiang, Rui

2013-12-01

67

Identifying Gene Regulatory Networks from Gene Expression Data  

E-print Network

27 Identifying Gene Regulatory Networks from Gene Expression Data Vladimir Filkov University of California, Davis 27.1 Introduction................................ ........... 27-1 27.2 Gene Networks ............................ ........... 27-2 Definition · Biological Properties · Utility 27.3 Gene Expression: Data and Analysis

Filkov, Vladimir

68

Pompe disease gene therapy  

PubMed Central

Pompe disease is an autosomal recessive metabolic myopathy caused by the deficiency of the lysosomal enzyme acid alpha-glucosidase and results in cellular lysosomal and cytoplasmic glycogen accumulation. A wide spectrum of disease exists from hypotonia and severe cardiac hypertrophy in the first few months of life due to severe mutations to a milder form with the onset of symptoms in adulthood. In either condition, the involvement of several systems leads to progressive weakness and disability. In early-onset severe cases, the natural history is characteristically cardiorespiratory failure and death in the first year of life. Since the advent of enzyme replacement therapy (ERT), the clinical outcomes have improved. However, it has become apparent that a new natural history is being defined in which some patients have substantial improvement following ERT, while others develop chronic disability reminiscent of the late-onset disease. In order to improve on the current clinical outcomes in Pompe patients with diminished clinical response to ERT, we sought to address the cause and potential for the treatment of disease manifestations which are not amenable to ERT. In this review, we will focus on the preclinical studies that are relevant to the development of a gene therapy strategy for Pompe disease, and have led to the first clinical trial of recombinant adeno-associated virus-mediated gene-based therapy for Pompe disease. We will cover the preliminary laboratory studies and rationale for a clinical trial, which is based on the treatment of the high rate of respiratory failure in the early-onset patients receiving ERT. PMID:21518733

Byrne, Barry J.; Falk, Darin J.; Pacak, Christina A.; Nayak, Sushrusha; Herzog, Roland W.; Elder, Melissa E.; Collins, Shelley W.; Conlon, Thomas J.; Clement, Nathalie; Cleaver, Brian D.; Cloutier, Denise A.; Porvasnik, Stacy L.; Islam, Saleem; Elmallah, Mai K.; Martin, Anatole; Smith, Barbara K.; Fuller, David D.; Lawson, Lee Ann; Mah, Cathryn S.

2011-01-01

69

PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases.  

PubMed Central

Using a sequenced pectate lyase-encoding gene (pel gene), we developed a PCR test for Erwinia carotovora. A set of primers allowed the amplification of a 434-bp fragment in E. carotovora strains. Among the 89 E. carotovora strains tested, only the Erwinia carotovora subsp. betavasculorum strains were not detected. A restriction fragment length polymorphism (RFLP) study was undertaken on the amplified fragment with seven endonucleases. The Sau3AI digestion pattern specifically identified the Erwinia carotovora subsp. atroseptica strains, and the whole set of data identified the Erwinia carotovora subsp. wasabiae strains. However, Erwinia carotovora subsp. carotovora and Erwinia carotovora subsp. odorifera could not be separated. Phenetic and phylogenic analyses of RFLP results showed E. carotovora subsp. atroseptica as a homogeneous group while E. carotovora subsp. carotovora and E. carotovora subsp. odorifera strains exhibited a genetic diversity that may result from a nonmonophyletic origin. The use of RFLP on amplified fragments in epidemiology and for diagnosis is discussed. Images PMID:7912502

Darrasse, A; Priou, S; Kotoujansky, A; Bertheau, Y

1994-01-01

70

Identifying differential correlation in gene/pathway combinations  

PubMed Central

Background An important emerging trend in the analysis of microarray data is to incorporate known pathway information a priori. Expression level "summaries" for pathways, obtained from the expression data for the genes constituting the pathway, permit the inclusion of pathway information, reduce the high dimensionality of microarray data, and have the power to elucidate gene-interaction dependencies which are not already accounted for through known pathway identification. Results We present a novel method for the analysis of microarray data that identifies joint differential expression in gene-pathway pairs. This method takes advantage of known gene pathway memberships to compute a summary expression level for each pathway as a whole. Correlations between the pathway expression summary and the expression levels of genes not already known to be associated with the pathway provide clues to gene interaction dependencies that are not already accounted for through known pathway identification, and statistically significant differences between gene-pathway correlations in phenotypically different cells (e.g., where the expression level of a single gene and a given pathway summary correlate strongly in normal cells but weakly in tumor cells) may indicate biologically relevant gene-pathway interactions. Here, we detail the methodology and present the results of this method applied to two gene-expression datasets, identifying gene-pathway pairs which exhibit differential joint expression by phenotype. Conclusion The method described herein provides a means by which interactions between large numbers of genes may be identified by incorporating known pathway information to reduce the dimensionality of gene interactions. The method is efficient and easily applied to data sets of ~102 arrays. Application of this method to two publicly-available cancer data sets yields suggestive and promising results. This method has the potential to complement gene-at-a-time analysis techniques for microarray analysis by indicating relationships between pathways and genes that have not previously been identified and which may play a role in disease. PMID:19017408

Braun, Rosemary; Cope, Leslie; Parmigiani, Giovanni

2008-01-01

71

Disease gene identification strategies for exome sequencing  

PubMed Central

Next generation sequencing can be used to search for Mendelian disease genes in an unbiased manner by sequencing the entire protein-coding sequence, known as the exome, or even the entire human genome. Identifying the pathogenic mutation amongst thousands to millions of genomic variants is a major challenge, and novel variant prioritization strategies are required. The choice of these strategies depends on the availability of well-phenotyped patients and family members, the mode of inheritance, the severity of the disease and its population frequency. In this review, we discuss the current strategies for Mendelian disease gene identification by exome resequencing. We conclude that exome strategies are successful and identify new Mendelian disease genes in approximately 60% of the projects. Improvements in bioinformatics as well as in sequencing technology will likely increase the success rate even further. Exome sequencing is likely to become the most commonly used tool for Mendelian disease gene identification for the coming years. PMID:22258526

Gilissen, Christian; Hoischen, Alexander; Brunner, Han G; Veltman, Joris A

2012-01-01

72

Network Topology Reveals Key Cardiovascular Disease Genes  

PubMed Central

The structure of protein-protein interaction (PPI) networks has already been successfully used as a source of new biological information. Even though cardiovascular diseases (CVDs) are a major global cause of death, many CVD genes still await discovery. We explore ways to utilize the structure of the human PPI network to find important genes for CVDs that should be targeted by drugs. The hope is to use the properties of such important genes to predict new ones, which would in turn improve a choice of therapy. We propose a methodology that examines the PPI network wiring around genes involved in CVDs. We use the methodology to identify a subset of CVD-related genes that are statistically significantly enriched in drug targets and “driver genes.” We seek such genes, since driver genes have been proposed to drive onset and progression of a disease. Our identified subset of CVD genes has a large overlap with the Core Diseasome, which has been postulated to be the key to disease formation and hence should be the primary object of therapeutic intervention. This indicates that our methodology identifies “key” genes responsible for CVDs. Thus, we use it to predict new CVD genes and we validate over 70% of our predictions in the literature. Finally, we show that our predicted genes are functionally similar to currently known CVD drug targets, which confirms a potential utility of our methodology towards improving therapy for CVDs. PMID:23977067

Stojkovi?, Neda; Radak, Djordje; Pržulj, Nataša

2013-01-01

73

Camurati-Engelmann disease with obesity in a newly identified family carrying a missense p.Arg156Cys mutation in the TGFB1 gene.  

PubMed

We report on a family affected by Camurati-Engelmann disease, characterized by radiological signs limited to the tibia, and associated with overweight or obesity, which is not a known feature of this disorder. The affected patients were heterozygous for a c.466C > T mutation (which predicts p.Arg156Cys) in the latency associated protein (LAP)-coding domain of the TGFB1 gene. This mutation had previously been reported once in another family with a similar, atypical phenotype, which suggests a possible phenotype/genotype relationship. PMID:23824952

Collet, Corinne; Laplanche, Jean-Louis; de Vernejoul, Marie-Christine

2013-08-01

74

Chapter 15: Disease Gene Prioritization  

PubMed Central

Disease-causing aberrations in the normal function of a gene define that gene as a disease gene. Proving a causal link between a gene and a disease experimentally is expensive and time-consuming. Comprehensive prioritization of candidate genes prior to experimental testing drastically reduces the associated costs. Computational gene prioritization is based on various pieces of correlative evidence that associate each gene with the given disease and suggest possible causal links. A fair amount of this evidence comes from high-throughput experimentation. Thus, well-developed methods are necessary to reliably deal with the quantity of information at hand. Existing gene prioritization techniques already significantly improve the outcomes of targeted experimental studies. Faster and more reliable techniques that account for novel data types are necessary for the development of new diagnostics, treatments, and cure for many diseases. PMID:23633938

Bromberg, Yana

2013-01-01

75

Systematic characterisation of disease associated balanced chromosome rearrangements by FISH: cytogenetically and genetically anchored YACs identify microdeletions and candidate regions for mental retardation genes  

PubMed Central

Disease associated balanced chromosome rearrangements (DBCRs) have been instrumental in the isolation of many disease genes. To facilitate the molecular cytogenetic characterisation of DBCRs, we have generated a set of >1200 non-chimeric, cytogenetically and genetically anchored CEPH YACs, on average one per 3 cM, spaced over the entire human genome. By fluorescence in situ hybridisation (FISH), we have performed a systematic search for YACs spanning translocation breakpoints. Patients with DBCRs and either syndromic or non-syndromic mental retardation (MR) were ascertained through the Mendelian Cytogenetics Network (MCN), a collaborative effort of, at present, 270 cytogenetic laboratories throughout the world. In this pilot study, we have characterised 10 different MR associated chromosome regions delineating candidate regions for MR. Five of these regions are narrowed to breakpoint spanning YACs, three of which are located on chromosomes 13q21, 13q22, and 13q32, respectively, one on chromosome 4p14, and one on 6q25. In two out of six DBCRs, we found cytogenetically cryptic deletions of 3-5 Mb on one or both translocation chromosomes. Thus, cryptic deletions may be an important cause of disease in seemingly balanced chromosome rearrangements that are associated with a disease phenotype. Our region specific FISH probes, which are available to MCN members, can be a powerful tool in clinical cytogenetics and positional cloning.???Keywords: chromosomal translocation; fluorescence in situ hybridisation (FISH); Mendelian Cytogenetics Network (MCN); mental retardation (MR) PMID:10227392

Wirth, J; Nothwang, H; van der Maarel, S; Menzel, C; Borck, G; Lopez-Pajares, I; Brondum-Nielsen, K; Tommerup, N; Bugge, M; Ropers, H; Haaf, T

1999-01-01

76

The axon reaction: identifying the genes that make a difference.  

PubMed

Numerous CNS diseases of primarily non-inflammatory origin, such as idiopathic neurodegenerative diseases, contain elements of inflammation, with T cell infiltration, MHC class II expression and neuron/axon damage. Gene mapping in human clinical materials have in most cases failed to unravel discrete genes, since most genes instrumental in non-Mendelian forms of these complex diseases are likely to modestly affect risk, be evolutionary conserved in the population and vary between individuals. We here describe the exploration of susceptibility to neurodegeneration and inflammatory glial activation in response to mechanical nerve injury using experimental genetic models. The response to ventral root avulsion, which is a simple and reproducible model of nerve injury-induced neurodegeneration and inflammation, was examined in a panel of inbred rat strains. A whole genome scan subsequently performed in a F2(DAxPVG) intercross identified quantitative trait loci (QTLs) regulating different features of the nerve injury response. Fine mapping in an advanced intercross line revealed polymorphisms in the Mhc2ta gene as being responsible for strain differences in MHC class II expression. Furthermore, a polymorphism in the syntenic human gene, MHC2TA, was associated both with lower expression of MHC class II-associated genes and increased susceptibility to inflammatory diseases. These results provide important insights into the genetic regulation of fundamental physiological responses of the nervous system to damage and demonstrate relevance also for human diseases. PMID:17561176

Piehl, Fredrik; Swanberg, Maria; Lidman, Olle

2007-09-10

77

Knowledge-Driven Analysis Identifies a GeneGene Interaction Affecting High-Density Lipoprotein  

E-print Network

Knowledge-Driven Analysis Identifies a Gene­Gene Interaction Affecting High-Density Lipoprotein-density lipoprotein cholesterol (HDL-C) levels are among the most important risk factors for coronary artery disease on HDL-C levels (Bonferroni corrected Pc = 0.002). Using an adaptive locus-based validation procedure, we

Keinan, Alon

78

Scan-Statistic Approach Identifies Clusters of Rare Disease Variants in LRP2, a Gene Linked and Associated with Autism Spectrum Disorders, in Three Datasets  

PubMed Central

Cluster-detection approaches, commonly used in epidemiology and astronomy, can be applied in the context of genetic sequence data for the identification of genetic regions significantly enriched with rare disease-risk variants (DRVs). Unlike existing association tests for sequence data, the goal of cluster-detection methods is to localize significant disease mutation clusters within a gene or region of interest. Here, we focus on a chromosome 2q replicated linkage region that is associated with autism spectrum disorder (ASD) and that has been sequenced in three independent datasets. We found that variants in one gene, LRP2, residing on 2q are associated with ASD in two datasets (the combined variable-threshold-test p value is 1.2 × 10?5). Using a cluster-detection method, we show that in the discovery and replication datasets, variants associated with ASD cluster preponderantly in 25 kb windows (adjusted p values are p1 = 0.003 and p2 = 0.002), and the two windows are highly overlapping. Furthermore, for the third dataset, a 25 kb region similar to those in the other two datasets shows significant evidence of enrichment of rare DRVs. The region implicated by all three studies is involved in ligand binding, suggesting that subtle alterations in either LRP2 expression or LRP2 primary sequence modulate the uptake of LRP2 ligands. BMP4 is a ligand of particular interest given its role in forebrain development, and modest changes in BMP4 binding, which binds to LRP2 near the mutation cluster, might subtly affect development and could lead to autism-associated phenotypes. PMID:22578327

Ionita-Laza, Iuliana; Makarov, Vlad; Buxbaum, Joseph D.

2012-01-01

79

Characterizing the Molecular Basis of Attenuation of Marek's Disease Virus via In Vitro Serial Passage Identifies De Novo Mutations in the Helicase-Primase Subunit Gene UL5 and Other Candidates Associated with Reduced Virulence  

PubMed Central

ABSTRACT Marek's disease (MD) is a lymphoproliferative disease of chickens caused by the oncogenic Gallid herpesvirus 2, commonly known as Marek's disease virus (MDV). MD vaccines, the primary control method, are often generated by repeated in vitro serial passage of this highly cell-associated virus to attenuate virulent MDV strains. To understand the genetic basis of attenuation, we used experimental evolution by serially passing three virulent MDV replicates generated from an infectious bacterial artificial chromosome (BAC) clone. All replicates became completely or highly attenuated, indicating that de novo mutation, and not selection among quasispecies existing in a strain, is the primary driving force for the reduction in virulence. Sequence analysis of the attenuated replicates revealed 41 to 95 single-nucleotide variants (SNVs) at 2% or higher frequency in each population and several candidate genes containing high-frequency, nonsynonymous mutations. Five candidate mutations were incorporated into recombinant viruses to determine their in vivo effect. SNVs within UL42 (DNA polymerase auxiliary subunit) and UL46 (tegument) had no measurable influence, while two independent mutations in LORF2 (a gene of unknown function) improved survival time of birds but did not alter disease incidence. A fifth SNV located within UL5 (helicase-primase subunit) greatly reduced in vivo viral replication, increased survival time of birds, and resulted in only 0 to 11% disease incidence. This study shows that multiple genes, often within pathways involving DNA replication and transcriptional regulation, are involved in de novo attenuation of MDV and provides targets for the rational design of future MD vaccines. IMPORTANCE Marek's disease virus (MDV) is a very important pathogen in chickens that costs the worldwide poultry industry $1 billion to $2 billion annually. Marek's disease (MD) vaccines, the primary control method, are often produced by passing virulent strains in cell culture until attenuated. To understand this process, we identified all the changes in the viral genome that occurred during repeated cell passage. We find that a single mutation in the UL5 gene, which encodes a viral protein necessary for DNA replication, reduces disease incidence by 90% or more. In addition, other candidate genes were identified. This information should lead to the development of more effective and rationally designed MD vaccines leading to improved animal health and welfare and lower costs to consumers. PMID:24648463

Hildebrandt, Evin; Dunn, John R.; Perumbakkam, Sudeep; Niikura, Masahiro

2014-01-01

80

Differential Network Analyses of Alzheimer's Disease Identify Early Events in Alzheimer's Disease Pathology  

PubMed Central

In late-onset Alzheimer's disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with low topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases. PMID:25147748

Perry, George; Ray, Monika

2014-01-01

81

Gene therapy for Parkinson's disease  

Microsoft Academic Search

Gene therapy is a potentially powerful approach to the treatment of neurological diseases. The discovery of neurotrophic factors\\u000a inhibiting neurodegenerative processes and neurotransmitter-synthesizing enzymes provides the basis for current gene therapy\\u000a strategies for Parkinson's disease. Genes can be transferred by viral or nonviral vectors. Of the various possible vectors,\\u000a recombinant retroviruses are the most efficient for genetic modification of cells

Philippe Horellou; Jacques Mallet

1997-01-01

82

Human disease genes: patterns and predictions  

Microsoft Academic Search

We compared genes at which mutations are known to cause human disease (disease genes) with other human genes (nondisease genes) using a large set of human–rodent alignments to infer evolutionary patterns. Such comparisons may be of use both in predicting disease genes and in understanding the general evolution of human genes. Four features were found to differ significantly between disease

Nick G. C. Smith; Adam Eyre-Walker

2003-01-01

83

Gene Therapy for Parkinson's Disease  

PubMed Central

Current pharmacological and surgical treatments for Parkinson's disease offer symptomatic improvements to those suffering from this incurable degenerative neurological disorder, but none of these has convincingly shown effects on disease progression. Novel approaches based on gene therapy have several potential advantages over conventional treatment modalities. These could be used to provide more consistent dopamine supplementation, potentially providing superior symptomatic relief with fewer side effects. More radically, gene therapy could be used to correct the imbalances in basal ganglia circuitry associated with the symptoms of Parkinson's disease, or to preserve or restore dopaminergic neurons lost during the disease process itself. The latter neuroprotective approach is the most exciting, as it could theoretically be disease modifying rather than simply symptom alleviating. Gene therapy agents using these approaches are currently making the transition from the laboratory to the bedside. This paper summarises the theoretical approaches to gene therapy for Parkinson's disease and the findings of clinical trials in this rapidly changing field. PMID:22619738

Denyer, Rachel; Douglas, Michael R.

2012-01-01

84

Mining biological databases for candidate disease genes  

NASA Astrophysics Data System (ADS)

The publicly-funded effort to sequence the complete nucleotide sequence of the human genome, the Human Genome Project (HGP), has currently produced more than 93% of the 3 billion nucleotides of the human genome into a preliminary `draft' format. In addition, several valuable sources of information have been developed as direct and indirect results of the HGP. These include the sequencing of model organisms (rat, mouse, fly, and others), gene discovery projects (ESTs and full-length), and new technologies such as expression analysis and resources (micro-arrays or gene chips). These resources are invaluable for the researchers identifying the functional genes of the genome that transcribe and translate into the transcriptome and proteome, both of which potentially contain orders of magnitude more complexity than the genome itself. Preliminary analyses of this data identified approximately 30,000 - 40,000 human `genes.' However, the bulk of the effort still remains -- to identify the functional and structural elements contained within the transcriptome and proteome, and to associate function in the transcriptome and proteome to genes. A fortuitous consequence of the HGP is the existence of hundreds of databases containing biological information that may contain relevant data pertaining to the identification of disease-causing genes. The task of mining these databases for information on candidate genes is a commercial application of enormous potential. We are developing a system to acquire and mine data from specific databases to aid our efforts to identify disease genes. A high speed cluster of Linux of workstations is used to analyze sequence and perform distributed sequence alignments as part of our data mining and processing. This system has been used to mine GeneMap99 sequences within specific genomic intervals to identify potential candidate disease genes associated with Bardet-Biedle Syndrome (BBS).

Braun, Terry A.; Scheetz, Todd; Webster, Gregg L.; Casavant, Thomas L.

2001-07-01

85

Gene expression analysis identifies global gene dosage sensitivity in cancer.  

PubMed

Many cancer-associated somatic copy number alterations (SCNAs) are known. Currently, one of the challenges is to identify the molecular downstream effects of these variants. Although several SCNAs are known to change gene expression levels, it is not clear whether each individual SCNA affects gene expression. We reanalyzed 77,840 expression profiles and observed a limited set of 'transcriptional components' that describe well-known biology, explain the vast majority of variation in gene expression and enable us to predict the biological function of genes. On correcting expression profiles for these components, we observed that the residual expression levels (in 'functional genomic mRNA' profiling) correlated strongly with copy number. DNA copy number correlated positively with expression levels for 99% of all abundantly expressed human genes, indicating global gene dosage sensitivity. By applying this method to 16,172 patient-derived tumor samples, we replicated many loci with aberrant copy numbers and identified recurrently disrupted genes in genomically unstable cancers. PMID:25581432

Fehrmann, Rudolf S N; Karjalainen, Juha M; Krajewska, Ma?gorzata; Westra, Harm-Jan; Maloney, David; Simeonov, Anton; Pers, Tune H; Hirschhorn, Joel N; Jansen, Ritsert C; Schultes, Erik A; van Haagen, Herman H H B M; de Vries, Elisabeth G E; Te Meerman, Gerard J; Wijmenga, Cisca; van Vugt, Marcel A T M; Franke, Lude

2015-02-01

86

Advances in identifying beryllium sensitization and disease.  

PubMed

Beryllium is a lightweight metal with unique qualities related to stiffness, corrosion resistance, and conductivity. While there are many useful applications, researchers in the 1930s and 1940s linked beryllium exposure to a progressive occupational lung disease. Acute beryllium disease is a pulmonary irritant response to high exposure levels, whereas chronic beryllium disease (CBD) typically results from a hypersensitivity response to lower exposure levels. A blood test, the beryllium lymphocyte proliferation test (BeLPT), was an important advance in identifying individuals who are sensitized to beryllium (BeS) and thus at risk for developing CBD. While there is no true "gold standard" for BeS, basic epidemiologic concepts have been used to advance our understanding of the different screening algorithms. PMID:20195436

Middleton, Dan; Kowalski, Peter

2010-01-01

87

Advances in Identifying Beryllium Sensitization and Disease  

PubMed Central

Beryllium is a lightweight metal with unique qualities related to stiffness, corrosion resistance, and conductivity. While there are many useful applications, researchers in the 1930s and l940s linked beryllium exposure to a progressive occupational lung disease. Acute beryllium disease is a pulmonary irritant response to high exposure levels, whereas chronic beryllium disease (CBD) typically results from a hypersensitivity response to lower exposure levels. A blood test, the beryllium lymphocyte proliferation test (BeLPT), was an important advance in identifying individuals who are sensitized to beryllium (BeS) and thus at risk for developing CBD. While there is no true “gold standard” for BeS, basic epidemiologic concepts have been used to advance our understanding of the different screening algorithms. PMID:20195436

Middleton, Dan; Kowalski, Peter

2010-01-01

88

Identifying rare events in rare diseases.  

PubMed

Utilizing genomic signatures from diagnostic tumor samples to forecast clinical behavior and response to therapy has long been a goal, and we are now poised to further refine how we can identify the relatively rare patients with aggressive neuroblastoma masquerading as patients with a more benign form of the disease. Clin Cancer Res; 21(8); 1782-5. ©2014 AACR. See related article by Oberthuer et al., p. 1904. PMID:25424848

Attiyeh, Edward F; Maris, John M

2015-04-15

89

Prediction of disease genes using tissue-specified gene-gene network  

PubMed Central

Background Tissue specificity is an important aspect of many genetic diseases in the context of genetic disorders as the disorder affects only few tissues. Therefore tissue specificity is important in identifying disease-gene associations. Hence this paper seeks to discuss the impact of using tissue specificity in predicting new disease-gene associations and how to use tissue specificity along with phenotype information for a particular disease. Methods In order to find out the impact of using tissue specificity for predicting new disease-gene associations, this study proposes a novel method called tissue-specified genes to construct tissues-specific gene-gene networks for different tissue samples. Subsequently, these networks are used with phenotype details to predict disease genes by using Katz method. The proposed method was compared with three other tissue-specific network construction methods in order to check its effectiveness. Furthermore, to check the possibility of using tissue-specific gene-gene network instead of generic protein-protein network at all time, the results are compared with three other methods. Results In terms of leave-one-out cross validation, calculation of the mean enrichment and ROC curves indicate that the proposed approach outperforms existing network construction methods. Furthermore tissues-specific gene-gene networks make a more positive impact on predicting disease-gene associations than generic protein-protein interaction networks. Conclusions In conclusion by integrating tissue-specific data it enabled prediction of known and unknown disease-gene associations for a particular disease more effectively. Hence it is better to use tissue-specific gene-gene network whenever possible. In addition the proposed method is a better way of constructing tissue-specific gene-gene networks. PMID:25350876

2014-01-01

90

Imaging, Diagnosis, Prognosis Gene Expression Analysis Identifies Potential Biomarkers of  

E-print Network

Imaging, Diagnosis, Prognosis Gene Expression Analysis Identifies Potential Biomarkers microarray gene expression analysis to define 92 genes that encode putative secreted proteins in neurofibroma sera. Results: Of 13 candidate genes evaluated, only adrenomedullin (ADM) was confirmed

Hammerton, James

91

Gene therapy for retinal diseases.  

PubMed

Gene therapy has a growing research potential particularly in the field of ophthalmic and retinal diseases owing to three main characteristics of the eye; accessibility in terms of injections and surgical interventions, its immune-privileged status facilitating the accommodation to the antigenicity of a viral vector, and tight blood-ocular barriers which save other organs from unwanted contamination. Gene therapy has tremendous potential for different ocular diseases. In fact, the perspective of gene therapy in the field of eye research does not confine to exclusive monogenic ophthalmic problems and it has the potential to include gene based pharmacotherapies for non-monogenic problems such as age related macular disease and diabetic retinopathy. The present article has focused on how gene transfer into the eye has been developed and used to treat retinal disorders with no available therapy at present. PMID:25709778

Samiy, Nasrollah

2014-01-01

92

Basal Gene Expression by Lung CD4+ T Cells in Chronic Obstructive Pulmonary Disease Identifies Independent Molecular Correlates of Airflow Obstruction and Emphysema Extent  

PubMed Central

Lung CD4+ T cells accumulate as chronic obstructive pulmonary disease (COPD) progresses, but their role in pathogenesis remains controversial. To address this controversy, we studied lung tissue from 53 subjects undergoing clinically-indicated resections, lung volume reduction, or transplant. Viable single-cell suspensions were analyzed by flow cytometry or underwent CD4+ T cell isolation, followed either by stimulation with anti-CD3 and cytokine/chemokine measurement, or by real-time PCR analysis. In lung CD4+ T cells of most COPD subjects, relative to lung CD4+ T cells in smokers with normal spirometry: (a) stimulation induced minimal IFN-? or other inflammatory mediators, but many subjects produced more CCL2; (b) the T effector memory subset was less uniformly predominant, without correlation with decreased IFN-? production. Analysis of unstimulated lung CD4+ T cells of all subjects identified a molecular phenotype, mainly in COPD, characterized by markedly reduced mRNA transcripts for the transcription factors controlling TH1, TH2, TH17 and FOXP3+ T regulatory subsets and their signature cytokines. This mRNA-defined CD4+ T cell phenotype did not result from global inability to elaborate mRNA; increased transcripts for inhibitory CD28 family members or markers of anergy; or reduced telomerase length. As a group, these subjects had significantly worse spirometry, but not DLCO, relative to subjects whose lung CD4+ T cells expressed a variety of transcripts. Analysis of mRNA transcripts of unstimulated lung CD4+ T cell among all subjects identified two distinct molecular correlates of classical COPD clinical phenotypes: basal IL-10 transcripts correlated independently and inversely with emphysema extent (but not spirometry); by contrast, unstimulated IFN-? transcripts correlated independently and inversely with reduced spirometry (but not reduced DLCO or emphysema extent). Aberrant lung CD4+ T cells polarization appears to be common in advanced COPD, but also exists in some smokers with normal spirometry, and may contribute to development and progression of specific COPD phenotypes. Trial Registration ClinicalTrials.gov as NCT00281229 PMID:24805101

Freeman, Christine M.; McCubbrey, Alexandra L.; Crudgington, Sean; Nelson, Joshua; Martinez, Fernando J.; Han, MeiLan K.; Washko, George R.; Chensue, Stephen W.; Arenberg, Douglas A.; Meldrum, Catherine A.; McCloskey, Lisa; Curtis, Jeffrey L.

2014-01-01

93

Identifying The Most Significant Genes From Gene Expression Profiles For Sample Classification  

E-print Network

Identifying The Most Significant Genes From Gene Expression Profiles For Sample Classification of gene expression profiles. This generated gene data include complex variations of expression levels with the existing techniques. Keywords: Bioinformatics, Gene Selection, Gene Classification. I. INTRODUCTION The DNA

Al-Mubaid, Hisham

94

Mutations of the PKD1 gene among Japanese autosomal dominant polycystic kidney disease patients, including one heterozygous mutation identified in members of the same family  

Microsoft Academic Search

More than 80 mutations of the PKD1 gene have been reported, mostly in patients from Western Europe. New techniques are being used to detect an increasing number\\u000a of mutations, even in the homologous region of the PKD1 gene. Polymerase chain reaction–single-strand conformation polymorphism (PCR-SSCP) or denaturing high-performance liquid\\u000a chromatography (DHPLC) analyses were performed in the present study to screen mutations

Michiko Mizoguchi; Takashi Tamura; Akiko Yamaki; Eiji Higashihara; Yoshiko Shimizu

2001-01-01

95

Extended haplotype association study in Crohn’s disease identifies a novel, Ashkenazi Jewish-specific missense mutation in the NF-?B pathway gene, HEATR3  

PubMed Central

The Ashkenazi Jewish population has a several-fold higher prevalence of Crohn’s disease compared to non-Jewish European ancestry populations and has a unique genetic history. Haplotype association is critical to Crohn’s disease etiology in this population, most notably at NOD2, in which three causal, uncommon, and conditionally independent NOD2 variants reside on a shared background haplotype. We present an analysis of extended haplotypes which showed significantly greater association to Crohn’s disease in the Ashkenazi Jewish population compared to a non-Jewish population (145 haplotypes and no haplotypes with P-value < 10?3, respectively). Two haplotype regions, one each on chromosomes 16 and 21, conferred increased disease risk within established Crohn’s disease loci. We performed exome sequencing of 55 Ashkenazi Jewish individuals and follow-up genotyping focused on variants in these two regions. We observed Ashkenazi Jewish-specific nominal association at R755C in TRPM2 on chromosome 21. Within the chromosome 16 region, R642S of HEATR3 and rs9922362 of BRD7 showed genome-wide significance. Expression studies of HEATR3 demonstrated a positive role in NOD2-mediated NF-?B signaling. The BRD7 signal showed conditional dependence with only the downstream rare Crohn’s disease-causal variants in NOD2, but not with the background haplotype; this elaborates NOD2 as a key illustration of synthetic association. PMID:23615072

Zhang, Wei; Hui, Ken Y.; Gusev, Alexander; Warner, Neil; Evelyn Ng, Sok Meng; Ferguson, John; Choi, Murim; Burberry, Aaron; Abraham, Clara; Mayer, Lloyd; Desnick, Robert J.; Cardinale, Christopher J.; Hakonarson, Hakon; Waterman, Matti; Chowers, Yehuda; Karban, Amir; Brant, Steven R.; Silverberg, Mark S.; Gregersen, Peter K.; Katz, Seymour; Lifton, Richard P.; Zhao, Hongyu; Nuñez, Gabriel; Pe’er, Itsik; Peter, Inga; Cho, Judy H.

2013-01-01

96

A penalized robust method for identifying gene-environment interactions.  

PubMed

In high-throughput studies, an important objective is to identify gene-environment interactions associated with disease outcomes and phenotypes. Many commonly adopted methods assume specific parametric or semiparametric models, which may be subject to model misspecification. In addition, they usually use significance level as the criterion for selecting important interactions. In this study, we adopt the rank-based estimation, which is much less sensitive to model specification than some of the existing methods and includes several commonly encountered data and models as special cases. Penalization is adopted for the identification of gene-environment interactions. It achieves simultaneous estimation and identification and does not rely on significance level. For computation feasibility, a smoothed rank estimation is further proposed. Simulation shows that under certain scenarios, for example, with contaminated or heavy-tailed data, the proposed method can significantly outperform the existing alternatives with more accurate identification. We analyze a lung cancer prognosis study with gene expression measurements under the AFT (accelerated failure time) model. The proposed method identifies interactions different from those using the alternatives. Some of the identified genes have important implications. PMID:24616063

Shi, Xingjie; Liu, Jin; Huang, Jian; Zhou, Yong; Xie, Yang; Ma, Shuangge

2014-04-01

97

Single Gene Disease Risk  

Microsoft Academic Search

\\u000a The diagnosis of a child with a single gene disorder can take on different meanings for different families. It is not uncommon\\u000a for some families to arrive at a pediatric genetics clinic after months or years of searching for an underlying reason for\\u000a their child’s symptoms. The fact that, through genetic testing, clinicians can put a name to the collection

Tricia See; Cynthia J. Tifft

98

Virus induced gene silencing of Arabidopsis gene homologues in wheat identify genes conferring improved drought tolerance  

Technology Transfer Automated Retrieval System (TEKTRAN)

In a non-model staple crop like wheat, functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for wheat breeding. Virus induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited tra...

99

Gene therapy for retinal disease  

PubMed Central

Gene therapy strategies for the treatment of inherited retinal diseases have made major advances in recent years. This review focuses on adeno-associated viral (AAV) vector approaches to treat retinal degeneration and thus prevent or delay the onset of blindness. Data from human clinical trials of gene therapy for retinal disease show encouraging signs of safety and efficacy from AAV vectors. Recent progress in enhancing cell-specific targeting and transduction efficiency of the various retinal layers plus the use of AAV-delivered growth factors to augment the therapeutic effect and limit cell death suggest even greater success in future human trials is possible. PMID:23305707

McClements, Michelle E; MacLaren, Robert E

2013-01-01

100

Identifying Complex Biological Interactions based on Categorical Gene Expression Data  

Microsoft Academic Search

A novel method, MUTIC (model utilization-based clustering), is described for identifying complex interactions between genes or gene-categories based on gene expression data. The method deals with binary categorical data, which consists of a set of gene expression profiles divided into two biologically meaningful categories. It does not require data from multiple time points. Gene expression profiles are represented by feature

Ben Goertzel; Cassio Pennachin; L. de Souza Coelho; M. Mudado

2006-01-01

101

Disease gene prioritization using network and feature.  

PubMed

Identifying high-confidence candidate genes that are causative for disease phenotypes, from the large lists of variations produced by high-throughput genomics, can be both time-consuming and costly. The development of novel computational approaches, utilizing existing biological knowledge for the prioritization of such candidate genes, can improve the efficiency and accuracy of the biomedical data analysis. It can also reduce the cost of such studies by avoiding experimental validations of irrelevant candidates. In this study, we address this challenge by proposing a novel gene prioritization approach that ranks promising candidate genes that are likely to be involved in a disease or phenotype under study. This algorithm is based on the modified conditional random field (CRF) model that simultaneously makes use of both gene annotations and gene interactions, while preserving their original representation. We validated our approach on two independent disease benchmark studies by ranking candidate genes using network and feature information. Our results showed both high area under the curve (AUC) value (0.86), and more importantly high partial AUC (pAUC) value (0.1296), and revealed higher accuracy and precision at the top predictions as compared with other well-performed gene prioritization tools, such as Endeavour (AUC-0.82, pAUC-0.083) and PINTA (AUC-0.76, pAUC-0.066). We were able to detect more target genes (9/18/19/27) on top positions (1/5/10/20) compared to Endeavour (3/11/14/23) and PINTA (6/10/13/18). To demonstrate its usability, we applied our method to a case study for the prediction of molecular mechanisms contributing to intellectual disability and autism. Our approach was able to correctly recover genes related to both disorders and provide suggestions for possible additional candidates based on their rankings and functional annotations. PMID:25844670

Xie, Bingqing; Agam, Gady; Balasubramanian, Sandhya; Xu, Jinbo; Gilliam, T Conrad; Maltsev, Natalia; Börnigen, Daniela

2015-04-01

102

Phenol sulfotransferases: Candidate genes for Batten disease  

SciTech Connect

Batten disease (juvenile-onset neuronal ceroid lipofuscinosis; JNCL) is an autosomal recessive neurodegenerative disorder, characterized by the cytosomal accumulation of autofluorescent protolipopigments in neurons and other cell types. The Batten disease gene (CLN3) has not yet been identified, but has been mapped to a small region of human chromosome area 16p12.1-p11.2. We recently reported the fortuitous discovery that the cytosolic phenol sulfotransferase gene (STP) is located within this same interval of chromosome 16p. Since phenol sulfotransferase is expressed in neurons, can sulfate lipophilic phenolic compounds, and is mapped near CLN3, STP is considered as a candidate gene for Batten disease. YAC and cosmid cloning results have further substantiated the close proximity of STP and a highly related sulfotransferase (STM), encoding the catecholamine-preferring enzyme, to the CLN3 region of chromosome 16p. In this report, we summarize some of the recent progress in the identification of two phenol sulfotransferase genes (STP and STM) as positional candidate genes for Batten disease. 42 refs., 1 tab.

Dooley, T.P.; Probst, P.; Obermoeller, R.D. [M.D. Anderson Cancer Center, Houston, TX (United States)] [and others

1995-06-05

103

Extended haplotype association study in Crohn's disease identifies a novel, Ashkenazi Jewish-specific missense mutation in the NF-?B pathway gene, HEATR3.  

PubMed

The Ashkenazi Jewish population has a several-fold higher prevalence of Crohn's disease (CD) compared with non-Jewish European ancestry populations and has a unique genetic history. Haplotype association is critical to CD etiology in this population, most notably at NOD2, in which three causal, uncommon and conditionally independent NOD2 variants reside on a shared background haplotype. We present an analysis of extended haplotypes that showed significantly greater association to CD in the Ashkenazi Jewish population compared with a non-Jewish population (145 haplotypes and no haplotypes with P-value <10(-3), respectively). Two haplotype regions, one each on chromosomes 16 and 21, conferred increased disease risk within established CD loci. We performed exome sequencing of 55 Ashkenazi Jewish individuals and follow-up genotyping focused on variants in these two regions. We observed Ashkenazi Jewish-specific nominal association at R755C in TRPM2 on chromosome 21. Within the chromosome 16 region, R642S of HEATR3 and rs9922362 of BRD7 showed genome-wide significance. Expression studies of HEATR3 demonstrated a positive role in NOD2-mediated NF-?B signaling. The BRD7 signal showed conditional dependence with only the downstream rare CD-causal variants in NOD2, but not with the background haplotype; this elaborates NOD2 as a key illustration of synthetic association. PMID:23615072

Zhang, W; Hui, K Y; Gusev, A; Warner, N; Ng, S M E; Ferguson, J; Choi, M; Burberry, A; Abraham, C; Mayer, L; Desnick, R J; Cardinale, C J; Hakonarson, H; Waterman, M; Chowers, Y; Karban, A; Brant, S R; Silverberg, M S; Gregersen, P K; Katz, S; Lifton, R P; Zhao, H; Nuñez, G; Pe'er, I; Peter, I; Cho, J H

2013-01-01

104

TRANSCRIPT PROFILING IN MEDICAGO TRUNCATULA TO IDENTIFY GENES INVOLVED IN ABIOTIC AND BIOTIC STRESS RESPONSES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Medicago truncatula is a useful model for identifying genes of agronomic importance in legumes with more complex genomes. We are using microarray transcript profiling to identify genes involved in disease resistance responses and aluminum tolerance. A collection of accessions of M. truncatula was sc...

105

Patching genes to fight disease  

SciTech Connect

The National Institutes of Health has approved the first gene therapy experiments, one of which will try to cure cancer by bolstering the immune system. The applications of such therapy are limited, but the potential aid to people with genetic diseases is great.

Holzman, D.

1990-09-03

106

The axon reaction: Identifying the genes that make a difference  

Microsoft Academic Search

Numerous CNS diseases of primarily non-inflammatory origin, such as idiopathic neurodegenerative diseases, contain elements of inflammation, with T cell infiltration, MHC class II expression and neuron\\/axon damage. Gene mapping in human clinical materials have in most cases failed to unravel discrete genes, since most genes instrumental in non-Mendelian forms of these complex diseases are likely to modestly affect risk, be

Fredrik Piehl; Maria Swanberg; Olle Lidman

2007-01-01

107

Weighted Frequent Gene Co-expression Network Mining to Identify Genes Involved in Genome Stability  

PubMed Central

Gene co-expression network analysis is an effective method for predicting gene functions and disease biomarkers. However, few studies have systematically identified co-expressed genes involved in the molecular origin and development of various types of tumors. In this study, we used a network mining algorithm to identify tightly connected gene co-expression networks that are frequently present in microarray datasets from 33 types of cancer which were derived from 16 organs/tissues. We compared the results with networks found in multiple normal tissue types and discovered 18 tightly connected frequent networks in cancers, with highly enriched functions on cancer-related activities. Most networks identified also formed physically interacting networks. In contrast, only 6 networks were found in normal tissues, which were highly enriched for housekeeping functions. The largest cancer network contained many genes with genome stability maintenance functions. We tested 13 selected genes from this network for their involvement in genome maintenance using two cell-based assays. Among them, 10 were shown to be involved in either homology-directed DNA repair or centrosome duplication control including the well- known cancer marker MKI67. Our results suggest that the commonly recognized characteristics of cancers are supported by highly coordinated transcriptomic activities. This study also demonstrated that the co-expression network directed approach provides a powerful tool for understanding cancer physiology, predicting new gene functions, as well as providing new target candidates for cancer therapeutics. PMID:22956898

Zhang, Jie; Lu, Kewei; Xiang, Yang; Islam, Muhtadi; Kotian, Shweta; Kais, Zeina; Lee, Cindy; Arora, Mansi; Liu, Hui-wen; Parvin, Jeffrey D.; Huang, Kun

2012-01-01

108

RNA-Seq identifies novel myocardial gene expression signatures of heart failure.  

PubMed

Heart failure is a complex clinical syndrome and has become the most common reason for adult hospitalization in developed countries. Two subtypes of heart failure, ischemic heart disease (ISCH) and dilated cardiomyopathy (DCM), have been studied using microarray platforms. However, microarray has limited resolution. Here we applied RNA sequencing (RNA-Seq) to identify gene signatures for heart failure from six individuals, including three controls, one ISCH and two DCM patients. Using genes identified from this small RNA-Seq dataset, we were able to accurately classify heart failure status in a much larger set of 313 individuals. The identified genes significantly overlapped with genes identified via genome-wide association studies for cardiometabolic traits and the promoters of those genes were enriched for binding sites for transcriptions factors. Our results indicate that it is possible to use RNA-Seq to classify disease status for complex diseases such as heart failure using an extremely small training dataset. PMID:25528681

Liu, Yichuan; Morley, Michael; Brandimarto, Jeffrey; Hannenhalli, Sridhar; Hu, Yu; Ashley, Euan A; Tang, W H Wilson; Moravec, Christine S; Margulies, Kenneth B; Cappola, Thomas P; Li, Mingyao

2015-02-01

109

Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases  

Microsoft Academic Search

Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large international repositories. First, thousands of diseases were ranked according to a

David Ruau; Joel T. Dudley; Rong Chen; Nicholas G. Phillips; Gary E. Swan; Laura C. Lazzeroni; J. David Clark; Atul J. Butte; Martin S. Angst

2012-01-01

110

Genotype Analysis Identifies the Cause of the ``Royal Disease''  

Microsoft Academic Search

The ``royal disease,'' a blood disorder transmitted from Queen Victoria to European royal families, is a striking example of X-linked recessive inheritance. Although the disease is widely recognized to be a form of the blood clotting disorder hemophilia, its molecular basis has never been identified, and the royal disease is now likely extinct. We identified the likely disease-causing mutation by

Evgeny I. Rogaev; Anastasia P. Grigorenko; Gulnaz Faskhutdinova; Ellen L. W. Kittler; Yuri K. Moliaka

2009-01-01

111

INTRODUCTION The gene hedgehog (hh) was originally identified in  

E-print Network

INTRODUCTION The gene hedgehog (hh) was originally identified in Drosophila as a segment polarity gene (Heemskerk and DiNardo, 1994; Ingham et al., 1991). Subsequently, hh-class genes have been found (Adoutte et al., 2000; Aguinaldo et al., 1997). Until recently, all of the hh-class genes reported

Weisblat, David A.

