Science.gov

Sample records for identifying genetic determinants

  1. Identifying genetic determinants of autoimmunity and immune dysregulation.

    PubMed

    Lucas, Carrie L; Lenardo, Michael J

    2015-12-01

    Common autoimmune diseases are relatively heterogeneous with both genetic and environmental factors influencing disease susceptibility and progression. As the populations in developed countries age, these chronic diseases will become an increasing burden in human suffering and health care costs. By contrast, rare immune diseases that are severe and develop early in childhood are frequently monogenic and fully penetrant, often with a Mendelian inheritance pattern. Although these may be incompatible with survival or cured by hematopoietic stem cell transplantation, we will argue that they constitute a rich source of genetic insights into immunological diseases. Here, we discuss five examples of well-studied Mendelian disease-causing genes and their known or predicted roles in conferring susceptibility to common, polygenic diseases of autoimmunity. Mendelian disease mutations, as experiments of nature, reveal human loci that are indispensable for immune regulation and, therefore, most promising as therapeutic targets. PMID:26433354

  2. Identifying the Environmental Factors That Determine the Genetic Structure of Populations

    PubMed Central

    Foll, Matthieu; Gaggiotti, Oscar

    2006-01-01

    The study of population genetic structure is a fundamental problem in population biology because it helps us obtain a deeper understanding of the evolutionary process. One of the issues most assiduously studied in this context is the assessment of the relative importance of environmental factors (geographic distance, language, temperature, altitude, etc.) on the genetic structure of populations. The most widely used method to address this question is the multivariate Mantel test, a nonparametric method that calculates a correlation coefficient between a dependent matrix of pairwise population genetic distances and one or more independent matrices of environmental differences. Here we present a hierarchical Bayesian method that estimates FST values for each local population and relates them to environmental factors using a generalized linear model. The method is demonstrated by applying it to two data sets, a data set for a population of the argan tree and a human data set comprising 51 populations distributed worldwide. We also carry out a simulation study to investigate the performance of the method and find that it can correctly identify the factors that play a role in the structuring of genetic diversity under a wide range of scenarios. PMID:16951078

  3. A Transposon Screen Identifies Genetic Determinants of Vibrio cholerae Resistance to High-Molecular-Weight Antibiotics.

    PubMed

    Dörr, Tobias; Delgado, Fernanda; Umans, Benjamin D; Gerding, Matthew A; Davis, Brigid M; Waldor, Matthew K

    2016-08-01

    Gram-negative bacteria are notoriously resistant to a variety of high-molecular-weight antibiotics due to the limited permeability of their outer membrane (OM). The basis of OM barrier function and the genetic factors required for its maintenance remain incompletely understood. Here, we employed transposon insertion sequencing to identify genes required for Vibrio cholerae resistance to vancomycin and bacitracin, antibiotics that are thought to be too large to efficiently penetrate the OM. The screen yielded several genes whose protein products are predicted to participate in processes important for OM barrier functions and for biofilm formation. In addition, we identified a novel factor, designated vigA (for vancomycin inhibits growth), that has not previously been characterized or linked to outer membrane function. The vigA open reading frame (ORF) codes for an inner membrane protein, and in its absence, cells became highly sensitive to glycopeptide antibiotics (vancomycin and ramoplanin) and bacitracin but not to other large antibiotics or detergents. In contrast to wild-type (WT) cells, the vigA mutant was stained with fluorescent vancomycin. These observations suggest that VigA specifically prevents the periplasmic accumulation of certain large antibiotics without exerting a general role in the maintenance of OM integrity. We also observed marked interspecies variability in the susceptibilities of Gram-negative pathogens to glycopeptides and bacitracin. Collectively, our findings suggest that the OM barrier is not absolute but rather depends on specific OM-antibiotic interactions. PMID:27216069

  4. Phenotype Similarity Regression for Identifying the Genetic Determinants of Rare Diseases

    PubMed Central

    Greene, Daniel; Richardson, Sylvia; Turro, Ernest

    2016-01-01

    Rare genetic disorders, which can now be studied systematically with affordable genome sequencing, are often caused by high-penetrance rare variants. Such disorders are often heterogeneous and characterized by abnormalities spanning multiple organ systems ascertained with variable clinical precision. Existing methods for identifying genes with variants responsible for rare diseases summarize phenotypes with unstructured binary or quantitative variables. The Human Phenotype Ontology (HPO) allows composite phenotypes to be represented systematically but association methods accounting for the ontological relationship between HPO terms do not exist. We present a Bayesian method to model the association between an HPO-coded patient phenotype and genotype. Our method estimates the probability of an association together with an HPO-coded phenotype characteristic of the disease. We thus formalize a clinical approach to phenotyping that is lacking in standard regression techniques for rare disease research. We demonstrate the power of our method by uncovering a number of true associations in a large collection of genome-sequenced and HPO-coded cases with rare diseases. PMID:26924528

  5. Phenotype Similarity Regression for Identifying the Genetic Determinants of Rare Diseases.

    PubMed

    Greene, Daniel; Richardson, Sylvia; Turro, Ernest

    2016-03-01

    Rare genetic disorders, which can now be studied systematically with affordable genome sequencing, are often caused by high-penetrance rare variants. Such disorders are often heterogeneous and characterized by abnormalities spanning multiple organ systems ascertained with variable clinical precision. Existing methods for identifying genes with variants responsible for rare diseases summarize phenotypes with unstructured binary or quantitative variables. The Human Phenotype Ontology (HPO) allows composite phenotypes to be represented systematically but association methods accounting for the ontological relationship between HPO terms do not exist. We present a Bayesian method to model the association between an HPO-coded patient phenotype and genotype. Our method estimates the probability of an association together with an HPO-coded phenotype characteristic of the disease. We thus formalize a clinical approach to phenotyping that is lacking in standard regression techniques for rare disease research. We demonstrate the power of our method by uncovering a number of true associations in a large collection of genome-sequenced and HPO-coded cases with rare diseases. PMID:26924528

  6. Identifying genetic determinants needed to establish a human gut symbiont in its habitat

    PubMed Central

    Goodman, Andrew L.; McNulty, Nathan P.; Zhao, Yue; Leip, Douglas; Mitra, Robi D.; Lozupone, Catherine A.; Knight, Rob; Gordon, Jeffrey I.

    2010-01-01

    Summary The human gut microbiota is a metabolic organ whose cellular composition is determined by a dynamic process of selection and competition. To identify microbial genes required for establishment of human symbionts in the gut, we developed an approach (insertion-sequencing, or INSeq) based on a mutagenic transposon that allows capture of adjacent chromosomal DNA to define its genomic location. We used massively parallel sequencing to monitor the relative abundance of tens of thousands of transposon mutants of a saccharolytic human gut bacterium, Bacteroides thetaiotaomicron, as they established themselves in wild-type and immunodeficient gnotobiotic mice, in the presence or absence of other human gut commensals. In vivo selection transforms this population, revealing functions necessary for survival in the gut: we show how this selection is influenced by community composition and competition for nutrients (vitamin B12). INSeq provides a broadly applicable platform to explore microbial adaptation to the gut and other ecosystems. PMID:19748469

  7. Yeast functional screen to identify genetic determinants capable of conferring abiotic stress tolerance in Jatropha curcas

    PubMed Central

    2010-01-01

    Background Environmentally inflicted stresses such as salinity and drought limit the plant productivity both in natural and agricultural system. Increasing emphasis has been directed to molecular breeding strategies to enhance the intrinsic ability of plant to survive stress conditions. Functional screens in microorganisms with heterologous genes are a rapid, effective and powerful tool to identify stress tolerant genes in plants. Jatropha curcas (Physic nut) has been identified as a potential source of biodiesel plant. In order to improve its productivity under stress conditions to benefit commercial plantations, we initiated prospecting of novel genes expressed during stress in J. curcas that can be utilized to enhance stress tolerance ability of plant. Results To identify genes expressed during salt tolerance, cDNA expression libraries were constructed from salt-stressed roots of J. curcas, regulated under the control of the yeast GAL1 system. Using a replica based screening, twenty thousand yeast transformants were screened to identify transformants expressing heterologous gene sequences from J. curcas with enhanced ability to tolerate stress. From the screen we obtained 32 full length genes from J. curcas [GenBank accession numbers FJ489601-FJ489611, FJ619041-FJ619057 and FJ623457-FJ623460] that can confer abiotic stress tolerance. As a part of this screen, we optimized conditions for salt stress in J. curcas, defined parameters for salt stress in yeast, as well as isolated three salt hypersensitive yeast strains shs-2, shs-6 and shs-8 generated through a process of random mutagenesis, and exhibited growth retardation beyond 750 mM NaCl. Further, we demonstrated complementation of the salt sensitive phenotypes in the shs mutants, and analyzed the expression patterns for selected J. curcas genes obtained from the screen in both leaf and root tissues after salt stress treatments. Conclusions The approach described in this report provides a rapid and universal

  8. A haploid genetic screen identifies the G1/S regulatory machinery as a determinant of Wee1 inhibitor sensitivity

    PubMed Central

    Heijink, Anne Margriet; Blomen, Vincent A.; Bisteau, Xavier; Degener, Fabian; Matsushita, Felipe Yu; Foijer, Floris; van Vugt, Marcel A. T. M.

    2015-01-01

    The Wee1 cell cycle checkpoint kinase prevents premature mitotic entry by inhibiting cyclin-dependent kinases. Chemical inhibitors of Wee1 are currently being tested clinically as targeted anticancer drugs. Wee1 inhibition is thought to be preferentially cytotoxic in p53-defective cancer cells. However, TP53 mutant cancers do not respond consistently to Wee1 inhibitor treatment, indicating the existence of genetic determinants of Wee1 inhibitor sensitivity other than TP53 status. To optimally facilitate patient selection for Wee1 inhibition and uncover potential resistance mechanisms, identification of these currently unknown genes is necessary. The aim of this study was therefore to identify gene mutations that determine Wee1 inhibitor sensitivity. We performed a genome-wide unbiased functional genetic screen in TP53 mutant near-haploid KBM-7 cells using gene-trap insertional mutagenesis. Insertion site mapping of cells that survived long-term Wee1 inhibition revealed enrichment of G1/S regulatory genes, including SKP2, CUL1, and CDK2. Stable depletion of SKP2, CUL1, or CDK2 or chemical Cdk2 inhibition rescued the γ-H2AX induction and abrogation of G2 phase as induced by Wee1 inhibition in breast and ovarian cancer cell lines. Remarkably, live cell imaging showed that depletion of SKP2, CUL1, or CDK2 did not rescue the Wee1 inhibition-induced karyokinesis and cytokinesis defects. These data indicate that the activity of the DNA replication machinery, beyond TP53 mutation status, determines Wee1 inhibitor sensitivity, and could serve as a selection criterion for Wee1-inhibitor eligible patients. Conversely, loss of the identified S-phase genes could serve as a mechanism of acquired resistance, which goes along with development of severe genomic instability. PMID:26598692

  9. Genetic modification and genetic determinism

    PubMed Central

    Resnik, David B; Vorhaus, Daniel B

    2006-01-01

    In this article we examine four objections to the genetic modification of human beings: the freedom argument, the giftedness argument, the authenticity argument, and the uniqueness argument. We then demonstrate that each of these arguments against genetic modification assumes a strong version of genetic determinism. Since these strong deterministic assumptions are false, the arguments against genetic modification, which assume and depend upon these assumptions, are therefore unsound. Serious discussion of the morality of genetic modification, and the development of sound science policy, should be driven by arguments that address the actual consequences of genetic modification for individuals and society, not by ones propped up by false or misleading biological assumptions. PMID:16800884

  10. A Genome-Wide Association Study Identifies rs2000999 as a Strong Genetic Determinant of Circulating Haptoglobin Levels

    PubMed Central

    Bonnefond, Amélie; Bouatia-Naji, Nabila; Dechaume, Aurélie; Siest, Gérard; Herbeth, Bernard; Falchi, Mario; Bottolo, Leonardo; Guéant-Rodriguez, Rosa-Maria; Lecoeur, Cécile; Langlois, Michel R.; Labrune, Yann; Ruokonen, Aimo; El Shamieh, Said; Stathopoulou, Maria G.; Morandi, Anita; Maffeis, Claudio; Meyre, David; Delanghe, Joris R.; Jacobson, Peter; Sjöström, Lars; Carlsson, Lena M. S.; Walley, Andrew; Elliott, Paul; Jarvelin, Marjo-Riita; Dedoussis, George V.; Visvikis-Siest, Sophie

    2012-01-01

    Haptoglobin is an acute phase inflammatory marker. Its main function is to bind hemoglobin released from erythrocytes to aid its elimination, and thereby haptoglobin prevents the generation of reactive oxygen species in the blood. Haptoglobin levels have been repeatedly associated with a variety of inflammation-linked infectious and non-infectious diseases, including malaria, tuberculosis, human immunodeficiency virus, hepatitis C, diabetes, carotid atherosclerosis, and acute myocardial infarction. However, a comprehensive genetic assessment of the inter-individual variability of circulating haptoglobin levels has not been conducted so far. We used a genome-wide association study initially conducted in 631 French children followed by a replication in three additional European sample sets and we identified a common single nucleotide polymorphism (SNP), rs2000999 located in the Haptoglobin gene (HP) as a strong genetic predictor of circulating Haptoglobin levels (Poverall = 8.1×10−59), explaining 45.4% of its genetic variability (11.8% of Hp global variance). The functional relevance of rs2000999 was further demonstrated by its specific association with HP mRNA levels (β = 0.23±0.08, P = 0.007). Finally, SNP rs2000999 was associated with decreased total and low-density lipoprotein cholesterol in 8,789 European children (Ptotal cholesterol = 0.002 and PLDL = 0.0008). Given the central position of haptoglobin in many inflammation-related metabolic pathways, the relevance of rs2000999 genotyping when evaluating haptoglobin concentration should be further investigated in order to improve its diagnostic/therapeutic and/or prevention impact. PMID:22403646

  11. Integration of Experiments across Diverse Environments Identifies the Genetic Determinants of Variation in Sorghum bicolor Seed Element Composition.

    PubMed

    Shakoor, Nadia; Ziegler, Greg; Dilkes, Brian P; Brenton, Zachary; Boyles, Richard; Connolly, Erin L; Kresovich, Stephen; Baxter, Ivan

    2016-04-01

    Seedling establishment and seed nutritional quality require the sequestration of sufficient element nutrients. The identification of genes and alleles that modify element content in the grains of cereals, including sorghum (Sorghum bicolor), is fundamental to developing breeding and selection methods aimed at increasing bioavailable element content and improving crop growth. We have developed a high-throughput work flow for the simultaneous measurement of multiple elements in sorghum seeds. We measured seed element levels in the genotyped Sorghum Association Panel, representing all major cultivated sorghum races from diverse geographic and climatic regions, and mapped alleles contributing to seed element variation across three environments by genome-wide association. We observed significant phenotypic and genetic correlation between several elements across multiple years and diverse environments. The power of combining high-precision measurements with genome-wide association was demonstrated by implementing rank transformation and a multilocus mixed model to map alleles controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence similarity to genes characterized in previous studies identified likely causative genes for the accumulation of zinc, manganese, nickel, calcium, and cadmium in sorghum seeds. In addition to strong candidates for these five elements, we provide a list of candidate loci for several other elements. Our approach enabled the identification of single-nucleotide polymorphisms in strong linkage disequilibrium with causative polymorphisms that can be evaluated in targeted selection strategies for plant breeding and improvement. PMID:26896393

  12. Integration of Experiments across Diverse Environments Identifies the Genetic Determinants of Variation in Sorghum bicolor Seed Element Composition1[OPEN

    PubMed Central

    Connolly, Erin L.

    2016-01-01

    Seedling establishment and seed nutritional quality require the sequestration of sufficient element nutrients. The identification of genes and alleles that modify element content in the grains of cereals, including sorghum (Sorghum bicolor), is fundamental to developing breeding and selection methods aimed at increasing bioavailable element content and improving crop growth. We have developed a high-throughput work flow for the simultaneous measurement of multiple elements in sorghum seeds. We measured seed element levels in the genotyped Sorghum Association Panel, representing all major cultivated sorghum races from diverse geographic and climatic regions, and mapped alleles contributing to seed element variation across three environments by genome-wide association. We observed significant phenotypic and genetic correlation between several elements across multiple years and diverse environments. The power of combining high-precision measurements with genome-wide association was demonstrated by implementing rank transformation and a multilocus mixed model to map alleles controlling 20 element traits, identifying 255 loci affecting the sorghum seed ionome. Sequence similarity to genes characterized in previous studies identified likely causative genes for the accumulation of zinc, manganese, nickel, calcium, and cadmium in sorghum seeds. In addition to strong candidates for these five elements, we provide a list of candidate loci for several other elements. Our approach enabled the identification of single-nucleotide polymorphisms in strong linkage disequilibrium with causative polymorphisms that can be evaluated in targeted selection strategies for plant breeding and improvement. PMID:26896393

  13. Sugarcane brown rust – determining genetic variation in the pathogen and identifying potential novel sources of resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A major reason for the withdrawal of sugarcane cultivars from production in is the breakdown of resistance to brown rust caused by Puccinia melanaocephala. Genetic characterization of diversity among races of P. melanocephala would help in breeding for resistance to the pathogen. Breeding for durabl...

  14. Genetic determinants of cognitive responses to caffeine drinking identified from a double-blind, randomized, controlled trial.

    PubMed

    Renda, Giulia; Committeri, Giorgia; Zimarino, Marco; Di Nicola, Marta; Tatasciore, Alfonso; Ruggieri, Benedetta; Ambrosini, Ettore; Viola, Vanda; Antonucci, Ivana; Stuppia, Liborio; De Caterina, Raffaele

    2015-06-01

    The widely observed between-subject variability in cognitive responses to coffee may have a genetic basis. We evaluated cognitive responses to caffeine throughout three complex cognitive tasks assessing different subdomains of attention, namely Alerting and Orienting (Categorical Search Task) and Executive Control (Stroop Task and Eriksen Flanker Task). We explored whether they are influenced by gene variants affecting adenosine metabolism or catecholamine receptors. We recruited 106 healthy male subjects who were administered, in a double-blind design, 40mL of either a decaffeinated coffee preparation plus 3mg/kg caffeine (caf) or the corresponding vehicle (decaf). The protocol was repeated 24h later with the alternative preparation. Cognitive tasks were performed between 30min and 2h after caf or decaf administration. Each subject underwent ambulatory blood pressure monitoring for 2h. Blood samples were collected for genetic evaluations and for plasma caffeine and catecholamines measures. We found a significant reduction of reaction times in two of the cognitive tasks (Categorical Search Task and Stroop Task) after caf compared with decaf, indicating that caffeine, on average, improved the attention level in the domains under investigation. We also found, however, a great inter-individual variability in the cognitive performance responses to caffeine. In exploring genetic sources for such variability, we found a relation between polymorphisms of adenosine A2A and the caffeine effects on the attentional domains of Orienting and Executive control. In conclusion, variability in the attentional response to coffee may be partly explained by genetic polymorphisms of adenosine and adrenergic receptors. PMID:25819143

  15. Determinants of genetic diversity.

    PubMed

    Ellegren, Hans; Galtier, Nicolas

    2016-07-01

    Genetic polymorphism varies among species and within genomes, and has important implications for the evolution and conservation of species. The determinants of this variation have been poorly understood, but population genomic data from a wide range of organisms now make it possible to delineate the underlying evolutionary processes, notably how variation in the effective population size (Ne) governs genetic diversity. Comparative population genomics is on its way to providing a solution to 'Lewontin's paradox' - the discrepancy between the many orders of magnitude of variation in population size and the much narrower distribution of diversity levels. It seems that linked selection plays an important part both in the overall genetic diversity of a species and in the variation in diversity within the genome. Genetic diversity also seems to be predictable from the life history of a species. PMID:27265362

  16. Identifying genetic relatives without compromising privacy

    PubMed Central

    He, Dan; Furlotte, Nicholas A.; Hormozdiari, Farhad; Joo, Jong Wha J.; Wadia, Akshay; Ostrovsky, Rafail; Sahai, Amit; Eskin, Eleazar

    2014-01-01

    The development of high-throughput genomic technologies has impacted many areas of genetic research. While many applications of these technologies focus on the discovery of genes involved in disease from population samples, applications of genomic technologies to an individual’s genome or personal genomics have recently gained much interest. One such application is the identification of relatives from genetic data. In this application, genetic information from a set of individuals is collected in a database, and each pair of individuals is compared in order to identify genetic relatives. An inherent issue that arises in the identification of relatives is privacy. In this article, we propose a method for identifying genetic relatives without compromising privacy by taking advantage of novel cryptographic techniques customized for secure and private comparison of genetic information. We demonstrate the utility of these techniques by allowing a pair of individuals to discover whether or not they are related without compromising their genetic information or revealing it to a third party. The idea is that individuals only share enough special-purpose cryptographically protected information with each other to identify whether or not they are relatives, but not enough to expose any information about their genomes. We show in HapMap and 1000 Genomes data that our method can recover first- and second-order genetic relationships and, through simulations, show that our method can identify relationships as distant as third cousins while preserving privacy. PMID:24614977

  17. Genome-Wide Association Study of Absolute QRS Voltage Identifies Common Variants of TBX3 as Genetic Determinants of Left Ventricular Mass in a Healthy Japanese Population

    PubMed Central

    Sano, Motoaki; Kamitsuji, Shigeo; Kamatani, Naoyuki; Tabara, Yasuharu; Kawaguchi, Takahisa; Matsuda, Fumihiko; Yamagishi, Hiroyuki; Fukuda, Keiichi

    2016-01-01

    Left ventricular hypertrophy (LVH) represents a common final pathway leading to heart failure. We have searched for genetic determinants of left ventricular (LV) mass using values for absolute electrocardiographic QRS voltage in a healthy Japanese population. After adjusting for covariates, the corrected S and R wave voltages in leads V1 and V5 from 2,994 healthy volunteers in the Japan Pharmacogenomics Data Science Consortium (JPDSC) database were subjected to a genome-wide association study. Potential associations were validated by an in silico replication study using an independent Japanese population obtained from the Nagahama Prospective Genome Cohort for Comprehensive Human Bioscience. We identified a novel association between the lead V5, R wave voltage in Japanese individuals and SNP rs7301743[G], which maps near the gene encoding T-box transcription factor Tbx3. Meta-analysis of two independent Japanese datasets demonstrated a marginally significant association of SNP rs7301743 in TBX3|MED13L with a 0.071 mV (95% CI, 0.038–0.11 mV) shorter R wave amplitude in the V5 lead per minor allele copy (P = 7.635 x 10−8). The transcriptional repressor, TBX3, is proposed to suppress the development of working ventricular myocardium. Our findings suggest that genetic variation of Tbx3 is associated with LV mass in a healthy Japanese population. PMID:27195777

  18. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity

    PubMed Central

    Bajrami, Ilirjana; Frankum, Jessica R.; Konde, Asha; Miller, Rowan E.; Rehman, Farah L.; Brough, Rachel; Campbell, James; Sims, David; Rafiq, Rumana; Hooper, Sean; Chen, Lina; Kozarewa, Iwanka; Assiotis, Ioannis; Fenwick, Kerry; Natrajan, Rachael; Lord, Christopher J.; Ashworth, Alan

    2016-01-01

    Small molecule inhibitors of PARP1/2 such as olaparib have been proposed to serve as a synthetic lethal therapy for cancers that harbor BRCA1 or BRCA2 mutations. Indeed, in clinical trials PARP1/2 inhibitors elicit sustained anti-tumor responses in patients with germ-line BRCA gene mutations. In hypothesizing that additional genetic determinants might direct use of these drugs, we conducted a genome-wide synthetic lethal screen for candidate olaparib sensitivity genes. In support of this hypothesis, the set of identified genes included known determinants of olaparib sensitivity, such as BRCA1, RAD51 and Fanconi’s anemia susceptibility genes. Additionally, the set included genes implicated in established networks of DNA repair, DNA cohesion and chromatin remodelling, none of which were known previously to confer sensitivity to PARP1/2 inhibition. Notably, integration of the list of candidate sensitivity genes with data from tumor DNA sequencing studies identified CDK12 deficiency as a clinically relevant biomarker of PARP1/2 inhibitor sensitivity. In models of high-grade serous ovarian cancer (HGS-OVCa), CDK12 attenuation was sufficient to confer sensitivity to PARP1/2 inhibition, suppression of DNA repair via homologous recombination and reduced expression of BRCA1. As one of only nine genes known to be mutated in HGS-OVCa, CDK12 has properties that should confirm interest in its utility as a biomarker, particularly in ongoing clinical trials of PARP1/2 inhibitors and other agents that trigger replication fork arrest. PMID:24240700

  19. Identifying environmental correlates of intraspecific genetic variation.

    PubMed

    Harrisson, K A; Yen, J D L; Pavlova, A; Rourke, M L; Gilligan, D; Ingram, B A; Lyon, J; Tonkin, Z; Sunnucks, P

    2016-09-01

    Genetic variation is critical to the persistence of populations and their capacity to adapt to environmental change. The distribution of genetic variation across a species' range can reveal critical information that is not necessarily represented in species occurrence or abundance patterns. We identified environmental factors associated with the amount of intraspecific, individual-based genetic variation across the range of a widespread freshwater fish species, the Murray cod Maccullochella peelii. We used two different approaches to statistically quantify the relative importance of predictor variables, allowing for nonlinear relationships: a random forest model and a Bayesian approach. The latter also accounted for population history. Both approaches identified associations between homozygosity by locus and both disturbance to the natural flow regime and mean annual flow. Homozygosity by locus was negatively associated with disturbance to the natural flow regime, suggesting that river reaches with more disturbed flow regimes may support larger, more genetically diverse populations. Our findings are consistent with the hypothesis that artificially induced perennial flows in regulated channels may provide greater and more consistent habitat and reduce the frequency of population bottlenecks that can occur frequently under the highly variable and unpredictable natural flow regime of the system. Although extensive river regulation across eastern Australia has not had an overall positive effect on Murray cod numbers over the past century, regulation may not represent the primary threat to Murray cod survival. Instead, pressures other than flow regulation may be more critical to the persistence of Murray cod (for example, reduced frequency of large floods, overfishing and chemical pollution). PMID:27273322

  20. New Test Helps Identify Rare Genetic Diseases in Newborns

    MedlinePlus

    ... fullstory_159097.html New Test Helps Identify Rare Genetic Diseases in Newborns 'Next-generation gene sequencing' could ... greatly improve doctors' ability to quickly diagnose rare genetic diseases in newborns, researchers say. The new test ...

  1. Genetically Determined Height and Coronary Artery Disease

    PubMed Central

    Nelson, C.P.; Hamby, S.E.; Saleheen, D.; Hopewell, J.C.; Zeng, L.; Assimes, T.L.; Kanoni, S.; Willenborg, C.; Burgess, S.; Amouyel, P.; Anand, S.; Blankenberg, S.; Boehm, B.O.; Clarke, R.J.; Collins, R.; Dedoussis, G.; Farrall, M.; Franks, P.W.; Groop, L.; Hall, A.S.; Hamsten, A.; Hengstenberg, C.; Hovingh, G. Kees; Ingelsson, E.; Kathiresan, S.; Kee, F.; König, I.R.; Kooner, J.; Lehtimäki, T.; März, W.; McPherson, R.; Metspalu, A.; Nieminen, M.S.; O’Donnell, C.J.; Palmer, C.N.A.; Peters, A.; Perola, M.; Reilly, M.P.; Ripatti, S.; Roberts, R.; Salomaa, V.; Shah, S.H.; Schreiber, S.; Siegbahn, A.; Thorsteinsdottir, U.; Veronesi, G.; Wareham, N.; Willer, C.J.; Zalloua, P.A.; Erdmann, J.; Deloukas, P.; Watkins, H.; Schunkert, H.; Danesh, J.; Thompson, J.R.; Samani, N.J.

    2015-01-01

    BACKGROUND The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. METHODS We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. RESULTS We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quartile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. CONCLUSIONS There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. PMID:25853659

  2. Genetic approaches for identifying kinetochore components in Saccharomyces cerevisiae

    SciTech Connect

    Doheny, K.F.; Puziss, J.; Spencer, F.; Hieter, P.

    1993-12-31

    A fundamental aspect of the cell division cycle is the chromosome cycle in which each of the chromosomal DNA molecules undergoes a series of morphological changes and complex movements to ensure faithful distribution at mitosis. The gene products responsible for execution of the chromosome cycle include structural components, such as those that assemble into the mitotic spindle apparatus, and regulatory components, such as those that coordinate the ordered series of events leading to chromosome segregation within the cell cycle. We have been taking several genetic approaches to identify genes encoding determinants critical to the chromosome cycle in the budding yeast, S. cerevisiae.

  3. Genetic markers cannot determine Jewish descent

    PubMed Central

    Falk, Raphael

    2015-01-01

    Humans differentiate, classify, and discriminate: social interaction is a basic property of human Darwinian evolution. Presumably inherent differential physical as well as behavioral properties have always been criteria for identifying friend or foe. Yet, biological determinism is a relatively modern term, and scientific racism is, oddly enough, largely a consequence or a product of the Age of Enlightenment and the establishment of the notion of human equality. In recent decades ever-increasing efforts and ingenuity were invested in identifying Biblical Israelite genotypic common denominators by analysing an assortment of phenotypes, like facial patterns, blood types, diseases, DNA-sequences, and more. It becomes overwhelmingly clear that although Jews maintained detectable vertical genetic continuity along generations of socio-religious-cultural relationship, also intensive horizontal genetic relations were maintained both between Jewish communities and with the gentile surrounding. Thus, in spite of considerable consanguinity, there is no Jewish genotype to identify. PMID:25653666

  4. Whole exome sequencing to identify genetic causes of short stature

    PubMed Central

    Guo, Michael H.; Shen, Yiping; Walvoord, Emily C.; Miller, Timothy C.; Moon, Jennifer E.; Hirschhorn, Joel N; Dauber, Andrew

    2014-01-01

    Background/Aims Short stature is a common reason for presentation to pediatric endocrinology clinics. However, for most patients, no cause for the short stature can be identified. As genetics plays a strong role in height, we sought to identify known and novel genetic causes of short stature. Methods We recruited 14 children with severe short stature of unknown etiology. We conducted whole exome sequencing of the patients and their family members. We used an analysis pipeline to identify rare nonsynonymous genetic variants that cause the short stature. Results We identified a genetic cause of short stature in 5 of the 14 patients. This included cases of Floating Harbor syndrome, Kenny-Caffey syndrome, the progeroid form of Ehlers-Danlos syndrome, as well as two cases of the 3-M syndrome. For remaining patients, we have generated lists of candidate variants. Conclusions Whole exome sequencing can help identify genetic causes of short stature in the context of defined genetic syndromes, but may be less effective in identifying novel genetic causes of short stature in individual families. Utilized in the clinic, whole exome sequencing can provide clinically relevant diagnoses for these patients. Rare syndromic causes of short stature may be under-recognized and under-diagnosed in pediatric endocrinology clinics. PMID:24970356

  5. Genetic determinants of HDL metabolism.

    PubMed

    Ossoli, A; Gomaraschi, M; Franceschini, G; Calabresi, L

    2014-01-01

    Plasma high density lipoproteins (HDL) comprise a highly heterogeneous family of lipoprotein particles, with subclasses that can be separated and identified according to density, size, surface charge as well as shape and protein composition. There is evidence that these subclasses may differ in their functional properties. The individual plasma HDL cholesterol (HDL-C) level is generally taken as a snapshot of the steady-state concentration of all circulating HDL subclasses together, but this is insufficient to capture the structural and functional variation in HDL particles. HDL are continuously remodeled and metabolized in plasma and interstitial fluids, through the interaction with a large number of factors, including structural proteins, membrane transporters, enzymes, transfer proteins and receptors. Genetic variation in these factors can lead to essential changes in plasma HDL levels, and to remarkable changes in HDL particle density, size, surface charge, shape, and composition in lipids and apolipoproteins. This review discusses the impact of rare mutations and common variants in genes encoding factors involved in HDL remodeling and metabolism on plasma HDL-C levels and particle distribution. The study of the effects of human genetic variation in major players in HDL metabolism provides important clues on how individual factors modulate the formation, maturation, remodeling and catabolism of HDL. PMID:24606513

  6. New Test Helps Identify Rare Genetic Diseases in Newborns

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_159097.html New Test Helps Identify Rare Genetic Diseases in Newborns ' ... 31, 2016 MONDAY, May 30, 2016 (HealthDay News) -- New gene screening methods may greatly improve doctors' ability ...

  7. Identifying genetically driven clinical phenotypes using linear mixed models.

    PubMed

    Mosley, Jonathan D; Witte, John S; Larkin, Emma K; Bastarache, Lisa; Shaffer, Christian M; Karnes, Jason H; Stein, C Michael; Phillips, Elizabeth; Hebbring, Scott J; Brilliant, Murray H; Mayer, John; Ye, Zhan; Roden, Dan M; Denny, Joshua C

    2016-01-01

    We hypothesized that generalized linear mixed models (GLMMs), which estimate the additive genetic variance underlying phenotype variability, would facilitate rapid characterization of clinical phenotypes from an electronic health record. We evaluated 1,288 phenotypes in 29,349 subjects of European ancestry with single-nucleotide polymorphism (SNP) genotyping on the Illumina Exome Beadchip. We show that genetic liability estimates are primarily driven by SNPs identified by prior genome-wide association studies and SNPs within the human leukocyte antigen (HLA) region. We identify 44 (false discovery rate q<0.05) phenotypes associated with HLA SNP variation and show that hypothyroidism is genetically correlated with Type I diabetes (rG=0.31, s.e. 0.12, P=0.003). We also report novel SNP associations for hypothyroidism near HLA-DQA1/HLA-DQB1 at rs6906021 (combined odds ratio (OR)=1.2 (95% confidence interval (CI): 1.1-1.2), P=9.8 × 10(-11)) and for polymyalgia rheumatica near C6orf10 at rs6910071 (OR=1.5 (95% CI: 1.3-1.6), P=1.3 × 10(-10)). Phenome-wide application of GLMMs identifies phenotypes with important genetic drivers, and focusing on these phenotypes can identify novel genetic associations. PMID:27109359

  8. Identifying genetically driven clinical phenotypes using linear mixed models

    PubMed Central

    Mosley, Jonathan D.; Witte, John S.; Larkin, Emma K.; Bastarache, Lisa; Shaffer, Christian M.; Karnes, Jason H.; Stein, C. Michael; Phillips, Elizabeth; Hebbring, Scott J.; Brilliant, Murray H.; Mayer, John; Ye, Zhan; Roden, Dan M.; Denny, Joshua C.

    2016-01-01

    We hypothesized that generalized linear mixed models (GLMMs), which estimate the additive genetic variance underlying phenotype variability, would facilitate rapid characterization of clinical phenotypes from an electronic health record. We evaluated 1,288 phenotypes in 29,349 subjects of European ancestry with single-nucleotide polymorphism (SNP) genotyping on the Illumina Exome Beadchip. We show that genetic liability estimates are primarily driven by SNPs identified by prior genome-wide association studies and SNPs within the human leukocyte antigen (HLA) region. We identify 44 (false discovery rate q<0.05) phenotypes associated with HLA SNP variation and show that hypothyroidism is genetically correlated with Type I diabetes (rG=0.31, s.e. 0.12, P=0.003). We also report novel SNP associations for hypothyroidism near HLA-DQA1/HLA-DQB1 at rs6906021 (combined odds ratio (OR)=1.2 (95% confidence interval (CI): 1.1–1.2), P=9.8 × 10−11) and for polymyalgia rheumatica near C6orf10 at rs6910071 (OR=1.5 (95% CI: 1.3–1.6), P=1.3 × 10−10). Phenome-wide application of GLMMs identifies phenotypes with important genetic drivers, and focusing on these phenotypes can identify novel genetic associations. PMID:27109359

  9. Genetic tests to identify risk for breast cancer

    PubMed Central

    Lynch, Julie; Venne, Vickie; Berse, Brygida

    2016-01-01

    Objectives To describe the currently available genetic tests that identify hereditary risk for breast cancer. Data sources Systematic review of scientific literature, clinical practice guidelines, and data published by test manufacturers. Conclusion Changes in gene patent laws and advances in sequencing technologies have resulted in rapid expansion of genetic testing. While BRCA1/2 are the most recognized genes linked to breast cancer, several laboratories now offer multi-gene panels to detect many risk-related mutations. Implication for Nursing Practice Genetic testing will be increasingly important in the prevention, diagnosis, and treatment of breast cancer. Oncology and advanced practice nurses need to understand risk factors, significance of various genetic tests, and patient counseling. PMID:25951739

  10. Genetics of sex determination in tilapiine species.

    PubMed

    Cnaani, A; Lee, B-Y; Zilberman, N; Ozouf-Costaz, C; Hulata, G; Ron, M; D'Hont, A; Baroiller, J-F; D'Cotta, H; Penman, D J; Tomasino, E; Coutanceau, J-P; Pepey, E; Shirak, A; Kocher, T D

    2008-01-01

    We identified DNA markers linked to sex determining genes in six closely related species of tilapiine fishes. The mode of sex determination differed among species. In Oreochromis karongae and Tilapia mariae the sex-determining locus is on linkage group (LG) 3 and the female is heterogametic (WZ-ZZ system). In O. niloticus and T. zillii the sex-determining locus is on LG1 and the male is heterogametic (XX-XY system). A more complex pattern was observed in O. aureus and O. mossambicus, in which markers on both LG1 and LG3 were associated with sex. We found evidence for sex-linked lethal effects on LG1, as well as interactions between loci in the two linkage groups. Comparison of genetic and physical maps demonstrated a broad region of recombination suppression harboring the sex-determining locus on LG3. Sex-specific recombination suppression was found in the female heterogametic sex. Sequence analysis showed the accumulation of repetitive elements in this region. Phylogenetic analysis suggests that at least two transitions in the mode of sex determination have occurred in this clade. This variation in sex determination mechanisms among closely related species makes tilapias an excellent model system for studying the evolution of sex chromosomes in vertebrates. PMID:18418034

  11. A case of familial exudative vitreoretinopathy identified after genetic testing.

    PubMed

    Miller, Kyle E; Willis, Mary J; McClatchey, Scott K

    2015-04-01

    We report the case of a 21-month-old girl who was found to have familial exudative vitreoretinopathy after genetic testing revealed a genetic deletion at 7q22. She had previously been followed for exotropia; however, fundus examinations in the office were thought to be normal. After the pediatric geneticist identified the link between 7q22 deletions and vitreoretinopathies an examination under anesthesia was performed. Fluorescein angiography during this examination confirmed the presence of avascular areas of the retina. PMID:25828824

  12. Genetic Essentialism: On the Deceptive Determinism of DNA

    PubMed Central

    Dar-Nimrod, Ilan; Heine, Steven J.