112

Genes and Disease: Prader-Willi Syndrome  

MedlinePLUS

... for Biotechnology Information (US); 1998-. Genes and Disease [Internet]. Show details National Center for Biotechnology Information (US). ... Center for Biotechnology Information (US). Genes and Disease [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); ...

113

Evolutionary Signatures amongst Disease Genes Permit Novel Methods for Gene Prioritization and Construction of Informative Gene-Based Networks  

PubMed Central

Genes involved in the same function tend to have similar evolutionary histories, in that their rates of evolution covary over time. This coevolutionary signature, termed Evolutionary Rate Covariation (ERC), is calculated using only gene sequences from a set of closely related species and has demonstrated potential as a computational tool for inferring functional relationships between genes. To further define applications of ERC, we first established that roughly 55% of genetic diseases posses an ERC signature between their contributing genes. At a false discovery rate of 5% we report 40 such diseases including cancers, developmental disorders and mitochondrial diseases. Given these coevolutionary signatures between disease genes, we then assessed ERC's ability to prioritize known disease genes out of a list of unrelated candidates. We found that in the presence of an ERC signature, the true disease gene is effectively prioritized to the top 6% of candidates on average. We then apply this strategy to a melanoma-associated region on chromosome 1 and identify MCL1 as a potential causative gene. Furthermore, to gain global insight into disease mechanisms, we used ERC to predict molecular connections between 310 nominally distinct diseases. The resulting “disease map” network associates several diseases with related pathogenic mechanisms and unveils many novel relationships between clinically distinct diseases, such as between Hirschsprung's disease and melanoma. Taken together, these results demonstrate the utility of molecular evolution as a gene discovery platform and show that evolutionary signatures can be used to build informative gene-based networks. PMID:25679399

Priedigkeit, Nolan; Wolfe, Nicholas; Clark, Nathan L.

2015-01-01

114

The Wilson disease gene: Haplotypes and mutations  

SciTech Connect

Wilson disease (WND) is an autosomal recessive defect of copper transport. The gene involved in WND, located on chromosome 13, has recently been shown to be a putative copper transporting P-type ATPase, designated ATP7B. The gene is highly similar to ATP7A, located on the X chromosome, which is defective in Menkes disease, another disorder of copper transport. We have available for study WND families from Canada (34 families), the United Kingdom (32 families), Japan (4 families), Iceland (3 families) and Hong Kong (2 families). We have utilized four highly polymorphic CA repeat markers (D13S296, D13S301, D13S314 and D13S316) surrounding the ATP7B locus to construct haplotypes in these families. Analysis indicates that there are many unique WND haplotypes not present on normal chromosomes and that there may be a large number of different WND mutations. We have screened the WND patients for mutations in the ATP7B gene. Fifty six patients, representing all of the identified haplotypes, have been screened using single strand conformational polymorphism (SSCP), followed by selective sequencing. To date, 19 mutations and 12 polymorphisms have been identified. All of the changes are nucleotide substitutions or small insertions/deletions and there is no evidence for larger deletions as seen in the similar gene on the X chromosome, ATP7A. Haplotypes of close markers and the ability to detect some of the mutations present in the gene allow for more reliable molecular diagnosis of presymptomatic sibs of WND patients. A reassessment of individuals previously diagnosed in the presymptomatic phase is now required, as we have have identified some heterozygotes who are biochemically indistinguishable from affected homozygotes. The identification of specific mutations will soon allow direct diagnosis of WND patients with a high level of certainty.

Thomas, G.R.; Roberts, E.A.; Cox, D.W. [Hospital for Sick Children, Toronto (Canada); Walshe, J.M. [Middlesex Hospital, London (United Kingdom)

1994-09-01

115

Potential New Genes for Resistance to Mycosphaerella Graminicola Identified in Triticum Aestivum x Lophopyrum Elongatum Disomic Substitution Lines  

Technology Transfer Automated Retrieval System (TEKTRAN)

Lophopyrum species carry many desirable agronomic traits, including disease resistance, which can be transferred to wheat by interspecific hybridizations. To identify potentially new genes for disease and insect resistance carried by individual Lophopyrum chromosomes, 19 of 21 possible wheat cultiv...

116

Three Novel Mutations in Porphobilinogen Deaminase Gene Identified in Russian Patients with Acute Intermittent Porphyria  

Microsoft Academic Search

Porphobilinogen deaminase (PBGD) is a key enzyme of the heme biosynthetic pathway. Defects in the PBGD gene lead to an autosomal dominant disease, acute intermittent porphyria (AIP). Almost all AIP patients with rare exceptions are heterozygous for the defective gene. To date, at least 160 different mutations causing AIP are identified. Extensive investigations along this line are conducted in many

V. L. Surin; A. V. Luk'yanenko; I. V. Karpova; A. V. Misyurin; Ya. S. Pustovoit; A. V. Pivnik

2001-01-01

117

Microarray analysis identified Puccinia striiformis f. sp. tritici genes involved in infection and sporulation.  

Technology Transfer Automated Retrieval System (TEKTRAN)

Puccinia striiformis f. sp. tritici (Pst) causes stripe rust, one of the most important diseases of wheat worldwide. To identify Pst genes involved in infection and sporulation, a custom oligonucleotide Genechip was made using sequences of 442 genes selected from Pst cDNA libraries. Microarray analy...

118

Testing a computational model of categorisation and category combination: Identifying diseases and new disease combinations.  

E-print Network

Testing a computational model of categorisation and category combination: Identifying diseases and new disease combinations. Fintan Costello (fintan@compapp.dcu.ie), School of Computer Applications people learned to identify (imaginary) diseases, and then classified patient descriptions into single

Costello, Fintan

119

Genetic risk factors for the development of allergic disease identified by genome-wide association  

PubMed Central

An increasing proportion of the worldwide population is affected by allergic diseases such as allergic rhinitis (AR), atopic dermatitis (AD) and allergic asthma and improved treatment options are needed particularly for severe, refractory disease. Allergic diseases are complex and development involves both environmental and genetic factors. Although the existence of a genetic component for allergy was first described almost 100 years ago, progress in gene identification has been hindered by lack of high throughput technologies to investigate genetic variation in large numbers of subjects. The development of Genome-Wide Association Studies (GWAS), a hypothesis-free method of interrogating large numbers of common variants spanning the entire genome in disease and non-disease subjects has revolutionised our understanding of the genetics of allergic disease. Susceptibility genes for asthma, AR and AD have now been identified with confidence, suggesting there are common and distinct genetic loci associated with these diseases, providing novel insights into potential disease pathways and mechanisms. Genes involved in both adaptive and innate immune mechanisms have been identified, notably including multiple genes involved in epithelial function/secretion, suggesting that the airway epithelium may be particularly important in asthma. Interestingly, concordance/discordance between the genetic factors driving allergic traits such as IgE levels and disease states such as asthma have further supported the accumulating evidence for heterogeneity in these diseases. While GWAS have been useful and continue to identify novel genes for allergic diseases through increased sample sizes and phenotype refinement, future approaches will integrate analyses of rare variants, epigenetic mechanisms and eQTL approaches, leading to greater insight into the genetic basis of these diseases. Gene identification will improve our understanding of disease mechanisms and generate potential therapeutic opportunities. PMID:24766371

Portelli, M A; Hodge, E; Sayers, I

2015-01-01

120

Using Text Analysis to Identify Functionally Coherent Gene Groups  

Microsoft Academic Search

The analysis of large-scale genomic information (such as sequence data or expression patterns) frequently involves grouping genes on the basis of common experimental features. Often, as with gene expression clustering, there are too many groups to easily identify the functionally relevant ones. One valuable source of information about gene function is the published literature. We present a method, neighbor divergence,

Soumya Raychaudhuri; Hinrich Schutze; Russ B. Altman

2002-01-01

121

A Gene Recommender Algorithm to Identify Coexpressed Genes in C. elegans  

E-print Network

A Gene Recommender Algorithm to Identify Coexpressed Genes in C. elegans Art B. Owen,1,4 Josh is for the discovery of new genes with similar function to a given list of genes (the query) already known to have closely related function. We have developed an algorithm, called the gene recommender, that ranks genes

Stuart, Josh

122

Activation tag screening to identify novel genes for trichothecene resistance  

Technology Transfer Automated Retrieval System (TEKTRAN)

The goal of our research is to identify plant genes which enhance trichothecene resistance and, ultimately, Fusarium Head Blight resistance in wheat and barley. We are taking a two pronged approach using Arabidopsis to identify plant genes which confer resistance to trichothecenes. The first approac...

123

Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles  

PubMed Central

Over 1200 recessive disease genes have been described in humans. The prevalence, allelic architecture, and per-genome load of pathogenic alleles in these genes remain to be fully elucidated, as does the contribution of DNA copy-number variants (CNVs) to carrier status and recessive disease. We mined CNV data from 21,470 individuals obtained by array-comparative genomic hybridization in a clinical diagnostic setting to identify deletions encompassing or disrupting recessive disease genes. We identified 3212 heterozygous potential carrier deletions affecting 419 unique recessive disease genes. Deletion frequency of these genes ranged from one occurrence to 1.5%. When compared with recessive disease genes never deleted in our cohort, the 419 recessive disease genes affected by at least one carrier deletion were longer and located farther from known dominant disease genes, suggesting that the formation and/or prevalence of carrier CNVs may be affected by both local and adjacent genomic features and by selection. Some subjects had multiple carrier CNVs (307 subjects) and/or carrier deletions encompassing more than one recessive disease gene (206 deletions). Heterozygous deletions spanning multiple recessive disease genes may confer carrier status for multiple single-gene disorders, for complex syndromes resulting from the combination of two or more recessive conditions, or may potentially cause clinical phenotypes due to a multiply heterozygous state. In addition to carrier mutations, we identified homozygous and hemizygous deletions potentially causative for recessive disease. We provide further evidence that CNVs contribute to the allelic architecture of both carrier and recessive disease-causing mutations. Thus, a complete recessive carrier screening method or diagnostic test should detect CNV alleles. PMID:23685542

Boone, Philip M.; Campbell, Ian M.; Baggett, Brett C.; Soens, Zachry T.; Rao, Mitchell M.; Hixson, Patricia M.; Patel, Ankita; Bi, Weimin; Cheung, Sau Wai; Lalani, Seema R.; Beaudet, Arthur L.; Stankiewicz, Pawel; Shaw, Chad A.; Lupski, James R.

2013-01-01

124

A novel variant in TBX20 (p.D176N) identified by whole-exome sequencing in combination with a congenital heart disease related gene filter is associated with familial atrial septal defect* #  

PubMed Central

Congenital heart disease (CHD) is the leading cause of birth defects, and its etiology is not completely understood. Atrial septal defect (ASD) is one of the most common defects of CHD. Previous studies have demonstrated that mutations in the transcription factor T-box 20 (TBX20) contribute to congenital ASD. Whole-exome sequencing in combination with a CHD-related gene filter was used to detect a family of three generations with ASD. A novel TBX20 mutation, c.526G>A (p.D176N), was identified and co-segregated in all affected members in this family. This mutation was predicted to be deleterious by bioinformatics programs (SIFT, Polyphen2, and MutationTaster). This mutation was also not presented in the current Single Nucleotide Polymorphism Database (dbSNP) or National Heart, Lung, and Blood Institute (NHLBI) Exome Sequencing Project (ESP). In conclusion, our finding expands the spectrum of TBX20 mutations and provides additional support that TBX20 plays important roles in cardiac development. Our study also provided a new and cost-effective analysis strategy for the genetic study in small CHD pedigree. PMID:25183037

Liu, Ji-jia; Fan, Liang-liang; Chen, Jin-lan; Tan, Zhi-ping; Yang, Yi-feng

2014-01-01

125

UNIT 6.14Using VAAST to Identify Disease-Associated Variants in  

E-print Network

UNIT 6.14Using VAAST to Identify Disease-Associated Variants in Next-Generation Sequencing Data-associated alleles in next-generation sequencing data. In the protocols presented in this paper, we outline the best-gene identification r next-generation sequencing r genome-wide association studies r human disease r genomics r

Yandell, Mark

126

Gene therapy for optic nerve disease  

Microsoft Academic Search

Purpose There has been recent interest in the potential use of gene therapy techniques to treat ocular disease. In this article, we consider the optic nerve diseases that are potentially most amenable to gene therapy.Methods We discuss the recent success of gene transfer experiments in animal models of glaucoma, optic neuritis, Leber's hereditary optic neuropathy (LHON), and optic nerve transection,

K R G Martin; H A Quigley

2004-01-01

127

Identifying multiple causative genes at a single GWAS locus.  

PubMed

Genome-wide association studies (GWAS) are useful for nominating candidate genes, but typically are unable to establish disease causality or differentiate between the effects of variants in linkage disequilibrium (LD). Additionally, some GWAS loci might contain multiple causative variants or genes that contribute to the overall disease susceptibility at a single locus. However, the majority of current GWAS lack the statistical power to test whether multiple causative genes underlie the same locus, prompting us to adopt an alternative approach to testing multiple GWAS genes empirically. We used gene targeting in a disease-susceptible rat model of genetic hypertension to test all six genes at the Agtrap-Plod1 locus (Agtrap, Mthfr, Clcn6, Nppa, Nppb, and Plod1) for blood pressure (BP) and renal phenotypes. This revealed that the majority of genes at this locus (five out of six) can impact hypertension by modifying BP and renal phenotypes. Mutations of Nppa, Plod1, and Mthfr increased disease susceptibility, whereas Agtrap and Clcn6 mutations decreased hypertension risk. Reanalysis of the human AGTRAP-PLOD1 locus also implied that disease-associated haplotype blocks with polygenic effects were not only possible, but rather were highly plausible. Combined, these data demonstrate for the first time that multiple modifiers of hypertension can cosegregate at a single GWAS locus. PMID:24006081

Flister, Michael J; Tsaih, Shirng-Wern; O'Meara, Caitlin C; Endres, Bradley; Hoffman, Matthew J; Geurts, Aron M; Dwinell, Melinda R; Lazar, Jozef; Jacob, Howard J; Moreno, Carol

2013-12-01

128

Familial genes in sporadic disease: Common variants of ?-Synuclein gene associate with Parkinson’s disease  

PubMed Central

Genetic variation of the ?-synuclein gene (SNCA) is known to cause familial parkinsonism, however the role of SNCA variants in sporadic Parkinson’s disease (PD) remains elusive. The present study identifies an association of common SNCA polymorphisms with disease susceptibility in a series of Irish PD patients. There is evidence for association with alternate regions, of protection and risk which may act independently/synergistically, within the promoter region (Rep1; OR: 0.59, 95% CI: 0.37 – 0.84) and the 3?UTR of the gene (rs356165; OR: 1.67, 95% CI: 1.08 – 2.58). Given previous reports of association a collaborative effort is required which may exploit global linkage disequilibrium patterns for SNCA and standardise polymorphic markers used in each population. It is now crucial to identify the susceptibility allele and elucidate its functionality which may generate a therapeutic target for PD. PMID:17531291

Ross, Owen A.; Gosal, David; Stone, Jeremy T.; Lincoln, Sarah J.; Heckman, Michael G.; Irvine, Brent G.; Johnston, Janet A.; Gibson, J. Mark; Farrer, Matthew J.; Lynch, Timothy

2007-01-01

129

Disease Risk Factors Identified through Shared Genetic Architecture and Electronic Medical Records  

PubMed Central

Genome-Wide Association Studies (GWAS) have identified genetic variants for thousands of diseases and traits. In this study, we evaluated the relationships between specific risk factors (for example, blood cholesterol level) and diseases on the basis of their shared genetic architecture in a comprehensive human disease-SNP association database (VARIMED), analyzing the findings from 8,962 published association studies. Similarity between traits and diseases was statistically evaluated based on their association with shared gene variants. We identified 120 disease-trait pairs that were statistically similar, and of these we tested and validated five previously unknown disease-trait associations by searching electronic medical records (EMR) from 3 independent medical centers for evidence of the trait appearing in patients within one year of first diagnosis of the disease. We validated that mean corpuscular volume is elevated before diagnosis of acute lymphoblastic leukemia; both have associated variants in the gene IKZF1. Platelet count is decreased before diagnosis of alcohol dependence; both are associated with variants in the gene C12orf51. Alkaline phosphatase level is elevated in patients with venous thromboembolism; both share variants in ABO. Similarly, we found prostate specific antigen and serum magnesium levels were altered before the diagnosis of lung cancer and gastric cancer, respectively. Disease-trait associations identifies traits that can potentially serve a prognostic function clinically; validating disease-trait associations through EMR can whether these candidates are risk factors for complex diseases. PMID:24786325

Li, Li; Ruau, David J.; Patel, Chirag J.; Weber, Susan C.; Chen, Rong; Tatonetti, Nicholas P.; Dudley, Joel T.; Butte, Atul J.

2015-01-01

130

Gene Regulatory Networks Elucidating Huanglongbing Disease Mechanisms  

PubMed Central

Next-generation sequencing was exploited to gain deeper insight into the response to infection by Candidatus liberibacter asiaticus (CaLas), especially the immune disregulation and metabolic dysfunction caused by source-sink disruption. Previous fruit transcriptome data were compared with additional RNA-Seq data in three tissues: immature fruit, and young and mature leaves. Four categories of orchard trees were studied: symptomatic, asymptomatic, apparently healthy, and healthy. Principal component analysis found distinct expression patterns between immature and mature fruits and leaf samples for all four categories of trees. A predicted protein – protein interaction network identified HLB-regulated genes for sugar transporters playing key roles in the overall plant responses. Gene set and pathway enrichment analyses highlight the role of sucrose and starch metabolism in disease symptom development in all tissues. HLB-regulated genes (glucose-phosphate-transporter, invertase, starch-related genes) would likely determine the source-sink relationship disruption. In infected leaves, transcriptomic changes were observed for light reactions genes (downregulation), sucrose metabolism (upregulation), and starch biosynthesis (upregulation). In parallel, symptomatic fruits over-expressed genes involved in photosynthesis, sucrose and raffinose metabolism, and downregulated starch biosynthesis. We visualized gene networks between tissues inducing a source-sink shift. CaLas alters the hormone crosstalk, resulting in weak and ineffective tissue-specific plant immune responses necessary for bacterial clearance. Accordingly, expression of WRKYs (including WRKY70) was higher in fruits than in leaves. Systemic acquired responses were inadequately activated in young leaves, generally considered the sites where most new infections occur. PMID:24086326

Martinelli, Federico; Reagan, Russell L.; Uratsu, Sandra L.; Phu, My L.; Albrecht, Ute; Zhao, Weixiang; Davis, Cristina E.; Bowman, Kim D.; Dandekar, Abhaya M.

2013-01-01

131

ORIGINAL PAPER Identifying differentially expressed genes in human acute leukemia  

E-print Network

ORIGINAL PAPER Identifying differentially expressed genes in human acute leukemia and mouse brain the experimental-wise false discovery rate. A human acute leukemia dataset corrected from 38 leukemia patients

Gu, Xun

132

GENE EXPRESSION PROFILING TO IDENTIFY BIOMARKERS OF REPRODUCTIVE TOXICITY  

EPA Science Inventory

SOT 2005 SESSION ABSTRACT GENE EXPRESSION PROFILING TO IDENTIFY BIOMARKERS OF REPRODUCTIVE TOXICITY David J. Dix. National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle...

133

GENE EXPRESSION PROFILING TO IDENTIFY MECHANISMS OF MALE REPRODUCTIVE TOXICITY  

EPA Science Inventory

Gene Expression Profiling to Identify Mechanisms of Male Reproductive Toxicity David J. Dix National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA. Ab...

134

Zebrafish promoter microarrays identify actively transcribed embryonic genes  

E-print Network

Abstract We have designed a zebrafish genomic microarray to identify DNA-protein interactions in the proximal promoter regions of over 11,000 zebrafish genes. Using these microarrays, together with chromatin immunoprecipitation with an antibody...

Wardle, Fiona C; Odom, Duncan T; Bell, George W; Yuan, Bingbing; Danford, Timothy W; Wiellette, Elizabeth L; Herbolsheimer, Elizabeth; Sive, Hazel L; Young, Richard A; Smith, James C

2006-08-04

135

Zebrafish promoter microarrays identify actively transcribed embryonic genes  

E-print Network

We have designed a zebrafish genomic microarray to identify DNA-protein interactions in the proximal promoter regions of over 11,000 zebrafish genes. Using these microarrays, together with chromatin immunoprecipitation ...

Wardle, Fiona C

136

Parkinson’s Disease: Gene Therapies  

PubMed Central

With the recent development of effective gene delivery systems, gene therapy for the central nervous system is finding novel applications. Here, we review existing viral vectors and discuss gene therapy strategies that have been proposed for Parkinson’s disease. To date, most of the clinical trials were based on viral vectors to deliver therapeutic transgenes to neurons within the basal ganglia. Initial trials used genes to relieve the major motor symptoms caused by nigrostriatal degeneration. Although these new genetic approaches still need to prove more effective than existing symptomatic treatments, there is a need for disease-modifying strategies. The investigation of the genetic factors implicated in Parkinson’s disease is providing precious insights in disease pathology that, combined with innovative gene delivery systems, will hopefully offer novel opportunities for gene therapy interventions to slow down, or even halt disease progression. PMID:22474617

Coune, Philippe G.; Schneider, Bernard L.; Aebischer, Patrick

2012-01-01

137

Systematic Analysis of New Drug Indications by Drug-Gene-Disease Coherent Subnetworks  

PubMed Central

Drug targets and disease genes may work as driver factors at the transcriptional level, which propagate signals through gene regulatory network and cause the downstream genes' differential expression. How to analyze transcriptional response data to identify meaningful gene modules shared by both drugs and diseases is still a critical issue for drug-disease associations and molecular mechanism. In this article, we propose the drug-gene-disease coherent subnetwork concept to group the biological function related drugs, diseases, and genes. It was defined as the subnetwork with drug, gene, and disease as nodes and their interactions coherently crossing three data layers as edges. Integrating differential expression profiles of 418 drugs and 84 diseases, we develop a computational framework and identify 13 coherent subnetworks such as inflammatory bowel disease and melanoma relevant subnetwork. The results demonstrate that our coherent subnetwork approach is able to identify novel drug indications and highlight their molecular basis. PMID:25390685

Wang, L; Wang, Y; Hu, Q; Li, S

2014-01-01

138

An Integrative Approach to Identifying Biologically Relevant Genes Jiangxin Wang  

E-print Network

ALL. Unsupervised (ACC: 0.61, REL: 7 ) SFRS5 TM9SF1 WTAP GPSM3 STAC3 POMP SLC25A6 Supervised (ACC: 0An Integrative Approach to Identifying Biologically Relevant Genes Zheng Zhao Jiangxin Wang {zhaozheng, jiangxin.wang, sssharma, agarwal.nitin, huan.liu, yung.chang}@asu.edu Abstract Gene selection

Liu, Huan

139

Candidate Gene for the Chromosome 1 Familial Alzheimer's Disease Locus  

Microsoft Academic Search

A candidate gene for the chromosome 1 Alzheimer's disease (AD) locus was identified (STM2). The predicted amino acid sequence for STM2 is homologous to that of the recently cloned chromosome 14 AD gene (S182). A point mutation in STM2, resulting in the substitution of an isoleucine for an asparagine (N141l), was identified in affected people from Volga German AD kindreds.

Ephrat Levy-Lahad; Wilma Wasco; Parvoneh Poorkaj; Donna M. Romano; Junko Oshima; Warren H. Pettingell; Chang-En Yu; Paul D. Jondro; Stephen D. Schmidt; Kai Wang; Annette C. Crowley; Ying-Hui Fu; Suzanne Y. Guenette; David Galas; Ellen Nemens; Ellen M. Wijsman; Thomas D. Bird; Gerard D. Schellenberg; Rudolph E. Tanzi

1995-01-01

140

Presymptomatic late-onset Pompe disease identified by the dried blood spot test.  

PubMed

Pompe disease or glycogen storage disease type II is an autosomal recessive disorder caused by mutations in the GAA gene leading to muscle weakness. Here we describe a 15 years old presymptomatic patient with normal muscle MRI, unspecific muscle biopsy findings but abnormal acid maltase activity in a dried blood spot test. Sequencing the GAA-gene identified a heterozygous novel splice-site and a heterozygous previously described mutation. The case highlights the variability in clinical phenotype and difficulties to diagnose late-onset Pompe disease. Dried Blood Spot (DBS) might be the most sensitive tool to pick up mildly symptomatic patients. PMID:23062590

Wagner, Matias; Chaouch, Amina; Müller, Juliane S; Polvikoski, Tuomo; Willis, Tracey A; Sarkozy, Anna; Eagle, Michelle; Bushby, Kate; Straub, Volker; Lochmüller, Hanns

2013-01-01

141

Computational disease gene prioritization: an appraisal.  

PubMed

Bioinformatics aids in the understanding of the biological processes of living beings and the genetic architecture of human diseases. The discovery of disease-related genes improves the diagnosis and therapy design for the disease. To save the cost and time involved in the experimental verification of the candidate genes, computational methods are employed for ranking the genes according to their likelihood of being associated with the disease. Only top-ranked genes are then verified experimentally. A variety of methods have been conceived by the researchers for the prioritization of the disease candidate genes, which differ in the data source being used or the scoring function used for ranking the genes. A review of various aspects of computational disease gene prioritization and its research issues is presented in this article. The aspects covered are gene prioritization process, data sources used, types of prioritization methods, and performance assessment methods. This article provides a brief overview and acts as a quick guide for disease gene prioritization. PMID:24665902

Gill, Nivit; Singh, Shailendra; Aseri, Trilok C

2014-06-01

142

Identifying Glioblastoma Gene Networks Based on Hypergeometric Test Analysis  

PubMed Central

Patient specific therapy is emerging as an important possibility for many cancer patients. However, to identify such therapies it is essential to determine the genomic and transcriptional alterations present in one tumor relative to control samples. This presents a challenge since use of a single sample precludes many standard statistical analysis techniques. We reasoned that one means of addressing this issue is by comparing transcriptional changes in one tumor with those observed in a large cohort of patients analyzed by The Cancer Genome Atlas (TCGA). To test this directly, we devised a bioinformatics pipeline to identify differentially expressed genes in tumors resected from patients suffering from the most common malignant adult brain tumor, glioblastoma (GBM). We performed RNA sequencing on tumors from individual GBM patients and filtered the results through the TCGA database in order to identify possible gene networks that are overrepresented in GBM samples relative to controls. Importantly, we demonstrate that hypergeometric-based analysis of gene pairs identifies gene networks that validate experimentally. These studies identify a putative workflow for uncovering differentially expressed patient specific genes and gene networks for GBM and other cancers. PMID:25551752

Stathias, Vasileios; Pastori, Chiara; Griffin, Tess Z.; Komotar, Ricardo; Clarke, Jennifer; Zhang, Ming; Ayad, Nagi G.

2014-01-01

143

Inferring Gene Family Histories in Yeast Identifies Lineage Specific Expansions  

PubMed Central

The complement of genes found in the genome is a balance between gene gain and gene loss. Knowledge of the specific genes that are gained and lost over evolutionary time allows an understanding of the evolution of biological functions. Here we use new evolutionary models to infer gene family histories across complete yeast genomes; these models allow us to estimate the relative genome-wide rates of gene birth, death, innovation and extinction (loss of an entire family) for the first time. We show that the rates of gene family evolution vary both between gene families and between species. We are also able to identify those families that have experienced rapid lineage specific expansion/contraction and show that these families are enriched for specific functions. Moreover, we find that families with specific functions are repeatedly expanded in multiple species, suggesting the presence of common adaptations and that these family expansions/contractions are not random. Additionally, we identify potential specialisations, unique to specific species, in the functions of lineage specific expanded families. These results suggest that an important mechanism in the evolution of genome content is the presence of lineage-specific gene family changes. PMID:24921666

Ames, Ryan M.; Money, Daniel; Lovell, Simon C.

2014-01-01

144

Gene regulation, protein networks and disease  

E-print Network

1 Gene regulation, protein networks and disease ­ a computational perspective Ron Shamir School in cancer DEGAS 2 #12;Regulation of Transcription · A gene's ranscription regulation is mainly encoded binding sites (BSs) that are bound by specific proteins called transcription factors (TFs) TFTF Gene 5' 3

Lonardi, Stefano

145

Integrative Approach to Pain Genetics Identifies Pain Sensitivity Loci across Diseases  

PubMed Central

Identifying human genes relevant for the processing of pain requires difficult-to-conduct and expensive large-scale clinical trials. Here, we examine a novel integrative paradigm for data-driven discovery of pain gene candidates, taking advantage of the vast amount of existing disease-related clinical literature and gene expression microarray data stored in large international repositories. First, thousands of diseases were ranked according to a disease-specific pain index (DSPI), derived from Medical Subject Heading (MESH) annotations in MEDLINE. Second, gene expression profiles of 121 of these human diseases were obtained from public sources. Third, genes with expression variation significantly correlated with DSPI across diseases were selected as candidate pain genes. Finally, selected candidate pain genes were genotyped in an independent human cohort and prospectively evaluated for significant association between variants and measures of pain sensitivity. The strongest signal was with rs4512126 (5q32, ABLIM3, P?=?1.3×10?10) for the sensitivity to cold pressor pain in males, but not in females. Significant associations were also observed with rs12548828, rs7826700 and rs1075791 on 8q22.2 within NCALD (P?=?1.7×10?4, 1.8×10?4, and 2.2×10?4 respectively). Our results demonstrate the utility of a novel paradigm that integrates publicly available disease-specific gene expression data with clinical data curated from MEDLINE to facilitate the discovery of pain-relevant genes. This data-derived list of pain gene candidates enables additional focused and efficient biological studies validating additional candidates. PMID:22685391

Ruau, David; Dudley, Joel T.; Chen, Rong; Phillips, Nicholas G.; Swan, Gary E.; Lazzeroni, Laura C.; Clark, J. David

2012-01-01

146

Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease  

Microsoft Academic Search

More than 1,000 susceptibility loci have been identified through genome-wide association studies (GWAS) of common variants; however, the specific genes and full allelic spectrum of causal variants underlying these findings have not yet been defined. Here we used pooled next-generation sequencing to study 56 genes from regions associated with Crohn's disease in 350 cases and 350 controls. Through follow-up genotyping

Mélissa Beaudoin; Agnes Gardet; Christine Stevens; Yashoda Sharma; Clarence K Zhang; Gabrielle Boucher; Stephan Ripke; David Ellinghaus; Noel Burtt; Tim Fennell; Andrew Kirby; Anna Latiano; Philippe Goyette; Todd Green; Jonas Halfvarson; Talin Haritunians; Joshua M Korn; Finny Kuruvilla; Caroline Lagacé; Benjamin Neale; Ken Sin Lo; Phil Schumm; Leif Törkvist; Marla C Dubinsky; Steven R Brant; Mark S Silverberg; Richard H Duerr; David Altshuler; Stacey Gabriel; Guillaume Lettre; Andre Franke; Mauro D'Amato; Dermot P B McGovern; Judy H Cho; John D Rioux; Ramnik J Xavier; Manuel A Rivas; Mark J Daly; D. J. de Jong

2011-01-01

147

Transposon tagging of disease resistance genes  

SciTech Connect

We are developing a transposon mutagenesis system for lettuce to clone genes for resistance to the fungal pathogen, Bremia lactucae. Activity of heterologous transposons is being studied in transgenic plants. Southern analysis of T{sub 1} and T{sub 2} plants containing Tam3 from Antirrhinum provided ambiguous results. Multiple endonuclease digests indicated that transposition had occurred; however, in no plant were all endonuclease digests consistent with a simple excision event. Southern or PCR analysis of over 50 plans containing Ac from maize have also failed to reveal clear evidence of transposition; this is contrast to experiments by others with the same constructs who have observed high rates of Ac excision in other plant species. Nearly all of 65 T{sub 2} families containing Ac interrupting a chimeric streptomycin resistance gene (Courtesy J. Jones, Sainsbury Lab., UK) clearly segregated for streptomycin resistance. Southern analyses, however, showed no evidence of transposition, indicating restoration of a functional message by other mechanisms, possibly mRNA processing. Transgenic plants have also been generated containing CaMV 35S or hsp70 promoters fused to transposase coding sequences or a Ds element interrupting a chimeric GUS gene (Courtesy M. Lassner, UC Davis). F{sub 1} plants containing both constructs were analyzed for transposition. Only two plants containing both constructs were obtained from 48 progeny, far fewer than expected, and neither showed evidence of transposition in Southerns and GUS assays. We are currently constructing further chimeric transposase fusions. To test for the stability of the targeted disease resistance genes, 50,000 F{sub 1} plants heterozygous for three resistance genes were generated; no mutants have been identified in the 5000 so far screened.

Michelmore, R.W. (California Univ., Davis, CA (USA). Dept. of Physics)

1989-01-01

148

Axon Regeneration Genes Identified by RNAi Screening in C. elegans  

PubMed Central

Axons of the mammalian CNS lose the ability to regenerate soon after development due to both an inhibitory CNS environment and the loss of cell-intrinsic factors necessary for regeneration. The complex molecular events required for robust regeneration of mature neurons are not fully understood, particularly in vivo. To identify genes affecting axon regeneration in Caenorhabditis elegans, we performed both an RNAi-based screen for defective motor axon regeneration in unc-70/?-spectrin mutants and a candidate gene screen. From these screens, we identified at least 50 conserved genes with growth-promoting or growth-inhibiting functions. Through our analysis of mutants, we shed new light on certain aspects of regeneration, including the role of ?-spectrin and membrane dynamics, the antagonistic activity of MAP kinase signaling pathways, and the role of stress in promoting axon regeneration. Many gene candidates had not previously been associated with axon regeneration and implicate new pathways of interest for therapeutic intervention. PMID:24403161

Nix, Paola; Hammarlund, Marc; Hauth, Linda; Lachnit, Martina; Jorgensen, Erik M.

2014-01-01

149

DCEG Scientists Identify New Gene Mutation Related to Familial Melanoma  

Cancer.gov

Scientists have identified a rare inherited mutation in a gene that can increase the risk of familial melanoma, according to a study that appeared online in Nature Genetics on March 30, 2014. Although the finding does not offer immediate benefit to patients, variation in the Protection of Telomeres-1 (POT1) gene provides additional clues as to the origins of melanoma and may open new avenues in prevention and treatment research. Read the full NCI Benchmarks blog post about this study.

150

Sheath blight disease screening methods to identify resistant Oryza spp. accessions  

Technology Transfer Automated Retrieval System (TEKTRAN)

Oryza species, wild relatives of cultivated rice (O. sativa), may contain novel resistance genes to sheath blight, caused by Rhizoctonia solani Kühn, that could be used to enhance resistance to this important disease in commercial rice. Suitable greenhouse screening methods are needed to identify re...

151

Using next-generation RNA sequencing to identify imprinted genes.  

PubMed

Genomic imprinting is manifested as differential allelic expression (DAE) depending on the parent-of-origin. The most direct way to identify imprinted genes is to directly score the DAE in a context where one can identify which parent transmitted each allele. Because many genes display DAE, simply scoring DAE in an individual is not sufficient to identify imprinted genes. In this paper, we outline many technical aspects of a scheme for identification of imprinted genes that makes use of RNA sequencing (RNA-seq) from tissues isolated from F1 offspring derived from the pair of reciprocal crosses. Ideally, the parental lines are from two inbred strains that are not closely related to each other. Aspects of tissue purity, RNA extraction, library preparation and bioinformatic inference of imprinting are all covered. These methods have already been applied in a number of organisms, and one of the most striking results is the evolutionary fluidity with which novel imprinted genes are gained and lost within genomes. The general methodology is also applicable to a wide range of other biological problems that require quantification of allele-specific expression using RNA-seq, such as cis-regulation of gene expression, X chromosome inactivation and random monoallelic expression. PMID:24619182

Wang, X; Clark, A G

2014-08-01

152

Genome-Wide Association Mapping in Arabidopsis Identifies Previously Known Flowering Time and Pathogen Resistance Genes  

Microsoft Academic Search

There is currently tremendous interest in the possibility of using genome-wide association mapping to identify genes responsible for natural variation, particularly for human disease susceptibility. The model plant Arabidopsis thaliana is in many ways an ideal candidate for such studies, because it is a highly selfing hermaphrodite. As a result, the species largely exists as a collection of naturally occurring

María José Aranzana; Sung Kim; Keyan Zhao; Erica Bakker; Matthew Horton; Katrin Jakob; Clare Lister; John Molitor; Chikako Shindo; Chunlao Tang; Christopher Toomajian; Brian Traw; Honggang Zheng; Joy Bergelson; Caroline Dean; Paul Marjoram; Magnus Nordborg

2005-01-01

153

Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease  

Microsoft Academic Search

the gene encoding apolipoprotein e (APOE) on chromosome 19 is the only confirmed susceptibility locus for late-onset Alzheimer's disease. to identify other risk loci, we conducted a large genome-wide association study of 2,032 individuals from France with Alzheimer's disease (cases) and 5,328 controls. Markers outside APO e with suggestive evidence of association (P < 10 ?5 ) were examined in

Denise Harold; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Marian L Hamshere; Jaspreet Singh Pahwa; Valentina Moskvina; Kimberley Dowzell; Amy Williams; Nicola Jones; Charlene Thomas; Alexandra Stretton; Angharad R Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K Lupton; Carol Brayne; David C Rubinsztein; Michael Gill; Brian Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle S Brown; Peter A Passmore; David Craig; Bernadette McGuinness; Stephen Todd; Clive Holmes; David Mann; A David Smith; Seth Love; Patrick G Kehoe; John Hardy; Simon Mead; Nick Fox; Martin Rossor; John Collinge; Wolfgang Maier; Frank Jessen; Britta Schürmann; Hendrik van den Bussche; Isabella Heuser; Johannes Kornhuber; Jens Wiltfang; Martin Dichgans; Lutz Frölich; Harald Hampel; Michael Hüll; Dan Rujescu; Alison M Goate; John S K Kauwe; Carlos Cruchaga; Petra Nowotny; John C Morris; Kevin Mayo; Kristel Sleegers; Karolien Bettens; Sebastiaan Engelborghs; Peter P De Deyn; Christine Van Broeckhoven; Gill Livingston; Nicholas J Bass; Hugh Gurling; Andrew McQuillin; Rhian Gwilliam; Panagiotis Deloukas; Ammar Al-Chalabi; Christopher E Shaw; Magda Tsolaki; Andrew B Singleton; Rita Guerreiro; Thomas W Mühleisen; Markus M Nöthen; Susanne Moebus; Karl-Heinz Jöckel; Norman Klopp; H-Erich Wichmann; Minerva M Carrasquillo; V Shane Pankratz; Steven G Younkin; Peter A Holmans; Michael O'Donovan; Michael J Owen; Julie Williams

2009-01-01

154

Scientists Identify Four Candidate Obesity Genes in Mice  

NSDL National Science Digital Library

Press release on a recent study where researchers developed a strain of mice more likely to be obese and then, using this strain, identified four genes in mouse chromosome 7 that may relate to obesity. This study, Â?Four Out of Eight Genes in a Mouse Chromosome 7 Congenic Donor Region are Candidate Obesity Genes,Â? was conducted by Craig H. Warden, Kari A. Sarahan, and Janis S. Fisler of the University of California, Davis. The study is published in Physiologic Genomics.

APS Communications Office (American Physiological Society Communications Office)

2011-09-06

155

Genome-wide association study for Crohn's disease in the Quebec Founder Population identifies multiple validated disease loci  

PubMed Central

Genome-wide association (GWA) studies offer a powerful unbiased method for the identification of multiple susceptibility genes for complex diseases. Here we report the results of a GWA study for Crohn's disease (CD) using family trios from the Quebec Founder Population (QFP). Haplotype-based association analyses identified multiple regions associated with the disease that met the criteria for genome-wide significance, with many containing a gene whose function appears relevant to CD. A proportion of these were replicated in two independent German Caucasian samples, including the established CD loci NOD2 and IBD5. The recently described IL23R locus was also identified and replicated. For this region, multiple individuals with all major haplotypes in the QFP were sequenced and extensive fine mapping performed to identify risk and protective alleles. Several additional loci, including a region on 3p21 containing several plausible candidate genes, a region near JAKMIP1 on 4p16.1, and two larger regions on chromosome 17 were replicated. Together with previously published loci, the spectrum of CD genes identified to date involves biochemical networks that affect epithelial defense mechanisms, innate and adaptive immune response, and the repair or remodeling of tissue. PMID:17804789

Raelson, John V.; Little, Randall D.; Ruether, Andreas; Fournier, Hélène; Paquin, Bruno; Van Eerdewegh, Paul; Bradley, W. E. C.; Croteau, Pascal; Nguyen-Huu, Quynh; Segal, Jonathan; Debrus, Sophie; Allard, René; Rosenstiel, Philip; Franke, Andre; Jacobs, Gunnar; Nikolaus, Susanna; Vidal, Jean-Michel; Szego, Peter; Laplante, Nathalie; Clark, Hilary F.; Paulussen, René J.; Hooper, John W.; Keith, Tim P.; Belouchi, Abdelmajid; Schreiber, Stefan

2007-01-01

156

Genetic Association and Gene Expression Analysis Identify FGFR1 as a New Susceptibility Gene for  

E-print Network

Genetic Association and Gene Expression Analysis Identify FGFR1 as a New Susceptibility Gene.8 10 6 , which was P 7.0 10 8 in the recessive model. rs7012413*T was associated with FGFR1 expression ]0.001) and increased after diet-induced obesity (P 0.05). Conclusions: FGFR1 is a novel obesity gene

Paris-Sud XI, Université de

157

Simulated Search For A Disease Gene  

NSDL National Science Digital Library

This simulation is based on the research of Nancy Wexler and James Gusella on Huntington's disease (see Micklos and Freyer, 1991, DNA Science, pp. 148-155). Plasmid DNA is used to represent human DNA samples from a family affected by a genetic disease. RFLP analysis of the samples reveals a potential marker for the disease gene. A mutation within or near the disease gene has created a new restriction site for the restriction endonuclease Nru1, yielding 2 smaller restriction fragments on electrophoresis instead of a single larger one. The students discover that the disease phenotype is linked to the double-banded allele. They are able to use the information to describe the inheritance of the disease (autosomal, recessive) and to predict that a fetus (#52) will be unaffected by the disease. Through creative writing assignments, students explore personal and societal issues surrounding genetic testing.

BEGIN:VCARD VERSION:2.1 FN:Katharine Noonan N:Noonan; Katharine ORG:Oakland High School REV:2005-04-12 END:VCARD

1995-06-30

158

Widespread expression of Huntington's disease gene (IT15) protein product  

Microsoft Academic Search

Huntington's Disease (HD) is caused by expansion of a CAG repeat within a putative open reading frame of a recently identified gene, IT15. We have examined the expression of the gene's protein product using antibodies developed against the N-terminus and an internal epitope. Both antisera recognize a 350 kDa protein, the predicted size, indicating that the CAG repeat is translated

Alan H Sharp; Scott J Loev; Gabriele Schilling; Shi-Hua Li; Xiao-Jiang Li; Jun Bao; Molly V Wagster; Joyce A Kotzuk; Joseph P Steiner; Amy Lo; John Hedreen; Sangram Sisodia; Solomon H Snyder; Ted M Dawson; David K Ryugo; Christopher A Ross

1995-01-01

159

Gene identified that sensitizes cancer cells to chemotherapy drugs  

Cancer.gov

NCI scientists have found that a gene, Schlafen-11 (SLFN11), sensitizes cells to substances known to cause irreparable damage to DNA.  As part of their study, the researchers used a repository of 60 cell types to identify predictors of cancer cell response to classes of DNA damaging agents, widely used as chemotherapy treatments for many cancers.

160

Gene expression profiling identifies molecular subtypes of gliomas  

Microsoft Academic Search

Identification of distinct molecular subtypes is a critical challenge for cancer biology. In this study, we used Affymetrix high-density oligonucleotide arrays to identify the global gene expression signatures associated with gliomas of different types and grades. Here, we show that the global transcriptional profiles of gliomas of different types and grades are distinct from each other and from the normal

Ruty Shai; Tao Shi; Thomas J Kremen; Steve Horvath; Linda M Liau; Timothy F Cloughesy; Paul S Mischel; Stanley F Nelson

2003-01-01

161

International team identifies critical genes mutated in stomach cancer  

Cancer.gov

An international team of scientists, led by researchers from the Duke-NUS Graduate Medical School in Singapore and National Cancer Centre of Singapore, has identified hundreds of novel genes that are mutated in stomach cancer, the second-most lethal cancer worldwide.

162

Identifying Aphid Resistance Genes in a Maize NAM Population  

E-print Network

Identifying Aphid Resistance Genes in a Maize NAM Population Georg Jander Boyce Thompson Institute of Nymphs Experiment 1 CML322 B73 R2 = 0.7 Aphid reproduction varies 100-fold on maize inbred lines Lisa Meihls and Harleen Kaur Rhopalosiphum maidis #12;Aphid resistance is recessive in B73 x CML322 0 10 20 30

Pawlowski, Wojtek

163

Candidate Olfaction Genes Identified within the Helicoverpa armigera Antennal Transcriptome  

PubMed Central

Antennal olfaction is extremely important for insect survival, mediating key behaviors such as host preference, mate choice, and oviposition site selection. Multiple antennal proteins are involved in olfactory signal transduction pathways. Of these, odorant receptors (ORs) and ionotropic receptors (IRs) confer specificity on olfactory sensory neuron responses. In this study, we identified the olfactory gene repertoire of the economically important agricultural pest moth, Helicoverpa armigera, by assembling the adult male and female antennal transcriptomes. Within the male and female antennal transcriptomes we identified a total of 47 OR candidate genes containing 6 pheromone receptor candidates. Additionally, 12 IR genes as well as 26 odorant-binding proteins and 12 chemosensory proteins were annotated. Our results allow a systematic functional analysis across much of conventional ORs repertoire and newly reported IRs mediating the key olfaction-mediated behaviors of H. armigera. PMID:23110222

Liu, Yang; Gu, Shaohua; Zhang, Yongjun; Guo, Yuyuan; Wang, Guirong

2012-01-01

164

MouseFinder: candidate disease genes from mouse phenotype data  

PubMed Central

Mouse phenotype data represents a valuable resource for the identification of disease-associated genes, especially where the molecular basis is unknown and there is no clue to the candidate gene’s function, pathway involvement or expression pattern. However, until recently these data have not been systematically used due to difficulties in mapping between clinical features observed in humans and mouse phenotype annotations. Here, we describe a semantic approach to solve this problem and demonstrate highly significant recall of known disease-gene associations and orthology relationships. A web application (MouseFinder; www.mousemodels.org) has been developed to allow users to search the results of our whole-phenome comparison of human and mouse. We demonstrate its use in identifying ARTN as a strong candidate gene within the 1p34.1-p32 mapped locus for a hereditary form of ptosis. PMID:22331800

Chen, Chao-Kung; Mungall, Christopher J; Gkoutos, Georgios V; Doelken, Sandra C; Köhler, Sebastian; Ruef, Barbara J; Smith, Cynthia; Westerfield, Monte; Robinson, Peter N; Lewis, Suzanna E; Schofield, Paul N; Smedley, Damian

2012-01-01

165

Genetics of Sputum Gene Expression in Chronic Obstructive Pulmonary Disease  

PubMed Central

Previous expression quantitative trait loci (eQTL) studies have performed genetic association studies for gene expression, but most of these studies examined lymphoblastoid cell lines from non-diseased individuals. We examined the genetics of gene expression in a relevant disease tissue from chronic obstructive pulmonary disease (COPD) patients to identify functional effects of known susceptibility genes and to find novel disease genes. By combining gene expression profiling on induced sputum samples from 131 COPD cases from the ECLIPSE Study with genomewide single nucleotide polymorphism (SNP) data, we found 4315 significant cis-eQTL SNP-probe set associations (3309 unique SNPs). The 3309 SNPs were tested for association with COPD in a genomewide association study (GWAS) dataset, which included 2940 COPD cases and 1380 controls. Adjusting for 3309 tests (p<1.5e-5), the two SNPs which were significantly associated with COPD were located in two separate genes in a known COPD locus on chromosome 15: CHRNA5 and IREB2. Detailed analysis of chromosome 15 demonstrated additional eQTLs for IREB2 mapping to that gene. eQTL SNPs for CHRNA5 mapped to multiple linkage disequilibrium (LD) bins. The eQTLs for IREB2 and CHRNA5 were not in LD. Seventy-four additional eQTL SNPs were associated with COPD at p<0.01. These were genotyped in two COPD populations, finding replicated associations with a SNP in PSORS1C1, in the HLA-C region on chromosome 6. Integrative analysis of GWAS and gene expression data from relevant tissue from diseased subjects has located potential functional variants in two known COPD genes and has identified a novel COPD susceptibility locus. PMID:21949713

Qiu, Weiliang; Cho, Michael H.; Riley, John H.; Anderson, Wayne H.; Singh, Dave; Bakke, Per; Gulsvik, Amund; Litonjua, Augusto A.; Lomas, David A.; Crapo, James D.; Beaty, Terri H.; Celli, Bartolome R.; Rennard, Stephen; Tal-Singer, Ruth; Fox, Steven M.; Silverman, Edwin K.; Hersh, Craig P.

2011-01-01

166

Gene conversion: mechanisms, evolution and human disease  

Microsoft Academic Search

Gene conversion, one of the two mechanisms of homologous recombination, involves the unidirectional transfer of genetic material from a 'donor' sequence to a highly homologous 'acceptor'. Considerable progress has been made in understanding the molecular mechanisms that underlie gene conversion, its formative role in human genome evolution and its implications for human inherited disease. Here we assess current thinking about

David N. Cooper; Nadia Chuzhanova; Claude Férec; Jian-Min Chen; George P. Patrinos

2007-01-01

167

Co-clustering phenome–genome for phenotype classification and disease gene discovery  

PubMed Central

Understanding the categorization of human diseases is critical for reliably identifying disease causal genes. Recently, genome-wide studies of abnormal chromosomal locations related to diseases have mapped >2000 phenotype–gene relations, which provide valuable information for classifying diseases and identifying candidate genes as drug targets. In this article, a regularized non-negative matrix tri-factorization (R-NMTF) algorithm is introduced to co-cluster phenotypes and genes, and simultaneously detect associations between the detected phenotype clusters and gene clusters. The R-NMTF algorithm factorizes the phenotype–gene association matrix under the prior knowledge from phenotype similarity network and protein–protein interaction network, supervised by the label information from known disease classes and biological pathways. In the experiments on disease phenotype–gene associations in OMIM and KEGG disease pathways, R-NMTF significantly improved the classification of disease phenotypes and disease pathway genes compared with support vector machines and Label Propagation in cross-validation on the annotated phenotypes and genes. The newly predicted phenotypes in each disease class are highly consistent with human phenotype ontology annotations. The roles of the new member genes in the disease pathways are examined and validated in the protein–protein interaction subnetworks. Extensive literature review also confirmed many new members of the disease classes and pathways as well as the predicted associations between disease phenotype classes and pathways. PMID:22735708

Hwang, TaeHyun; Atluri, Gowtham; Xie, MaoQiang; Dey, Sanjoy; Hong, Changjin; Kumar, Vipin; Kuang, Rui

2012-01-01

168

Whole Exome Sequencing Identifies Novel Recurrently Mutated Genes in Patients with Splenic Marginal Zone Lymphoma  

PubMed Central

The pathogenesis of splenic marginal zone lymphoma (SMZL) remains largely unknown. Recent high-throughput sequencing studies have identified recurrent mutations in key pathways, most notably NOTCH2 mutations in >25% of patients. These studies are based on small, heterogeneous discovery cohorts, and therefore only captured a fraction of the lesions present in the SMZL genome. To identify further novel pathogenic mutations within related biochemical pathways, we applied whole exome sequencing (WES) and copy number (CN) analysis to a biologically and clinically homogeneous cohort of seven SMZL patients with 7q abnormalities and IGHV1-2*04 gene usage. We identified 173 somatic non-silent variants, affecting 160 distinct genes. In additional to providing independent validation of the presence of mutation in several previously reported genes (NOTCH2, TNFAIP3, MAP3K14, MLL2 and SPEN), our study defined eight additional recurrently mutated genes in SMZL; these genes are CREBBP, CBFA2T3, AMOTL1, FAT4, FBXO11, PLA2G4D, TRRAP and USH2A. By integrating our WES and CN data we identified three mutated putative candidate genes targeted by 7q deletions (CUL1, EZH2 and FLNC), with FLNC positioned within the well-characterized 7q minimally deleted region. Taken together, this work expands the reported directory of recurrently mutated cancer genes in this disease, thereby expanding our understanding of SMZL pathogenesis. Ultimately, this work will help to establish a stratified approach to care including the possibility of targeted therapy. PMID:24349473

Ennis, Sarah; Walewska, Renata; Forster, Jade; Parker, Helen; Davis, Zadie; Gardiner, Anne; Collins, Andrew; Oscier, David G.; Strefford, Jonathan C.

2013-01-01

169

Whole exome sequencing identifies novel recurrently mutated genes in patients with splenic marginal zone lymphoma.  

PubMed

The pathogenesis of splenic marginal zone lymphoma (SMZL) remains largely unknown. Recent high-throughput sequencing studies have identified recurrent mutations in key pathways, most notably NOTCH2 mutations in >25% of patients. These studies are based on small, heterogeneous discovery cohorts, and therefore only captured a fraction of the lesions present in the SMZL genome. To identify further novel pathogenic mutations within related biochemical pathways, we applied whole exome sequencing (WES) and copy number (CN) analysis to a biologically and clinically homogeneous cohort of seven SMZL patients with 7q abnormalities and IGHV1-2*04 gene usage. We identified 173 somatic non-silent variants, affecting 160 distinct genes. In additional to providing independent validation of the presence of mutation in several previously reported genes (NOTCH2, TNFAIP3, MAP3K14, MLL2 and SPEN), our study defined eight additional recurrently mutated genes in SMZL; these genes are CREBBP, CBFA2T3, AMOTL1, FAT4, FBXO11, PLA2G4D, TRRAP and USH2A. By integrating our WES and CN data we identified three mutated putative candidate genes targeted by 7q deletions (CUL1, EZH2 and FLNC), with FLNC positioned within the well-characterized 7q minimally deleted region. Taken together, this work expands the reported directory of recurrently mutated cancer genes in this disease, thereby expanding our understanding of SMZL pathogenesis. Ultimately, this work will help to establish a stratified approach to care including the possibility of targeted therapy. PMID:24349473

Parry, Marina; Rose-Zerilli, Matthew J J; Gibson, Jane; Ennis, Sarah; Walewska, Renata; Forster, Jade; Parker, Helen; Davis, Zadie; Gardiner, Anne; Collins, Andrew; Oscier, David G; Strefford, Jonathan C

2013-01-01

170

Heterozygous Screen in Saccharomyces cerevisiae Identifies Dosage-Sensitive Genes That Affect Chromosome Stability  

PubMed Central

Current techniques for identifying mutations that convey a small increased cancer risk or those that modify cancer risk in carriers of highly penetrant mutations are limited by the statistical power of epidemiologic studies, which require screening of large populations and candidate genes. To identify dosage-sensitive genes that mediate genomic stability, we performed a genomewide screen in Saccharomyces cerevisiae for heterozygous mutations that increase chromosome instability in a checkpoint-deficient diploid strain. We used two genome stability assays sensitive enough to detect the impact of heterozygous mutations and identified 172 heterozygous gene disruptions that affected chromosome fragment (CF) loss, 45% of which also conferred modest but statistically significant instability of endogenous chromosomes. Analysis of heterozygous deletion of 65 of these genes demonstrated that the majority increased genomic instability in both checkpoint-deficient and wild-type backgrounds. Strains heterozygous for COMA kinetochore complex genes were particularly unstable. Over 50% of the genes identified in this screen have putative human homologs, including CHEK2, ERCC4, and TOPBP1, which are already associated with inherited cancer susceptibility. These findings encourage the incorporation of this orthologous gene list into cancer epidemiology studies and suggest further analysis of heterozygous phenotypes in yeast as models of human disease resulting from haplo-insufficiency. PMID:18245329

Strome, Erin D.; Wu, Xiaowei; Kimmel, Marek; Plon, Sharon E.

2008-01-01

171

DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics  

PubMed Central

Background De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder (ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD genes. Methods To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and motor-somatosensory neocortex, a critical nexus for risk. The algorithm casts the ensemble data as a hidden Markov random field in which the graph structure is determined by gene co-expression and it combines these interrelationships with node-specific observations, namely gene identity, expression, genetic data and the estimated effect on risk. Results Using currently available genetic data and a specific developmental time period for gene co-expression, DAWN identified 127 genes that plausibly affect risk, and a set of likely ASD subnetworks. Validation experiments making use of published targeted resequencing results demonstrate its efficacy in reliably predicting ASD genes. DAWN also successfully predicts known ASD genes, not included in the genetic data used to create the model. Conclusions Validation studies demonstrate that DAWN is effective in predicting ASD genes and subnetworks by leveraging genetic and gene expression data. The findings reported here implicate neurite extension and neuronal arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene expression data from other brain regions and tissues would likely identify novel ASD genes. DAWN can also be used for other complex disorders to identify genes and subnetworks in those disorders. PMID:24602502

2014-01-01

172

The role of hemochromatosis susceptibility gene mutations in protecting against iron deficiency in celiac disease  

Microsoft Academic Search

Background & Aims: Celiac disease and hereditary hemochromatosis are common HLA-defined conditions in northwestern Europe. We sought to determine whether there is a genetic relationship between the 2 diseases and if hemochromatosis susceptibility gene (HFE) mutations are protective against iron deficiency in celiac disease. Methods: Polymerase chain reaction amplification using sequence-specific primers capable of identifying the 2 HFE gene mutations

Jeffrey R. Butterworth; Brian T. Cooper; William M. C. Rosenberg; Michael Purkiss; Shirley Jobson; Mark Hathaway; David Briggs; W. Martin Howell; Gordon M. Wood; David H. Adams; Tariq H. Iqbal

2002-01-01

173

Gene transfer therapy of gaucher disease  

Microsoft Academic Search

Gaucher disease is a hereditary disorder of glycosphingolipid metabolism caused by deficiency of lysosomal glucocerebrosidase (GBA) and characterized by accumulation of glucocerebroside in macrophages of the mononuclear phagocyte system (MPS; also called the reticuloendothelial system). Enzyme replacement treatment of the disease is highly effective; however, it is extremely expensive and inconvenient. Attempts at genetic correction by gene transfer therapy in

J. T. R. Clarke; D. Mahuran; J. W. Callahan; P. Thorner

1996-01-01

174

Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease.  

PubMed

Specific members of the intestinal microbiota dramatically affect inflammatory bowel disease (IBD) in mice. In humans, however, identifying bacteria that preferentially affect disease susceptibility and severity remains a major challenge. Here, we used flow-cytometry-based bacterial cell sorting and 16S sequencing to characterize taxa-specific coating of the intestinal microbiota with immunoglobulin A (IgA-SEQ) and show that high IgA coating uniquely identifies colitogenic intestinal bacteria in a mouse model of microbiota-driven colitis. We then used IgA-SEQ and extensive anaerobic culturing of fecal bacteria from IBD patients to create personalized disease-associated gut microbiota culture collections with predefined levels of IgA coating. Using these collections, we found that intestinal bacteria selected on the basis of high coating with IgA conferred dramatic susceptibility to colitis in germ-free mice. Thus, our studies suggest that IgA coating identifies inflammatory commensals that preferentially drive intestinal disease. Targeted elimination of such bacteria may reduce, reverse, or even prevent disease development. PMID:25171403

Palm, Noah W; de Zoete, Marcel R; Cullen, Thomas W; Barry, Natasha A; Stefanowski, Jonathan; Hao, Liming; Degnan, Patrick H; Hu, Jianzhong; Peter, Inga; Zhang, Wei; Ruggiero, Elizabeth; Cho, Judy H; Goodman, Andrew L; Flavell, Richard A

2014-08-28

175

Gene expression in the Parkinson's disease brain  

PubMed Central

The study of gene expression has undergone a transformation in the past decade as the benefits of the sequencing of the human genome have made themselves felt. Increasingly, genome wide approaches are being applied to the analysis of gene expression in human disease as a route to understanding the underlying pathogenic mechanisms. In this review, we will summarise current state of gene expression studies of the brain in Parkinson's disease, and examine how these techniques can be used to gain an insight into aetiology of this devastating disorder. PMID:22173063

Lewis, Patrick A.; Cookson, Mark R.

2012-01-01

176

Identifying Diagnostic Peptides for Lyme Disease through Epitope Discovery  

Microsoft Academic Search

Serum antibodies from patients with Lyme disease (LD) were used to affinity select peptide epitopes from 12 large random peptide libraries in phage display format. The selected peptides were surveyed for reactivity with a panel of positive sera (from LD patients) and negative sera (from subjects without LD), thus identifying 17 peptides with a diagnostically useful binding pattern: reactivity with

GALINA A. KOUZMITCHEVA; VALERY A. PETRENKO; GEORGE P. SMITH

2001-01-01

177

Identifying Disease-centric Subdomains in Very Large Medical Ontologies,  

E-print Network

Identifying Disease-centric Subdomains in Very Large Medical Ontologies, a Case-study on Breast-cancer on the diagnosis or treatment of D. An example of a term that is relevant to breast-cancer is "pregnancy": datasources about breast-cancer (such as guidelines, patient-records, etc.) often contain the term "pregnancy

ten Teije, Annette

178

Identifying disease-centric subdomains in very large medical ontologies,  

E-print Network

Identifying disease-centric subdomains in very large medical ontologies, a case-study on breast-cancer- cepts related to breast-cancer. We compare results of two different methods: (i) The seed query method from [1] was used for extraction of concepts that are unique to breast-cancer. (ii) The so

ten Teije, Annette

179

Parkinson's disease candidate gene prioritization based on expression profile of midbrain dopaminergic neurons  

PubMed Central

Background Parkinson's disease is the second most common neurodegenerative disorder. The pathological hallmark of the disease is degeneration of midbrain dopaminergic neurons. Genetic association studies have linked 13 human chromosomal loci to Parkinson's disease. Identification of gene(s), as part of the etiology of Parkinson's disease, within the large number of genes residing in these loci can be achieved through several approaches, including screening methods, and considering appropriate criteria. Since several of the indentified Parkinson's disease genes are expressed in substantia nigra pars compact of the midbrain, expression within the neurons of this area could be a suitable criterion to limit the number of candidates and identify PD genes. Methods In this work we have used the combination of findings from six rodent transcriptome analysis studies on the gene expression profile of midbrain dopaminergic neurons and the PARK loci in OMIM (Online Mendelian Inheritance in Man) database, to identify new candidate genes for Parkinson's disease. Results Merging the two datasets, we identified 20 genes within PARK loci, 7 of which are located in an orphan Parkinson's disease locus and one, which had been identified as a disease gene. In addition to identifying a set of candidates for further genetic association studies, these results show that the criteria of expression in midbrain dopaminergic neurons may be used to narrow down the number of genes in PARK loci for such studies. PMID:20716345

2010-01-01

180

Gene expression meta-analysis identifies chromosomal regions and candidate genes involved in breast cancer metastasis.  

PubMed

Breast cancer cells exhibit complex karyotypic alterations causing deregulation of numerous genes. Some of these genes are probably causal for cancer formation and local growth whereas others are causal for the various steps of metastasis. In a fraction of tumors deregulation of the same genes might be caused by epigenetic modulations, point mutations or the influence of other genes. We have investigated the relation of gene expression and chromosomal position, using eight datasets including more than 1200 breast tumors, to identify chromosomal regions and candidate genes possibly causal for breast cancer metastasis. By use of "Gene Set Enrichment Analysis" we have ranked chromosomal regions according to their relation to metastasis. Overrepresentation analysis identified regions with increased expression for chromosome 1q41-42, 8q24, 12q14, 16q22, 16q24, 17q12-21.2, 17q21-23, 17q25, 20q11, and 20q13 among metastasizing tumors and reduced gene expression at 1p31-21, 8p22-21, and 14q24. By analysis of genes with extremely imbalanced expression in these regions we identified DIRAS3 at 1p31, PSD3, LPL, EPHX2 at 8p21-22, and FOS at 14q24 as candidate metastasis suppressor genes. Potential metastasis promoting genes includes RECQL4 at 8q24, PRMT7 at 16q22, GINS2 at 16q24, and AURKA at 20q13. PMID:18293085

Thomassen, Mads; Tan, Qihua; Kruse, Torben A

2009-01-01

181

Homologues to the First Gene for Autosomal Dominant Polycystic Kidney Disease Are Pseudogenes  

Microsoft Academic Search

PKD1 is the first gene identified to be causative for the condition of autosomal dominant polycystic kidney disease. There are several genes homologous to PKD1 that are located proximal to the master gene on the same chromosome. Two of these genes have been recently covered in a large sequencing work on chromosome 16, and their structure has been broadly analyzed.

Nadia Bogdanova; Arseni Markoff; Volker Gerke; Marie McCluskey; Jürgen Horst; Bernd Dworniczak

2001-01-01

182

Identification of the von Hippel-Lindau Disease Tumor Suppressor Gene  

Microsoft Academic Search

A gene discovered by positional cloning has been identified as the von Hippel-Lindau (VHL) disease tumor suppressor gene. A restriction fragment encompassing the gene showed rearrangements in 28 of 221 VHL kindreds. Eighteen of these rearrangements were due to deletions in the candidate gene, including three large nonoverlapping deletions. Intragenic mutations were detected in cell lines derived from VHL patients

Farida Latif; Kalman Tory; James Gnarra; Masahiro Yao; Fuh-Mei Duh; Mary Lou Orcutt; Thomas Stackhouse; Igor Kuzmin; William Modi; Laura Geil; Laura Schmidt; Fangwei Zhou; Hua Li; Ming Hui Wei; Fan Chen; Gladys Glenn; Peter Choyke; Mcclellan M. Walther; Yongkai Weng; Dah-Shuhn R. Duan; Michael Dean; Damjan Glavac; Frances M. Richards; Paul A. Crossey; Malcolm A. Ferguson-Smith; Denis Le Paslier; Iiya Chumakov; Daniel Cohen; A. Craig Chinault; Eamonn R. Maher; W. Marston Linehan; Berton Zbar; Michael I. Lerman

1993-01-01

183

Phage cluster relationships identified through single gene analysis  

PubMed Central

Background Phylogenetic comparison of bacteriophages requires whole genome approaches such as dotplot analysis, genome pairwise maps, and gene content analysis. Currently mycobacteriophages, a highly studied phage group, are categorized into related clusters based on the comparative analysis of whole genome sequences. With the recent explosion of phage isolation, a simple method for phage cluster prediction would facilitate analysis of crude or complex samples without whole genome isolation and sequencing. The hypothesis of this study was that mycobacteriophage-cluster prediction is possible using comparison of a single, ubiquitous, semi-conserved gene. Tape Measure Protein (TMP) was selected to test the hypothesis because it is typically the longest gene in mycobacteriophage genomes and because regions within the TMP gene are conserved. Results A single gene, TMP, identified the known Mycobacteriophage clusters and subclusters using a Gepard dotplot comparison or a phylogenetic tree constructed from global alignment and maximum likelihood comparisons. Gepard analysis of 247 mycobacteriophage TMP sequences appropriately recovered 98.8% of the subcluster assignments that were made by whole-genome comparison. Subcluster-specific primers within TMP allow for PCR determination of the mycobacteriophage subcluster from DNA samples. Using the single-gene comparison approach for siphovirus coliphages, phage groupings by TMP comparison reflected relationships observed in a whole genome dotplot comparison and confirm the potential utility of this approach to another widely studied group of phages. Conclusions TMP sequence comparison and PCR results support the hypothesis that a single gene can be used for distinguishing phage cluster and subcluster assignments. TMP single-gene analysis can quickly and accurately aid in mycobacteriophage classification. PMID:23777341

2013-01-01

184

Huntington's disease Between genes and  

E-print Network

when the disease will strike. But there's the question of why people with identical repeats nonetheless formed, but before the metamorphic activity began. Treiman et al. speculate that a comet might have

Levin, Yan

185

Network Analysis Identifies SOD2 mRNA as a Potential Biomarker for Parkinson's Disease  

PubMed Central

Increasing evidence indicates that Parkinson's disease (PD) and type 2 diabetes (T2DM) share dysregulated molecular networks. We identified 84 genes shared between PD and T2DM from curated disease-gene databases. Nitric oxide biosynthesis, lipid and carbohydrate metabolism, insulin secretion and inflammation were identified as common dysregulated pathways. A network prioritization approach was implemented to rank genes according to their distance to seed genes and their involvement in common biological pathways. Quantitative polymerase chain reaction assays revealed that a highly ranked gene, superoxide dismutase 2 (SOD2), is upregulated in PD patients compared to healthy controls in 192 whole blood samples from two independent clinical trials, the Harvard Biomarker Study (HBS) and the Diagnostic and Prognostic Biomarkers in Parkinson's disease (PROBE). The results from this study reinforce the idea that shared molecular networks between PD and T2DM provides an additional source of biologically meaningful biomarkers. Evaluation of this biomarker in de novo PD patients and in a larger prospective longitudinal study is warranted. PMID:25279756

Santiago, Jose A.; Scherzer, Clemens R.; Potashkin, Judith A.

2014-01-01

186

Animal models of GWAS-identified type 2 diabetes genes.  

PubMed

More than 65 loci, encoding up to 500 different genes, have been implicated by genome-wide association studies (GWAS) as conferring an increased risk of developing type 2 diabetes (T2D). Whilst mouse models have in the past been central to understanding the mechanisms through which more penetrant risk genes for T2D, for example, those responsible for neonatal or maturity-onset diabetes of the young, only a few of those identified by GWAS, notably TCF7L2 and ZnT8/SLC30A8, have to date been examined in mouse models. We discuss here the animal models available for the latter genes and provide perspectives for future, higher throughput approaches towards efficiently mining the information provided by human genetics. PMID:23710470

da Silva Xavier, Gabriela; Bellomo, Elisa A; McGinty, James A; French, Paul M; Rutter, Guy A

2013-01-01

187

Refining analyses of copy number variation identifies specific genes associated with developmental delay.  

PubMed

Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large, and the underlying causative genes are unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay in comparison to 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26 candidate genes in 4,716 additional cases with developmental delay or autism and 2,193 controls. An integrated analysis of CNV and single-nucleotide variant (SNV) data pinpointed 10 genes enriched for putative loss of function. Follow-up of a subset of affected individuals identified new clinical subtypes of pediatric disease and the genes responsible for disease-associated CNVs. These genetic changes include haploinsufficiency of SETBP1 associated with intellectual disability and loss of expressive language and truncations of ZMYND11 in individuals with autism, aggression and complex neuropsychiatric features. This combined CNV and SNV approach facilitates the rapid discovery of new syndromes and genes involved in neuropsychiatric disease despite extensive genetic heterogeneity. PMID:25217958

Coe, Bradley P; Witherspoon, Kali; Rosenfeld, Jill A; van Bon, Bregje W M; Vulto-van Silfhout, Anneke T; Bosco, Paolo; Friend, Kathryn L; Baker, Carl; Buono, Serafino; Vissers, Lisenka E L M; Schuurs-Hoeijmakers, Janneke H; Hoischen, Alex; Pfundt, Rolph; Krumm, Nik; Carvill, Gemma L; Li, Deana; Amaral, David; Brown, Natasha; Lockhart, Paul J; Scheffer, Ingrid E; Alberti, Antonino; Shaw, Marie; Pettinato, Rosa; Tervo, Raymond; de Leeuw, Nicole; Reijnders, Margot R F; Torchia, Beth S; Peeters, Hilde; O'Roak, Brian J; Fichera, Marco; Hehir-Kwa, Jayne Y; Shendure, Jay; Mefford, Heather C; Haan, Eric; Gécz, Jozef; de Vries, Bert B A; Romano, Corrado; Eichler, Evan E

2014-10-01

188

Refining analyses of copy number variation identifies specific genes associated with developmental delay  

PubMed Central

Copy number variants (CNVs) are associated with many neurocognitive disorders; however, these events are typically large and the underlying causative gene is unclear. We created an expanded CNV morbidity map from 29,085 children with developmental delay versus 19,584 healthy controls, identifying 70 significant CNVs. We resequenced 26 candidate genes in 4,716 additional cases with developmental delay or autism and 2,193 controls. An integrated analysis of CNV and single-nucleotide variant (SNV) data pinpointed ten genes enriched for putative loss of function. Patient follow-up on a subset identified new clinical subtypes of pediatric disease and the genes responsible for disease-associated CNVs. This includes haploinsufficiency of SETBP1 associated with intellectual disability and loss of expressive language and truncations of ZMYND11 in patients with autism, aggression and complex neuropsychiatric features. This combined CNV and SNV approach facilitates the rapid discovery of new syndromes and neuropsychiatric disease genes despite extensive genetic heterogeneity. PMID:25217958

Coe, Bradley P.; Witherspoon, Kali; Rosenfeld, Jill A.; van Bon, Bregje W.M.; Vulto-van Silfhout, Anneke T.; Bosco, Paolo; Friend, Kathryn L.; Baker, Carl; Buono, Serafino; Vissers, Lisenka E.L.M.; Schuurs-Hoeijmakers, Janneke H.; Hoischen, Alex; Pfundt, Rolph; Krumm, Nik; Carvill, Gemma L.; Li, Deana; Amaral, David; Brown, Natasha; Lockhart, Paul J.; Scheffer, Ingrid E; Alberti, Antonino; Shaw, Marie; Pettinato, Rosa; Tervo, Raymond; de Leeuw, Nicole; Reijnders, Margot R.F.; Torchia, Beth S.; Peeters, Hilde; O'Roak, Brian J.; Fichera, Marco; Hehir-Kwa, Jayne Y.; Shendure, Jay; Mefford, Heather C.; Haan, Eric; Gécz, Jozef; de Vries, Bert B.A.; Romano, Corrado; Eichler, Evan E.

2014-01-01

189

Genes Necessary for Bacterial Magnetite Biomineralization Identified by Transposon Mutagenesis  

NASA Astrophysics Data System (ADS)

Magnetic bacteria synthesize nanoscale crystals of magnetite in intracellular, membrane-bounded organelles (magnetosomes). These crystals are preserved in the fossil record at least as far back as the late Neoproterozoic and have been tentatively identified in much older rocks (1). This fossil record may provide deep time calibration points for molecular evolution studies once the genes involved in biologically controlled magnetic mineralization (BCMM) are known. Further, a genetic and biochemical understanding of BCMM will give insight into the depositional environment and biogeochemical cycles in which magnetic bacteria play a role. The BCMM process is not well understood, though proteins have been identified from the magnetosome membrane and genetic manipulation and biochemical characterization of these proteins are underway. Most of the proteins currently thought to be involved are encoded within the mam cluster, a large cluster of genes whose products localize to the magnetosome membrane and are conserved among magnetic bacteria (2). In an effort to identify all of the genes necessary for bacterial BCMM, we undertook a transposon mutagenesis of Magnetospirillum magneticum AMB-1. Non-magnetic mutants (MNMs) were identified by growth in liquid culture followed by a magnetic assay. The insertion site of the transposon was identified two ways. First MNMs were screened with a PCR assay to determine if the transposon had inserted into the mam cluster. Second, the transposon was rescued from the mutant DNA and cloned for sequencing. The majority insertion sites are located within the mam cluster. Insertion sites also occur in operons which have not previously been suspected to be involved in magnetite biomineralization. None of the insertion sites have occurred within genes reported from previous transposon mutagenesis studies of AMB-1 (3, 4). Two of the non-mam cluster insertion sites occur in operons containing genes conserved particularly between MS-1 and MC-1. We are undertaking a complementation strategy to demonstrate the necessity of these novel genes in BCMM as well as characterizing the phenotypes of the mutants. 1. S. B. R. Chang, J. F. Stolz, J. L. Kirschvink, S. M. Awramik, Precambrian Res. 43, 305-315 (1989). 2. K. Grünberg, C. Wawer, B. M. Tebo, D. Schüler, Appl. Environ. Microbiol. 67, 4573-4582 (2001). 3. A. T. Wahyudi, H. Takeyama, T. Matsunaga, Appl. Biochem. Biotechnol. 91-3, 147-154 (2001). 4. T. Matsunaga, C. Nakamura, J. G. Burgess, K. Sode, J. Bacteriol. 174, 2748-2753 (1992).

Nash, C. Z.; Komeili, A.; Newman, D. K.; Kirschvink, J. L.

2004-12-01

190

Integrative analysis of DNA methylation and gene expression data identifies EPAS1 as a key regulator of COPD.  

PubMed

Chronic Obstructive Pulmonary Disease (COPD) is a complex disease. Genetic, epigenetic, and environmental factors are known to contribute to COPD risk and disease progression. Therefore we developed a systematic approach to identify key regulators of COPD that integrates genome-wide DNA methylation, gene expression, and phenotype data in lung tissue from COPD and control samples. Our integrative analysis identified 126 key regulators of COPD. We identified EPAS1 as the only key regulator whose downstream genes significantly overlapped with multiple genes sets associated with COPD disease severity. EPAS1 is distinct in comparison with other key regulators in terms of methylation profile and downstream target genes. Genes predicted to be regulated by EPAS1 were enriched for biological processes including signaling, cell communications, and system development. We confirmed that EPAS1 protein levels are lower in human COPD lung tissue compared to non-disease controls and that Epas1 gene expression is reduced in mice chronically exposed to cigarette smoke. As EPAS1 downstream genes were significantly enriched for hypoxia responsive genes in endothelial cells, we tested EPAS1 function in human endothelial cells. EPAS1 knockdown by siRNA in endothelial cells impacted genes that significantly overlapped with EPAS1 downstream genes in lung tissue including hypoxia responsive genes, and genes associated with emphysema severity. Our first integrative analysis of genome-wide DNA methylation and gene expression profiles illustrates that not only does DNA methylation play a 'causal' role in the molecular pathophysiology of COPD, but it can be leveraged to directly identify novel key mediators of this pathophysiology. PMID:25569234

Yoo, Seungyeul; Takikawa, Sachiko; Geraghty, Patrick; Argmann, Carmen; Campbell, Joshua; Lin, Luan; Huang, Tao; Tu, Zhidong; Feronjy, Robert; Spira, Avrum; Schadt, Eric E; Powell, Charles A; Zhu, Jun

2015-01-01

191

A gain-of-function screen to identify genes that reduce lifespan in the adult of Drosophila melanogaster  

PubMed Central

Background Several lines of evidence associate misregulated genetic expression with risk factors for diabetes, Alzheimer’s, and other diseases that sporadically develop in healthy adults with no background of hereditary disorders. Thus, we are interested in genes that may be expressed normally through parts of an individual’s life, but can cause physiological defects and disease when misexpressed in adulthood. Results We attempted to identify these genes in a model organism by arbitrarily misexpressing specific genes in adult Drosophila melanogaster, using 14,133 Gene Search lines. We identified 39 “reduced-lifespan genes” that, when misexpressed in adulthood, shortened the flies’ lifespan to less than 30% of that of control flies. About half of these genes have human orthologs that are known to be involved in human diseases. For about one-fourth of the reduced-lifespan genes, suppressing apoptosis restored the lifespan shortened by their misexpression. We determined the organs responsible for reduced lifespan when these genes were misexpressed specifically in adulthood, and found that while some genes induced reduced lifespan only when misexpressed in specific adult organs, others could induce reduced lifespan when misexpressed in various organs. This finding suggests that tissue-specific dysfunction may be involved in reduced lifespan related to gene misexpression. Gene ontology analysis showed that reduced-lifespan genes are biased toward genes related to development. Conclusions We identified 39 genes that, when misexpressed in adulthood, shortened the lifespan of adult flies. Suppressing apoptosis rescued this shortened lifespan for only a subset of the reduced-lifespan genes. The adult tissues in which gene misexpression caused early death differed among the reduced-lifespan genes. These results suggest that the cause of reduced lifespan upon misexpression differed among the genes. PMID:24739137

2014-01-01

192

Beryllium Lymphocyte Proliferation Test Surveillance Identifies Clinically Significant Beryllium Disease  

PubMed Central

Background Workplace surveillance identifies chronic beryllium disease (CBD) but it remains unknown over what time frame mild CBD will progress to a more severe form. Methods We examined physiology and treatment in 229 beryllium sensitization (BeS) and 171 CBD surveillance-identified cases diagnosed from 1982 to 2002. Never smoking CBD cases (81) were compared to never smoking BeS patients (83) to assess disease progression. We compared CBD machinists to non-machinists to examine effects of exposure. Results At baseline, CBD and BeS cases did not differ significantly in exposure time or physiology. CBD patients were more likely to have machined beryllium. Of CBD cases, 19.3% went on to require oral immunosuppressive therapy. At 30 years from first exposure, measures of gas exchange were significantly worse and total lung capacity was lower for CBD subjects. Machinists had faster disease progression as measured by pulmonary function testing and gas exchange. Conclusions Medical surveillance for CBD identifies individuals at significant risk of disease progression and impairment with sufficient time since first exposure. PMID:19681064

Mroz, Margaret M.; Maier, Lisa A.; Strand, Matthew; Silviera, Lori; Newman, Lee S.

2011-01-01

193

Sleeping Beauty Mouse Models Identify Candidate Genes Involved in Gliomagenesis  

PubMed Central

Genomic studies of human high-grade gliomas have discovered known and candidate tumor drivers. Studies in both cell culture and mouse models have complemented these approaches and have identified additional genes and processes important for gliomagenesis. Previously, we found that mobilization of Sleeping Beauty transposons in mice ubiquitously throughout the body from the Rosa26 locus led to gliomagenesis with low penetrance. Here we report the characterization of mice in which transposons are mobilized in the Glial Fibrillary Acidic Protein (GFAP) compartment. Glioma formation in these mice did not occur on an otherwise wild-type genetic background, but rare gliomas were observed when mobilization occurred in a p19Arf heterozygous background. Through cloning insertions from additional gliomas generated by transposon mobilization in the Rosa26 compartment, several candidate glioma genes were identified. Comparisons to genetic, epigenetic and mRNA expression data from human gliomas implicates several of these genes as tumor suppressor genes and oncogenes in human glioblastoma. PMID:25423036

Vyazunova, Irina; Maklakova, Vilena I.; Berman, Samuel; De, Ishani; Steffen, Megan D.; Hong, Won; Lincoln, Hayley; Morrissy, A. Sorana; Taylor, Michael D.; Akagi, Keiko; Brennan, Cameron W.; Rodriguez, Fausto J.; Collier, Lara S.

2014-01-01

194

Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes.  

PubMed

Neuroblastoma is a childhood tumour of the peripheral sympathetic nervous system. The pathogenesis has for a long time been quite enigmatic, as only very few gene defects were identified in this often lethal tumour. Frequently detected gene alterations are limited to MYCN amplification (20%) and ALK activations (7%). Here we present a whole-genome sequence analysis of 87 neuroblastoma of all stages. Few recurrent amino-acid-changing mutations were found. In contrast, analysis of structural defects identified a local shredding of chromosomes, known as chromothripsis, in 18% of high-stage neuroblastoma. These tumours are associated with a poor outcome. Structural alterations recurrently affected ODZ3, PTPRD and CSMD1, which are involved in neuronal growth cone stabilization. In addition, ATRX, TIAM1 and a series of regulators of the Rac/Rho pathway were mutated, further implicating defects in neuritogenesis in neuroblastoma. Most tumours with defects in these genes were aggressive high-stage neuroblastomas, but did not carry MYCN amplifications. The genomic landscape of neuroblastoma therefore reveals two novel molecular defects, chromothripsis and neuritogenesis gene alterations, which frequently occur in high-risk tumours. PMID:22367537

Molenaar, Jan J; Koster, Jan; Zwijnenburg, Danny A; van Sluis, Peter; Valentijn, Linda J; van der Ploeg, Ida; Hamdi, Mohamed; van Nes, Johan; Westerman, Bart A; van Arkel, Jennemiek; Ebus, Marli E; Haneveld, Franciska; Lakeman, Arjan; Schild, Linda; Molenaar, Piet; Stroeken, Peter; van Noesel, Max M; Ora, Ingrid; Santo, Evan E; Caron, Huib N; Westerhout, Ellen M; Versteeg, Rogier

2012-03-29

195

Identifying genes underlying skin pigmentation differences among human populations  

Microsoft Academic Search

Skin pigmentation is a human phenotype that varies greatly among human populations and it has long been speculated that this\\u000a variation is adaptive. We therefore expect the genes that contribute to these large differences in phenotype to show large\\u000a allele frequency differences among populations and to possibly harbor signatures of positive selection. To identify the loci\\u000a that likely contribute to

Sean Myles; Mehmet Somel; Kun Tang; Janet Kelso; Mark Stoneking

2007-01-01

196

Methods for identifying an essential gene in a prokaryotic microorganism  

DOEpatents

Methods are provided for the rapid identification of essential or conditionally essential DNA segments in any species of haploid cell (one copy chromosome per cell) that is capable of being transformed by artificial means and is capable of undergoing DNA recombination. This system offers an enhanced means of identifying essential function genes in diploid pathogens, such as gram-negative and gram-positive bacteria.

Shizuya, Hiroaki

2006-01-31

197

Gene Therapy Techniques for Peripheral Arterial Disease  

SciTech Connect

Somatic gene therapy is the introduction of new genetic material into selective somatic cells with resulting therapeutic benefits. Vascular wall and, subsequently, cardiovascular diseases have become an interesting target for gene therapy studies.Arteries are an attractive target for gene therapy since vascular interventions, both open surgical and endovascular, are well suited for minimally invasive, easily monitored gene delivery. Promising therapeutic effects have been obtained in animal models in preventing post-angioplasty restenosis and vein graft thickening, as well as increasing blood flow and collateral development in ischemic limbs.First clinical trials suggest a beneficial effect of vascular endothelial growth factor in achieving therapeutic angiogenesis in chronic limb ischemia and the efficacy of decoy oligonucleotides to prevent infrainguinal vein graft stenosis. However, further studies are mandatory to clarify the safety issues, to develop better gene delivery vectors and delivery catheters, to improve transgene expression, as well as to find the most effective and safe treatment genes.

Manninen, Hannu I. [Department of Clinical Radiology, Kuopio University Hospital, Puijonlaaksontie 2, FIN-70210 Kuopio (Finland); Maekinen, Kimmo [Departmentof Surgery, and Gene Therapy Unit, Kuopio University Hospital, Puijonlaaksontie 2, FIN-70210 Kuopio (Finland)

2002-03-15

198

Gene-Based Association Analysis Identified Novel Genes Associated with Bone Mineral Density  

PubMed Central

Genetic factors contribute to the variation of bone mineral density (BMD), which is a major risk factor of osteoporosis. The aim of this study was to identify more “novel” genes for BMD. Based on the publicly available SNP-based P values, we performed an initial gene-based analysis in a total of 32,961 individuals. Furthermore, we performed differential expression, pathway and protein-protein interaction analyses to find supplementary evidence to support the significance of the identified genes. About 21,695 genes for femoral neck (FN)-BMD and 21,683 genes for lumbar spine (LS)-BMD were analyzed using gene-based association analysis. A total of 35 FN-BMD associated genes and 53 LS-BMD associated genes were identified (P < 2.3×10-6) after Bonferroni correction. Among them, 64 genes have not been reported in previous SNP-based genome-wide association studies. Differential expression analysis further supported the significant associations of 14 genes with FN-BMD and 19 genes with LS-BMD. Especially, WNT3 and WNT9B in the Wnt signaling pathway for FN-BMD were further supported by pathway analysis and protein-protein interaction analysis. The present study took the advantage of gene-based association method to perform a supplementary analysis of the GWAS dataset and found some BMD-associated genes. The evidence taken together supported the importance of Wnt signaling pathway genes in determining osteoporosis. Our findings provided more insights into the genetic basis of osteoporosis. PMID:25811989

Mo, Xing-Bo; Lu, Xin; Zhang, Yong-Hong; Zhang, Zeng-Li; Deng, Fei-Yan; Lei, Shu-Feng

2015-01-01

199

A stochastic model for identifying differential gene pair co-expression patterns in prostate cancer progression  

PubMed Central

Background The identification of gene differential co-expression patterns between cancer stages is a newly developing method to reveal the underlying molecular mechanisms of carcinogenesis. Most researches of this subject lack an algorithm useful for performing a statistical significance assessment involving cancer progression. Lacking this specific algorithm is apparently absent in identifying precise gene pairs correlating to cancer progression. Results In this investigation we studied gene pair co-expression change by using a stochastic process model for approximating the underlying dynamic procedure of the co-expression change during cancer progression. Also, we presented a novel analytical method named 'Stochastic process model for Identifying differentially co-expressed Gene pair' (SIG method). This method has been applied to two well known prostate cancer data sets: hormone sensitive versus hormone resistant, and healthy versus cancerous. From these data sets, 428,582 gene pairs and 303,992 gene pairs were identified respectively. Afterwards, we used two different current statistical methods to the same data sets, which were developed to identify gene pair differential co-expression and did not consider cancer progression in algorithm. We then compared these results from three different perspectives: progression analysis, gene pair identification effectiveness analysis, and pathway enrichment analysis. Statistical methods were used to quantify the quality and performance of these different perspectives. They included: Re-identification Scale (RS) and Progression Score (PS) in progression analysis, True Positive Rate (TPR) in gene pair analysis, and Pathway Enrichment Score (PES) in pathway analysis. Our results show small values of RS and large values of PS, TPR, and PES; thus, suggesting that gene pairs identified by the SIG method are highly correlated with cancer progression, and highly enriched in disease-specific pathways. From this research, several gene interaction networks inferred could provide clues for the mechanism of prostate cancer progression. Conclusion The SIG method reliably identifies cancer progression correlated gene pairs, and performs well both in gene pair ontology analysis and in pathway enrichment analysis. This method provides an effective means of understanding the molecular mechanism of carcinogenesis by appropriately tracking down the process of cancer progression. PMID:19640296

Mo, Wen Juan; Fu, Xu Ping; Han, Xiao Tian; Yang, Guang Yuan; Zhang, Ji Gang; Guo, Feng Hua; Huang, Yan; Mao, Yu Min; Li, Yao; Xie, Yi

2009-01-01

200

Harnessing genomics to identify environmental determinants of heritable disease  

PubMed Central

Next-generation sequencing technologies can now be used to directly measure heritable de novo DNA sequence mutations in humans. However, these techniques have not been used to examine environmental factors that induce such mutations and their associated diseases. To address this issue, a working group on environmentally induced germline mutation analysis (ENIGMA) met in October 2011 to propose the necessary foundational studies, which include sequencing of parent–offspring trios from highly exposed human populations, and controlled dose–response experiments in animals. These studies will establish background levels of variability in germline mutation rates and identify environmental agents that influence these rates and heritable disease. Guidance for the types of exposures to examine come from rodent studies that have identified agents such as cancer chemotherapeutic drugs, ionizing radiation, cigarette smoke, and air pollution as germ-cell mutagens. Research is urgently needed to establish the health consequences of parental exposures on subsequent generations. PMID:22935230

Yauk, Carole Lyn; Argueso, J. Lucas; Auerbach, Scott S.; Awadalla, Philip; Davis, Sean R.; DeMarini, David M.; Douglas, George R.; Dubrova, Yuri E.; Elespuru, Rosalie K.; Glover, Thomas W.; Hales, Barbara F.; Hurles, Matthew E.; Klein, Catherine B.; Lupski, James R.; Manchester, David K.; Marchetti, Francesco; Montpetit, Alexandre; Mulvihill, John J.; Robaire, Bernard; Robbins, Wendie A.; Rouleau, Guy A.; Shaughnessy, Daniel T.; Somers, Christopher M.; Taylor, James G.; Trasler, Jacquetta; Waters, Michael D.; Wilson, Thomas E.; Witt, Kristine L.; Bishop, Jack B.