    2012-01-01

    This paper introduces the notion of genetic essentialist biases: cognitive biases associated with essentialist thinking that are elicited when people encounter arguments that genes are relevant for a behavior, condition, or social group. Learning about genetic attributions for various human conditions leads to a particular set of thoughts regarding those conditions: they are more likely to be perceived as a) immutable and determined, b) having a specific etiology, c) homogeneous and discrete, and, d) natural, which can lead to the naturalistic fallacy. There are rare cases of “strong genetic explanation” when such responses to genetic attributions may be appropriate, however people tend to over-weigh genetic attributions compared with competing attributions even in cases of “weak genetic explanation,” which are far more common. Research on people’s understanding of race, gender, sexual orientation, criminality, mental illness and obesity is reviewed through a genetic essentialism lens, highlighting attitudinal, cognitive and behavioral changes that stem from consideration of genetic attributions as bases of these categories. Scientists and media portrayals of genetic discoveries are discussed with respect to genetic essentialism, as is the role that genetic essentialism has played (and continues to play) in various public policies, legislation, scientific endeavors, and ideological movements in recent history. Last, moderating factors and interventions to reduce the magnitude of genetic essentialism are discussed that identify promising directions to explore in order to reduce these biases. PMID:21142350

  13. Identifying Common Genetic Risk Factors of Diabetic Neuropathies

    PubMed Central

    Witzel, Ini-Isabée; Jelinek, Herbert F.; Khalaf, Kinda; Lee, Sungmun; Khandoker, Ahsan H.; Alsafar, Habiba

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is a global public health problem of epidemic proportions, with 60–70% of affected individuals suffering from associated neurovascular complications that act on multiple organ systems. The most common and clinically significant neuropathies of T2DM include uremic neuropathy, peripheral neuropathy, and cardiac autonomic neuropathy. These conditions seriously impact an individual’s quality of life and significantly increase the risk of morbidity and mortality. Although advances in gene sequencing technologies have identified several genetic variants that may regulate the development and progression of T2DM, little is known about whether or not the variants are involved in disease progression and how these genetic variants are associated with diabetic neuropathy specifically. Significant missing heritability data and complex disease etiologies remain to be explained. This article is the first to provide a review of the genetic risk variants implicated in the diabetic neuropathies and to highlight potential commonalities. We thereby aim to contribute to the creation of a genetic-metabolic model that will help to elucidate the cause of diabetic neuropathies, evaluate a patient’s risk profile, and ultimately facilitate preventative and targeted treatment for the individual. PMID:26074879

  14. A model agreement for genetic research in socially identifiable populations.

    PubMed

    Foster, M W; Bernsten, D; Carter, T H

    1998-09-01

    Genetic research increasingly focuses on population-specific human genetic diversity. However, the naming of a human population in public databases and scientific publications entails collective risks for its members. Those collective risks can be evaluated and protections can be put in place by the establishment of a dialogue with the subject population, before a research study is initiated. Here we describe an agreement to undertake genetic research with a Native American tribe. We identified the culturally appropriate public and private social units within which community members are accustomed to make decisions about health. We then engaged those units in a process of communal discourse. In their discourses about our proposed study, community members expressed most concern about culturally specific implications. We also found that, in this population, private social units were more influential in communal decision making than were public authorities. An agreement was reached that defined the scope of research, provided options for naming the population in publications (including anonymity), and addressed the distribution of royalties from intellectual property, the future use of archival samples, and specific cultural concerns. We found that informed consent by individuals could not fully address these collective issues. This approach may serve as a general model for the undertaking of population-specific genetic studies. PMID:9718343

  15. Identifying Novel Cancer Therapies Using Chemical Genetics and Zebrafish.

    PubMed

    Dang, Michelle; Fogley, Rachel; Zon, Leonard I

    2016-01-01

    Chemical genetics is the use of small molecules to perturb biological pathways. This technique is a powerful tool for implicating genes and pathways in developmental programs and disease, and simultaneously provides a platform for the discovery of novel therapeutics. The zebrafish is an advantageous model for in vivo high-throughput small molecule screening due to translational appeal, high fecundity, and a unique set of developmental characteristics that support genetic manipulation, chemical treatment, and phenotype detection. Chemical genetic screens in zebrafish can identify hit compounds that target oncogenic processes-including cancer initiation and maintenance, metastasis, and angiogenesis-and may serve as cancer therapies. Notably, by combining drug discovery and animal testing, in vivo screening of small molecules in zebrafish has enabled rapid translation of hit anti-cancer compounds to the clinic, especially through the repurposing of FDA-approved drugs. Future technological advancements in automation and high-powered imaging, as well as the development and characterization of new mutant and transgenic lines, will expand the scope of chemical genetics in zebrafish. PMID:27165351

  16. Unconventional P-35S sequence identified in genetically modified maize.

    PubMed

    Al-Hmoud, Nisreen; Al-Husseini, Nawar; Ibrahim-Alobaide, Mohammed A; Kübler, Eric; Farfoura, Mahmoud; Alobydi, Hytham; Al-Rousan, Hiyam

    2014-01-01

    The Cauliflower Mosaic Virus 35S promoter sequence, CaMV P-35S, is one of several commonly used genetic targets to detect genetically modified maize and is found in most GMOs. In this research we report the finding of an alternative P-35S sequence and its incidence in GM maize marketed in Jordan. The primer pair normally used to amplify a 123 bp DNA fragment of the CaMV P-35S promoter in GMOs also amplified a previously undetected alternative sequence of CaMV P-35S in GM maize samples which we term V3. The amplified V3 sequence comprises 386 base pairs and was not found in the standard wild-type maize, MON810 and MON 863 GM maize. The identified GM maize samples carrying the V3 sequence were found free of CaMV when compared with CaMV infected brown mustard sample. The data of sequence alignment analysis of the V3 genetic element showed 90% similarity with the matching P-35S sequence of the cauliflower mosaic virus isolate CabbB-JI and 99% similarity with matching P-35S sequences found in several binary plant vectors, of which the binary vector locus JQ693018 is one example. The current study showed an increase of 44% in the incidence of the identified 386 bp sequence in GM maize sold in Jordan's markets during the period 2009 and 2012. PMID:24495911

  17. Genetic determinants of Sindbis virus neuroinvasiveness.

    PubMed Central

    Dubuisson, J; Lustig, S; Ruggli, N; Akov, Y; Rice, C M

    1997-01-01

    After peripheral inoculation of mice, Sindbis virus replicates in a variety of tissues, leading to viremia. In some cases, the virus can enter the central nervous system (CNS) and cause lethal encephalitis. The outcome of infection is age and virus strain dependent. Recently, two pairs of Sindbis virus variants differing in neurovirulence and neuroinvasiveness were derived by limited serial passaging in mouse brain. Two early passage isolates (SVA and SVB) were neurotropic but did not cause lethal encephalitis. SVB, but not SVA, was neuroinvasive. A second independent pair of isolates (SVN and SVNI), which had undergone more extensive mouse brain passaging, were highly neurotropic and caused lethal encephalitis. Only SVNI could reach the brain after peripheral inoculation. From these isolates, virion RNAs were obtained and used to construct full-length cDNA clones from which infectious RNA transcripts could be recovered. The strains recovered from these clones were shown to retain the appropriate phenotypes in weanling mice. Construction and analysis of recombinant viruses were used to define the genetic loci determining neuroinvasion. For SVB, neuroinvasiveness was determined by a single residue in the E2 glycoprotein (Gln-55). For SVNI, neuroinvasive loci were identified in both the 5' noncoding region (position 8) and the E2 glycoprotein (Met-190). Either of these changes on the SVN background was sufficient to confer a neuroinvasive phenotype, although these recombinants were less virulent. To completely mimic the SVNI phenotype, three SVNI-specific substitutions on the SVN background were required: G at position 8, E2 Met-190, and Lys-260, which by itself had no effect on neuroinvasion. These genetically defined strains should be useful for dissecting the molecular mechanisms leading to Sindbis virus invasion of the CNS. PMID:9060616

  18. Proteomic and Genetic Approaches Identify Syk as an AML Target

    PubMed Central

    Hahn, Cynthia K.; Berchuck, Jacob E.; Ross, Kenneth N.; Kakoza, Rose M.; Clauser, Karl; Schinzel, Anna C.; Ross, Linda; Galinsky, Ilene; Davis, Tina N.; Silver, Serena J.; Root, David E.; Stone, Richard M.; DeAngelo, Daniel J.; Carroll, Martin; Hahn, William C.; Carr, Steven A.; Golub, Todd R.; Kung, Andrew L.; Stegmaier, Kimberly

    2009-01-01

    SUMMARY Cell-based screening can facilitate rapid identification of compounds inducing complex cellular phenotypes. Advancing a compound toward the clinic, however, generally requires identification of precise mechanisms of action. We previously found that epidermal growth factor receptor (EGFR) inhibitors induce acute myeloid leukemia (AML) differentiation via a non-EGFR mechanism. In this report, we integrated proteomic and RNAi-based strategies to identify their off-target anti-AML mechanism. These orthogonal approaches identified Syk as a target in AML. Genetic and pharmacological inactivation of Syk with a drug in clinical trial for other indications promoted differentiation of AML cells and attenuated leukemia growth in vivo. These results demonstrate the power of integrating diverse chemical, proteomic, and genomic screening approaches to identify therapeutic strategies for cancer. PMID:19800574

  19. Identifying Interacting Genetic Variations by Fish-Swarm Logic Regression

    PubMed Central

    Yang, Aiyuan; Yan, Chunxia; Zhu, Feng; Zhao, Zhongmeng; Cao, Zhi

    2013-01-01

    Understanding associations between genotypes and complex traits is a fundamental problem in human genetics. A major open problem in mapping phenotypes is that of identifying a set of interacting genetic variants, which might contribute to complex traits. Logic regression (LR) is a powerful multivariant association tool. Several LR-based approaches have been successfully applied to different datasets. However, these approaches are not adequate with regard to accuracy and efficiency. In this paper, we propose a new LR-based approach, called fish-swarm logic regression (FSLR), which improves the logic regression process by incorporating swarm optimization. In our approach, a school of fish agents are conducted in parallel. Each fish agent holds a regression model, while the school searches for better models through various preset behaviors. A swarm algorithm improves the accuracy and the efficiency by speeding up the convergence and preventing it from dropping into local optimums. We apply our approach on a real screening dataset and a series of simulation scenarios. Compared to three existing LR-based approaches, our approach outperforms them by having lower type I and type II error rates, being able to identify more preset causal sites, and performing at faster speeds. PMID:23984382

  20. Identifying common genetic variants in blood pressure due to polygenic pleiotropy with associated phenotypes.

    PubMed

    Andreassen, Ole A; McEvoy, Linda K; Thompson, Wesley K; Wang, Yunpeng; Reppe, Sjur; Schork, Andrew J; Zuber, Verena; Barrett-Connor, Elizabeth; Gautvik, Kaare; Aukrust, Pål; Karlsen, Tom H; Djurovic, Srdjan; Desikan, Rahul S; Dale, Anders M

    2014-04-01

    Blood pressure is a critical determinant of cardiovascular morbidity and mortality. It is affected by environmental factors, but has a strong heritable component. Despite recent large genome-wide association studies, few genetic risk factors for blood pressure have been identified. Epidemiological studies suggest associations between blood pressure and several diseases and traits, which may partly arise from a shared genetic basis (genetic pleiotropy). Using genome-wide association studies summary statistics and a genetic pleiotropy-informed conditional false discovery rate method, we systematically investigated genetic overlap between systolic blood pressure (SBP) and 12 comorbid traits and diseases. We found significant enrichment of single nucleotide polymorphisms associated with SBP as a function of their association with body mass index, low-density lipoprotein, waist/hip ratio, schizophrenia, bone mineral density, type 1 diabetes mellitus, and celiac disease. In contrast, the magnitude of enrichment due to shared polygenic effects was smaller with the other phenotypes (triglycerides, high-density lipoproteins, type 2 diabetes mellitus, rheumatoid arthritis, and height). Applying the conditional false discovery rate method to the enriched phenotypes, we identified 62 loci associated with SBP (false discovery rate <0.01), including 42 novel loci. The observed polygenic overlap between SBP and several related disorders indicates that the epidemiological associations are not mediated solely via lifestyle factors but also reflect an etiologic relation that warrants further investigation. The new gene loci identified implicate novel genetic mechanisms related to lipid biology and the immune system in SBP. PMID:24396023

  1. Identifying common genetic variants in blood pressure due to polygenic pleiotropy with associated phenotypes

    PubMed Central

    Andreassen, Ole A.; McEvoy, Linda K.; Thompson, Wesley K.; Wang, Yunpeng; Reppe, Sjur; Schork, Andrew J.; Zuber, Verena; Barrett-Connor, Elizabeth; Gautvik, Kaare; Aukrust, Pål; Karlsen, Tom H.; Djurovic, Srdjan; Desikan, Rahul S.; Dale, Anders M.

    2014-01-01

    Blood pressure is a critical determinant of cardiovascular morbidity and mortality. It is affected by environmental factors, but has a strong heritable component. Despite recent large genome-wide association studies, few genetic risk factors for blood pressure have been identified. Epidemiological studies suggest associations between blood pressure and several diseases and traits, which may partly arise from a shared genetic basis (genetic pleiotropy). Using genome-wide association studies summary statistics and a genetic pleiotropy-informed conditional False Discovery Rate method, we systematically investigated genetic overlap between systolic blood pressure and 12 co-morbid traits and diseases. We found significant ‘enrichment’ of single nucleotide polymorphisms associated with systolic blood pressure as a function of their association with body mass index, low density lipoprotein, waist hip ratio, schizophrenia, bone mineral density, type 1 diabetes and celiac disease. In contrast, the magnitude of enrichment due to shared polygenic effects was smaller with the other phenotypes (triglycerides, high density lipoproteins, type 2 diabetes, rheumatoid arthritis, and height). Applying the conditional False Discovery Rate method to the enriched phenotypes, we identified 62 loci associated with systolic blood pressure (False Discovery Rate < 0.01), including 42 novel loci. The observed polygenic overlap between systolic blood pressure and several related disorders indicates that the epidemiological associations are not mediated solely via lifestyle factors, but also reflect an etiological relation that warrants further investigation. The new gene loci identified implicate novel genetic mechanisms related to lipid biology and the immune system in systolic blood pressure. PMID:24396023

  2. A forward genetic screen identifies erythrocyte CD55 as essential for Plasmodium falciparum invasion **

    PubMed Central

    Egan, Elizabeth S.; Jiang, Rays H.Y.; Moechtar, Mischka A.; Barteneva, Natasha S.; Weekes, Michael P.; Nobre, Luis V.; Gygi, Steven P.; Paulo, Joao A.; Frantzreb, Charles; Tani, Yoshihiko; Takahashi, Junko; Watanabe, Seishi; Goldberg, Jonathan; Paul, Aditya S.; Brugnara, Carlo; Root, David E.; Wiegand, Roger C.; Doench, John G.; Duraisingh, Manoj T.

    2015-01-01

    Efforts to identify host determinants for malaria have been hindered by the absence of a nucleus in erythrocytes, precluding genetic manipulation in the cell where the parasite replicates. We used cultured red blood cells derived from hematopoietic stem cells to carry out a forward genetic screen for Plasmodium falciparum host determinants. We found that CD55 is an essential host factor for P. falciparum invasion. CD55-null erythrocytes were refractory to invasion by all isolates of P. falciparum because parasites failed to attach properly to the erythrocyte surface. Thus, CD55 is an attractive target for the development of malaria therapeutics. Hematopoietic stem cell-based forward genetic screens may be valuable for the identification of additional host determinants of malaria pathogenesis. PMID:25954012

  3. Using Epidemiological Models and Genetic Selection to Identify Theoretical Opportunities to Reduce Disease Impact

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection for disease resistance is a contemporary topic with developing approaches for genetic improvement. Merging the sciences of genetic selection and epidemiology is essential to identify selection schemes to enhance disease resistance. Epidemiological models can identify theoretical opportuni...

  4. SLDR: a computational technique to identify novel genetic regulatory relationships

    PubMed Central

    2014-01-01

    We developed a new computational technique called Step-Level Differential Response (SLDR) to identify genetic regulatory relationships. Our technique takes advantages of functional genomics data for the same species under different perturbation conditions, therefore complementary to current popular computational techniques. It can particularly identify "rare" activation/inhibition relationship events that can be difficult to find in experimental results. In SLDR, we model each candidate target gene as being controlled by N binary-state regulators that lead to ≤2N observable states ("step-levels") for the target. We applied SLDR to the study of the GEO microarray data set GSE25644, which consists of 158 different mutant S. cerevisiae gene expressional profiles. For each target gene t, we first clustered ordered samples into various clusters, each approximating an observable step-level of t to screen out the "de-centric" target. Then, we ordered each gene x as a candidate regulator and aligned t to x for the purpose of examining the step-level correlations between low expression set of x (Ro) and high expression set of x (Rh) from the regulator x to t, by finding max f(t, x): |Ro-Rh| over all candidate × in the genome for each t. We therefore obtained activation and inhibitions events from different combinations of Ro and Rh. Furthermore, we developed criteria for filtering out less-confident regulators, estimated the number of regulators for each target t, and evaluated identified top-ranking regulator-target relationship. Our results can be cross-validated with the Yeast Fitness database. SLDR is also computationally efficient with o(N2) complexity. In summary, we believe SLDR can be applied to the mining of functional genomics big data for future network biology and network medicine applications. PMID:25350940

  5. Host genetic determinants of influenza pathogenicity

    PubMed Central

    Lin, Tsai-Yu; Brass, Abraham L.

    2014-01-01

    Despite effective vaccines, influenza remains a major global health threat due to the morbidity and mortality caused by seasonal epidemics, as well as the 2009 pandemic. Also of profound concern are the rare but potentially catastrophic transmissions of avian influenza to humans, highlighted by a recent H7N9 influenza outbreak. Murine and human studies reveal that the clinical course of influenza is the result of a combination of both host and viral genetic determinants. While viral pathogenicity has long been the subject of intensive efforts, research to elucidate host genetic determinants, particularly human, is now in the ascendant, and the goal of this review is to highlight these recent insights. PMID:23933004

  6. Genetic lineage tracing identifies in situ Kit-expressing cardiomyocytes.

    PubMed

    Liu, Qiaozhen; Yang, Rui; Huang, Xiuzhen; Zhang, Hui; He, Lingjuan; Zhang, Libo; Tian, Xueying; Nie, Yu; Hu, Shengshou; Yan, Yan; Zhang, Li; Qiao, Zengyong; Wang, Qing-Dong; Lui, Kathy O; Zhou, Bin

    2016-01-01

    Cardiac cells marked by c-Kit or Kit, dubbed cardiac stem cells (CSCs), are in clinical trials to investigate their ability to stimulate cardiac regeneration and repair. These studies were initially motivated by the purported cardiogenic activity of these cells. Recent lineage tracing studies using Kit promoter to drive expression of the inducible Cre recombinase showed that these CSCs had highly limited cardiogenic activity, inadequate to support efficient cardiac repair. Here we reassess the lineage tracing data by investigating the identity of cells immediately after Cre labeling. Our instant lineage tracing approach identifies Kit-expressing cardiomyocytes, which are labeled immediately after tamoxifen induction. In combination with long-term lineage tracing experiments, these data reveal that the large majority of long-term labeled cardiomyocytes are pre-existing Kit-expressing cardiomyocytes rather than cardiomyocytes formed de novo from CSCs. This study presents a new interpretation for the contribution of Kit(+) cells to cardiomyocytes and shows that Kit genetic lineage tracing over-estimates the cardiogenic activity of Kit(+) CSCs. PMID:26634606

  7. DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics

    PubMed Central

    2014-01-01

    Background De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder (ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD genes. Methods To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and motor-somatosensory neocortex, a critical nexus for risk. The algorithm casts the ensemble data as a hidden Markov random field in which the graph structure is determined by gene co-expression and it combines these interrelationships with node-specific observations, namely gene identity, expression, genetic data and the estimated effect on risk. Results Using currently available genetic data and a specific developmental time period for gene co-expression, DAWN identified 127 genes that plausibly affect risk, and a set of likely ASD subnetworks. Validation experiments making use of published targeted resequencing results demonstrate its efficacy in reliably predicting ASD genes. DAWN also successfully predicts known ASD genes, not included in the genetic data used to create the model. Conclusions Validation studies demonstrate that DAWN is effective in predicting ASD genes and subnetworks by leveraging genetic and gene expression data. The findings reported here implicate neurite extension and neuronal arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene expression data from other brain regions and tissues would likely identify novel ASD genes. DAWN can also be used for other complex disorders to identify genes and subnetworks in those disorders. PMID:24602502

  8. Alphaviruses: Population genetics and determinants of emergence

    PubMed Central

    Weaver, Scott C.; Winegar, Richard; Manger, Ian D.; Forrester, Naomi L.

    2013-01-01

    Alphaviruses are responsible for several medically important emerging diseases and are also significant veterinary pathogens. Due to the aerosol infectivity of some alphaviruses and their ability to cause severe, sometimes fatal neurologic diseases, they are also of biodefense importance. This review discusses the ecology, epidemiology and molecular virology of the alphaviruses, then focuses on three of the most important members of the genus: Venezuelan and eastern equine encephalitis and chikungunya viruses, with emphasis on their genetics and emergence mechanisms, and how current knowledge as well as gaps influence our ability to detect and determine the source of both natural outbreaks and potential use for bioterrorism. This article is one of a series in Antiviral Research on the genetic diversity of emerging viruses. PMID:22522323

  9. Circulating ANP Genetic Association Study Identifies a Novel Gene Cluster Associated with Stroke in Caucasians

    PubMed Central

    Pereira, Naveen L.; Tosakulwong, Nirubol; Scott, Christopher G.; Jenkins, Gregory D.; Prodduturi, Naresh; Chai, Yubo; Olson, Timothy M.; Rodeheffer, Richard J.; Redfield, Margaret M.; Weinshilboum, Richard M.; Burnett, John C

    2015-01-01

    Background The goal of this study was to identify genetic determinants of plasma NT-proatrial natriuretic peptide (NT-proANP) in the general community by performing a large-scale genetic association study and to assess its functional significance in in-vitro cell studies and on disease susceptibility. Methods and Results Genotyping was performed across 16,000 genes in 893 randomly selected individuals, with replication in 891 subjects from the community. Plasma NT-proANP1–98 concentrations were determined using a radioimmunoassay. Thirty-three genome-wide significant single nucleotide polymorphisms (SNPs) were identified in the MTHFR-CLCN6-NPPA-NPPB locus and were all replicated. To assess significance, in-vitro functional genomic studies and clinical outcomes for carriers of a SNP rs5063 (V32M) located in NPPA that represented the most significant variation in this genetic locus, were assessed. The rs5063 variant allozyme in transfected HEK293 cells was decreased to 55±8% of wild-type protein (p=0.01) as assessed by quantitative Western blots. Carriers of rs5063 had lower NT-proANP levels (1427 vs. 2291 pmol/L, p<0.001), higher diastolic blood pressures (75 vs. 73 mmHg, p=0.009) and were at an increased risk for stroke as compared to wild-type subjects independent of age, sex, diabetes, hypertension, atrial fibrillation, and cholesterol levels (hazard ratio 1.6, p=0.004). Conclusions This is the first large-scale genetic association study of circulating NT-proANP levels performed with replication and functional assessment that identified genetic variants in the MTHFR-CLCN6-NPPA-NPPB cluster to be significantly associated with NT-proANP levels. The clinical significance of this variation relates to lower NT-proANP levels, higher blood pressures and an increased risk for stroke in the general community. PMID:25452597

  10. Method of detecting genetic translocations identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Tkachuk, Douglas

    2001-01-01

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  11. Method of detecting genetic deletions identified with chromosomal abnormalities

    DOEpatents

    Gray, Joe W; Pinkel, Daniel; Tkachuk, Douglas

    2013-11-26

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyzes. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acids probes are typically of a complexity greater tha 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particlularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML) and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar ut genetically different diseases, and for many prognostic and diagnostic applications.

  12. Categorizing genetic tests to identify their ethical, legal, and social implications.

    PubMed

    Burke, W; Pinsky, L E; Press, N A

    2001-01-01

    Practice standards in medical genetics provide an implicit guide to the ethical, legal, and social implications (ELSI) of genetic tests. The common use of nondirective counseling reflects the principle that many testing decisions should be determined by personal values. Yet geneticists make test recommendations in some circumstances, e.g., RET mutation testing for MEN2 and newborn screening for phenylketonuria (PKU). Conversely, many geneticists recommend against testing for Apolipoprotein E (ApoE) alleles to predict Alzheimer disease (AD) risk. Taken together, these examples suggest that genetic tests can be categorized by a joint consideration of clinical validity and availability of effective treatment for persons who test positive. For genetic tests with high clinical validity/no treatment (e.g., presymptomatic testing for Huntington disease), the predominant concern is adequate nondirective counseling to ensure an informed, autonomous decision. By contrast, the predominant concern for tests with high clinical validity/effective treatment (e.g., PKU) is assuring access to care for eligible persons. For tests with limited clinical validity/no treatment (e.g., ApoE), recommending against test use can be justified on the principle of avoiding harm. For a fourth category, tests with limited clinical validity/effective treatment (e.g., HFE mutation testing for hereditary hemochromatosis), net benefit is the issue: the balance between potential benefits of treatment and potential harms of genetic labeling must be weighed. Where uncertainty exists concerning both clinical validity and effectiveness of treatment, as in the case of BRCA 1/2 mutation testing, the value of testing may vary according to different testing contexts. This approach to test categorization allows a rapid determination of the predominant ELSI concerns for different kinds of genetic tests and identifies the data most urgently needed for test evaluation. PMID:11778984

  13. Comparative Genetics: Synergizing Human and NOD Mouse Studies for Identifying Genetic Causation of Type 1 Diabetes

    PubMed Central

    Driver, John P.; Chen, Yi-Guang; Mathews, Clayton E.

    2012-01-01

    Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come. PMID:23804259

  14. Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone.

    PubMed

    Cooke, Georgina M; Landguth, Erin L; Beheregaray, Luciano B

    2014-07-01

    Ecological speciation involves the evolution of reproductive isolation and niche divergence in the absence of a physical barrier to gene flow. The process is one of the most controversial topics of the speciation debate, particularly in tropical regions. Here, we investigate ecologically based divergence across an Amazonian ecotone in the electric fish, Steatogenys elegans. We combine phylogenetics, genome scans, and population genetics with a recently developed individual-based evolutionary landscape genetics approach that incorporates selection. This framework is used to assess the relative contributions of geography and divergent natural selection between environments as biodiversity drivers. We report on two closely related and sympatric lineages that exemplify how divergent selection across a major Amazonian aquatic ecotone (i.e., between rivers with markedly different hydrochemical properties) may result in replicated ecologically mediated speciation. The results link selection across an ecological gradient with reproductive isolation and we propose that assortative mating based on water color may be driving the divergence. Divergence resulting from ecologically driven selection highlights the importance of considering environmental heterogeneity in studies of speciation in tropical regions. Furthermore, we show that framing ecological speciation in a spatially explicit evolutionary landscape genetics framework provides an important first step in exploring a wide range of the potential effects of spatial dependence in natural selection. PMID:24641091

  15. Identifying the genetic components underlying the pathophysiology of movement disorders

    PubMed Central

    Ezquerra, Mario; Compta, Yaroslau; Marti, Maria J

    2011-01-01

    Movement disorders are a heterogeneous group of neurological conditions, few of which have been classically described as bona fide hereditary illnesses (Huntington’s chorea, for instance). Most are considered to be either sporadic or to feature varying degrees of familial aggregation (parkinsonism and dystonia). In the late twentieth century, Mendelian monogenic mutations were found for movement disorders with a clear and consistent family history. Although important, these findings apply only to very rare forms of movement disorders. Already in the twenty-first century, and taking advantage of the modern developments in genetics and molecular biology, growing attention is being paid to the complex genetics of movement disorders. The search for risk genetic variants (polymorphisms) in large cohorts and the identification of different risk variants across different populations and ethnic groups are under way, with the most relevant findings to date corresponding to recent genome wide association studies in Parkinson’s disease. These new approaches focusing on risk variants may enable the design of screening tests for early or even preclinical disease, and the identification of likely therapeutic targets. PMID:23776369

  16. DNA enrichment approaches to identify unauthorized genetically modified organisms (GMOs).

    PubMed

    Arulandhu, Alfred J; van Dijk, Jeroen P; Dobnik, David; Holst-Jensen, Arne; Shi, Jianxin; Zel, Jana; Kok, Esther J

    2016-07-01

    With the increased global production of different genetically modified (GM) plant varieties, chances increase that unauthorized GM organisms (UGMOs) may enter the food chain. At the same time, the detection of UGMOs is a challenging task because of the limited sequence information that will generally be available. PCR-based methods are available to detect and quantify known UGMOs in specific cases. If this approach is not feasible, DNA enrichment of the unknown adjacent sequences of known GMO elements is one way to detect the presence of UGMOs in a food or feed product. These enrichment approaches are also known as chromosome walking or gene walking (GW). In recent years, enrichment approaches have been coupled with next generation sequencing (NGS) analysis and implemented in, amongst others, the medical and microbiological fields. The present review will provide an overview of these approaches and an evaluation of their applicability in the identification of UGMOs in complex food or feed samples. PMID:27086015

  17. A Yeast Chemical Genetic Screen Identifies Inhibitors of Human Telomerase

    PubMed Central

    Wong, Lai Hong; Unciti-Broceta, Asier; Spitzer, Michaela; White, Rachel; Tyers, Mike; Harrington, Lea

    2013-01-01

    Summary Telomerase comprises a reverse transcriptase and an internal RNA template that maintains telomeres in many eukaryotes, and it is a well-validated cancer target. However, there is a dearth of small molecules with efficacy against human telomerase in vivo. We developed a surrogate yeast high-throughput assay to identify human telomerase inhibitors. The reversibility of growth arrest induced by active human telomerase was assessed against a library of 678 compounds preselected for bioactivity in S. cerevisiae. Four of eight compounds identified reproducibly restored growth to strains expressing active human telomerase, and three of these four compounds also specifically inhibited purified human telomerase in vitro. These compounds represent probes for human telomerase function, and potential entry points for development of lead compounds against telomerase-positive cancers. PMID:23521791

  18. Computational approaches to identify functional genetic variants in cancer genomes

    PubMed Central

    Gonzalez-Perez, Abel; Mustonen, Ville; Reva, Boris; Ritchie, Graham R.S.; Creixell, Pau; Karchin, Rachel; Vazquez, Miguel; Fink, J. Lynn; Kassahn, Karin S.; Pearson, John V.; Bader, Gary; Boutros, Paul C.; Muthuswamy, Lakshmi; Ouellette, B.F. Francis; Reimand, Jüri; Linding, Rune; Shibata, Tatsuhiro; Valencia, Alfonso; Butler, Adam; Dronov, Serge; Flicek, Paul; Shannon, Nick B.; Carter, Hannah; Ding, Li; Sander, Chris; Stuart, Josh M.; Stein, Lincoln D.; Lopez-Bigas, Nuria

    2014-01-01

    The International Cancer Genome Consortium (ICGC) aims to catalog genomic abnormalities in tumors from 50 different cancer types. Genome sequencing reveals hundreds to thousands of somatic mutations in each tumor, but only a minority drive tumor progression. We present the result of discussions within the ICGC on how to address the challenge of identifying mutations that contribute to oncogenesis, tumor maintenance or response to therapy, and recommend computational techniques to annotate somatic variants and predict their impact on cancer phenotype. PMID:23900255

  19. Integrative network-based approach identifies key genetic elements in breast invasive carcinoma

    PubMed Central

    2015-01-01

    Background Breast cancer is a genetically heterogeneous type of cancer that belongs to the most prevalent types with a high mortality rate. Treatment and prognosis of breast cancer would profit largely from a correct classification and identification of genetic key drivers and major determinants driving the tumorigenesis process. In the light of the availability of tumor genomic and epigenomic data from different sources and experiments, new integrative approaches are needed to boost the probability of identifying such genetic key drivers. We present here an integrative network-based approach that is able to associate regulatory network interactions with the development of breast carcinoma by integrating information from gene expression, DNA methylation, miRNA expression, and somatic mutation datasets. Results Our results showed strong association between regulatory elements from different data sources in terms of the mutual regulatory influence and genomic proximity. By analyzing different types of regulatory interactions, TF-gene, miRNA-mRNA, and proximity analysis of somatic variants, we identified 106 genes, 68 miRNAs, and 9 mutations that are candidate drivers of oncogenic processes in breast cancer. Moreover, we unraveled regulatory interactions among these key drivers and the other elements in the breast cancer network. Intriguingly, about one third of the identified driver genes are targeted by known anti-cancer drugs and the majority of the identified key miRNAs are implicated in cancerogenesis of multiple organs. Also, the identified driver mutations likely cause damaging effects on protein functions. The constructed gene network and the identified key drivers were compared to well-established network-based methods. Conclusion The integrated molecular analysis enabled by the presented network-based approach substantially expands our knowledge base of prospective genomic drivers of genes, miRNAs, and mutations. For a good part of the identified key drivers

  20. Identifying Signatures of Selection in Genetic Time Series

    PubMed Central

    Feder, Alison F.; Kryazhimskiy, Sergey; Plotkin, Joshua B.

    2014-01-01

    Both genetic drift and natural selection cause the frequencies of alleles in a population to vary over time. Discriminating between these two evolutionary forces, based on a time series of samples from a population, remains an outstanding problem with increasing relevance to modern data sets. Even in the idealized situation when the sampled locus is independent of all other loci, this problem is difficult to solve, especially when the size of the population from which the samples are drawn is unknown. A standard χ2-based likelihood-ratio test was previously proposed to address this problem. Here we show that the χ2-test of selection substantially underestimates the probability of type I error, leading to more false positives than indicated by its P-value, especially at stringent P-values. We introduce two methods to correct this bias. The empirical likelihood-ratio test (ELRT) rejects neutrality when the likelihood-ratio statistic falls in the tail of the empirical distribution obtained under the most likely neutral population size. The frequency increment test (FIT) rejects neutrality if the distribution of normalized allele-frequency increments exhibits a mean that deviates significantly from zero. We characterize the statistical power of these two tests for selection, and we apply them to three experimental data sets. We demonstrate that both ELRT and FIT have power to detect selection in practical parameter regimes, such as those encountered in microbial evolution experiments. Our analysis applies to a single diallelic locus, assumed independent of all other loci, which is most relevant to full-genome selection scans in sexual organisms, and also to evolution experiments in asexual organisms as long as clonal interference is weak. Different techniques will be required to detect selection in time series of cosegregating linked loci. PMID:24318534

  1. Genetic Diseases and Genetic Determinism Models in French Secondary School Biology Textbooks

    ERIC Educational Resources Information Center

    Castera, Jeremy; Bruguiere, Catherine; Clement, Pierre

    2008-01-01

    The presentation of genetic diseases in French secondary school biology textbooks is analysed to determine the major conceptions taught in the field of human genetics. References to genetic diseases, and the processes by which they are explained (monogeny, polygeny, chromosomal anomaly and environmental influence) are studied in recent French…

  2. Genetic Approaches To Identifying Novel Osteoporosis Drug Targets.

    PubMed

    Brommage, Robert

    2015-10-01

    During the past two decades effective drugs for treating osteoporosis have been developed, including anti-resorptives inhibiting bone resorption (estrogens, the SERM raloxifene, four bisphosphonates, RANKL inhibitor denosumab) and the anabolic bone forming daily injectable peptide teriparatide. Two potential drugs (odanacatib and romosozumab) are in late stage clinical development. The most pressing unmet need is for orally active anabolic drugs. This review describes the basic biological studies involved in developing these drugs, including the animal models employed for osteoporosis drug development. The genomics revolution continues to identify potential novel osteoporosis drug targets. Studies include human GWAS studies and identification of mutant genes in subjects having abnormal bone mass, mouse QTL and gene knockouts, and gene expression studies. Multiple lines of evidence indicate that Wnt signaling plays a major role in regulating bone formation and continued study of this complex pathway is likely to lead to key discoveries. In addition to the classic Wnt signaling targets DKK1 and sclerostin, LRP4, LRP5/LRP6, SFRP4, WNT16, and NOTUM can potentially be targeted to modulate Wnt signaling. Next-generation whole genome and exome sequencing, RNA-sequencing and CRISPR/CAS9 gene editing are new experimental techniques contributing to understanding the genome. The International Knockout Mouse Consortium efforts to knockout and phenotype all mouse genes are poised to accelerate. Accumulating knowledge will focus attention on readily accessible databases (Big Data). Efforts are underway by the International Bone and Mineral Society to develop an annotated Skeletome database providing information on all genes directly influencing bone mass, architecture, mineralization or strength. PMID:25833316

  3. Identifying pathogenic determinants of Ascochyta rabiei via genetic complementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction – The necrotrophic pathogen Ascochyta rabiei causes chickpea ascochyta blight, an economically important disease worldwide. Despite extensive investigations into the biology and epidemiology of the disease, very little is known about the molecular mechanisms of the pathogen. The object...

  4. Identifying genetic determinants of host resistance to Marek's disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek's disease (MD) is a contagious disease of poultry induced by an alpha-herpesvirus known as Marek's disease virus (MDV). MD has been controlled by vaccination since the 1970s but it remains a serious potential threat to the world poultry industry since: 1) commercial poultry populations at larg...

  5. Genetic Determinants of Epigenetic Patterns: Providing Insight into Disease

    PubMed Central

    Cazaly, Emma; Charlesworth, Jac; Dickinson, Joanne L; Holloway, Adele F

    2015-01-01

    The field of epigenetics and our understanding of the mechanisms that regulate the establishment, maintenance and heritability of epigenetic patterns continue to grow at a remarkable rate. This information is providing increased understanding of the role of epigenetic changes in disease, insight into the underlying causes of these epigenetic changes and revealing new avenues for therapeutic intervention. Epigenetic modifiers are increasingly being pursued as therapeutic targets in a range of diseases, with a number of agents targeting epigenetic modifications already proving effective in diseases such as cancer. Although it is well established that DNA mutations and aberrant expression of epigenetic modifiers play a key role in disease, attention is now turning to the interplay between genetic and epigenetic factors in complex disease etiology. The role of genetic variability in determining epigenetic profiles, which can then be modified by environmental and stochastic factors, is becoming more apparent. Understanding the interplay between genetic and epigenetic factors is likely to aid in identifying individuals most likely to benefit from epigenetic therapies. This goal is coming closer to realization because of continual advances in laboratory and statistical tools enabling improvements in the integration of genomic, epigenomic and phenotypic data. PMID:25822796

  6. Novel genetic loci identified for the pathophysiology of childhood obesity in the Hispanic population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genetic variants responsible for susceptibility to obesity and its comorbidities among Hispanic children have not been identified. The VIVA LA FAMILIA Study was designed to genetically map childhood obesity and associated biological processes in the Hispanic population. A genome-wide association stu...

  7. Genetic compatibility determines endophyte-grass combinations.

    PubMed

    Saikkonen, Kari; Wäli, Piippa R; Helander, Marjo

    2010-01-01

    Even highly mutually beneficial microbial-plant interactions, such as mycorrhizal- and rhizobial-plant exchanges, involve selfishness, cheating and power-struggles between the partners, which depending on prevailing selective pressures, lead to a continuum of interactions from antagonistic to mutualistic. Using manipulated grass-endophyte combinations in a five year common garden experiment, we show that grass genotypes and genetic mismatches constrain genetic combinations between the vertically (via host seeds) transmitted endophytes and the out-crossing host, thereby reducing infections in established grass populations. Infections were lost in both grass tillers and seedlings in F(1) and F(2) generations, respectively. Experimental plants were collected as seeds from two different environments, i.e., meadows and nearby riverbanks. Endophyte-related benefits to the host included an increased number of inflorescences, but only in meadow plants and not until the last growing season of the experiment. Our results illustrate the importance of genetic host specificity and trans-generational maternal effects on the genetic structure of a host population, which act as destabilizing forces in endophyte-grass symbioses. We propose that (1) genetic mismatches may act as a buffering mechanism against highly competitive endophyte-grass genotype combinations threatening the biodiversity of grassland communities and (2) these mismatches should be acknowledged, particularly in breeding programmes aimed at harnessing systemic and heritable endophytes to improve the agriculturally valuable characteristics of cultivars. PMID:20614034

  8. INNER EAR EMBRYOGENESIS: GENETIC AND ENVIRONMENTAL DETERMINANTS

    EPA Science Inventory

    The anatomy and developmental molecular genetics of the inner ear from establishment of the otic placode to formation of the definitive cochlea and vestibular apparatus will be reviewed and the complex 3-D structural changes that shape the developing inner ear will be illustrated...

  9. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    PubMed Central

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  10. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    PubMed

    Pires, Nuno D; Bemer, Marian; Müller, Lena M; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict. PMID:26811909

  11. Genetic determinants of cutaneous melanoma predisposition.

    PubMed

    Udayakumar, Durga; Mahato, Bisundev; Gabree, Michele; Tsao, Hensin

    2010-09-01

    In the last 2 decades, advances in genomic technologies and molecular biology have accelerated the identification of multiple genetic loci that confer risk for cutaneous melanoma. The risk alleles range from rarely occurring, high-risk variants with a strong familial predisposition to low-risk to moderate-risk variants with modest melanoma association. Although the high-risk alleles are limited to the CDKN2A and CDK4 loci, the authors of recent genome-wide association studies have uncovered a set of variants in pigmentation loci that contribute to low risk. A biological validation of these new findings would provide greater understanding of the disease. In this review we describe some of the important risk loci and their association to risk of developing cutaneous melanoma and also address the current clinical challenges in CDKN2A genetic testing. PMID:21051013

  12. Identifying Genetic Hotspots by Mapping Molecular Diversity of Widespread Trees: When Commonness Matters.

    PubMed

    Souto, Cintia P; Mathiasen, Paula; Acosta, María Cristina; Quiroga, María Paula; Vidal-Russell, Romina; Echeverría, Cristian; Premoli, Andrea C

    2015-01-01

    Conservation planning requires setting priorities at the same spatial scale at which decision-making processes are undertaken considering all levels of biodiversity, but current methods for identifying biodiversity hotspots ignore its genetic component. We developed a fine-scale approach based on the definition of genetic hotspots, which have high genetic diversity and unique variants that represent their evolutionary potential and evolutionary novelties. Our hypothesis is that wide-ranging taxa with similar ecological tolerances, yet of phylogenetically independent lineages, have been and currently are shaped by ecological and evolutionary forces that result in geographically concordant genetic patterns. We mapped previously published genetic diversity and unique variants of biparentally inherited markers and chloroplast sequences for 9 species from 188 and 275 populations, respectively, of the 4 woody dominant families of the austral temperate forest, an area considered a biodiversity hotspot. Spatial distribution patterns of genetic polymorphisms differed among taxa according to their ecological tolerances. Eight genetic hotspots were detected and we recommend conservation actions for some in the southern Coastal Range in Chile. Existing spatially explicit genetic data from multiple populations and species can help to identify biodiversity hotspots and guide conservation actions to establish science-based protected areas that will preserve the evolutionary potential of key habitats and species. PMID:26245788

  13. The Resurgence of Genetic Determinism: Is It a Distraction?

    ERIC Educational Resources Information Center

    Jackson, Jacquelyne F.

    1998-01-01

    Argues that there is a wealth of little known but rapidly growing evidence that contradicts the assumptions and claims of genetic determinism. Recent research showing the impacts of child maltreatment and environmental pollutants suggest interventions that might alleviate the problems sometimes attributed to genetic deficiencies. (SLD)

  14. Sphingolipids and Membrane Biology as Determined from Genetic Models

    PubMed Central

    Rao, Raghavendra Pralhada; Acharya, Jairaj K

    2008-01-01

    The importance of sphingolipids in membrane biology was appreciated early in the twentieth century when several human inborn errors of metabolism were linked to defects in sphingolipid degradation. The past two decades have seen an explosion of information linking sphingolipids with cellular processes. Studies have unraveled mechanistic details of the sphingolipid metabolic pathways, and these findings are being exploited in the development of novel therapies, some now in clinical trials. Pioneering work in yeast has laid the foundation for identifying genes encoding the enzymes of the pathways. The advent of the era of genomics and bioinformatics has led to the identification of homologous genes in other species and the subsequent creation of animal knock-out lines for these genes. Discoveries from these efforts have re-kindled interest in the role of sphingolipids in membrane biology. This review highlights some of the recent advances in understanding sphingolipids’ roles in membrane biology as determined from genetic models. PMID:18035569

  15. The Next Challenge for Psychiatric Genetics: Characterizing the Risk Associated with Identified Genes

    PubMed Central

    Dick, Danielle M.; Rose, Richard J.; Kaprio, Jaakko

    2006-01-01

    Background As advances in genetics further our ability to identify genes influencing psychiatric disorders, the next challenge facing psychiatric genetics is to characterize the risk associated with specific genetic variants in order to better understand how these susceptibility genes are involved in the pathways leading to illness. Methods To further this goal, findings from behavior genetic analyses about how genetic influences act can be used to guide hypothesis testing about the effects associated with specific genes. Results Using the phenotype of alcohol dependence as an example, this paper provides an overview of how the integration of behavioral and statistical genetics can advance our knowledge about the genetics of psychiatric disorders. Areas currently being investigated in behavior genetics include careful delineation of phenotypes, to examine the heritability of various aspects of normal and abnormal behavior; developmental changes in the nature and magnitude of genetic and environmental effects; the extent to which different behaviors are influenced by common genes; and different forms of gene-environment correlation and interaction. Conclusions Understanding how specific genes are involved in these processes has the potential to significantly enhance our understanding of the development of psychiatric disorders. PMID:17162621

  16. A novel approach to identify genes that determine grain protein deviation in cereals.

    PubMed

    Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J

    2015-06-01

    Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). PMID:25400203

  17. Harnessing genomics to identify environmental determinants of heritable disease

    EPA Science Inventory

    De novo mutation is increasingly being recognized as the cause for a range of human genetic diseases and disorders. Important examples of this include inherited genetic disorders such as autism, schizophrenia, mental retardation, epilepsy, and a broad range of adverse reproductiv...