2012-01-01

201

Using Drosophila melanogaster to identify chemotherapy toxicity genes.  

PubMed

The severity of the toxic side effects of chemotherapy shows a great deal of interindividual variability, and much of this variation is likely genetically based. Simple DNA tests predictive of toxic side effects could revolutionize the way chemotherapy is carried out. Due to the challenges in identifying polymorphisms that affect toxicity in humans, we use Drosophila fecundity following oral exposure to carboplatin, gemcitabine and mitomycin C as a model system to identify naturally occurring DNA variants predictive of toxicity. We use the Drosophila Synthetic Population Resource (DSPR), a panel of recombinant inbred lines derived from a multiparent advanced intercross, to map quantitative trait loci affecting chemotoxicity. We identify two QTL each for carboplatin and gemcitabine toxicity and none for mitomycin. One QTL is associated with fly orthologs of a priori human carboplatin candidate genes ABCC2 and MSH2, and a second QTL is associated with fly orthologs of human gemcitabine candidate genes RRM2 and RRM2B. The third, a carboplatin QTL, is associated with a posteriori human orthologs from solute carrier family 7A, INPP4A&B, and NALCN. The fourth, a gemcitabine QTL that also affects methotrexate toxicity, is associated with human ortholog GPx4. Mapped QTL each explain a significant fraction of variation in toxicity, yet individual SNPs and transposable elements in the candidate gene regions fail to singly explain QTL peaks. Furthermore, estimates of founder haplotype effects are consistent with genes harboring several segregating functional alleles. We find little evidence for nonsynonymous SNPs explaining mapped QTL; thus it seems likely that standing variation in toxicity is due to regulatory alleles. PMID:25236447

King, Elizabeth G; Kislukhin, Galina; Walters, Kelli N; Long, Anthony D

2014-09-01

202

Curing Genetic Disease with Gene Therapy  

PubMed Central

Development of viral vectors that allow high efficiency gene transfer into mammalian cells in the early 1980s foresaw the treatment of severe monogenic diseases in humans. The application of gene transfer using viral vectors has been successful in diseases of the blood and immune systems, albeit with several curative studies also showing serious adverse events (SAEs). In children with X-linked severe combined immunodeficiency (SCID-X1), chronic granulomatous disease, and Wiskott-Aldrich syndrome, these SAEs were caused by inappropriate activation of oncogenes. Subsequent studies have defined the vector sequences responsible for these transforming events. Members of the Transatlantic Gene Therapy Consortium [TAGTC] have collaboratively developed new vectors that have proven safer in preclinical studies and used these vectors in new clinical trials in SCID-X1. These trials have shown evidence of early efficacy and preliminary integration analysis data from the SCID-X1 trial suggest an improved safety profile. PMID:25125725

Williams, David A.

2014-01-01

203

Curing genetic disease with gene therapy.  

PubMed

Development of viral vectors that allow high efficiency gene transfer into mammalian cells in the early 1980s foresaw the treatment of severe monogenic diseases in humans. The application of gene transfer using viral vectors has been successful in diseases of the blood and immune systems, albeit with several curative studies also showing serious adverse events (SAEs). In children with X-linked severe combined immunodeficiency (SCID-X1), chronic granulomatous disease, and Wiskott-Aldrich syndrome, these SAEs were caused by inappropriate activation of oncogenes. Subsequent studies have defined the vector sequences responsible for these transforming events. Members of the Transatlantic Gene Therapy Consortium [TAGTC] have collaboratively developed new vectors that have proven safer in preclinical studies and used these vectors in new clinical trials in SCID-X1. These trials have shown evidence of early efficacy and preliminary integration analysis data from the SCID-X1 trial suggest an improved safety profile. PMID:25125725

Williams, David A

2014-01-01

204

Identifying patients with chronic kidney disease from general practicecomputer records  

Microsoft Academic Search

Chronic kidney disease (CKD) is an important predictor of end-stage\\u000d\\u000a\\u0009renal disease, as well as a marker of increased mortality. The New\\u000d\\u000a\\u0009Opportunities for Early Renal Intervention by Computerised Assessment\\u000d\\u000a\\u0009(NEOERICA) project aimed to assess whether people with undiagnosed\\u000d\\u000a\\u0009CKD who might benefit from early intervention could be identified\\u000d\\u000a\\u0009from GP computer records.The simplified Modification of Diet in Renal\\u000d\\u000a\\u0009Disease

Simon de Lusignan; Tom Chan; Paul Stevens; Donal O'Donoghue; Nigel Hague; Billy Dzregah; Jeremy Van Vlymen; Mel Walker; Sean Hilton

2005-01-01

205

Two major genes, linked to HLA and Gm, control susceptibility to Graves' disease  

Microsoft Academic Search

Graves' disease is a multifactorial disease in which immunogenetic as well as environmental factors have important roles. Recently, cumulative evidence has shown that genes controlling immune responses are linked to the MHC (major histocompatibility complex)1 and\\/or immunoglobulin allotype genes2,3. To identify the genes governing susceptibility to Graves' disease, we have studied 30 Japanese families where more than two first degree

Hisamitsu Uno; Takehiko Sasazuki; Hajime Tamai; Hideo Matsumoto

1981-01-01

206

Identification of Sequence Variants in Genetic Disease-Causing Genes Using Targeted Next-Generation Sequencing  

Microsoft Academic Search

BackgroundIdentification of gene variants plays an important role in research on and diagnosis of genetic diseases. A combination of enrichment of targeted genes and next-generation sequencing (targeted DNA-HiSeq) results in both high efficiency and low cost for targeted sequencing of genes of interest.Methodology\\/Principal FindingsTo identify mutations associated with genetic diseases, we designed an array-based gene chip to capture all of

Xiaoming Wei; Xiangchun Ju; Xin Yi; Qian Zhu; Ning Qu; Tengfei Liu; Yang Chen; Hui Jiang; Guanghui Yang; Ruan Zhen; Zhangzhang Lan; Ming Qi; Jinming Wang; Yi Yang; Yuxing Chu; Xiaoyan Li; Yanfang Guang; Jian Huang

2011-01-01

207

Identifying novel genes involved in both deer physiological and human pathological osteoporosis  

Microsoft Academic Search

Osteoporosis attacks 10% of the population worldwide. Humans or even the model animals of the disease cannot recover from\\u000a porous bone. Regeneration in skeletal elements is the unique feature of our newly investigated osteoporosis model, the red\\u000a deer (Cervus elaphus) stag. Cyclic physiological osteoporosis is a consequence of the annual antler cycle. This phenomenon raises the possibility\\u000a to identify genes

Adrienn Borsy; János Podani; Viktor Stéger; Bernadett Balla; Arnold Horváth; János P. Kósa; István Gyurján; Andrea Molnár; Zoltán Szabolcsi; László Szabó; Eéna Jakó; Zoltán Zomborszky; János Nagy; Szabolcs Semsey; Tibor Vellai; Péter Lakatos; László Orosz

2009-01-01

208

Screening for noise in gene expression identifies drug synergies.  

PubMed

Stochastic fluctuations are inherent to gene expression and can drive cell-fate specification. We used such fluctuations to modulate reactivation of HIV from latency-a quiescent state that is a major barrier to an HIV cure. By screening a diverse library of bioactive small molecules, we identified more than 80 compounds that modulated HIV gene-expression fluctuations (i.e., "noise"), without changing mean expression. These noise-modulating compounds would be neglected in conventional screens, and yet, they synergized with conventional transcriptional activators. Noise enhancers reactivated latent cells significantly better than existing best-in-class reactivation drug combinations (and with reduced off-target cytotoxicity), whereas noise suppressors stabilized latency. Noise-modulating chemicals may provide novel probes for the physiological consequences of noise and an unexplored axis for drug discovery, allowing enhanced control over diverse cell-fate decisions. PMID:24903562

Dar, Roy D; Hosmane, Nina N; Arkin, Michelle R; Siliciano, Robert F; Weinberger, Leor S

2014-06-20

209

Identifying Neighborhoods of Coordinated Gene Expression and Metabolite Profiles  

PubMed Central

In this paper we investigate how metabolic network structure affects any coordination between transcript and metabolite profiles. To achieve this goal we conduct two complementary analyses focused on the metabolic response to stress. First, we investigate the general size of any relationship between metabolic network gene expression and metabolite profiles. We find that strongly correlated transcript-metabolite profiles are sustained over surprisingly long network distances away from any target metabolite. Secondly, we employ a novel pathway mining method to investigate the structure of this transcript-metabolite relationship. The objective of this method is to identify a minimum set of metabolites which are the target of significantly correlated gene expression pathways. The results reveal that in general, a global regulation signature targeting a small number of metabolites is responsible for a large scale metabolic response. However, our method also reveals pathway specific effects that can degrade this global regulation signature and complicates the observed coordination between transcript-metabolite profiles. PMID:22355360

Hancock, Timothy; Wicker, Nicolas; Takigawa, Ichigaku; Mamitsuka, Hiroshi

2012-01-01

210

Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways.  

PubMed

Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention. PMID:25700176

Cirulli, Elizabeth T; Lasseigne, Brittany N; Petrovski, Slavé; Sapp, Peter C; Dion, Patrick A; Leblond, Claire S; Couthouis, Julien; Lu, Yi-Fan; Wang, Quanli; Krueger, Brian J; Ren, Zhong; Keebler, Jonathan; Han, Yujun; Levy, Shawn E; Boone, Braden E; Wimbish, Jack R; Waite, Lindsay L; Jones, Angela L; Carulli, John P; Day-Williams, Aaron G; Staropoli, John F; Xin, Winnie W; Chesi, Alessandra; Raphael, Alya R; McKenna-Yasek, Diane; Cady, Janet; Vianney de Jong, J M B; Kenna, Kevin P; Smith, Bradley N; Topp, Simon; Miller, Jack; Gkazi, Athina; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan; Silani, Vincenzo; Ticozzi, Nicola; Shaw, Christopher E; Baloh, Robert H; Appel, Stanley; Simpson, Ericka; Lagier-Tourenne, Clotilde; Pulst, Stefan M; Gibson, Summer; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Grossman, Murray; Shneider, Neil A; Chung, Wendy K; Ravits, John M; Glass, Jonathan D; Sims, Katherine B; Van Deerlin, Vivianna M; Maniatis, Tom; Hayes, Sebastian D; Ordureau, Alban; Swarup, Sharan; Landers, John; Baas, Frank; Allen, Andrew S; Bedlack, Richard S; Harper, J Wade; Gitler, Aaron D; Rouleau, Guy A; Brown, Robert; Harms, Matthew B; Cooper, Gregory M; Harris, Tim; Myers, Richard M; Goldstein, David B

2015-03-27

211

Exome Sequencing Identifies Three Novel Candidate Genes Implicated in Intellectual Disability  

PubMed Central

Intellectual disability (ID) is a major health problem mostly with an unknown etiology. Recently exome sequencing of individuals with ID identified novel genes implicated in the disease. Therefore the purpose of the present study was to identify the genetic cause of ID in one syndromic and two non-syndromic Pakistani families. Whole exome of three ID probands was sequenced. Missense variations in two plausible novel genes implicated in autosomal recessive ID were identified: lysine (K)-specific methyltransferase 2B (KMT2B), zinc finger protein 589 (ZNF589), as well as hedgehog acyltransferase (HHAT) with a de novo mutation with autosomal dominant mode of inheritance. The KMT2B recessive variant is the first report of recessive Kleefstra syndrome-like phenotype. Identification of plausible causative mutations for two recessive and a dominant type of ID, in genes not previously implicated in disease, underscores the large genetic heterogeneity of ID. These results also support the viewpoint that large number of ID genes converge on limited number of common networks i.e. ZNF589 belongs to KRAB-domain zinc-finger proteins previously implicated in ID, HHAT is predicted to affect sonic hedgehog, which is involved in several disorders with ID, KMT2B associated with syndromic ID fits the epigenetic module underlying the Kleefstra syndromic spectrum. The association of these novel genes in three different Pakistani ID families highlights the importance of screening these genes in more families with similar phenotypes from different populations to confirm the involvement of these genes in pathogenesis of ID. PMID:25405613

Azam, Maleeha; Ayub, Humaira; Vissers, Lisenka E. L. M.; Gilissen, Christian; Ali, Syeda Hafiza Benish; Riaz, Moeen; Veltman, Joris A.; Pfundt, Rolph; van Bokhoven, Hans; Qamar, Raheel

2014-01-01

212

Gene that controls aggressiveness in breast cancer cells identified  

Cancer.gov

In a discovery that sheds new light on the aggressiveness of certain breast cancers, Whitehead Institute and MIT researchers have identified a transcription factor, known as ZEB1, that is capable of converting non-aggressive basal-type cancer cells into highly malignant, tumor-forming cancer stem cells (CSCs). Intriguingly, luminal breast cancer cells, which are associated with a much better clinical prognosis, carry this gene in a state in which it seems to be permanently shut down. MIT is home to the David H. Koch Institute for Integrative Cancer Research.

213

Identifying Genes Involved in Cyclic Processes by Combining Gene Expression Analysis and Prior Knowledge  

PubMed Central

Based on time series gene expressions, cyclic genes can be recognized via spectral analysis and statistical periodicity detection tests. These cyclic genes are usually associated with cyclic biological processes, for example, cell cycle and circadian rhythm. The power of a scheme is practically measured by comparing the detected periodically expressed genes with experimentally verified genes participating in a cyclic process. However, in the above mentioned procedure the valuable prior knowledge only serves as an evaluation benchmark, and it is not fully exploited in the implementation of the algorithm. In addition, partial data sets are also disregarded due to their nonstationarity. This paper proposes a novel algorithm to identify cyclic-process-involved genes by integrating the prior knowledge with the gene expression analysis. The proposed algorithm is applied on data sets corresponding to Saccharomyces cerevisiae and Drosophila melanogaster, respectively. Biological evidences are found to validate the roles of the discovered genes in cell cycle and circadian rhythm. Dendrograms are presented to cluster the identified genes and to reveal expression patterns. It is corroborated that the proposed novel identification scheme provides a valuable technique for unveiling pathways related to cyclic processes. PMID:19390635

2009-01-01

214

Identifying Diagnostic Peptides for Lyme Disease through Epitope Discovery  

PubMed Central

Serum antibodies from patients with Lyme disease (LD) were used to affinity select peptide epitopes from 12 large random peptide libraries in phage display format. The selected peptides were surveyed for reactivity with a panel of positive sera (from LD patients) and negative sera (from subjects without LD), thus identifying 17 peptides with a diagnostically useful binding pattern: reactivity with at least three positive sera and no reactivity with any of the negative sera. The peptides define eight sequence motifs, none of which can be matched convincingly with segments of proteins from Borrelia burgdorferi, the LD pathogen; evidently, then, they are “mimotopes,” mimicking natural pathogen epitopes without matching contiguous amino acids of pathogen proteins. Peptides like these could be the basis of a new diagnostic enzyme-linked immunosorbent assay for LD, with sufficient specificity and sensitivity to replace expensive immunoblotting tests that are currently required for definitive serological diagnosis. Moreover, the method used to discover these peptides did not require any knowledge of the pathogen and involved generic procedures that are applicable to almost any infectious disease, including emerging diseases for which no pathogen has yet been identified. PMID:11139210

Kouzmitcheva, Galina A.; Petrenko, Valery A.; Smith, George P.

2001-01-01

215

Screening for Single Gene Genetic Disease  

Microsoft Academic Search

The screening and directed testing for genetic disease caused by single gene mutations is an expanding part of the overall scheme of prenatal care. In addition to reproductive choice, carrier screening and fetal diagnostic testing afford the important opportunity for preparation of the family and the delivery site for the birth of a fetus with a known genetic disorder. Increasingly

Thomas J. Musci

2005-01-01

216

Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease  

PubMed Central

Background Alzheimer's disease is a common debilitating dementia with known heritability, for which 20 late onset susceptibility loci have been identified, but more remain to be discovered. This study sought to identify new susceptibility genes, using an alternative gene-wide analytical approach which tests for patterns of association within genes, in the powerful genome-wide association dataset of the International Genomics of Alzheimer's Project Consortium, comprising over 7 m genotypes from 25,580 Alzheimer's cases and 48,466 controls. Principal Findings In addition to earlier reported genes, we detected genome-wide significant loci on chromosomes 8 (TP53INP1, p?=?1.4×10?6) and 14 (IGHV1-67 p?=?7.9×10?8) which indexed novel susceptibility loci. Significance The additional genes identified in this study, have an array of functions previously implicated in Alzheimer's disease, including aspects of energy metabolism, protein degradation and the immune system and add further weight to these pathways as potential therapeutic targets in Alzheimer's disease. PMID:24922517

Harold, Denise; Jones, Lesley; Holmans, Peter; Gerrish, Amy; Vedernikov, Alexey; Richards, Alexander; DeStefano, Anita L.; Lambert, Jean-Charles; Ibrahim-Verbaas, Carla A.; Naj, Adam C.; Sims, Rebecca; Jun, Gyungah; Bis, Joshua C.; Beecham, Gary W.; Grenier-Boley, Benjamin; Russo, Giancarlo; Thornton-Wells, Tricia A.; Denning, Nicola; Smith, Albert V.; Chouraki, Vincent; Thomas, Charlene; Ikram, M. Arfan; Zelenika, Diana; Vardarajan, Badri N.; Kamatani, Yoichiro; Lin, Chiao-Feng; Schmidt, Helena; Kunkle, Brian; Dunstan, Melanie L.; Vronskaya, Maria; Johnson, Andrew D.; Ruiz, Agustin; Bihoreau, Marie-Thérèse; Reitz, Christiane; Pasquier, Florence; Hollingworth, Paul; Hanon, Olivier; Fitzpatrick, Annette L.; Buxbaum, Joseph D.; Campion, Dominique; Crane, Paul K.; Baldwin, Clinton; Becker, Tim; Gudnason, Vilmundur; Cruchaga, Carlos; Craig, David; Amin, Najaf; Berr, Claudine; Lopez, Oscar L.; De Jager, Philip L.; Deramecourt, Vincent; Johnston, Janet A.; Evans, Denis; Lovestone, Simon; Letenneur, Luc; Hernández, Isabel; Rubinsztein, David C.; Eiriksdottir, Gudny; Sleegers, Kristel; Goate, Alison M.; Fiévet, Nathalie; Huentelman, Matthew J.; Gill, Michael; Brown, Kristelle; Kamboh, M. Ilyas; Keller, Lina; Barberger-Gateau, Pascale; McGuinness, Bernadette; Larson, Eric B.; Myers, Amanda J.; Dufouil, Carole; Todd, Stephen; Wallon, David; Love, Seth; Rogaeva, Ekaterina; Gallacher, John; George-Hyslop, Peter St; Clarimon, Jordi; Lleo, Alberto; Bayer, Anthony; Tsuang, Debby W.; Yu, Lei; Tsolaki, Magda; Bossù, Paola; Spalletta, Gianfranco; Proitsi, Petra; Collinge, John; Sorbi, Sandro; Garcia, Florentino Sanchez; Fox, Nick C.; Hardy, John; Naranjo, Maria Candida Deniz; Bosco, Paolo; Clarke, Robert; Brayne, Carol; Galimberti, Daniela; Scarpini, Elio; Bonuccelli, Ubaldo; Mancuso, Michelangelo; Siciliano, Gabriele; Moebus, Susanne; Mecocci, Patrizia; Zompo, Maria Del; Maier, Wolfgang; Hampel, Harald; Pilotto, Alberto; Frank-García, Ana; Panza, Francesco; Solfrizzi, Vincenzo; Caffarra, Paolo; Nacmias, Benedetta; Perry, William; Mayhaus, Manuel; Lannfelt, Lars; Hakonarson, Hakon; Pichler, Sabrina; Carrasquillo, Minerva M.; Ingelsson, Martin; Beekly, Duane; Alvarez, Victoria; Zou, Fanggeng; Valladares, Otto; Younkin, Steven G.; Coto, Eliecer; Hamilton-Nelson, Kara L.; Gu, Wei; Razquin, Cristina; Pastor, Pau; Mateo, Ignacio; Owen, Michael J.; Faber, Kelley M.; Jonsson, Palmi V.; Combarros, Onofre; O'Donovan, Michael C.; Cantwell, Laura B.; Soininen, Hilkka; Blacker, Deborah; Mead, Simon; Mosley, Thomas H.; Bennett, David A.; Harris, Tamara B.; Fratiglioni, Laura; Holmes, Clive; de Bruijn, Renee F. A. G.; Passmore, Peter; Montine, Thomas J.; Bettens, Karolien; Rotter, Jerome I.; Brice, Alexis; Morgan, Kevin; Foroud, Tatiana M.; Kukull, Walter A.; Hannequin, Didier; Powell, John F.; Nalls, Michael A.; Ritchie, Karen; Lunetta, Kathryn L.; Kauwe, John S. K.; Boerwinkle, Eric; Riemenschneider, Matthias; Boada, Mercè; Hiltunen, Mikko; Martin, Eden R.; Schmidt, Reinhold; Rujescu, Dan; Dartigues, Jean-François; Mayeux, Richard; Tzourio, Christophe; Hofman, Albert; Nöthen, Markus M.; Graff, Caroline; Psaty, Bruce M.; Haines, Jonathan L.; Lathrop, Mark; Pericak-Vance, Margaret A.; Launer, Lenore J.; Van Broeckhoven, Christine; Farrer, Lindsay A.; van Duijn, Cornelia M.; Ramirez, Alfredo

2014-01-01

217

Gene expression profiling identifies different sub-types of retinoblastoma  

PubMed Central

Background: Mutation of the RB1 gene is necessary but not sufficient for the development of retinoblastoma. The nature of events occurring subsequent to RB1 mutation is unclear, as is the retinal cell-of-origin of this tumour. Methods: Gene expression profiling of 21 retinoblastomas was carried out to identify genetic events that contribute to tumorigenesis and to obtain information about tumour histogenesis. Results: Expression analysis showed a clear separation of retinoblastomas into two groups. Group 1 retinoblastomas express genes associated with a range of different retinal cell types, suggesting derivation from a retinal progenitor cell type. Recurrent chromosomal alterations typical of retinoblastoma, for example, chromosome 1q and 6p gain and 16q loss were also a feature of this group, and clinically they were characterised by an invasive pattern of tumour growth. In contrast, group 2 retinoblastomas were found to retain many characteristics of cone photoreceptor cells and appear to exploit the high metabolic capacity of this cell type in order to promote tumour proliferation. Conclusion: Retinoblastoma is a heterogeneous tumour with variable biology and clinical characteristics. PMID:23756868

Kapatai, G; Brundler, M-A; Jenkinson, H; Kearns, P; Parulekar, M; Peet, A C; McConville, C M

2013-01-01

218

Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease  

Microsoft Academic Search

Genes and mechanisms involved in common complex diseases, such as the autoimmune disorders that affect approximately 5% of the population, remain obscure. Here we identify polymorphisms of the cytotoxic T lymphocyte antigen 4 gene (CTLA4)-which encodes a vital negative regulatory molecule of the immune system-as candidates for primary determinants of risk of the common autoimmune disorders Graves' disease, autoimmune hypothyroidism

Hironori Ueda; Joanna M. M. Howson; Laura Esposito; Joanne Heward; Hywel Snook; Giselle Chamberlain; Daniel B. Rainbow; Kara M. D. Hunter; Annabel N. Smith; Gianfranco Di Genova; Mathias H. Herr; Ingrid Dahlman; Felicity Payne; Deborah Smyth; Christopher Lowe; Rebecca C. J. Twells; Sarah Howlett; Barry Healy; Sarah Nutland; Helen E. Rance; Vin Everett; Luc J. Smink; Alex C. Lam; Heather J. Cordell; Neil M. Walker; Cristina Bordin; John Hulme; Costantino Motzo; Francesco Cucca; J. Fred Hess; Michael L. Metzker; Jane Rogers; Simon Gregory; Amit Allahabadia; Ratnasingam Nithiyananthan; Eva Tuomilehto-Wolf; Jaakko Tuomilehto; Polly Bingley; Kathleen M. Gillespie; Dag E. Undlien; Kjersti S. Rønningen; Cristian Guja; Constantin Ionescu-Tîrgoviste; David A. Savage; A. Peter Maxwell; Dennis J. Carson; Chris C. Patterson; Jayne A. Franklyn; David G. Clayton; Laurence B. Peterson; Linda S. Wicker; John A. Todd; Stephen C. L. Gough

2003-01-01

219

Brain Expression Genome-Wide Association Study (eGWAS) Identifies Human Disease-Associated Variants  

PubMed Central

Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n?=?197, temporal cortex n?=?202) and with other brain pathologies (non–AD, cerebellar n?=?177, temporal cortex n?=?197). We conducted an expression genome-wide association study (eGWAS) using 213,528 cisSNPs within ±100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs) significant in both ADs and non–ADs (q<0.05, p?=?7.70×10?5–1.67×10?82). Of these, 2,089 were also significant in the temporal cortex (p?=?1.85×10?5–1.70×10?141). The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10?6). We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD) MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9–3.3 fold enrichment (p<10?6) of significant cisSNPs with suggestive AD–risk association (p<10?3) in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS) and non–CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with functional implications. Our findings have implications for the design and interpretation of eGWAS in general and the use of brain expression quantitative trait loci in the study of human disease genetics. PMID:22685416

Crook, Julia; Pankratz, V. Shane; Carrasquillo, Minerva M.; Rowley, Christopher N.; Nair, Asha A.; Middha, Sumit; Maharjan, Sooraj; Nguyen, Thuy; Ma, Li; Malphrus, Kimberly G.; Palusak, Ryan; Lincoln, Sarah; Bisceglio, Gina; Georgescu, Constantin; Kouri, Naomi; Kolbert, Christopher P.; Jen, Jin; Haines, Jonathan L.; Mayeux, Richard; Pericak-Vance, Margaret A.; Farrer, Lindsay A.; Schellenberg, Gerard D.; Petersen, Ronald C.; Graff-Radford, Neill R.; Dickson, Dennis W.; Younkin, Steven G.; Ertekin-Taner, Nilüfer

2012-01-01

220

Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants.  

PubMed

Genetic variants that modify brain gene expression may also influence risk for human diseases. We measured expression levels of 24,526 transcripts in brain samples from the cerebellum and temporal cortex of autopsied subjects with Alzheimer's disease (AD, cerebellar n=197, temporal cortex n=202) and with other brain pathologies (non-AD, cerebellar n=177, temporal cortex n=197). We conducted an expression genome-wide association study (eGWAS) using 213,528 cisSNPs within ± 100 kb of the tested transcripts. We identified 2,980 cerebellar cisSNP/transcript level associations (2,596 unique cisSNPs) significant in both ADs and non-ADs (q<0.05, p=7.70 × 10(-5)-1.67 × 10(-82)). Of these, 2,089 were also significant in the temporal cortex (p=1.85 × 10(-5)-1.70 × 10(-141)). The top cerebellar cisSNPs had 2.4-fold enrichment for human disease-associated variants (p<10(-6)). We identified novel cisSNP/transcript associations for human disease-associated variants, including progressive supranuclear palsy SLCO1A2/rs11568563, Parkinson's disease (PD) MMRN1/rs6532197, Paget's disease OPTN/rs1561570; and we confirmed others, including PD MAPT/rs242557, systemic lupus erythematosus and ulcerative colitis IRF5/rs4728142, and type 1 diabetes mellitus RPS26/rs1701704. In our eGWAS, there was 2.9-3.3 fold enrichment (p<10(-6)) of significant cisSNPs with suggestive AD-risk association (p<10(-3)) in the Alzheimer's Disease Genetics Consortium GWAS. These results demonstrate the significant contributions of genetic factors to human brain gene expression, which are reliably detected across different brain regions and pathologies. The significant enrichment of brain cisSNPs among disease-associated variants advocates gene expression changes as a mechanism for many central nervous system (CNS) and non-CNS diseases. Combined assessment of expression and disease GWAS may provide complementary information in discovery of human disease variants with functional implications. Our findings have implications for the design and interpretation of eGWAS in general and the use of brain expression quantitative trait loci in the study of human disease genetics. PMID:22685416

Zou, Fanggeng; Chai, High Seng; Younkin, Curtis S; Allen, Mariet; Crook, Julia; Pankratz, V Shane; Carrasquillo, Minerva M; Rowley, Christopher N; Nair, Asha A; Middha, Sumit; Maharjan, Sooraj; Nguyen, Thuy; Ma, Li; Malphrus, Kimberly G; Palusak, Ryan; Lincoln, Sarah; Bisceglio, Gina; Georgescu, Constantin; Kouri, Naomi; Kolbert, Christopher P; Jen, Jin; Haines, Jonathan L; Mayeux, Richard; Pericak-Vance, Margaret A; Farrer, Lindsay A; Schellenberg, Gerard D; Petersen, Ronald C; Graff-Radford, Neill R; Dickson, Dennis W; Younkin, Steven G; Ertekin-Taner, Nilüfer

2012-01-01

221

Identifying sexual differentiation genes that affect Drosophila life span  

PubMed Central

Background Sexual differentiation often has significant effects on life span and aging phenotypes. For example, males and females of several species have different life spans, and genetic and environmental manipulations that affect life span often have different magnitude of effect in males versus females. Moreover, the presence of a differentiated germ-line has been shown to affect life span in several species, including Drosophila and C. elegans. Methods Experiments were conducted to determine how alterations in sexual differentiation gene activity might affect the life span of Drosophila melanogaster. Drosophila females heterozygous for the tudor[1] mutation produce normal offspring, while their homozygous sisters produce offspring that lack a germ line. To identify additional sexual differentiation genes that might affect life span, the conditional transgenic system Geneswitch was employed, whereby feeding adult flies or developing larvae the drug RU486 causes the over-expression of selected UAS-transgenes. Results In this study germ-line ablation caused by the maternal tudor[1] mutation was examined in a long-lived genetic background, and was found to increase life span in males but not in females, consistent with previous reports. Fitting the data to a Gompertz-Makeham model indicated that the maternal tudor[1] mutation increases the life span of male progeny by decreasing age-independent mortality. The Geneswitch system was used to screen through several UAS-type and EP-type P element mutations in genes that regulate sexual differentiation, to determine if additional sex-specific effects on life span would be obtained. Conditional over-expression of transformer female isoform (traF) during development produced male adults with inhibited sexual differentiation, however this caused no significant change in life span. Over-expression of doublesex female isoform (dsxF) during development was lethal to males, and produced a limited number of female escapers, whereas over-expression of dsxF specifically in adults greatly reduced both male and female life span. Similarly, over-expression of fruitless male isoform A (fru-MA) during development was lethal to both males and females, whereas over-expression of fru-MA in adults greatly reduced both male and female life span. Conclusion Manipulation of sexual differentiation gene expression specifically in the adult, after morphological sexual differentiation is complete, was still able to affect life span. In addition, by manipulating gene expression during development, it was possible to significantly alter morphological sexual differentiation without a significant effect on adult life span. The data demonstrate that manipulation of sexual differentiation pathway genes either during development or in adults can affect adult life span. PMID:20003237

2009-01-01

222

Integrated Model of De Novo and Inherited Genetic Variants Yields Greater Power to Identify Risk Genes  

PubMed Central

De novo mutations affect risk for many diseases and disorders, especially those with early-onset. An example is autism spectrum disorders (ASD). Four recent whole-exome sequencing (WES) studies of ASD families revealed a handful of novel risk genes, based on independent de novo loss-of-function (LoF) mutations falling in the same gene, and found that de novo LoF mutations occurred at a twofold higher rate than expected by chance. However successful these studies were, they used only a small fraction of the data, excluding other types of de novo mutations and inherited rare variants. Moreover, such analyses cannot readily incorporate data from case-control studies. An important research challenge in gene discovery, therefore, is to develop statistical methods that accommodate a broader class of rare variation. We develop methods that can incorporate WES data regarding de novo mutations, inherited variants present, and variants identified within cases and controls. TADA, for Transmission And De novo Association, integrates these data by a gene-based likelihood model involving parameters for allele frequencies and gene-specific penetrances. Inference is based on a Hierarchical Bayes strategy that borrows information across all genes to infer parameters that would be difficult to estimate for individual genes. In addition to theoretical development we validated TADA using realistic simulations mimicking rare, large-effect mutations affecting risk for ASD and show it has dramatically better power than other common methods of analysis. Thus TADA's integration of various kinds of WES data can be a highly effective means of identifying novel risk genes. Indeed, application of TADA to WES data from subjects with ASD and their families, as well as from a study of ASD subjects and controls, revealed several novel and promising ASD candidate genes with strong statistical support. PMID:23966865

He, Xin; Sanders, Stephan J.; Liu, Li; De Rubeis, Silvia; Lim, Elaine T.; Sutcliffe, James S.; Schellenberg, Gerard D.; Gibbs, Richard A.; Daly, Mark J.; Buxbaum, Joseph D.; State, Matthew W.; Devlin, Bernie; Roeder, Kathryn

2013-01-01

223

Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases  

PubMed Central

The Clinic for Special Children (CSC) has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain) children. Among the Plain people, we have used single nucleotide polymorphism (SNP) microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean?=?4.4 Mb) that contain many genes (mean?=?79). For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data. PMID:22279524

Puffenberger, Erik G.; Jinks, Robert N.; Sougnez, Carrie; Cibulskis, Kristian; Willert, Rebecca A.; Achilly, Nathan P.; Cassidy, Ryan P.; Fiorentini, Christopher J.; Heiken, Kory F.; Lawrence, Johnny J.; Mahoney, Molly H.; Miller, Christopher J.; Nair, Devika T.; Politi, Kristin A.; Worcester, Kimberly N.; Setton, Roni A.; DiPiazza, Rosa; Sherman, Eric A.; Eastman, James T.; Francklyn, Christopher; Robey-Bond, Susan; Rider, Nicholas L.; Gabriel, Stacey; Morton, D. Holmes; Strauss, Kevin A.

2012-01-01

224

Inclusion of Gene-Gene and Gene-Environment Interactions Unlikely to Dramatically Improve Risk Prediction for Complex Diseases  

PubMed Central

Genome-wide association studies have identified hundreds of common genetic variants associated with the risk of multifactorial diseases. However, their impact on discrimination and risk prediction is limited. It has been suggested that the identification of gene-gene (G-G) and gene-environment (G-E) interactions would improve disease prediction and facilitate prevention. We conducted a simulation study to explore the potential improvement in discrimination if G-G and G-E interactions exist and are known. We used three diseases (breast cancer, type 2 diabetes, and rheumatoid arthritis) as motivating examples. We show that the inclusion of G-G and G-E interaction effects in risk-prediction models is unlikely to dramatically improve the discrimination ability of these models. PMID:22633398

Aschard, Hugues; Chen, Jinbo; Cornelis, Marilyn C.; Chibnik, Lori B.; Karlson, Elizabeth W.; Kraft, Peter

2012-01-01

225

Identification of susceptibility genes and genetic modifiers of human diseases  

NASA Astrophysics Data System (ADS)

The completion of the human genome sequence enables the discovery of genes involved in common human disorders. The successful identification of these genes is dependent on the availability of informative sample sets, validated marker panels, a high-throughput scoring technology, and a strategy for combining these resources. We have developed a universal platform technology based on mass spectrometry (MassARRAY) for analyzing nucleic acids with high precision and accuracy. To fuel this technology, we generated more than 100,000 validated assays for single nucleotide polymorphisms (SNPs) covering virtually all known and predicted human genes. We also established a large DNA sample bank comprised of more than 50,000 consented healthy and diseased individuals. This combination of reagents and technology allows the execution of large-scale genome-wide association studies. Taking advantage of MassARRAY"s capability for quantitative analysis of nucleic acids, allele frequencies are estimated in sample pools containing large numbers of individual DNAs. To compare pools as a first-pass "filtering" step is a tremendous advantage in throughput and cost over individual genotyping. We employed this approach in numerous genome-wide, hypothesis-free searches to identify genes associated with common complex diseases, such as breast cancer, osteoporosis, and osteoarthritis, and genes involved in quantitative traits like high density lipoproteins cholesterol (HDL-c) levels and central fat. Access to additional well-characterized patient samples through collaborations allows us to conduct replication studies that validate true disease genes. These discoveries will expand our understanding of genetic disease predisposition, and our ability for early diagnosis and determination of specific disease subtype or progression stage.

Abel, Kenneth; Kammerer, Stefan; Hoyal, Carolyn; Reneland, Rikard; Marnellos, George; Nelson, Matthew R.; Braun, Andreas

2005-03-01

226

Neuronal Gene Expression Correlates of Parkinson's Disease with Dementia  

PubMed Central

Dementia is a common disabling complication in patients with Parkinson's disease (PD). The underlying molecular causes of Parkinson's disease with dementia (PDD) are poorly understood. To identify candidate genes and molecular pathways involved in PDD, we have performed whole genome expression profiling of susceptible cortical neuronal populations. Results show significant differences in expression of 162 genes (P < 0.01) between PD patients who are cognitively normal (PD-CogNL) and controls. In contrast, there were 556 genes (P < 0.01) significantly altered in PDD compared to either healthy controls or to PD-CogNL cases. These results are consistent with increased cortical pathology in PDD relative to PD-CogNL and identify underlying molecular changes associated with the increased pathology of PDD. Lastly, we have identified expression differences in 69 genes in PD cortical neurons that occur before the onset of dementia and that are exacerbated upon the development of dementia, suggesting that they may be relevant presymptomatic contributors to the onset of dementia in PD. These results provide new insights into the cortical molecular changes associated with PDD and provide a highly useful reference database for researchers interested in PDD. PMID:18649390

Stamper, Chelsea; Siegel, Andrew; Liang, Winnie S.; Pearson, John V.; Stephan, Dietrich A.; Shill, Holly; Connor, Don; Caviness, John N.; Sabbagh, Marwan; Beach, Thomas G.; Adler, Charles H.; Dunckley, Travis

2009-01-01

227

Analysis of human genes with protein-protein interaction network for detecting disease genes  

NASA Astrophysics Data System (ADS)

The topological features of disease genes and non-disease genes were widely utilized in disease genes prediction. However, previous studies neglected to exploit essential genes to distinguish disease genes and non-disease genes. Therefore, this paper firstly takes essential genes as reference to analyze the topological properties of human genes with protein-protein interaction network. Empirical results demonstrate that nonessential disease genes are topologically more important and closer to the center of the network than other genes (unknown genes, which are deemed as non-disease genes in disease genes prediction). Although disease genes are closer to essential genes, we find that the influence of disease genes on essential genes is similar with other genes, or even weaker. Further, we generate new topological features according to our findings and validate the effectiveness of combining the additional features for detecting disease genes. In addition, we find that the k-shell index (ks) of protein-protein network follows a power law distribution, and the function of the proteins with the largest ks may deserve further research.

Wu, Shun-yao; Shao, Feng-jing; Sun, Ren-cheng; Sui, Yi; Wang, Ying; Wang, Jin-long

2014-03-01

228

Identifying Unstable Regions of Proteins Involved in Misfolding Diseases  

NASA Astrophysics Data System (ADS)

Protein misfolding is a necessary step in the pathogenesis of many diseases, including Creutzfeldt-Jakob disease (CJD) and familial amyotrophic lateral sclerosis (fALS). Identifying unstable structural elements in their causative proteins elucidates the early events of misfolding and presents targets for inhibition of the disease process. An algorithm was developed to calculate the Gibbs free energy of unfolding for all sequence-contiguous regions of a protein using three methods to parameterize energy changes: a modified G=o model, changes in solvent-accessible surface area, and all-atoms molecular dynamics. The entropic effects of disulfide bonds and post-translational modifications are treated analytically. It incorporates a novel method for finding local dielectric constants inside a protein to accurately handle charge effects. We have predicted the unstable parts of prion protein and superoxide dismutase 1, the proteins involved in CJD and fALS respectively, and have used these regions as epitopes to prepare antibodies that are specific to the misfolded conformation and show promise as therapeutic agents.

Guest, Will; Cashman, Neil; Plotkin, Steven

2009-05-01

229

A molecular signature in blood identifies early Parkinson’s disease  

PubMed Central

Background The search for biomarkers in Parkinson’s disease (PD) is crucial to identify the disease early and monitor the effectiveness of neuroprotective therapies. We aim to assess whether a gene signature could be detected in blood from early/mild PD patients that could support the diagnosis of early PD, focusing on genes found particularly altered in the substantia nigra of sporadic PD. Results The transcriptional expression of seven selected genes was examined in blood samples from 62 early stage PD patients and 64 healthy age-matched controls. Stepwise multivariate logistic regression analysis identified five genes as optimal predictors of PD: p19 S-phase kinase-associated protein 1A (odds ratio [OR] 0.73; 95% confidence interval [CI] 0.60–0.90), huntingtin interacting protein-2 (OR 1.32; CI 1.08–1.61), aldehyde dehydrogenase family 1 subfamily A1 (OR 0.86; 95% CI 0.75–0.99), 19?S proteasomal protein PSMC4 (OR 0.73; 95% CI 0.60–0.89) and heat shock 70-kDa protein 8 (OR 1.39; 95% CI 1.14–1.70). At a 0.5 cut-off the gene panel yielded a sensitivity and specificity in detecting PD of 90.3 and 89.1 respectively and the area under the receiving operating curve (ROC AUC) was 0.96. The performance of the five-gene classifier on the de novo PD individuals alone composing the early PD cohort (n?=?38), resulted in a similar ROC with an AUC of 0.95, indicating the stability of the model and also, that patient medication had no significant effect on the predictive probability (PP) of the classifier for PD risk. The predictive ability of the model was validated in an independent cohort of 30 patients at advanced stage of PD, classifying correctly all cases as PD (100% sensitivity). Notably, the nominal average value of the PP for PD (0.95 (SD?=?0.09)) in this cohort was higher than that of the early PD group (0.83 (SD?=?0.22)), suggesting a potential for the model to assess disease severity. Lastly, the gene panel fully discriminated between PD and Alzheimer’s disease (n?=?29). Conclusions The findings provide evidence on the ability of a five-gene panel to diagnose early/mild PD, with a possible diagnostic value for detection of asymptomatic PD before overt expression of the disorder. PMID:22651796

2012-01-01

230

Gene Network Analysis of Small Molecules with Autoimmune Disease Associated Genes Predicts a Novel Strategy for Drug Efficacy  

PubMed Central

Numerous genes/SNPs in autoimmune diseases (ADs) are identified through genome-wide association studies (GWAS) and likely to contribute in developing autoimmune phenotypes. Constructions of biologically meaningful pathways are necessary to determine how these genes interact each other and with other small molecules to develop various complex ADs phenotypes prior to beginning time-consuming rigorous experimentation. We have constructed biological pathways with genetically identified genes leading to shared ADs phenotypes. Various environmental and endogenous factors interact with these ADs associated genes suggesting their critical role in developing diseases and further association studies could be designed for assessing the role of these factors with risk allele in a specific gene. Additionally, existing drugs that have been used long before the identification of these genetically associated genes also interact with these newly associated genes. Thus advanced therapeutic strategies could be designed by grouping patients with risk allele(s) in particular genes that directly or closely interact with the specified drugs. This drug-susceptible gene network will not only increase our understanding about the additional molecular basis for effectiveness against these diseases but also which drug could be more effective for those patients carrying risk allele(s) in that gene. Additionally, we have also identified several interlinking genes in the pathways that could be used for designing future association studies. PMID:23000205

Maiti, Amit K.; Nath, Swapan K.

2012-01-01

231

Age-associated bidirectional modulation of gene expression in single identified R15 neuron of Aplysia  

PubMed Central

Background Despite the advances in our understanding of aging-associated behavioral decline, relatively little is known about how aging affects neural circuits that regulate specific behaviors, particularly the expression of genes in specific neural circuits during aging. We have addressed this by exploring a peptidergic neuron R15, an identified neuron of the marine snail Aplysia californica. R15 is implicated in reproduction and osmoregulation and responds to neurotransmitters such as acetylcholine, serotonin and glutamate and is characterized by its action potential bursts. Results We examined changes in gene expression in R15 neurons during aging by microarray analyses of RNAs from two different age groups, mature and old animals. Specifically we find that 1083 ESTs are differentially regulated in mature and old R15 neurons. Bioinformatics analyses of these genes have identified specific biological pathways that are up or downregulated in mature and old neurons. Comparison with human signaling networks using pathway analyses have identified three major networks [(1) cell signaling, cell morphology, and skeletal muscular system development (2) cell death and survival, cellular function maintenance and embryonic development and (3) neurological diseases, developmental and hereditary disorders] altered in old R15 neurons. Furthermore, qPCR analysis of single R15 neurons to quantify expression levels of candidate regulators involved in transcription (CREB1) and translation (S6K) showed that aging is associated with a decrease in expression of these regulators, and similar analysis in three other neurons (L7, L11 and R2) showed that gene expression change during aging could be bidirectional. Conclusions We find that aging is associated with bidirectional changes in gene expression. Detailed bioinformatics analyses and human homolog searches have identified specific biological processes and human-relevant signaling pathways in R15 that are affected during aging. Evaluation of gene expression changes in different neurons suggests specific transcriptomic signature of single neurons during aging. PMID:24330282

2013-01-01

232

SPRIT: Identifying horizontal gene transfer in rooted phylogenetic trees  

PubMed Central

Background Phylogenetic trees based on sequences from a set of taxa can be incongruent due to horizontal gene transfer (HGT). By identifying the HGT events, we can reconcile the gene trees and derive a taxon tree that adequately represents the species' evolutionary history. One HGT can be represented by a rooted Subtree Prune and Regraft (RSPR) operation and the number of RSPRs separating two trees corresponds to the minimum number of HGT events. Identifying the minimum number of RSPRs separating two trees is NP-hard, but the problem can be reduced to fixed parameter tractable. A number of heuristic and two exact approaches to identifying the minimum number of RSPRs have been proposed. This is the first implementation delivering an exact solution as well as the intermediate trees connecting the input trees. Results We present the SPR Identification Tool (SPRIT), a novel algorithm that solves the fixed parameter tractable minimum RSPR problem and its GPL licensed Java implementation. The algorithm can be used in two ways, exhaustive search that guarantees the minimum RSPR distance and a heuristic approach that guarantees finding a solution, but not necessarily the minimum one. We benchmarked SPRIT against other software in two different settings, small to medium sized trees i.e. five to one hundred taxa and large trees i.e. thousands of taxa. In the small to medium tree size setting with random artificial incongruence, SPRIT's heuristic mode outperforms the other software by always delivering a solution with a low overestimation of the RSPR distance. In the large tree setting SPRIT compares well to the alternatives when benchmarked on finding a minimum solution within a reasonable time. SPRIT presents both the minimum RSPR distance and the intermediate trees. Conclusions When used in exhaustive search mode, SPRIT identifies the minimum number of RSPRs needed to reconcile two incongruent rooted trees. SPRIT also performs quick approximations of the minimum RSPR distance, which are comparable to, and often better than, purely heuristic solutions. Put together, SPRIT is an excellent tool for identification of HGT events and pinpointing which taxa have been involved in HGT. PMID:20152048

2010-01-01

233

Surfactant gene polymorphisms and interstitial lung diseases.  

PubMed

Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs). Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD. PMID:11806849

Pantelidis, Panagiotis; Veeraraghavan, Srihari; du Bois, Roland M

2002-01-01

234

Surfactant gene polymorphisms and interstitial lung diseases  

PubMed Central

Pulmonary surfactant is a complex mixture of phospholipids and proteins, which is present in the alveolar lining fluid and is essential for normal lung function. Alterations in surfactant composition have been reported in several interstitial lung diseases (ILDs). Furthermore, a mutation in the surfactant protein C gene that results in complete absence of the protein has been shown to be associated with familial ILD. The role of surfactant in lung disease is therefore drawing increasing attention following the elucidation of the genetic basis underlying its surface expression and the proof of surfactant abnormalities in ILD. PMID:11806849

Pantelidis, Panagiotis; Veeraraghavan, Srihari; du Bois, Roland M

2002-01-01

235

Yeast Augmented Network Analysis (YANA): a new systems approach to identify therapeutic targets for human genetic diseases  

PubMed Central

Genetic interaction networks that underlie most human diseases are highly complex and poorly defined. Better-defined networks will allow identification of a greater number of therapeutic targets. Here we introduce our Yeast Augmented Network Analysis (YANA) approach and test it with the X-linked spinal muscular atrophy (SMA) disease gene UBA1. First, we express UBA1 and a mutant variant in fission yeast and use high-throughput methods to identify fission yeast genetic modifiers of UBA1. Second, we analyze available protein-protein interaction network databases in both fission yeast and human to construct UBA1 genetic networks. Third, from these networks we identified potential therapeutic targets for SMA. Finally, we validate one of these targets in a vertebrate (zebrafish) SMA model. This study demonstrates the power of combining synthetic and chemical genetics with a simple model system to identify human disease gene networks that can be exploited for treating human diseases. PMID:25075304

Wiley, David J.; Juan, Ilona; Le, Hao; Cai, Xiaodong; Baumbach, Lisa; Beattie, Christine; D'Urso, Gennaro

2014-01-01

236

Integrative Analysis of GWASs, Human Protein Interaction, and Gene Expression Identified Gene Modules Associated With BMDs  

PubMed Central

Context: To date, few systems genetics studies in the bone field have been performed. We designed our study from a systems-level perspective by integrating genome-wide association studies (GWASs), human protein-protein interaction (PPI) network, and gene expression to identify gene modules contributing to osteoporosis risk. Methods: First we searched for modules significantly enriched with bone mineral density (BMD)-associated genes in human PPI network by using 2 large meta-analysis GWAS datasets through a dense module search algorithm. One included 7 individual GWAS samples (Meta7). The other was from the Genetic Factors for Osteoporosis Consortium (GEFOS2). One was assigned as a discovery dataset and the other as an evaluation dataset, and vice versa. Results: In total, 42 modules and 129 modules were identified significantly in both Meta7 and GEFOS2 datasets for femoral neck and spine BMD, respectively. There were 3340 modules identified for hip BMD only in Meta7. As candidate modules, they were assessed for the biological relevance to BMD by gene set enrichment analysis in 2 expression profiles generated from circulating monocytes in subjects with low versus high BMD values. Interestingly, there were 2 modules significantly enriched in monocytes from the low BMD group in both gene expression datasets (nominal P value <.05). Two modules had 16 nonredundant genes. Functional enrichment analysis revealed that both modules were enriched for genes involved in Wnt receptor signaling and osteoblast differentiation. Conclusion: We highlighted 2 modules and novel genes playing important roles in the regulation of bone mass, providing important clues for therapeutic approaches for osteoporosis. PMID:25119315

He, Hao; Zhang, Lei; Li, Jian; Wang, Yu-Ping; Zhang, Ji-Gang; Shen, Jie; Guo, Yan-Fang

2014-01-01

237

A computational bioinformatics analysis of gene expression identifies candidate agents for prostate cancer.  

PubMed

Prostate cancer is the second most frequently diagnosed cancer and the sixth leading cause of cancer death in males worldwide. Although great progress has been made, the molecular mechanisms of prostate cancer are far from being fully understood and treatment of this disease remains palliative. In this study, we sought to explore the molecular mechanism of prostate cancer and then identify biologically active small molecules capable of targeting prostate cancer using a computational bioinformatics analysis of gene expression. A total of 3068 genes, involved in cell communication, development, localisation and cell proliferation, were differentially expressed in prostate cancer samples compared with normal controls. Pathways associated with signal transduction, immune response and tumorigenesis were dysfunctional. Further, we identified a group of small molecules capable of reversing prostate cancer. These candidate agents may provide the groundwork for a combination therapy approach for prostate cancer. However, further evaluation for their potential use in the treatment of prostate cancer is still needed. PMID:23790256

Wen, D Y; Geng, J; Li, W; Guo, C C; Zheng, J H

2014-08-01

238

Gene therapy: progress in childhood disease.  

PubMed

The recent sequencing of the human genome combined with the development of massively high throughput genetic analysis technologies is driving unprecedented growth in our knowledge of the molecular basis of disease. While this has already had a major impact on our diagnostic power, the therapeutic benefits remain largely unrealised. This review examines progress in the exciting and challenging field of gene therapy. In particular we focus on the treatment of genetic disease in infants and children where the most significant successes have been observed to date, despite the majority of trial participants being adults. Notably, gene transfer to the haematopoietic compartment has provided the clearest examples of therapeutic benefit, particularly in the context of primary immunodeficiencies. The triumphs and tribulations of these successes are explored, and the key challenges confronting researchers as they seek to further advance the field are defined and discussed. PMID:22017270

Ginn, Samantha L; Alexander, Ian E

2012-06-01

239

Inflammatory bowel disease gene discovery. CRADA final report  

SciTech Connect

The ultimate goal of this project is to identify the human gene(s) responsible for the disorder known as IBD. The work was planned in two phases. The desired products resulting from Phase 1 were BAC clone(s) containing the genetic marker(s) identified by gene/Networks, Inc. as potentially linked to IBD, plasmid subclones of those BAC(s), and new genetic markers developed from these plasmid subclones. The newly developed markers would be genotyped by gene/Networks, Inc. to ascertain evidence for linkage or non-linkage of IBD to this region. If non-linkage was indicated, the project would move to investigation of other candidate chromosomal regions. Where linkage was indicated, the project would move to Phase 2, in which a physical map of the candidate region(s) would be developed. The products of this phase would be contig(s) of BAC clones in the region exhibiting linkage to IBD, as well as plasmic subclones of the BACs and further genetic marker development. There would also be continued genotyping with new polymorphic markers during this phase. It was anticipated that clones identified and developed during these two phases would provide the physical resources for eventual disease gene discovery.

NONE

1997-09-09

240

Linkage and mutational analysis of familial Alzheimer disease kindreds for the APP gene region  

Microsoft Academic Search

A large number of familial Alzheimer disease (FAD) kindreds were examined to determine whether mutations in the amyloid precursor protein (APP) gene could be responsible for the disease. Previous studies have identified three mutations at APP codon 717 which are pathogenic for Alzheimer disease (AD). Samples from affected subjects were examined for mutations in exons 16 and 17 of the

K. Kamino; L. Anderson; S. Odahl; E. Nemens; T. D. Bird; G. D. Schellenberg; E. M. Wijsman; W. Kukall; E. Larson; L. L. Heston

1992-01-01

241

Genes May Leave Short People Prone to Heart Disease  

MedlinePLUS

... 2015) Wednesday, April 8, 2015 Related MedlinePlus Pages Genes and Gene Therapy Heart Diseases WEDNESDAY, April 8, 2015 (HealthDay News) -- ... HealthDay . All rights reserved. More Health News on: Genes and Gene Therapy Heart Diseases Recent Health News Page last updated ...

242

Fluid Mechanics, Arterial Disease, and Gene Expression  

NASA Astrophysics Data System (ADS)

This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid mechanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs.

Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

2014-01-01

243

Fluid Mechanics, Arterial Disease, and Gene Expression  

PubMed Central

This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow–induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs. PMID:25360054

Tarbell, John M.; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

2014-01-01

244

Fluid Mechanics, Arterial Disease, and Gene Expression.  

PubMed

This review places modern research developments in vascular mechanobiology in the context of hemodynamic phenomena in the cardiovascular system and the discrete localization of vascular disease. The modern origins of this field are traced, beginning in the 1960s when associations between flow characteristics, particularly blood flow-induced wall shear stress, and the localization of atherosclerotic plaques were uncovered, and continuing to fluid shear stress effects on the vascular lining endothelial) cells (ECs), including their effects on EC morphology, biochemical production, and gene expression. The earliest single-gene studies and genome-wide analyses are considered. The final section moves from the ECs lining the vessel wall to the smooth muscle cells and fibroblasts within the wall that are fluid me chanically activated by interstitial flow that imposes shear stresses on their surfaces comparable with those of flowing blood on EC surfaces. Interstitial flow stimulates biochemical production and gene expression, much like blood flow on ECs. PMID:25360054

Tarbell, John M; Shi, Zhong-Dong; Dunn, Jessilyn; Jo, Hanjoong

2014-01-01

245

Cross-species global and subset gene expression profiling identifies genes involved in prostate cancer response to selenium  

PubMed Central

Background Gene expression technologies have the ability to generate vast amounts of data, yet there often resides only limited resources for subsequent validation studies. This necessitates the ability to perform sorting and prioritization of the output data. Previously described methodologies have used functional pathways or transcriptional regulatory grouping to sort genes for further study. In this paper we demonstrate a comparative genomics based method to leverage data from animal models to prioritize genes for validation. This approach allows one to develop a disease-based focus for the prioritization of gene data, a process that is essential for systems that lack significant functional pathway data yet have defined animal models. This method is made possible through the use of highly controlled spotted cDNA slide production and the use of comparative bioinformatics databases without the use of cross-species slide hybridizations. Results Using gene expression profiling we have demonstrated a similar whole transcriptome gene expression patterns in prostate cancer cells from human and rat prostate cancer cell lines both at baseline expression levels and after treatment with physiologic concentrations of the proposed chemopreventive agent Selenium. Using both the human PC3 and rat PAII prostate cancer cell lines have gone on to identify a subset of one hundred and fifty-four genes that demonstrate a similar level of differential expression to Selenium treatment in both species. Further analysis and data mining for two genes, the Insulin like Growth Factor Binding protein 3, and Retinoic X Receptor alpha, demonstrates an association with prostate cancer, functional pathway links, and protein-protein interactions that make these genes prime candidates for explaining the mechanism of Selenium's chemopreventive effect in prostate cancer. These genes are subsequently validated by western blots showing Selenium based induction and using tissue microarrays to demonstrate a significant association between downregulated protein expression and tumorigenesis, a process that is the reverse of what is seen in the presence of Selenium. Conclusions Thus the outlined process demonstrates similar baseline and selenium induced gene expression profiles between rat and human prostate cancers, and provides a method for identifying testable functional pathways for the action of Selenium's chemopreventive properties in prostate cancer. PMID:15318950

Schlicht, Michael; Matysiak, Brian; Brodzeller, Tracy; Wen, Xinyu; Liu, Hang; Zhou, Guohui; Dhir, Rajiv; Hessner, Martin J; Tonellato, Peter; Suckow, Mark; Pollard, Morris; Datta, Milton W

2004-01-01

246

Retinitis pigmentosa: genes and disease mechanisms.  

PubMed

Retinitis pigmentosa (RP) is a group of inherited disorders affecting 1 in 3000-7000 people and characterized by abnormalities of the photoreceptors (rods and cones) or the retinal pigment epithelium of the retina which lead to progressive visual loss. RP can be inherited in an autosomal dominant, autosomal recessive or X-linked manner. While usually limited to the eye, RP may also occur as part of a syndrome as in the Usher syndrome and Bardet-Biedl syndrome. Over 40 genes have been associated with RP so far, with the majority of them expressed in either the photoreceptors or the retinal pigment epithelium. The tremendous heterogeneity of the disease makes the genetics of RP complicated, thus rendering genotype-phenotype correlations not fully applicable yet. In addition to the multiplicity of mutations, in fact, different mutations in the same gene may cause different diseases. We will here review which genes are involved in the genesis of RP and how mutations can lead to retinal degeneration. In the future, a more thorough analysis of genetic and clinical data together with a better understanding of the genotype-phenotype correlation might allow to reveal important information with respect to the likelihood of disease development and choices of therapy. PMID:22131869

Ferrari, Stefano; Di Iorio, Enzo; Barbaro, Vanessa; Ponzin, Diego; Sorrentino, Francesco S; Parmeggiani, Francesco

2011-06-01

247

Bioinformatic Screening of Autoimmune Disease Genes and Protein Structure Prediction with FAMS for Drug Discovery  

PubMed Central

Autoimmune diseases are often intractable because their causes are unknown. Identifying which genes contribute to these diseases may allow us to understand the pathogenesis, but it is difficult to determine which genes contribute to disease. Recently, epigenetic information has been considered to activate/deactivate disease-related genes. Thus, it may also be useful to study epigenetic information that differs between healthy controls and patients with autoimmune disease. Among several types of epigenetic information, promoter methylation is believed to be one of the most important factors. Here, we propose that principal component analysis is useful to identify specific gene promoters that are differently methylated between the normal healthy controls and patients with autoimmune disease. Full Automatic Modeling System (FAMS) was used to predict the three-dimensional structures of selected proteins and successfully inferred relatively confident structures. Several possibilities of the application to the drug discovery based on obtained structures are discussed. PMID:23855671

Ishida, Shigeharu; Umeyama, Hideaki; Iwadate, Mitsuo; Y-h, Taguchi

2014-01-01

248

PKD2, a Gene for Polycystic Kidney Disease That Encodes an Integral Membrane Protein  

Microsoft Academic Search

A second gene for autosomal dominant polycystic kidney disease was identified by positional cloning. Nonsense mutations in this gene (PKD2) segregated with the disease in three PKD2 families. The predicted 968-amino acid sequence of the PKD2 gene product has six transmembrane spans with intracellular amino- and carboxyl-termini. The PKD2 protein has amino acid similarity with PKD1, the Caenorhabditis elegans homolog

Toshio Mochizuki; Guanqing Wu; Tomohito Hayashi; Stavroulla L. Xenophontos; Barbera Veldhuisen; Jasper J. Saris; David M. Reynolds; Yiqiang Cai; Patricia A. Gabow; Alkis Pierides; William J. Kimberling; Martijn H. Breuning; C. Constantinou Deltas; Dorien J. M. Peters; Stefan Somlo

1996-01-01

249

B.E.A.R. GeneInfo: A tool for identifying gene-related biomedical publications through user modifiable queries  

PubMed Central

Background Once specific genes are identified through high throughput genomics technologies there is a need to sort the final gene list to a manageable size for validation studies. The triaging and sorting of genes often relies on the use of supplemental information related to gene structure, metabolic pathways, and chromosomal location. Yet in disease states where the genes may not have identifiable structural elements, poorly defined metabolic pathways, or limited chromosomal data, flexible systems for obtaining additional data are necessary. In these situations having a tool for searching the biomedical literature using the list of identified genes while simultaneously defining additional search terms would be useful. Results We have built a tool, BEAR GeneInfo, that allows flexible searches based on the investigators knowledge of the biological process, thus allowing for data mining that is specific to the scientist's strengths and interests. This tool allows a user to upload a series of GenBank accession numbers, Unigene Ids, Locuslink Ids, or gene names. BEAR GeneInfo takes these IDs and identifies the associated gene names, and uses the lists of gene names to query PubMed. The investigator can add additional modifying search terms to the query. The subsequent output provides a list of publications, along with the associated reference hyperlinks, for reviewing the identified articles for relevance and interest. An example of the use of this tool in the study of human prostate cancer cells treated with Selenium is presented. Conclusions This tool can be used to further define a list of genes that have been identified through genomic or genetic studies. Through the use of targeted searches with additional search terms the investigator can limit the list to genes that match their specific research interests or needs. The tool is freely available on the web at [1], and the authors will provide scripts and database components if requested mdatta@mcw.edu PMID:15117422

Zhou, Guohui; Wen, Xinyu; Liu, Hang; Schlicht, Michael J; Hessner, Martin J; Tonellato, Peter J; Datta, Milton W

2004-01-01

250

Transcriptome profiling to identify genes involved in pathogenicity of Valsa mali on apple tree.  

PubMed

Apple Valsa canker, caused by the fungus Valsa mali (Vm), is one of the most destructive diseases of apple in China. A better understanding of this host-pathogen interaction is urgently needed to improve management strategies. In the current study we sequenced the transcriptomes of Vm during infection of apple bark and mycelium grown in axenic culture using Illumina RNA-Seq technology. We identified 437 genes that were differentially expressed during fungal infection compared to fungal mycelium grown in axenic culture. One hundred and thirty nine of these 437 genes showed more than two fold higher transcript abundance during infection. GO and KEGG enrichment analyses of the up-regulated genes suggest prevalence of genes associated with pectin catabolic, hydrolase activity and secondary metabolite biosynthesis during fungal infection. Some of the up-regulated genes associated with loss of pathogenicity and reduced virulence annotated by host-pathogen interaction databases may also be involved in cell wall hydrolysis and secondary metabolite transport, including a glycoside hydrolase family 28 protein, a peptidase and two major facilitator superfamily proteins. This highlights the importance of secondary metabolites and cell wall hydrolases during establishment of apple Valsa canker. Functional verification of the genes involved in pathogenicity of Vm will allow us to better understand how the fungus interferes with the host machinery and assists in apple canker establishment. PMID:24747070

Ke, Xiwang; Yin, Zhiyuan; Song, Na; Dai, Qingqing; Voegele, Ralf T; Liu, Yangyang; Wang, Haiying; Gao, Xiaoning; Kang, Zhensheng; Huang, Lili

2014-07-01

251

Whole-exome sequencing identifies rare pathogenic variants in new predisposition genes for familial colorectal cancer  

PubMed Central

Purpose: Colorectal cancer is an important cause of mortality in the developed world. Hereditary forms are due to germ-line mutations in APC, MUTYH, and the mismatch repair genes, but many cases present familial aggregation but an unknown inherited cause. The hypothesis of rare high-penetrance mutations in new genes is a likely explanation for the underlying predisposition in some of these familial cases. Methods: Exome sequencing was performed in 43 patients with colorectal cancer from 29 families with strong disease aggregation without mutations in known hereditary colorectal cancer genes. Data analysis selected only very rare variants (0–0.1%), producing a putative loss of function and located in genes with a role compatible with cancer. Variants in genes previously involved in hereditary colorectal cancer or nearby previous colorectal cancer genome-wide association study hits were also chosen. Results: Twenty-eight final candidate variants were selected and validated by Sanger sequencing. Correct family segregation and somatic studies were used to categorize the most interesting variants in CDKN1B, XRCC4, EPHX1, NFKBIZ, SMARCA4, and BARD1. Conclusion: We identified new potential colorectal cancer predisposition variants in genes that have a role in cancer predisposition and are involved in DNA repair and the cell cycle, which supports their putative involvement in germ-line predisposition to this neoplasm. PMID:25058500

Esteban-Jurado, Clara; Vila-Casadesús, Maria; Garre, Pilar; Lozano, Juan José; Pristoupilova, Anna; Beltran, Sergi; Muñoz, Jenifer; Ocaña, Teresa; Balaguer, Francesc; López-Cerón, Maria; Cuatrecasas, Miriam; Franch-Expósito, Sebastià; Piqué, Josep M.; Castells, Antoni; Carracedo, Angel; Ruiz-Ponte, Clara; Abulí, Anna; Bessa, Xavier; Andreu, Montserrat; Bujanda, Luis; Caldés, Trinidad; Castellví-Bel, Sergi

2015-01-01

252

GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region.  

PubMed

In a genome-wide association study (GWAS) of individuals of European ancestry afflicted with systemic lupus erythematosus (SLE) the extensive utilization of imputation, step-wise multiple regression, lasso regularization and increasing study power by utilizing false discovery rate instead of a Bonferroni multiple test correction enabled us to identify 13 novel non-human leukocyte antigen (HLA) genes and confirmed the association of four genes previously reported to be associated. Novel genes associated with SLE susceptibility included two transcription factors (EHF and MED1), two components of the NF-?B pathway (RASSF2 and RNF114), one gene involved in adhesion and endothelial migration (CNTN6) and two genes involved in antigen presentation (BIN1 and SEC61G). In addition, the strongly significant association of multiple single-nucleotide polymorphisms (SNPs) in the HLA region was assigned to HLA alleles and serotypes and deconvoluted into four primary signals. The novel SLE-associated genes point to new directions for both the diagnosis and treatment of this debilitating autoimmune disease. PMID:24871463

Armstrong, D L; Zidovetzki, R; Alarcón-Riquelme, M E; Tsao, B P; Criswell, L A; Kimberly, R P; Harley, J B; Sivils, K L; Vyse, T J; Gaffney, P M; Langefeld, C D; Jacob, C O

2014-09-01

253

GWAS identifies novel SLE susceptibility genes and explains the association of the HLA region  

PubMed Central

In a Genome Wide Association Study (GWAS) of individuals of European ancestry afflicted with Systemic Lupus Erythematosus (SLE) the extensive utilization of imputation, stepwise multiple regression, lasso regularization, and increasing study power by utilizing False Discovery Rate (FDR) instead of a Bonferroni multiple test correction enabled us to identify 13 novel non-human leukocyte antigen (HLA) genes and confirmed the association of 4 genes previously reported to be associated. Novel genes associated with SLE susceptibility included two transcription factors (EHF, and MED1), two components of the NF?B pathway (RASSF2 and RNF114), one gene involved in adhesion and endothelial migration (CNTN6), and two genes involved in antigen presentation (BIN1 and SEC61G). In addition, the strongly significant association of multiple single nucleotide polymorphisms (SNPs) in the HLA region was assigned to HLA alleles and serotypes and deconvoluted into four primary signals. The novel SLE-associated genes point to new directions for both the diagnosis and treatment of this debilitating autoimmune disease. PMID:24871463

Armstrong, Don L.; Zidovetzki, Raphael; Alarcón-Riquelme, Marta E; Tsao, Betty P; Criswell, Lindsey A; Kimberly, Robert P; Harley, John B; Sivils, Kathy L; Vyse, Timothy J; Gaffney, Patrick M.; Langefeld, Carl D; Jacob, Chaim O.

2014-01-01

254

A yeast functional screen predicts new candidate ALS disease genes  

PubMed Central

Amyotrophic lateral sclerosis (ALS) is a devastating and universally fatal neurodegenerative disease. Mutations in two related RNA-binding proteins, TDP-43 and FUS, that harbor prion-like domains, cause some forms of ALS. There are at least 213 human proteins harboring RNA recognition motifs, including FUS and TDP-43, raising the possibility that additional RNA-binding proteins might contribute to ALS pathogenesis. We performed a systematic survey of these proteins to find additional candidates similar to TDP-43 and FUS, followed by bioinformatics to predict prion-like domains in a subset of them. We sequenced one of these genes, TAF15, in patients with ALS and identified missense variants, which were absent in a large number of healthy controls. These disease-associated variants of TAF15 caused formation of cytoplasmic foci when expressed in primary cultures of spinal cord neurons. Very similar to TDP-43 and FUS, TAF15 aggregated in vitro and conferred neurodegeneration in Drosophila, with the ALS-linked variants having a more severe effect than wild type. Immunohistochemistry of postmortem spinal cord tissue revealed mislocalization of TAF15 in motor neurons of patients with ALS. We propose that aggregation-prone RNA-binding proteins might contribute very broadly to ALS pathogenesis and the genes identified in our yeast functional screen, coupled with prion-like domain prediction analysis, now provide a powerful resource to facilitate ALS disease gene discovery. PMID:22065782

Couthouis, Julien; Hart, Michael P.; Shorter, James; DeJesus-Hernandez, Mariely; Erion, Renske; Oristano, Rachel; Liu, Annie X.; Ramos, Daniel; Jethava, Niti; Hosangadi, Divya; Epstein, James; Chiang, Ashley; Diaz, Zamia; Nakaya, Tadashi; Ibrahim, Fadia; Kim, Hyung-Jun; Solski, Jennifer A.; Williams, Kelly L.; Mojsilovic-Petrovic, Jelena; Ingre, Caroline; Boylan, Kevin; Graff-Radford, Neill R.; Dickson, Dennis W.; Clay-Falcone, Dana; Elman, Lauren; McCluskey, Leo; Greene, Robert; Kalb, Robert G.; Lee, Virginia M.-Y.; Trojanowski, John Q.; Ludolph, Albert; Robberecht, Wim; Andersen, Peter M.; Nicholson, Garth A.; Blair, Ian P.; King, Oliver D.; Bonini, Nancy M.; Van Deerlin, Vivianna; Rademakers, Rosa; Mourelatos, Zissimos; Gitler, Aaron D.

2011-01-01

255

Knowledge-based compact disease models identify new molecular players contributing to early-stage Alzheimer’s disease  

PubMed Central

Background High-throughput profiling of human tissues typically yield as results the gene lists comprised of a mix of relevant molecular entities with multiple false positives that obstruct the translation of such results into mechanistic hypotheses. From general probabilistic considerations, gene lists distilled for the mechanistically relevant components can be far more useful for subsequent experimental design or data interpretation. Results The input candidate gene lists were processed into different tiers of evidence consistency established by enrichment analysis across subsets of the same experiments and across different experiments and platforms. The cut-offs were established empirically through ontological and semantic enrichment; resultant shortened gene list was re-expanded by Ingenuity Pathway Assistant tool. The resulting sub-networks provided the basis for generating mechanistic hypotheses that were partially validated by literature search. This approach differs from previous consistency-based studies in that the cut-off on the Receiver Operating Characteristic of the true-false separation process is optimized by flexible selection of the consistency building procedure. The gene list distilled by this analytic technique and its network representation were termed Compact Disease Model (CDM). Here we present the CDM signature for the study of early-stage Alzheimer’s disease. The integrated analysis of this gene signature allowed us to identify the protein traffic vesicles as prominent players in the pathogenesis of Alzheimer’s. Considering the distances and complexity of protein trafficking in neurons, it is plausible that spontaneous protein misfolding along with a shortage of growth stimulation result in neurodegeneration. Several potentially overlapping scenarios of early-stage Alzheimer pathogenesis have been discussed, with an emphasis on the protective effects of AT-1 mediated antihypertensive response on cytoskeleton remodeling, along with neuronal activation of oncogenes, luteinizing hormone signaling and insulin-related growth regulation, forming a pleiotropic model of its early stages. Alignment with emerging literature confirmed many predictions derived from early-stage Alzheimer’s disease’ CDM. Conclusions A flexible approach for high-throughput data analysis, the Compact Disease Model generation, allows extraction of meaningful, mechanism-centered gene sets compatible with instant translation of the results into testable hypotheses. PMID:24196233

2013-01-01

256

Elevating crop disease resistance with cloned genes.  

PubMed

Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO? emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree. PMID:24535396

Jones, Jonathan D G; Witek, Kamil; Verweij, Walter; Jupe, Florian; Cooke, David; Dorling, Stephen; Tomlinson, Laurence; Smoker, Matthew; Perkins, Sara; Foster, Simon

2014-04-01

257

Elevating crop disease resistance with cloned genes  

PubMed Central

Essentially all plant species exhibit heritable genetic variation for resistance to a variety of plant diseases caused by fungi, bacteria, oomycetes or viruses. Disease losses in crop monocultures are already significant, and would be greater but for applications of disease-controlling agrichemicals. For sustainable intensification of crop production, we argue that disease control should as far as possible be achieved using genetics rather than using costly recurrent chemical sprays. The latter imply CO2 emissions from diesel fuel and potential soil compaction from tractor journeys. Great progress has been made in the past 25 years in our understanding of the molecular basis of plant disease resistance mechanisms, and of how pathogens circumvent them. These insights can inform more sophisticated approaches to elevating disease resistance in crops that help us tip the evolutionary balance in favour of the crop and away from the pathogen. We illustrate this theme with an account of a genetically modified (GM) blight-resistant potato trial in Norwich, using the Rpi-vnt1.1 gene isolated from a wild relative of potato, Solanum venturii, and introduced by GM methods into the potato variety Desiree. PMID:24535396

Jones, Jonathan D. G.; Witek, Kamil; Verweij, Walter; Jupe, Florian; Cooke, David; Dorling, Stephen; Tomlinson, Laurence; Smoker, Matthew; Perkins, Sara; Foster, Simon

2014-01-01

258

Gene expression profiles analysis identifies key genes for acute lung injury in patients with sepsis.  

PubMed

BackgroundTo identify critical genes and biological pathways in acute lung injury (ALI), a comparative analysis of gene expression profiles of patients with ALI¿+¿sepsis compared with patients with sepsis alone were performed with bioinformatic tools.MethodsGSE10474 was downloaded from Gene Expression Omnibus, including a collective of 13 whole blood samples with ALI¿+¿sepsis and 21 whole blood samples with sepsis alone. After pre-treatment with robust multichip averaging (RMA) method, differential analysis was conducted using simpleaffy package based upon t-test and fold change. Hierarchical clustering was also performed using function hclust from package stats. Beisides, functional enrichment analysis was conducted using iGepros. Moreover, the gene regulatory network was constructed with information from Kyoto Encyclopedia of Genes and Genomes (KEGG) and then visualized by Cytoscape.ResultsA total of 128 differentially expressed genes (DEGs) were identified, including 47 up- and 81 down-regulated genes. The significantly enriched functions included negative regulation of cell proliferation, regulation of response to stimulus and cellular component morphogenesis. A total of 27 DEGs were significantly enriched in 16 KEGG pathways, such as protein digestion and absorption, fatty acid metabolism, amoebiasis, etc. Furthermore, the regulatory network of these 27 DEGs was constructed, which involved several key genes, including protein tyrosine kinase 2 (PTK2), v-src avian sarcoma (SRC) and Caveolin 2 (CAV2).ConclusionPTK2, SRC and CAV2 may be potential markers for diagnosis and treatment of ALI.Virtual SlidesThe virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_176. PMID:25257390

Guo, Zhiqiang; Zhao, Chuncheng; Wang, Zheng

2014-09-26

259

CFTR gene mutations in isolated chronic obstructive pulmonary disease  

SciTech Connect

In order to identify a possible hereditary predisposition to the development of chronic obstructive pulmonary disease (COPD), we have looked for the presence of cystic fibrosis transmembrane regulator (CFTR) gene DNA sequence modifications in 28 unrelated patients with no signs of cystic fibrosis. The known mutations in Italian CF patients, as well as the most frequent worldwide CF mutations, were investigated. In addition, a denaturing gradient gel electrophoresis analysis of about half of the coding sequence of the gene in 56 chromosomes from the patients and in 102 chromosomes from control individuals affected by other pulmonary diseases and from normal controls was performed. Nine different CFTR gene mutations and polymorphisms were found in seven patients, a highly significant increase over controls. Two of the patients were compound heterozygotes. Two frequent CF mutations were detected: deletion F508 and R117H; two rare CF mutations: R1066C and 3667ins4; and five CF sequence variants: R75Q (which was also described as a disease-causing mutation in male sterility cases due to the absence of the vasa deferentia), G576A, 2736 A{r_arrow}G, L997F, and 3271+18C{r_arrow}T. Seven (78%) of the mutations are localized in transmembrane domains. Six (86%) of the patients with defined mutations and polymorphisms had bronchiectasis. These results indicate that CFTR gene mutations and sequence alterations may be involved in the etiopathogenesis of some cases of COPD.

Pignatti, P.F.; Bombien, C.; Marigo, C. [and others

1994-09-01

260

Antioxidant Enzyme Gene Transfer for Ischemic Diseases  

PubMed Central

The balance of redox is pivotal for normal function and integrity of tissues. Ischemic insults occur as results of a variety of conditions, leading to an accumulation of reactive oxygen species (ROS) and an imbalanced redox status in the tissues. The oxidant stress may activate signaling mechanisms provoking more toxic events, and eventually cause tissue damage. Therefore, treatments with antioxidants, free radical scavengers and their mimetics, as well as gene transfer approaches to overexpress antioxidant genes represent potential therapeutic options to correct the redox imbalance. Among them, antioxidant gene transfer may enhance the production of antioxidant scavengers, and has been employed to experimentally prevent or treat ischemic injury in cardiovascular, pulmonary, hepatic, intestinal, central nervous or other systems in animal models. With improvements in vector systems and delivery approaches, innovative antioxidant gene therapy has conferred better outcomes for myocardial infarction, reduced restenosis after coronary angioplasty, improved the quality and function of liver grafts, as well as outcome of intestinal and cerebral ischemic attacks. However, it is crucial to be mindful that like other therapeutic armentarium, the efficacy of antioxidant gene transfer requires extensive preclinical investigation before it can be used in patients, and that it may have unanticipated short- or long-term adverse effects. Thus, it is critical to balance between the therapeutic benefits and potential risks, to develop disease-specific antioxidant gene transfer strategies, to deliver the therapy with an optimal time window and in a safe manner. This review attempts to provide the rationale, the most effective approaches and the potential hurdles of available antioxidant gene transfer approaches for ischemic injury in various organs, as well as the possible directions of future preclinical and clinical investigations of this highly promising therapeutic modality. PMID:19233238

Wu, Jian; Hecker, James G.; Chiamvimonvat, Nipavan

2009-01-01

261

Genome Wide Transcriptome Analysis of Dendritic Cells Identifies Genes with Altered Expression in Psoriasis  

PubMed Central

Activation of dendritic cells by different pathogens induces the secretion of proinflammatory mediators resulting in local inflammation. Importantly, innate immunity must be properly controlled, as its continuous activation leads to the development of chronic inflammatory diseases such as psoriasis. Lipopolysaccharide (LPS) or peptidoglycan (PGN) induced tolerance, a phenomenon of transient unresponsiveness of cells to repeated or prolonged stimulation, proved valuable model for the study of chronic inflammation. Thus, the aim of this study was the identification of the transcriptional diversity of primary human immature dendritic cells (iDCs) upon PGN induced tolerance. Using SAGE-Seq approach, a tag-based transcriptome sequencing method, we investigated gene expression changes of primary human iDCs upon stimulation or restimulation with Staphylococcus aureus derived PGN, a widely used TLR2 ligand. Based on the expression pattern of the altered genes, we identified non-tolerizeable and tolerizeable genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (Kegg) analysis showed marked enrichment of immune-, cell cycle- and apoptosis related genes. In parallel to the marked induction of proinflammatory mediators, negative feedback regulators of innate immunity, such as TNFAIP3, TNFAIP8, Tyro3 and Mer are markedly downregulated in tolerant cells. We also demonstrate, that the expression pattern of TNFAIP3 and TNFAIP8 is altered in both lesional, and non-lesional skin of psoriatic patients. Finally, we show that pretreatment of immature dendritic cells with anti-TNF-? inhibits the expression of IL-6 and CCL1 in tolerant iDCs and partially releases the suppression of TNFAIP8. Our findings suggest that after PGN stimulation/restimulation the host cell utilizes different mechanisms in order to maintain critical balance between inflammation and tolerance. Importantly, the transcriptome sequencing of stimulated/restimulated iDCs identified numerous genes with altered expression to date not associated with role in chronic inflammation, underlying the relevance of our in vitro model for further characterization of IFN-primed iDCs. PMID:24039940

Szász, András; Tubak, Vilmos; Kemény, Lajos; Kondorosi, Éva; Nagy, István

2013-01-01

262

A functional screen for copper homeostasis genes identifies a pharmacologically tractable cellular system  

PubMed Central

Background Copper is essential for the survival of aerobic organisms. If copper is not properly regulated in the body however, it can be extremely cytotoxic and genetic mutations that compromise copper homeostasis result in severe clinical phenotypes. Understanding how cells maintain optimal copper levels is therefore highly relevant to human health. Results We found that addition of copper (Cu) to culture medium leads to increased respiratory growth of yeast, a phenotype which we then systematically and quantitatively measured in 5050 homozygous diploid deletion strains. Cu’s positive effect on respiratory growth was quantitatively reduced in deletion strains representing 73 different genes, the function of which identify increased iron uptake as a cause of the increase in growth rate. Conversely, these effects were enhanced in strains representing 93 genes. Many of these strains exhibited respiratory defects that were specifically rescued by supplementing the growth medium with Cu. Among the genes identified are known and direct regulators of copper homeostasis, genes required to maintain low vacuolar pH, and genes where evidence supporting a functional link with Cu has been heretofore lacking. Roughly half of the genes are conserved in man, and several of these are associated with Mendelian disorders, including the Cu-imbalance syndromes Menkes and Wilson’s disease. We additionally demonstrate that pharmacological agents, including the approved drug disulfiram, can rescue Cu-deficiencies of both environmental and genetic origin. Conclusions A functional screen in yeast has expanded the list of genes required for Cu-dependent fitness, revealing a complex cellular system with implications for human health. Respiratory fitness defects arising from perturbations in this system can be corrected with pharmacological agents that increase intracellular copper concentrations. PMID:24708151

2014-01-01

263

Signature patterns of gene expression in mouse atherosclerosis and their correlation to human coronary disease.  

PubMed

The propensity for developing atherosclerosis is dependent on underlying genetic risk and varies as a function of age and exposure to environmental risk factors. Employing three mouse models with different disease susceptibility, two diets, and a longitudinal experimental design, it was possible to manipulate each of these factors to focus analysis on genes most likely to have a specific disease-related function. To identify differences in longitudinal gene expression patterns of atherosclerosis, we have developed and employed a statistical algorithm that relies on generalized regression and permutation analysis. Comprehensive annotation of the array with ontology and pathway terms has allowed rigorous identification of molecular and biological processes that underlie disease pathophysiology. The repertoire of atherosclerosis-related immunomodulatory genes has been extended, and additional fundamental pathways have been identified. This highly disease-specific group of mouse genes was combined with an extensive human coronary artery data set to identify a shared group of genes differentially regulated among atherosclerotic tissues from different species and different vascular beds. A small core subset of these differentially regulated genes was sufficient to accurately classify various stages of the disease in mouse. The same gene subset was also found to accurately classify human coronary lesion severity. In addition, this classifier gene set was able to distinguish with high accuracy atherectomy specimens from native coronary artery disease vs. those collected from in-stent restenosis lesions, thus identifying molecular differences between these two processes. These studies significantly focus efforts aimed at identifying central gene regulatory pathways that mediate atherosclerotic disease, and the identification of classification gene sets offers unique insights into potential diagnostic and therapeutic strategies in atherosclerotic disease. PMID:15870398

Tabibiazar, Raymond; Wagner, Roger A; Ashley, Euan A; King, Jennifer Y; Ferrara, Rossella; Spin, Joshua M; Sanan, David A; Narasimhan, Balasubramanian; Tibshirani, Robert; Tsao, Philip S; Efron, Bradley; Quertermous, Thomas

2005-07-14

264

DGEM--a microarray gene expression database for primary human disease tissues.  