  18. Genetic determinants and potential therapeutic targets for pancreatic adenocarcinoma

    PubMed Central

    Reznik, Robert; Hendifar, Andrew E.; Tuli, Richard

    2014-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer deaths in both men and women in the United States, carrying a 5-year survival rate of approximately 5%, which is the poorest prognosis of any solid tumor type. Given the dismal prognosis associated with PDAC, a more thorough understanding of risk factors and genetic predisposition has important implications not only for cancer prevention, but also for screening techniques and the development of personalized therapies. While screening of the general population is not recommended or practicable with current diagnostic methods, studies are ongoing to evaluate its usefulness in people with at least 5- to 10-fold increased risk of PDAC. In order to help identify high-risk populations who would be most likely to benefit from early detection screening tests for pancreatic cancer, discovery of additional pancreatic cancer susceptibility genes is crucial. Thus, specific gene-based, gene-product, and marker-based testing for the early detection of pancreatic cancer are currently being developed, with the potential for these to be useful as potential therapeutic targets as well. The goal of this review is to provide an overview of the genetic basis for PDAC with a focus on germline and familial determinants. A discussion of potential therapeutic targets and future directions in screening and treatment is also provided. PMID:24624093

  19. Genome-Wide Association Studies: Progress in Identifying Genetic Biomarkers in Common, Complex Diseases

    PubMed Central

    Kingsmore, Stephen F.; Lindquist, Ingrid E.; Mudge, Joann; Beavis, William D.

    2007-01-01

    Novel, comprehensive approaches for biomarker discovery and validation are urgently needed. One particular area of methodologic need is for discovery of novel genetic biomarkers in complex diseases and traits. Here, we review recent successes in the use of genome wide association (GWA) approaches to identify genetic biomarkers in common human diseases and traits. Such studies are yielding initial insights into the allelic architecture of complex traits. In general, it appears that complex diseases are associated with many common polymorphisms, implying profound genetic heterogeneity between affected individuals. PMID:19662211

  20. Methods for determining the genetic affinity of microorganisms and viruses

    NASA Technical Reports Server (NTRS)

    Fox, George E. (Inventor); Willson, III, Richard C. (Inventor); Zhang, Zhengdong (Inventor)

    2012-01-01

    Selecting which sub-sequences in a database of nucleic acid such as 16S rRNA are highly characteristic of particular groupings of bacteria, microorganisms, fungi, etc. on a substantially phylogenetic tree. Also applicable to viruses comprising viral genomic RNA or DNA. A catalogue of highly characteristic sequences identified by this method is assembled to establish the genetic identity of an unknown organism. The characteristic sequences are used to design nucleic acid hybridization probes that include the characteristic sequence or its complement, or are derived from one or more characteristic sequences. A plurality of these characteristic sequences is used in hybridization to determine the phylogenetic tree position of the organism(s) in a sample. Those target organisms represented in the original sequence database and sufficient characteristic sequences can identify to the species or subspecies level. Oligonucleotide arrays of many probes are especially preferred. A hybridization signal can comprise fluorescence, chemiluminescence, or isotopic labeling, etc.; or sequences in a sample can be detected by direct means, e.g. mass spectrometry. The method's characteristic sequences can also be used to design specific PCR primers. The method uniquely identifies the phylogenetic affinity of an unknown organism without requiring prior knowledge of what is present in the sample. Even if the organism has not been previously encountered, the method still provides useful information about which phylogenetic tree bifurcation nodes encompass the organism.

  1. Genetic determinants of dengue type 4 virus neurovirulence for mice.

    PubMed Central

    Kawano, H; Rostapshov, V; Rosen, L; Lai, C J

    1993-01-01

    Mouse-adapted dengue type 4 virus (DEN4) strain H241 is highly neurovirulent for mice, whereas its non-mouse-adapted parent is rarely neurovirulent. The genetic basis for the neurovirulence of the mouse-adapted mutant was studied by comparing intratypic chimeric viruses that contained the three structural protein genes from the parental virus or the neurovirulent mutant in the background sequence of nonneurovirulent DEN4 strain 814669. The chimera that contained the three structural protein genes from mouse neurovirulent DEN4 strain H241 proved to be highly neurovirulent in mice, whereas the chimera that contained the corresponding genes from its non-mouse-adapted parent was not neurovirulent. This finding indicates that most of the genetic loci for the neurovirulence of the DEN4 mutant lie within the structural protein genes. A comparison of the amino acid sequences of the parent and its mouse neurovirulent mutant proteins revealed that there were only five amino acid differences in the structural protein region, and three of these were located in the envelope (E) glycoprotein. Analysis of chimeras which contained one or two of the variant amino acids of the mutant E sequence substituting for the corresponding sequence of the parental virus identified two of these amino acid changes as important determinants of mouse neurovirulence. First, the single substitution of Ile for Thr-155 which ablated one of the two conserved glycosylation sites in parental E yielded a virus that was almost as neurovirulent as the mouse-adapted mutant. Thus, the loss of an E glycosylation site appears to play a role in DEN4 neurovirulence. Second, the substitution of Leu for Phe-401 also yielded a neurovirulent virus, but it was less neurovirulent than the glycosylation mutant. These findings indicate that at least two of the genetic loci responsible for DEN4 mouse neurovirulence map within the structural protein genes. Images PMID:8411360

  2. Genetic determinants of cutaneous malignant melanoma in Sinclair swine.

    PubMed

    Blangero, J; Tissot, R G; Beattie, C W; Amoss, M S

    1996-03-01

    The role of genetic factors involved in the determination of risk of cutaneous malignant melanoma (CMM) in humans remains unclear owing to genetic heterogeneity and reliance on simplistic models of inheritance. Here, we report a statistical genetic analysis of cutaneous malignant melanoma in Sinclair swine (SSCM), a unique animal model for human CMM. Using complex segregation analysis a two-locus model involving an unknown major locus and a second locus that lies within or close to the swine leukocyte antigen (SLA) complex jointly determine risk of SSCM in pedigreed animals. These loci also influence severity of affection, accounting for approximately 20% of the phenotypic variation in quantitative tumour burden. PMID:8605105

  3. Genetic Determinants of Risk, Severity, and Outcome in Intracerebral Hemorrhage.

    PubMed

    Falcone, Guido J; Rosand, Jonathan

    2016-06-01

    Spontaneous, nontraumatic intracerebral hemorrhage (ICH) is the most severe manifestation of common forms of cerebral small vessel disease. Although ICH represents only 15% of all strokes, it accounts for a large proportion of stroke-related costs and mortality. Preventive and acute treatments remain limited. Because genetic variation contributes substantially to ICH, genomic analyses constitute a powerful tool to identify new biological mechanisms involved in its occurrence. Through translational research efforts, these newly identified mechanisms can become targets for innovative therapeutic interventions. Here, the authors summarize the most recent genetic discoveries for ICH. They also introduce the Platform for Accelerating Genetic Discovery for Cerebrovascular Disease, a newly created resource that aims to create a common workspace for genetic analyses that will bring together 100,000 stroke cases and suitable controls from numerous institutions in several countries. PMID:27214705

  4. A novel single cell method to identify the genetic composition at a single nuclear body.

    PubMed

    Anchel, David; Ching, Reagan W; Cotton, Rachel; Li, Ren; Bazett-Jones, David P

    2016-01-01

    Gene loci make specific associations with compartments of the nucleus (e.g. the nuclear envelope, nucleolus, and transcription factories) and this association may determine or reflect a mechanism of genetic control. With current methods, it is not possible to identify sets of genes that converge to form a "gene hub" as there is a reliance on loci-specific probes, or immunoprecipitation of a particular protein from bulk cells. We introduce a method that will allow for the identification of loci contained within the vicinity of a single nuclear body in a single cell. For the first time, we demonstrate that the DNA sequences originating from a single sub-nuclear structure in a single cell targeted by two-photon irradiation can be determined, and mapped to a particular locus. Its application to single PML nuclear bodies reveals ontologically related loci that frequently associate with each other and with PML bodies in a population of cells, and a possible nuclear body targeting role for specific transcription factor binding sites. PMID:27389808

  5. A novel single cell method to identify the genetic composition at a single nuclear body

    PubMed Central

    Anchel, David; Ching, Reagan W.; Cotton, Rachel; Li, Ren; Bazett-Jones, David P.

    2016-01-01

    Gene loci make specific associations with compartments of the nucleus (e.g. the nuclear envelope, nucleolus, and transcription factories) and this association may determine or reflect a mechanism of genetic control. With current methods, it is not possible to identify sets of genes that converge to form a “gene hub” as there is a reliance on loci-specific probes, or immunoprecipitation of a particular protein from bulk cells. We introduce a method that will allow for the identification of loci contained within the vicinity of a single nuclear body in a single cell. For the first time, we demonstrate that the DNA sequences originating from a single sub-nuclear structure in a single cell targeted by two-photon irradiation can be determined, and mapped to a particular locus. Its application to single PML nuclear bodies reveals ontologically related loci that frequently associate with each other and with PML bodies in a population of cells, and a possible nuclear body targeting role for specific transcription factor binding sites. PMID:27389808

  6. Genetic Determinants of Responses to Selenium Supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In a cohort of healthy adults (106 M, 155 W) in eastern North Dakota, we determined the relationships of five biomarkers of selenium (Se) status (plasma Se, serum selenoprotein P [SePP], plasma glutathione peroxidase [GPX3] activity, buccal cell Se, urine Se) to genotype for four selenoproteins (cyt...

  7. Genetic profile for suspected dysferlinopathy identified by targeted next-generation sequencing

    PubMed Central

    Izumi, Rumiko; Niihori, Tetsuya; Takahashi, Toshiaki; Suzuki, Naoki; Tateyama, Maki; Watanabe, Chigusa; Sugie, Kazuma; Nakanishi, Hirotaka; Sobue, Gen; Kato, Masaaki; Warita, Hitoshi; Aoki, Yoko

    2015-01-01

    Objective: To investigate the genetic causes of suspected dysferlinopathy and to reveal the genetic profile for myopathies with dysferlin deficiency. Methods: Using next-generation sequencing, we analyzed 42 myopathy-associated genes, including DYSF, in 64 patients who were clinically or pathologically suspected of having dysferlinopathy. Putative pathogenic mutations were confirmed by Sanger sequencing. In addition, copy-number variations in DYSF were investigated using multiplex ligation-dependent probe amplification. We also analyzed the genetic profile for 90 patients with myopathy with dysferlin deficiency, as indicated by muscle specimen immunohistochemistry, including patients from a previous cohort. Results: We identified putative pathogenic mutations in 38 patients (59% of all investigated patients). Twenty-three patients had DYSF mutations, including 6 novel mutations. The remaining 16 patients, including a single patient who also carried the DYSF mutation, harbored putative pathogenic mutations in other genes. The genetic profile for 90 patients with dysferlin deficiency revealed that 70% had DYSF mutations (n = 63), 10% had CAPN3 mutations (n = 9), 2% had CAV3 mutations (n = 2), 3% had mutations in other genes (in single patients), and 16% did not have any identified mutations (n = 14). Conclusions: This study clarified the heterogeneous genetic profile for myopathies with dysferlin deficiency. Our results demonstrate the importance of a comprehensive analysis of related genes in improving the genetic diagnosis of dysferlinopathy as one of the most common subtypes of limb-girdle muscular dystrophy. Unresolved diagnoses should be investigated using whole-genome or whole-exome sequencing. PMID:27066573

  8. Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    PubMed Central

    Shen, Changbing; Gao, Jing; Sheng, Yujun; Dou, Jinfa; Zhou, Fusheng; Zheng, Xiaodong; Ko, Randy; Tang, Xianfa; Zhu, Caihong; Yin, Xianyong; Sun, Liangdan; Cui, Yong; Zhang, Xuejun

    2016-01-01

    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo. PMID:26870082

  9. Unique genetic loci identified for emotional behavior in control and chronic stress conditions

    PubMed Central

    Carhuatanta, Kimberly A. K.; Shea, Chloe J. A.; Herman, James P.; Jankord, Ryan

    2014-01-01

    An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior. PMID:25374516

  10. Genetic similarity between cancers and comorbid Mendelian diseases identifies candidate driver genes

    PubMed Central

    Melamed, Rachel D.; Emmett, Kevin J.; Madubata, Chioma; Rzhetsky, Andrey; Rabadan, Raul

    2015-01-01

    Despite large-scale cancer genomics studies, key somatic mutations driving cancer, and their functional roles, remain elusive. Here we propose that analysis of comorbidities of Mendelian diseases with cancers provides a novel, systematic way to discover new cancer genes. If germline genetic variation in Mendelian loci predisposes bearers to common cancers, the same loci may harbor cancer-associated somatic variation. Compilations of clinical records spanning over 100 million patients provide an unprecedented opportunity to assess clinical associations between Mendelian diseases and cancers. We systematically compare these comorbidities against recurrent somatic mutations from more than five thousand patients across many cancers. Using multiple measures of genetic similarity, we show that a Mendelian disease and comorbid cancer indeed have genetic alterations of significant functional similarity. This result provides a basis to identify candidate drivers in cancers including melanoma and glioblastoma. Some Mendelian diseases demonstrate “pan-cancer” comorbidity and shared genetics across cancers. PMID:25926297

  11. Deep sequencing identifies genetic heterogeneity and recurrent convergent evolution in chronic lymphocytic leukemia

    PubMed Central

    Ojha, Juhi; Ayres, Jackline; Secreto, Charla; Tschumper, Renee; Rabe, Kari; Van Dyke, Daniel; Slager, Susan; Shanafelt, Tait; Fonseca, Rafael; Kay, Neil E.

    2015-01-01

    Recent high-throughput sequencing and microarray studies have characterized the genetic landscape and clonal complexity of chronic lymphocytic leukemia (CLL). Here, we performed a longitudinal study in a homogeneously treated cohort of 12 patients, with sequential samples obtained at comparable stages of disease. We identified clonal competition between 2 or more genetic subclones in 70% of the patients with relapse, and stable clonal dynamics in the remaining 30%. By deep sequencing, we identified a high reservoir of genetic heterogeneity in the form of several driver genes mutated in small subclones underlying the disease course. Furthermore, in 2 patients, we identified convergent evolution, characterized by the combination of genetic lesions affecting the same genes or copy number abnormality in different subclones. The phenomenon affects multiple CLL putative driver abnormalities, including mutations in NOTCH1, SF3B1, DDX3X, and del(11q23). This is the first report documenting convergent evolution as a recurrent event in the CLL genome. Furthermore, this finding suggests the selective advantage of specific combinations of genetic lesions for CLL pathogenesis in a subset of patients. PMID:25377784

  12. Genetic risk factors for the development of allergic disease identified by genome-wide association

    PubMed Central

    Portelli, M A; Hodge, E; Sayers, I

    2015-01-01

    An increasing proportion of the worldwide population is affected by allergic diseases such as allergic rhinitis (AR), atopic dermatitis (AD) and allergic asthma and improved treatment options are needed particularly for severe, refractory disease. Allergic diseases are complex and development involves both environmental and genetic factors. Although the existence of a genetic component for allergy was first described almost 100 years ago, progress in gene identification has been hindered by lack of high throughput technologies to investigate genetic variation in large numbers of subjects. The development of Genome-Wide Association Studies (GWAS), a hypothesis-free method of interrogating large numbers of common variants spanning the entire genome in disease and non-disease subjects has revolutionised our understanding of the genetics of allergic disease. Susceptibility genes for asthma, AR and AD have now been identified with confidence, suggesting there are common and distinct genetic loci associated with these diseases, providing novel insights into potential disease pathways and mechanisms. Genes involved in both adaptive and innate immune mechanisms have been identified, notably including multiple genes involved in epithelial function/secretion, suggesting that the airway epithelium may be particularly important in asthma. Interestingly, concordance/discordance between the genetic factors driving allergic traits such as IgE levels and disease states such as asthma have further supported the accumulating evidence for heterogeneity in these diseases. While GWAS have been useful and continue to identify novel genes for allergic diseases through increased sample sizes and phenotype refinement, future approaches will integrate analyses of rare variants, epigenetic mechanisms and eQTL approaches, leading to greater insight into the genetic basis of these diseases. Gene identification will improve our understanding of disease mechanisms and generate potential

  13. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder.

    PubMed

    Ashbrook, David G; Williams, Robert W; Lu, Lu; Hager, Reinmar

    2015-01-01

    Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum. PMID:26190982

  14. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    PubMed Central

    Ashbrook, David G.; Williams, Robert W.; Lu, Lu; Hager, Reinmar

    2015-01-01

    Bipolar disorder (BD) is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS) have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium's bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis. We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1, and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG, and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG, and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG, and TNR influence intercellular signaling in the striatum. PMID:26190982

  15. Genetic Determinants of Pubertal Timing in the General Population

    PubMed Central

    Gajdos, Zofia K.Z.; Henderson, Katherine D.; Hirschhorn, Joel N.

    2010-01-01

    Puberty is an important developmental stage during which reproductive capacity is attained. The timing of puberty varies greatly among healthy individuals in the general population and is influenced by both genetic and environmental factors. Although genetic variation is known to influence the normal spectrum of pubertal timing, the specific genes involved remain largely unknown. Genetic analyses have identified a number of genes responsible for rare disorders of pubertal timing such as hypogonadotropic hypogonadism and Kallmann syndrome. Recently, the first loci with common variation reproducibly associated with population variation in the timing of puberty were identified at 6q21 in or near LIN28B and at 9q31.2. However, these two loci explain only a small fraction of the genetic contribution to population variation in pubertal timing, suggesting the need to continue to consider other loci and other types of variants. Here we provide an update of the genes implicated in disorders of puberty, discuss genes and pathways that may be involved in the timing of normal puberty, and suggest additional avenues of investigation to identify genetic regulators of puberty in the general population. PMID:20144687

  16. A genetic evaluation of morphology used to identify harvested Canada geese

    USGS Publications Warehouse

    Pearce, J.M.; Pierson, B. J.; Talbot, S.L.; Derksen, D.V.; Kraege, Donald K.; Scribner, K.T.

    2000-01-01

    Using maximum likelihood estimators (in genetic stock identification), we used genetic markers to evaluate the utility of 2 morphological measures (culmen length and plumage color) to correctly identify groups of hunter-harvested dusky (Branta canadensis occidentalis) and dusky-like Canada geese on the wintering grounds within the Pacific Flyway. Significant levels of genetic differentiation were observed across all sampled breeding sites for both nuclear microsatellite loci and mtDNA when analyzed at the sequence level. The ability to discriminate among geese from these sites using genetic markers was further demonstrated using computer simulations. We estimated contributions from the Copper River Delta, the primary breeding area of dusky Canada geese, to groups of hunter-harvested geese classified as dusky Canada geese on the basis of morphology as 50.6 ?? 10.1(SE)% for females and 50.3 ?? 13.0% for males. We also estimated that 16 ?? 8.1% of females classified as dusky Canada geese on the basis of morphology originated from Middleton Island, Alaska; a locale currently managed as a subpopulation of dusky Canada geese, even though the majority of geese from this area possess a unique mtdna haplotype not found on the Copper River Delta. The use of culmen length and plumage color to identify the origin of breeding populations in the harvest provides conservative criteria for management of dusky Canada geese as individuals of other breeding populations are misassigned as dusky Canada geese and birds of the lighter-plumaged dusky-like group did not appear to originate from, breeding sites of the dusky Canada goose. Our analyses demonstrate that genetic markers can accurately estimate the proportion of genetically differentiated areas that comprise an admixed group, but they also raise questions about the management scale of Pacific Flyway Canada geese (e.g., at the subspecies or breeding population level) and the use of morphological and genetic characteristics to

  17. Pleiotropy among Common Genetic Loci Identified for Cardiometabolic Disorders and C-Reactive Protein

    PubMed Central

    Ligthart, Symen; de Vries, Paul S.; Uitterlinden, André G.; Hofman, Albert; Franco, Oscar H.; Chasman, Daniel I.; Dehghan, Abbas

    2015-01-01

    Pleiotropic genetic variants have independent effects on different phenotypes. C-reactive protein (CRP) is associated with several cardiometabolic phenotypes. Shared genetic backgrounds may partially underlie these associations. We conducted a genome-wide analysis to identify the shared genetic background of inflammation and cardiometabolic phenotypes using published genome-wide association studies (GWAS). We also evaluated whether the pleiotropic effects of such loci were biological or mediated in nature. First, we examined whether 283 common variants identified for 10 cardiometabolic phenotypes in GWAS are associated with CRP level. Second, we tested whether 18 variants identified for serum CRP are associated with 10 cardiometabolic phenotypes. We used a Bonferroni corrected p-value of 1.1×10-04 (0.05/463) as a threshold of significance. We evaluated the independent pleiotropic effect on both phenotypes using individual level data from the Women Genome Health Study. Evaluating the genetic overlap between inflammation and cardiometabolic phenotypes, we found 13 pleiotropic regions. Additional analyses showed that 6 regions (APOC1, HNF1A, IL6R, PPP1R3B, HNF4A and IL1F10) appeared to have a pleiotropic effect on CRP independent of the effects on the cardiometabolic phenotypes. These included loci where individuals carrying the risk allele for CRP encounter higher lipid levels and risk of type 2 diabetes. In addition, 5 regions (GCKR, PABPC4, BCL7B, FTO and TMEM18) had an effect on CRP largely mediated through the cardiometabolic phenotypes. In conclusion, our results show genetic pleiotropy among inflammation and cardiometabolic phenotypes. In addition to reverse causation, our data suggests that pleiotropic genetic variants partially underlie the association between CRP and cardiometabolic phenotypes. PMID:25768928

  18. Genetic determinants of heat resistance in Escherichia coli

    PubMed Central

    Mercer, Ryan G.; Zheng, Jinshui; Garcia-Hernandez, Rigoberto; Ruan, Lifang; Gänzle, Michael G.; McMullen, Lynn M.

    2015-01-01

    Escherichia coli AW1.7 is a heat resistant food isolate and the occurrence of pathogenic strains with comparable heat resistance may pose a risk to food safety. To identify the genetic determinants of heat resistance, 29 strains of E. coli that differed in their of heat resistance were analyzed by comparative genomics. Strains were classified as highly heat resistant strains, exhibiting a D60-value of more than 6 min; moderately heat resistant strains, exhibiting a D60-value of more than 1 min; or as heat sensitive. A ~14 kb genomic island containing 16 predicted open reading frames encoding putative heat shock proteins and proteases was identified only in highly heat resistant strains. The genomic island was termed the locus of heat resistance (LHR). This putative operon is flanked by mobile elements and possesses >99% sequence identity to genomic islands contributing to heat resistance in Cronobacter sakazakii and Klebsiella pneumoniae. An additional 41 LHR sequences with >87% sequence identity were identified in 11 different species of β- and γ-proteobacteria. Cloning of the full length LHR conferred high heat resistance to the heat sensitive E. coli AW1.7ΔpHR1 and DH5α. The presence of the LHR correlates perfectly to heat resistance in several species of Enterobacteriaceae and occurs at a frequency of 2% of all E. coli genomes, including pathogenic strains. This study suggests the LHR has been laterally exchanged among the β- and γ-proteobacteria and is a reliable indicator of high heat resistance in E. coli. PMID:26441869

  19. Genetic determinants of reutericyclin biosynthesis in Lactobacillus reuteri.

    PubMed

    Lin, Xiaoxi B; Lohans, Christopher T; Duar, Rebbeca; Zheng, Jinshui; Vederas, John C; Walter, Jens; Gänzle, Michael

    2015-03-01

    Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a PKS that is composed of a ketosynthase domain, an acyl-carrier protein domain, and a thioesterase domain. The products of rtcA, rtcB, and rtcC are homologous to the diacetylphloroglucinol-biosynthetic proteins PhlABC and may acetylate the tetramic acid moiety produced by RtcN and RtcK, forming reutericyclin. Deletion of rtcN or rtcABC in L. reuteri TMW1.656 abrogated reutericyclin production but did not affect resistance to reutericyclin. Genes coding for transport and regulatory proteins could be deleted only in the reutericyclin-negative L. reuteri strain TMW1.656ΔrtcN, and these deletions eliminated reutericyclin resistance. The genomic analyses suggest that the reutericyclin genomic island was horizontally acquired from an unknown source during a unique event. The combination of PhlABC homologues with both an NRPS and a PKS has also been identified in the lactic acid bacteria Streptococcus mutans and Lactobacillus plantarum, suggesting that the genes in these organisms and those in L. reuteri share an evolutionary origin. PMID:25576609

  20. Genetic Determinants of Reutericyclin Biosynthesis in Lactobacillus reuteri

    PubMed Central

    Lin, Xiaoxi B.; Lohans, Christopher T.; Duar, Rebbeca; Zheng, Jinshui; Vederas, John C.; Walter, Jens

    2015-01-01

    Reutericyclin is a unique antimicrobial tetramic acid produced by some strains of Lactobacillus reuteri. This study aimed to identify the genetic determinants of reutericyclin biosynthesis. Comparisons of the genomes of reutericyclin-producing L. reuteri strains with those of non-reutericyclin-producing strains identified a genomic island of 14 open reading frames (ORFs) including genes coding for a nonribosomal peptide synthetase (NRPS), a polyketide synthase (PKS), homologues of PhlA, PhlB, and PhlC, and putative transport and regulatory proteins. The protein encoded by rtcN is composed of a condensation domain, an adenylation domain likely specific for d-leucine, and a thiolation domain. rtcK codes for a PKS that is composed of a ketosynthase domain, an acyl-carrier protein domain, and a thioesterase domain. The products of rtcA, rtcB, and rtcC are homologous to the diacetylphloroglucinol-biosynthetic proteins PhlABC and may acetylate the tetramic acid moiety produced by RtcN and RtcK, forming reutericyclin. Deletion of rtcN or rtcABC in L. reuteri TMW1.656 abrogated reutericyclin production but did not affect resistance to reutericyclin. Genes coding for transport and regulatory proteins could be deleted only in the reutericyclin-negative L. reuteri strain TMW1.656ΔrtcN, and these deletions eliminated reutericyclin resistance. The genomic analyses suggest that the reutericyclin genomic island was horizontally acquired from an unknown source during a unique event. The combination of PhlABC homologues with both an NRPS and a PKS has also been identified in the lactic acid bacteria Streptococcus mutans and Lactobacillus plantarum, suggesting that the genes in these organisms and those in L. reuteri share an evolutionary origin. PMID:25576609

  1. The Genetic Architecture of Hearing Impairment in Mice: Evidence for Frequency-Specific Genetic Determinants

    PubMed Central

    Crow, Amanda L.; Ohmen, Jeffrey; Wang, Juemei; Lavinsky, Joel; Hartiala, Jaana; Li, Qingzhong; Li, Xin; Salehide, Pezhman; Eskin, Eleazar; Pan, Calvin; Lusis, Aldons J.; Allayee, Hooman; Friedman, Rick A.

    2015-01-01

    Genome-wide association studies (GWAS) have been successfully applied in humans for the study of many complex phenotypes. However, identification of the genetic determinants of hearing in adults has been hampered, in part, by the relative inability to control for environmental factors that might affect hearing throughout the lifetime, as well as a large degree of phenotypic heterogeneity. These and other factors have limited the number of large-scale studies performed in humans that have identified candidate genes that contribute to the etiology of this complex trait. To address these limitations, we performed a GWAS analysis using a set of inbred mouse strains from the Hybrid Mouse Diversity Panel. Among 99 strains characterized, we observed approximately two-fold to five-fold variation in hearing at six different frequencies, which are differentiated biologically from each other by the location in the cochlea where each frequency is registered. Among all frequencies tested, we identified a total of nine significant loci, several of which contained promising candidate genes for follow-up study. Taken together, our results indicate the existence of both genes that affect global cochlear function, as well as anatomical- and frequency-specific genes, and further demonstrate the complex nature of mammalian hearing variation. PMID:26342000

  2. The Genetic Architecture of Hearing Impairment in Mice: Evidence for Frequency-Specific Genetic Determinants.

    PubMed

    Crow, Amanda L; Ohmen, Jeffrey; Wang, Juemei; Lavinsky, Joel; Hartiala, Jaana; Li, Qingzhong; Li, Xin; Salehide, Pezhman; Eskin, Eleazar; Pan, Calvin; Lusis, Aldons J; Allayee, Hooman; Friedman, Rick A

    2015-11-01

    Genome-wide association studies (GWAS) have been successfully applied in humans for the study of many complex phenotypes. However, identification of the genetic determinants of hearing in adults has been hampered, in part, by the relative inability to control for environmental factors that might affect hearing throughout the lifetime, as well as a large degree of phenotypic heterogeneity. These and other factors have limited the number of large-scale studies performed in humans that have identified candidate genes that contribute to the etiology of this complex trait. To address these limitations, we performed a GWAS analysis using a set of inbred mouse strains from the Hybrid Mouse Diversity Panel. Among 99 strains characterized, we observed approximately two-fold to five-fold variation in hearing at six different frequencies, which are differentiated biologically from each other by the location in the cochlea where each frequency is registered. Among all frequencies tested, we identified a total of nine significant loci, several of which contained promising candidate genes for follow-up study. Taken together, our results indicate the existence of both genes that affect global cochlear function, as well as anatomical- and frequency-specific genes, and further demonstrate the complex nature of mammalian hearing variation. PMID:26342000

  3. Genetic determinants of depression: Recent findings and future directions

    PubMed Central

    Dunn, Erin C.; Brown, Ruth C.; Dai, Yael; Rosand, Jonathan; Nugent, Nicole R.; Amstadter, Ananda B.; Smoller, Jordan W.

    2014-01-01

    Depression is one of the most prevalent, disabling, and costly mental health conditions in the United States. One promising avenue for preventing depression and informing its clinical treatment lies in uncovering both the genetic and environmental determinants of the disorder as well as their interaction (i.e. gene-environment intervention; GxE). The overarching goal of this review paper is to translate recent findings from studies of genetic association and GxE related to depression, particularly for readers without in-depth knowledge of genetics or genetic methods. This review is organized into three major sections. In the first section, we summarize what is currently known about the genetic determinants of depression, focusing on findings from genome-wide association studies (GWAS). In the second section, we review findings from studies of GxE, which seek to simultaneously examine the role of genes and exposure to specific environments or experiences in the etiology of depression. In the third section, we describe the challenges to genetic discovery in depression and promising strategies for making progress. PMID:25563565

  4. Identifying genetic modulators of the connectivity between transcription factors and their transcriptional targets

    PubMed Central

    Fazlollahi, Mina; Muroff, Ivor; Lee, Eunjee; Causton, Helen C.; Bussemaker, Harmen J.

    2016-01-01

    Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae. We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors. PMID:26966232

  5. Genome-Wide Pathway Analysis Identifies Genetic Pathways Associated with Psoriasis.

    PubMed

    Aterido, Adrià; Julià, Antonio; Ferrándiz, Carlos; Puig, Lluís; Fonseca, Eduardo; Fernández-López, Emilia; Dauden, Esteban; Sánchez-Carazo, José Luís; López-Estebaranz, José Luís; Moreno-Ramírez, David; Vanaclocha, Francisco; Herrera, Enrique; de la Cueva, Pablo; Dand, Nick; Palau, Núria; Alonso, Arnald; López-Lasanta, María; Tortosa, Raül; García-Montero, Andrés; Codó, Laia; Gelpí, Josep Lluís; Bertranpetit, Jaume; Absher, Devin; Capon, Francesca; Myers, Richard M; Barker, Jonathan N; Marsal, Sara

    2016-03-01

    Psoriasis is a chronic inflammatory disease with a complex genetic architecture. To date, the psoriasis heritability is only partially explained. However, there is increasing evidence that the missing heritability in psoriasis could be explained by multiple genetic variants of low effect size from common genetic pathways. The objective of this study was to identify new genetic variation associated with psoriasis risk at the pathway level. We genotyped 598,258 single nucleotide polymorphisms in a discovery cohort of 2,281 case-control individuals from Spain. We performed a genome-wide pathway analysis using 1,053 reference biological pathways. A total of 14 genetic pathways (PFDR ≤ 2.55 × 10(-2)) were found to be significantly associated with psoriasis risk. Using an independent validation cohort of 7,353 individuals from the UK, a total of 6 genetic pathways were significantly replicated (PFDR ≤ 3.46 × 10(-2)). We found genetic pathways that had not been previously associated with psoriasis risk such as retinol metabolism (Pcombined = 1.84 × 10(-4)), the transport of inorganic ions and amino acids (Pcombined = 1.57 × 10(-7)), and post-translational protein modification (Pcombined = 1.57 × 10(-7)). In the latter pathway, MGAT5 showed a strong network centrality, and its association with psoriasis risk was further validated in an additional case-control cohort of 3,429 individuals (P < 0.05). These findings provide insights into the biological mechanisms associated with psoriasis susceptibility. PMID:26743605

  6. Identifying Multimodal Intermediate Phenotypes Between Genetic Risk Factors and Disease Status in Alzheimer's Disease.

    PubMed

    Hao, Xiaoke; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L; Saykin, Andrew J; Zhang, Daoqiang; Shen, Li

    2016-10-01

    Neuroimaging genetics has attracted growing attention and interest, which is thought to be a powerful strategy to examine the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on structures or functions of human brain. In recent studies, univariate or multivariate regression analysis methods are typically used to capture the effective associations between genetic variants and quantitative traits (QTs) such as brain imaging phenotypes. The identified imaging QTs, although associated with certain genetic markers, may not be all disease specific. A useful, but underexplored, scenario could be to discover only those QTs associated with both genetic markers and disease status for revealing the chain from genotype to phenotype to symptom. In addition, multimodal brain imaging phenotypes are extracted from different perspectives and imaging markers consistently showing up in multimodalities may provide more insights for mechanistic understanding of diseases (i.e., Alzheimer's disease (AD)). In this work, we propose a general framework to exploit multi-modal brain imaging phenotypes as intermediate traits that bridge genetic risk factors and multi-class disease status. We applied our proposed method to explore the relation between the well-known AD risk SNP APOE rs429358 and three baseline brain imaging modalities (i.e., structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET) and F-18 florbetapir PET scans amyloid imaging (AV45)) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. The empirical results demonstrate that our proposed method not only helps improve the performances of imaging genetic associations, but also discovers robust and consistent regions of interests (ROIs) across multi-modalities to guide the disease-induced interpretation. PMID:27277494

  7. Spatial and temporal determinants of genetic structure in Gentianella bohemica

    PubMed Central

    Königer, Julia; Rebernig, Carolin A; Brabec, Jiří; Kiehl, Kathrin; Greimler, Josef

    2012-01-01

    The biennial plant Gentianella bohemica is a subendemic of the Bohemian Massif, where it occurs in seminatural grasslands. It has become rare in recent decades as a result of profound changes in land use. Using amplified fragment length polymorphisms (AFLP) fingerprint data, we investigated the genetic structure within and among populations of G. bohemica in Bavaria, the Czech Republic, and the Austrian border region. The aim of our study was (1) to analyze the genetic structure among populations and to discuss these findings in the context of present and historical patterns of connectivity and isolation of populations, (2) to analyze genetic structure among consecutive generations (cohorts of two consecutive years), and (3) to investigate relationships between intrapopulational diversity and effective population size (Ne) as well as plant traits. (1) The German populations were strongly isolated from each other (pairwise FST= 0.29–0.60) and from all other populations (FST= 0.24–0.49). We found a pattern of near panmixis among the latter (FST= 0.15–0.35) with geographical distance explaining only 8% of the genetic variance. These results were congruent with a principal coordinate analysis (PCoA) and analysis using STRUCTURE to identify genetically coherent groups. These findings are in line with the strong physical barrier and historical constraints, resulting in separation of the German populations from the others. (2) We found pronounced genetic differences between consecutive cohorts of the German populations (pairwise FST= 0.23 and 0.31), which can be explained by local population history (land use, disturbance). (3) Genetic diversity within populations (Shannon index, HSh) was significantly correlated with Ne (RS= 0.733) and reflected a loss of diversity due to several demographic bottlenecks. Overall, we found that the genetic structure in G. bohemica is strongly influenced by historical periods of high connectivity and isolation as well as by marked

  8. Identifying human disease genes: advances in molecular genetics and computational approaches.

    PubMed

    Bakhtiar, S M; Ali, A; Baig, S M; Barh, D; Miyoshi, A; Azevedo, V

    2014-01-01

    The human genome project is one of the significant achievements that have provided detailed insight into our genetic legacy. During the last two decades, biomedical investigations have gathered a considerable body of evidence by detecting more than 2000 disease genes. Despite the imperative advances in the genetic understanding of various diseases, the pathogenesis of many others remains obscure. With recent advances, the laborious methodologies used to identify DNA variations are replaced by direct sequencing of genomic DNA to detect genetic changes. The ability to perform such studies depends equally on the development of high-throughput and economical genotyping methods. Currently, basically for every disease whose origen is still unknown, genetic approaches are available which could be pedigree-dependent or -independent with the capacity to elucidate fundamental disease mechanisms. Computer algorithms and programs for linkage analysis have formed the foundation for many disease gene detection projects, similarly databases of clinical findings have been widely used to support diagnostic decisions in dysmorphology and general human disease. For every disease type, genome sequence variations, particularly single nucleotide polymorphisms are mapped by comparing the genetic makeup of case and control groups. Methods that predict the effects of polymorphisms on protein stability are useful for the identification of possible disease associations, whereas structural effects can be assessed using methods to predict stability changes in proteins using sequence and/or structural information. PMID:25061732

  9. Identifying Genetic Variants for Addiction via Propensity Score Adjusted Generalized Kendall's Tau.

    PubMed

    Jiang, Yuan; Li, Ni; Zhang, Heping

    2014-01-01

    Identifying replicable genetic variants for addiction has been extremely challenging. Besides the common difficulties with genome-wide association studies (GWAS), environmental factors are known to be critical to addiction, and comorbidity is widely observed. Despite the importance of environmental factors and comorbidity for addiction study, few GWAS analyses adequately considered them due to the limitations of the existing statistical methods. Although parametric methods have been developed to adjust for covariates in association analysis, difficulties arise when the traits are multivariate because there is no ready-to-use model for them. Recent nonparametric development includes U-statistics to measure the phenotype-genotype association weighted by a similarity score of covariates. However, it is not clear how to optimize the similarity score. Therefore, we propose a semiparametric method to measure the association adjusted by covariates. In our approach, the nonparametric U-statistic is adjusted by parametric estimates of propensity scores using the idea of inverse probability weighting. The new measurement is shown to be asymptotically unbiased under our null hypothesis while the previous non-weighted and weighted ones are not. Simulation results show that our test improves power as opposed to the non-weighted and two other weighted U-statistic methods, and it is particularly powerful for detecting gene-environment interactions. Finally, we apply our proposed test to the Study of Addiction: Genetics and Environment (SAGE) to identify genetic variants for addiction. Novel genetic variants are found from our analysis, which warrant further investigation in the future. PMID:25382885

  10. Identifying Genetic Variants for Addiction via Propensity Score Adjusted Generalized Kendall’s Tau

    PubMed Central

    Jiang, Yuan; Li, Ni; Zhang, Heping

    2014-01-01

    Identifying replicable genetic variants for addiction has been extremely challenging. Besides the common difficulties with genome-wide association studies (GWAS), environmental factors are known to be critical to addiction, and comorbidity is widely observed. Despite the importance of environmental factors and comorbidity for addiction study, few GWAS analyses adequately considered them due to the limitations of the existing statistical methods. Although parametric methods have been developed to adjust for covariates in association analysis, difficulties arise when the traits are multivariate because there is no ready-to-use model for them. Recent nonparametric development includes U-statistics to measure the phenotype-genotype association weighted by a similarity score of covariates. However, it is not clear how to optimize the similarity score. Therefore, we propose a semiparametric method to measure the association adjusted by covariates. In our approach, the nonparametric U-statistic is adjusted by parametric estimates of propensity scores using the idea of inverse probability weighting. The new measurement is shown to be asymptotically unbiased under our null hypothesis while the previous non-weighted and weighted ones are not. Simulation results show that our test improves power as opposed to the non-weighted and two other weighted U-statistic methods, and it is particularly powerful for detecting gene-environment interactions. Finally, we apply our proposed test to the Study of Addiction: Genetics and Environment (SAGE) to identify genetic variants for addiction. Novel genetic variants are found from our analysis, which warrant further investigation in the future. PMID:25382885

  11. Mapping of Craniofacial Traits in Outbred Mice Identifies Major Developmental Genes Involved in Shape Determination

    PubMed Central

    Pallares, Luisa F.; Carbonetto, Peter; Gopalakrishnan, Shyam; Parker, Clarissa C.; Ackert-Bicknell, Cheryl L.; Palmer, Abraham A.; Tautz, Diethard

    2015-01-01

    The vertebrate cranium is a prime example of the high evolvability of complex traits. While evidence of genes and developmental pathways underlying craniofacial shape determination is accumulating, we are still far from understanding how such variation at the genetic level is translated into craniofacial shape variation. Here we used 3D geometric morphometrics to map genes involved in shape determination in a population of outbred mice (Carworth Farms White, or CFW). We defined shape traits via principal component analysis of 3D skull and mandible measurements. We mapped genetic loci associated with shape traits at ~80,000 candidate single nucleotide polymorphisms in ~700 male mice. We found that craniofacial shape and size are highly heritable, polygenic traits. Despite the polygenic nature of the traits, we identified 17 loci that explain variation in skull shape, and 8 loci associated with variation in mandible shape. Together, the associated variants account for 11.4% of skull and 4.4% of mandible shape variation, however, the total additive genetic variance associated with phenotypic variation was estimated in ~45%. Candidate genes within the associated loci have known roles in craniofacial development; this includes 6 transcription factors and several regulators of bone developmental pathways. One gene, Mn1, has an unusually large effect on shape variation in our study. A knockout of this gene was previously shown to affect negatively the development of membranous bones of the cranial skeleton, and evolutionary analysis shows that the gene has arisen at the base of the bony vertebrates (Eutelostomi), where the ossified head first appeared. Therefore, Mn1 emerges as a key gene for both skull formation and within-population shape variation. Our study shows that it is possible to identify important developmental genes through genome-wide mapping of high-dimensional shape features in an outbred population. PMID:26523602

  12. Intelligence and Race, Gender, Class: The Fallacy of Genetic Determinism.

    ERIC Educational Resources Information Center

    Belkhir, Jean Ait; Duyme, Michael

    1998-01-01

    Biological determinism represents a pseudo-scientific inquiry that is ultimately used to foster a scientific rationale for the maintenance of classism, racism, and sexism in general. Genetic diversity is an inescapable fact, but it is cultures that human brains have created that most severely limit potential. (SLD)

  13. Genetically encoded protein photocrosslinker with a transferable mass spectrometry-identifiable label

    PubMed Central

    Yang, Yi; Song, Haiping; He, Dan; Zhang, Shuai; Dai, Shizhong; Lin, Shixian; Meng, Rong; Wang, Chu; Chen, Peng R.