PubMed

Gene expression patterns can reflect gene regulations in human tissues under normal or pathologic conditions. Gene expression profiling data from studies of primary human disease samples are particularly valuable since these studies often span many years in order to collect patient clinical information and achieve a large sample size. Disease-to-Gene Expression Mapper (DGEM) provides a beneficial community resource to access and analyze these data; it currently includes Affymetrix oligonucleotide array datasets for more than 40 human diseases and 1400 samples. The data are normalized to the same scale and stored in a relational database. A statistical-analysis pipeline was implemented to identify genes abnormally expressed in disease tissues or genes whose expressions are associated with clinical parameters such as cancer patient survival. Data-mining results can be queried through a web-based interface at http://dgem.dhcp.iupui.edu/. The query tool enables dynamic generation of graphs and tables that are further linked to major gene and pathway resources that connect the data to relevant biology, including Entrez Gene and Kyoto Encyclopedia of Genes and Genomes (KEGG). In summary, DGEM provides scientists and physicians a valuable tool to study disease mechanisms, to discover potential disease biomarkers for diagnosis and prognosis, and to identify novel gene targets for drug discovery. The source code is freely available for non-profit use, on request to the authors. PMID:17570735

Xia, Yuni; Campen, Andrew; Rigsby, Dan; Guo, Ying; Feng, Xingdong; Su, Eric W; Palakal, Mathew; Li, Shuyu

2007-01-01

265

Gene Profiling of Mta1 Identifies Novel Gene Targets and Functions  

PubMed Central

Background Metastasis-associated protein 1 (MTA1), a master dual co-regulatory protein is found to be an integral part of NuRD (Nucleosome Remodeling and Histone Deacetylation) complex, which has indispensable transcriptional regulatory functions via histone deacetylation and chromatin remodeling. Emerging literature establishes MTA1 to be a valid DNA-damage responsive protein with a significant role in maintaining the optimum DNA-repair activity in mammalian cells exposed to genotoxic stress. This DNA-damage responsive function of MTA1 was reported to be a P53-dependent and independent function. Here, we investigate the influence of P53 on gene regulation function of Mta1 to identify novel gene targets and functions of Mta1. Methods Gene expression analysis was performed on five different mouse embryonic fibroblasts (MEFs) samples (i) the Mta1 wild type, (ii) Mta1 knock out (iii) Mta1 knock out in which Mta1 was reintroduced (iv) P53 knock out (v) P53 knock out in which Mta1 was over expressed using Affymetrix Mouse Exon 1.0 ST arrays. Further Hierarchical Clustering, Gene Ontology analysis with GO terms satisfying corrected p-value<0.1, and the Ingenuity Pathway Analysis were performed. Finally, RT-qPCR was carried out on selective candidate genes. Significance/Conclusion This study represents a complete genome wide screen for possible target genes of a coregulator, Mta1. The comparative gene profiling of Mta1 wild type, Mta1 knockout and Mta1 re-expression in the Mta1 knockout conditions define “bona fide” Mta1 target genes. Further extensive analyses of the data highlights the influence of P53 on Mta1 gene regulation. In the presence of P53 majority of the genes regulated by Mta1 are related to inflammatory and anti-microbial responses whereas in the absence of P53 the predominant target genes are involved in cancer signaling. Thus, the presented data emphasizes the known functions of Mta1 and serves as a rich resource which could help us identify novel Mta1 functions. PMID:21364872

Eswaran, Jeyanthy; Kumar, Rakesh

2011-01-01

266

Identify lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines using gene chip  

PubMed Central

AIM: In order to obtain lymphogenous metastasis-associated genes, we compared the transcriptional profiles of mouse hepatocarcinoma cell lines Hca-F with highly lymphatic metastasis potential and Hca-P with low lymphatic metastasis potential. METHODS: Total RNA was isolated from Hca-F and Hca-P cells and synthesized into double-stranded cDNA. In vitro transcription double-stranded cDNA was labeled with biotin (i.e., biotin-labeled cRNA, used as the probe). The cRNA probes hybridized with Affymetrix GeneChip® MOE430A (containing 22690 transcripts, including 14500 known mouse genes and 4371 ESTs) respectively and the signals were scanned by the GeneArray Scanner. The results were then analyzed by bioinformatics. RESULTS: Out of the 14500 known genes investigated, 110 (0.8%) were up regulated at least 23 fold. Among the total 4371 ESTs, 17 ESTs (0.4%) (data were not presented) were up regulated at least 23 fold. According to the Gene Ontology and TreeView analysis, the 110 genes were further classified into two groups: differential biological process profile and molecular function profile. CONCLUSION: Using high-throughput gene chip method, a large number of genes and their cellular functions about angiogenesis, cell adhesion, signal transduction, cell motility, transport, microtubule-based process, cytoskeleton organization and biogenesis, cell cycle, transcription, chaperone activity, motor activity, protein kinase activity, receptor binding and protein binding might be involved in the process of lymphatic metastasis and deserve to be used as potential candidates for further investigation. Cyclin D1, Fosl1, Hsp47, EGFR and AR, and Cav-1 are selected as the possible candidate genes of the metastatic phenotype, which need to be validated in later experiments. ESTs (data were not presented) might indicate novel genes associated with lymphatic metastasis. Validating the function of these genes is helpful to identify the key or candidate gene/pathway responsible for lymphatic metastasis, which might be used as the diagnostic markers and the therapeutic targets for lymphatic metastasis. PMID:15770722

Song, Bo; Tang, Jian-Wu; Wang, Bo; Cui, Xiao-Nan; Hou, Li; Sun, Lu; Mao, Li-Min; Zhou, Chun-Hui; Du, Yue; Wang, Li-Hui; Wang, Hua-Xin; Zheng, Ren-Shu; Sun, Lei

2005-01-01

267

Using ChIP-based technologies to identify epigenetic modifications in disease-relevant cells.  

PubMed

The effect of epigenetic modifications on the regulation of gene expression and the concomitant relationship to human diseases has become a key area of biological research in recent years. Studies have suggested that there is direct correlation between epigenetic modifications, such as histone methylation, histone acetylation and DNA methylation, and gene expression in disease-relevant cells, including cancer cells. The development of chromatin immunoprecipitation (ChIP)-based technologies, such as ChIP-chip and ChIP-Seq, has facilitated the high-throughput genome-wide mapping of epigenetic modifications that enable researchers to define the epigenome in disease-relevant cells and use comparative ChIP-based epigenetic mapping to correlate changes in epigenetic modifications with key physiological changes in disease-relevant tissues, including cancer cells, stem cells and T-cells. This feature review article provides insight into the nature of epigenetic modifications, the ChIP-based technologies that are available, and how such methods are being used to identify key epigenetic regulatory activities in medically relevant areas such as cancer and immunology. PMID:20191433

Falk, Jeffrey

2010-03-01

268

Functional classification of interferon-stimulated genes identified using microarrays  

Microsoft Academic Search

Interferons (IFNs) are a family of mul- tifunctional cytokines that activate transcription of subsets of genes. The gene products induced by IFNs are responsible for IFN antiviral, antiprolif- erative, and immunomodulatory properties. To obtain a more comprehensive list and a better un- derstanding of the genes regulated by IFNs, we compiled data from many experiments, using two different microarray formats.

Michael J. de Veer; Michelle Holko; Mathias Frevel; Eldon Walker; Sandy Der; Jayashree M. Paranjape; Robert H. Silverman; Bryan R. G. Williams

2001-01-01

269

Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia  

PubMed Central

Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of ?1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P=7.6 × 10?11) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P<0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P=2.0 × 10?4), excitability (P=9.0 × 10?4) and cell adhesion and trans-synaptic signaling (P=2.4 × 10?3). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. PMID:21931320

Lips, E S; Cornelisse, L N; Toonen, R F; Min, J L; Hultman, C M; Holmans, P A; O'Donovan, M C; Purcell, S M; Smit, A B; Verhage, M; Sullivan, P F; Visscher, P M; Posthuma, D

2012-01-01

270

EvoTol: a protein-sequence based evolutionary intolerance framework for disease-gene prioritization  

PubMed Central

Methods to interpret personal genome sequences are increasingly required. Here, we report a novel framework (EvoTol) to identify disease-causing genes using patient sequence data from within protein coding-regions. EvoTol quantifies a gene's intolerance to mutation using evolutionary conservation of protein sequences and can incorporate tissue-specific gene expression data. We apply this framework to the analysis of whole-exome sequence data in epilepsy and congenital heart disease, and demonstrate EvoTol's ability to identify known disease-causing genes is unmatched by competing methods. Application of EvoTol to the human interactome revealed networks enriched for genes intolerant to protein sequence variation, informing novel polygenic contributions to human disease. PMID:25550428

Rackham, Owen J. L.; Shihab, Hashem A.; Johnson, Michael R.; Petretto, Enrico

2015-01-01

271

FROM GENES TO PHENOTYPE IN A FLY: A DEFICIENCY SCREEN TO IDENTIFY GENE REGIONS AFFECTING FEMALE FERTILITY IN DROSOPHILA MELANOGASTER  

NSDL National Science Digital Library

This series of laboratory exercises engages students in the scholarship of discovery by having them conduct a deficiency screen to identify genes affecting Drosophila female fertility. Students are also introduced to bioinformatics as they use FlyBase to identify genes within a deficiency region and develop hypotheses regarding specific gene effects on female sperm storage.

PhD Margaret C Bloch-Qazi (Gustavus Adolphus College Biology)

2009-01-28

272

A novel homozygous mutation in SUCLA2 gene identified by exome sequencing.  

PubMed

Mitochondrial disorders with multiple mitochondrial respiratory chain (MRC) enzyme deficiency and depletion of mitochondrial DNA (mtDNA) are autosomal recessive conditions due to mutations in several nuclear genes necessary for proper mtDNA maintenance. In this report, we describe two Italian siblings presenting with encephalomyopathy and mtDNA depletion in muscle. By whole exome-sequencing and prioritization of candidate genes, we identified a novel homozygous missense mutation in the SUCLA2 gene in a highly conserved aminoacid residue. Although a recurrent mutation in the SUCLA2 gene is relatively frequent in the Faroe Islands, mutations in other populations are extremely rare. In contrast with what has been reported in other patients, methyl-malonic aciduria, a biomarker for this genetic defect, was absent in our proband and very mildly elevated in her affected sister. This report demonstrates that next-generation technologies, particularly exome-sequencing, are user friendly, powerful means for the identification of disease genes in genetically and clinically heterogeneous inherited conditions, such as mitochondrial disorders. PMID:23010432

Lamperti, Costanza; Fang, Mingyan; Invernizzi, Federica; Liu, Xuanzhu; Wang, Hairong; Zhang, Qing; Carrara, Franco; Moroni, Isabella; Zeviani, Massimo; Zhang, Jianguo; Ghezzi, Daniele

2012-11-01

273

A novel homozygous mutation in SUCLA2 gene identified by exome sequencing  

PubMed Central

Mitochondrial disorders with multiple mitochondrial respiratory chain (MRC) enzyme deficiency and depletion of mitochondrial DNA (mtDNA) are autosomal recessive conditions due to mutations in several nuclear genes necessary for proper mtDNA maintenance. In this report, we describe two Italian siblings presenting with encephalomyopathy and mtDNA depletion in muscle. By whole exome-sequencing and prioritization of candidate genes, we identified a novel homozygous missense mutation in the SUCLA2 gene in a highly conserved aminoacid residue. Although a recurrent mutation in the SUCLA2 gene is relatively frequent in the Faroe Islands, mutations in other populations are extremely rare. In contrast with what has been reported in other patients, methyl-malonic aciduria, a biomarker for this genetic defect, was absent in our proband and very mildly elevated in her affected sister. This report demonstrates that next-generation technologies, particularly exome-sequencing, are user friendly, powerful means for the identification of disease genes in genetically and clinically heterogeneous inherited conditions, such as mitochondrial disorders. PMID:23010432

Lamperti, Costanza; Fang, Mingyan; Invernizzi, Federica; Liu, Xuanzhu; Wang, Hairong; Zhang, Qing; Carrara, Franco; Moroni, Isabella; Zeviani, Massimo; Zhang, Jianguo; Ghezzi, Daniele

2012-01-01

274

Inferring novel gene-disease associations using Medical Subject Heading Over-representation Profiles  

PubMed Central

Background MEDLINE®/PubMed® currently indexes over 18 million biomedical articles, providing unprecedented opportunities and challenges for text analysis. Using Medical Subject Heading Over-representation Profiles (MeSHOPs), an entity of interest can be robustly summarized, quantitatively identifying associated biomedical terms and predicting novel indirect associations. Methods A procedure is introduced for quantitative comparison of MeSHOPs derived from a group of MEDLINE® articles for a biomedical topic (for example, articles for a specific gene or disease). Similarity scores are computed to compare MeSHOPs of genes and diseases. Results Similarity scores successfully infer novel associations between diseases and genes. The number of papers addressing a gene or disease has a strong influence on predicted associations, revealing an important bias for gene-disease relationship prediction. Predictions derived from comparisons of MeSHOPs achieves a mean 8% AUC improvement in the identification of gene-disease relationships compared to gene-independent baseline properties. Conclusions MeSHOP comparisons are demonstrated to provide predictive capacity for novel relationships between genes and human diseases. We demonstrate the impact of literature bias on the performance of gene-disease prediction methods. MeSHOPs provide a rich source of annotation to facilitate relationship discovery in biomedical informatics. PMID:23021552

2012-01-01

275

Evaluation of an efficient approach for identifying genetic disease loci  

SciTech Connect

Identification of disease loci by genetic linkage analysis has been enhanced by the availability of highly polymorphic short tandem repeat polymorphic markers (STRPs). The development of high quality tri- and tetranucleotide STRPs allows new strategies to increase the efficiency of genotyping resulting in streamlined linkage studies. We have tested a strategy using pooled DNA samples from affected individuals from large Bedouin pedigrees segregating recessive disorders. Equal molar amounts of DNA from affected individuals are pooled and used as a template for PCR of STRPs. Pooled DNA from unaffected siblings are used as controls. STRPS linked to the disorder show a shift in allele frequency in the affected compared to the control pool, whereas unlinked markers show an identical allele distribution in affected and control pools. We have demonstrated the sensitivity of this approach for identifying STRPs giving positive lod scores in recessive kindreds. We have also modelled this approach with dominant pedigrees. Application of this approach to polygenic disorders should be possible by using methods to quantitate allele frequencies in pooled samples. The high quality tri- and tetranucleotide repeat markers developed by the Cooperative Human Linkage Center (CHLC) facilitate the use of this method.

Sheffield, V.C.; Kwitek-Black, A.E.; Rokhlina, T. [Univ. of Iowa, Iowa City, IA (United States)] [and others

1994-09-01

276

Gene expression in human hippocampus from cocaine abusers identifies genes which regulate extracellular matrix remodeling.  

PubMed

The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine "rush". Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; p<0.05). RECK is a membrane-anchored MMP inhibitor that is implicated in the coordinated regulation of extracellular matrix integrity and angiogenesis. In keeping with elevated RECK expression, active MMP9 protein levels were decreased in the hippocampus from cocaine abusers. Pathway analysis identified other genes regulated by cocaine that code for proteins involved in the remodeling of the cytomatrix and synaptic connections and the inhibition of blood vessel proliferation (PCDH8, LAMB1, ITGB6, CTGF and EphB4). The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction. PMID:18000554

Mash, Deborah C; ffrench-Mullen, Jarlath; Adi, Nikhil; Qin, Yujing; Buck, Andrew; Pablo, John

2007-01-01

277

Expression of coordinately regulated defense response genes and analysis of their role in disease resistance in Medicago truncatula  

Technology Transfer Automated Retrieval System (TEKTRAN)

Microarray technology was used to identify genes associated with disease defense responses in the model legume Medicago truncatula. Transcript profiles from leaves inoculated with Colletotrichum trifolii and Erysiphe pisi and roots infected with Phytophthora medicaginis were compared to identify gen...

278

Using Epidemiological Models and Genetic Selection to Identify Theoretical Opportunities to Reduce Disease Impact  

Technology Transfer Automated Retrieval System (TEKTRAN)

Selection for disease resistance is a contemporary topic with developing approaches for genetic improvement. Merging the sciences of genetic selection and epidemiology is essential to identify selection schemes to enhance disease resistance. Epidemiological models can identify theoretical opportuni...

279

A set-based association test identifies sex-specific gene sets associated with type 2 diabetes  

PubMed Central

Single variant analysis in genome-wide association studies (GWAS) has been proven to be successful in identifying thousands of genetic variants associated with hundreds of complex diseases. However, these identified variants only explain a small fraction of inheritable variability in many diseases, suggesting that other resources, such as multilevel genetic variations, may contribute to disease susceptibility. In this work, we proposed to combine genetic variants that belong to a gene set, such as at gene- and pathway-level to form an integrated signal aimed to identify major players that function in a coordinated manner conferring disease risk. The integrated analysis provides novel insight into disease etiology while individual signals could be easily missed by single variant analysis. We applied our approach to a genome-wide association study of type 2 diabetes (T2D) with male and female data analyzed separately. Novel sex-specific genes and pathways were identified to increase the risk of T2D. We also demonstrated the performance of signal integration through simulation studies. PMID:25429300

He, Tao; Zhong, Ping-Shou; Cui, Yuehua

2014-01-01

280

Exploiting protein-protein interaction networks for genome-wide disease-gene prioritization.  

PubMed

Complex genetic disorders often involve products of multiple genes acting cooperatively. Hence, the pathophenotype is the outcome of the perturbations in the underlying pathways, where gene products cooperate through various mechanisms such as protein-protein interactions. Pinpointing the decisive elements of such disease pathways is still challenging. Over the last years, computational approaches exploiting interaction network topology have been successfully applied to prioritize individual genes involved in diseases. Although linkage intervals provide a list of disease-gene candidates, recent genome-wide studies demonstrate that genes not associated with any known linkage interval may also contribute to the disease phenotype. Network based prioritization methods help highlighting such associations. Still, there is a need for robust methods that capture the interplay among disease-associated genes mediated by the topology of the network. Here, we propose a genome-wide network-based prioritization framework named GUILD. This framework implements four network-based disease-gene prioritization algorithms. We analyze the performance of these algorithms in dozens of disease phenotypes. The algorithms in GUILD are compared to state-of-the-art network topology based algorithms for prioritization of genes. As a proof of principle, we investigate top-ranking genes in Alzheimer's disease (AD), diabetes and AIDS using disease-gene associations from various sources. We show that GUILD is able to significantly highlight disease-gene associations that are not used a priori. Our findings suggest that GUILD helps to identify genes implicated in the pathology of human disorders independent of the loci associated with the disorders. PMID:23028459

Guney, Emre; Oliva, Baldo

2012-01-01

281

Virus-induced gene silencing of Arabidopsis thaliana gene homologues in wheat identifies genes conferring improved drought tolerance  

PubMed Central

In a non-model staple crop like wheat (Triticum aestivumI L.), functional validation of potential drought stress responsive genes identified in Arabidopsis could provide gene targets for breeding. Virus-induced gene silencing (VIGS) of genes of interest can overcome the inherent problems of polyploidy and limited transformation potential that hamper functional validation studies in wheat. In this study, three potential candidate genes shown to be involved in abiotic stress response pathways in Arabidopsis thaliana were selected for VIGS experiments in wheat. These include Era1 (enhanced response to abscisic acid), Cyp707a (ABA 8’-hydroxylase), and Sal1 (inositol polyphosphate 1-phosphatase). Gene homologues for these three genes were identified in wheat and cloned in the viral vector barley stripe mosaic virus (BSMV) in the antisense direction, followed by rub inoculation of BSMV viral RNA transcripts onto wheat plants. Quantitative real-time PCR showed that VIGS-treated wheat plants had significant reductions in target gene transcripts. When VIGS-treated plants generated for Era1 and Sal1 were subjected to limiting water conditions, they showed increased relative water content, improved water use efficiency, reduced gas exchange, and better vigour compared to water-stressed control plants inoculated with RNA from the empty viral vector (BSMV0). In comparison, the Cyp707a-silenced plants showed no improvement over BSMV0-inoculated plants under limited water condition. These results indicate that Era1 and Sal1 play important roles in conferring drought tolerance in wheat. Other traits affected by Era1 silencing were also studied. Delayed seed germination in Era1-silenced plants suggests this gene may be a useful target for developing resistance to pre-harvest sprouting. PMID:23364940

Lapitan, Nora

2013-01-01

282

With current gene markers, presymptomatic diagnosis of heritable disease is still a family affair  

SciTech Connect

In the last four years, genes or genetic markers have been identified for a host of disorders including Huntington's disease, cystic fibrosis, Duchenne muscular dystrophy, polycystic kidney disease, bipolar depressive disorder, retinoblastoma, Alzheimer's disease, and schizophrenia. Such discoveries have made it possible to diagnose in utero some 30 genetic diseases during the first trimester of pregnancy. Yet, while these newly discovered gene markers may be revolutionizing prenatal and presymptomatic diagnosis, they are in many respects halfway technology. Such was the opinion of several speakers at a conference sponsored by the American Medical Association in Washington, DC. At the conference, entitled DNA Probes in the Practice of Medicine, geneticists emphasized that gene markers - stretches of DNA that are usually inherited in tandem with a disease gene - are usually not sufficient for presymptomatic diagnosis of genetic disease in an individual.

Not Available

1987-09-04

283

An Integrative Framework for Bayesian Variable Selection with Informative Priors for Identifying Genes and Pathways  

PubMed Central

The discovery of genetic or genomic markers plays a central role in the development of personalized medicine. A notable challenge exists when dealing with the high dimensionality of the data sets, as thousands of genes or millions of genetic variants are collected on a relatively small number of subjects. Traditional gene-wise selection methods using univariate analyses face difficulty to incorporate correlational, structural, or functional structures amongst the molecular measures. For microarray gene expression data, we first summarize solutions in dealing with ‘large p, small n’ problems, and then propose an integrative Bayesian variable selection (iBVS) framework for simultaneously identifying causal or marker genes and regulatory pathways. A novel partial least squares (PLS) g-prior for iBVS is developed to allow the incorporation of prior knowledge on gene-gene interactions or functional relationships. From the point view of systems biology, iBVS enables user to directly target the joint effects of multiple genes and pathways in a hierarchical modeling diagram to predict disease status or phenotype. The estimated posterior selection probabilities offer probabilitic and biological interpretations. Both simulated data and a set of microarray data in predicting stroke status are used in validating the performance of iBVS in a Probit model with binary outcomes. iBVS offers a general framework for effective discovery of various molecular biomarkers by combining data-based statistics and knowledge-based priors. Guidelines on making posterior inferences, determining Bayesian significance levels, and improving computational efficiencies are also discussed. PMID:23844055

Ander, Bradley P.; Zhang, Xiaoshuai; Xue, Fuzhong; Sharp, Frank R.; Yang, Xiaowei

2013-01-01

284

Gene Therapy Ameliorates Cardiovascular Disease in Dogs With Mucopolysaccharidosis VII  

E-print Network

Gene Therapy Ameliorates Cardiovascular Disease in Dogs With Mucopolysaccharidosis VII M.M. Sleeper;110:815-820.) Key Words: cardiovascular diseases gene therapy lysosomes mucopolysaccharidosis--Mucopolysaccharidosis VII (MPS VII) is a lysosomal storage disease caused by deficient -glucuronidase (GUSB) activity

Ponder, Katherine P.

285

The ACE gene and Alzheimer's disease susceptibility  

PubMed Central

A recent study suggested that the insertion (I) allele in intron 16 of the angiotensin converting enzyme gene (ACE) is associated with Alzheimer's disease (AD) risk. In our series of 239 necropsy confirmed late onset AD cases and 342 elderly non-demented controls aged >73 years, we found significantly different ACE genotype distributions in the case and control groups (p=0.007). Homozygotes for both the I and D alleles were associated with a higher risk compared to DI heterozygotes. While the APOE ?4 allele was strongly associated with AD risk in our series, we found no evidence for an interaction between the APOE and ACE loci. In addition, no interactions were observed between ACE and gender or age at death of the AD cases. A meta-analysis of all published reports (12 case-control series in total) suggested that both the II and ID ACE genotypes are associated with increased AD risk (odds ratio (OR) for II v DD 1.36, 95% confidence interval (CI)=1.13-1.63, OR for DI v DD 1.33, 95% CI=1.14-1.53, p=0.0002).???Keywords: Alzheimer's disease; ACE gene; I allele PMID:10978362

Narain, Y.; Yip, A.; Murphy, T.; Brayne, C.; Easton, D.; Evans, J. G.; Xuereb, J.; Cairns, N.; Esiri, M.; Furlong, R.; Rubinsztein, D.

2000-01-01

286

Comparative and Functional Genomics in Identifying Aflatoxin Biosynthetic Genes  

Technology Transfer Automated Retrieval System (TEKTRAN)

Identification of genes involved in aflatoxin biosynthesis through Aspergillus flavus genomics has been actively pursued. A. flavus Expressed Sequence Tags (EST’s) and whole genome sequencing have been completed. Groups of genes that are potentially involved in aflatoxin production have been profi...

287

Identifying Host Genetic Risk Factors in the Context of Public Health Surveillance for Invasive Pneumococcal Disease  

PubMed Central

Host genetic factors that modify risk of pneumococcal disease may help target future public health interventions to individuals at highest risk of disease. We linked data from population-based surveillance for invasive pneumococcal disease (IPD) with state-based newborn dried bloodspot repositories to identify biological samples from individuals who developed invasive pneumococcal disease. Genomic DNA was extracted from 366 case and 732 anonymous control samples. TagSNPs were selected in 34 candidate genes thought to be associated with host response to invasive pneumococcal disease, and a total of 326 variants were successfully genotyped. Among 543 European Americans (EA) (182 cases and 361 controls), and 166 African Americans (AA) (53 cases and 113 controls), common variants in surfactant protein D (SFTPD) are consistently underrepresented in IPD. SFTPD variants with the strongest association for IPD are intronic rs17886286 (allelic OR 0.45, 95% confidence interval (CI) [0.25, 0.82], with p?=?0.007) in EA and 5? flanking rs12219080 (allelic OR 0.32, 95%CI [0.13, 0.78], with p?=?0.009) in AA. Variants in CD46 and IL1R1 are also associated with IPD in both EA and AA, but with effects in different directions; FAS, IL1B, IL4, IL10, IL12B, SFTPA1, SFTPB, and PTAFR variants are associated (p?0.05) with IPD in EA or AA. We conclude that variants in SFTPD may protect against IPD in EA and AA and genetic variation in other host response pathways may also contribute to risk of IPD. While our associations are not corrected for multiple comparisons and therefore must be replicated in additional cohorts, this pilot study underscores the feasibility of integrating public health surveillance with existing, prospectively collected, newborn dried blood spot repositories to identify host genetic factors associated with infectious diseases. PMID:21858107

Zimmer, Shanta M.; Lynfield, Ruth; McNicholl, Janet M.; Messonnier, Nancy E.; Whitney, Cynthia G.; Crawford, Dana C.

2011-01-01

288

Gene-expression profiling of microdissected breast cancer microvasculature identifies distinct tumor vascular subtypes  

PubMed Central

Introduction Angiogenesis represents a potential therapeutic target in breast cancer. However, responses to targeted antiangiogenic therapies have been reported to vary among patients. This suggests that the tumor vasculature may be heterogeneous and that an appropriate choice of treatment would require an understanding of these differences. Methods To investigate whether and how the breast tumor vasculature varies between individuals, we isolated tumor-associated and matched normal vasculature from 17 breast carcinomas by laser-capture microdissection, and generated gene-expression profiles. Because microvessel density has previously been associated with disease course, tumors with low (n = 9) or high (n = 8) microvessel density were selected for analysis to maximize heterogeneity for this feature. Results We identified differences between tumor and normal vasculature, and we describe two subtypes present within tumor vasculature. These subtypes exhibit distinct gene-expression signatures that reflect features including hallmarks of vessel maturity. Potential therapeutic targets (MET, ITGAV, and PDGFR?) are differentially expressed between subtypes. Taking these subtypes into account has allowed us to derive a vascular signature associated with disease outcome. Conclusions Our results further support a role for tumor microvasculature in determining disease progression. Overall, this study provides a deeper molecular understanding of the heterogeneity existing within the breast tumor vasculature and opens new avenues toward the improved design and targeting of antiangiogenic therapies. PMID:22906178

2012-01-01

289

Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data  

Microsoft Academic Search

Much of a cell's activity is organized as a network of interacting modules: sets of genes coregulated to respond to different conditions. We present a probabilistic method for identifying regulatory modules from gene expression data. Our procedure identifies modules of coregulated genes, their regulators and the conditions under which regulation occurs, generating testable hypotheses in the form 'regulator X regulates

Michael Shapira; Aviv Regev; Dana Pe'er; David Botstein; Nir Friedman; Eran Segal; Daphne Koller

2003-01-01

290

Research of Maize Leaf Disease Identifying Models Based Image Recognition  

Microsoft Academic Search

\\u000a The methods of recognition and diagnosis of main maize leaf diseases using machine vision were studied in the paper. Threshold\\u000a method was adopted to do image segmentation, and area-marking method was used calculating the num of disease as well as wiping\\u000a off redundancy dots. And then Freeman link code was used to calculate form feature. Finally diseases were deduced according

Yu-Xia Zhao; Ke-Ru Wang; Zhong-Ying Bai; Shao-Kun Li; Rui-Zhi Xie; Shi-Ju Gao

291

AN MHC class I immune evasion gene of Marek's disease virus  

Technology Transfer Automated Retrieval System (TEKTRAN)

Marek's disease virus (MDV) is a widespread a-herpesvirus of chickens that causes T cell tumors. Acute, but not latent, MDV infection has previously been shown to lead to downregulation of cell-surface MHC class I (Virology 282:198–205 (2001)), but the gene(s) involved have not been identified. Here...

292

Stratified Pathway Analysis to Identify Gene Sets Associated with Oral Contraceptive Use and Breast Cancer  

PubMed Central

Cancer biomarker discovery can facilitate drug development, improve staging of patients, and predict patient prognosis. Because cancer is the result of many interacting genes, analysis based on a set of genes with related biological functions or pathways may be more informative than single gene-based analysis for cancer biomarker discovery. The relevant pathways thus identified may help characterize different aspects of molecular phenotypes related to the tumor. Although it is well known that cancer patients may respond to the same treatment differently because of clinical variables and variation of molecular phenotypes, this patient heterogeneity has not been explicitly considered in pathway analysis in the literature. We hypothesize that combining pathway and patient clinical information can more effectively identify relevant pathways pertinent to specific patient subgroups, leading to better diagnosis and treatment. In this article, we propose to perform stratified pathway analysis based on clinical information from patients. In contrast to analysis using all the patients, this more focused analysis has the potential to reveal subgroup-specific pathways that may lead to more biological insights into disease etiology and treatment response. As an illustration, the power of our approach is demonstrated through its application to a breast cancer dataset in which the patients are stratified according to their oral contraceptive use. PMID:25574128

Pang, Herbert; Zhao, Hongyu

2014-01-01

293

Computational and Functional Analysis of Growth Hormone (GH)-Regulated Genes Identifies the  

E-print Network

Computational and Functional Analysis of Growth Hormone (GH)-Regulated Genes Identifies on a profile of GH-regulated genes induced or inhibited at different times in highly responsive 3T3-F442A adipocytes. Gene set enrichment analysis indicated that GH-regulated genes are enriched in pathways including

Qin, Zhaohui Steve

294

Gene expression profiles in the rat streptococcal cell wall-induced arthritis model identified using microarray analysis  

PubMed Central

Experimental arthritis models are considered valuable tools for delineating mechanisms of inflammation and autoimmune phenomena. Use of microarray-based methods represents a new and challenging approach that allows molecular dissection of complex autoimmune diseases such as arthritis. In order to characterize the temporal gene expression profile in joints from the reactivation model of streptococcal cell wall (SCW)-induced arthritis in Lewis (LEW/N) rats, total RNA was extracted from ankle joints from naïve, SCW injected, or phosphate buffered saline injected animals (time course study) and gene expression was analyzed using Affymetrix oligonucleotide microarray technology (RAE230A). After normalization and statistical analysis of data, 631 differentially expressed genes were sorted into clusters based on their levels and kinetics of expression using Spotfire® profile search and K-mean cluster analysis. Microarray-based data for a subset of genes were validated using real-time PCR TaqMan® analysis. Analysis of the microarray data identified 631 genes (441 upregulated and 190 downregulated) that were differentially expressed (Delta > 1.8, P < 0.01), showing specific levels and patterns of gene expression. The genes exhibiting the highest fold increase in expression on days -13.8, -13, or 3 were involved in chemotaxis, inflammatory response, cell adhesion and extracellular matrix remodelling. Transcriptome analysis identified 10 upregulated genes (Delta > 5), which have not previously been associated with arthritis pathology and are located in genomic regions associated with autoimmune disease. The majority of the downregulated genes were associated with metabolism, transport and regulation of muscle development. In conclusion, the present study describes the temporal expression of multiple disease-associated genes with potential pathophysiological roles in the reactivation model of SCW-induced arthritis in Lewis (LEW/N) rat. These findings improve our understanding of the molecular events that underlie the pathology in this animal model, which is potentially a valuable comparator to human rheumatoid arthritis (RA). PMID:15642130

Rioja, Inmaculada; Clayton, Chris L; Graham, Simon J; Life, Paul F; Dickson, Marion C

2005-01-01

295

Candidate gene associated with a mutation causing recessive polycystic kidney disease in mice  

SciTech Connect

A line of transgenic mice was generated that contains an insertional mutation causing a phenotype similar to human autosomal recessive polycystic kidney disease. Homozygotes displayed a complex phenotype that included bilateral polycystic kidneys and an unusual liver lesion. The mutant locus was cloned and characterized through use of the transgene as a molecular marker. Additionally, a candidate polycystic kidney disease (PKD) gene was identified whose structure and expression are directly associated with the mutant locus. A complementary DNA derived from this gene predicted a peptide containing a motif that was originally identified in several genes involved in cell cycle control.

Moyer, J.H.; Lee-Tischler, M.J.; Kwon, H.Y.; Schrick, J.J. (Univ. of Tennessee Graduate School of Biomedical Sciences, Oak Ridge, TN (United States)); Avner, E.D.; Sweeney, W.E. (Univ. of Washington, Seattle, WA (United States)); Godfrey, V.L.; Cacheiro, N.L.A.; Woychik, R.P. (Oak Ridge National Lab., TN (United States)); Wilkinson, J.E. (Univ. of Tennessee, Knoxville, TN (United States))

1994-05-27

296

Deep Sequencing Study of the MTHFR Gene to Identify Variants Associated with Myelomeningocele  

PubMed Central

INTRODUCTION Neural tube defects (NTDs) are congenital anomalies caused by a combination of genetic and environmental influences. A defect below the head region resulting in protuberance of meninges and nervous tissue is termed myelomeningocele (MM). MM, the most common NTD compatible with survival, occurs in approximately 1 in 1,000 births worldwide. Maternal pre- and periconceptional folate supplementation reduces the risk of NTDs by up to 70%. A key enzyme in folate metabolism is 5, 10-methylene-tetrahydrofolate reductase (MTHFR). OBJECTIVES Sequence the 12 exons of the MTHFR gene among 96 subjects with MM to identify variants potentially contributing to the disease trait. METHODS Exons were amplified by polymerase chain reaction and the products were sequenced by Sanger method to reveal sequence variants compared to MTHFR reference sequences. Association of variants was examined by Fisher’s test. RESULTS A novel variant c.171+3G>T was identified in intron 1 in one affected subject. The variant was not found in the subject’s unaffected mother’s DNA and the unaffected father’s DNA was unavailable. We found significant differences in allele frequencies for seven SNPs in MM subjects compared to ethnically matched reference populations reported in the single nucleotide polymorphism (SNP) database (dbSNP). CONCLUSION We identified a novel variant c.171+3G>T in the MTHFR gene that potentially affects splicing in an affected subject. Also, we observed five SNPs (rs13306561, rs2274976, rs2066462, rs12121543, and rs1476413) in the MTHFR gene not previously shown to associate with MM. The current study provides additional evidence that multiple variations in the MTHFR gene are associated with MM. PMID:22241680

Aneji, Chiamaka U; Northrup, Hope; Au, Kit Sing

2012-01-01

297

Prioritisation and Network Analysis of Crohn's Disease Susceptibility Genes  

E-print Network

Recent Genome-Wide Association Studies (GWAS) have revealed numerous Crohn's disease susceptibility genes and a key challenge now is in understanding how risk polymorphisms in associated genes might contribute to development ...

Muraro, Daniele

298

Identifying novel resistance genes in rice wild relatives  

Technology Transfer Automated Retrieval System (TEKTRAN)

Rice blast and sheath blight are major fungal diseases of cultivated rice (Oryza sativa L. ) that limit Arkansas rough rice yields and market potential. Resistance to these diseases has been found in rice wild relatives (Oryza spp.) A collection of these wild relatives originating from outside the U...

299

Using Text Analysis to Identify Functionally Coherent Gene Groups  

E-print Network

based on their associated scientific literature. The method uses statistical natural language processing of genes shares a common biological function by automatic analysis of scientific text. It requires only

Batzoglou, Serafim

300

Transcriptome profiling to identify genes involved in peroxisome assembly and function  

PubMed Central

Yeast cells were induced to proliferate peroxisomes, and microarray transcriptional profiling was used to identify PEX genes encoding peroxins involved in peroxisome assembly and genes involved in peroxisome function. Clustering algorithms identified 224 genes with expression profiles similar to those of genes encoding peroxisomal proteins and genes involved in peroxisome biogenesis. Several previously uncharacterized genes were identified, two of which, YPL112c and YOR084w, encode proteins of the peroxisomal membrane and matrix, respectively. Ypl112p, renamed Pex25p, is a novel peroxin required for the regulation of peroxisome size and maintenance. These studies demonstrate the utility of comparative gene profiling as an alternative to functional assays to identify genes with roles in peroxisome biogenesis. PMID:12135984

Smith, Jennifer J.; Marelli, Marcello; Christmas, Rowan H.; Vizeacoumar, Franco J.; Dilworth, David J.; Ideker, Trey; Galitski, Timothy; Dimitrov, Krassen; Rachubinski, Richard A.; Aitchison, John D.

2002-01-01

301

The gene mutated in autosomal recessive polycystic kidney disease encodes a large, receptor-like protein  

Microsoft Academic Search

Autosomal recessive polycystic kidney disease (ARPKD) is characterized by dilation of collecting ducts and by biliary dysgenesis and is an important cause of renal- and liver-related morbidity and mortality. Genetic analysis of a rat with recessive polycystic kidney disease revealed an orthologous relationship between the rat locus and the ARPKD region in humans; a candidate gene was identified. A mutation

Christopher J. Ward; Marie C. Hogan; Sandro Rossetti; Denise Walker; Tam Sneddon; Xiaofang Wang; Vicky Kubly; Julie M. Cunningham; Robert Bacallao; Masahiko Ishibashi; Dawn S. Milliner; Vicente E. Torres; Peter C. Harris

2002-01-01

302

Exome Sequencing Identifies a Novel Gene, WNK1, for Susceptibility to Pelvic Organ Prolapse (POP)  

PubMed Central

Pelvic organ prolapse (POP) is a common gynecological disorder; however, the genetic components remain largely unidentified. Exome sequencing has been widely used to identify pathogenic gene mutations of several diseases because of its high chromosomal coverage and accuracy. In this study, we performed whole exome sequencing (WES), for the first time, on 8 peripheral blood DNA samples from representative POP cases. After filtering the sequencing data from the dbSNP database (build 138) and the 1000 Genomes Project, 2 missense variants in WNK1, c.2668G > A (p.G890R) and c.6761C> T (p.P2254L), were identified and further validated via Sanger sequencing. In validation stage, the c.2668G > A (p.G890R) variant and 8 additional variants were detected in 11 out of 161 POP patients. All these variants were absent in 231 healthy controls. Functional experiments showed that fibroblasts from the utero-sacral ligaments of POP with WNK1 mutations exhibited loose and irregular alignment compared with fibroblasts from healthy controls. In sum, our study identified a novel gene, WNK1, for POP susceptibility, expanded the causal mutation spectrums of POP, and provided evidence for the genetic diagnosis and medical management of POP in the future. PMID:25739019

Rao, Shuquan; Lang, Jinghe; Zhu, Lan; Chen, Juan

2015-01-01

303

The influence of disease categories on gene candidate predictions from model organism phenotypes  

PubMed Central

Background The molecular etiology is still to be identified for about half of the currently described Mendelian diseases in humans, thereby hindering efforts to find treatments or preventive measures. Advances, such as new sequencing technologies, have led to increasing amounts of data becoming available with which to address the problem of identifying disease genes. Therefore, automated methods are needed that reliably predict disease gene candidates based on available data. We have recently developed Exomiser as a tool for identifying causative variants from exome analysis results by filtering and prioritising using a number of criteria including the phenotype similarity between the disease and mouse mutants involving the gene candidates. Initial investigations revealed a variation in performance for different medical categories of disease, due in part to a varying contribution of the phenotype scoring component. Results In this study, we further analyse the performance of our cross-species phenotype matching algorithm, and examine in more detail the reasons why disease gene filtering based on phenotype data works better for certain disease categories than others. We found that in addition to misleading phenotype alignments between species, some disease categories are still more amenable to automated predictions than others, and that this often ties in with community perceptions on how well the organism works as model. Conclusions In conclusion, our automated disease gene candidate predictions are highly dependent on the organism used for the predictions and the disease category being studied. Future work on computational disease gene prediction using phenotype data would benefit from methods that take into account the disease category and the source of model organism data. PMID:25093073

2014-01-01

304

Differential Expression of Vitamin E and Selenium-Responsive Genes by Disease Severity in Chronic Obstructive Pulmonary Disease  

PubMed Central

Antioxidant nutritional status is hypothesized to influence chronic obstructive pulmonary disease (COPD) susceptibility and progression. Although past studies relate antioxidants to gene expression, there are no data in patients with COPD. This study investigated the hypothesis that antioxidant status is compromised in patients with COPD, and antioxidant-responsive genes differentially express in a similar pattern. Lung tissue samples from patients with COPD were assayed for vitamin E and gene expression. Selenium and vitamin E were assayed in corresponding plasma samples. Discovery based genome-wide expression analysis compared moderate, severe, and very severe COPD (GOLD II-IV) patients to mild and at-risk/normal (GOLD 0-I). Hypotheses-driven analyses assessed differential gene expression by disease severity for vitamin E-responsive and selenium-responsive genes. GOLD II-IV COPD patients had 30% lower lung tissue vitamin E levels compared to GOLD 0-I participants (p = 0.0082). No statistically significant genome-wide differences in expression by disease severity were identified. Hypothesis-driven analyses of 109 genes found 16 genes differentially expressed (padjusted<0.05) by disease severity including 6 selenium-responsive genes (range in fold-change -1.39 to 2.25), 6 vitamin E-responsive genes (fold-change -2.30 to 1.51), and 4 COPD-associated genes. Lung tissue vitamin E in patients with COPD was associated with disease severity and vitamin E-responsive genes were differentially expressed by disease severity. While nutritional status is hypothesized to contribute to COPD risk, and is of therapeutic interest, evidence to date is mainly observational. The findings reported herein are novel, and support a role of vitamin E in COPD progression. PMID:23875740

Agler, AH; Crystal, RG; Mezey, JG; Fuller, J; Gao, C; Hansen, JG; Cassano, PA

2014-01-01

305

A Systems Genetics Approach Identifies CXCL14, ITGAX, and LPCAT2 as Novel Aggressive Prostate Cancer Susceptibility Genes  

PubMed Central

Although prostate cancer typically runs an indolent course, a subset of men develop aggressive, fatal forms of this disease. We hypothesize that germline variation modulates susceptibility to aggressive prostate cancer. The goal of this work is to identify susceptibility genes using the C57BL/6-Tg(TRAMP)8247Ng/J (TRAMP) mouse model of neuroendocrine prostate cancer. Quantitative trait locus (QTL) mapping was performed in transgene-positive (TRAMPxNOD/ShiLtJ) F2 intercross males (n?=?228), which facilitated identification of 11 loci associated with aggressive disease development. Microarray data derived from 126 (TRAMPxNOD/ShiLtJ) F2 primary tumors were used to prioritize candidate genes within QTLs, with candidate genes deemed as being high priority when possessing both high levels of expression-trait correlation and a proximal expression QTL. This process enabled the identification of 35 aggressive prostate tumorigenesis candidate genes. The role of these genes in aggressive forms of human prostate cancer was investigated using two concurrent approaches. First, logistic regression analysis in two human prostate gene expression datasets revealed that expression levels of five genes (CXCL14, ITGAX, LPCAT2, RNASEH2A, and ZNF322) were positively correlated with aggressive prostate cancer and two genes (CCL19 and HIST1H1A) were protective for aggressive prostate cancer. Higher than average levels of expression of the five genes that were positively correlated with aggressive disease were consistently associated with patient outcome in both human prostate cancer tumor gene expression datasets. Second, three of these five genes (CXCL14, ITGAX, and LPCAT2) harbored polymorphisms associated with aggressive disease development in a human GWAS cohort consisting of 1,172 prostate cancer patients. This study is the first example of using a systems genetics approach to successfully identify novel susceptibility genes for aggressive prostate cancer. Such approaches will facilitate the identification of novel germline factors driving aggressive disease susceptibility and allow for new insights into these deadly forms of prostate cancer. PMID:25411967

Andreas, Jonathan; Patel, Shashank J.; Zhang, Suiyuan; Chines, Peter; Elkahloun, Abdel; Chandrasekharappa, Settara; Gutkind, J. Silvio; Molinolo, Alfredo A.; Crawford, Nigel P. S.

2014-01-01

306

PIN1 gene variants in Alzheimer's disease  

PubMed Central

Background Peptidyl-prolyl isomerase, NIMA-interacting 1 (PIN1) plays a significant role in the brain and is implicated in numerous cellular processes related to Alzheimer's disease (AD) and other neurodegenerative conditions. There are confounding results concerning PIN1 activity in AD brains. Also PIN1 genetic variation was inconsistently associated with AD risk. Methods We performed analysis of coding and promoter regions of PIN1 in early- and late-onset AD and frontotemporal dementia (FTD) patients in comparison with healthy controls. Results Analysis of eighteen PIN1 common polymorphisms and their haplotypes in EOAD, LOAD and FTD individuals in comparison with the control group did not reveal their contribution to disease risk. In six unrelated familial AD patients four novel PIN1 sequence variants were detected. c.58+64C>T substitution that was identified in three patients, was located in an alternative exon. In silico analysis suggested that this variant highly increases a potential affinity for a splicing factor and introduces two intronic splicing enhancers. In the peripheral leukocytes of one living patient carrying the variant, a 2.82 fold decrease in PIN1 expression was observed. Conclusion Our data does not support the role of PIN1 common polymorphisms as AD risk factor. However, we suggest that the identified rare sequence variants could be directly connected with AD pathology, influencing PIN1 splicing and/or expression. PMID:19909517

2009-01-01

307

Identifying a species tree subject to random lateral gene transfer.  