    2016-01-01

    Coupling photocrosslinking reagents with mass spectrometry has become a powerful tool for studying protein–protein interactions in living systems, but it still suffers from high rates of false-positive identifications as well as the lack of information on interaction interface due to the challenges in deciphering crosslinking peptides. Here we develop a genetically encoded photo-affinity unnatural amino acid that introduces a mass spectrometry-identifiable label (MS-label) to the captured prey proteins after photocrosslinking and prey–bait separation. This strategy, termed IMAPP (In-situ cleavage and MS-label transfer After Protein Photocrosslinking), enables direct identification of photo-captured substrate peptides that are difficult to uncover by conventional genetically encoded photocrosslinkers. Taking advantage of the MS-label, the IMAPP strategy significantly enhances the confidence for identifying protein–protein interactions and enables simultaneous mapping of the binding interface under living conditions. PMID:27460181

  14. New application of intelligent agents in sporadic amyotrophic lateral sclerosis identifies unexpected specific genetic background

    PubMed Central

    Penco, Silvana; Buscema, Massimo; Patrosso, Maria Cristina; Marocchi, Alessandro; Grossi, Enzo

    2008-01-01

    Background Few genetic factors predisposing to the sporadic form of amyotrophic lateral sclerosis (ALS) have been identified, but the pathology itself seems to be a true multifactorial disease in which complex interactions between environmental and genetic susceptibility factors take place. The purpose of this study was to approach genetic data with an innovative statistical method such as artificial neural networks to identify a possible genetic background predisposing to the disease. A DNA multiarray panel was applied to genotype more than 60 polymorphisms within 35 genes selected from pathways of lipid and homocysteine metabolism, regulation of blood pressure, coagulation, inflammation, cellular adhesion and matrix integrity, in 54 sporadic ALS patients and 208 controls. Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis Results Advanced intelligent systems based on novel coupling of artificial neural networks and evolutionary algorithms have been applied. The results obtained have been compared with those derived from the use of standard neural networks and classical statistical analysis. An unexpected discovery of a strong genetic background in sporadic ALS using a DNA multiarray panel and analytical processing of the data with advanced artificial neural networks was found. The predictive accuracy obtained with Linear Discriminant Analysis and Standard Artificial Neural Networks ranged from 70% to 79% (average 75.31%) and from 69.1 to 86.2% (average 76.6%) respectively. The corresponding value obtained with Advanced Intelligent Systems reached an average of 96.0% (range 94.4 to 97.6%). This latter approach allowed the identification of seven genetic variants essential to differentiate cases from controls: apolipoprotein E arg158cys; hepatic lipase

  15. Methods to determine DNA structural alterations and genetic instability

    PubMed Central

    Wang, Guliang; Zhao, Junhua; Vasquez, Karen M.

    2009-01-01

    Chromosomal DNA is a dynamic structure that can adopt a variety of non-canonical (i.e. non-B) conformations. In this regard, at least ten different forms of non-B DNA conformations have been identified, and many of them have been found to be mutagenic, and associated with human disease development. Despite the importance of non-B DNA structures in genetic instability and DNA metabolic processes, mechanisms remain largely undefined. The purpose of this review is to summarize current methodologies that are used to address questions in the field of non-B DNA structure-induced genetic instability. Advantages and disadvantages of each method will be discussed. A focused effort to further elucidate the mechanisms of non-B DNA-induced genetic instability will lead to a better understanding of how these structure-forming sequences contribute to the development of human disease. PMID:19245837

  16. Competitive Metagenomic DNA Hybridization Identifies Host-Specific Microbial Genetic Markers in Cow Fecal Samples†

    PubMed Central

    Shanks, Orin C.; Santo Domingo, Jorge W.; Lamendella, Regina; Kelty, Catherine A.; Graham, James E.

    2006-01-01

    Several PCR methods have recently been developed to identify fecal contamination in surface waters. In all cases, researchers have relied on one gene or one microorganism for selection of host-specific markers. Here we describe the application of a genome fragment enrichment (GFE) method to identify host-specific genetic markers from fecal microbial community DNA. As a proof of concept, bovine fecal DNA was challenged against a porcine fecal DNA background to select for bovine-specific DNA sequences. Bioinformatic analyses of 380 bovine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode membrane-associated and secreted proteins. Oligonucleotide primers capable of annealing to select Bacteroidales-like bovine GFE sequences exhibited extremely high specificity (>99%) in PCR assays with total fecal DNAs from 279 different animal sources. These primers also demonstrated a broad distribution of corresponding genetic markers (81% positive) among 148 different bovine sources. These data demonstrate that direct metagenomic DNA analysis by the competitive solution hybridization approach described is an efficient method for identifying potentially useful fecal genetic markers and for characterizing differences between environmental microbial communities. PMID:16751515

  17. Genetic Algorithm for Initial Orbit Determination with Too Short Arc

    NASA Astrophysics Data System (ADS)

    Li, X. R.; Wang, X.

    2016-01-01

    The sky surveys of space objects have obtained a huge quantity of too-short-arc (TSA) observation data. However, the classical method of initial orbit determination (IOD) can hardly get reasonable results for the TSAs. The IOD is reduced to a two-stage hierarchical optimization problem containing three variables for each stage. Using the genetic algorithm, a new method of the IOD for TSAs is established, through the selection of optimizing variables as well as the corresponding genetic operator for specific problems. Numerical experiments based on the real measurements show that the method can provide valid initial values for the follow-up work.

  18. Genetic network identifies novel pathways contributing to atherosclerosis susceptibility in the innominate artery

    PubMed Central

    2014-01-01

    Background Atherosclerosis, the underlying cause of cardiovascular disease, results from both genetic and environmental factors. Methods In the current study we take a systems-based approach using weighted gene co-expression analysis to identify a candidate pathway of genes related to atherosclerosis. Bioinformatic analyses are performed to identify candidate genes and interactions and several novel genes are characterized using in-vitro studies. Results We identify 1 coexpression module associated with innominate artery atherosclerosis that is also enriched for inflammatory and macrophage gene signatures. Using a series of bioinformatics analysis, we further prioritize the genes in this pathway and identify Cd44 as a critical mediator of the atherosclerosis. We validate our predictions generated by the network analysis using Cd44 knockout mice. Conclusion These results indicate that alterations in Cd44 expression mediate inflammation through a complex transcriptional network involving a number of previously uncharacterized genes. PMID:25115202

  19. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity

    PubMed Central

    Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I.; Taylor, Kent D.; Azziz, Ricardo; Goodarzi, Mark O.

    2015-01-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  20. Systems Genetics Reveals the Functional Context of PCOS Loci and Identifies Genetic and Molecular Mechanisms of Disease Heterogeneity.

    PubMed

    Jones, Michelle R; Brower, Meredith A; Xu, Ning; Cui, Jinrui; Mengesha, Emebet; Chen, Yii-Der I; Taylor, Kent D; Azziz, Ricardo; Goodarzi, Mark O

    2015-08-01

    Genome wide association studies (GWAS) have revealed 11 independent risk loci for polycystic ovary syndrome (PCOS), a common disorder in young women characterized by androgen excess and oligomenorrhea. To put these risk loci and the single nucleotide polymorphisms (SNPs) therein into functional context, we measured DNA methylation and gene expression in subcutaneous adipose tissue biopsies to identify PCOS-specific alterations. Two genes from the LHCGR region, STON1-GTF2A1L and LHCGR, were overexpressed in PCOS. In analysis stratified by obesity, LHCGR was overexpressed only in non-obese PCOS women. Although not differentially expressed in the entire PCOS group, INSR was underexpressed in obese PCOS subjects only. Alterations in gene expression in the LHCGR, RAB5B and INSR regions suggest that SNPs in these loci may be functional and could affect gene expression directly or indirectly via epigenetic alterations. We identified reduced methylation in the LHCGR locus and increased methylation in the INSR locus, changes that are concordant with the altered gene expression profiles. Complex patterns of meQTL and eQTL were identified in these loci, suggesting that local genetic variation plays an important role in gene regulation. We propose that non-obese PCOS women possess significant alterations in LH receptor expression, which drives excess androgen secretion from the ovary. Alternatively, obese women with PCOS possess alterations in insulin receptor expression, with underexpression in metabolic tissues and overexpression in the ovary, resulting in peripheral insulin resistance and excess ovarian androgen production. These studies provide a genetic and molecular basis for the reported clinical heterogeneity of PCOS. PMID:26305227

  1. Comparative Genomics Analysis of Streptococcus tigurinus Strains Identifies Genetic Elements Specifically and Uniquely Present in Highly Virulent Strains

    PubMed Central

    Diene, Seydina M.; François, Patrice; Zbinden, Andrea; Entenza, José Manuel

    2016-01-01

    Streptococcus tigurinus is responsible for severe invasive infections such as infective endocarditis, spondylodiscitis and meningitis. As described, S. tigurinus isolates AZ_3aT and AZ_14 were highly virulent (HV phenotype) in an experimental model of infective endocarditis and showed enhanced adherence and invasion of human endothelial cells when compared to low virulent S. tigurinus isolate AZ_8 (LV phenotype). Here, we sought whether genetic determinants could explain the higher virulence of AZ_3aT and AZ_14 isolates. Several genetic determinants specific to the HV strains were identified through extensive comparative genomics amongst which some were thought to be highly relevant for the observed HV phenotype. These included i) an iron uptake and metabolism operon, ii) an ascorbate assimilation operon, iii) a newly acquired PI-2-like pilus islets described for the first time in S. tigurinus, iv) a hyaluronate metabolism operon, v) an Entner-Doudoroff pathway of carbohydrates metabolism, and vi) an alternate pathways for indole biosynthesis. We believe that the identified genomic features could largely explain the phenotype of high infectivity of the two HV S. tigurinus strains. Indeed, these features include determinants that could be involved at different stages of the disease such as survival of S. tigurinus in blood (iron uptake and ascorbate metabolism operons), initial attachment of bacterial pathogen to the damaged cardiac tissue and/or vegetation that formed on site (PI-2-like pilus islets), tissue invasion (hyaluronate operon and Entner-Doudoroff pathway) and regulation of pathogenicity (indole biosynthesis pathway). PMID:27505001

  2. Comparative Genomics Analysis of Streptococcus tigurinus Strains Identifies Genetic Elements Specifically and Uniquely Present in Highly Virulent Strains.

    PubMed

    Diene, Seydina M; François, Patrice; Zbinden, Andrea; Entenza, José Manuel; Resch, Grégory

    2016-01-01

    Streptococcus tigurinus is responsible for severe invasive infections such as infective endocarditis, spondylodiscitis and meningitis. As described, S. tigurinus isolates AZ_3aT and AZ_14 were highly virulent (HV phenotype) in an experimental model of infective endocarditis and showed enhanced adherence and invasion of human endothelial cells when compared to low virulent S. tigurinus isolate AZ_8 (LV phenotype). Here, we sought whether genetic determinants could explain the higher virulence of AZ_3aT and AZ_14 isolates. Several genetic determinants specific to the HV strains were identified through extensive comparative genomics amongst which some were thought to be highly relevant for the observed HV phenotype. These included i) an iron uptake and metabolism operon, ii) an ascorbate assimilation operon, iii) a newly acquired PI-2-like pilus islets described for the first time in S. tigurinus, iv) a hyaluronate metabolism operon, v) an Entner-Doudoroff pathway of carbohydrates metabolism, and vi) an alternate pathways for indole biosynthesis. We believe that the identified genomic features could largely explain the phenotype of high infectivity of the two HV S. tigurinus strains. Indeed, these features include determinants that could be involved at different stages of the disease such as survival of S. tigurinus in blood (iron uptake and ascorbate metabolism operons), initial attachment of bacterial pathogen to the damaged cardiac tissue and/or vegetation that formed on site (PI-2-like pilus islets), tissue invasion (hyaluronate operon and Entner-Doudoroff pathway) and regulation of pathogenicity (indole biosynthesis pathway). PMID:27505001

  3. Joint genetic and network analyses identify loci associated with root growth under NaCl stress in Arabidopsis thaliana.

    PubMed

    Kobayashi, Yuriko; Sadhukhan, Ayan; Tazib, Tanveer; Nakano, Yuki; Kusunoki, Kazutaka; Kamara, Mohamed; Chaffai, Radhouane; Iuchi, Satoshi; Sahoo, Lingaraj; Kobayashi, Masatomo; Hoekenga, Owen A; Koyama, Hiroyuki

    2016-04-01

    Plants have evolved a series of tolerance mechanisms to saline stress, which perturbs physiological processes throughout the plant. To identify genetic mechanisms associated with salinity tolerance, we performed linkage analysis and genome-wide association study (GWAS) on maintenance of root growth of Arabidopsis thaliana in hydroponic culture with weak and severe NaCl toxicity. The top 200 single-nucleotide polymorphisms (SNPs) determined by GWAS could cumulatively explain approximately 70% of the variation observed at each stress level. The most significant SNPs were linked to the genes of ATP-binding cassette B10 and vacuolar proton ATPase A2. Several known salinity tolerance genes such as potassium channel KAT1 and calcium sensor SOS3 were also linked to SNPs in the top 200. In parallel, we constructed a gene co-expression network to independently verify that particular groups of genes work together to a common purpose. We identify molecular mechanisms to confer salt tolerance from both predictable and novel physiological sources and validate the utility of combined genetic and network analysis. Additionally, our study indicates that the genetic architecture of salt tolerance is responsive to the severity of stress. These gene datasets are a significant information resource for a following exploration of gene function. PMID:26667381

  4. Large genetic screens for gynogenesis and androgenesis haploid inducers in Arabidopsis thaliana failed to identify mutants

    PubMed Central

    Portemer, Virginie; Renne, Charlotte; Guillebaux, Alexia; Mercier, Raphael

    2015-01-01

    Gynogenesis is a process in which the embryo genome originates exclusively from female origin, following embryogenesis stimulation by a male gamete. In contrast, androgenesis is the development of embryos that contain only the male nuclear genetic background. Both phenomena are of great interest in plant breeding as haploidization is an efficient tool to reduce the length of breeding schemes to create varieties. Although few inducer lines have been described, the genetic control of these phenomena is poorly understood. We developed genetic screens to identify mutations that would induce gynogenesis or androgenesis in Arabidopsis thaliana. The ability of mutant pollen to induce either gynogenesis or androgenesis was tested by crossing mutagenized plants as males. Seedlings from these crosses were screened with recessive phenotypic markers, one genetically controlled by the female genome and another by the male genome. Positive and negative controls confirmed the unambiguous detection of both gynogenesis and androgenesis events. This strategy was applied to 1,666 EMS-mutagenised lines and 47 distant Arabidopsis strains. While an internal control suggested that the mutagenesis reached saturation, no gynogenesis or androgenesis inducer was found. However, spontaneous gynogenesis was observed at a frequency of 1/10,800. Altogether, these results suggest that no simple EMS-induced mutation in the male genome is able to induce gynogenesis or androgenesis in Arabidopsis. PMID:25814999

  5. Electroretinogram analysis of relative spectral sensitivity in genetically identified dichromatic macaques

    PubMed Central

    Hanazawa, Akitoshi; Mikami, Akichika; Angelika, Puti Sulistyo; Takenaka, Osamu; Goto, Shunji; Onishi, Akishi; Koike, Satoshi; Yamamori, Tetsuo; Kato, Keichiro; Kondo, Aya; Suryobroto, Bambang; Farajallah, Achmad; Komatsu, Hidehiko

    2001-01-01

    The retinas of macaque monkeys usually contain three types of photopigment, providing them with trichromatic color vision homologous to that of humans. However, we recently used molecular genetic analysis to identify several macaques with a dichromatic genotype. The affected X chromosome of these animals contains a hybrid gene of long-wavelength-sensitive (L) and middle-wavelength-sensitive (M) photopigments instead of separate genes encoding L and M photopigments. The product of the hybrid gene exhibits a spectral sensitivity close to that of M photopigment; consequently, male monkeys carrying the hybrid gene are genetic protanopes, effectively lacking L photopigment. In the present study, we assessed retinal expression of L photopigment in monkeys carrying the hybrid gene. The relative sensitivities to middle-wavelength (green) and long-wavelength (red) light were measured by electroretinogram flicker photometry. We found the sensitivity to red light to be extremely low in protanopic male monkeys compared with monkeys with the normal genotype. In female heterozygotes, sensitivity to red light was intermediate between the genetic protanopes and normal monkeys. Decreased sensitivity to long wavelengths was thus consistent with genetic loss of L photopigment. PMID:11427736

  6. Harnessing genomics to identify environmental determinants of heritable disease

    PubMed Central

    Yauk, Carole Lyn; Argueso, J. Lucas; Auerbach, Scott S.; Awadalla, Philip; Davis, Sean R.; DeMarini, David M.; Douglas, George R.; Dubrova, Yuri E.; Elespuru, Rosalie K.; Glover, Thomas W.; Hales, Barbara F.; Hurles, Matthew E.; Klein, Catherine B.; Lupski, James R.; Manchester, David K.; Marchetti, Francesco; Montpetit, Alexandre; Mulvihill, John J.; Robaire, Bernard; Robbins, Wendie A.; Rouleau, Guy A.; Shaughnessy, Daniel T.; Somers, Christopher M.; Taylor, James G.; Trasler, Jacquetta; Waters, Michael D.; Wilson, Thomas E.; Witt, Kristine L.; Bishop, Jack B.

    2012-01-01

    Next-generation sequencing technologies can now be used to directly measure heritable de novo DNA sequence mutations in humans. However, these techniques have not been used to examine environmental factors that induce such mutations and their associated diseases. To address this issue, a working group on environmentally induced germline mutation analysis (ENIGMA) met in October 2011 to propose the necessary foundational studies, which include sequencing of parent–offspring trios from highly exposed human populations, and controlled dose–response experiments in animals. These studies will establish background levels of variability in germline mutation rates and identify environmental agents that influence these rates and heritable disease. Guidance for the types of exposures to examine come from rodent studies that have identified agents such as cancer chemotherapeutic drugs, ionizing radiation, cigarette smoke, and air pollution as germ-cell mutagens. Research is urgently needed to establish the health consequences of parental exposures on subsequent generations. PMID:22935230

  7. A cellular genetics approach identifies gene-drug interactions and pinpoints drug toxicity pathway nodes

    PubMed Central

    Suzuki, Oscar T.; Frick, Amber; Parks, Bethany B.; Trask, O. Joseph; Butz, Natasha; Steffy, Brian; Chan, Emmanuel; Scoville, David K.; Healy, Eric; Benton, Cristina; McQuaid, Patricia E.; Thomas, Russell S.; Wiltshire, Tim

    2014-01-01

    New approaches to toxicity testing have incorporated high-throughput screening across a broad-range of in vitro assays to identify potential key events in response to chemical or drug treatment. To date, these approaches have primarily utilized repurposed drug discovery assays. In this study, we describe an approach that combines in vitro screening with genetic approaches for the experimental identification of genes and pathways involved in chemical or drug toxicity. Primary embryonic fibroblasts isolated from 32 genetically-characterized inbred mouse strains were treated in concentration-response format with 65 compounds, including pharmaceutical drugs, environmental chemicals, and compounds with known modes-of-action. Integrated cellular responses were measured at 24 and 72 h using high-content imaging and included cell loss, membrane permeability, mitochondrial function, and apoptosis. Genetic association analysis of cross-strain differences in the cellular responses resulted in a collection of candidate loci potentially underlying the variable strain response to each chemical. As a demonstration of the approach, one candidate gene involved in rotenone sensitivity, Cybb, was experimentally validated in vitro and in vivo. Pathway analysis on the combined list of candidate loci across all chemicals identified a number of over-connected nodes that may serve as core regulatory points in toxicity pathways. PMID:25221565

  8. Genetic determinants of bone mass in adults. A twin study.

    PubMed Central

    Pocock, N A; Eisman, J A; Hopper, J L; Yeates, M G; Sambrook, P N; Eberl, S

    1987-01-01

    The relative importance of genetic factors in determining bone mass in different parts of the skeleton is poorly understood. Lumbar spine and proximal femur bone mineral density and forearm bone mineral content were measured by photon absorptiometry in 38 monozygotic and 27 dizygotic twin pairs. Bone mineral density was significantly more highly correlated in monozygotic than in dizygotic twins for the spine and proximal femur and in the forearm of premenopausal twin pairs, which is consistent with significant genetic contributions to bone mass at all these sites. The lesser genetic contribution to proximal femur and distal forearm bone mass compared with the spine suggests that environmental factors are of greater importance in the aetiology of osteopenia of the hip and wrist. This is the first demonstration of a genetic contribution to bone mass of the spine and proximal femur in adults and confirms similar findings of the forearm. Furthermore, bivariate analysis suggested that a single gene or set of genes determines bone mass at all sites. PMID:3624485

  9. Incorporating Known Genetic Variants Does Not Improve the Accuracy of PSA Testing to Identify High Risk Prostate Cancer on Biopsy

    PubMed Central

    Gilbert, Rebecca; Martin, Richard M.; Evans, David M.; Tilling, Kate; Davey Smith, George; Kemp, John P.; Lane, J. Athene; Hamdy, Freddie C.; Neal, David E.; Donovan, Jenny L.; Metcalfe, Chris

    2015-01-01

    Introduction Prostate-specific antigen (PSA) testing is a widely accepted screening method for prostate cancer, but with low specificity at thresholds giving good sensitivity. Previous research identified four single nucleotide polymorphisms (SNPs) principally associated with circulating PSA levels rather than with prostate cancer risk (TERT rs2736098, FGFR2 rs10788160, TBX3 rs11067228, KLK3 rs17632542). Removing the genetic contribution to PSA levels may improve the ability of the remaining biologically-determined variation in PSA to discriminate between high and low risk of progression within men with identified prostate cancer. We investigate whether incorporating information on the PSA-SNPs improves the discrimination achieved by a single PSA threshold in men with raised PSA levels. Materials and Methods Men with PSA between 3-10ng/mL and histologically-confirmed prostate cancer were categorised as high or low risk of progression (Low risk: Gleason score≤6 and stage T1-T2a; High risk: Gleason score 7–10 or stage T2C). We used the combined genetic effect of the four PSA-SNPs to calculate a genetically corrected PSA risk score. We calculated the Area under the Curve (AUC) to determine how well genetically corrected PSA risk scores distinguished men at high risk of progression from low risk men. Results The analysis includes 868 men with prostate cancer (Low risk: 684 (78.8%); High risk: 184 (21.2%)). Receiver operating characteristic (ROC) curves indicate that including the 4 PSA-SNPs does not improve the performance of measured PSA as a screening tool for high/low risk prostate cancer (measured PSA level AU C = 59.5% (95% CI: 54.7,64.2) vs additionally including information from the 4 PSA-SNPs AUC = 59.8% (95% CI: 55.2,64.5) (p-value = 0.40)). Conclusion We demonstrate that genetically correcting PSA for the combined genetic effect of four PSA-SNPs, did not improve discrimination between high and low risk prostate cancer in men with raised PSA levels (3-10ng

  10. Species-wide Genetic Incompatibility Analysis Identifies Immune Genes as Hotspots of Deleterious Epistasis

    PubMed Central

    Chae, Eunyoung; Bomblies, Kirsten; Kim, Sang-Tae; Karelina, Darya; Zaidem, Maricris; Ossowski, Stephan; Martín-Pizarro, Carmen; Laitinen, Roosa A. E.; Rowan, Beth A.; Tenenboim, Hezi; Lechner, Sarah; Demar, Monika; Habring-Müller, Anette; Lanz, Christa; Rätsch, Gunnar; Weigel, Detlef

    2014-01-01

    Summary Intraspecific genetic incompatibilities prevent the assembly of specific alleles into single genotypes and influence genome- and species-wide patterns of sequence variation. A common incompatibility in plants is hybrid necrosis, characterized by autoimmune responses due to epistatic interactions between natural genetic variants. By systematically testing thousands of F1 hybrids of Arabidopsis thaliana strains, we identified a small number of incompatibility hotspots in the genome, often in regions densely populated by NLR immune receptor genes. In several cases, these immune receptor loci interact with each other, suggestive of conflict within the immune system. A particularly dangerous locus is a highly variable cluster of NLR genes, DANGEROUS MIX2 (DM2), which causes multiple, independent incompatibilities with genes that encode a range of biochemical functions, including NLRs. Our findings suggest that deleterious interactions of immune receptors at the front lines of host-pathogen co-evolution limit the combinations of favorable disease resistance alleles accessible to plant genomes. PMID:25467443

  11. Genetic studies of plasma analytes identify novel potential biomarkers for several complex traits

    PubMed Central

    Deming, Yuetiva; Xia, Jian; Cai, Yefei; Lord, Jenny; Del-Aguila, Jorge L.; Fernandez, Maria Victoria; Carrell, David; Black, Kathleen; Budde, John; Ma, ShengMei; Saef, Benjamin; Howells, Bill; Bertelsen, Sarah; Bailey, Matthew; Ridge, Perry G.; Hefti, Franz; Fillit, Howard; Zimmerman, Earl A.; Celmins, Dzintra; Brown, Alice D.; Carrillo, Maria; Fleisher, Adam; Reeder, Stephanie; Trncic, Nadira; Burke, Anna; Tariot, Pierre; Reiman, Eric M.; Chen, Kewei; Sabbagh, Marwan N.; Beiden, Christine M.; Jacobson, Sandra A.; Sirrel, Sherye A.; Doody, Rachelle S.; Villanueva-Meyer, Javier; Chowdhury, Munir; Rountree, Susan; Dang, Mimi; Kowall, Neil; Killiany, Ronald; Budson, Andrew E.; Norbash, Alexander; Johnson, Patricia Lynn; Green, Robert C.; Marshall, Gad; Johnson, Keith A.; Sperling, Reisa A.; Snyder, Peter; Salloway, Stephen; Malloy, Paul; Correia, Stephen; Bernick, Charles; Munic, Donna; Stern, Yaakov; Honig, Lawrence S.; Bell, Karen L.; Relkin, Norman; Chaing, Gloria; Ravdin, Lisa; Paul, Steven; Flashman, Laura A.; Seltzer, Marc; Hynes, Mary L.; Santulli, Robert B.; Bates, Vernice; Capote, Horacio; Rainka, Michelle; Friedl, Karl; Murali Doraiswamy, P.; Petrella, Jeffrey R.; Borges-Neto, Salvador; James, Olga; Wong, Terence; Coleman, Edward; Schwartz, Adam; Cellar, Janet S.; Levey, Allan L.; Lah, James J.; Behan, Kelly; Scott Turner, Raymond; Johnson, Kathleen; Reynolds, Brigid; Pearlson, Godfrey D.; Blank, Karen; Anderson, Karen; Obisesan, Thomas O.; Wolday, Saba; Allard, Joanne; Lerner, Alan; Ogrocki, Paula; Tatsuoka, Curtis; Fatica, Parianne; Farlow, Martin R.; Saykin, Andrew J.; Foroud, Tatiana M.; Shen, Li; Faber, Kelly; Kim, Sungeun; Nho, Kwangsik; Marie Hake, Ann; Matthews, Brandy R.; Brosch, Jared R.; Herring, Scott; Hunt, Cynthia; Albert, Marilyn; Onyike, Chiadi; D’Agostino, Daniel; Kielb, Stephanie; Graff-Radford, Neill R; Parfitt, Francine; Kendall, Tracy; Johnson, Heather; Petersen, Ronald; Jack, Clifford R.; Bernstein, Matthew; Borowski, Bret; Gunter, Jeff; Senjem, Matt; Vemuri, Prashanthi; Jones, David; Kantarci, Kejal; Ward, Chad; Mason, Sara S.; Albers, Colleen S.; Knopman, David; Johnson, Kris; Chertkow, Howard; Hosein, Chris; Mintzer, Jacob; Spicer, Kenneth; Bachman, David; Grossman, Hillel; Mitsis, Effie; Pomara, Nunzio; Hernando, Raymundo; Sarrael, Antero; Potter, William; Buckholtz, Neil; Hsiao, John; Kittur, Smita; Galvin, James E.; Cerbone, Brittany; Michel, Christina A.; Pogorelec, Dana M.; Rusinek, Henry; de Leon, Mony J; Glodzik, Lidia; De Santi, Susan; Johnson, Nancy; Chuang-Kuo; Kerwin, Diana; Bonakdarpour, Borna; Weintraub, Sandra; Grafman, Jordan; Lipowski, Kristine; Mesulam, Marek-Marsel; Scharre, Douglas W.; Kataki, Maria; Adeli, Anahita; Kaye, Jeffrey; Quinn, Joseph; Silbert, Lisa; Lind, Betty; Carter, Raina; Dolen, Sara; Borrie, Michael; Lee, T-Y; Bartha, Rob; Martinez, Walter; Villena, Teresa; Sadowsky, Carl; Khachaturian, Zaven; Ott, Brian R.; Querfurth, Henry; Tremont, Geoffrey; Frank, Richard; Fleischman, Debra; Arfanakis, Konstantinos; Shah, Raj C.; deToledo-Morrell, Leyla; Sorensen, Greg; Finger, Elizabeth; Pasternack, Stephen; Rachinsky, Irina; Drost, Dick; Rogers, John; Kertesz, Andrew; Furst, Ansgar J.; Chad, Stevan; Yesavage, Jerome; Taylor, Joy L.; Lane, Barton; Rosen, Allyson; Tinklenberg, Jared; Black, Sandra; Stefanovic, Bojana; Caldwell, Curtis; Robin Hsiung, Ging-Yuek; Mudge, Benita; Assaly, Michele; Fox, Nick; Schultz, Susan K.; Boles Ponto, Laura L.; Shim, Hyungsub; Ekstam Smith, Karen; Burns, Jeffrey M.; Swerdlow, Russell H.; Brooks, William M.; Marson, Daniel; Griffith, Randall; Clark, David; Geldmacher, David; Brockington, John; Roberson, Erik; Natelson Love, Marissa; DeCarli, Charles; Carmichael, Owen; Olichney, John; Maillard, Pauline; Fletcher, Evan; Nguyen, Dana; Preda, Andrian; Potkin, Steven; Mulnard, Ruth A.; Thai, Gaby; McAdams-Ortiz, Catherine; Landau, Susan; Jagust, William; Apostolova, Liana; Tingus, Kathleen; Woo, Ellen; Silverman, Daniel H.S.; Lu, Po H.; Bartzokis, George; Thompson, Paul; Donohue, Michael; Thomas, Ronald G.; Walter, Sarah; Gessert, Devon; Brewer, James; Vanderswag, Helen; Sather, Tamie; Jiminez, Gus; Balasubramanian, Archana B.; Mason, Jennifer; Sim, Iris; Aisen, Paul; Davis, Melissa; Morrison, Rosemary; Harvey, Danielle; Thal, Lean; Beckett, Laurel; Neylan, Thomas; Finley, Shannon; Weiner, Michael W.; Hayes, Jacqueline; Rosen, Howard J.; Miller, Bruce L.; Perry, David; Massoglia, Dino; Brawman-Mentzer, Olga; Schuff, Norbert; Smith, Charles D.; Hardy, Peter; Sinha, Partha; Oates, Elizabeth; Conrad, Gary; Koeppe, Robert A.; Lord, Joanne L.; Heidebrink, Judith L.; Arnold, Steven E.; Karlawish, Jason H.; Wolk, David; Clark, Christopher M.; Trojanowki, John Q.; Shaw, Leslie M.; Lee, Virginia; Korecka, Magdalena; Figurski, Michal; Toga, Arthur W.; Crawford, Karen; Neu, Scott; Schneider, Lon S.; Pawluczyk, Sonia; Beccera, Mauricio; Teodoro, Liberty; Spann, Bryan M.; Womack, Kyle; Mathews, Dana; Quiceno, Mary; Foster, Norm; Montine, Tom; Fruehling, J. Jay; Harding, Sandra; Johnson, Sterling; Asthana, Sanjay; Carlsson, Cynthia M.; Petrie, Eric C.; Peskind, Elaine; Li, Gail; Porsteinsson, Anton P.; Goldstein, Bonnie S.; Martin, Kim; Makino, Kelly M.; Ismail, M. Saleem; Brand, Connie; Smith, Amanda; Ashok Raj, Balebail; Fargher, Kristin; Kuller, Lew; Mathis, Chet; Ann Oakley, Mary; Lopez, Oscar L.; Simpson, Donna M.; Sink, Kaycee M.; Gordineer, Leslie; Williamson, Jeff D.; Garg, Pradeep; Watkins, Franklin; Cairns, Nigel J.; Raichle, Marc; Morris, John C.; Householder, Erin; Taylor-Reinwald, Lisa; Holtzman, David; Ances, Beau; Carroll, Maria; Creech, Mary L.; Franklin, Erin; Mintun, Mark A.; Schneider, Stacy; Oliver, Angela; Duara, Ranjan; Varon, Daniel; Greig, Maria T.; Roberts, Peggy; Varma, Pradeep; MacAvoy, Martha G.; Carson, Richard E.; van Dyck, Christopher H.; Davies, Peter; Holtzman, David; Morris, John C.; Bales, Kelly; Pickering, Eve H.; Lee, Jin-Moo; Heitsch, Laura; Kauwe, John; Goate, Alison; Piccio, Laura; Cruchaga, Carlos

    2016-01-01

    Genome-wide association studies of 146 plasma protein levels in 818 individuals revealed 56 genome-wide significant associations (28 novel) with 47 analytes. Loci associated with plasma levels of 39 proteins tested have been previously associated with various complex traits such as heart disease, inflammatory bowel disease, Type 2 diabetes, and multiple sclerosis. These data suggest that these plasma protein levels may constitute informative endophenotypes for these complex traits. We found three potential pleiotropic genes: ABO for plasma SELE and ACE levels, FUT2 for CA19-9 and CEA plasma levels, and APOE for ApoE and CRP levels. We also found multiple independent signals in loci associated with plasma levels of ApoH, CA19-9, FetuinA, IL6r, and LPa. Our study highlights the power of biological traits for genetic studies to identify genetic variants influencing clinically relevant traits, potential pleiotropic effects, and complex disease associations in the same locus.

  12. Quantiles Regression Approach to Identifying the Determinant of Breastfeeding Duration

    NASA Astrophysics Data System (ADS)

    Mahdiyah; Norsiah Mohamed, Wan; Ibrahim, Kamarulzaman

    In this study, quantiles regression approach is applied to the data of Malaysian Family Life Survey (MFLS), to identify factors which are significantly related to the different conditional quantiles of the breastfeeding duration. It is known that the classical linear regression methods are based on minimizing residual sum of squared, but quantiles regression use a mechanism which are based on the conditional median function and the full range of other conditional quantile functions. Overall, it is found that the period of breastfeeding is significantly related to place of living, religion and total number of children in the family.

  13. Estimating Genetic Effects and Quantifying Missing Heritability Explained by Identified Rare-Variant Associations

    PubMed Central

    Liu, Dajiang J.; Leal, Suzanne M.

    2012-01-01

    Next-generation sequencing has led to many complex-trait rare-variant (RV) association studies. Although single-variant association analysis can be performed, it is grossly underpowered. Therefore, researchers have developed many RV association tests that aggregate multiple variant sites across a genetic region (e.g., gene), and test for the association between the trait and the aggregated genotype. After these aggregate tests detect an association, it is only possible to estimate the average genetic effect for a group of RVs. As a result of the "winner’s curse," such an estimate can be biased. Although for common variants one can obtain unbiased estimates of genetic parameters by analyzing a replication sample, for RVs it is desirable to obtain unbiased genetic estimates for the study where the association is identified. This is because there can be substantial heterogeneity of RV sites and frequencies even among closely related populations. In order to obtain an unbiased estimate for aggregated RV analysis, we developed bootstrap-sample-split algorithms to reduce the bias of the winner’s curse. The unbiased estimates are greatly important for understanding the population-specific contribution of RVs to the heritability of complex traits. We also demonstrate both theoretically and via simulations that for aggregate RV analysis the genetic variance for a gene or region will always be underestimated, sometimes substantially, because of the presence of noncausal variants or because of the presence of causal variants with effects of different magnitudes or directions. Therefore, even if RVs play a major role in the complex-trait etiologies, a portion of the heritability will remain missing, and the contribution of RVs to the complex-trait etiologies will be underestimated. PMID:23022102

  14. Measuring Awareness and Identifying Misconceptions About Genetic Counseling Services and Utilizing Television to Educate

    NASA Astrophysics Data System (ADS)

    Goldberg, Dena

    Understanding awareness and perceptions of genetic counseling (GC) is important in identifying and overcoming potential barriers to GC services. However, there are relatively few empirical data regarding these factors among US-based populations. To address this, we attended various community events for the general public, disability community, and new parents and recruited participants for a survey-based study comprising demographic questions, closed-ended knowledge-based and awareness questions, and open text sections. We applied descriptive statistics to responses about demographics, awareness of GC, purposes of GC, and perceptions of GC practice. In total, 320 individuals participated, including 69 from the general public, 209 from the disability community, and 42 from the new parent community. Slightly more than half of respondents (n =173, 54%) had heard of GC. Risk assessment and counseling were among the most frequently cited activities attributed to genetic counselors; a few felt that GC was related to eugenics. Respondents thought that GC aims to prevent genetic disorders (n=82, 74%), helps people find their ethnic origins and understand their ancestry (n=176, 55%), advises people whether to have children (n=140, 44%), and helps couples have children with desirable characteristics (n=126, 39%). Our data showed the majority of participants preferred to watch a medical thriller involving genetic counseling, followed by documentary series; comedy was rated the lowest. These data revealed gaps in awareness of GC and misperceptions about its purpose and can be useful in devising targeted interventions by developing entertainment-based education to improve public knowledge of genetic health and the roles of GCs.

  15. Identifying Litchi (Litchi chinensis Sonn.) Cultivars and Their Genetic Relationships Using Single Nucleotide Polymorphism (SNP) Markers

    PubMed Central

    Liu, Wei; Xiao, Zhidan; Bao, Xiuli; Yang, Xiaoyan; Fang, Jing; Xiang, Xu

    2015-01-01

    Litchi is an important fruit tree in tropical and subtropical areas of the world. However, there is widespread confusion regarding litchi cultivar nomenclature and detailed information of genetic relationships among litchi germplasm is unclear. In the present study, the potential of single nucleotide polymorphism (SNP) for the identification of 96 representative litchi accessions and their genetic relationships in China was evaluated using 155 SNPs that were evenly spaced across litchi genome. Ninety SNPs with minor allele frequencies above 0.05 and a good genotyping success rate were used for further analysis. A relatively high level of genetic variation was observed among litchi accessions, as quantified by the expected heterozygosity (He = 0.305). The SNP based multilocus matching identified two synonymous groups, ‘Heiye’ and ‘Wuye’, and ‘Chengtuo’ and ‘Baitangli 1’. A subset of 14 SNPs was sufficient to distinguish all the non-redundant litchi genotypes, and these SNPs were proven to be highly stable by repeated analyses of a selected group of cultivars. Unweighted pair-group method of arithmetic averages (UPGMA) cluster analysis divided the litchi accessions analyzed into four main groups, which corresponded to the traits of extremely early-maturing, early-maturing, middle-maturing, and late-maturing, indicating that the fruit maturation period should be considered as the primary criterion for litchi taxonomy. Two subpopulations were detected among litchi accessions by STRUCTURE analysis, and accessions with extremely early- and late-maturing traits showed membership coefficients above 0.99 for Cluster 1 and Cluster 2, respectively. Accessions with early- and middle-maturing traits were identified as admixture forms with varying levels of membership shared between the two clusters, indicating their hybrid origin during litchi domestication. The results of this study will benefit litchi germplasm conservation programs and facilitate maximum

  16. Genetical genomic determinants of alcohol consumption in rats and humans

    PubMed Central

    Tabakoff, Boris; Saba, Laura; Printz, Morton; Flodman, Pam; Hodgkinson, Colin; Goldman, David; Koob, George; Richardson, Heather N; Kechris, Katerina; Bell, Richard L; Hübner, Norbert; Heinig, Matthias; Pravenec, Michal; Mangion, Jonathan; Legault, Lucie; Dongier, Maurice; Conigrave, Katherine M; Whitfield, John B; Saunders, John; Grant, Bridget; Hoffman, Paula L

    2009-01-01

    Background We have used a genetical genomic approach, in conjunction with phenotypic analysis of alcohol consumption, to identify candidate genes that predispose to varying levels of alcohol intake by HXB/BXH recombinant inbred rat strains. In addition, in two populations of humans, we assessed genetic polymorphisms associated with alcohol consumption using a custom genotyping array for 1,350 single nucleotide polymorphisms (SNPs). Our goal was to ascertain whether our approach, which relies on statistical and informatics techniques, and non-human animal models of alcohol drinking behavior, could inform interpretation of genetic association studies with human populations. Results In the HXB/BXH recombinant inbred (RI) rats, correlation analysis of brain gene expression levels with alcohol consumption in a two-bottle choice paradigm, and filtering based on behavioral and gene expression quantitative trait locus (QTL) analyses, generated a list of candidate genes. A literature-based, functional analysis of the interactions of the products of these candidate genes defined pathways linked to presynaptic GABA release, activation of dopamine neurons, and postsynaptic GABA receptor trafficking, in brain regions including the hypothalamus, ventral tegmentum and amygdala. The analysis also implicated energy metabolism and caloric intake control as potential influences on alcohol consumption by the recombinant inbred rats. In the human populations, polymorphisms in genes associated with GABA synthesis and GABA receptors, as well as genes related to dopaminergic transmission, were associated with alcohol consumption. Conclusion Our results emphasize the importance of the signaling pathways identified using the non-human animal models, rather than single gene products, in identifying factors responsible for complex traits such as alcohol consumption. The results suggest cross-species similarities in pathways that influence predisposition to consume alcohol by rats and humans

  17. Disease Risk Factors Identified through Shared Genetic Architecture and Electronic Medical Records

    PubMed Central

    Li, Li; Ruau, David J.; Patel, Chirag J.; Weber, Susan C.; Chen, Rong; Tatonetti, Nicholas P.; Dudley, Joel T.; Butte, Atul J.

    2015-01-01

    Genome-Wide Association Studies (GWAS) have identified genetic variants for thousands of diseases and traits. In this study, we evaluated the relationships between specific risk factors (for example, blood cholesterol level) and diseases on the basis of their shared genetic architecture in a comprehensive human disease-SNP association database (VARIMED), analyzing the findings from 8,962 published association studies. Similarity between traits and diseases was statistically evaluated based on their association with shared gene variants. We identified 120 disease-trait pairs that were statistically similar, and of these we tested and validated five previously unknown disease-trait associations by searching electronic medical records (EMR) from 3 independent medical centers for evidence of the trait appearing in patients within one year of first diagnosis of the disease. We validated that mean corpuscular volume is elevated before diagnosis of acute lymphoblastic leukemia; both have associated variants in the gene IKZF1. Platelet count is decreased before diagnosis of alcohol dependence; both are associated with variants in the gene C12orf51. Alkaline phosphatase level is elevated in patients with venous thromboembolism; both share variants in ABO. Similarly, we found prostate specific antigen and serum magnesium levels were altered before the diagnosis of lung cancer and gastric cancer, respectively. Disease-trait associations identifies traits that can potentially serve a prognostic function clinically; validating disease-trait associations through EMR can whether these candidates are risk factors for complex diseases. PMID:24786325

  18. Tilapia sex determination: Where temperature and genetics meet.

    PubMed

    Baroiller, J F; D'Cotta, H; Bezault, E; Wessels, S; Hoerstgen-Schwark, G

    2009-05-01

    This review deals with the complex sex determining system of Nile tilapia, Oreochromis niloticus, governed by the interactions between a genetic determination and the influence of temperature, shown in both domestic and wild populations. Naturally sex reversed individuals are strongly suggested in two wild populations. This can be due to the masculinising temperatures which some fry encounter during their sex differentiation period when they colonise shallow waters, and/or to the influence of minor genetic factors. Differences regarding a) thermal responsiveness of sex ratios between and within Nile tilapia populations, b) maternal and paternal effects on temperature dependent sex ratios and c) nearly identical results in offspring of repeated matings, demonstrate that thermosensitivity is under genetic control. Selection experiments to increase the thermosensitivity revealed high responses in the high and low sensitive lines. The high-line showed approximately 90% males after 2 generations of selection whereas the weakly sensitive line had 54% males. This is the first evidence that a surplus of males in temperature treated groups can be selected as a quantitative trait. Expression profiles of several genes (Cyp19a, Foxl2, Amh, Sox9a,b) from the gonad and brain were analysed to define temperature action on the sex determining/differentiating cascade in tilapia. The coexistence of GSD and TSD is discussed. PMID:19101647

  19. Determining the Effective Dimensionality of the Genetic Variance–Covariance Matrix

    PubMed Central

    Hine, Emma; Blows, Mark W.

    2006-01-01

    Determining the dimensionality of G provides an important perspective on the genetic basis of a multivariate suite of traits. Since the introduction of Fisher's geometric model, the number of genetically independent traits underlying a set of functionally related phenotypic traits has been recognized as an important factor influencing the response to selection. Here, we show how the effective dimensionality of G can be established, using a method for the determination of the dimensionality of the effect space from a multivariate general linear model introduced by Amemiya (1985). We compare this approach with two other available methods, factor-analytic modeling and bootstrapping, using a half-sib experiment that estimated G for eight cuticular hydrocarbons of Drosophila serrata. In our example, eight pheromone traits were shown to be adequately represented by only two underlying genetic dimensions by Amemiya's approach and factor-analytic modeling of the covariance structure at the sire level. In contrast, bootstrapping identified four dimensions with significant genetic variance. A simulation study indicated that while the performance of Amemiya's method was more sensitive to power constraints, it performed as well or better than factor-analytic modeling in correctly identifying the original genetic dimensions at moderate to high levels of heritability. The bootstrap approach consistently overestimated the number of dimensions in all cases and performed less well than Amemiya's method at subspace recovery. PMID:16547106

  20. Genetic associations with micronutrient levels identified in immune and gastrointestinal networks.

    PubMed

    Morine, Melissa J; Monteiro, Jacqueline Pontes; Wise, Carolyn; Teitel, Candee; Pence, Lisa; Williams, Anna; Ning, Baitang; McCabe-Sellers, Beverly; Champagne, Catherine; Turner, Jerome; Shelby, Beatrice; Bogle, Margaret; Beger, Richard D; Priami, Corrado; Kaput, Jim

    2014-07-01

    The discovery of vitamins and clarification of their role in preventing frank essential nutrient deficiencies occurred in the early 1900s. Much vitamin research has understandably focused on public health and the effects of single nutrients to alleviate acute conditions. The physiological processes for maintaining health, however, are complex systems that depend upon interactions between multiple nutrients, environmental factors, and genetic makeup. To analyze the relationship between these factors and nutritional health, data were obtained from an observational, community-based participatory research program of children and teens (age 6-14) enrolled in a summer day camp in the Delta region of Arkansas. Assessments of erythrocyte S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), plasma homocysteine (Hcy) and 6 organic micronutrients (retinol, 25-hydroxy vitamin D3, pyridoxal, thiamin, riboflavin, and vitamin E), and 1,129 plasma proteins were performed at 3 time points in each of 2 years. Genetic makeup was analyzed with 1 M SNP genotyping arrays, and nutrient status was assessed with 24-h dietary intake questionnaires. A pattern of metabolites (met_PC1) that included the ratio of erythrocyte SAM/SAH, Hcy, and 5 vitamins were identified by principal component analysis. Met_PC1 levels were significantly associated with (1) single-nucleotide polymorphisms, (2) levels of plasma proteins, and (3) multilocus genotypes coding for gastrointestinal and immune functions, as identified in a global network of metabolic/protein-protein interactions. Subsequent mining of data from curated pathway, network, and genome-wide association studies identified genetic and functional relationships that may be explained by gene-nutrient interactions. The systems nutrition strategy described here has thus associated a multivariate metabolite pattern in blood with genes involved in immune and gastrointestinal functions. PMID:24879315

  1. Genetic determinants for enhanced glycerol growth of Saccharomyces cerevisiae.

    PubMed

    Swinnen, Steve; Ho, Ping-Wei; Klein, Mathias; Nevoigt, Elke

    2016-07-01

    The yeast Saccharomyces cerevisiae generally shows a low natural capability to utilize glycerol as the sole source of carbon, particularly when synthetic medium is used and complex supplements are omitted. Nevertheless, wild type isolates have been identified that show a moderate growth under these conditions. In the current study we made use of intraspecies diversity to identify targets suitable for reverse metabolic engineering of the non-growing laboratory strain CEN.PK113-1A. A genome-wide genetic mapping experiment using pooled-segregant whole-genome sequence analysis was conducted, and one major and several minor genetic loci were identified responsible for the superior glycerol growth phenotype of the previously selected S. cerevisiae strain CBS 6412-13A. Downscaling of the major locus by fine-mapping and reciprocal hemizygosity analysis allowed the parallel identification of two superior alleles (UBR2CBS 6412-13A and SSK1CBS 6412-13A). These alleles together with the previously identified GUT1CBS 6412-13A allele were used to replace the corresponding alleles in the strain CEN.PK113-1A. In this way, glycerol growth could be established reaching a maximum specific growth rate of 0.08h(-1). Further improvement to a maximum specific growth rate of 0.11h(-1) could be achieved by heterologous expression of the glycerol facilitator FPS1 from Cyberlindnera jadinii. PMID:26971668

  2. Genetic overlap between type 2 diabetes and major depressive disorder identified by bioinformatics analysis

    PubMed Central

    Ji, Hong-Fang; Zhuang, Qi-Shuai; Shen, Liang

    2016-01-01

    Our study investigated the shared genetic etiology underlying type 2 diabetes (T2D) and major depressive disorder (MDD) by analyzing large-scale genome wide association studies statistics. A total of 496 shared SNPs associated with both T2D and MDD were identified at p-value ≤ 1.0E-07. Functional enrichment analysis showed that the enriched pathways pertained to immune responses (Fc gamma R-mediated phagocytosis, T cell and B cell receptors signaling), cell signaling (MAPK, Wnt signaling), lipid metabolism, and cancer associated pathways. The findings will have potential implications for future interventional studies of the two diseases. PMID:27007159

  3. Use of a twin dataset to identify AMD-related visual patterns controlled by genetic factors

    NASA Astrophysics Data System (ADS)

    Quellec, Gwénolé; Abràmoff, Michael D.; Russell, Stephen R.

    2010-03-01

    The mapping of genotype to the phenotype of age-related macular degeneration (AMD) is expected to improve the diagnosis and treatment of the disease in a near future. In this study, we focused on the first step to discover this mapping: we identified visual patterns related to AMD which seem to be controlled by genetic factors, without explicitly relating them to the genes. For this purpose, we used a dataset of eye fundus photographs from 74 twin pairs, either monozygotic twins, who have the same genotype, or dizygotic twins, whose genes responsible for AMD are less likely to be identical. If we are able to differentiate monozygotic twins from dizygotic twins, based on a given visual pattern, then this pattern is likely to be controlled by genetic factors. The main visible consequence of AMD is the apparition of drusen between the retinal pigment epithelium and Bruch's membrane. We developed two automated drusen detectors based on the wavelet transform: a shape-based detector for hard drusen, and a texture- and color- based detector for soft drusen. Forty visual features were evaluated at the location of the automatically detected drusen. These features characterize the texture, the shape, the color, the spatial distribution, or the amount of drusen. A distance measure between twin pairs was defined for each visual feature; a smaller distance should be measured between monozygotic twins for visual features controlled by genetic factors. The predictions of several visual features (75.7% accuracy) are comparable or better than the predictions of human experts.

  4. Surfing a genetic association interaction network to identify modulators of antibody response to smallpox vaccine

    PubMed Central

    Davis, N A; Crowe, J E; Pajewski, N M; McKinney, B A

    2010-01-01

    The variation in antibody response to vaccination likely involves small contributions of numerous genetic variants, such as single-nucleotide polymorphisms (SNPs), which interact in gene networks and pathways. To accumulate the bits of genetic information relevant to the phenotype that are distributed throughout the interaction network, we develop a network eigenvector centrality algorithm (SNPrank) that is sensitive to the weak main effects, gene–gene interactions and small higher-order interactions through hub effects. Analogous to Google PageRank, we interpret the algorithm as the simulation of a random SNP surfer (RSS) that accumulates bits of information in the network through a dynamic probabilistic Markov chain. The transition matrix for the RSS is based on a data-driven genetic association interaction network (GAIN), the nodes of which are SNPs weighted by the main-effect strength and edges weighted by the gene–gene interaction strength. We apply SNPrank to a GAIN analysis of a candidate-gene association study on human immune response to smallpox vaccine. SNPrank implicates a SNP in the retinoid X receptor α (RXRA) gene through a network interaction effect on antibody response. This vitamin A- and D-signaling mediator has been previously implicated in human immune responses, although it would be neglected in a standard analysis because its significance is unremarkable outside the context of its network centrality. This work suggests SNPrank to be a powerful method for identifying network effects in genetic association data and reveals a potential vitamin regulation network association with antibody response. PMID:20613780

  5. Identifying flavor preference subgroups. Genetic basis and related eating behavior traits.

    PubMed

    Törnwall, Outi; Silventoinen, Karri; Hiekkalinna, Tero; Perola, Markus; Tuorila, Hely; Kaprio, Jaakko

    2014-04-01

    Subgroups based on flavor preferences were identified and their genetic and behavior related characteristics investigated using extensive data from 331 Finnish twins (21-25years, 146 men) including 47 monozygotic (MZ) and 93 dizygotic (DZ) pairs, and 51 twin individuals. The subgroup identification (hierarchical and K-means clustering) was based on liking responses to food names representing sour, umami, and spicy flavor qualities. Furthermore, sensory tests were conducted, a questionnaire on food likes completed, and various eating behavior related traits measured with validated scales. Sensory data included intensity ratings of PROP (6-n-propylthiouracil-impregnated filter paper), hedonic and intensity responses to sourness (orange juice with and without added citric acid, 0.42%), pungency (strawberry jelly with and without added capsaicin 0.00013%) and umami ('mouthfeel flavor' taste solution). Ratings of liking of 41 general food names were categorized into salty-and-fatty, sweet-and-fatty, fruits and vegetables and fish foods. Subgroup differences (complex samples procedure) and the genetics underlying the subgroups (structural equation modeling) were investigated. Of the resulting two groups (basic, n=140, adventurous n=152; non-grouped n=39), the adventurous expressed higher liking for sour and spicy foods, and had more tolerance for capsaicin burn in the sensory-hedonic test. The adventurous were also less food neophobic (25.9±9.1 vs. 32.5±10.6, respectively) and expressed higher liking for fruits and vegetables compared to the basic group. Genetic effects were shown to underlie the subgroups (heritability 72%, CI: 36-92%). Linkage analysis for 27 candidate gene regions revealed suggestively that being adventurous is linked to TAS1R1 and PKD1L3 genes. These results indicate that food neophobia and genetic differences may form a barrier through which individual flavor preferences are generated. PMID:24361469

  6. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis

    PubMed Central

    Moriarity, Branden S; Otto, George M; Rahrmann, Eric P; Rathe, Susan K; Wolf, Natalie K; Weg, Madison T; Manlove, Luke A; LaRue, Rebecca S; Temiz, Nuri A; Molyneux, Sam D; Choi, Kwangmin; Holly, Kevin J; Sarver, Aaron L; Scott, Milcah C; Forster, Colleen L; Modiano, Jaime F; Khanna, Chand; Hewitt, Stephen M; Khokha, Rama; Yang, Yi; Gorlick, Richard; Dyer, Michael A; Largaespada, David A

    2016-01-01

    Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma. PMID:25961939

  7. A Sleeping Beauty forward genetic screen identifies new genes and pathways driving osteosarcoma development and metastasis.

    PubMed

    Moriarity, Branden S; Otto, George M; Rahrmann, Eric P; Rathe, Susan K; Wolf, Natalie K; Weg, Madison T; Manlove, Luke A; LaRue, Rebecca S; Temiz, Nuri A; Molyneux, Sam D; Choi, Kwangmin; Holly, Kevin J; Sarver, Aaron L; Scott, Milcah C; Forster, Colleen L; Modiano, Jaime F; Khanna, Chand; Hewitt, Stephen M; Khokha, Rama; Yang, Yi; Gorlick, Richard; Dyer, Michael A; Largaespada, David A

    2015-06-01

    Osteosarcomas are sarcomas of the bone, derived from osteoblasts or their precursors, with a high propensity to metastasize. Osteosarcoma is associated with massive genomic instability, making it problematic to identify driver genes using human tumors or prototypical mouse models, many of which involve loss of Trp53 function. To identify the genes driving osteosarcoma development and metastasis, we performed a Sleeping Beauty (SB) transposon-based forward genetic screen in mice with and without somatic loss of Trp53. Common insertion site (CIS) analysis of 119 primary tumors and 134 metastatic nodules identified 232 sites associated with osteosarcoma development and 43 sites associated with metastasis, respectively. Analysis of CIS-associated genes identified numerous known and new osteosarcoma-associated genes enriched in the ErbB, PI3K-AKT-mTOR and MAPK signaling pathways. Lastly, we identified several oncogenes involved in axon guidance, including Sema4d and Sema6d, which we functionally validated as oncogenes in human osteosarcoma. PMID:25961939

  8. Regulators of genetic risk of breast cancer identified by integrative network analysis

    PubMed Central

    Castro, Mauro AA; de Santiago, Ines; Campbell, Thomas M; Vaughn, Courtney; Hickey, Theresa E; Ross, Edith; Tilley, Wayne D; Markowetz, Florian; Ponder, Bruce AJ; Meyer, Kerstin B

    2015-01-01

    Genetic risk for breast cancer is conferred by a combination of multiple variants of small effect. To better understand how risk loci might combine, we examined whether risk-associated genes share regulatory mechanisms. We created a breast cancer gene regulatory network between transcription factors (TFs) and putative target genes (regulons) and asked whether specific regulons are enriched for genes associated with risk loci via eQTLs. We identified 36 overlapping regulons that were enriched and formed a distinct cluster within the network, suggesting shared biology. The risk-TFs driving these regulons are frequently mutated in cancer and lie in two opposing subgroups, which relate to ER+ luminal A/B and to ER− basal-like cancers and to different, luminal epithelial cell populations in the adult mammary gland. Our network approach provides a foundation to reveal the regulatory circuits governing breast cancer, to identify targets for intervention, and is transferable to other disease settings. PMID:26618344

  9. A genetic database can be utilized to identify potential biomarkers for biphenotypic hepatocellular carcinoma-cholangiocarcinoma

    PubMed Central

    Mohan, Sachin; Grewal, Navjot; Elfant, Adam B.; Judge, Thomas A.

    2016-01-01

    Background Biphenotypic hepatocellular carcinoma-cholangiocarcinoma (HCC-CC) is an uncommon primary liver neoplasm. Due to limitations in radiologic imaging for the diagnosis of this condition, biopsy is a common method for diagnosis, which is invasive and holds potential complications. To identify alternative means for obtaining the diagnosis and assessing the prognosis of this condition, we evaluated biomarkers for biphenotypic HCC-CC using a genetic database. Methods To evaluate the genetic associations with each variable we utilized GeneCards®, The Human Gene Compendium (http://www.genecards.org). The results of our search were entered into the Pathway Interaction Database from the National Cancer Institute (PID-NCI) (http://pid.nci.nih.gov), to generate a biomolecule interaction map. Results The results of our query yielded 690 genes for HCC, 98 genes for CC and 50 genes for HCC-CC. Genes depicted in this analysis demonstrate the role of hormonal regulation, embryonic development, cell surface adhesion, cytokeratin stability, mucin production, metalloproteinase regulation, Ras signaling, metabolism and apoptosis. Examples of previously described markers included hepatocyte growth factor (HGF), mesenchymal epithelial transition (MET) and Kirsten rat sarcoma viral oncogene homolog (KRAS). Novel markers included phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA), GPC3, choline kinase alpha (CHKA), prostaglandin-endoperoxide synthase 2 (PTGS2), telomerase reverse transcriptase (TERT), myeloid cell leukemia 1 (MCL1) and N-acetyltransferase 2 (NAT2). Conclusions GeneCards is a useful research tool in the genetic analysis of low frequency malignancies. Utilizing this tool we identified several biomarkers are methods for diagnosing HCC-CC. Finally, utilizing these methods, HCC-CC was found to be predominantly a subtype of CC. PMID:27563447

  10. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants

    PubMed Central

    Gala, Manish; Abecasis, Goncalo; Bezieau, Stephane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J.; Carlson, Christopher S.; Casey, Graham; Chang-Claude, Jenny; Conti, David V.; Curtis, Keith R.; Duggan, David; Gallinger, Steven; Haile, Robert W.; Harrison, Tabitha A.; Hayes, Richard B.; Hoffmeister, Michael; Hopper, John L.; Hudson, Thomas J.; Jenkins, Mark A.; Küry, Sébastien; Le Marchand, Loic; Leal, Suzanne M.; Newcomb, Polly A.; Nickerson, Deborah A.; Potter, John D.; Schoen, Robert E.; Schumacher, Fredrick R.; Seminara, Daniela; Slattery, Martha L.; Hsu, Li; Chan, Andrew T.; White, Emily; Berndt, Sonja I.; Peters, Ulrike

    2016-01-01

    Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s). PMID:27379672

  11. Monitoring and identifying genetically-engineered microorganisms in the environment by time-resolved laser fluorometry

    SciTech Connect

    Basile, F.

    1992-01-01

    A large percentage of the applications of Genetically Engineered Microorganisms (GEMs) involve their release into the environment. At the present time there is no rapid analytical method that can accurately identify and quantify the number of microorganisms and their foreign genes. In the past several years the author's laboratory has used successfully laser-based enzymatic assays to identify and differentiate pathogens, microorganisms, and genetically modified microorganisms. This work focused on the use of the above technology to track and identify agricultural beneficially GEMs that have been released into the environment. The first stage of this work dealt with the detection of the marker gene, the lactose operon. It was successfully demonstrated that the laser-based enzymatic assay can detect enzymatic activity in E. coli after 5 minutes of induction. Moreover, the author has achieved quantitation of GEMs in the laboratory down to 10[sup 4] cells with only a 30 minute incubation time. The second stage of this work dealt with the characterization of the analytical blank present in environmental samples. Strategies were devised to circumvent this interference and new substrates were synthesized that improved the S/B of the analysis. The last stage of this research dealt with devising new instrumental methods to detect small number (single cell) of microorganisms. These included incorporation of time-resolved detection in flow cytometry, Capillary Electrophoresis of microorganisms, and two-photon spectroscopy of centrosymmetric probes. The results found here will complement the large array of techniques available for monitoring and identifying GEMs in the environment. Ultimately, the technique chosen will depend heavily on the type of gene being monitored, the sensitivity required, and the environmental conditions.

  12. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants.

    PubMed

    Du, Mengmeng; Jiao, Shuo; Bien, Stephanie A; Gala, Manish; Abecasis, Goncalo; Bezieau, Stephane; Brenner, Hermann; Butterbach, Katja; Caan, Bette J; Carlson, Christopher S; Casey, Graham; Chang-Claude, Jenny; Conti, David V; Curtis, Keith R; Duggan, David; Gallinger, Steven; Haile, Robert W; Harrison, Tabitha A; Hayes, Richard B; Hoffmeister, Michael; Hopper, John L; Hudson, Thomas J; Jenkins, Mark A; Küry, Sébastien; Le Marchand, Loic; Leal, Suzanne M; Newcomb, Polly A; Nickerson, Deborah A; Potter, John D; Schoen, Robert E; Schumacher, Fredrick R; Seminara, Daniela; Slattery, Martha L; Hsu, Li; Chan, Andrew T; White, Emily; Berndt, Sonja I; Peters, Ulrike

    2016-01-01

    Genome-wide association studies (GWAS) have identified many common single nucleotide polymorphisms (SNPs) associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs). We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33). We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s). PMID:27379672

  13. Genetic Mapping and Exome Sequencing Identify Variants Associated with Five Novel Diseases

    PubMed Central

    Puffenberger, Erik G.; Jinks, Robert N.; Sougnez, Carrie; Cibulskis, Kristian; Willert, Rebecca A.; Achilly, Nathan P.; Cassidy, Ryan P.; Fiorentini, Christopher J.; Heiken, Kory F.; Lawrence, Johnny J.; Mahoney, Molly H.; Miller, Christopher J.; Nair, Devika T.; Politi, Kristin A.; Worcester, Kimberly N.; Setton, Roni A.; DiPiazza, Rosa; Sherman, Eric A.; Eastman, James T.; Francklyn, Christopher; Robey-Bond, Susan; Rider, Nicholas L.; Gabriel, Stacey; Morton, D. Holmes; Strauss, Kevin A.

    2012-01-01

    The Clinic for Special Children (CSC) has integrated biochemical and molecular methods into a rural pediatric practice serving Old Order Amish and Mennonite (Plain) children. Among the Plain people, we have used single nucleotide polymorphism (SNP) microarrays to genetically map recessive disorders to large autozygous haplotype blocks (mean = 4.4 Mb) that contain many genes (mean = 79). For some, uninformative mapping or large gene lists preclude disease-gene identification by Sanger sequencing. Seven such conditions were selected for exome sequencing at the Broad Institute; all had been previously mapped at the CSC using low density SNP microarrays coupled with autozygosity and linkage analyses. Using between 1 and 5 patient samples per disorder, we identified sequence variants in the known disease-causing genes SLC6A3 and FLVCR1, and present evidence to strongly support the pathogenicity of variants identified in TUBGCP6, BRAT1, SNIP1, CRADD, and HARS. Our results reveal the power of coupling new genotyping technologies to population-specific genetic knowledge and robust clinical data. PMID:22279524

  14. A genetic screen identifies genes essential for development of myelinated axons in zebrafish.

    PubMed

    Pogoda, Hans-Martin; Sternheim, Nitzan; Lyons, David A; Diamond, Brianne; Hawkins, Thomas A; Woods, Ian G; Bhatt, Dimple H; Franzini-Armstrong, Clara; Dominguez, Claudia; Arana, Naomi; Jacobs, Jennifer; Nix, Rebecca; Fetcho, Joseph R; Talbot, William S

    2006-10-01

    The myelin sheath insulates axons in the vertebrate nervous system, allowing rapid propagation of action potentials via saltatory conduction. Specialized glial cells, termed Schwann cells in the PNS and oligodendrocytes in the CNS, wrap axons to form myelin, a compacted, multilayered sheath comprising specific proteins and lipids. Disruption of myelinated axons causes human diseases, including multiple sclerosis and Charcot-Marie-Tooth peripheral neuropathies. Despite the progress in identifying human disease genes and other mutations disrupting glial development and myelination, many important unanswered questions remain about the mechanisms that coordinate the development of myelinated axons. To address these questions, we began a genetic dissection of myelination in zebrafish. Here we report a genetic screen that identified 13 mutations, which define 10 genes, disrupting the development of myelinated axons. We present the initial characterization of seven of these mutations, defining six different genes, along with additional characterization of mutations that we have described previously. The different mutations affect the PNS, the CNS, or both, and phenotypic analyses indicate that the genes affect a wide range of steps in glial development, from fate specification through terminal differentiation. The analysis of these mutations will advance our understanding of myelination, and the mutants will serve as models of human diseases of myelin. PMID:16875686

  15. Torus mandibularis: an estimation of the degree of genetic determination.

    PubMed

    Eggen, S

    1989-12-01

    Torus mandibularis has frustrated several attempts to make family patterns of variation fit modifications of Mendelian models. It is suggested that the quasi-continuous model of inheritance provides a rational explanation for the diverging opinions. The model implies an underlying continuous and normally distributed variable, 'liability', with a threshold value beyond which individuals will be affected. Both genetic and environmental factors determine liability, making the system multifactorial. The incidence of variable degrees of torus was examined in two groups of patients with different stresses on the jaws: one group with bruxism and one comparison group. The transformation of incidences to group means and variances of liability was demonstrated. Muscular forces during bruxism were shown to influence liability. The relative importance of environmental and genetic components of variance could, however, not be estimated directly from the entire groups, since both were mixed with regard to the genetic predisposition. To achieve materials with uniform genotypes, all individuals without torus were omitted. The estimate of the genotypic variance (VG) was obtained by subtracting the variance of the bruxism sub-group--the environmental component associated with bruxism (VEB)--from the total phenotypic variance of the comparison sub-group (VP). The estimate of the genetic determination of torus (VG/VP) turned out to be about 30%, whereas approximately 70% of the causes seemed to be attributable to environmental influence in terms of occlusal stress. Gene effects on the morphologic level are usually pleiotropic, and it is suggested that the correlation of torus mandibularis with other clinical variables might make an interesting subject for further investigation. PMID:2609949

  16. Release of genetically engineered insects: a framework to identify potential ecological effects

    PubMed Central

    David, Aaron S; Kaser, Joe M; Morey, Amy C; Roth, Alexander M; Andow, David A

    2013-01-01

    Genetically engineered (GE) insects have the potential to radically change pest management worldwide. With recent approvals of GE insect releases, there is a need for a synthesized framework to evaluate their potential ecological and evolutionary effects. The effects may occur in two phases: a transitory phase when the focal population changes in density, and a steady state phase when it reaches a new, constant density. We review potential effects of a rapid change in insect density related to population outbreaks, biological control, invasive species, and other GE organisms to identify a comprehensive list of potential ecological and evolutionary effects of GE insect releases. We apply this framework to the Anopheles gambiae mosquito – a malaria vector being engineered to suppress the wild mosquito population – to identify effects that may occur during the transitory and steady state phases after release. Our methodology reveals many potential effects in each phase, perhaps most notably those dealing with immunity in the transitory phase, and with pathogen and vector evolution in the steady state phase. Importantly, this framework identifies knowledge gaps in mosquito ecology. Identifying effects in the transitory and steady state phases allows more rigorous identification of the potential ecological effects of GE insect release. PMID:24198955

  17. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration

    PubMed Central

    McLaughlin, Laura M.; Xu, Hui; Carden, Sarah E.; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C.; Monack, Denise M.

    2014-01-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involved in modulating migration towards a chemical signal are limited because they do not employ stable, precisely controlled chemical gradients. Here, we develop a positive selection microfluidic-based genetic screen that allows us to identify Salmonella virulence factors that manipulate DC migration within stable, linear chemokine gradients. Our screen identified 7 Salmonella effectors (SseF, SifA, SspH2, SlrP, PipB2, SpiC and SseI) that inhibit DC chemotaxis toward CCL19. This method is widely applicable for identifying novel microbial factors that influence normal host cell chemotaxis as well as revealing new mammalian genes involved in directed cell migration. PMID:24599496

  18. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration.

    PubMed

    McLaughlin, Laura M; Xu, Hui; Carden, Sarah E; Fisher, Samantha; Reyes, Monique; Heilshorn, Sarah C; Monack, Denise M

    2014-04-01

    Microbial pathogens are able to modulate host cells and evade the immune system by multiple mechanisms. For example, Salmonella injects effector proteins into host cells and evades the host immune system in part by inhibiting dendritic cell (DC) migration. The identification of microbial factors that modulate normal host functions should lead to the development of new classes of therapeutics that target these pathways. Current screening methods to identify either host or pathogen genes involved in modulating migration towards a chemical signal are limited because they do not employ stable, precisely controlled chemical gradients. Here, we develop a positive selection microfluidic-based genetic screen that allows us to identify Salmonella virulence factors that manipulate DC migration within stable, linear chemokine gradients. Our screen identified 7 Salmonella effectors (SseF, SifA, SspH2, SlrP, PipB2, SpiC and SseI) that inhibit DC chemotaxis toward CCL19. This method is widely applicable for identifying novel microbial factors that influence normal host cell chemotaxis as well as revealing new mammalian genes involved in directed cell migration. PMID:24599496

  19. Targeted approach to identify genetic loci associated with evolved dioxin tolerance in Atlantic Killifish (Fundulus heteroclitus)

    PubMed Central

    2014-01-01

    Background The most toxic aromatic hydrocarbon pollutants are categorized as dioxin-like compounds (DLCs) to which extreme tolerance has evolved independently and contemporaneously in (at least) four populations of Atlantic killifish (Fundulus heteroclitus). Surprisingly, the magnitude and phenotype of DLC tolerance is similar among these killifish populations that have adapted to varied, but highly aromatic hydrocarbon-contaminated urban/industrialized estuaries of the US Atlantic coast. Multiple tolerant and neighboring sensitive killifish populations were compared with the expectation that genetic loci associated with DLC tolerance would be revealed. Results Since the aryl hydrocarbon receptor (AHR) pathway partly or fully mediates DLC toxicity in vertebrates, single nucleotide polymorphisms (SNPs) from 42 genes associated with the AHR pathway were identified to serve as targeted markers. Wild fish (N = 36/37) from four highly tolerant killifish populations and four nearby sensitive populations were genotyped using 59 SNP markers. Similar to other killifish population genetic analyses, strong genetic differentiation among populations was detected, consistent with isolation by distance models. When DLC-sensitive populations were pooled and compared to pooled DLC-tolerant populations, multi-locus analyses did not distinguish the two groups. However, pairwise comparisons of nearby tolerant and sensitive populations revealed high differentiation among sensitive and tolerant populations at these specific loci: AHR 1 and 2, cathepsin Z, the cytochrome P450s (CYP1A and 3A30), and the NADH dehydrogenase subunits. In addition, significant shifts in minor allele frequency were observed at AHR2 and CYP1A loci across most sensitive/tolerant pairs, but only AHR2 exhibited shifts in the same direction across all pairs. Conclusions The observed differences in allelic composition at the AHR2 and CYP1A SNP loci were identified as significant among paired sensitive

  20. Whole-exome sequencing identifies MST1R as a genetic susceptibility gene in nasopharyngeal carcinoma.

    PubMed

    Dai, Wei; Zheng, Hong; Cheung, Arthur Kwok Leung; Tang, Clara Sze-Man; Ko, Josephine Mun Yee; Wong, Bonnie Wing Yan; Leong, Merrin Man Long; Sham, Pak Chung; Cheung, Florence; Kwong, Dora Lai-Wan; Ngan, Roger Kai Cheong; Ng, Wai Tong; Yau, Chun Chung; Pan, Jianji; Peng, Xun; Tung, Stewart; Zhang, Zengfeng; Ji, Mingfang; Chiang, Alan Kwok-Shing; Lee, Anne Wing-Mui; Lee, Victor Ho-Fun; Lam, Ka-On; Au, Kwok Hung; Cheng, Hoi Ching; Yiu, Harry Ho-Yin; Lung, Maria Li

    2016-03-22

    Multiple factors, including host genetics, environmental factors, and Epstein-Barr virus (EBV) infection, contribute to nasopharyngeal carcinoma (NPC) development. To identify genetic susceptibility genes for NPC, a whole-exome sequencing (WES) study was performed in 161 NPC cases and 895 controls of Southern Chinese descent. The gene-based burden test discovered an association between macrophage-stimulating 1 receptor (MST1R) and NPC. We identified 13 independent cases carrying theMST1Rpathogenic heterozygous germ-line variants, and 53.8% of these cases were diagnosed with NPC aged at or even younger than 20 y, indicating thatMST1Rgerm-line variants are relevant to disease early-age onset (EAO) (age of ≤20 y). In total, fiveMST1Rmissense variants were found in EAO cases but were rare in controls (EAO vs. control, 17.9% vs. 1.2%,P= 7.94 × 10(-12)). The validation study, including 2,160 cases and 2,433 controls, showed that theMST1Rvariant c.G917A:p.R306H is highly associated with NPC (odds ratio of 9.0).MST1Ris predominantly expressed in the tissue-resident macrophages and is critical for innate immunity that protects organs from tissue damage and inflammation. Importantly, MST1R expression is detected in the ciliated epithelial cells in normal nasopharyngeal mucosa and plays a role in the cilia motility important for host defense. Although no somatic mutation ofMST1Rwas identified in the sporadic NPC tumors, copy number alterations and promoter hypermethylation atMST1Rwere often observed. Our findings provide new insights into the pathogenesis of NPC by highlighting the involvement of the MST1R-mediated signaling pathways. PMID:26951679

  1. Genetic Determinism and the Innate-Acquired Distinction in Medicine

    PubMed Central

    2009-01-01

    This article illustrates in which sense genetic determinism is still part of the contemporary interactionist consensus in medicine. Three dimensions of this consensus are discussed: kinds of causes, a continuum of traits ranging from monogenetic diseases to car accidents, and different kinds of determination due to different norms of reaction. On this basis, this article explicates in which sense the interactionist consensus presupposes the innate–acquired distinction. After a descriptive Part 1, Part 2 reviews why the innate–acquired distinction is under attack in contemporary philosophy of biology. Three arguments are then presented to provide a limited and pragmatic defense of the distinction: an epistemic, a conceptual, and a historical argument. If interpreted in a certain manner, and if the pragmatic goals of prevention and treatment (ideally specifying what medicine and health care is all about) are taken into account, then the innate–acquired distinction can be a useful epistemic tool. It can help, first, to understand that genetic determination does not mean fatalism, and, second, to maintain a system of checks and balances in the continuing nature–nurture debates. PMID:20234831

  2. Determinants of Genetic Diversity of Spontaneous Drug Resistance in Bacteria.

    PubMed

    Couce, Alejandro; Rodríguez-Rojas, Alexandro; Blázquez, Jesús

    2016-07-01

    Any pathogen population sufficiently large is expected to harbor spontaneous drug-resistant mutants, often responsible for disease relapse after antibiotic therapy. It is seldom appreciated, however, that while larger populations harbor more mutants, the abundance distribution of these mutants is expected to be markedly uneven. This is because a larger population size allows early mutants to expand for longer, exacerbating their predominance in the final mutant subpopulation. Here, we investigate the extent to which this reduction in evenness can constrain the genetic diversity of spontaneous drug resistance in bacteria. Combining theory and experiments, we show that even small variations in growth rate between resistant mutants and the wild type result in orders-of-magnitude differences in genetic diversity. Indeed, only a slight fitness advantage for the mutant is enough to keep diversity low and independent of population size. These results have important clinical implications. Genetic diversity at antibiotic resistance loci can determine a population's capacity to cope with future challenges (i.e., second-line therapy). We thus revealed an unanticipated way in which the fitness effects of antibiotic resistance can affect the evolvability of pathogens surviving a drug-induced bottleneck. This insight will assist in the fight against multidrug-resistant microbes, as well as contribute to theories aimed at predicting cancer evolution. PMID:27182949

  3. Genetic determinants of hyaloid and retinal vasculature in zebrafish

    PubMed Central

    Alvarez, Yolanda; Cederlund, Maria L; Cottell, David C; Bill, Brent R; Ekker, Stephen C; Torres-Vazquez, Jesus; Weinstein, Brant M; Hyde, David R; Vihtelic, Thomas S; Kennedy, Breandan N

    2007-01-01

    Background The retinal vasculature is a capillary network of blood vessels that nourishes the inner retina of most mammals. Developmental abnormalities or microvascular complications in the retinal vasculature result in severe human eye diseases that lead to blindness. To exploit the advantages of zebrafish for genetic, developmental and pharmacological studies of retinal vasculature, we characterised the intraocular vasculature in zebrafish. Results We show a detailed morphological and developmental analysis of the retinal blood supply in zebrafish. Similar to the transient hyaloid vasculature in mammalian embryos, vessels are first found attached to the zebrafish lens at 2.5 days post fertilisation. These vessels progressively lose contact with the lens and by 30 days post fertilisation adhere to the inner limiting membrane of the juvenile retina. Ultrastructure analysis shows these vessels to exhibit distinctive hallmarks of mammalian retinal vasculature. For example, smooth muscle actin-expressing pericytes are ensheathed by the basal lamina of the blood vessel, and vesicle vacuolar organelles (VVO), subcellular mediators of vessel-retinal nourishment, are present. Finally, we identify 9 genes with cell membrane, extracellular matrix and unknown identity that are necessary for zebrafish hyaloid and retinal vasculature development. Conclusion Zebrafish have a retinal blood supply with a characteristic developmental and adult morphology. Abnormalities of these intraocular vessels are easily observed, enabling application of genetic and chemical approaches in zebrafish to identify molecular regulators of hyaloid and retinal vasculature in development and disease. PMID:17937808

  4. Genetical Toxicogenomics in Drosophila Identifies Master Modulatory Loci that are Regulated by Developmental Exposure to Lead

    PubMed Central

    Ruden, Douglas M.; Chen, Lang; Possidente, Debra; Possidente, Bernard; Rasouli, Parsa; Wang, Luan; Lu, Xiangyi; Garfinkel, Mark D.; Hirsch, Helmut V. B.; Page, Grier P.

    2009-01-01

    The genetics of gene expression in recombinant inbred lines (RILs) can be mapped as expression quantitative trait loci (eQTLs). So-called “genetical genomics” studies have identified locally-acting eQTLs (cis-eQTLs) for genes that show differences in steady state RNA levels. These studies have also identified distantly-acting master-modulatory trans-eQTLs that regulate tens or hundreds of transcripts (hotspots or transbands). We expand on these studies by performing genetical genomics experiments in two environments in order to identify trans-eQTL that might be regulated by developmental exposure to the neurotoxin lead. Flies from each of 75 RIL were raised from eggs to adults on either control food (made with 250 µM sodium acetate), or lead-treated food (made with 250 µM lead acetate, PbAc). RNA expression analyses of whole adult male flies (5–10 days old) were performed with Affymetrix DrosII whole genome arrays (18,952 probesets). Among the 1,389 genes with cis-eQTL, there were 405 genes unique to control flies and 544 genes unique to lead-treated ones (440 genes had the same cis-eQTLs in both samples). There are 2,396 genes with trans-eQTL which mapped to 12 major transbands with greater than 95 genes. Permutation analyses of the strain labels but not the expression data suggests that the total number of eQTL and the number of transbands are more important criteria for validation than the size of the transband. Two transbands, one located on the 2nd chromosome and one on the 3rd chromosome, co-regulate 33 lead-induced genes, many of which are involved in neurodevelopmental processes. For these 33 genes, rather than allelic variation at one locus exerting differential effects in two environments, we found that variation at two different loci are required for optimal effects on lead-induced expression. PMID:19737576

  5. Integrative genomic analysis identifies epigenetic marks that mediate genetic risk for epithelial ovarian cancer

    PubMed Central

    2014-01-01

    Background Both genetic and epigenetic factors influence the development and progression of epithelial ovarian cancer (EOC). However, there is an incomplete understanding of the interrelationship between these factors and the extent to which they interact to impact disease risk. In the present study, we aimed to gain insight into this relationship by identifying DNA methylation marks that are candidate mediators of ovarian cancer genetic risk. Methods We used 214 cases and 214 age-matched controls from the Mayo Clinic Ovarian Cancer Study. Pretreatment, blood-derived DNA was profiled for genome-wide methylation (Illumina Infinium HumanMethylation27 BeadArray) and single nucleotide polymorphisms (SNPs, Illumina Infinium HD Human610-Quad BeadArray). The Causal Inference Test (CIT) was implemented to distinguish CpG sites that mediate genetic risk, from those that are consequential or independently acted on by genotype. Results Controlling for the estimated distribution of immune cells and other key covariates, our initial epigenome-wide association analysis revealed 1,993 significantly differentially methylated CpGs that between cases and controls (FDR, q < 0.05). The relationship between methylation and case-control status for these 1,993 CpGs was found to be highly consistent with the results of previously published, independent study that consisted of peripheral blood DNA methylation signatures in 131 pretreatment cases and 274 controls. Implementation of the CIT test revealed 17 CpG/SNP pairs, comprising 13 unique CpGs and 17 unique SNPs, which represent potential methylation-mediated relationships between genotype and EOC risk. Of these 13 CpGs, several are associated with immune related genes and genes that have been previously shown to exhibit altered expression in the context of cancer. Conclusions These findings provide additional insight into EOC etiology and may serve as novel biomarkers for EOC susceptibility. PMID:24479488

  6. Integrating Genetic, Transcriptional, and Functional Analyses to Identify Five Novel Genes for Atrial Fibrillation

    PubMed Central

    Sinner, Moritz F.; Tucker, Nathan R.; Lunetta, Kathryn L.; Ozaki, Kouichi; Smith, J. Gustav; Trompet, Stella; Bis, Joshua C.; Lin, Honghuang; Chung, Mina K.; Nielsen, Jonas B.; Lubitz, Steven A.; Krijthe, Bouwe P.; Magnani, Jared W.; Ye, Jiangchuan; Gollob, Michael H.; Tsunoda, Tatsuhiko; Müller-Nurasyid, Martina; Lichtner, Peter; Peters, Annette; Dolmatova, Elena; Kubo, Michiaki; Smith, Jonathan D.; Psaty, Bruce M.; Smith, Nicholas L.; Jukema, J. Wouter; Chasman, Daniel I.; Albert, Christine M.; Ebana, Yusuke; Furukawa, Tetsushi; MacFarlane, Peter; Harris, Tamara B.; Darbar, Dawood; Dörr, Marcus; Holst, Anders G.; Svendsen, Jesper H.; Hofman, Albert; Uitterlinden, Andre G.; Gudnason, Vilmundur; Isobe, Mitsuaki; Malik, Rainer; Dichgans, Martin; Rosand, Jonathan; Van Wagoner, David R.; Benjamin, Emelia J.; Milan, David J.; Melander, Olle; Heckbert, Susan R.; Ford, Ian; Liu, Yongmei; Barnard, John; Olesen, Morten S.; Stricker, Bruno H.C.; Tanaka, Toshihiro; Kääb, Stefan; Ellinor, Patrick T.