PubMed

A major problem for inferring species trees from gene trees is that evolutionary processes can sometimes favor gene tree topologies that conflict with an underlying species tree. In the case of incomplete lineage sorting, this phenomenon has recently been well-studied, and some elegant solutions for species tree reconstruction have been proposed. One particularly simple and statistically consistent estimator of the species tree under incomplete lineage sorting is to combine three-taxon analyses, which are phylogenetically robust to incomplete lineage sorting. In this paper, we consider whether such an approach will also work under lateral gene transfer (LGT). By providing an exact analysis of some cases of this model, we show that there is a zone of inconsistency when majority-rule three-taxon gene trees are used to reconstruct species trees under LGT. However, a triplet-based approach will consistently reconstruct a species tree under models of LGT, provided that the expected number of LGT transfers is not too high. Our analysis involves a novel connection between the LGT problem and random walks on cyclic graphs. We have implemented a procedure for reconstructing trees subject to LGT or lineage sorting in settings where taxon coverage may be patchy and illustrate its use on two sample data sets. PMID:23340439

Steel, Mike; Linz, Simone; Huson, Daniel H; Sanderson, Michael J

2013-04-01

308

Moffitt Cancer Center researchers identify unique immune gene signature  

Cancer.gov

Researchers at Moffitt Cancer Center have discovered a unique immune gene signature that can predict the presence of microscopic lymph node-like structures in metastatic melanoma. The presence of these immune structures, the researchers said, appears to be associated with better survival and may indicate the possibility of selecting patients for immunotherapy based solely on the immune-related makeup of their tumors.

309

Network Analysis of Differential Expression for the Identification of Disease-Causing Genes  

PubMed Central

Genetic studies (in particular linkage and association studies) identify chromosomal regions involved in a disease or phenotype of interest, but those regions often contain many candidate genes, only a few of which can be followed-up for biological validation. Recently, computational methods to identify (prioritize) the most promising candidates within a region have been proposed, but they are usually not applicable to cases where little is known about the phenotype (no or few confirmed disease genes, fragmentary understanding of the biological cascades involved). We seek to overcome this limitation by replacing knowledge about the biological process by experimental data on differential gene expression between affected and healthy individuals. Considering the problem from the perspective of a gene/protein network, we assess a candidate gene by considering the level of differential expression in its neighborhood under the assumption that strong candidates will tend to be surrounded by differentially expressed neighbors. We define a notion of soft neighborhood where each gene is given a contributing weight, which decreases with the distance from the candidate gene on the protein network. To account for multiple paths between genes, we define the distance using the Laplacian exponential diffusion kernel. We score candidates by aggregating the differential expression of neighbors weighted as a function of distance. Through a randomization procedure, we rank candidates by p-values. We illustrate our approach on four monogenic diseases and successfully prioritize the known disease causing genes. PMID:19436755

Nitsch, Daniela; Tranchevent, Léon-Charles; Thienpont, Bernard; Thorrez, Lieven; Van Esch, Hilde; Devriendt, Koenraad; Moreau, Yves

2009-01-01

310

Improving disease gene prioritization by comparing the semantic similarity of phenotypes in mice with those of human diseases.  

PubMed

Despite considerable progress in understanding the molecular origins of hereditary human diseases, the molecular basis of several thousand genetic diseases still remains unknown. High-throughput phenotype studies are underway to systematically assess the phenotype outcome of targeted mutations in model organisms. Thus, comparing the similarity between experimentally identified phenotypes and the phenotypes associated with human diseases can be used to suggest causal genes underlying a disease. In this manuscript, we present a method for disease gene prioritization based on comparing phenotypes of mouse models with those of human diseases. For this purpose, either human disease phenotypes are "translated" into a mouse-based representation (using the Mammalian Phenotype Ontology), or mouse phenotypes are "translated" into a human-based representation (using the Human Phenotype Ontology). We apply a measure of semantic similarity and rank experimentally identified phenotypes in mice with respect to their phenotypic similarity to human diseases. Our method is evaluated on manually curated and experimentally verified gene-disease associations for human and for mouse. We evaluate our approach using a Receiver Operating Characteristic (ROC) analysis and obtain an area under the ROC curve of up to . Furthermore, we are able to confirm previous results that the Vax1 gene is involved in Septo-Optic Dysplasia and suggest Gdf6 and Marcks as further potential candidates. Our method significantly outperforms previous phenotype-based approaches of prioritizing gene-disease associations. To enable the adaption of our method to the analysis of other phenotype data, our software and prioritization results are freely available under a BSD licence at http://code.google.com/p/phenomeblast/wiki/CAMP. Furthermore, our method has been integrated in PhenomeNET and the results can be explored using the PhenomeBrowser at http://phenomebrowser.net. PMID:22719993

Oellrich, Anika; Hoehndorf, Robert; Gkoutos, Georgios V; Rebholz-Schuhmann, Dietrich

2012-01-01

311

FORGE Canada Consortium: Outcomes of a 2-Year National Rare-Disease Gene-Discovery Project  

PubMed Central

Inherited monogenic disease has an enormous impact on the well-being of children and their families. Over half of the children living with one of these conditions are without a molecular diagnosis because of the rarity of the disease, the marked clinical heterogeneity, and the reality that there are thousands of rare diseases for which causative mutations have yet to be identified. It is in this context that in 2010 a Canadian consortium was formed to rapidly identify mutations causing a wide spectrum of pediatric-onset rare diseases by using whole-exome sequencing. The FORGE (Finding of Rare Disease Genes) Canada Consortium brought together clinicians and scientists from 21 genetics centers and three science and technology innovation centers from across Canada. From nation-wide requests for proposals, 264 disorders were selected for study from the 371 submitted; disease-causing variants (including in 67 genes not previously associated with human disease; 41 of these have been genetically or functionally validated, and 26 are currently under study) were identified for 146 disorders over a 2-year period. Here, we present our experience with four strategies employed for gene discovery and discuss FORGE’s impact in a number of realms, from clinical diagnostics to the broadening of the phenotypic spectrum of many diseases to the biological insight gained into both disease states and normal human development. Lastly, on the basis of this experience, we discuss the way forward for rare-disease genetic discovery both in Canada and internationally. PMID:24906018

Beaulieu, Chandree L.; Majewski, Jacek; Schwartzentruber, Jeremy; Samuels, Mark E.; Fernandez, Bridget A.; Bernier, Francois P.; Brudno, Michael; Knoppers, Bartha; Marcadier, Janet; Dyment, David; Adam, Shelin; Bulman, Dennis E.; Jones, Steve J.M.; Avard, Denise; Nguyen, Minh Thu; Rousseau, Francois; Marshall, Christian; Wintle, Richard F.; Shen, Yaoqing; Scherer, Stephen W.; Friedman, Jan M.; Michaud, Jacques L.; Boycott, Kym M.

2014-01-01

312

Meta-Analysis Approach identifies Candidate Genes and associated Molecular Networks for Type2 Diabetes Mellitus  

Microsoft Academic Search

BACKGROUND: Multiple functional genomics data for complex human diseases have been published and made available by researchers worldwide. The main goal of these studies is the detailed analysis of a particular aspect of the disease. Complementary, meta-analysis approaches try to extract supersets of disease genes and interaction networks by integrating and combining these individual studies using statistical approaches. RESULTS: Here

Axel Rasche; Hadi Al-Hasani; Ralf Herwig

2008-01-01

313

Candidate genes for limiting cholestatic intestinal injury identified by gene expression profiling  

PubMed Central

The lack of bile flow from the liver into the intestine can have devastating complications including hepatic failure, sepsis, and even death. This pathologic condition known as cholestasis can result from etiologies as diverse as total parenteral nutrition (TPN), hepatitis, and pancreatic cancer. The intestinal injury associated with cholestasis has been shown to result in decreased intestinal resistance, increased bacterial translocation, and increased endotoxemia. Anecdotal clinical evidence suggests a genetic predisposition to exaggerated injury. Recent animal research on two different strains of inbred mice demonstrating different rates of bacterial translocation with different mortality rates supports this premise. In this study, a microarray analysis of intestinal tissue following common bile duct ligation (CBDL) performed under general anesthesia on these same two strains of inbred mice was done with the goal of identifying the potential molecular mechanistic pathways responsible. Over 500 genes were increased more than 2.0-fold following CBDL. The most promising candidate genes included major urinary proteins (MUPs), serine protease-1-inhibitor (Serpina1a), and lipocalin-2 (LCN-2). Quantitative polymerase chain reaction (qPCR) validated the microarray results for these candidate genes. In an in vitro experiment using differentiated intestinal epithelial cells, inhibition of MUP-1 by siRNA resulted in increased intestinal epithelial cell permeability. Diverse novel mechanisms involving the growth hormone pathway, the acute phase response, and the innate immune response are thus potential avenues for limiting cholestatic intestinal injury. Changes in gene expression were at times found to be not only due to the CBDL but also due to the murine strain. Should further studies in cholestatic patients demonstrate interindividual variability similar to what we have shown in mice, then a “personalized medicine” approach to cholestatic patients may become possible. PMID:24179676

Alaish, Samuel M; Timmons, Jennifer; Smith, Alexis; Buzza, Marguerite S; Murphy, Ebony; Zhao, Aiping; Sun, Yezhou; Turner, Douglas J; Shea-Donahue, Terez; Antalis, Toni M; Cross, Alan; Dorsey, Susan G

2013-01-01

314

Identifying reference genes with stable expression from high throughput sequence data.  

PubMed

Genes that are constitutively expressed across multiple environmental stimuli are crucial to quantifying differentially expressed genes, particularly when employing quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) assays. However, the identification of these potential reference genes in non-model organisms is challenging and is often guided by expression patterns in distantly related organisms. Here, transcriptome datasets from the diatom Thalassiosira pseudonana grown under replete, phosphorus-limited, iron-limited, and phosphorus and iron co-limited nutrient regimes were analyzed through literature-based searches for homologous reference genes, k-means clustering, and analysis of sequence counts (ASC) to identify putative reference genes. A total of 9759 genes were identified and screened for stable expression. Literature-based searches surveyed 18 generally accepted reference genes, revealing 101 homologs in T. pseudonana with variable expression and a wide range of mean tags per million. k-means analysis parsed the whole transcriptome into 15 clusters. The two most stable clusters contained 709 genes, but still had distinct patterns in expression. ASC analyses identified 179 genes that were stably expressed (posterior probability < 0.1 for 1.25 fold change). Genes known to have a stable expression pattern across the test treatments, like actin, were identified in this pool of 179 candidate genes. ASC can be employed on data without biological replicates and was more robust than the k-means approach in isolating genes with stable expression. The intersection of the genes identified through ASC with commonly used reference genes from the literature suggests that actin and ubiquitin ligase may be useful reference genes for T. pseudonana and potentially other diatoms. With the wealth of transcriptome sequence data becoming available, ASC can be easily applied to transcriptome datasets from other phytoplankton to identify reference genes. PMID:23162540

Alexander, Harriet; Jenkins, Bethany D; Rynearson, Tatiana A; Saito, Mak A; Mercier, Melissa L; Dyhrman, Sonya T

2012-01-01

315

Family-based analysis identified CD2 as a susceptibility gene for primary open angle glaucoma in Chinese Han population.  

PubMed

Primary open angle glaucoma (POAG) is characterized by optic disc cupping and irreversible loss of retinal ganglion cells. Few genes have been detected that influence POAG susceptibility and little is known about its genetic architecture. In this study, we employed exome sequencing on three members from a high frequency POAG family to identify the risk factors of POAG in Chinese population. Text-mining method was applied to identify genes associated with glaucoma in literature, and protein-protein interaction networks were constructed. Furthermore, reverse transcription PCR and Western blot were performed to confirm the differential gene expression. Six genes, baculoviral inhibitors of apoptosis protein repeat containing 6 (BIRC6), CD2, luteinizing hormone/choriogonadotropin receptor (LHCGR), polycystic kidney and hepatic disease gene 1 (PKHD1), phenylalanine hydroxylase (PAH) and fucosyltransferase 7 (FUT7), which might be associated with POAG, were identified. Both the mRNA expression levels and protein expression levels of HSP27 were increased in astrocytes from POAG patients compared with those from normal control, suggesting that mutation in CD2 might pose a risk for POAG in Chinese population. In conclusion, novel rare variants detected by exome sequencing may hold the key to unravelling the remaining contribution of genetics to complex diseases such as POAG. PMID:24597656

Liu, Ting; Xie, Lin; Ye, Jian; He, Xiangge

2014-04-01

316

Family-based analysis identified CD2 as a susceptibility gene for primary open angle glaucoma in Chinese Han population  

PubMed Central

Primary open angle glaucoma (POAG) is characterized by optic disc cupping and irreversible loss of retinal ganglion cells. Few genes have been detected that influence POAG susceptibility and little is known about its genetic architecture. In this study, we employed exome sequencing on three members from a high frequency POAG family to identify the risk factors of POAG in Chinese population. Text-mining method was applied to identify genes associated with glaucoma in literature, and protein–protein interaction networks were constructed. Furthermore, reverse transcription PCR and Western blot were performed to confirm the differential gene expression. Six genes, baculoviral inhibitors of apoptosis protein repeat containing 6 (BIRC6), CD2, luteinizing hormone/choriogonadotropin receptor (LHCGR), polycystic kidney and hepatic disease gene 1 (PKHD1), phenylalanine hydroxylase (PAH) and fucosyltransferase 7 (FUT7), which might be associated with POAG, were identified. Both the mRNA expression levels and protein expression levels of HSP27 were increased in astrocytes from POAG patients compared with those from normal control, suggesting that mutation in CD2 might pose a risk for POAG in Chinese population. In conclusion, novel rare variants detected by exome sequencing may hold the key to unravelling the remaining contribution of genetics to complex diseases such as POAG. PMID:24597656

Liu, Ting; Xie, Lin; Ye, Jian; He, Xiangge

2014-01-01

317

Implications of Comorbidity and Ascertainment Bias for Identifying Disease Genes  

E-print Network

may increase the probability that a person will seek treat- ment for either individual disorder, Massachusetts 2 Psychiatric Genetics Program in Mood and Anxiety Disorders, Massachusetts General Hospital in population-based samples. An explanation for this finding is that sub- jects suffering from multiple

318

Evolutionary dynamics of human autoimmune disease genes and malfunctioned immunological genes  

PubMed Central

Background One of the main issues of molecular evolution is to divulge the principles in dictating the evolutionary rate differences among various gene classes. Immunological genes have received considerable attention in evolutionary biology as candidates for local adaptation and for studying functionally important polymorphisms. The normal structure and function of immunological genes will be distorted when they experience mutations leading to immunological dysfunctions. Results Here, we examined the fundamental differences between the genes which on mutation give rise to autoimmune or other immune system related diseases and the immunological genes that do not cause any disease phenotypes. Although the disease genes examined are analogous to non-disease genes in product, expression, function, and pathway affiliation, a statistically significant decrease in evolutionary rate has been found in autoimmune disease genes relative to all other immune related diseases and non-disease genes. Possible ways of accumulation of mutation in the three steps of the central dogma (DNA-mRNA-Protein) have been studied to trace the mutational effects predisposed to disease consequence and acquiring higher selection pressure. Principal Component Analysis and Multivariate Regression Analysis have established the predominant role of single nucleotide polymorphisms in guiding the evolutionary rate of immunological disease and non-disease genes followed by m-RNA abundance, paralogs number, fraction of phosphorylation residue, alternatively spliced exon, protein residue burial and protein disorder. Conclusions Our study provides an empirical insight into the etiology of autoimmune disease genes and other immunological diseases. The immediate utility of our study is to help in disease gene identification and may also help in medicinal improvement of immune related disease. PMID:22276655

2012-01-01

319

Harnessing genomics to identify environmental determinants of heritable disease  

EPA Science Inventory

De novo mutation is increasingly being recognized as the cause for a range of human genetic diseases and disorders. Important examples of this include inherited genetic disorders such as autism, schizophrenia, mental retardation, epilepsy, and a broad range of adverse reproductiv...

320

Identifying mechanistic indicators of childhood asthma from blood gene expression  

EPA Science Inventory

Asthmatic individuals have been identified as a susceptible subpopulation for air pollutants. However, asthma represents a syndrome with multiple probable etiologies, and the identification of these asthma endotypes is critical to accurately define the most susceptible subpopula...

321

Pinpointing disease genes through phenomic and genomic data fusion  

PubMed Central

Background Pinpointing genes involved in inherited human diseases remains a great challenge in the post-genomics era. Although approaches have been proposed either based on the guilt-by-association principle or making use of disease phenotype similarities, the low coverage of both diseases and genes in existing methods has been preventing the scan of causative genes for a significant proportion of diseases at the whole-genome level. Results To overcome this limitation, we proposed a rigorous statistical method called pgFusion to prioritize candidate genes by integrating one type of disease phenotype similarity derived from the Unified Medical Language System (UMLS) and seven types of gene functional similarities calculated from gene expression, gene ontology, pathway membership, protein sequence, protein domain, protein-protein interaction and regulation pattern, respectively. Our method covered a total of 7,719 diseases and 20,327 genes, achieving the highest coverage thus far for both diseases and genes. We performed leave-one-out cross-validation experiments to demonstrate the superior performance of our method and applied it to a real exome sequencing dataset of epileptic encephalopathies, showing the capability of this approach in finding causative genes for complex diseases. We further provided the standalone software and online services of pgFusion at http://bioinfo.au.tsinghua.edu.cn/jianglab/pgfusion. Conclusions pgFusion not only provided an effective way for prioritizing candidate genes, but also demonstrated feasible solutions to two fundamental questions in the analysis of big genomic data: the comparability of heterogeneous data and the integration of multiple types of data. Applications of this method in exome or whole genome sequencing studies would accelerate the finding of causative genes for human diseases. Other research fields in genomics could also benefit from the incorporation of our data fusion methodology. PMID:25708473

2015-01-01

322

Limits of resolution of genetic linkage studies: Implications for the positional cloning of human disease genes  

SciTech Connect

Positional cloning studies to identify disease genes are being carried out for many human genetic diseases. Such studies often include a genome-scan linkage analysis to identify the rough chromosomal location of a disease gene, fine structure genetic mapping to define and narrow the chromosomal interval in which the disease gene may be located, and physical mapping and gene identification in the genetically defined interval to clone the disease gene. During the planning of a positional cloning study, it is important to know that, if linkage is found, the genetic interval identified is likely to be sufficiently narrow to be dissected efficiently by methods of physical mapping and gene identification. Thus, one wishes to know the limits of resolution of a genetic linkage study. In this paper, the author determines for Mendelian diseases the distributions and moments of three measures of linkage resolution: (1) in a set of N chromosomes, the distance between the nearest crossovers that flank a disease locus, (2) the distance between the nearest genetic markers that flank the pair of flanking crossovers after a genome scan, and (3) the distance between the nearest flanking markers after additional randomly placed markers are generated and typed in an identified interval. These results provide explicit sample-size guidelines for future positional cloning studies of Mendelian diseases and make possible a more objective evaluation of whether a proposed positional cloning study is likely to be successful. The author also briefly discusses the more difficult problem of linkage resolution for complex genetic diseases. 14 refs., 1 fig., 6 tabs.

Boehnke, M. (Univ. of Michigan, Ann Arbor, MI (United States))

1994-08-01

323

Expression of novel Alzheimer's disease risk genes in control and Alzheimer's disease brains.  

PubMed

Late onset Alzheimer's disease (LOAD) etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains. PMID:23226438

Karch, Celeste M; Jeng, Amanda T; Nowotny, Petra; Cady, Janet; Cruchaga, Carlos; Goate, Alison M

2012-01-01

324

Gene Therapy for Genetic and Acquired Retinal Diseases  

Microsoft Academic Search

We present an overview of the current status of basic science and translational research being applied to gene therapy for eye disease, focusing on diseases of the retina. We discuss the viral and nonviral methods being used to transfer genes to the retina and retinal pigment epithelium, and the advantages and disadvantages of each approach. We review the various genetic

Edward Chaum; Mark P Hatton

2002-01-01

325

Identifying Alzheimer's Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse  

E-print Network

1 Identifying Alzheimer's Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using.reiman}@bannerhealth.com Abstract Diagnosis of Alzheimer's disease (AD) at the early stage of the disease development is of great consistent with findings in the AD literature. 1 Introduction Alzheimer's disease (AD) is a fatal

Ye, Jieping

326

Identifying Alzheimers Disease-Related Brain Regions from Multi-Modality Neuroimaging Data  

E-print Network

1 Identifying Alzheimers Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Abstract5 Diagnosis of Alzheimer's disease (AD) at the early stage of the disease development is of great628 Alzheimer's disease (AD) is a fatal, neurodegenerative disorder that currently affects over five29

Li, Jing

327

PCR-Based Strategy To Detect and Identify Species of Phaeoacremonium Causing Grapevine Diseases?  

PubMed Central

Species of Phaeoacremonium (especially Phaeoacremonium aleophilum) are associated with two severe diseases in grapevines, Petri disease in young plants and Esca disease in adult plants. Phaeoacremonium species grow slowly on culture medium, and it is difficult to identify these species on the basis of morphological characteristics. Primers Pm1 and Pm2 were designed in the ribosomal DNA internal transcribed spacer (ITS) regions ITS1 and ITS2, respectively. They yielded a single amplicon of 415 bp for nine species of Phaeoacremonium that may occur in grapevines. A nested PCR (using general fungal primers ITS1F/ITS4 in the primary reaction) was developed to detect Phaeoacremonium directly in grapevine wood. Molecular detection was more sensitive than the traditional method of culturing in growth medium was. Identification of Phaeoacremonium species was achieved by digesting the PCR-amplified fragment with the restriction enzymes BssKI, EcoO109I, and HhaI. It was possible to distinguish these species by their restriction fragment length polymorphism patterns, except for Phaeoacremonium viticola and Phaeoacremonium angustius, which had 100% similarity in their ITS region sequences. A species-specific PCR amplification of the partial ?-tubulin gene using the primer pair Pbr4_1/T1 and Pbr8/T1 was necessary to differentiate P. angustius from P. viticola, respectively. An easy and fast protocol was developed to detect and identify species of Phaeoacremonium in a few hours. Primers defined here can be used in a plant nursery sanitation program to produce plants free of Phaeoacremonium spp. Use of healthy grapevine plants in new plantations is the most effective measure to manage Petri disease. PMID:17463292

Aroca, Angeles; Raposo, Rosa

2007-01-01

328

Mutational Analysis of Angiogenin Gene in Parkinson's Disease  

PubMed Central

Mutations in the angiogenic factor, angiogenin (ANG), have been identified in patients with both familial and sporadic amyotrophic lateral sclerosis (ALS) and are thought to have a neuroprotective function. Parkinsonism has been noted in kindreds with ANG mutations and variants in the ANG gene have been found to associate with PD in two Caucasian populations. We therefore hypothesized that mutations in ANG may also contribute to idiopathic Parkinson's disease (PD). We sequenced ANG gene in a total of 1498 participants comprising 750 PD patients and 748 age/gender matched controls from Taiwan. We identified one novel synonymous substitution, c.C100T (p.L10L), in a single heterozygous state in one PD patient, which was not observed in controls. The clinical phenotypes and [99mTc]-TORDAT-SPECT images of the p.L10L carrier were similar to that seen in idiopathic PD. In addition, we also identified one common variant, c.T330G (p.G110G, rs11701), which was previously reported to associate with PD risk in Caucasians. However, the frequency of TG/GG genotype was comparable between PD cases and controls (odds ratio: 0.85, 95% confidence interval: 0.29–2.55, P?=?0.78). Our results did not support that ANG rs11701 variant is a genetic risk factor for PD in our population. We conclude that mutations in ANG are not a common cause for idiopathic PD. PMID:25386690

Chen, Meng-Ling; Wu, Ruey-Meei; Tai, Chun-Hwei; Lin, Chin-Hsien

2014-01-01

329

The ApoE gene of Alzheimer's disease (AD).  

PubMed

The ApoE gene responsible for the Alzheimer's disease has been examined to identify functional consequences of single-nucleotide polymorphisms (SNPs). Eighty-eight SNPs have been identified in the ApoE gene in which 31 are found to be nonsynonymous, 8 of them are coding synonymous, 33 are found to be in intron, and 3 are in untranslated region. The SNPs found in the untranslated region consisted of two SNPs from 5' and one SNP from the 3'. Twenty-nine percent of the identified nsSNPs have been reported as damaging. In the analysis of SNPs in the UTR regions, it has been recognized that rs72654467 from 5' and rs71673244 from 5' and 3' are responsible for the alteration in levels of expression. Both native and mutant protein structures were analyzed along with the stabilization residues. It has been concluded that among all SNPs of ApoE, the mutation in rs11542041 (R132S) has the most significant effect on functional variation. PMID:21769591

Namboori, P K Krishnan; Vineeth, K V; Rohith, V; Hassan, Ibnul; Sekhar, Lekshmi; Sekhar, Akhila; Nidheesh, M

2011-12-01

330

The systematic functional characterisation of Xq28 genes prioritises candidate disease genes  

PubMed Central

Background Well known for its gene density and the large number of mapped diseases, the human sub-chromosomal region Xq28 has long been a focus of genome research. Over 40 of approximately 300 X-linked diseases map to this region, and systematic mapping, transcript identification, and mutation analysis has led to the identification of causative genes for 26 of these diseases, leaving another 17 diseases mapped to Xq28, where the causative gene is still unknown. To expedite disease gene identification, we have initiated the functional characterisation of all known Xq28 genes. Results By using a systematic approach, we describe the Xq28 genes by RNA in situ hybridisation and Northern blotting of the mouse orthologs, as well as subcellular localisation and data mining of the human genes. We have developed a relational web-accessible database with comprehensive query options integrating all experimental data. Using this database, we matched gene expression patterns with affected tissues for 16 of the 17 remaining Xq28 linked diseases, where the causative gene is unknown. Conclusion By using this systematic approach, we have prioritised genes in linkage regions of Xq28-mapped diseases to an amenable number for mutational screens. Our database can be queried by any researcher performing highly specified searches including diseases not listed in OMIM or diseases that might be linked to Xq28 in the future. PMID:16503986

Kolb-Kokocinski, Anja; Mehrle, Alexander; Bechtel, Stephanie; Simpson, Jeremy C; Kioschis, Petra; Wiemann, Stefan; Wellenreuther, Ruth; Poustka, Annemarie

2006-01-01

331

Amygdala-enriched genes identified by microarray technology are restricted to specific  

E-print Network

Amygdala-enriched genes identified by microarray technology are restricted to specific amygdaloid- and regionally restricted genes expressed in the brain. Here we have combined a microarray analysis of differential gene expression among five selected brain regions, including the amygdala, cerebellum, hippocampus

Kreiman, Gabriel

332

Standardized Plant Disease Evaluations will Enhance Resistance Gene Discovery  

Technology Transfer Automated Retrieval System (TEKTRAN)

Gene discovery and marker development using DNA based tools require plant populations with well-documented phenotypes. Related crops such as apples and pears may share a number of genes, for example resistance to common diseases, and data mining in one crop may reveal genes for the other. However, u...

333

Identifying Neisseria species by use of the 50S ribosomal protein L6 (rplF) gene.  

PubMed

The comparison of 16S rRNA gene sequences is widely used to differentiate bacteria; however, this gene can lack resolution among closely related but distinct members of the same genus. This is a problem in clinical situations in those genera, such as Neisseria, where some species are associated with disease while others are not. Here, we identified and validated an alternative genetic target common to all Neisseria species which can be readily sequenced to provide an assay that rapidly and accurately discriminates among members of the genus. Ribosomal multilocus sequence typing (rMLST) using ribosomal protein genes has been shown to unambiguously identify these bacteria. The PubMLST Neisseria database (http://pubmlst.org/neisseria/) was queried to extract the 53 ribosomal protein gene sequences from 44 genomes from diverse species. Phylogenies reconstructed from these genes were examined, and a single 413-bp fragment of the 50S ribosomal protein L6 (rplF) gene was identified which produced a phylogeny that was congruent with the phylogeny reconstructed from concatenated ribosomal protein genes. Primers that enabled the amplification and direct sequencing of the rplF gene fragment were designed to validate the assay in vitro and in silico. Allele sequences were defined for the gene fragment, associated with particular species names, and stored on the PubMLST Neisseria database, providing a curated electronic resource. This approach provides an alternative to 16S rRNA gene sequencing, which can be readily replicated for other organisms for which more resolution is required, and it has potential applications in high-resolution metagenomic studies. PMID:24523465

Bennett, Julia S; Watkins, Eleanor R; Jolley, Keith A; Harrison, Odile B; Maiden, Martin C J

2014-05-01

334

Identifying Neisseria Species by Use of the 50S Ribosomal Protein L6 (rplF) Gene  

PubMed Central

The comparison of 16S rRNA gene sequences is widely used to differentiate bacteria; however, this gene can lack resolution among closely related but distinct members of the same genus. This is a problem in clinical situations in those genera, such as Neisseria, where some species are associated with disease while others are not. Here, we identified and validated an alternative genetic target common to all Neisseria species which can be readily sequenced to provide an assay that rapidly and accurately discriminates among members of the genus. Ribosomal multilocus sequence typing (rMLST) using ribosomal protein genes has been shown to unambiguously identify these bacteria. The PubMLST Neisseria database (http://pubmlst.org/neisseria/) was queried to extract the 53 ribosomal protein gene sequences from 44 genomes from diverse species. Phylogenies reconstructed from these genes were examined, and a single 413-bp fragment of the 50S ribosomal protein L6 (rplF) gene was identified which produced a phylogeny that was congruent with the phylogeny reconstructed from concatenated ribosomal protein genes. Primers that enabled the amplification and direct sequencing of the rplF gene fragment were designed to validate the assay in vitro and in silico. Allele sequences were defined for the gene fragment, associated with particular species names, and stored on the PubMLST Neisseria database, providing a curated electronic resource. This approach provides an alternative to 16S rRNA gene sequencing, which can be readily replicated for other organisms for which more resolution is required, and it has potential applications in high-resolution metagenomic studies. PMID:24523465

Bennett, Julia S.; Watkins, Eleanor R.; Jolley, Keith A.; Harrison, Odile B.

2014-01-01

335

Mapping eQTLs in the Norfolk Island Genetic Isolate Identifies Candidate Genes for CVD Risk Traits  

PubMed Central

Cardiovascular disease (CVD) affects millions of people worldwide and is influenced by numerous factors, including lifestyle and genetics. Expression quantitative trait loci (eQTLs) influence gene expression and are good candidates for CVD risk. Founder-effect pedigrees can provide additional power to map genes associated with disease risk. Therefore, we identified eQTLs in the genetic isolate of Norfolk Island (NI) and tested for associations between these and CVD risk factors. We measured genome-wide transcript levels of blood lymphocytes in 330 individuals and used pedigree-based heritability analysis to identify heritable transcripts. eQTLs were identified by genome-wide association testing of these transcripts. Testing for association between CVD risk factors (i.e., blood lipids, blood pressure, and body fat indices) and eQTLs revealed 1,712 heritable transcripts (p < 0.05) with heritability values ranging from 0.18 to 0.84. From these, we identified 200 cis-acting and 70 trans-acting eQTLs (p < 1.84 × 10?7) An eQTL-centric analysis of CVD risk traits revealed multiple associations, including 12 previously associated with CVD-related traits. Trait versus eQTL regression modeling identified four CVD risk candidates (NAAA, PAPSS1, NME1, and PRDX1), all of which have known biological roles in disease. In addition, we implicated several genes previously associated with CVD risk traits, including MTHFR and FN3KRP. We have successfully identified a panel of eQTLs in the NI pedigree and used this to implicate several genes in CVD risk. Future studies are required for further assessing the functional importance of these eQTLs and whether the findings here also relate to outbred populations. PMID:24314549

Benton, Miles C.; Lea, Rod A.; Macartney-Coxson, Donia; Carless, Melanie A.; Göring, Harald H.; Bellis, Claire; Hanna, Michelle; Eccles, David; Chambers, Geoffrey K.; Curran, Joanne E.; Harper, Jacquie L.; Blangero, John; Griffiths, Lyn R.

2013-01-01

336

Identifying microRNA targets in different gene regions  

PubMed Central

Background Currently available microRNA (miRNA) target prediction algorithms require the presence of a conserved seed match to the 5' end of the miRNA and limit the target sites to the 3' untranslated regions of mRNAs. However, it has been noted that these requirements may be too stringent, leading to a substantial number of missing targets. Results We have developed TargetS, a novel computational approach for predicting miRNA targets with the target sites located along entire gene sequences, which permits finding additional targets that are not located in the 3' un-translated regions. Our model is based on both canonical seed matching and non-canonical seed pairing, which discovers targets that allow one bit GU wobble. It does not rely on evolutionary conservation, so it allows the detection of species-specific miRNA-mRNA interactions and makes it suitable for analyzing un-conserved gene sequences. To test the performance of our approach, we have imported the widely used benchmark dataset revealing fold-changes in protein production corresponding to each of the five selected microRNAs. Compared to well-known miRNA target prediction tools, including TargetScanS, PicTar and MicroT_CDS, our method yields the highest sensitivity, while achieving a comparable level of accuracy. Human miRNA target predictions using our computational approach are available online at http://liubioinfolab.org/targetS/mirna.html Conclusions A simple but powerful computational miRNA target prediction method is developed that is solely based on canonical and non-canonical seed matches without requiring evolutionary conservation of the target sites. Our method also expands the target search space to different gene regions, rather than limiting to 3'UTR only. This improves the sensitivity of miRNA target identification, while achieving a comparable accuracy with existing methods. PMID:25077573

2014-01-01

337

Analysis of POFUT1 Gene Mutation in a Chinese Family with Dowling-Degos Disease  

PubMed Central

Dowling-Degos disease (DDD) is an autosomal dominant genodermatosis characterized by reticular pigmented anomaly mainly affecting flexures. Though KRT5 has been identified to be the causal gene of DDD, the heterogeneity of this disease was displayed: for example, POFUT1 and POGLUT1 were recently identified and confirmed to be additional pathogenic genes of DDD. To identify other DDD causative genes, we performed genome-wide linkage and exome sequencing analyses in a multiplex Chinese DDD family, in which the KRT5 mutation was absent. Only a novel 1-bp deletion (c.246+5delG) in POFUT1 was found. No other novel mutation or this deletion was detected in POFUT1 in a second DDD family and a sporadic DDD case by Sanger Sequencing. The result shows the genetic-heterogeneity and complexity of DDD and will contribute to the further understanding of DDD genotype/phenotype correlations and to the pathogenesis of this disease. PMID:25157627

Chen, Mingfei; Li, Yi; Liu, Hong; Fu, Xi'an; Yu, Yiongxiang; Yu, Gongqi; Wang, Chuan; Bao, Fangfang; Liany, Herty; Wang, Zhenzhen; Shi, Zhongxiang; Zhang, Dizhan; Zhou, Guizhi; Liu, Jianjun; Zhang, Furen

2014-01-01

338

Engineering disease resistance with pectate lyase-like genes  

DOEpatents

A mutant gene coding for pectate lyase and homologs thereof is provided, which when incorporated in transgenic plants effect an increased level disease resistance in such plants. Also is provided the polypeptide sequence for the pectate lyase of the present invention. Methods of obtaining the mutant gene, producing transgenic plants which include the nucleotide sequence for the mutant gene and producing improved disease resistance in a crop of such transgenic plants are also provided.

Vogel, John; Somerville, Shauna

2005-03-08

339

CLUSTERING BIOLOGICAL ANNOTATIONS AND GENE EXPRESSION DATA TO IDENTIFY PUTATIVELY CO-REGULATED BIOLOGICAL  

E-print Network

profiling is a key step of microarray gene expression data analysis. Identifying co- regulated biologicalCluster analysis spotlighted novel functional classes of putatively co-regulated biological processes related1 CLUSTERING BIOLOGICAL ANNOTATIONS AND GENE EXPRESSION DATA TO IDENTIFY PUTATIVELY CO-REGULATED

Boyer, Edmond

340

Towards identifying genes underlying ecologically relevant traits in Arabidopsis thaliana  

Microsoft Academic Search

A major challenge in evolutionary biology and plant breeding is to identify the genetic basis of complex quantitative traits, including those that contribute to adaptive variation. Here we review the development of new methods and resources to fine-map intraspecific genetic variation that underlies natural phenotypic variation in plants. In particular, the analysis of 107 quantitative traits reported in the first

Fabrice Roux; Joy Bergelson

2010-01-01

341

Identifying genes affectng stress response in rainbow trout  

Technology Transfer Automated Retrieval System (TEKTRAN)

Genomic analyses have the potential to impact aquaculture production traits by identifying markers as proxies for traits which are expensive or difficult to measure and characterizing genetic variation and biochemical mechanisms underlying phenotypic variation. One such set of traits are the respon...

342

The NACP/synuclein gene: Chromosomal assignment and screening for alterations in Alzheimer disease  

SciTech Connect

The major component of the vascular and plaque amyloid deposits in Alzheimer disease is the amyloid {beta} peptide (A{beta}). A second intrinsic component of amyloid, the NAC (non-A{beta} component of amyloid) peptide, has recently been identified, and its precursor protein was named NACP. A computer homology search allowed us to establish that the human NACP gene was homologous to the rat synuclein gene. We mapped the NACP/synuclein gene to chromosome 4 and cloned three alternatively spliced transcripts in lymphocytes derived from a normal subject. We analyzed by RT-PCR and direct sequencing the entire coding region of the NACP/synuclein gene in a group of patients with familial early onset Alzheimer disease. No mutation was found in 26 unrelated patients. Further studies are required to investigate the implication of the NACP/synuclein gene in Alzheimer disease. 21 refs., 3 tabs.

Campion, D. [CHR, Rouen (France)] [CHR, Rouen (France); Martin, C.; Charbonnier, F. [Unite de Genetique, Rouen (France)] [and others] [Unite de Genetique, Rouen (France); and others

1995-03-20

343

Loci influencing blood pressure identified using a cardiovascular gene-centric array.  

PubMed

Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped ?50 000 single-nucleotide polymorphisms (SNPs) that capture variation in ?2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P < 2.4 × 10(-6)). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention. PMID:23303523

Ganesh, Santhi K; Tragante, Vinicius; Guo, Wei; Guo, Yiran; Lanktree, Matthew B; Smith, Erin N; Johnson, Toby; Castillo, Berta Almoguera; Barnard, John; Baumert, Jens; Chang, Yen-Pei Christy; Elbers, Clara C; Farrall, Martin; Fischer, Mary E; Franceschini, Nora; Gaunt, Tom R; Gho, Johannes M I H; Gieger, Christian; Gong, Yan; Isaacs, Aaron; Kleber, Marcus E; Mateo Leach, Irene; McDonough, Caitrin W; Meijs, Matthijs F L; Mellander, Olle; Molony, Cliona M; Nolte, Ilja M; Padmanabhan, Sandosh; Price, Tom S; Rajagopalan, Ramakrishnan; Shaffer, Jonathan; Shah, Sonia; Shen, Haiqing; Soranzo, Nicole; van der Most, Peter J; Van Iperen, Erik P A; Van Setten, Jessica; Van Setten, Jessic A; Vonk, Judith M; Zhang, Li; Beitelshees, Amber L; Berenson, Gerald S; Bhatt, Deepak L; Boer, Jolanda M A; Boerwinkle, Eric; Burkley, Ben; Burt, Amber; Chakravarti, Aravinda; Chen, Wei; Cooper-Dehoff, Rhonda M; Curtis, Sean P; Dreisbach, Albert; Duggan, David; Ehret, Georg B; Fabsitz, Richard R; Fornage, Myriam; Fox, Ervin; Furlong, Clement E; Gansevoort, Ron T; Hofker, Marten H; Hovingh, G Kees; Kirkland, Susan A; Kottke-Marchant, Kandice; Kutlar, Abdullah; Lacroix, Andrea Z; Langaee, Taimour Y; Li, Yun R; Lin, Honghuang; Liu, Kiang; Maiwald, Steffi; Malik, Rainer; Murugesan, Gurunathan; Newton-Cheh, Christopher; O'Connell, Jeffery R; Onland-Moret, N Charlotte; Ouwehand, Willem H; Palmas, Walter; Penninx, Brenda W; Pepine, Carl J; Pettinger, Mary; Polak, Joseph F; Ramachandran, Vasan S; Ranchalis, Jane; Redline, Susan; Ridker, Paul M; Rose, Lynda M; Scharnag, Hubert; Schork, Nicholas J; Shimbo, Daichi; Shuldiner, Alan R; Srinivasan, Sathanur R; Stolk, Ronald P; Taylor, Herman A; Thorand, Barbara; Trip, Mieke D; van Duijn, Cornelia M; Verschuren, W Monique; Wijmenga, Cisca; Winkelmann, Bernhard R; Wyatt, Sharon; Young, J Hunter; Boehm, Bernhard O; Caulfield, Mark J; Chasman, Daniel I; Davidson, Karina W; Doevendans, Pieter A; Fitzgerald, Garret A; Gums, John G; Hakonarson, Hakon; Hillege, Hans L; Illig, Thomas; Jarvik, Gail P; Johnson, Julie A; Kastelein, John J P; Koenig, Wolfgang; März, Winfried; Mitchell, Braxton D; Murray, Sarah S; Oldehinkel, Albertine J; Rader, Daniel J; Reilly, Muredach P; Reiner, Alex P; Schadt, Eric E; Silverstein, Roy L; Snieder, Harold; Stanton, Alice V; Uitterlinden, André G; van der Harst, Pim; van der Schouw, Yvonne T; Samani, Nilesh J; Johnson, Andrew D; Munroe, Patricia B; de Bakker, Paul I W; Zhu, Xiaofeng; Levy, Daniel; Keating, Brendan J; Asselbergs, Folkert W

2013-04-15

344

Loci influencing blood pressure identified using a cardiovascular gene-centric array  

PubMed Central

Blood pressure (BP) is a heritable determinant of risk for cardiovascular disease (CVD). To investigate genetic associations with systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP) and pulse pressure (PP), we genotyped ?50 000 single-nucleotide polymorphisms (SNPs) that capture variation in ?2100 candidate genes for cardiovascular phenotypes in 61 619 individuals of European ancestry from cohort studies in the USA and Europe. We identified novel associations between rs347591 and SBP (chromosome 3p25.3, in an intron of HRH1) and between rs2169137 and DBP (chromosome1q32.1 in an intron of MDM4) and between rs2014408 and SBP (chromosome 11p15 in an intron of SOX6), previously reported to be associated with MAP. We also confirmed 10 previously known loci associated with SBP, DBP, MAP or PP (ADRB1, ATP2B1, SH2B3/ATXN2, CSK, CYP17A1, FURIN, HFE, LSP1, MTHFR, SOX6) at array-wide significance (P < 2.4 × 10?6). We then replicated these associations in an independent set of 65 886 individuals of European ancestry. The findings from expression QTL (eQTL) analysis showed associations of SNPs in the MDM4 region with MDM4 expression. We did not find any evidence of association of the two novel SNPs in MDM4 and HRH1 with sequelae of high BP including coronary artery disease (CAD), left ventricular hypertrophy (LVH) or stroke. In summary, we identified two novel loci associated with BP and confirmed multiple previously reported associations. Our findings extend our understanding of genes involved in BP regulation, some of which may eventually provide new targets for therapeutic intervention. PMID:23303523

Ganesh, Santhi K.; Tragante, Vinicius; Guo, Wei; Guo, Yiran; Lanktree, Matthew B.; Smith, Erin N.; Johnson, Toby; Castillo, Berta Almoguera; Barnard, John; Baumert, Jens; Chang, Yen-Pei Christy; Elbers, Clara C.; Farrall, Martin; Fischer, Mary E.; Franceschini, Nora; Gaunt, Tom R.; Gho, Johannes M.I.H.; Gieger, Christian; Gong, Yan; Isaacs, Aaron; Kleber, Marcus E.; Leach, Irene Mateo; McDonough, Caitrin W.; Meijs, Matthijs F.L.; Mellander, Olle; Molony, Cliona M.; Nolte, Ilja M.; Padmanabhan, Sandosh; Price, Tom S.; Rajagopalan, Ramakrishnan; Shaffer, Jonathan; Shah, Sonia; Shen, Haiqing; Soranzo, Nicole; van der Most, Peter J.; Van Iperen, Erik P.A.; Van Setten, Jessic A.; Vonk, Judith M.; Zhang, Li; Beitelshees, Amber L.; Berenson, Gerald S.; Bhatt, Deepak L.; Boer, Jolanda M.A.; Boerwinkle, Eric; Burkley, Ben; Burt, Amber; Chakravarti, Aravinda; Chen, Wei; Cooper-DeHoff, Rhonda M.; Curtis, Sean P.; Dreisbach, Albert; Duggan, David; Ehret, Georg B.; Fabsitz, Richard R.; Fornage, Myriam; Fox, Ervin; Furlong, Clement E.; Gansevoort, Ron T.; Hofker, Marten H.; Hovingh, G. Kees; Kirkland, Susan A.; Kottke-Marchant, Kandice; Kutlar, Abdullah; LaCroix, Andrea Z.; Langaee, Taimour Y.; Li, Yun R.; Lin, Honghuang; Liu, Kiang; Maiwald, Steffi; Malik, Rainer; Murugesan, Gurunathan; Newton-Cheh, Christopher; O'Connell, Jeffery R.; Onland-Moret, N. Charlotte; Ouwehand, Willem H.; Palmas, Walter; Penninx, Brenda W.; Pepine, Carl J.; Pettinger, Mary; Polak, Joseph F.; Ramachandran, Vasan S.; Ranchalis, Jane; Redline, Susan; Ridker, Paul M.; Rose, Lynda M.; Scharnag, Hubert; Schork, Nicholas J.; Shimbo, Daichi; Shuldiner, Alan R.; Srinivasan, Sathanur R.; Stolk, Ronald P.; Taylor, Herman A.; Thorand, Barbara; Trip, Mieke D.; van Duijn, Cornelia M.; Verschuren, W. Monique; Wijmenga, Cisca; Winkelmann, Bernhard R.; Wyatt, Sharon; Young, J. Hunter; Boehm, Bernhard O.; Caulfield, Mark J.; Chasman, Daniel I.; Davidson, Karina W.; Doevendans, Pieter A.; FitzGerald, Garret A.; Gums, John G.; Hakonarson, Hakon; Hillege, Hans L.; Illig, Thomas; Jarvik, Gail P.; Johnson, Julie A.; Kastelein, John J.P.; Koenig, Wolfgang; März, Winfried; Mitchell, Braxton D.; Murray, Sarah S.; Oldehinkel, Albertine J.; Rader, Daniel J.; Reilly, Muredach P.; Reiner, Alex P.; Schadt, Eric E.; Silverstein, Roy L.; Snieder, Harold; Stanton, Alice V.; Uitterlinden, André G.; van der Harst, Pim; van der Schouw, Yvonne T.; Samani, Nilesh J.; Johnson, Andrew D.; Munroe, Patricia B.; de Bakker, Paul I.W.; Zhu, Xiaofeng; Levy, Daniel; Keating, Brendan J.; Asselbergs, Folkert W.