    2014-01-01

    Background Atrial fibrillation (AF) affects over 30 million individuals worldwide and is associated with an increased risk of stroke, heart failure, and death. AF is highly heritable, yet the genetic basis for the arrhythmia remains incompletely understood. Methods & Results To identify new AF-related genes, we utilized a multifaceted approach, combining large-scale genotyping in two ethnically distinct populations, cis-eQTL mapping, and functional validation. Four novel loci were identified in individuals of European descent near the genes NEURL (rs12415501, RR=1.18, 95%CI 1.13 – 1.23, p=6.5×10−16), GJA1 (rs13216675, RR=1.10, 95%CI 1.06 – 1.14, p=2.2×10−8), TBX5 (rs10507248, RR=1.12, 95%CI 1.08 – 1.16, p=5.7×10−11), and CAND2 (rs4642101, RR=1.10, 95%CI 1.06 – 1.14, p=9.8×10−9). In Japanese, novel loci were identified near NEURL (rs6584555, RR=1.32, 95%CI 1.26–1.39, p=2.0×10−25) and CUX2 (rs6490029, RR=1.12, 95%CI 1.08–1.16, p=3.9×10−9). The top SNPs or their proxies were identified as cis-eQTLs for the genes CAND2 (p=2.6×10−19), GJA1 (p=2.66×10−6), and TBX5 (p=1.36×10−05). Knockdown of the zebrafish orthologs of NEURL and CAND2 resulted in prolongation of the atrial action potential duration (17% and 45%, respectively). Conclusions We have identified five novel loci for AF. Our results further expand the diversity of genetic pathways implicated in AF and provide novel molecular targets for future biological and pharmacological investigation. PMID:25124494

  7. Criteria for identifying and evaluating candidate sites for open-field trials of genetically engineered mosquitoes.

    PubMed

    Brown, David M; Alphey, Luke S; McKemey, Andrew; Beech, Camilla; James, Anthony A

    2014-04-01

    Recent laboratory successes in the development of genetically engineered mosquitoes for controlling pathogen transmission have fostered the need for standardized procedures for advancing the technical achievements to practical tools. It is incumbent in many cases for the same scientists doing the in-laboratory discovery research to also take on the initial challenges of developing the pathway that will move the technologies to the field. One of these challenges is having a set of criteria for selecting collaborators and sites for efficacy and safety field trials that combine rigorous science with good ethical and legal practices. Specific site-selection criteria were developed in four categories-Scientific, Regulatory, Community Engagement, and Resources-in anticipation of open-field releases of a transgenic mosquito strain designed to suppress populations of the dengue vector mosquito, Aedes aegypti. The criteria are derived from previous published material, discussions, and personal experiences with the expectation of providing guidance to laboratory scientists for addressing the conceptual and operational considerations for identifying partner researchers and countries with whom to collaborate. These criteria are not intended to be prescriptive nor can they be applied to every circumstance where genetic approaches are proposed for deployment. However, we encourage those involved in the discovery phase of research to consider each criterion during project planning activities, and where appropriate, incorporate them into a "go/no-go" decision-making process for further development and testing of the technologies. PMID:24689963

  8. Transposon mutagenesis identifies genetic drivers of Braf(V600E) melanoma.

    PubMed

    Mann, Michael B; Black, Michael A; Jones, Devin J; Ward, Jerrold M; Yew, Christopher Chin Kuan; Newberg, Justin Y; Dupuy, Adam J; Rust, Alistair G; Bosenberg, Marcus W; McMahon, Martin; Print, Cristin G; Copeland, Neal G; Jenkins, Nancy A

    2015-05-01

    Although nearly half of human melanomas harbor oncogenic BRAF(V600E) mutations, the genetic events that cooperate with these mutations to drive melanogenesis are still largely unknown. Here we show that Sleeping Beauty (SB) transposon-mediated mutagenesis drives melanoma progression in Braf(V600E) mutant mice and identify 1,232 recurrently mutated candidate cancer genes (CCGs) from 70 SB-driven melanomas. CCGs are enriched in Wnt, PI3K, MAPK and netrin signaling pathway components and are more highly connected to one another than predicted by chance, indicating that SB targets cooperative genetic networks in melanoma. Human orthologs of >500 CCGs are enriched for mutations in human melanoma or showed statistically significant clinical associations between RNA abundance and survival of patients with metastatic melanoma. We also functionally validate CEP350 as a new tumor-suppressor gene in human melanoma. SB mutagenesis has thus helped to catalog the cooperative molecular mechanisms driving BRAF(V600E) melanoma and discover new genes with potential clinical importance in human melanoma. PMID:25848750

  9. Can novel genetic analyses help to identify low-dispersal marine invasive species?

    PubMed

    Teske, Peter R; Sandoval-Castillo, Jonathan; Waters, Jonathan M; Beheregaray, Luciano B

    2014-07-01

    Genetic methods can be a powerful tool to resolve the native versus introduced status of populations whose taxonomy and biogeography are poorly understood. The genetic study of introduced species is presently dominated by analyses that identify signatures of recent colonization by means of summary statistics. Unfortunately, such approaches cannot be used in low-dispersal species, in which recently established populations originating from elsewhere in the species' native range also experience periods of low population size because they are founded by few individuals. We tested whether coalescent-based molecular analyses that provide detailed information about demographic history supported the hypothesis that a sea squirt whose distribution is centered on Tasmania was recently introduced to mainland Australia and New Zealand through human activities. Methods comparing trends in population size (Bayesian Skyline Plots and Approximate Bayesian Computation) were no more informative than summary statistics, likely because of recent intra-Tasmanian dispersal. However, IMa2 estimates of divergence between putatively native and introduced populations provided information at a temporal scale suitable to differentiate between recent (potentially anthropogenic) introductions and ancient divergence, and indicated that all three non-Tasmanian populations were founded during the period of European settlement. While this approach can be affected by inaccurate molecular dating, it has considerable (albeit largely unexplored) potential to corroborate nongenetic information in species with limited dispersal capabilities. PMID:25165524

  10. Rapid in vivo forward genetic approach for identifying axon death genes in Drosophila

    PubMed Central

    Neukomm, Lukas J.; Burdett, Thomas C.; Gonzalez, Michael A.; Züchner, Stephan; Freeman, Marc R.

    2014-01-01

    Axons damaged by acute injury, toxic insults, or neurodegenerative diseases execute a poorly defined autodestruction signaling pathway leading to widespread fragmentation and functional loss. Here, we describe an approach to study Wallerian degeneration in the Drosophila L1 wing vein that allows for analysis of axon degenerative phenotypes with single-axon resolution in vivo. This method allows for the axotomy of specific subsets of axons followed by examination of progressive axonal degeneration and debris clearance alongside uninjured control axons. We developed new Flippase (FLP) reagents using proneural gene promoters to drive FLP expression very early in neural lineages. These tools allow for the production of mosaic clone populations with high efficiency in sensory neurons in the wing. We describe a collection of lines optimized for forward genetic mosaic screens using MARCM (mosaic analysis with a repressible cell marker; i.e., GFP-labeled, homozygous mutant) on all major autosomal arms (∼95% of the fly genome). Finally, as a proof of principle we screened the X chromosome and identified a collection eight recessive and two dominant alleles of highwire, a ubiquitin E3 ligase required for axon degeneration. Similar unbiased forward genetic screens should help rapidly delineate axon death genes, thereby providing novel potential drug targets for therapeutic intervention to prevent axonal and synaptic loss. PMID:24958874

  11. Criteria for Identifying and Evaluating Candidate Sites for Open-Field Trials of Genetically Engineered Mosquitoes

    PubMed Central

    Brown, David M.; Alphey, Luke S.; McKemey, Andrew; Beech, Camilla

    2014-01-01

    Abstract Recent laboratory successes in the development of genetically engineered mosquitoes for controlling pathogen transmission have fostered the need for standardized procedures for advancing the technical achievements to practical tools. It is incumbent in many cases for the same scientists doing the in-laboratory discovery research to also take on the initial challenges of developing the pathway that will move the technologies to the field. One of these challenges is having a set of criteria for selecting collaborators and sites for efficacy and safety field trials that combine rigorous science with good ethical and legal practices. Specific site-selection criteria were developed in four categories—Scientific, Regulatory, Community Engagement, and Resources—in anticipation of open-field releases of a transgenic mosquito strain designed to suppress populations of the dengue vector mosquito, Aedes aegypti. The criteria are derived from previous published material, discussions, and personal experiences with the expectation of providing guidance to laboratory scientists for addressing the conceptual and operational considerations for identifying partner researchers and countries with whom to collaborate. These criteria are not intended to be prescriptive nor can they be applied to every circumstance where genetic approaches are proposed for deployment. However, we encourage those involved in the discovery phase of research to consider each criterion during project planning activities, and where appropriate, incorporate them into a “go/no-go” decision-making process for further development and testing of the technologies. PMID:24689963

  12. Can novel genetic analyses help to identify low-dispersal marine invasive species?

    PubMed Central

    Teske, Peter R; Sandoval-Castillo, Jonathan; Waters, Jonathan M; Beheregaray, Luciano B

    2014-01-01

    Genetic methods can be a powerful tool to resolve the native versus introduced status of populations whose taxonomy and biogeography are poorly understood. The genetic study of introduced species is presently dominated by analyses that identify signatures of recent colonization by means of summary statistics. Unfortunately, such approaches cannot be used in low-dispersal species, in which recently established populations originating from elsewhere in the species' native range also experience periods of low population size because they are founded by few individuals. We tested whether coalescent-based molecular analyses that provide detailed information about demographic history supported the hypothesis that a sea squirt whose distribution is centered on Tasmania was recently introduced to mainland Australia and New Zealand through human activities. Methods comparing trends in population size (Bayesian Skyline Plots and Approximate Bayesian Computation) were no more informative than summary statistics, likely because of recent intra-Tasmanian dispersal. However, IMa2 estimates of divergence between putatively native and introduced populations provided information at a temporal scale suitable to differentiate between recent (potentially anthropogenic) introductions and ancient divergence, and indicated that all three non-Tasmanian populations were founded during the period of European settlement. While this approach can be affected by inaccurate molecular dating, it has considerable (albeit largely unexplored) potential to corroborate nongenetic information in species with limited dispersal capabilities. PMID:25165524

  13. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas.

    PubMed

    Zhang, Jinghui; Wu, Gang; Miller, Claudia P; Tatevossian, Ruth G; Dalton, James D; Tang, Bo; Orisme, Wilda; Punchihewa, Chandanamali; Parker, Matthew; Qaddoumi, Ibrahim; Boop, Fredrick A; Lu, Charles; Kandoth, Cyriac; Ding, Li; Lee, Ryan; Huether, Robert; Chen, Xiang; Hedlund, Erin; Nagahawatte, Panduka; Rusch, Michael; Boggs, Kristy; Cheng, Jinjun; Becksfort, Jared; Ma, Jing; Song, Guangchun; Li, Yongjin; Wei, Lei; Wang, Jianmin; Shurtleff, Sheila; Easton, John; Zhao, David; Fulton, Robert S; Fulton, Lucinda L; Dooling, David J; Vadodaria, Bhavin; Mulder, Heather L; Tang, Chunlao; Ochoa, Kerri; Mullighan, Charles G; Gajjar, Amar; Kriwacki, Richard; Sheer, Denise; Gilbertson, Richard J; Mardis, Elaine R; Wilson, Richard K; Downing, James R; Baker, Suzanne J; Ellison, David W

    2013-06-01

    The most common pediatric brain tumors are low-grade gliomas (LGGs). We used whole-genome sequencing to identify multiple new genetic alterations involving BRAF, RAF1, FGFR1, MYB, MYBL1 and genes with histone-related functions, including H3F3A and ATRX, in 39 LGGs and low-grade glioneuronal tumors (LGGNTs). Only a single non-silent somatic alteration was detected in 24 of 39 (62%) tumors. Intragenic duplications of the portion of FGFR1 encoding the tyrosine kinase domain (TKD) and rearrangements of MYB were recurrent and mutually exclusive in 53% of grade II diffuse LGGs. Transplantation of Trp53-null neonatal astrocytes expressing FGFR1 with the duplication involving the TKD into the brains of nude mice generated high-grade astrocytomas with short latency and 100% penetrance. FGFR1 with the duplication induced FGFR1 autophosphorylation and upregulation of the MAPK/ERK and PI3K pathways, which could be blocked by specific inhibitors. Focusing on the therapeutically challenging diffuse LGGs, our study of 151 tumors has discovered genetic alterations and potential therapeutic targets across the entire range of pediatric LGGs and LGGNTs. PMID:23583981

  14. Transposon mutagenesis identifies genetic drivers of BrafV600E melanoma

    PubMed Central

    Mann, Michael B; Black, Michael A; Jones, Devin J; Ward, Jerrold M; Yew, Christopher Chin Kuan; Newberg, Justin Y; Dupuy, Adam J; Rust, Alistair G; Bosenberg, Marcus W; McMahon, Martin; Print, Cristin G; Copeland, Neal G; Jenkins, Nancy A

    2016-01-01

    Although nearly half of human melanomas harbor oncogenic BRAFV600E mutations, the genetic events that cooperate with these mutations to drive melanogenesis are still largely unknown. Here we show that Sleeping Beauty (SB) transposon-mediated mutagenesis drives melanoma progression in BrafV600E mutant mice and identify 1,232 recurrently mutated candidate cancer genes (CCGs) from 70 SB-driven melanomas. CCGs are enriched in Wnt, PI3K, MAPK and netrin signaling pathway components and are more highly connected to one another than predicted by chance, indicating that SB targets cooperative genetic networks in melanoma. Human orthologs of >500 CCGs are enriched for mutations in human melanoma or showed statistically significant clinical associations between RNA abundance and survival of patients with metastatic melanoma. We also functionally validate CEP350 as a new tumor-suppressor gene in human melanoma. SB mutagenesis has thus helped to catalog the cooperative molecular mechanisms driving BRAFV600E melanoma and discover new genes with potential clinical importance in human melanoma. PMID:25848750

  15. Promoter Hypermethylation Profiling Identifies Subtypes of Head and Neck Cancer with Distinct Viral, Environmental, Genetic and Survival Characteristics

    PubMed Central

    Choudhury, Javed Hussain; Ghosh, Sankar Kumar

    2015-01-01

    Background Epigenetic and genetic alteration plays a major role to the development of head and neck squamous cell carcinoma (HNSCC). Consumption of tobacco (smoking/chewing) and human papilloma virus (HPV) are also associated with an increase the risk of HNSCC. Promoter hypermethylation of the tumor suppression genes is related with transcriptional inactivation and loss of gene expression. We investigated epigenetic alteration (promoter methylation of tumor-related genes/loci) in tumor tissues in the context of genetic alteration, viral infection, and tobacco exposure and survival status. Methodology The study included 116 tissue samples (71 tumor and 45 normal tissues) from the Northeast Indian population. Methylation specific polymerase chain reaction (MSP) was used to determine the methylation status of 10 tumor-related genes/loci (p16, DAPK, RASSF1, BRAC1, GSTP1, ECAD, MLH1, MINT1, MINT2 and MINT31). Polymorphisms of CYP1A1, GST (M1 & T1), XRCC1and XRCC2 genes were studied by using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and multiplex-PCR respectively. Principal Findings Unsupervised hierarchical clustering analysis based on methylation pattern had identified two tumor clusters, which significantly differ by CpG island methylator phenotype (CIMP), tobacco, GSTM1, CYP1A1, HPV and survival status. Analyzing methylation of genes/loci individually, we have found significant higher methylation of DAPK, RASSF1, p16 and MINT31genes (P = 0.031, 0.013, 0.031 and 0.015 respectively) in HPV (+) cases compared to HPV (-). Furthermore, a CIMP-high and Cluster-1 characteristic was also associated with poor survival. Conclusions Promoter methylation profiles reflecting a correlation with tobacco, HPV, survival status and genetic alteration and may act as a marker to determine subtypes and patient outcome in HNSCC. PMID:26098903

  16. Using a Genetically Encoded Sensor to Identify Inhibitors of Toxoplasma gondii Ca2+ Signaling.

    PubMed

    Sidik, Saima M; Hortua Triana, Miryam A; Paul, Aditya S; El Bakkouri, Majida; Hackett, Caroline G; Tran, Fanny; Westwood, Nicholas J; Hui, Raymond; Zuercher, William J; Duraisingh, Manoj T; Moreno, Silvia N J; Lourido, Sebastian

    2016-04-29

    The life cycles of apicomplexan parasites progress in accordance with fluxes in cytosolic Ca(2+) Such fluxes are necessary for events like motility and egress from host cells. We used genetically encoded Ca(2+) indicators (GCaMPs) to develop a cell-based phenotypic screen for compounds that modulate Ca(2+) signaling in the model apicomplexan Toxoplasma gondii In doing so, we took advantage of the phosphodiesterase inhibitor zaprinast, which we show acts in part through cGMP-dependent protein kinase (protein kinase G; PKG) to raise levels of cytosolic Ca(2+) We define the pool of Ca(2+) regulated by PKG to be a neutral store distinct from the endoplasmic reticulum. Screening a library of 823 ATP mimetics, we identify both inhibitors and enhancers of Ca(2+) signaling. Two such compounds constitute novel PKG inhibitors and prevent zaprinast from increasing cytosolic Ca(2+) The enhancers identified are capable of releasing intracellular Ca(2+) stores independently of zaprinast or PKG. One of these enhancers blocks parasite egress and invasion and shows strong antiparasitic activity against T. gondii The same compound inhibits invasion of the most lethal malaria parasite, Plasmodium falciparum Inhibition of Ca(2+)-related phenotypes in these two apicomplexan parasites suggests that depletion of intracellular Ca(2+) stores by the enhancer may be an effective antiparasitic strategy. These results establish a powerful new strategy for identifying compounds that modulate the essential parasite signaling pathways regulated by Ca(2+), underscoring the importance of these pathways and the therapeutic potential of their inhibition. PMID:26933036

  17. Using a Genetically Encoded Sensor to Identify Inhibitors of Toxoplasma gondii Ca2+ Signaling*

    PubMed Central

    Sidik, Saima M.; Hortua Triana, Miryam A.; Paul, Aditya S.; El Bakkouri, Majida; Hackett, Caroline G.; Tran, Fanny; Westwood, Nicholas J.; Hui, Raymond; Zuercher, William J.; Duraisingh, Manoj T.; Moreno, Silvia N. J.; Lourido, Sebastian

    2016-01-01

    The life cycles of apicomplexan parasites progress in accordance with fluxes in cytosolic Ca2+. Such fluxes are necessary for events like motility and egress from host cells. We used genetically encoded Ca2+ indicators (GCaMPs) to develop a cell-based phenotypic screen for compounds that modulate Ca2+ signaling in the model apicomplexan Toxoplasma gondii. In doing so, we took advantage of the phosphodiesterase inhibitor zaprinast, which we show acts in part through cGMP-dependent protein kinase (protein kinase G; PKG) to raise levels of cytosolic Ca2+. We define the pool of Ca2+ regulated by PKG to be a neutral store distinct from the endoplasmic reticulum. Screening a library of 823 ATP mimetics, we identify both inhibitors and enhancers of Ca2+ signaling. Two such compounds constitute novel PKG inhibitors and prevent zaprinast from increasing cytosolic Ca2+. The enhancers identified are capable of releasing intracellular Ca2+ stores independently of zaprinast or PKG. One of these enhancers blocks parasite egress and invasion and shows strong antiparasitic activity against T. gondii. The same compound inhibits invasion of the most lethal malaria parasite, Plasmodium falciparum. Inhibition of Ca2+-related phenotypes in these two apicomplexan parasites suggests that depletion of intracellular Ca2+ stores by the enhancer may be an effective antiparasitic strategy. These results establish a powerful new strategy for identifying compounds that modulate the essential parasite signaling pathways regulated by Ca2+, underscoring the importance of these pathways and the therapeutic potential of their inhibition. PMID:26933036

  18. Genetical and comparative genomics of Brassica under altered Ca supply identifies Arabidopsis Ca-transporter orthologs.

    PubMed

    Graham, Neil S; Hammond, John P; Lysenko, Artem; Mayes, Sean; O Lochlainn, Seosamh; Blasco, Bego; Bowen, Helen C; Rawlings, Chris J; Rios, Juan J; Welham, Susan; Carion, Pierre W C; Dupuy, Lionel X; King, Graham J; White, Philip J; Broadley, Martin R

    2014-07-01

    Although Ca transport in plants is highly complex, the overexpression of vacuolar Ca(2+) transporters in crops is a promising new technology to improve dietary Ca supplies through biofortification. Here, we sought to identify novel targets for increasing plant Ca accumulation using genetical and comparative genomics. Expression quantitative trait locus (eQTL) mapping to 1895 cis- and 8015 trans-loci were identified in shoots of an inbred mapping population of Brassica rapa (IMB211 × R500); 23 cis- and 948 trans-eQTLs responded specifically to altered Ca supply. eQTLs were screened for functional significance using a large database of shoot Ca concentration phenotypes of Arabidopsis thaliana. From 31 Arabidopsis gene identifiers tagged to robust shoot Ca concentration phenotypes, 21 mapped to 27 B. rapa eQTLs, including orthologs of the Ca(2+) transporters At-CAX1 and At-ACA8. Two of three independent missense mutants of BraA.cax1a, isolated previously by targeting induced local lesions in genomes, have allele-specific shoot Ca concentration phenotypes compared with their segregating wild types. BraA.CAX1a is a promising target for altering the Ca composition of Brassica, consistent with prior knowledge from Arabidopsis. We conclude that multiple-environment eQTL analysis of complex crop genomes combined with comparative genomics is a powerful technique for novel gene identification/prioritization. PMID:25082855

  19. Reconstruction of genetically identified neurons imaged by serial-section electron microscopy

    PubMed Central

    Joesch, Maximilian; Mankus, David; Yamagata, Masahito; Shahbazi, Ali; Schalek, Richard; Suissa-Peleg, Adi; Meister, Markus; Lichtman, Jeff W; Scheirer, Walter J; Sanes, Joshua R

    2016-01-01

    Resolving patterns of synaptic connectivity in neural circuits currently requires serial section electron microscopy. However, complete circuit reconstruction is prohibitively slow and may not be necessary for many purposes such as comparing neuronal structure and connectivity among multiple animals. Here, we present an alternative strategy, targeted reconstruction of specific neuronal types. We used viral vectors to deliver peroxidase derivatives, which catalyze production of an electron-dense tracer, to genetically identify neurons, and developed a protocol that enhances the electron-density of the labeled cells while retaining the quality of the ultrastructure. The high contrast of the marked neurons enabled two innovations that speed data acquisition: targeted high-resolution reimaging of regions selected from rapidly-acquired lower resolution reconstruction, and an unsupervised segmentation algorithm. This pipeline reduces imaging and reconstruction times by two orders of magnitude, facilitating directed inquiry of circuit motifs. DOI: http://dx.doi.org/10.7554/eLife.15015.001 PMID:27383271

  20. Reconstruction of genetically identified neurons imaged by serial-section electron microscopy.

    PubMed

    Joesch, Maximilian; Mankus, David; Yamagata, Masahito; Shahbazi, Ali; Schalek, Richard; Suissa-Peleg, Adi; Meister, Markus; Lichtman, Jeff W; Scheirer, Walter J; Sanes, Joshua R

    2016-01-01

    Resolving patterns of synaptic connectivity in neural circuits currently requires serial section electron microscopy. However, complete circuit reconstruction is prohibitively slow and may not be necessary for many purposes such as comparing neuronal structure and connectivity among multiple animals. Here, we present an alternative strategy, targeted reconstruction of specific neuronal types. We used viral vectors to deliver peroxidase derivatives, which catalyze production of an electron-dense tracer, to genetically identify neurons, and developed a protocol that enhances the electron-density of the labeled cells while retaining the quality of the ultrastructure. The high contrast of the marked neurons enabled two innovations that speed data acquisition: targeted high-resolution reimaging of regions selected from rapidly-acquired lower resolution reconstruction, and an unsupervised segmentation algorithm. This pipeline reduces imaging and reconstruction times by two orders of magnitude, facilitating directed inquiry of circuit motifs. PMID:27383271

  1. A Zebrafish Genetic Screen Identifies Neuromedin U as a Regulator of Sleep/Wake States.

    PubMed

    Chiu, Cindy N; Rihel, Jason; Lee, Daniel A; Singh, Chanpreet; Mosser, Eric A; Chen, Shijia; Sapin, Viveca; Pham, Uyen; Engle, Jae; Niles, Brett J; Montz, Christin J; Chakravarthy, Sridhara; Zimmerman, Steven; Salehi-Ashtiani, Kourosh; Vidal, Marc; Schier, Alexander F; Prober, David A

    2016-02-17

    Neuromodulation of arousal states ensures that an animal appropriately responds to its environment and engages in behaviors necessary for survival. However, the molecular and circuit properties underlying neuromodulation of arousal states such as sleep and wakefulness remain unclear. To tackle this challenge in a systematic and unbiased manner, we performed a genetic overexpression screen to identify genes that affect larval zebrafish arousal. We found that the neuropeptide neuromedin U (Nmu) promotes hyperactivity and inhibits sleep in zebrafish larvae, whereas nmu mutant animals are hypoactive. We show that Nmu-induced arousal requires Nmu receptor 2 and signaling via corticotropin releasing hormone (Crh) receptor 1. In contrast to previously proposed models, we find that Nmu does not promote arousal via the hypothalamic-pituitary-adrenal axis, but rather probably acts via brainstem crh-expressing neurons. These results reveal an unexpected functional and anatomical interface between the Nmu system and brainstem arousal systems that represents a novel wake-promoting pathway. PMID:26889812

  2. Genetic Determinants of Type 2 Diabetes in Asians

    PubMed Central

    Qi, Q; Wang, X; Strizich, G; Wang, T

    2016-01-01

    Type 2 diabetes (T2D) has become a major health problem throughout the world and the epidemic is particularly severe in Asian countries. Compared with European populations, Asians tend to develop diabetes at a younger age and at much higher incidence rates given the same amount of weight gain. Genome-wide association studies (GWAS) have identified over 70 loci associated with T2D. Although the majority of GWAS results were conducted in populations of European ancestry, recent GWAS in Asians have made important contributions to the identification of T2D susceptibility loci. These studies not only confirmed T2D susceptibility loci initially identified in European populations, but also identified novel susceptibility loci that provide new insights into the pathophysiology of diseases. In this article, we review GWAS results of T2D conducted in East and South Asians and compare them to those of European populations. Currently identified T2D genetic variants do not appear to explain the phenomenon that Asians are more susceptible to T2D than European populations, suggesting further studies in Asian populations are needed.

  3. Genetic and environmental determinants of risk for cholangiocarcinoma in Thailand

    PubMed Central

    Miwa, Masanao; Honjo, Satoshi; You, Gyokukou; Tanaka, Masakazu; Uchida, Kazuhiko; Srivatanakul, Petcharin; Khuhaprema, Thiravud; Loilome, Watcharin; Techasen, Anchalee; Wongkham, Chaisiri; Limpaiboon, Temduang; Yongvanit, Puangrat; Wongkham, Sopit

    2014-01-01

    Cholangiocarcinoma (CCA) is a difficult cancer to diagnose in the early stage and to treat by curative resection. The incidence of CCA in the northeast of Thailand is the highest in the world. To make progress in detecting a high risk group and in the prevention and detection of CCA, we have been analyzing the risk factors for CCA. Although liver fluke infection is known to be a risk factor, there are patients who are not infected with the liver fluke and not all people infected with the liver fluke will suffer from the disease. Therefore, it is of the utmost importance to analyze the risk factors and the mechanism to prevent the disease and also to detect the disease in its early stage to save patients’ lives. Through collaboration among Thai and Japanese researchers, we analyzed the genetic and environmental determinants of risks for CCA. Also, we have been trying to develop methods to detect the disease in a non-invasive way. Without repeating findings reported in various reviews on CCA, we will first discuss the environmental and genetic determinants of the risks for CCA. Second, we will discuss the properties of CCA, including the etiological agents and the mechanism of cholangiocarcinogenesis, and finally, we will discuss future approaches to prevent and cure CCA from the standpoint of evidence-based medicine. We will discuss these points by including the data from our laboratories. We would like to emphasize the importance of the genetic data, especially whole genome approaches, to understand the properties of CCA, to find a high risk population for CCA and to develop effective preventative methods to stop the carcinogenic steps toward CCA in the near future. In addition, it is of the upmost importance to develop a non-invasive, specific and sensitive method to detect CCA in its early stage for the application of modern medical approaches to help patients with CCA. PMID:25401000

  4. Low-Dose Radiation Cataract and Genetic Determinants of Radiosensitivity

    SciTech Connect

    Kleiman, Norman Jay

    2013-11-30

    The lens of the eye is one of the most radiosensitive tissues in the body. Ocular ionizing radiation exposure results in characteristic, dose related, progressive lens changes leading to cataract formation. While initial, early stages of lens opacification may not cause visual disability, the severity of such changes progressively increases with dose until vision is impaired and cataract extraction surgery may be required. Because of the transparency of the eye, radiation induced lens changes can easily be followed non-invasively over time. Thus, the lens provides a unique model system in which to study the effects of low dose ionizing radiation exposure in a complex, highly organized tissue. Despite this observation, considerable uncertainties remain surrounding the relationship between dose and risk of developing radiation cataract. For example, a growing number of human epidemiological findings suggest significant risk among various groups of occupationally and accidentally exposed individuals and confidence intervals that include zero dose. Nevertheless, questions remain concerning the relationship between lens opacities, visual disability, clinical cataract, threshold dose and/or the role of genetics in determining radiosensitivity. Experimentally, the response of the rodent eye to radiation is quite similar to that in humans and thus animal studies are well suited to examine the relationship between radiation exposure, genetic determinants of radiosensitivity and cataractogenesis. The current work has expanded our knowledge of the low-dose effects of X-irradiation or high-LET heavy ion exposure on timing and progression of radiation cataract and has provided new information on the genetic, molecular, biochemical and cell biological features which contribute to this pathology. Furthermore, findings have indicated that single and/or multiple haploinsufficiency for various genes involved in DNA repair and cell cycle checkpoint control, such as Atm, Brca1 or Rad9

  5. An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits

    PubMed Central

    Huh, Iksoo; Kwon, Min-Seok; Park, Taesung

    2015-01-01

    Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS) to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data) to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket) for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively. PMID:26406920

  6. Genome-wide association studies identify genetic loci for low von Willebrand factor levels.

    PubMed

    van Loon, Janine; Dehghan, Abbas; Weihong, Tang; Trompet, Stella; McArdle, Wendy L; Asselbergs, Folkert F W; Chen, Ming-Huei; Lopez, Lorna M; Huffman, Jennifer E; Leebeek, Frank W G; Basu, Saonli; Stott, David J; Rumley, Ann; Gansevoort, Ron T; Davies, Gail; Wilson, James J F; Witteman, Jacqueline C M; Cao, Xiting; de Craen, Anton J M; Bakker, Stephan J L; Psaty, Bruce M; Starr, John M; Hofman, Albert; Wouter Jukema, J; Deary, Ian J; Hayward, Caroline; van der Harst, Pim; Lowe, Gordon D O; Folsom, Aaron R; Strachan, David P; Smith, Nicolas; de Maat, Moniek P M; O'Donnell, Christopher

    2016-07-01

    Low von Willebrand factor (VWF) levels are associated with bleeding symptoms and are a diagnostic criterion for von Willebrand disease, the most common inherited bleeding disorder. To date, it is unclear which genetic loci are associated with reduced VWF levels. Therefore, we conducted a meta-analysis of genome-wide association studies to identify genetic loci associated with low VWF levels. For this meta-analysis, we included 31 149 participants of European ancestry from 11 community-based studies. From all participants, VWF antigen (VWF:Ag) measurements and genome-wide single-nucleotide polymorphism (SNP) scans were available. Each study conducted analyses using logistic regression of SNPs on dichotomized VWF:Ag measures (lowest 5% for blood group O and non-O) with an additive genetic model adjusted for age and sex. An inverse-variance weighted meta-analysis was performed for VWF:Ag levels. A total of 97 SNPs exceeded the genome-wide significance threshold of 5 × 10(-8) and comprised five loci on four different chromosomes: 6q24 (smallest P-value 5.8 × 10(-10)), 9q34 (2.4 × 10(-64)), 12p13 (5.3 × 10(-22)), 12q23 (1.2 × 10(-8)) and 13q13 (2.6 × 10(-8)). All loci were within or close to genes, including STXBP5 (Syntaxin Binding Protein 5) (6q24), STAB5 (stabilin-5) (12q23), ABO (9q34), VWF (12p13) and UFM1 (ubiquitin-fold modifier 1) (13q13). Of these, UFM1 has not been previously associated with VWF:Ag levels. Four genes that were previously associated with VWF levels (VWF, ABO, STXBP5 and STAB2) were also associated with low VWF levels, and, in addition, we identified a new gene, UFM1, that is associated with low VWF levels. These findings point to novel mechanisms for the occurrence of low VWF levels. PMID:26486471

  7. Multifactor dimensionality reduction analysis identifies specific nucleotide patterns promoting genetic polymorphisms

    PubMed Central

    Arehart, Eric; Gleim, Scott; White, Bill; Hwa, John; Moore, Jason H

    2009-01-01

    contribution of these sites to SNP genesis. Conclusion The present study represents the first use of this computational methodology for modeling nonlinear patterns in molecular genetics. MDR was able to identify distinct nucleotide patterning around sites of mutations dependent upon the observed nucleotide change. We discovered one flanking region set that included five nucleotides clustered around a specific type of SNP site. Based on the strongly associated patterns identified in this study, it may become possible to scan genomic databases for such clustering of nucleotides in order to predict likely sites of future SNPs, and even the type of polymorphism most likely to occur. PMID:19331672

  8. Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease.

    PubMed

    Johnson, Michael R; Shkura, Kirill; Langley, Sarah R; Delahaye-Duriez, Andree; Srivastava, Prashant; Hill, W David; Rackham, Owen J L; Davies, Gail; Harris, Sarah E; Moreno-Moral, Aida; Rotival, Maxime; Speed, Doug; Petrovski, Slavé; Katz, Anaïs; Hayward, Caroline; Porteous, David J; Smith, Blair H; Padmanabhan, Sandosh; Hocking, Lynne J; Starr, John M; Liewald, David C; Visconti, Alessia; Falchi, Mario; Bottolo, Leonardo; Rossetti, Tiziana; Danis, Bénédicte; Mazzuferi, Manuela; Foerch, Patrik; Grote, Alexander; Helmstaedter, Christoph; Becker, Albert J; Kaminski, Rafal M; Deary, Ian J; Petretto, Enrico

    2016-02-01

    Genetic determinants of cognition are poorly characterized, and their relationship to genes that confer risk for neurodevelopmental disease is unclear. Here we performed a systems-level analysis of genome-wide gene expression data to infer gene-regulatory networks conserved across species and brain regions. Two of these networks, M1 and M3, showed replicable enrichment for common genetic variants underlying healthy human cognitive abilities, including memory. Using exome sequence data from 6,871 trios, we found that M3 genes were also enriched for mutations ascertained from patients with neurodevelopmental disease generally, and intellectual disability and epileptic encephalopathy in particular. M3 consists of 150 genes whose expression is tightly developmentally regulated, but which are collectively poorly annotated for known functional pathways. These results illustrate how systems-level analyses can reveal previously unappreciated relationships between neurodevelopmental disease-associated genes in the developed human brain, and provide empirical support for a convergent gene-regulatory network influencing cognition and neurodevelopmental disease. PMID:26691832

  9. Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations

    PubMed Central

    Pramstaller, Peter P.; Rudan, Igor; Franklin, Christopher S.; Liebisch, Gerhard; Erdmann, Jeanette; Jonasson, Inger; Zorkoltseva, Irina V.; Pattaro, Cristian; Hayward, Caroline; Isaacs, Aaron; Hengstenberg, Christian; Campbell, Susan; Gnewuch, Carsten; Janssens, A. CecileJ.W.; Kirichenko, Anatoly V.; König, Inke R.; Marroni, Fabio; Polasek, Ozren; Demirkan, Ayse; Kolcic, Ivana; Schwienbacher, Christine; Igl, Wilmar; Biloglav, Zrinka; Witteman, Jacqueline C. M.; Pichler, Irene; Zaboli, Ghazal; Axenovich, Tatiana I.; Peters, Annette; Schreiber, Stefan; Wichmann, H.-Erich; Schunkert, Heribert; Hastie, Nick; Oostra, Ben A.; Wild, Sarah H.; Meitinger, Thomas; Gyllensten, Ulf; van Duijn, Cornelia M.; Wilson, James F.; Wright, Alan; Schmitz, Gerd; Campbell, Harry

    2009-01-01

    Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic β-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08×10−66. The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1–3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10−4 or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be

  10. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment.

    PubMed

    Rietveld, Cornelius A; Medland, Sarah E; Derringer, Jaime; Yang, Jian; Esko, Tõnu; Martin, Nicolas W; Westra, Harm-Jan; Shakhbazov, Konstantin; Abdellaoui, Abdel; Agrawal, Arpana; Albrecht, Eva; Alizadeh, Behrooz Z; Amin, Najaf; Barnard, John; Baumeister, Sebastian E; Benke, Kelly S; Bielak, Lawrence F; Boatman, Jeffrey A; Boyle, Patricia A; Davies, Gail; de Leeuw, Christiaan; Eklund, Niina; Evans, Daniel S; Ferhmann, Rudolf; Fischer, Krista; Gieger, Christian; Gjessing, Håkon K; Hägg, Sara; Harris, Jennifer R; Hayward, Caroline; Holzapfel, Christina; Ibrahim-Verbaas, Carla A; Ingelsson, Erik; Jacobsson, Bo; Joshi, Peter K; Jugessur, Astanand; Kaakinen, Marika; Kanoni, Stavroula; Karjalainen, Juha; Kolcic, Ivana; Kristiansson, Kati; Kutalik, Zoltán; Lahti, Jari; Lee, Sang H; Lin, Peng; Lind, Penelope A; Liu, Yongmei; Lohman, Kurt; Loitfelder, Marisa; McMahon, George; Vidal, Pedro Marques; Meirelles, Osorio; Milani, Lili; Myhre, Ronny; Nuotio, Marja-Liisa; Oldmeadow, Christopher J; Petrovic, Katja E; Peyrot, Wouter J; Polasek, Ozren; Quaye, Lydia; Reinmaa, Eva; Rice, John P; Rizzi, Thais S; Schmidt, Helena; Schmidt, Reinhold; Smith, Albert V; Smith, Jennifer A; Tanaka, Toshiko; Terracciano, Antonio; van der Loos, Matthijs J H M; Vitart, Veronique; Völzke, Henry; Wellmann, Jürgen; Yu, Lei; Zhao, Wei; Allik, Jüri; Attia, John R; Bandinelli, Stefania; Bastardot, François; Beauchamp, Jonathan; Bennett, David A; Berger, Klaus; Bierut, Laura J; Boomsma, Dorret I; Bültmann, Ute; Campbell, Harry; Chabris, Christopher F; Cherkas, Lynn; Chung, Mina K; Cucca, Francesco; de Andrade, Mariza; De Jager, Philip L; De Neve, Jan-Emmanuel; Deary, Ian J; Dedoussis, George V; Deloukas, Panos; Dimitriou, Maria; Eiríksdóttir, Guðny; Elderson, Martin F; Eriksson, Johan G; Evans, David M; Faul, Jessica D; Ferrucci, Luigi; Garcia, Melissa E; Grönberg, Henrik; Guðnason, Vilmundur; Hall, Per; Harris, Juliette M; Harris, Tamara B; Hastie, Nicholas D; Heath, Andrew C; Hernandez, Dena G; Hoffmann, Wolfgang; Hofman, Adriaan; Holle, Rolf; Holliday, Elizabeth G; Hottenga, Jouke-Jan; Iacono, William G; Illig, Thomas; Järvelin, Marjo-Riitta; Kähönen, Mika; Kaprio, Jaakko; Kirkpatrick, Robert M; Kowgier, Matthew; Latvala, Antti; Launer, Lenore J; Lawlor, Debbie A; Lehtimäki, Terho; Li, Jingmei; Lichtenstein, Paul; Lichtner, Peter; Liewald, David C; Madden, Pamela A; Magnusson, Patrik K E; Mäkinen, Tomi E; Masala, Marco; McGue, Matt; Metspalu, Andres; Mielck, Andreas; Miller, Michael B; Montgomery, Grant W; Mukherjee, Sutapa; Nyholt, Dale R; Oostra, Ben A; Palmer, Lyle J; Palotie, Aarno; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A; Preisig, Martin; Räikkönen, Katri; Raitakari, Olli T; Realo, Anu; Ring, Susan M; Ripatti, Samuli; Rivadeneira, Fernando; Rudan, Igor; Rustichini, Aldo; Salomaa, Veikko; Sarin, Antti-Pekka; Schlessinger, David; Scott, Rodney J; Snieder, Harold; St Pourcain, Beate; Starr, John M; Sul, Jae Hoon; Surakka, Ida; Svento, Rauli; Teumer, Alexander; Tiemeier, Henning; van Rooij, Frank J A; Van Wagoner, David R; Vartiainen, Erkki; Viikari, Jorma; Vollenweider, Peter; Vonk, Judith M; Waeber, Gérard; Weir, David R; Wichmann, H-Erich; Widen, Elisabeth; Willemsen, Gonneke; Wilson, James F; Wright, Alan F; Conley, Dalton; Davey-Smith, George; Franke, Lude; Groenen, Patrick J F; Hofman, Albert; Johannesson, Magnus; Kardia, Sharon L R; Krueger, Robert F; Laibson, David; Martin, Nicholas G; Meyer, Michelle N; Posthuma, Danielle; Thurik, A Roy; Timpson, Nicholas J; Uitterlinden, André G; van Duijn, Cornelia M; Visscher, Peter M; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D

    2013-06-21

    A genome-wide association study (GWAS) of educational attainment was conducted in a discovery sample of 101,069 individuals and a replication sample of 25,490. Three independent single-nucleotide polymorphisms (SNPs) are genome-wide significant (rs9320913, rs11584700, rs4851266), and all three replicate. Estimated effects sizes are small (coefficient of determination R(2) ≈ 0.02%), approximately 1 month of schooling per allele. A linear polygenic score from all measured SNPs accounts for ≈2% of the variance in both educational attainment and cognitive function. Genes in the region of the loci have previously been associated with health, cognitive, and central nervous system phenotypes, and bioinformatics analyses suggest the involvement of the anterior caudate nucleus. These findings provide promising candidate SNPs for follow-up work, and our effect size estimates can anchor power analyses in social-science genetics. PMID:23722424

  11. Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies

    PubMed Central

    Chen, Jun; Källman, Thomas; Ma, Xiao-Fei; Zaina, Giusi; Morgante, Michele; Lascoux, Martin

    2016-01-01

    The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower FST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both FST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI. PMID:27172202

  12. Identifying Genetic Signatures of Natural Selection Using Pooled Population Sequencing in Picea abies.

    PubMed

    Chen, Jun; Källman, Thomas; Ma, Xiao-Fei; Zaina, Giusi; Morgante, Michele; Lascoux, Martin

    2016-01-01

    The joint inference of selection and past demography remain a costly and demanding task. We used next generation sequencing of two pools of 48 Norway spruce mother trees, one corresponding to the Fennoscandian domain, and the other to the Alpine domain, to assess nucleotide polymorphism at 88 nuclear genes. These genes are candidate genes for phenological traits, and most belong to the photoperiod pathway. Estimates of population genetic summary statistics from the pooled data are similar to previous estimates, suggesting that pooled sequencing is reliable. The nonsynonymous SNPs tended to have both lower frequency differences and lower FST values between the two domains than silent ones. These results suggest the presence of purifying selection. The divergence between the two domains based on synonymous changes was around 5 million yr, a time similar to a recent phylogenetic estimate of 6 million yr, but much larger than earlier estimates based on isozymes. Two approaches, one of them novel and that considers both FST and difference in allele frequencies between the two domains, were used to identify SNPs potentially under diversifying selection. SNPs from around 20 genes were detected, including genes previously identified as main target for selection, such as PaPRR3 and PaGI. PMID:27172202

  13. Additional records of metazoan parasites from Caribbean marine mammals, including genetically identified anisakid nematodes.

    PubMed

    Colón-Llavina, Marlene M; Mignucci-Giannoni, Antonio A; Mattiucci, Simonetta; Paoletti, Michela; Nascetti, Giuseppe; Williams, Ernest H

    2009-10-01

    Studies of marine mammal parasites in the Caribbean are scarce. An assessment for marine mammal endo- and ectoparasites from Puerto Rico and the Virgin Islands, but extending to other areas of the Caribbean, was conducted between 1989 and 1994. The present study complements the latter and enhances identification of anisakid nematodes using molecular markers. Parasites were collected from 59 carcasses of stranded cetaceans and manatees from 1994 to 2006, including Globicephala macrorhynchus, Kogia breviceps, Kogia sima, Lagenodelphis hosei, Mesoplodon densirostris, Peponocephala electra, Stenella longirostris, Steno bredanensis, Trichechus manatus. Tursiops truncatus, and Ziphius cavirostris. Sixteen species of endoparasitic helminthes were morphologically identified, including two species of acanthocephalans (Bolbosoma capitatum, Bolbosoma vasculosum), nine species of nematodes (Anisakis sp., Anisakis brevispiculata, Anisakis paggiae, Anisakis simplex, Anisakis typica, Anisakis ziphidarium, Crassicauda anthonyi, Heterocheilus tunicatus, Pseudoterranova ceticola), two species of cestodes (Monorygma grimaldi, Phyllobothrium delphini), and three species of trematodes (Chiorchis groschafti, Pulmonicola cochleotrema, Monoligerum blairi). The nematodes belonging to the genus Anisakis recovered in some stranded animals were genetically identified to species level based on their sequence analysis of mitochondrial DNA (629 bp of mtDNA cox 2). A total of five new host records and six new geographic records are presented. PMID:19582477

  14. Identifying Genetic Traces of Historical Expansions: Phoenician Footprints in the Mediterranean

    PubMed Central

    Zalloua, Pierre A.; Platt, Daniel E.; El Sibai, Mirvat; Khalife, Jade; Makhoul, Nadine; Haber, Marc; Xue, Yali; Izaabel, Hassan; Bosch, Elena; Adams, Susan M.; Arroyo, Eduardo; López-Parra, Ana María; Aler, Mercedes; Picornell, Antònia; Ramon, Misericordia; Jobling, Mark A.; Comas, David; Bertranpetit, Jaume; Wells, R. Spencer; Tyler-Smith, Chris

    2008-01-01

    The Phoenicians were the dominant traders in the Mediterranean Sea two thousand to three thousand years ago and expanded from their homeland in the Levant to establish colonies and trading posts throughout the Mediterranean, but then they disappeared from history. We wished to identify their male genetic traces in modern populations. Therefore, we chose Phoenician-influenced sites on the basis of well-documented historical records and collected new Y-chromosomal data from 1330 men from six such sites, as well as comparative data from the literature. We then developed an analytical strategy to distinguish between lineages specifically associated with the Phoenicians and those spread by geographically similar but historically distinct events, such as the Neolithic, Greek, and Jewish expansions. This involved comparing historically documented Phoenician sites with neighboring non-Phoenician sites for the identification of weak but systematic signatures shared by the Phoenician sites that could not readily be explained by chance or by other expansions. From these comparisons, we found that haplogroup J2, in general, and six Y-STR haplotypes, in particular, exhibited a Phoenician signature that contributed > 6% to the modern Phoenician-influenced populations examined. Our methodology can be applied to any historically documented expansion in which contact and noncontact sites can be identified. PMID:18976729

  15. The Real maccoyii: Identifying Tuna Sushi with DNA Barcodes – Contrasting Characteristic Attributes and Genetic Distances

    PubMed Central

    Lowenstein, Jacob H.; Amato, George; Kolokotronis, Sergios-Orestis

    2009-01-01

    Background The use of DNA barcodes for the identification of described species is one of the least controversial and most promising applications of barcoding. There is no consensus, however, as to what constitutes an appropriate identification standard and most barcoding efforts simply attempt to pair a query sequence with reference sequences and deem identification successful if it falls within the bounds of some pre-established cutoffs using genetic distance. Since the Renaissance, however, most biological classification schemes have relied on the use of diagnostic characters to identify and place species. Methodology/Principal Findings Here we developed a cytochrome c oxidase subunit I character-based key for the identification of all tuna species of the genus Thunnus, and compared its performance with distance-based measures for identification of 68 samples of tuna sushi purchased from 31 restaurants in Manhattan (New York City) and Denver, Colorado. Both the character-based key and GenBank BLAST successfully identified 100% of the tuna samples, while the Barcode of Life Database (BOLD) as well as genetic distance thresholds, and neighbor-joining phylogenetic tree building performed poorly in terms of species identification. A piece of tuna sushi has the potential to be an endangered species, a fraud, or a health hazard. All three of these cases were uncovered in this study. Nineteen restaurant establishments were unable to clarify or misrepresented what species they sold. Five out of nine samples sold as a variant of “white tuna” were not albacore (T. alalunga), but escolar (Lepidocybium flavorunneum), a gempylid species banned for sale in Italy and Japan due to health concerns. Nineteen samples were northern bluefin tuna (T. thynnus) or the critically endangered southern bluefin tuna (T. maccoyii), though nine restaurants that sold these species did not state these species on their menus. Conclusions/Significance The Convention on International Trade

  16. Cellular and network mechanisms of genetically-determined absence seizures.

    PubMed

    Pinault, Didier; O'Brien, Terence J

    2005-01-01

    The absence epilepsies are characterized by recurrent episodes of loss of consciousness associated with generalized spike-and-wave discharges, with an abrupt onset and offset, in the thalamocortical system. In the absence of detailed neurophysiological studies in humans, many of the concepts regarding the pathophysiological basis of absence seizures are based on studies in animal models. Each of these models has its particular strengths and limitations, and the validity of findings from these models for the human condition cannot be assumed. Consequently, studies in different models have produced some conflicting findings and conclusions. A long-standing concept, based primarily from studies in vivo in cats and in vitro brain slices, is that these paroxysmal electrical events develop suddenly from sleep-related spindle oscillations. More specifically, it is proposed that the initial mechanisms that underlie absence-related spike-and-wave discharges are located in the thalamus, involving especially the thalamic reticular nucleus. By contrast, more recent studies in well-established, genetic models of absence epilepsy in rats demonstrate that spike-and-wave discharges originate in a cortical focus and develop from a wake-related natural corticothalamic sensorimotor rhythm. In this review we integrate recent findings showing that, in both the thalamus and the neocortex, genetically-determined, absence-related spike-and-wave discharges are the manifestation of hypersynchronized, cellular, rhythmic excitations and inhibitions that result from a combination of complex, intrinsic, synaptic mechanisms. Arguments are put forward supporting the hypothesis that layer VI corticothalamic neurons act as 'drivers' in the generation of spike-and-wave discharges in the somatosensory thalamocortical system that result in corticothalamic resonances particularly initially involving the thalamic reticular nucleus. However an important unresolved question is: what are the cellular and

  17. Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study

    PubMed Central

    Cleynen, Isabelle; Boucher, Gabrielle; Jostins, Luke; Schumm, L Philip; Zeissig, Sebastian; Ahmad, Tariq; Andersen, Vibeke; Andrews, Jane M; Annese, Vito; Brand, Stephan; Brant, Steven R; Cho, Judy H; Daly, Mark J; Dubinsky, Marla; Duerr, Richard H; Ferguson, Lynnette R; Franke, Andre; Gearry, Richard B; Goyette, Philippe; Hakonarson, Hakon; Halfvarson, Jonas; Hov, Johannes R; Huang, Hailang; Kennedy, Nicholas A; Kupcinskas, Limas; Lawrance, Ian C; Lee, James C; Satsangi, Jack; Schreiber, Stephan; Théâtre, Emilie; van der Meulen-de Jong, Andrea E; Weersma, Rinse K; Wilson, David C; Parkes, Miles; Vermeire, Severine; Rioux, John D; Mansfield, John; Silverberg, Mark S; Radford-Smith, Graham; McGovern, Dermot P B; Barrett, Jeffrey C; Lees, Charlie W

    2016-01-01

    Summary Background Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases. Methods This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34 819 patients (19 713 with Crohn's disease, 14 683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype–phenotype associations across 156 154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile. Findings After quality control, the primary analysis included 29 838 patients (16 902 with Crohn's disease, 12 597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for

  18. Retrograde Intraflagellar Transport Mutants Identify Complex A Proteins With Multiple Genetic Interactions in Chlamydomonas reinhardtii

    PubMed Central

    Iomini, Carlo; Li, Linya; Esparza, Jessica M.; Dutcher, Susan K.

    2009-01-01

    The intraflagellar transport machinery is required for the assembly of cilia. It has been investigated by biochemical, genetic, and computational methods that have identified at least 21 proteins that assemble into two subcomplexes. It has been hypothesized that complex A is required for retrograde transport. Temperature-sensitive mutations in FLA15 and FLA17 show defects in retrograde intraflagellar transport (IFT) in Chlamydomonas. We show that IFT144 and IFT139, two complex A proteins, are encoded by FLA15 and FLA17, respectively. The fla15 allele is a missense mutation in a conserved cysteine and the fla17 allele is an in-frame deletion of three exons. The flagellar assembly defect of each mutant is rescued by the respective transgenes. In fla15 and fla17 mutants, bulges form in the distal one-third of the flagella at the permissive temperature and this phenotype is also rescued by the transgenes. These bulges contain the complex B component IFT74/72, but not α-tubulin or p28, a component of an inner dynein arm, which suggests specificity with respect to the proteins that accumulate in these bulges. IFT144 and IFT139 are likely to interact with each other and other proteins on the basis of three distinct genetic tests: (1) Double mutants display synthetic flagellar assembly defects at the permissive temperature, (2) heterozygous diploid strains exhibit second-site noncomplemention, and (3) transgenes confer two-copy suppression. Since these tests show different levels of phenotypic sensitivity, we propose they illustrate different gradations of gene interaction between complex A proteins themselves and with a complex B protein (IFT172). PMID:19720863

  19. Genetic association study identifies HSPB7 as a risk gene for idiopathic dilated cardiomyopathy.

    PubMed

    Stark, Klaus; Esslinger, Ulrike B; Reinhard, Wibke; Petrov, George; Winkler, Thomas; Komajda, Michel; Isnard, Richard; Charron, Philippe; Villard, Eric; Cambien, François; Tiret, Laurence; Aumont, Marie-Claude; Dubourg, Olivier; Trochu, Jean-Noël; Fauchier, Laurent; Degroote, Pascal; Richter, Anette; Maisch, Bernhard; Wichter, Thomas; Zollbrecht, Christa; Grassl, Martina; Schunkert, Heribert; Linsel-Nitschke, Patrick; Erdmann, Jeanette; Baumert, Jens; Illig, Thomas; Klopp, Norman; Wichmann, H-Erich; Meisinger, Christa; Koenig, Wolfgang; Lichtner, Peter; Meitinger, Thomas; Schillert, Arne; König, Inke R; Hetzer, Roland; Heid, Iris M; Regitz-Zagrosek, Vera; Hengstenberg, Christian

    2010-10-01

    Dilated cardiomyopathy (DCM) is a structural heart disease with strong genetic background. Monogenic forms of DCM are observed in families with mutations located mostly in genes encoding structural and sarcomeric proteins. However, strong evidence suggests that genetic factors also affect the susceptibility to idiopathic DCM. To identify risk alleles for non-familial forms of DCM, we carried out a case-control association study, genotyping 664 DCM cases and 1,874 population-based healthy controls from Germany using a 50K human cardiovascular disease bead chip covering more than 2,000 genes pre-selected for cardiovascular relevance. After quality control, 30,920 single nucleotide polymorphisms (SNP) were tested for association with the disease by logistic regression adjusted for gender, and results were genomic-control corrected. The analysis revealed a significant association between a SNP in HSPB7 gene (rs1739843, minor allele frequency 39%) and idiopathic DCM (p = 1.06 × 10⁻⁶, OR  = 0.67 [95% CI 0.57-0.79] for the minor allele T). Three more SNPs showed p < 2.21 × 10⁻⁵. De novo genotyping of these four SNPs was done in three independent case-control studies of idiopathic DCM. Association between SNP rs1739843 and DCM was significant in all replication samples: Germany (n =564, n = 981 controls, p = 2.07 × 10⁻³, OR = 0.79 [95% CI 0.67-0.92]), France 1 (n = 433 cases, n = 395 controls, p =3.73 × 10⁻³, OR  = 0.74 [95% CI 0.60-0.91]), and France 2 (n = 249 cases, n = 380 controls, p = 2.26 × 10⁻⁴, OR  = 0.63 [95% CI 0.50-0.81]). The combined analysis of all four studies including a total of n = 1,910 cases and n = 3,630 controls showed highly significant evidence for association between rs1739843 and idiopathic DCM (p = 5.28 × 10⁻¹³, OR= 0.72 [95% CI 0.65-0.78]). None of the other three SNPs showed significant results in the replication stage.This finding of the HSPB7 gene from a genetic search for idiopathic DCM using a large SNP

  20. Genetic Association Study Identifies HSPB7 as a Risk Gene for Idiopathic Dilated Cardiomyopathy

    PubMed Central

    Stark, Klaus; Esslinger, Ulrike B.; Reinhard, Wibke; Petrov, George; Winkler, Thomas; Komajda, Michel; Isnard, Richard; Charron, Philippe; Villard, Eric; Cambien, François; Tiret, Laurence; Aumont, Marie-Claude; Dubourg, Olivier; Trochu, Jean-Noël; Fauchier, Laurent; DeGroote, Pascal; Richter, Anette; Maisch, Bernhard; Wichter, Thomas; Zollbrecht, Christa; Grassl, Martina; Schunkert, Heribert; Linsel-Nitschke, Patrick; Erdmann, Jeanette; Baumert, Jens; Illig, Thomas; Klopp, Norman; Wichmann, H.-Erich; Meisinger, Christa; Koenig, Wolfgang; Lichtner, Peter; Meitinger, Thomas; Schillert, Arne; König, Inke R.; Hetzer, Roland; Heid, Iris M.; Regitz-Zagrosek, Vera; Hengstenberg, Christian

    2010-01-01

    Dilated cardiomyopathy (DCM) is a structural heart disease with strong genetic background. Monogenic forms of DCM are observed in families with mutations located mostly in genes encoding structural and sarcomeric proteins. However, strong evidence suggests that genetic factors also affect the susceptibility to idiopathic DCM. To identify risk alleles for non-familial forms of DCM, we carried out a case-control association study, genotyping 664 DCM cases and 1,874 population-based healthy controls from Germany using a 50K human cardiovascular disease bead chip covering more than 2,000 genes pre-selected for cardiovascular relevance. After quality control, 30,920 single nucleotide polymorphisms (SNP) were tested for association with the disease by logistic regression adjusted for gender, and results were genomic-control corrected. The analysis revealed a significant association between a SNP in HSPB7 gene (rs1739843, minor allele frequency 39%) and idiopathic DCM (p = 1.06×10−6, OR = 0.67 [95% CI 0.57–0.79] for the minor allele T). Three more SNPs showed p < 2.21×10−5. De novo genotyping of these four SNPs was done in three independent case-control studies of idiopathic DCM. Association between SNP rs1739843 and DCM was significant in all replication samples: Germany (n = 564, n = 981 controls, p = 2.07×10−3, OR = 0.79 [95% CI 0.67–0.92]), France 1 (n = 433 cases, n = 395 controls, p = 3.73×10−3, OR = 0.74 [95% CI 0.60–0.91]), and France 2 (n = 249 cases, n = 380 controls, p = 2.26×10−4, OR = 0.63 [95% CI 0.50–0.81]). The combined analysis of all four studies including a total of n = 1,910 cases and n = 3,630 controls showed highly significant evidence for association between rs1739843 and idiopathic DCM (p = 5.28×10−13, OR = 0.72 [95% CI 0.65–0.78]). None of the other three SNPs showed significant results in the replication stage. This finding of the HSPB7 gene from a

  1. Genetic determinants of mate recognition in Brachionus manjavacas (Rotifera)

    PubMed Central

    Snell, Terry W; Shearer, Tonya L; Smith, Hilary A; Kubanek, Julia; Gribble, Kristin E; Welch, David B Mark

    2009-01-01

    Background Mate choice is of central importance to most animals, influencing population structure, speciation, and ultimately the survival of a species. Mating behavior of male brachionid rotifers is triggered by the product of a chemosensory gene, a glycoprotein on the body surface of females called the mate recognition pheromone. The mate recognition pheromone has been biochemically characterized, but little was known about the gene(s). We describe the isolation and characterization of the mate recognition pheromone gene through protein purification, N-terminal amino acid sequence determination, identification of the mate recognition pheromone gene from a cDNA library, sequencing, and RNAi knockdown to confirm the functional role of the mate recognition pheromone gene in rotifer mating. Results A 29 kD protein capable of eliciting rotifer male circling was isolated by high-performance liquid chromatography. Two transcript types containing the N-terminal sequence were identified in a cDNA library; further characterization by screening a genomic library and by polymerase chain reaction revealed two genes belonging to each type. Each gene begins with a signal peptide region followed by nearly perfect repeats of an 87 to 92 codon motif with no codons between repeats and the final motif prematurely terminated by the stop codon. The two Type A genes contain four and seven repeats and the two Type B genes contain three and five repeats, respectively. Only the Type B gene with three repeats encodes a peptide with a molecular weight of 29 kD. Each repeat of the Type B gene products contains three asparagines as potential sites for N-glycosylation; there are no asparagines in the Type A genes. RNAi with Type A double-stranded RNA did not result in less circling than in the phosphate-buffered saline control, but transfection with Type B double-stranded RNA significantly reduced male circling by 17%. The very low divergence between repeat units, even at synonymous positions

  2. A genome-wide survey of CD4+ lymphocyte regulatory genetic variants identifies novel asthma genes

    PubMed Central

    Sharma, Sunita; Zhou, Xiaobo; Thibault, Derek M.; Himes, Blanca E.; Liu, Andy; Szefler, Stanley J.; Strunk, Robert; Castro, Mario; Hansel, Nadia N.; Diette, Gregory B.; Vonakis, Becky M.; Adkinson, N. Franklin; Avila, Lydiana; Soto-Quiros, Manuel; Barraza-Villareal, Albino; Lemanske, Robert F.; Solway, Julian; Krishnan, Jerry; White, Steven R.; Cheadle, Chris; Berger, Alan E.; Fan, Jinshui; Boorgula, Meher Preethi; Nicolae, Dan; Gilliland, Frank; Barnes, Kathleen; London, Stephanie J.; Martinez, Fernando; Ober, Carole; Celedón, Juan C.; Carey, Vincent J.; Weiss, Scott T.; Raby, Benjamin A.

    2014-01-01

    Background Genome-wide association studies have yet to identify the majority of genetic variants involved in asthma. We hypothesized that expression quantitative trait locus (eQTL) mapping can identify novel asthma genes by enabling prioritization of putative functional variants for association testing. Objective We evaluated 6,706 cis-acting expression-associated variants (eSNP) identified through a genome-wide eQTL survey of CD4+ lymphocytes for association with asthma. Methods eSNP were tested for association with asthma in 359 asthma cases and 846 controls from the Childhood Asthma Management Program, with verification using family-based testing. Significant associations were tested for replication in 579 parent-child trios with asthma from Costa Rica. Further functional validation was performed by Formaldehyde Assisted Isolation of Regulatory Elements (FAIRE)-qPCR and Chromatin-Immunoprecipitation (ChIP)-PCR in lung derived epithelial cell lines (Beas-2B and A549) and Jurkat cells, a leukemia cell line derived from T lymphocytes. Results Cis-acting eSNP demonstrated associations with asthma in both cohorts. We confirmed the previously-reported association of ORMDL3/GSDMB variants with asthma (combined p=2.9 × 108). Reproducible associations were also observed for eSNP in three additional genes: FADS2 (p=0.002), NAGA (p=0.0002), and F13A1 (p=0.0001). We subsequently demonstrated that FADS2 mRNA is increased in CD4+ lymphocytes in asthmatics, and that the associated eSNPs reside within DNA segments with histone modifications that denote open chromatin status and confer enhancer activity. Conclusions Our results demonstrate the utility of eQTL mapping in the identification of novel asthma genes, and provide evidence for the importance of FADS2, NAGA, and F13A1 in the pathogenesis of asthma. PMID:24934276

  3. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs.

    PubMed

    Clark, Matt Q; McCumsey, Stephanie J; Lopez-Darwin, Sereno; Heckscher, Ellie S; Doe, Chris Q

    2016-01-01

    Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and feeding. It is likely that some neurons (e.g., motor neurons) are used in all these behaviors, but the identity (or even existence) of neurons dedicated to specific aspects of behavior is unclear. To identify neurons that regulate specific aspects of larval locomotion, we performed a genetic screen to identify neurons that, when activated, could elicit distinct motor programs. We used 165 Janelia CRM-Gal4 lines-chosen for sparse neuronal expression-to ectopically express the warmth-inducible neuronal activator TrpA1, and screened for locomotor defects. The primary screen measured forward locomotion velocity, and we identified 63 lines that had locomotion velocities significantly slower than controls following TrpA1 activation (28°). A secondary screen was performed on these lines, revealing multiple discrete behavioral phenotypes, including slow forward locomotion, excessive reverse locomotion, excessive turning, excessive feeding, immobile, rigid paralysis, and delayed paralysis. While many of the Gal4 lines had motor, sensory, or muscle expression that may account for some or all of the phenotype, some lines showed specific expression in a sparse pattern of interneurons. Our results show that distinct motor programs utilize distinct subsets of interneurons, and provide an entry point for characterizing interneurons governing different elements of the larval motor program. PMID:27172197

  4. Functional Genetic Screen to Identify Interneurons Governing Behaviorally Distinct Aspects of Drosophila Larval Motor Programs

    PubMed Central

    Clark, Matt Q.; McCumsey, Stephanie J.; Lopez-Darwin, Sereno; Heckscher, Ellie S.; Doe, Chris Q.

    2016-01-01

    Drosophila larval crawling is an attractive system to study rhythmic motor output at the level of animal behavior. Larval crawling consists of waves of muscle contractions generating forward or reverse locomotion. In addition, larvae undergo additional behaviors, including head casts, turning, and feeding. It is likely that some neurons (e.g., motor neurons) are used in all these behaviors, but the identity (or even existence) of neurons dedicated to specific aspects of behavior is unclear. To identify neurons that regulate specific aspects of larval locomotion, we performed a genetic screen to identify neurons that, when activated, could elicit distinct motor programs. We used 165 Janelia CRM-Gal4 lines—chosen for sparse neuronal expression—to ectopically express the warmth-inducible neuronal activator TrpA1, and screened for locomotor defects. The primary screen measured forward locomotion velocity, and we identified 63 lines that had locomotion velocities significantly slower than controls following TrpA1 activation (28°). A secondary screen was performed on these lines, revealing multiple discrete behavioral phenotypes, including slow forward locomotion, excessive reverse locomotion, excessive turning, excessive feeding, immobile, rigid paralysis, and delayed paralysis. While many of the Gal4 lines had motor, sensory, or muscle expression that may account for some or all of the phenotype, some lines showed specific expression in a sparse pattern of interneurons. Our results show that distinct motor programs utilize distinct subsets of interneurons, and provide an entry point for characterizing interneurons governing different elements of the larval motor program. PMID:27172197

  5. Genetic and Nongenetic Determinants of Cell Growth Variation Assessed by High-Throughput Microscopy

    PubMed Central

    Ziv, Naomi; Siegal, Mark L.; Gresham, David

    2013-01-01

    In microbial populations, growth initiation and proliferation rates are major components of fitness and therefore likely targets of selection. We used a high-throughput microscopy assay, which enables simultaneous analysis of tens of thousands of microcolonies, to determine the sources and extent of growth rate variation in the budding yeast (Saccharomyces cerevisiae) in different glucose environments. We find that cell growth rates are regulated by the extracellular concentration of glucose as proposed by Monod (1949), but that significant heterogeneity in growth rates is observed among genetically identical individuals within an environment. Yeast strains isolated from different geographic locations and habitats differ in their growth rate responses to different glucose concentrations. Inheritance patterns suggest that the genetic determinants of growth rates in different glucose concentrations are distinct. In addition, we identified genotypes that differ in the extent of variation in growth rate within an environment despite nearly identical mean growth rates, providing evidence that alleles controlling phenotypic variability segregate in yeast populations. We find that the time to reinitiation of growth (lag) is negatively correlated with growth rate, yet this relationship is strain-dependent. Between environments, the respirative activity of individual cells negatively correlates with glucose abundance and growth rate, but within an environment respirative activity and growth rate show a positive correlation, which we propose reflects differences in protein expression capacity. Our study quantifies the sources of genetic and nongenetic variation in cell growth rates in different glucose environments with unprecedented precision, facilitating their molecular genetic dissection. PMID:23938868

  6. Sarcolemmal phospholipid N-methylation in genetically determined hamster cardiomyopathy

    SciTech Connect

    Okumura, K.; Panagia, V.; Jasmin, G.; Dhalla, N.S.

    1987-02-27

    The heart sarcolemmal phosphatidylethanolamine N-methylation in UM-X7.1 strain of cardiomyopathic hamsters was examined by using 0.055, 10 and 150 microM S-adenosyl-L-(methyl-/sup 3/H) methionine as methyl donor for sites I, II and III, respectively. In comparison with control values, methylation activities at site I was increased in 40, 120 and 250 days old cardiomyopathic hamsters. On the other hand, methylation activities at sites II and III in 120 and 250 days old cardiomyopathic animals were depressed without any change in the 40 days old group. The alterations in N-methylation activities were associated with kinetic changes in apparent Vmax values without any changes in the apparent Km. These results indicate a defect in the phospholipid N-methylation process in heart sarcolemma during the development of genetically determined cardiomyopathy.

  7. Genome-Wide Association Study Identifies GPC5 as a Novel Genetic Locus Protective against Sudden Cardiac Arrest

    PubMed Central

    Post, Wendy; Jui, Jonathan; Hilton, Gina; O'Connor, Ashley; Prineas, Ronald J.; Boerwinkle, Eric; Psaty, Bruce M.; Tomaselli, Gordon F.; Rea, Thomas; Sotoodehnia, Nona; Siscovick, David S.; Burke, Gregory L.; Marban, Eduardo; Spooner, Peter M.

    2010-01-01

    Background Existing studies indicate a significant genetic component for sudden cardiac arrest (SCA) and genome-wide association studies (GWAS) provide an unbiased approach for identification of novel genes. We performed a GWAS to identify genetic determinants of SCA. Methodology/Principal Findings We used a case-control design within the ongoing Oregon Sudden Unexpected Death Study (Oregon-SUDS). Cases (n = 424) were SCAs with coronary artery disease (CAD) among residents of Portland, OR (2002–07, population ∼1,000,000) and controls (n = 226) were residents with CAD, but no history of SCA. All subjects were of White-European ancestry and GWAS was performed using Affymetrix 500K/5.0 and 6.0 arrays. High signal markers were genotyped in SCA cases (n = 521) identified from the Atherosclerosis Risk in Communities Study (ARIC) and the Cardiovascular Health Study (CHS) (combined n = 19,611). No SNPs reached genome-wide significance (p<5×10−8). SNPs at 6 loci were prioritized for follow-up primarily based on significance of p<10−4 and proximity to a known gene (CSMD2, GPR37L1, LIN9, B4GALNT3, GPC5, and ZNF592). The minor allele of GPC5 (GLYPICAN 5, rs3864180) was associated with a lower risk of SCA in Oregon-SUDS, an effect that was also observed in ARIC/CHS whites (p<0.05) and blacks (p<0.04). In a combined Cox proportional hazards model analysis that adjusted for race, the minor allele exhibited a hazard ratio of 0.85 (95% CI 0.74 to 0.98; p<0.01). Conclusions/Significance A novel genetic locus for SCA, GPC5, was identified from Oregon-SUDS and successfully validated in the ARIC and CHS cohorts. Three other members of the Glypican family have been previously implicated in human disease, including cardiac conditions. The mechanism of this specific association requires further study. PMID:20360844

  8. Identifying the genetic diversity, genetic structure and a core collection of Ziziphus jujuba Mill. var. jujuba accessions using microsatellite markers

    PubMed Central

    Xu, Chaoqun; Gao, Jiao; Du, Zengfeng; Li, Dengke; Wang, Zhe; Li, Yingyue; Pang, Xiaoming

    2016-01-01

    Ziziphus is a genus of spiny shrubs and small trees in the Rhamnaceae family. This group has a controversial taxonomy, with more than 200 species described, including Chinese jujube (Ziziphus jujuba Mill. var. jujuba) and Indian jujube (Z. mauritiana), as well as several other important cultivated fruit crops. Using 24 SSR markers distributed across the Chinese jujube genome, 962 jujube accessions from the two largest germplasm repositories were genotyped with the aim of analyzing the genetic diversity and structure and constructing a core collection that retain high genetic diversity. A molecular profile comparison revealed 622 unique genotypes, among which 123 genotypes were genetically identical to at least one other accessions. STRUCTURE analysis and multivariate analyses (Cluster and PCoA) roughly divided the accessions into three major groups, with some admixture among groups. A simulated annealing algorithm and a heuristic algorithm were chosen to construct the core collection. A final core of 150 accessions was selected, comprising 15.6% of the analyzed accessions and retaining more than 99.5% of the total alleles detected. We found no significant differences in allele frequency distributions or in genetic diversity parameters between the chosen core accessions and the 622 genetically unique accessions. This work contributes to the understanding of Chinese jujube diversification and the protection of important germplasm resources. PMID:27531220

  9. Identifying the genetic diversity, genetic structure and a core collection of Ziziphus jujuba Mill. var. jujuba accessions using microsatellite markers.

    PubMed

    Xu, Chaoqun; Gao, Jiao; Du, Zengfeng; Li, Dengke; Wang, Zhe; Li, Yingyue; Pang, Xiaoming

    2016-01-01

    Ziziphus is a genus of spiny shrubs and small trees in the Rhamnaceae family. This group has a controversial taxonomy, with more than 200 species described, including Chinese jujube (Ziziphus jujuba Mill. var. jujuba) and Indian jujube (Z. mauritiana), as well as several other important cultivated fruit crops. Using 24 SSR markers distributed across the Chinese jujube genome, 962 jujube accessions from the two largest germplasm repositories were genotyped with the aim of analyzing the genetic diversity and structure and constructing a core collection that retain high genetic diversity. A molecular profile comparison revealed 622 unique genotypes, among which 123 genotypes were genetically identical to at least one other accessions. STRUCTURE analysis and multivariate analyses (Cluster and PCoA) roughly divided the accessions into three major groups, with some admixture among groups. A simulated annealing algorithm and a heuristic algorithm were chosen to construct the core collection. A final core of 150 accessions was selected, comprising 15.6% of the analyzed accessions and retaining more than 99.5% of the total alleles detected. We found no significant differences in allele frequency distributions or in genetic diversity parameters between the chosen core accessions and the 622 genetically unique accessions. This work contributes to the understanding of Chinese jujube diversification and the protection of important germplasm resources. PMID:27531220

  10. A Haploid Genetic Screen Identifies Heparan Sulfate Proteoglycans Supporting Rift Valley Fever Virus Infection

    PubMed Central

    Riblett, Amber M.; Blomen, Vincent A.; Jae, Lucas T.; Altamura, Louis A.; Doms, Robert W.; Brummelkamp, Thijn R.

    2015-01-01

    ABSTRACT Rift Valley fever virus (RVFV) causes recurrent insect-borne epizootics throughout the African continent, and infection of humans can lead to a lethal hemorrhagic fever syndrome. Deep mutagenesis of haploid human cells was used to identify host factors required for RVFV infection. This screen identified a suite of enzymes involved in glycosaminoglycan (GAG) biogenesis and transport, including several components of the cis-oligomeric Golgi (COG) complex, one of the central components of Golgi complex trafficking. In addition, disruption of PTAR1 led to RVFV resistance as well as reduced heparan sulfate surface levels, consistent with recent observations that PTAR1-deficient cells exhibit altered Golgi complex morphology and glycosylation defects. A variety of biochemical and genetic approaches were utilized to show that both pathogenic and attenuated RVFV strains require GAGs for efficient infection on some, but not all, cell types, with the block to infection being at the level of virion attachment. Examination of other members of the Bunyaviridae family for GAG-dependent infection suggested that the interaction with GAGs is not universal among bunyaviruses, indicating that these viruses, as well as RVFV on certain cell types, employ additional unidentified virion attachment factors and/or receptors. IMPORTANCE Rift Valley fever virus (RVFV) is an emerging pathogen that can cause severe disease in humans and animals. Epizootics among livestock populations lead to high mortality rates and can be economically devastating. Human epidemics of Rift Valley fever, often initiated by contact with infected animals, are characterized by a febrile disease that sometimes leads to encephalitis or hemorrhagic fever. The global burden of the pathogen is increasing because it has recently disseminated beyond Africa, which is of particular concern because the virus can be transmitted by widely distributed mosquito species. There are no FDA-licensed vaccines or antiviral

  11. Genetically Identified Suppressed-by-Contrast Retinal Ganglion Cells Reliably Signal Self-Generated Visual Stimuli

    PubMed Central

    Tien, Nai-Wen; Pearson, James T.; Heller, Charles R.; Demas, Jay

    2015-01-01

    Spike trains of retinal ganglion cells (RGCs) are the sole source of visual information to the brain; and understanding how the ∼20 RGC types in mammalian retinae respond to diverse visual features and events is fundamental to understanding vision. Suppressed-by-contrast (SbC) RGCs stand apart from all other RGC types in that they reduce rather than increase firing rates in response to light increments (ON) and decrements (OFF). Here, we genetically identify and morphologically characterize SbC-RGCs in mice, and target them for patch-clamp recordings under two-photon guidance. We find that strong ON inhibition (glycine > GABA) outweighs weak ON excitation, and that inhibition (glycine > GABA) coincides with decreases in excitation at light OFF. These input patterns explain the suppressive spike responses of SbC-RGCs, which are observed in dim and bright light conditions. Inhibition to SbC-RGC is driven by rectified receptive field subunits, leading us to hypothesize that SbC-RGCs could signal pattern-independent changes in the retinal image. Indeed, we find that shifts of random textures matching saccade-like eye movements in mice elicit robust inhibitory inputs and suppress spiking of SbC-RGCs over a wide range of texture contrasts and spatial frequencies. Similarly, stimuli based on kinematic analyses of mouse blinking consistently suppress SbC-RGC spiking. Receiver operating characteristics show that SbC-RGCs are reliable indicators of self-generated visual stimuli that may contribute to central processing of blinks and saccades. SIGNIFICANCE STATEMENT This study genetically identifies and morphologically characterizes suppressed-by-contrast retinal ganglion cells (SbC-RGCs) in mice. Targeted patch-clamp recordings from SbC-RGCs under two-photon guidance elucidate the synaptic mechanisms mediating spike suppression to contrast steps, and reveal that SbC-RGCs respond reliably to stimuli mimicking saccade-like eye movements and blinks. The similarity of

  12. Orbit determination by genetic algorithm and application to GEO observation

    NASA Astrophysics Data System (ADS)

    Hinagawa, Hideaki; Yamaoka, Hitoshi; Hanada, Toshiya

    2014-02-01

    This paper demonstrates an initial orbit determination method that solves the problem by a genetic algorithm using two well-known solutions for the Lambert's problem: universal variable method and Battin method. This paper also suggests an intuitive error evaluation method in terms of rotational angle and orbit shape by separating orbit elements into two groups. As reference orbit, mean orbit elements (original two-lines elements) and osculating orbit elements considering the J2 effect are adopted and compared. Our proposed orbit determination method has been tested with actual optical observations of a geosynchronous spacecraft. It should be noted that this demonstration of the orbit determination is limited to one test case. This observation was conducted during approximately 70 min on 2013/05/15 UT. Our method was compared with the orbit elements propagated by SGP4 using the TLE of the spacecraft. The result indicates that our proposed method had a slightly better performance on estimating orbit shape than Gauss's methods and Escobal's method by 120 km. In addition, the result of the rotational angle is closer to the osculating orbit elements than the mean orbit elements by 0.02°, which supports that the estimated orbit is valid.

  13. [Genetic analysis of Streptomyces erythreus heteroclones. II. Determination of the distances between genetic loci on the map].

    PubMed

    Pencheva, R; Todorov, T

    1989-01-01

    As a result of recombination experiments between auxotrophic mutants of S. erythreus BTCC2 haploid recombinants and heteroclones were isolated. A genetic map of S. erythreus, including 15 auxotrophic loci was constructed by genetic analysis of the segregants of the heteroclones obtained. The genetic distances between 7 key loci on the map were determined and the entire length of the map of about 105 standard recombination units was calculated. PMID:2624163

  14. Using Workflow Modeling to Identify Areas to Improve Genetic Test Processes in the University of Maryland Translational Pharmacogenomics Project

    PubMed Central

    Cutting, Elizabeth M.; Overby, Casey L.; Banchero, Meghan; Pollin, Toni; Kelemen, Mark; Shuldiner, Alan R.; Beitelshees, Amber L.