2013-01-01

345

Identifying essential Streptococcus sanguinis genes using genome-wide deletion mutation.  

PubMed

Essential genes in pathogens are important for the development of antibacterial drugs. In this report, we described a protocol to identify essential genes in the Streptococcus sanguinis SK36 strain using genome-wide deletion mutation. A fusion PCR-based method is used to construct gene deletion fragments, which contain kanamycin resistance cassettes with two flanking arms of DNA upstream and downstream of the target gene. The linear fused PCR amplicons were transformed into S. sanguinis SK36 cells. No kanamycin-resistant transformants suggested the gene essentiality because the deletion of the essential gene renders a lethal phenotype of the transformants. The putative essential genes were further confirmed by independent transformations up to five attempts. The false nonessential genes were also identified by removing double-band mutants. PMID:25636610

Chen, Lei; Ge, Xiuchun; Xu, Ping

2015-01-01

346

Sherlock: Detecting Gene-Disease Associations by Matching Patterns of Expression QTL and GWAS  

PubMed Central

Genetic mapping of complex diseases to date depends on variations inside or close to the genes that perturb their activities. A strong body of evidence suggests that changes in gene expression play a key role in complex diseases and that numerous loci perturb gene expression in trans. The information in trans variants, however, has largely been ignored in the current analysis paradigm. Here we present a statistical framework for genetic mapping by utilizing collective information in both cis and trans variants. We reason that for a disease-associated gene, any genetic variation that perturbs its expression is also likely to influence the disease risk. Thus, the expression quantitative trait loci (eQTL) of the gene, which constitute a unique “genetic signature,” should overlap significantly with the set of loci associated with the disease. We translate this idea into a computational algorithm (named Sherlock) to search for gene-disease associations from GWASs, taking advantage of independent eQTL data. Application of this strategy to Crohn disease and type 2 diabetes predicts a number of genes with possible disease roles, including several predictions supported by solid experimental evidence. Importantly, predicted genes are often implicated by multiple trans eQTL with moderate associations. These genes are far from any GWAS association signals and thus cannot be identified from the GWAS alone. Our approach allows analysis of association data from a new perspective and is applicable to any complex phenotype. It is readily generalizable to molecular traits other than gene expression, such as metabolites, noncoding RNAs, and epigenetic modifications. PMID:23643380

He, Xin; Fuller, Chris K.; Song, Yi; Meng, Qingying; Zhang, Bin; Yang, Xia; Li, Hao

2013-01-01

347

Peripheral blood derived gene panels predict response to infliximab in rheumatoid arthritis and Crohn's disease  

PubMed Central

Background Biological therapies have been introduced for the treatment of chronic inflammatory diseases including rheumatoid arthritis (RA) and Crohn's disease (CD). The efficacy of biologics differs from patient to patient. Moreover these therapies are rather expensive, therefore treatment of primary non-responders should be avoided. Method We addressed this issue by combining gene expression profiling and biostatistical approaches. We performed peripheral blood global gene expression profiling in order to filter the genome for target genes in cohorts of 20 CD and 19 RA patients. Then RT-quantitative PCR validation was performed, followed by multivariate analyses of genes in independent cohorts of 20 CD and 15 RA patients, in order to identify sets ofinterrelated genes that can separate responders from non-responders to the humanized chimeric anti-TNFalpha antibody infliximab at baseline. Results Gene panels separating responders from non-responders were identified using leave-one-out cross-validation test, and a pool of genes that should be tested on larger cohorts was created in both conditions. Conclusions Our data show that peripheral blood gene expression profiles are suitable for determining gene panels with high discriminatory power to differentiate responders from non-responders in infliximab therapy at baseline in CD and RA, which could be cross-validated successfully. Biostatistical analysis of peripheral blood gene expression data leads to the identification of gene panels that can help predict responsiveness of therapy and support the clinical decision-making process. PMID:23809696

2013-01-01

348

Organization, expression and evolution of a disease resistance gene cluster in soybean.  

PubMed

PCR amplification was previously used to identify a cluster of resistance gene analogues (RGAs) on soybean linkage group J. Resistance to powdery mildew (Rmd-c), Phytophthora stem and root rot (Rps2), and an ineffective nodulation gene (Rj2) map within this cluster. BAC fingerprinting and RGA-specific primers were used to develop a contig of BAC clones spanning this region in cultivar "Williams 82" [rps2, Rmd (adult onset), rj2]. Two cDNAs with homology to the TIR/NBD/LRR family of R-genes have also been mapped to opposite ends of a BAC in the contig Gm_Isb001_091F11 (BAC 91F11). Sequence analyses of BAC 91F11 identified 16 different resistance-like gene (RLG) sequences with homology to the TIR/NBD/LRR family of disease resistance genes. Four of these RLGs represent two potentially novel classes of disease resistance genes: TIR/NBD domains fused inframe to a putative defense-related protein (NtPRp27-like) and TIR domains fused inframe to soybean calmodulin Ca(2+)-binding domains. RT-PCR analyses using gene-specific primers allowed us to monitor the expression of individual genes in different tissues and developmental stages. Three genes appeared to be constitutively expressed, while three were differentially expressed. Analyses of the R-genes within this BAC suggest that R-gene evolution in soybean is a complex and dynamic process. PMID:12524363

Graham, Michelle A; Marek, Laura Fredrick; Shoemaker, Randy C

2002-12-01

349

Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network  

Microsoft Academic Search

Background  Protein-protein interaction networks and phenotype similarity information have been synthesized together to discover novel\\u000a disease-causing genes. Genetic or phenotypic similarities are manifested as certain modularity properties in a phenotype-gene\\u000a heterogeneous network consisting of the phenotype-phenotype similarity network, protein-protein interaction network and gene-disease\\u000a association network. However, the quantitative analysis of modularity in the heterogeneous network and its influence on disease-gene\\u000a discovery

Xin Yao; Han Hao; Yanda Li; Shao Li

2011-01-01

350

A Comparative Transcriptome Analysis Identifying FGF23 Regulated Genes in the Kidney of a Mouse CKD Model  

PubMed Central

Elevations of circulating Fibroblast growth factor 23 (FGF23) are associated with adverse cardiovascular outcomes and progression of renal failure in chronic kidney disease (CKD). Efforts to identify gene products whose transcription is directly regulated by FGF23 stimulation of fibroblast growth factor receptors (FGFR)/?-Klotho complexes in the kidney is confounded by both systemic alterations in calcium, phosphorus and vitamin D metabolism and intrinsic alterations caused by the underlying renal pathology in CKD. To identify FGF23 responsive genes in the kidney that might explain the association between FGF23 and adverse outcomes in CKD, we performed comparative genome wide analysis of gene expression profiles in the kidney of the Collagen 4 alpha 3 null mice (Col4a3?/?) model of progressive kidney disease with kidney expression profiles of Hypophosphatemic (Hyp) and FGF23 transgenic mouse models of elevated FGF23. The different complement of potentially confounding factors in these models allowed us to identify genes that are directly targeted by FGF23. This analysis found that ?-Klotho, an anti-aging hormone and FGF23 co-receptor, was decreased by FGF23. We also identified additional FGF23-responsive transcripts and activation of networks associated with renal damage and chronic inflammation, including lipocalin 2 (Lcn2), transforming growth factor beta (TGF-?) and tumor necrosis factor-alpha (TNF-?) signaling pathways. Finally, we found that FGF23 suppresses angiotensin-converting enzyme 2 (ACE2) expression in the kidney, thereby providing a pathway for FGF23 regulation of the renin-angiotensin system. These gene products provide a possible mechanistic links between elevated FGF23 and pathways responsible for renal failure progression and cardiovascular diseases. PMID:22970174

Martin, Aline; Huang, Jinsong; Li, Hua; Jiao, Yan; Gu, Weikuan; Quarles, L. Darryl

2012-01-01

351

Mining disease genes using integrated protein–protein interaction and gene–gene co-regulation information  

PubMed Central

In humans, despite the rapid increase in disease-associated gene discovery, a large proportion of disease-associated genes are still unknown. Many network-based approaches have been used to prioritize disease genes. Many networks, such as the protein–protein interaction (PPI), KEGG, and gene co-expression networks, have been used. Expression quantitative trait loci (eQTLs) have been successfully applied for the determination of genes associated with several diseases. In this study, we constructed an eQTL-based gene–gene co-regulation network (GGCRN) and used it to mine for disease genes. We adopted the random walk with restart (RWR) algorithm to mine for genes associated with Alzheimer disease. Compared to the Human Protein Reference Database (HPRD) PPI network alone, the integrated HPRD PPI and GGCRN networks provided faster convergence and revealed new disease-related genes. Therefore, using the RWR algorithm for integrated PPI and GGCRN is an effective method for disease-associated gene mining. PMID:25870785

Li, Jin; Wang, Limei; Guo, Maozu; Zhang, Ruijie; Dai, Qiguo; Liu, Xiaoyan; Wang, Chunyu; Teng, Zhixia; Xuan, Ping; Zhang, Mingming

2015-01-01

352

Functional Genomics Approach to Identifying Genes Required for Biofilm Development by Streptococcus mutans  

Microsoft Academic Search

Streptococcus mutans, the primary etiological agent of human dental caries, is an obligate biofilm-forming bacterium. The goals of this study were to identify the gene(s) required for biofilm formation by this organism and to elucidate the role(s) that some of the known global regulators of gene expression play in controlling biofilm formation. In S. mutans UA159, the brpA gene (for

Zezhang T. Wen; Robert A. Burne

2002-01-01

353

Whole-Genome Sequencing of Individuals from a Founder Population Identifies Candidate Genes for Asthma  

PubMed Central

Asthma is a complex genetic disease caused by a combination of genetic and environmental risk factors. We sought to test classes of genetic variants largely missed by genome-wide association studies (GWAS), including copy number variants (CNVs) and low-frequency variants, by performing whole-genome sequencing (WGS) on 16 individuals from asthma-enriched and asthma-depleted families. The samples were obtained from an extended 13-generation Hutterite pedigree with reduced genetic heterogeneity due to a small founding gene pool and reduced environmental heterogeneity as a result of a communal lifestyle. We sequenced each individual to an average depth of 13-fold, generated a comprehensive catalog of genetic variants, and tested the most severe mutations for association with asthma. We identified and validated 1960 CNVs, 19 nonsense or splice-site single nucleotide variants (SNVs), and 18 insertions or deletions that were out of frame. As follow-up, we performed targeted sequencing of 16 genes in 837 cases and 540 controls of Puerto Rican ancestry and found that controls carry a significantly higher burden of mutations in IL27RA (2.0% of controls; 0.23% of cases; nominal p?=?0.004; Bonferroni p?=?0.21). We also genotyped 593 CNVs in 1199 Hutterite individuals. We identified a nominally significant association (p?=?0.03; Odds ratio (OR)?=?3.13) between a 6 kbp deletion in an intron of NEDD4L and increased risk of asthma. We genotyped this deletion in an additional 4787 non-Hutterite individuals (nominal p?=?0.056; OR?=?1.69). NEDD4L is expressed in bronchial epithelial cells, and conditional knockout of this gene in the lung in mice leads to severe inflammation and mucus accumulation. Our study represents one of the early instances of applying WGS to complex disease with a large environmental component and demonstrates how WGS can identify risk variants, including CNVs and low-frequency variants, largely untested in GWAS. PMID:25116239

Campbell, Catarina D.; Mohajeri, Kiana; Malig, Maika; Hormozdiari, Fereydoun; Nelson, Benjamin; Du, Gaixin; Patterson, Kristen M.; Eng, Celeste; Torgerson, Dara G.; Hu, Donglei; Herman, Catherine; Chong, Jessica X.; Ko, Arthur; O'Roak, Brian J.; Krumm, Niklas; Vives, Laura; Lee, Choli; Roth, Lindsey A.; Rodriguez-Cintron, William; Rodriguez-Santana, Jose; Brigino-Buenaventura, Emerita; Davis, Adam; Meade, Kelley; LeNoir, Michael A.; Thyne, Shannon; Jackson, Daniel J.; Gern, James E.; Lemanske, Robert F.; Shendure, Jay; Abney, Mark; Burchard, Esteban G.; Ober, Carole; Eichler, Evan E.

2014-01-01

354

Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease Type 1a  

SciTech Connect

Glycogen storage disease (GSD) type 1a is caused by the deficiency of d-glucose-6-phosphatase (G6Pase), the key enzyme in glucose homeostasis. Despite both a high incidence and morbidity, the molecular mechanisms underlying this deficiency have eluded characterization. In the present study, the molecular and biochemical characterization of the human G6Pase complementary DNA, its gene, and the expressed protein, which is indistinguishable from human microsomal G6Pase are reported. Several mutations in the G6Pase gene of affected individuals that completely inactivate the enzyme have been identified. These results establish the molecular basis of this disease and open the way for future gene therapy.

Lei, K.J.; Shelly, L.L.; Pan, C.J.; Sidbury, J.B.; Chou, J.Y. (National Institutes of Health, Bethesda, MD (United States))

1993-10-22

355

Systematic 16S rRNA Gene Sequencing of Atypical Clinical Isolates Identified 27 New Bacterial Species Associated with Humans  

PubMed Central

Clinical microorganisms isolated during a 5-year study in our hospital that could not be identified by conventional criteria were studied by 16S rRNA gene sequence analysis. Each isolate yielded a ?1,400-bp sequence containing <5 ambiguities which was compared with the GenBank 16S rRNA gene library; 1,404 such isolates were tested, and 120 were considered unique (27 isolates) or rare (?10 cases reported in the literature) human pathogens. Eleven new species, “Actinobaculum massiliae,” “Candidatus Actinobaculum timonae,” Paenibacillus sanguinis, “Candidatus Bacteroides massiliae,” Chryseobacterium massiliae, “Candidatus Chryseobacterium timonae,” Paenibacillus massiliensis, “Candidatus Peptostreptococcus massiliae,” “Candidatus Prevotella massiliensis,” Rhodobacter massiliensis, and “Candidatus Veillonella atypica” were identified. Sixteen species were obtained from humans for the first time. Our results show the important role that 16S rRNA gene sequence-based bacterial identification currently plays in recognizing unusual and emerging bacterial diseases. PMID:15131188

Drancourt, M.; Berger, P.; Raoult, D.

2004-01-01

356

Network Topology Reveals Key Cardiovascular Disease Genes Anida Sarajlic1,  

E-print Network

1 Network Topology Reveals Key Cardiovascular Disease Genes Anida Sarajli´c1, , Vuk Janji´c1, SW72AZ, UK 2 Institute for Cardiovascular Disease "Dedinje," University of Belgrade, Serbia E biological information. Even though cardiovascular diseases (CVDs) are a major global cause of death, many

Przulj, Natasa

357

Variation within the Huntington's Disease Gene Influences Normal Brain Structure  

E-print Network

Variation within the Huntington's Disease Gene Influences Normal Brain Structure Mark Mu¨ hlau1 cause neurodegenerative disorders of which Huntington's disease constitutes the most common example causes Huntington's disease, influences normal human brain structure. In 278 normal subjects, we

Gaser, Christian

358

Identification of Genes Expressed in Premalignant Breast Disease by Microscopy-Directed Cloning  

NASA Astrophysics Data System (ADS)

Histopathologic study of human breast biopsy samples has identified specific lesions which are associated with a high risk of development of invasive breast cancer. Presumably, these lesions (collectively termed premalignant breast disease) represent the earliest recognizable morphologic expression of fundamental molecular events that lead to the development of invasive breast cancer. To study molecular events underlying premalignant breast disease, we have developed a method for isolating RNA from histologically identified lesions from frozen human breast tissue. This method specifically obtains mRNA from breast epithelial cells and has identified three genes which are differentially expressed in premalignant breast epithelial lesions. One gene identified by this method is overexpressed in four of five noncomedo ductal carcinoma in situ lesions and appears to be the human homologue of the gene encoding the M2 subunit of ribonucleotide reductase, an enzyme involved in DNA synthesis.

Jensen, Roy A.; Page, David L.; Holt, Jeffrey T.

1994-09-01

359

Integrating Murine Gene Expression Studies to Understand Obstructive Lung Disease Due to Chronic Inhaled Endotoxin  

PubMed Central

Rationale Endotoxin is a near ubiquitous environmental exposure that that has been associated with both asthma and chronic obstructive pulmonary disease (COPD). These obstructive lung diseases have a complex pathophysiology, making them difficult to study comprehensively in the context of endotoxin. Genome-wide gene expression studies have been used to identify a molecular snapshot of the response to environmental exposures. Identification of differentially expressed genes shared across all published murine models of chronic inhaled endotoxin will provide insight into the biology underlying endotoxin-associated lung disease. Methods We identified three published murine models with gene expression profiling after repeated low-dose inhaled endotoxin. All array data from these experiments were re-analyzed, annotated consistently, and tested for shared genes found to be differentially expressed. Additional functional comparison was conducted by testing for significant enrichment of differentially expressed genes in known pathways. The importance of this gene signature in smoking-related lung disease was assessed using hierarchical clustering in an independent experiment where mice were exposed to endotoxin, smoke, and endotoxin plus smoke. Results A 101-gene signature was detected in three murine models, more than expected by chance. The three model systems exhibit additional similarity beyond shared genes when compared at the pathway level, with increasing enrichment of inflammatory pathways associated with longer duration of endotoxin exposure. Genes and pathways important in both asthma and COPD were shared across all endotoxin models. Mice exposed to endotoxin, smoke, and smoke plus endotoxin were accurately classified with the endotoxin gene signature. Conclusions Despite the differences in laboratory, duration of exposure, and strain of mouse used in three experimental models of chronic inhaled endotoxin, surprising similarities in gene expression were observed. The endotoxin component of tobacco smoke may play an important role in disease development. PMID:23675439

Lai, Peggy S.; Hofmann, Oliver; Baron, Rebecca M.; Cernadas, Manuela; Meng, Quanxin Ryan; Bresler, Herbert S.; Brass, David M.; Yang, Ivana V.; Schwartz, David A.; Christiani, David C.; Hide, Winston

2013-01-01

360

Genes Involved in the Osteoarthritis Process Identified through Genome Wide Expression Analysis in Articular Cartilage; the RAAK Study  

PubMed Central

Objective Identify gene expression profiles associated with OA processes in articular cartilage and determine pathways changing during the disease process. Methods Genome wide gene expression was determined in paired samples of OA affected and preserved cartilage of the same joint using microarray analysis for 33 patients of the RAAK study. Results were replicated in independent samples by RT-qPCR and immunohistochemistry. Profiles were analyzed with the online analysis tools DAVID and STRING to identify enrichment for specific pathways and protein-protein interactions. Results Among the 1717 genes that were significantly differently expressed between OA affected and preserved cartilage we found significant enrichment for genes involved in skeletal development (e.g. TNFRSF11B and FRZB). Also several inflammatory genes such as CD55, PTGES and TNFAIP6, previously identified in within-joint analyses as well as in analyses comparing preserved cartilage from OA affected joints versus healthy cartilage were among the top genes. Of note was the high up-regulation of NGF in OA cartilage. RT-qPCR confirmed differential expression for 18 out of 19 genes with expression changes of 2-fold or higher, and immunohistochemistry of selected genes showed a concordant change in protein expression. Most of these changes associated with OA severity (Mankin score) but were independent of joint-site or sex. Conclusion We provide further insights into the ongoing OA pathophysiological processes in cartilage, in particular into differences in macroscopically intact cartilage compared to OA affected cartilage, which seem relatively consistent and independent of sex or joint. We advocate that development of treatment could benefit by focusing on these similarities in gene expression changes and/or pathways. PMID:25054223

Bovée, Judith V. M. G.; Bomer, Nils; van der Breggen, Ruud; Lakenberg, Nico; Keurentjes, J. Christiaan; Goeman, Jelle J.; Slagboom, P. Eline; Nelissen, Rob G. H. H.; Bos, Steffan D.; Meulenbelt, Ingrid

2014-01-01

361

Analysis of Gene-Gene Interactions among Common Variants in Candidate Cardiovascular Genes in Coronary Artery Disease  

PubMed Central

Objective Only a small fraction of coronary artery disease (CAD) heritability has been explained by common variants identified to date. Interactions between genes of importance to cardiovascular regulation may account for some of the missing heritability of CAD. This study aimed to investigate the role of gene-gene interactions in common variants in candidate cardiovascular genes in CAD. Approach and Results 2,101 patients with CAD from the British Heart Foundation Family Heart Study and 2,426 CAD-free controls were included in the discovery cohort. All subjects were genotyped with the Illumina HumanCVD BeadChip enriched for genes and pathways relevant to the cardiovascular system and disease. The primary analysis in the discovery cohort examined pairwise interactions among 913 common (minor allele frequency >0.1) independent single nucleotide polymorphisms (SNPs) with at least nominal association with CAD in single locus analysis. A secondary exploratory interaction analysis was performed among all 11,332 independent common SNPs surviving quality control criteria. Replication analyses were conducted in 2,967 patients and 3,075 controls from the Myocardial Infarction Genetics Consortium. None of the interactions amongst 913 SNPs analysed in the primary analysis was statistically significant after correction for multiple testing (required P<1.2x10-7). Similarly, none of the pairwise gene-gene interactions in the secondary analysis reached statistical significance after correction for multiple testing (required P = 7.8x10-10). None of 36 suggestive interactions from the primary analysis or 31 interactions from the secondary analysis was significant in the replication cohort. Our study had 80% power to detect odds ratios > 1.7 for common variants in the primary analysis. Conclusions Moderately large additive interactions between common SNPs in genes relevant to cardiovascular disease do not appear to play a major role in genetic predisposition to CAD. The role of genetic interactions amongst less common SNPs and with medium and small magnitude effects remain to be investigated. PMID:25658981

Musameh, Muntaser D.; Wang, William Y. S.; Nelson, Christopher P.; Lluís-Ganella, Carla; Debiec, Radoslaw; Subirana, Isaac; Elosua, Roberto; Balmforth, Anthony J.; Ball, Stephen G.; Hall, Alistair S.; Kathiresan, Sekar; Thompson, John R.; Lucas, Gavin; Samani, Nilesh J.; Tomaszewski, Maciej

2015-01-01

362

Genome-wide association study identifies five novel susceptibility loci for Crohn's disease and implicates a role for autophagy in disease pathogenesis.  

PubMed Central

We present a genome-wide association study of ileal Crohn's disease (CD) and two independent replication studies that identify five novel regions of association to CD. Specifically, in addition to the previously established CARD15 and IL23R associations, we report strong associations with independent replication to variation in the genomic regions encoding the PHOX2B, NCF4 and ATG16L1 genes, as well as a predicted gene on 16q24.1 (FAM92B) and an intergenic region on 10q21.1. We further demonstrate that the ATG16L1 gene is expressed in intestinal epithelial cell lines and that functional knock down of this gene abrogates autophagy of Salmonella typhimurium. Together these findings suggest that autophagy and host cell responses to intra-cellular microbes are involved in the pathogenesis of CD. PMID:17435756

Rioux, John D.; Xavier, Ramnik J.; Taylor, Kent D.; Silverberg, Mark S.; Goyette, Philippe; Huett, Alan; Green, Todd; Kuballa, Petric; Barmada, M. Michael; Datta, Lisa Wu; Shugart, Yin Yao; Griffiths, Anne M.; Targan, Stephan R.; Ippoliti, Andrew F.; Bernard, Edmond-Jean; Mei, Ling; Nicolae, Dan L.; Regueiro, Miguel; Schumm, L. Philip; Steinhart, A. Hillary; Rotter, Jerome I.; Duerr, Richard H.; Cho, Judy H.; Daly, Mark J.; Brant, Steven R.

2008-01-01

363

Affected Kindred Analysis of Human X Chromosome Exomes to Identify Novel X-Linked Intellectual Disability Genes  

PubMed Central

X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families) using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders. PMID:25679214

Niranjan, Tejasvi S.; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E.; Wang, Tao

2015-01-01

364

Meta-analysis of the global gene expression profile of triple-negative breast cancer identifies genes for the prognostication and treatment of aggressive breast cancer  

PubMed Central

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype lacking expression of estrogen and progesterone receptors (ER/PR) and HER2, thus limiting therapy options. We hypothesized that meta-analysis of TNBC gene expression profiles would illuminate mechanisms underlying the aggressive nature of this disease and identify therapeutic targets. Meta-analysis in the Oncomine database identified 206 genes that were recurrently deregulated in TNBC compared with non-TNBC and in tumors that metastasized or led to death within 5 years. This ‘aggressiveness gene list' was enriched for two core functions/metagenes: chromosomal instability (CIN) and ER signaling metagenes. We calculated an ‘aggressiveness score' as the ratio of the CIN metagene to the ER metagene, which identified aggressive tumors in breast cancer data sets regardless of subtype or other clinico-pathological indicators. A score calculated from six genes from the CIN metagene and two genes from the ER metagene recapitulated the aggressiveness score. By multivariate survival analysis, we show that our aggressiveness scores (from 206 genes or the 8 representative genes) outperformed several published prognostic signatures. Small interfering RNA screen revealed that the CIN metagene holds therapeutic targets against TNBC. Particularly, the inhibition of TTK significantly reduced the survival of TNBC cells and synergized with docetaxel in vitro. Importantly, mitosis-independent expression of TTK protein was associated with aggressive subgroups, poor survival and further stratified outcome within grade 3, lymph node-positive, HER2-positive and TNBC patients. In conclusion, we identified the core components of CIN and ER metagenes that identify aggressive breast tumors and have therapeutic potential in TNBC and aggressive breast tumors. Prognostication from these metagenes at the mRNA level was limited to ER-positive tumors. However, we provide evidence that mitosis-independent expression of TTK protein was prognostic in TNBC and other aggressive breast cancer subgroups, suggesting that protection of CIN/aneuploidy drives aggressiveness and treatment resistance. PMID:24752235

Al-Ejeh, F; Simpson, P T; Sanus, J M; Klein, K; Kalimutho, M; Shi, W; Miranda, M; Kutasovic, J; Raghavendra, A; Madore, J; Reid, L; Krause, L; Chenevix-Trench, G; Lakhani, S R; Khanna, K K

2014-01-01

365

Meta-analysis of the global gene expression profile of triple-negative breast cancer identifies genes for the prognostication and treatment of aggressive breast cancer.  

PubMed

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype lacking expression of estrogen and progesterone receptors (ER/PR) and HER2, thus limiting therapy options. We hypothesized that meta-analysis of TNBC gene expression profiles would illuminate mechanisms underlying the aggressive nature of this disease and identify therapeutic targets. Meta-analysis in the Oncomine database identified 206 genes that were recurrently deregulated in TNBC compared with non-TNBC and in tumors that metastasized or led to death within 5 years. This 'aggressiveness gene list' was enriched for two core functions/metagenes: chromosomal instability (CIN) and ER signaling metagenes. We calculated an 'aggressiveness score' as the ratio of the CIN metagene to the ER metagene, which identified aggressive tumors in breast cancer data sets regardless of subtype or other clinico-pathological indicators. A score calculated from six genes from the CIN metagene and two genes from the ER metagene recapitulated the aggressiveness score. By multivariate survival analysis, we show that our aggressiveness scores (from 206 genes or the 8 representative genes) outperformed several published prognostic signatures. Small interfering RNA screen revealed that the CIN metagene holds therapeutic targets against TNBC. Particularly, the inhibition of TTK significantly reduced the survival of TNBC cells and synergized with docetaxel in vitro. Importantly, mitosis-independent expression of TTK protein was associated with aggressive subgroups, poor survival and further stratified outcome within grade 3, lymph node-positive, HER2-positive and TNBC patients. In conclusion, we identified the core components of CIN and ER metagenes that identify aggressive breast tumors and have therapeutic potential in TNBC and aggressive breast tumors. Prognostication from these metagenes at the mRNA level was limited to ER-positive tumors. However, we provide evidence that mitosis-independent expression of TTK protein was prognostic in TNBC and other aggressive breast cancer subgroups, suggesting that protection of CIN/aneuploidy drives aggressiveness and treatment resistance. PMID:24752235

Al-Ejeh, F; Simpson, P T; Sanus, J M; Klein, K; Kalimutho, M; Shi, W; Miranda, M; Kutasovic, J; Raghavendra, A; Madore, J; Reid, L; Krause, L; Chenevix-Trench, G; Lakhani, S R; Khanna, K K

2014-01-01

366

Respiratory Epithelial Gene Expression in Patients with Mild and Severe Cystic Fibrosis Lung Disease  

PubMed Central

Despite having identical cystic fibrosis transmembrane conductance regulator genotypes, individuals with ?F508 homozygous cystic fibrosis (CF) demonstrate significant variability in severity of pulmonary disease. This investigation used high-density oligonucleotide microarray analysis of nasal respiratory epithelium to investigate the molecular basis of phenotypic differences in CF by (1) identifying differences in gene expression between ?F508 homozygotes in the most severe 20th percentile of lung disease by forced expiratory volume in 1 s and those in the most mild 20th percentile of lung disease and (2) identifying differences in gene expression between ?F508 homozygotes and age-matched non-CF control subjects. Microarray results from 23 participants (12 CF, 11 non-CF) met the strict quality control guidelines and were used for final data analysis. A total of 652 of the 11,867 genes identified as present in 75% of the samples were significantly differentially expressed in one of the three disease phenotypes: 30 in non-CF, 53 in mild CF, and 569 in severe CF. An analysis of genes differentially expressed by severity of CF lung disease demonstrated significant upregulation in severe CF of genes involved in protein ubiquination (P < 0.04), mitochondrial oxidoreductase activity (P < 0.01), and lipid metabolism (P < 0.03). Analysis of genes with decreased expression in patients with CF compared with control subjects demonstrated significant downregulation of genes involved in airway defense (P < 0.047) and protein metabolism (P < 0.048). This study suggests that differences in CF lung phenotype are associated with differences in expression of genes involving airway defense, protein ubiquination, and mitochondrial oxidoreductase activity and identifies specific new candidate modifiers of the CF phenotype. PMID:16614352

Wright, Jerry M.; Merlo, Christian A.; Reynolds, Jeffrey B.; Zeitlin, Pamela L.; Garcia, Joe G. N.; Guggino, William B.; Boyle, Michael P.

2006-01-01

367

A Scan of Chromosome 10 Identifies a Novel Locus Showing Strong Association with Late-Onset Alzheimer Disease  

PubMed Central

Strong evidence of linkage to late-onset Alzheimer disease (LOAD) has been observed on chromosome 10, which implicates a wide region and at least one disease-susceptibility locus. Although significant associations with several biological candidate genes on chromosome 10 have been reported, these findings have not been consistently replicated, and they remain controversial. We performed a chromosome 10–specific association study with 1,412 gene-based single-nucleotide polymorphisms (SNPs), to identify susceptibility genes for developing LOAD. The scan included SNPs in 677 of 1,270 known or predicted genes; each gene contained one or more markers, about half (48%) of which represented putative functional mutations. In general, the initial testing was performed in a white case-control sample from the St. Louis area, with 419 LOAD cases and 377 age-matched controls. Markers that showed significant association in the exploratory analysis were followed up in several other white case-control sample sets to confirm the initial association. Of the 1,397 markers tested in the exploratory sample, 69 reached significance (P<.05). Five of these markers replicated at P<.05 in the validation sample sets. One marker, rs498055, located in a gene homologous to RPS3A (LOC439999), was significantly associated with Alzheimer disease in four of six case-control series, with an allelic P value of .0001 for a meta-analysis of all six samples. One of the case-control samples with significant association to rs498055 was derived from the linkage sample (P=.0165). These results indicate that variants in the RPS3A homologue are associated with LOAD and implicate this gene, adjacent genes, or other functional variants (e.g., noncoding RNAs) in the pathogenesis of this disorder. PMID:16385451

Grupe, Andrew; Li, Yonghong; Rowland, Charles; Nowotny, Petra; Hinrichs, Anthony L.; Smemo, Scott; Kauwe, John S. K.; Maxwell, Taylor J.; Cherny, Sara; Doil, Lisa; Tacey, Kristina; van Luchene, Ryan; Myers, Amanda; Wavrant-De Vrièze, Fabienne; Kaleem, Mona; Hollingworth, Paul; Jehu, Luke; Foy, Catherine; Archer, Nicola; Hamilton, Gillian; Holmans, Peter; Morris, Chris M.; Catanese, Joseph; Sninsky, John; White, Thomas J.; Powell, John; Hardy, John; O’Donovan, Michael; Lovestone, Simon; Jones, Lesley; Morris, John C.; Thal, Leon; Owen, Michael; Williams, Julie; Goate, Alison

2006-01-01

368

Identifying the susceptibility gene(s) in a set of trait-linked genes using genotype data.  

PubMed Central

There are generally three steps to isolate a disease linkage-susceptibility gene: genome-wide scan, fine mapping, and, last, positional cloning. The last step is time consuming and involves intensive laboratory work. In some cases, fine mapping cannot proceed further on a set of markers because they are tightly linked. For years, genetic statisticians have been trying different ways to narrow the fine-mapping results to provide some guidance for the next step of laboratory work. Although these methods are practical and efficient, most of them are based on IBD data, which usually can be inferred only from the genotype data with some uncertainty. The corresponding methods thus have no greater power than one using genotype data directly. Also, IBD-based methods apply only to relative pair data. Here, using genotype data, we have developed a statistical hypothesis-testing method to pinpoint a SNP, or SNPs, suspected of responsibility for a disease trait linkage among a set of SNPs tightly linked in a region. Our method uses genotype data of affected individuals or case-control studies, which are widely available in the laboratory. The testing statistic can be constructed using any genotype-based disease-marker disequilibrium measure and is asymptotically distributed as a chi-square mixture. This method can be used for singleton data, relative pair data, or general pedigree data. We have applied the method to simulated data as well as a real data set; it gives satisfactory results. PMID:15280254

Yuan, Ao; Chen, Guanjie; Chen, Yuanxiu; Rotimi, Charles; Bonney, George E

2004-01-01

369

The impact of self-identified race on epidemiologic studies of gene expression.  

PubMed

Although population differences in gene expression have been established, the impact on differential gene expression studies in large populations is not well understood. We describe the effect of self-reported race on a gene expression study of lung function in asthma. We generated gene expression profiles for 254 young adults (205 non-Hispanic whites and 49 African Americans) with asthma on whom concurrent total RNA derived from peripheral blood CD4(+) lymphocytes and lung function measurements were obtained. We identified four principal components that explained 62% of the variance in gene expression. The dominant principal component, which explained 29% of the total variance in gene expression, was strongly associated with self-identified race (P<10(-16)). The impact of these racial differences was observed when we performed differential gene expression analysis of lung function. Using multivariate linear models, we tested whether gene expression was associated with a quantitative measure of lung function: pre-bronchodilator forced expiratory volume in one second (FEV(1)). Though unadjusted linear models of FEV(1) identified several genes strongly correlated with lung function, these correlations were due to racial differences in the distribution of both FEV(1) and gene expression, and were no longer statistically significant following adjustment for self-identified race. These results suggest that self-identified race is a critical confounding covariate in epidemiologic studies of gene expression and that, similar to genetic studies, careful consideration of self-identified race in gene expression profiling studies is needed to avoid spurious association. PMID:21254216

Sharma, Sunita; Murphy, Amy; Howrylak, Judie; Himes, Blanca; Cho, Michael H; Chu, Jen-Hwa; Hunninghake, Gary M; Fuhlbrigge, Anne; Klanderman, Barbara; Ziniti, John; Senter-Sylvia, Jody; Liu, Andy; Szefler, Stanley J; Strunk, Robert; Castro, Mario; Hansel, Nadia N; Diette, Gregory B; Vonakis, Becky M; Adkinson, N Franklin; Carey, Vincent J; Raby, Benjamin A

2011-02-01

370

Genes and pathways underlying regional and cell type changes in Alzheimer's disease  

PubMed Central

Background Transcriptional studies suggest Alzheimer's disease (AD) involves dysfunction of many cellular pathways, including synaptic transmission, cytoskeletal dynamics, energetics, and apoptosis. Despite known progression of AD pathologies, it is unclear how such striking regional vulnerability occurs, or which genes play causative roles in disease progression. Methods To address these issues, we performed a large-scale transcriptional analysis in the CA1 and relatively less vulnerable CA3 brain regions of individuals with advanced AD and nondemented controls. In our study, we assessed differential gene expression across region and disease status, compared our results to previous studies of similar design, and performed an unbiased co-expression analysis using weighted gene co-expression network analysis (WGCNA). Several disease genes were identified and validated using qRT-PCR. Results We find disease signatures consistent with several previous microarray studies, then extend these results to show a relationship between disease status and brain region. Specifically, genes showing decreased expression with AD progression tend to show enrichment in CA3 (and vice versa), suggesting transcription levels may reflect a region's vulnerability to disease. Additionally, we find several candidate vulnerability (ABCA1, MT1H, PDK4, RHOBTB3) and protection (FAM13A1, LINGO2, UNC13C) genes based on expression patterns. Finally, we use a systems-biology approach based on WGCNA to uncover disease-relevant expression patterns for major cell types, including pathways consistent with a key role for early microglial activation in AD. Conclusions These results paint a picture of AD as a multifaceted disease involving slight transcriptional changes in many genes between regions, coupled with a systemic immune response, gliosis, and neurodegeneration. Despite this complexity, we find that a consistent picture of gene expression in AD is emerging. PMID:23705665

2013-01-01

371

Screening of amyloid precursor protein gene mutation (APP 717 Val ? Ile) in Swedisch families with Alzheimer's disease  

Microsoft Academic Search

Summary  Screening for the APP 717 Val Ile mutation in the amyloid precursor protein (APP) gene in 34 Swedish families with familial Alzheimer's disease (FAD), 16 sporadic cases of Alzheimer's disease and five patients with Down's syndrome (DS) failed to identify further cases of the mutation. These results suggests that the mutation is rare among Swedish families with Alzheimer's disease. In

E. Almqvist; S. Lake; K. Axelman; K. Johansson; B. Winblad

1993-01-01

372

Prioritizing candidate disease genes by network-based boosting of genome-wide association data.  

PubMed

Network "guilt by association" (GBA) is a proven approach for identifying novel disease genes based on the observation that similar mutational phenotypes arise from functionally related genes. In principle, this approach could account even for nonadditive genetic interactions, which underlie the synergistic combinations of mutations often linked to complex diseases. Here, we analyze a large-scale, human gene functional interaction network (dubbed HumanNet). We show that candidate disease genes can be effectively identified by GBA in cross-validated tests using label propagation algorithms related to Google's PageRank. However, GBA has been shown to work poorly in genome-wide association studies (GWAS), where many genes are somewhat implicated, but few are known with very high certainty. Here, we resolve this by explicitly modeling the uncertainty of the associations and incorporating the uncertainty for the seed set into the GBA framework. We observe a significant boost in the power to detect validated candidate genes for Crohn's disease and type 2 diabetes by comparing our predictions to results from follow-up meta-analyses, with incorporation of the network serving to highlight the JAK-STAT pathway and associated adaptors GRB2/SHC1 in Crohn's disease and BACH2 in type 2 diabetes. Consideration of the network during GWAS thus conveys some of the benefits of enrolling more participants in the GWAS study. More generally, we demonstrate that a functional network of human genes provides a valuable statistical framework for prioritizing candidate disease genes, both for candidate gene-based and GWAS-based studies. PMID:21536720

Lee, Insuk; Blom, U Martin; Wang, Peggy I; Shim, Jung Eun; Marcotte, Edward M

2011-07-01

373

Rapid in vivo forward genetic approach for identifying axon death genes in Drosophila  

PubMed Central

Axons damaged by acute injury, toxic insults, or neurodegenerative diseases execute a poorly defined autodestruction signaling pathway leading to widespread fragmentation and functional loss. Here, we describe an approach to study Wallerian degeneration in the Drosophila L1 wing vein that allows for analysis of axon degenerative phenotypes with single-axon resolution in vivo. This method allows for the axotomy of specific subsets of axons followed by examination of progressive axonal degeneration and debris clearance alongside uninjured control axons. We developed new Flippase (FLP) reagents using proneural gene promoters to drive FLP expression very early in neural lineages. These tools allow for the production of mosaic clone populations with high efficiency in sensory neurons in the wing. We describe a collection of lines optimized for forward genetic mosaic screens using MARCM (mosaic analysis with a repressible cell marker; i.e., GFP-labeled, homozygous mutant) on all major autosomal arms (?95% of the fly genome). Finally, as a proof of principle we screened the X chromosome and identified a collection eight recessive and two dominant alleles of highwire, a ubiquitin E3 ligase required for axon degeneration. Similar unbiased forward genetic screens should help rapidly delineate axon death genes, thereby providing novel potential drug targets for therapeutic intervention to prevent axonal and synaptic loss. PMID:24958874

Neukomm, Lukas J.; Burdett, Thomas C.; Gonzalez, Michael A.; Züchner, Stephan; Freeman, Marc R.

2014-01-01

374

Prevalence of haemochromatosis gene mutations in Parkinson's disease  

PubMed Central

The aim of this study was to investigate a possible association between haemochromatosis (HFE) gene mutations and the prevalence of Parkinson's disease. The HFE gene encodes a protein that modulates iron absorption. Several studies have documented increased iron levels in the basal ganglia in patients with Parkinson's disease. In a study on patients with concurrent hereditary haemochromatosis and Parkinson's disease, abnormal deposition of iron in the basal ganglia was suggested as an inductor of Parkinson's disease. In this study, genotype frequencies of the HFE mutations C282Y, H63D and S65C were estimated in 388 patients with Parkinson's disease and compared with frequencies found in comparable studies. No significant differences were found in frequencies between the patients and comparable populations. This study does not indicate increased susceptibility to Parkinson's disease in HFE gene mutation carriers in Norway. PMID:17056630

Aamodt, Anne Hege; Stovner, Lars Jacob; Thorstensen, Ketil; Lydersen, Stian; White, Linda R; Aasly, Jan O

2007-01-01

375

Global gene expression profiling of somatic motor neuron populations with different vulnerability identify molecules and pathways of degeneration and protection  

PubMed Central

Different somatic motor neuron subpopulations show a differential vulnerability to degeneration in diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy and spinobulbar muscular atrophy. Studies in mutant superoxide dismutase 1 over-expressing amyotrophic lateral sclerosis model mice indicate that initiation of disease is intrinsic to motor neurons, while progression is promoted by astrocytes and microglia. Therefore, analysis of the normal transcriptional profile of motor neurons displaying differential vulnerability to degeneration in motor neuron disease could give important clues to the mechanisms of relative vulnerability. Global gene expression profiling of motor neurons isolated by laser capture microdissection from three anatomical nuclei of the normal rat, oculomotor/trochlear (cranial nerve 3/4), hypoglossal (cranial nerve 12) and lateral motor column of the cervical spinal cord, displaying differential vulnerability to degeneration in motor neuron disorders, identified enriched transcripts for each neuronal subpopulation. There were striking differences in the regulation of genes involved in endoplasmatic reticulum and mitochondrial function, ubiquitination, apoptosis regulation, nitrogen metabolism, calcium regulation, transport, growth and RNA processing; cellular pathways that have been implicated in motor neuron diseases. Confirmation of genes