    2015-01-01

    Delivering genetic test results to clinicians is a complex process. It involves many actors and multiple steps, requiring all of these to work together in order to create an optimal course of treatment for the patient. We used information gained from focus groups in order to illustrate the current process of delivering genetic test results to clinicians. We propose a business process model and notation (BPMN) representation of this process for a Translational Pharmacogenomics Project being implemented at the University of Maryland Medical Center, so that personalized medicine program implementers can identify areas to improve genetic testing processes. We found that the current process could be improved to reduce input errors, better inform and notify clinicians about the implications of certain genetic tests, and make results more easily understood. We demonstrate our use of BPMN to improve this important clinical process for CYP2C19 genetic testing in patients undergoing invasive treatment of coronary heart disease. PMID:26958179

  15. Genetic Determinants of Thrombin Generation and Their Relation to Venous Thrombosis: Results from the GAIT-2 Project

    PubMed Central

    Martin-Fernandez, Laura; Ziyatdinov, Andrey; Carrasco, Marina; Millon, Juan Antonio; Martinez-Perez, Angel; Vilalta, Noelia; Brunel, Helena; Font, Montserrat; Hamsten, Anders; Souto, Juan Carlos; Soria, José Manuel

    2016-01-01

    Background Venous thromboembolism (VTE) is a common disease where known genetic risk factors explain only a small portion of the genetic variance. Then, the analysis of intermediate phenotypes, such as thrombin generation assay, can be used to identify novel genetic risk factors that contribute to VTE. Objectives To investigate the genetic basis of distinct quantitative phenotypes of thrombin generation and its relationship to the risk of VTE. Patients/Methods Lag time, thrombin peak and endogenous thrombin potential (ETP) were measured in the families of the Genetic Analysis of Idiopathic Thrombophilia 2 (GAIT-2) Project. This sample consisted of 935 individuals in 35 extended families selected through a proband with idiopathic thrombophilia. We performed also genome wide association studies (GWAS) with thrombin generation phenotypes. Results The results showed that 67% of the variation in the risk of VTE is attributable to genetic factors. The heritabilities of lag time, thrombin peak and ETP were 49%, 54% and 52%, respectively. More importantly, we demonstrated also the existence of positive genetic correlations between thrombin peak or ETP and the risk of VTE. Moreover, the major genetic determinant of thrombin generation was the F2 gene. However, other suggestive signals were observed. Conclusions The thrombin generation phenotypes are strongly genetically determined. The thrombin peak and ETP are significantly genetically correlated with the risk of VTE. In addition, F2 was identified as a major determinant of thrombin generation. We reported suggestive signals that might increase our knowledge to explain the variability of this important phenotype. Validation and functional studies are required to confirm GWAS results. PMID:26784699

  16. Nature and Extent of Genetic Diversity of Dengue Viruses Determined by 454 Pyrosequencing

    PubMed Central

    Choudhury, Md Abu; Lott, William B; Banu, Shahera; Cheng, Anthony Youzhi; Teo, Yik-Ying; Ong, Rick Twee-Hee; Aaskov, John

    2015-01-01

    Dengue virus (DENV) populations are characteristically highly diverse. Regular lineage extinction and replacement is an important dynamic DENV feature, and most DENV lineage turnover events are associated with increased incidence of disease. The role of genetic diversity in DENV lineage extinctions is not understood. We investigated the nature and extent of genetic diversity in the envelope (E) gene of DENV serotype 1 representing different lineages histories. A region of the DENV genome spanning the E gene was amplified and sequenced by Roche/454 pyrosequencing. The pyrosequencing results identified distinct sub-populations (haplotypes) for each DENV-1 E gene. A phylogenetic tree was constructed with the consensus DENV-1 E gene nucleotide sequences, and the sequences of each constructed haplotype showed that the haplotypes segregated with the Sanger consensus sequence of the population from which they were drawn. Haplotypes determined through pyrosequencing identified a recombinant DENV genome that could not be identified through Sanger sequencing. Nucleotide level sequence diversities of DENV-1 populations determined from SNP analysis were very low, estimated from 0.009–0.01. There were also no stop codon, frameshift or non-frameshift mutations observed in the E genes of any lineage. No significant correlations between the accumulation of deleterious mutations or increasing genetic diversity and lineage extinction were observed (p>0.5). Although our hypothesis that accumulation of deleterious mutations over time led to the extinction and replacement of DENV lineages was ultimately not supported by the data, our data does highlight the significant technical issues that must be resolved in the way in which population diversity is measured for DENV and other viruses. The results provide an insight into the within-population genetic structure and diversity of DENV-1 populations. PMID:26566128

  17. Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer

    PubMed Central

    O’Mara, Tracy A; Glubb, Dylan M; Painter, Jodie N; Cheng, Timothy; Dennis, Joe; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Ashton, Katie; Proietto, Tony; Otton, Geoffrey; Shah, Mitul; Ahmed, Shahana; Healey, Catherine S; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dürst, Matthias; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Lambrechts, Diether; Depreeuw, Jeroen; Annibali, Daniela; Amant, Frederic; Zhao, Hui; Goode, Ellen L; Dowdy, Sean C; Fridley, Brooke L; Winham, Stacey J; Salvesen, Helga B; Njølstad, Tormund S; Trovik, Jone; Werner, Henrica MJ; Tham, Emma; Liu, Tao; Mints, Miriam; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Pharoah, Paul D P; Dunning, Alison M; Tomlinson, Ian; Easton, Douglas F; Thompson, Deborah J; Spurdle, Amanda B

    2015-01-01

    Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC), particularly for cancers of endometrioid histology. The physiological function of estrogen is primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several studies have investigated whether variation at the ESR1 locus is associated with risk of EC, with conflicting results. We performed comprehensive fine-mapping analyses of 3,633 genotyped and imputed single nucleotide polymorphisms (SNPs) in 6,607 EC cases and 37,925 controls. There was evidence of an EC risk signal located at a potential alternative promoter of the ESR1 gene (lead SNP rs79575945, P = 1.86 × 10−5), which was stronger for cancers of endometrioid subtype (P = 3.76 × 10−6). Bioinformatic analysis suggests that this risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs located at this locus have been associated with risk for breast cancer, also a hormonally driven cancer, this study adds weight to the rationale for performing informed candidate fine-scale genetic studies across cancer types. PMID:26330482

  18. Common genetic variants associated with cognitive performance identified using the proxy-phenotype method.

    PubMed

    Rietveld, Cornelius A; Esko, Tõnu; Davies, Gail; Pers, Tune H; Turley, Patrick; Benyamin, Beben; Chabris, Christopher F; Emilsson, Valur; Johnson, Andrew D; Lee, James J; de Leeuw, Christiaan; Marioni, Riccardo E; Medland, Sarah E; Miller, Michael B; Rostapshova, Olga; van der Lee, Sven J; Vinkhuyzen, Anna A E; Amin, Najaf; Conley, Dalton; Derringer, Jaime; van Duijn, Cornelia M; Fehrmann, Rudolf; Franke, Lude; Glaeser, Edward L; Hansell, Narelle K; Hayward, Caroline; Iacono, William G; Ibrahim-Verbaas, Carla; Jaddoe, Vincent; Karjalainen, Juha; Laibson, David; Lichtenstein, Paul; Liewald, David C; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McMahon, George; Pedersen, Nancy L; Pinker, Steven; Porteous, David J; Posthuma, Danielle; Rivadeneira, Fernando; Smith, Blair H; Starr, John M; Tiemeier, Henning; Timpson, Nicholas J; Trzaskowski, Maciej; Uitterlinden, André G; Verhulst, Frank C; Ward, Mary E; Wright, Margaret J; Davey Smith, George; Deary, Ian J; Johannesson, Magnus; Plomin, Robert; Visscher, Peter M; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D

    2014-09-23

    We identify common genetic variants associated with cognitive performance using a two-stage approach, which we call the proxy-phenotype method. First, we conduct a genome-wide association study of educational attainment in a large sample (n = 106,736), which produces a set of 69 education-associated SNPs. Second, using independent samples (n = 24,189), we measure the association of these education-associated SNPs with cognitive performance. Three SNPs (rs1487441, rs7923609, and rs2721173) are significantly associated with cognitive performance after correction for multiple hypothesis testing. In an independent sample of older Americans (n = 8,652), we also show that a polygenic score derived from the education-associated SNPs is associated with memory and absence of dementia. Convergent evidence from a set of bioinformatics analyses implicates four specific genes (KNCMA1, NRXN1, POU2F3, and SCRT). All of these genes are associated with a particular neurotransmitter pathway involved in synaptic plasticity, the main cellular mechanism for learning and memory. PMID:25201988

  19. Molecular Genetic Analysis of Suppressor 2 of zeste Identifies Key Functional Domains

    PubMed Central

    Emmons, Richard B.; Genetti, Heather; Filandrinos, Stephen; Lokere, Jillian; Wu, Chao-ting

    2009-01-01

    The Su(z)2 complex contains Posterior sex combs (Psc) and Suppressor 2 of zeste [Su(z)2], two paralogous genes that likely arose by gene duplication. Psc encodes a Polycomb group protein that functions as a central component of the PRC1 complex, which maintains transcriptional repression of a wide array of genes. Although much is known about Psc, very little is known about Su(z)2, the analysis of which has been hampered by a dearth of alleles. We have generated new alleles of Su(z)2 and analyzed them at the genetic and molecular levels. Some of these alleles display negative complementation in that they cause lethality when heterozygous with the gain-of-function Su(z)21 allele but are hemizygous and, in some cases, homozygous viable. Interestingly, alleles of this class identify protein domains within Su(z)2 that are highly conserved in Psc and the mammalian Bmi-1 and Mel-18 proteins. We also find several domains of intrinsic disorder in the C-terminal regions of both Psc and Su(z)2 and suggest that these domains may contribute to the essential functions of both proteins. PMID:19528329

  20. Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer.

    PubMed

    O'Mara, Tracy A; Glubb, Dylan M; Painter, Jodie N; Cheng, Timothy; Dennis, Joe; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Ashton, Katie; Proietto, Tony; Otton, Geoffrey; Shah, Mitul; Ahmed, Shahana; Healey, Catherine S; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dürst, Matthias; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Lambrechts, Diether; Depreeuw, Jeroen; Annibali, Daniela; Amant, Frederic; Zhao, Hui; Goode, Ellen L; Dowdy, Sean C; Fridley, Brooke L; Winham, Stacey J; Salvesen, Helga B; Njølstad, Tormund S; Trovik, Jone; Werner, Henrica M J; Tham, Emma; Liu, Tao; Mints, Miriam; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Pharoah, Paul D P; Dunning, Alison M; Tomlinson, Ian; Easton, Douglas F; Thompson, Deborah J; Spurdle, Amanda B

    2015-10-01

    Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC), particularly for cancers of endometrioid histology. The physiological function of estrogen is primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several studies have investigated whether variation at the ESR1 locus is associated with risk of EC, with conflicting results. We performed comprehensive fine-mapping analyses of 3633 genotyped and imputed single nucleotide polymorphisms (SNPs) in 6607 EC cases and 37 925 controls. There was evidence of an EC risk signal located at a potential alternative promoter of the ESR1 gene (lead SNP rs79575945, P=1.86×10(-5)), which was stronger for cancers of endometrioid subtype (P=3.76×10(-6)). Bioinformatic analysis suggests that this risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs located at this locus have been associated with risk for breast cancer, also a hormonally driven cancer, this study adds weight to the rationale for performing informed candidate fine-scale genetic studies across cancer types. PMID:26330482

  1. Distinct genetic architectures for syndromic and nonsyndromic congenital heart defects identified by exome sequencing.

    PubMed

    Sifrim, Alejandro; Hitz, Marc-Phillip; Wilsdon, Anna; Breckpot, Jeroen; Turki, Saeed H Al; Thienpont, Bernard; McRae, Jeremy; Fitzgerald, Tomas W; Singh, Tarjinder; Swaminathan, Ganesh Jawahar; Prigmore, Elena; Rajan, Diana; Abdul-Khaliq, Hashim; Banka, Siddharth; Bauer, Ulrike M M; Bentham, Jamie; Berger, Felix; Bhattacharya, Shoumo; Bu'Lock, Frances; Canham, Natalie; Colgiu, Irina-Gabriela; Cosgrove, Catherine; Cox, Helen; Daehnert, Ingo; Daly, Allan; Danesh, John; Fryer, Alan; Gewillig, Marc; Hobson, Emma; Hoff, Kirstin; Homfray, Tessa; Kahlert, Anne-Karin; Ketley, Ami; Kramer, Hans-Heiner; Lachlan, Katherine; Lampe, Anne Katrin; Louw, Jacoba J; Manickara, Ashok Kumar; Manase, Dorin; McCarthy, Karen P; Metcalfe, Kay; Moore, Carmel; Newbury-Ecob, Ruth; Omer, Seham Osman; Ouwehand, Willem H; Park, Soo-Mi; Parker, Michael J; Pickardt, Thomas; Pollard, Martin O; Robert, Leema; Roberts, David J; Sambrook, Jennifer; Setchfield, Kerry; Stiller, Brigitte; Thornborough, Chris; Toka, Okan; Watkins, Hugh; Williams, Denise; Wright, Michael; Mital, Seema; Daubeney, Piers E F; Keavney, Bernard; Goodship, Judith; Abu-Sulaiman, Riyadh Mahdi; Klaassen, Sabine; Wright, Caroline F; Firth, Helen V; Barrett, Jeffrey C; Devriendt, Koenraad; FitzPatrick, David R; Brook, J David; Hurles, Matthew E

    2016-09-01

    Congenital heart defects (CHDs) have a neonatal incidence of 0.8-1% (refs. 1,2). Despite abundant examples of monogenic CHD in humans and mice, CHD has a low absolute sibling recurrence risk (∼2.7%), suggesting a considerable role for de novo mutations (DNMs) and/or incomplete penetrance. De novo protein-truncating variants (PTVs) have been shown to be enriched among the 10% of 'syndromic' patients with extra-cardiac manifestations. We exome sequenced 1,891 probands, including both syndromic CHD (S-CHD, n = 610) and nonsyndromic CHD (NS-CHD, n = 1,281). In S-CHD, we confirmed a significant enrichment of de novo PTVs but not inherited PTVs in known CHD-associated genes, consistent with recent findings. Conversely, in NS-CHD we observed significant enrichment of PTVs inherited from unaffected parents in CHD-associated genes. We identified three genome-wide significant S-CHD disorders caused by DNMs in CHD4, CDK13 and PRKD1. Our study finds evidence for distinct genetic architectures underlying the low sibling recurrence risk in S-CHD and NS-CHD. PMID:27479907

  2. Polynesian genetic affinities with southeast Asian populations as identified by mtDNA analysis

    SciTech Connect

    Melton, T.; Redd, A.J.; Stoneking. M.

    1995-08-01

    Polynesian genetic affinities to populations of Asia were studied using mtDNA markers. A total of 1,037 individuals from 12 populations were screened for a 9-bp deletion in the intergenic region between the COII and tRNA{sup Lys}genes that approaches fixation in Polynesians. Sequence-specific oligonucleotide probes that identify specific mtDNA control region nucleotide substitutions were used to describe variation in individuals with the 9-bp deletion. The 9-bp deletion was not observed in northern Indians, Bangladeshis, or Pakistanis but was seen at low to moderate frequencies in the nine other Southeast Asian populations. Three substitutions in the control region at positions 16217, 16247 and 16261 have previously been observed at high frequency in Polynesian mtDNAs; this {open_quotes}Polynesian motif{close_quotes} was observed in 20% of east Indonesians with the 9-bp deletion but was observed in only one additional individual. mtDNA types related to the Polynesian motif are highest in frequency in the corridor from Taiwan south through the Philippines and east Indonesia, and the highest diversity for these types is in Taiwan. These results are consistent with linguistic evidence of a Taiwanese origin for the proto-Polynesian expansion, which spread throughout Oceania by way of Indonesia. 37 refs., 3 figs., 4 tabs.

  3. Identifying predictors of activity based anorexia susceptibility in diverse genetic rodent populations.

    PubMed

    Pjetri, Eneda; de Haas, Ria; de Jong, Simone; Gelegen, Cigdem; Oppelaar, Hugo; Verhagen, Linda A W; Eijkemans, Marinus J C; Adan, Roger A; Olivier, Berend; Kas, Martien J

    2012-01-01

    Animal studies are very useful in detection of early disease indicators and in unravelling the pathophysiological processes underlying core psychiatric disorder phenotypes. Early indicators are critical for preventive and efficient treatment of progressive psychiatric disorders like anorexia nervosa. Comparable to physical hyperactivity observed in anorexia nervosa patients, in the activity-based anorexia rodent model, mice and rats express paradoxical high voluntary wheel running activity levels when food restricted. Eleven inbred mouse strains and outbred Wistar WU rats were exposed to the activity-based anorexia model in search of identifying susceptibility predictors. Body weight, food intake and wheel running activity levels of each individual mouse and rat were measured. Mouse strains and rats with high wheel running activity levels during food restriction exhibited accelerated body weight loss. Linear mixed models for repeated measures analysis showed that baseline wheel running activity levels preceding the scheduled food restriction phase strongly predicted activity-based anorexia susceptibility (mice: Beta  =  -0.0158 (±0.003 SE), P<0.0001; rats: Beta  =  -0.0242 (±0.004 SE), P<0.0001) compared to other baseline parameters. These results suggest that physical activity levels play an important role in activity-based anorexia susceptibility in different rodent species with genetically diverse background. These findings support previous retrospective studies on physical activity levels in anorexia nervosa patients and indicate that pre-morbid physical activity levels could reflect an early indicator for disease severity. PMID:23226287

  4. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules

    PubMed Central

    Basu, Amrita; Bodycombe, Nicole E.; Cheah, Jaime H.; Price, Edmund V.; Liu, Ke; Schaefer, Giannina I.; Ebright, Richard Y.; Stewart, Michelle L.; Ito, Daisuke; Wang, Stephanie; Bracha, Abigail L.; Liefeld, Ted; Wawer, Mathias; Gilbert, Joshua C.; Wilson, Andrew J.; Stransky, Nicolas; Kryukov, Gregory V.; Dancik, Vlado; Barretina, Jordi; Garraway, Levi A.; Hon, C. Suk-Yee; Munoz, Benito; Bittker, Joshua A.; Stockwell, Brent R.; Khabele, Dineo; Stern, Andrew M.; Clemons, Paul A.; Shamji, Alykhan F.; Schreiber, Stuart L.

    2014-01-01

    Summary The high rate of clinical response to protein kinase-targeting drugs matched to cancer patients with specific genomic alterations has prompted efforts to use cancer cell-line (CCL) profiling to identify additional biomarkers of small-molecule sensitivities. We have quantitatively measured the sensitivity of 242 genomically characterized CCLs to an Informer Set of 354 small molecules that target many nodes in cell circuitry, uncovering protein dependencies that: 1) associate with specific cancer-genomic alterations and 2) can be targeted by small molecules. We have created the Cancer Therapeutics Response Portal (www.broadinstitute.org/ctrp) to enable users to correlate genetic features to sensitivity in individual lineages and control for confounding factors of CCL profiling. We report a candidate dependency, associating activating mutations in the oncogene β-catenin with sensitivity to the Bcl2-family antagonist, navitoclax. The resource can be used to develop novel therapeutic hypotheses and accelerate discovery of drugs matched to patients by their cancer genotype and lineage. PMID:23993102

  5. Polynesian genetic affinities with Southeast Asian populations as identified by mtDNA analysis.

    PubMed Central

    Melton, T; Peterson, R; Redd, A J; Saha, N; Sofro, A S; Martinson, J; Stoneking, M

    1995-01-01

    Polynesian genetic affinities to populations of Asia were studied using mtDNA markers. A total of 1,037 individuals from 12 populations were screened for a 9-bp deletion in the intergenic region between the COII and tRNA(Lys) genes that approaches fixation in Polynesians. Sequence-specific oligonucleotide probes that identify specific mtDNA control region nucleotide substitutions were used to describe variation in individuals with the 9-bp deletion. The 9-bp deletion was not observed in northern Indians, Bangladeshis, or Pakistanis but was seen at low to moderate frequencies in the nine other Southeast Asian populations. Three substitutions in the control region at positions 16217, 16247, and 16261 have previously been observed at high frequency in Polynesian mtDNAs; this "Polynesian motif" was observed in 20% of east Indonesians with the 9-bp deletion but was observed in only one additional individual. mtDNA types related to the Polynesian motif are highest in frequency in the corridor from Taiwan south through the Philippines and east Indonesia, and the highest diversity for these types is in Taiwan. These results are consistent with linguistic evidence of a Taiwanese origin for the proto-Polynesian expansion, which spread throughout Oceania by way of Indonesia. PMID:7668267

  6. OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions

    PubMed Central

    Ranganathan, Sridhar; Suthers, Patrick F.; Maranas, Costas D.

    2010-01-01

    Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis. PMID:20419153

  7. Determining the Pathogenicity of Genetic Variants Associated with Cardiac Channelopathies

    PubMed Central

    Campuzano, Oscar; Allegue, Catarina; Fernandez, Anna; Iglesias, Anna; Brugada, Ramon

    2015-01-01

    Advancements in genetic screening have generated massive amounts of data on genetic variation; however, a lack of clear pathogenic stratification has left most variants classified as being of unknown significance. This is a critical limitation for translating genetic data into clinical practice. Genetic screening is currently recommended in the guidelines for diagnosis and treatment of cardiac channelopathies, which are major contributors to sudden cardiac death in young people. We propose to characterize the pathogenicity of genetic variants associated with cardiac channelopathies using a stratified scoring system. The development of this system was considered by using all of the tools currently available to define pathogenicity. The use of this scoring system could help clinicians to understand the limitations of genetic associations with a disease, and help them better define the role that genetics can have in their clinical routine. PMID:25608792

  8. MicroRNA variants as genetic determinants of bone mass.

    PubMed

    Dole, Neha S; Delany, Anne M

    2016-03-01

    Single nucleotide polymorphisms (SNPs) are the most abundant genetic variants that contribute to the heritability of bone mass. MicroRNAs (miRNAs, miRs) are key post-transcriptional regulators that modulate the differentiation and function of skeletal cells by targeting multiple genes in the same or distinct signaling pathways. SNPs in miRNA genes and miRNA binding sites can alter miRNA abundance and mRNA targeting. This review describes the potential impact of miRNA-related SNPs on skeletal phenotype. Although many associations between SNPs and bone mass have been described, this review is limited to gene variants for which a function has been experimentally validated. SNPs in miRNA genes (miR-SNPs) that impair miRNA processing and alter the abundance of mature miRNA are discussed for miR-146a, miR-125a, miR-196a, miR-149 and miR-27a. SNPs in miRNA targeting sites (miR-TS-SNPs) that alter miRNA binding are described for the bone remodeling genes bone morphogenetic protein receptor 1 (Bmpr1), fibroblast growth factor 2 (Fgf2), osteonectin (Sparc) and histone deacetylase 5 (Hdac5). The review highlights two aspects of miRNA-associated SNPs: the mechanism for altering miRNA mediated gene regulation and the potential of miR-associated SNPs to alter osteoblast, osteoclast or chondrocyte differentiation and function. Given the polygenic nature of skeletal diseases like osteoporosis and osteoarthritis, validating the function of additional miRNA-associated SNPs has the potential to enhance our understanding of the genetic determinants of bone mass and predisposition to selected skeletal diseases. PMID:26723575

  9. Complementary genetic screens identify the E3 ubiquitin ligase CBLC, as a modifier of PARP inhibitor sensitivity

    PubMed Central

    Brough, Rachel; Hodny, Zdenek; Ashworth, Alan; Bartek, Jiri; Lord, Christopher J.

    2015-01-01

    Based on a series of basic, preclinical and clinical studies, the Poly (ADP-ribose) Polymerase 1 (PARP1) inhibitor, olaparib, has recently been approved for use in ovarian cancer patients with BRCA1 or BRCA2 mutations. By identifying novel predictive biomarkers of tumour cell sensitivity to olaparib, it is possible that the utility of PARP inhibitors could be extended beyond this patient subgroup. Many of the known genetic determinants of PARP inhibitor response have key roles in DNA damage response (DDR) pathways. Although protein ubiquitylation is known to play an important role in regulating the DDR, the exact mechanisms by which this occurs are not fully understood. Using two parallel RNA interference-based screening approaches, we identified the E3 ubiquitin ligase, CBLC, as a candidate biomarker of response to olaparib. We validated this observation by demonstrating that silencing of CBLC causes increased sensitivity to olaparib in breast cancer cell line models and that defective homologous recombination (HR) DNA repair is the likely cause. This data provides an example of how defects in the ubiquitin machinery have the potential to influence the response of tumour cells to PARP inhibitors. PMID:25883215

  10. Using the Drosophila Melanogaster Genetics Reference Panel to Identify Toxicity Pathways for Toluene

    EPA Science Inventory

    Mechanistic information is needed to link effects of chemicals at molecular targets in high­ throughput screening assays to adverse outcomes in whole organisms. This study was designed to use the Drosophila Genetic Reference Panel (DGRP), a set of genetically well...

  11. The Genetic Architecture of Maize (Zea mays L.) Kernel Weight Determination

    PubMed Central

    Prado, Santiago Alvarez; López, César G.; Senior, M. Lynn; Borrás, Lucas

    2014-01-01

    Individual kernel weight is an important trait for maize yield determination. We have identified genomic regions controlling this trait by using the B73xMo17 population; however, the effect of genetic background on control of this complex trait and its physiological components is not yet known. The objective of this study was to understand how genetic background affected our previous results. Two nested stable recombinant inbred line populations (N209xMo17 and R18xMo17) were designed for this purpose. A total of 408 recombinant inbred lines were genotyped and phenotyped at two environments for kernel weight and five other traits related to kernel growth and development. All traits showed very high and significant (P < 0.001) phenotypic variability and medium-to-high heritability (0.60−0.90). When N209xMo17 and R18xMo17 were analyzed separately, a total of 23 environmentally stable quantitative trait loci (QTL) and five epistatic interactions were detected for N209xMo17. For R18xMo17, 59 environmentally stable QTL and 17 epistatic interactions were detected. A joint analysis detected 14 stable QTL regardless of the genetic background. Between 57 and 83% of detected QTL were population specific, denoting medium-to-high genetic background effects. This percentage was dependent on the trait. A meta-analysis including our previous B73xMo17 results identified five relevant genomic regions deserving further characterization. In summary, our grain filling traits were dominated by small additive QTL with several epistatic and few environmental interactions and medium-to-high genetic background effects. This study demonstrates that the number of detected QTL and additive effects for different physiologically related grain filling traits need to be understood relative to the specific germplasm. PMID:25237113

  12. Genetic Determinants of the Gut Microbiome in UK Twins.

    PubMed

    Goodrich, Julia K; Davenport, Emily R; Beaumont, Michelle; Jackson, Matthew A; Knight, Rob; Ober, Carole; Spector, Tim D; Bell, Jordana T; Clark, Andrew G; Ley, Ruth E

    2016-05-11

    Studies in mice and humans have revealed intriguing associations between host genetics and the microbiome. Here we report a 16S rRNA-based analysis of the gut microbiome in 1,126 twin pairs, a subset of which was previously reported. Tripling the sample narrowed the confidence intervals around heritability estimates and uncovered additional heritable taxa, some of which are validated in other studies. Repeat sampling of subjects showed heritable taxa to be temporally stable. A candidate gene approach uncovered associations between heritable taxa and genes related to diet, metabolism, and olfaction. We replicate an association between Bifidobacterium and the lactase (LCT) gene locus and identify an association between the host gene ALDH1L1 and the bacteria SHA-98, suggesting a link between formate production and blood pressure. Additional genes detected are involved in barrier defense and self/non-self recognition. Our results indicate that diet-sensing, metabolism, and immune defense are important drivers of human-microbiome co-evolution. PMID:27173935

  13. Determinants of public attitudes to genetically modified salmon.

    PubMed

    Amin, Latifah; Azad, Md Abul Kalam; Gausmian, Mohd Hanafy; Zulkifli, Faizah

    2014-01-01

    The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country. PMID:24489695

  14. Determinants of Public Attitudes to Genetically Modified Salmon

    PubMed Central

    Amin, Latifah; Azad, Md. Abul Kalam; Gausmian, Mohd Hanafy; Zulkifli, Faizah

    2014-01-01

    The objective of this paper is to assess the attitude of Malaysian stakeholders to genetically modified (GM) salmon and to identify the factors that influence their acceptance of GM salmon using a structural equation model. A survey was carried out on 434 representatives from various stakeholder groups in the Klang Valley region of Malaysia. Public attitude towards GM salmon was measured using self-developed questionnaires with seven-point Likert scales. The findings of this study have confirmed that public attitudes towards GM salmon is a complex issue and should be seen as a multi-faceted process. The most important direct predictors for the encouragement of GM salmon are the specific application-linked perceptions about religious acceptability of GM salmon followed by perceived risks and benefits, familiarity, and general promise of modern biotechnology. Encouragement of GM salmon also involves the interplay among other factors such as general concerns of biotechnology, threatening the natural order of things, the need for labeling, the need for patenting, confidence in regulation, and societal values. The research findings can serve as a database that will be useful for understanding the social construct of public attitude towards GM foods in a developing country. PMID:24489695

  15. Rapid-Throughput Skeletal Phenotyping of 100 Knockout Mice Identifies 9 New Genes That Determine Bone Strength

    PubMed Central

    Gogakos, Apostolos; White, Jacqueline K.; Evans, Holly; Jacques, Richard M.; van der Spek, Anne H.; Ramirez-Solis, Ramiro; Ryder, Edward; Sunter, David; Boyde, Alan; Campbell, Michael J.

    2012-01-01

    Osteoporosis is a common polygenic disease and global healthcare priority but its genetic basis remains largely unknown. We report a high-throughput multi-parameter phenotype screen to identify functionally significant skeletal phenotypes in mice generated by the Wellcome Trust Sanger Institute Mouse Genetics Project and discover novel genes that may be involved in the pathogenesis of osteoporosis. The integrated use of primary phenotype data with quantitative x-ray microradiography, micro-computed tomography, statistical approaches and biomechanical testing in 100 unselected knockout mouse strains identified nine new genetic determinants of bone mass and strength. These nine new genes include five whose deletion results in low bone mass and four whose deletion results in high bone mass. None of the nine genes have been implicated previously in skeletal disorders and detailed analysis of the biomechanical consequences of their deletion revealed a novel functional classification of bone structure and strength. The organ-specific and disease-focused strategy described in this study can be applied to any biological system or tractable polygenic disease, thus providing a general basis to define gene function in a system-specific manner. Application of the approach to diseases affecting other physiological systems will help to realize the full potential of the International Mouse Phenotyping Consortium. PMID:22876197

  16. A Systems Genetic Approach to Identify Low Dose Radiation-Induced Lymphoma Susceptibility/DOE2013FinalReport

    SciTech Connect

    Balmain, Allan; Song, Ihn Young

    2013-05-15

    The ultimate goal of this project is to identify the combinations of genetic variants that confer an individual's susceptibility to the effects of low dose (0.1 Gy) gamma-radiation, in particular with regard to tumor development. In contrast to the known effects of high dose radiation in cancer induction, the responses to low dose radiation (defined as 0.1 Gy or less) are much less well understood, and have been proposed to involve a protective anti-tumor effect in some in vivo scientific models. These conflicting results confound attempts to develop predictive models of the risk of exposure to low dose radiation, particularly when combined with the strong effects of inherited genetic variants on both radiation effects and cancer susceptibility. We have used a Systems Genetics approach in mice that combines genetic background analysis with responses to low and high dose radiation, in order to develop insights that will allow us to reconcile these disparate observations. Using this comprehensive approach we have analyzed normal tissue gene expression (in this case the skin and thymus), together with the changes that take place in this gene expression architecture a) in response to low or high- dose radiation and b) during tumor development. Additionally, we have demonstrated that using our expression analysis approach in our genetically heterogeneous/defined radiation-induced tumor mouse models can uniquely identify genes and pathways relevant to human T-ALL, and uncover interactions between common genetic variants of genes which may lead to tumor susceptibility.

  17. Systems genetic and pharmacological analysis identifies candidate genes underlying mechanosensation in the von Frey test.

    PubMed

    Young, E E; Bryant, C D; Lee, S E; Peng, X; Cook, B; Nair, H K; Dreher, K J; Zhang, X; Palmer, A A; Chung, J M; Mogil, J S; Chesler, E J; Lariviere, W R

    2016-07-01

    Mechanical sensitivity is commonly affected in chronic pain and other neurological disorders. To discover mechanisms of individual differences in punctate mechanosensation, we performed quantitative trait locus (QTL) mapping of the response to von Frey monofilament stimulation in BXD recombinant inbred (BXD) mice. Significant loci were detected on mouse chromosome (Chr) 5 and 15, indicating the location of underlying polymorphisms that cause heritable variation in von Frey response. Convergent evidence from public gene expression data implicates candidate genes within the loci: von Frey thresholds were strongly correlated with baseline expression of Cacna2d1, Ift27 and Csnk1e in multiple brain regions of BXD strains. Systemic gabapentin and PF-670462, which target the protein products of Cacna2d1 and Csnk1e, respectively, significantly increased von Frey thresholds in a genotype-dependent manner in progenitors and BXD strains. Real-time polymerase chain reaction confirmed differential expression of Cacna2d1 and Csnk1e in multiple brain regions in progenitors and showed differential expression of Cacna2d1 and Csnk1e in the dorsal root ganglia of the progenitors and BXD strains grouped by QTL genotype. Thus, linkage mapping, transcript covariance and pharmacological testing suggest that genetic variation affecting Cacna2d1 and Csnk1e may contribute to individual differences in von Frey filament response. This study implicates Cacna2d1 and Ift27 in basal mechanosensation in line with their previously suspected role in mechanical hypersensitivity. Csnk1e is implicated for von Frey response for the first time. Further investigation is warranted to identify the specific polymorphisms involved and assess the relevance of these findings to clinical conditions of disturbed mechanosensation. PMID:27231153

  18. Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence.

    PubMed

    Fernàndez-Castillo, N; Cabana-Domínguez, J; Soriano, J; Sànchez-Mora, C; Roncero, C; Grau-López, L; Ros-Cucurull, E; Daigre, C; van Donkelaar, M M J; Franke, B; Casas, M; Ribasés, M; Cormand, B

    2015-01-01

    Cocaine reward and reinforcing effects are mediated mainly by dopaminergic neurotransmission. In this study, we aimed at evaluating gene expression changes induced by acute cocaine exposure on SH-SY5Y-differentiated cells, which have been widely used as a dopaminergic neuronal model. Expression changes and a concomitant increase in neuronal activity were observed after a 5 μM cocaine exposure, whereas no changes in gene expression or in neuronal activity took place at 1 μM cocaine. Changes in gene expression were identified in a total of 756 genes, mainly related to regulation of transcription and gene expression, cell cycle, adhesion and cell projection, as well as mitogen-activeated protein kinase (MAPK), CREB, neurotrophin and neuregulin signaling pathways. Some genes displaying altered expression were subsequently targeted with predicted functional single-nucleotide polymorphisms (SNPs) in a case-control association study in a sample of 806 cocaine-dependent patients and 817 controls. This study highlighted associations between cocaine dependence and five SNPs predicted to alter microRNA binding at the 3'-untranslated region of the NFAT5 gene. The association of SNP rs1437134 with cocaine dependence survived the Bonferroni correction for multiple testing. A functional effect was confirmed for this variant by a luciferase reporter assay, with lower expression observed for the rs1437134G allele, which was more pronounced in the presence of hsa-miR-509. However, brain volumes in regions of relevance to addiction, as assessed with magnetic resonance imaging, did not correlate with NFAT5 variation. These results suggest that the NFAT5 gene, which is upregulated a few hours after cocaine exposure, may be involved in the genetic predisposition to cocaine dependence. PMID:26506053

  19. A large-scale genetic screen in Arabidopsis to identify genes involved in pollen exine production.

    PubMed

    Dobritsa, Anna A; Geanconteri, Aliza; Shrestha, Jay; Carlson, Ann; Kooyers, Nicholas; Coerper, Daniel; Urbanczyk-Wochniak, Ewa; Bench, Bennie J; Sumner, Lloyd W; Swanson, Robert; Preuss, Daphne

    2011-10-01

    Exine, the outer plant pollen wall, has elaborate species-specific patterns, provides a protective barrier for male gametophytes, and serves as a mediator of strong and species-specific pollen-stigma adhesion. Exine is made of sporopollenin, a material remarkable for its strength, elasticity, and chemical durability. The chemical nature of sporopollenin, as well as the developmental mechanisms that govern its assembly into diverse patterns in different species, are poorly understood. Here, we describe a simple yet effective genetic screen in Arabidopsis (Arabidopsis thaliana) that was undertaken to advance our understanding of sporopollenin synthesis and exine assembly. This screen led to the recovery of mutants with a variety of defects in exine structure, including multiple mutants with novel phenotypes. Fifty-six mutants were selected for further characterization and are reported here. In 14 cases, we have mapped defects to specific genes, including four with previously demonstrated or suggested roles in exine development (MALE STERILITY2, CYP703A2, ANTHER-SPECIFIC PROTEIN6, TETRAKETIDE α-PYRONE REDUCTASE/DIHYDROFLAVONOL-4-REDUCTASE-LIKE1), and a number of genes that have not been implicated in exine production prior to this screen (among them, fatty acid ω-hydroxylase CYP704B1, putative glycosyl transferases At1g27600 and At1g33430, 4-coumarate-coenzyme A ligase 4CL3, polygalacturonase QUARTET3, novel gene At5g58100, and nucleotide-sugar transporter At5g65000). Our study illustrates that morphological screens of pollen can be extremely fruitful in identifying previously unknown exine genes and lays the foundation for biochemical, developmental, and evolutionary studies of exine production. PMID:21849515

  20. Genome-wide Association Studies Identify Genetic Loci Associated With Albuminuria in Diabetes.

    PubMed

    Teumer, Alexander; Tin, Adrienne; Sorice, Rossella; Gorski, Mathias; Yeo, Nan Cher; Chu, Audrey Y; Li, Man; Li, Yong; Mijatovic, Vladan; Ko, Yi-An; Taliun, Daniel; Luciani, Alessandro; Chen, Ming-Huei; Yang, Qiong; Foster, Meredith C; Olden, Matthias; Hiraki, Linda T; Tayo, Bamidele O; Fuchsberger, Christian; Dieffenbach, Aida Karina; Shuldiner, Alan R; Smith, Albert V; Zappa, Allison M; Lupo, Antonio; Kollerits, Barbara; Ponte, Belen; Stengel, Bénédicte; Krämer, Bernhard K; Paulweber, Bernhard; Mitchell, Braxton D; Hayward, Caroline; Helmer, Catherine; Meisinger, Christa; Gieger, Christian; Shaffer, Christian M; Müller, Christian; Langenberg, Claudia; Ackermann, Daniel; Siscovick, David; Boerwinkle, Eric; Kronenberg, Florian; Ehret, Georg B; Homuth, Georg; Waeber, Gerard; Navis, Gerjan; Gambaro, Giovanni; Malerba, Giovanni; Eiriksdottir, Gudny; Li, Guo; Wichmann, H Erich; Grallert, Harald; Wallaschofski, Henri; Völzke, Henry; Brenner, Herrmann; Kramer, Holly; Mateo Leach, I; Rudan, Igor; Hillege, Hans L; Beckmann, Jacques S; Lambert, Jean Charles; Luan, Jian'an; Zhao, Jing Hua; Chalmers, John; Coresh, Josef; Denny, Joshua C; Butterbach, Katja; Launer, Lenore J; Ferrucci, Luigi; Kedenko, Lyudmyla; Haun, Margot; Metzger, Marie; Woodward, Mark; Hoffman, Matthew J; Nauck, Matthias; Waldenberger, Melanie; Pruijm, Menno; Bochud, Murielle; Rheinberger, Myriam; Verweij, Niek; Wareham, Nicholas J; Endlich, Nicole; Soranzo, Nicole; Polasek, Ozren; van der Harst, Pim; Pramstaller, Peter Paul; Vollenweider, Peter; Wild, Philipp S; Gansevoort, Ron T; Rettig, Rainer; Biffar, Reiner; Carroll, Robert J; Katz, Ronit; Loos, Ruth J F; Hwang, Shih-Jen; Coassin, Stefan; Bergmann, Sven; Rosas, Sylvia E; Stracke, Sylvia; Harris, Tamara B; Corre, Tanguy; Zeller, Tanja; Illig, Thomas; Aspelund, Thor; Tanaka, Toshiko; Lendeckel, Uwe; Völker, Uwe; Gudnason, Vilmundur; Chouraki, Vincent; Koenig, Wolfgang; Kutalik, Zoltan; O'Connell, Jeffrey R; Parsa, Afshin; Heid, Iris M; Paterson, Andrew D; de Boer, Ian H; Devuyst, Olivier; Lazar, Jozef; Endlich, Karlhans; Susztak, Katalin; Tremblay, Johanne; Hamet, Pavel; Jacob, Howard J; Böger, Carsten A; Fox, Caroline S; Pattaro, Cristian; Köttgen, Anna

    2016-03-01

    Elevated concentrations of albumin in the urine, albuminuria, are a hallmark of diabetic kidney disease and are associated with an increased risk for end-stage renal disease and cardiovascular events. To gain insight into the pathophysiological mechanisms underlying albuminuria, we conducted meta-analyses of genome-wide association studies and independent replication in up to 5,825 individuals of European ancestry with diabetes and up to 46,061 without diabetes, followed by functional studies. Known associations of variants in CUBN, encoding cubilin, with the urinary albumin-to-creatinine ratio (UACR) were confirmed in the overall sample (P = 2.4 × 10(-10)). Gene-by-diabetes interactions were detected and confirmed for variants in HS6ST1 and near RAB38/CTSC. Single nucleotide polymorphisms at these loci demonstrated a genetic effect on UACR in individuals with but not without diabetes. The change in the average UACR per minor allele was 21% for HS6ST1 (P = 6.3 × 10(-7)) and 13% for RAB38/CTSC (P = 5.8 × 10(-7)). Experiments using streptozotocin-induced diabetic Rab38 knockout and control rats showed higher urinary albumin concentrations and reduced amounts of megalin and cubilin at the proximal tubule cell surface in Rab38 knockout versus control rats. Relative expression of RAB38 was higher in tubuli of patients with diabetic kidney disease compared with control subjects. The loci identified here confirm known pathways and highlight novel pathways influencing albuminuria. PMID:26631737

  1. Transcriptomic and genetic studies identify NFAT5 as a candidate gene for cocaine dependence

    PubMed Central

    Fernàndez-Castillo, N; Cabana-Domínguez, J; Soriano, J; Sànchez-Mora, C; Roncero, C; Grau-López, L; Ros-Cucurull, E; Daigre, C; van Donkelaar, M M J; Franke, B; Casas, M; Ribasés, M; Cormand, B

    2015-01-01

    Cocaine reward and reinforcing effects are mediated mainly by dopaminergic neurotransmission. In this study, we aimed at evaluating gene expression changes induced by acute cocaine exposure on SH-SY5Y-differentiated cells, which have been widely used as a dopaminergic neuronal model. Expression changes and a concomitant increase in neuronal activity were observed after a 5 μM cocaine exposure, whereas no changes in gene expression or in neuronal activity took place at 1 μM cocaine. Changes in gene expression were identified in a total of 756 genes, mainly related to regulation of transcription and gene expression, cell cycle, adhesion and cell projection, as well as mitogen-activeated protein kinase (MAPK), CREB, neurotrophin and neuregulin signaling pathways. Some genes displaying altered expression were subsequently targeted with predicted functional single-nucleotide polymorphisms (SNPs) in a case–control association study in a sample of 806 cocaine-dependent patients and 817 controls. This study highlighted associations between cocaine dependence and five SNPs predicted to alter microRNA binding at the 3′-untranslated region of the NFAT5 gene. The association of SNP rs1437134 with cocaine dependence survived the Bonferroni correction for multiple testing. A functional effect was confirmed for this variant by a luciferase reporter assay, with lower expression observed for the rs1437134G allele, which was more pronounced in the presence of hsa-miR-509. However, brain volumes in regions of relevance to addiction, as assessed with magnetic resonance imaging, did not correlate with NFAT5 variation. These results suggest that the NFAT5 gene, which is upregulated a few hours after cocaine exposure, may be involved in the genetic predisposition to cocaine dependence. PMID:26506053

  2. Mitochondrial genetic variants identified to be associated with posttraumatic stress disorder

    PubMed Central

    Flaquer, A; Baumbach, C; Ladwig, K-H; Kriebel, J; Waldenberger, M; Grallert, H; Baumert, J; Meitinger, T; Kruse, J; Peters, A; Emeny, R; Strauch, K

    2015-01-01

    Despite the fact that mitochondrial dysfunctions are increasingly recognized as key components in stress-related mental disorders, very little is known about the association between posttraumatic stress disorder (PTSD) and mitochondrial variants. To identify susceptibility mitochondrial genes for PTSD, we analyzed a total number of 978 mitochondrial single-nucleotide polymorphisms (mtSNPs) in a sample of 1238 individuals participating in the KORA (Cooperative Health Research in the Region of Augsburg) study. Participants were classified with ‘no PTSD', ‘partial PTSD' or ‘full PTSD' by applying the Posttraumatic Diagnostic Scale and the Impact of Event Scale. To assess PTSD–mtSNP association while taking heteroplasmy into account, we used the raw signal intensity values measured on the microarray and applied linear regression. Significant associations were obtained between full versus no PTSD and two mtSNPs; mt8414C→T (β=−0.954±0.06, Padjusted=0.037) located in adenosine triphosphate (ATP) synthase subunit 8 (MT-ATP8) and mt12501G→A (β=−1.782±0.40, Padjusted=0.015) located in the NADH dehydrogenase subunits 5 (MT-ND5). Heteroplasmy for the two variants towards a larger number of the respective minor alleles increases the risk of having PTSD. NADH dehydrogenase and ATP synthase are both linked to the regulation of reactive oxygen species. Our results highlight the important role of the mitochondrial genome among the factors that contribute to the risk of PTSD. Mitochondrial genetic variants may be more important than has previously been assumed, leading to further insights regarding effects of existing medications, or even to the development of innovative treatments. As this is the first mitochondrial genome-wide association study for PTSDs, further analyses are needed to follow up on the present findings. PMID:25756807

  3. Mitochondrial genetic variants identified to be associated with posttraumatic stress disorder.

    PubMed

    Flaquer, A; Baumbach, C; Ladwig, K-H; Kriebel, J; Waldenberger, M; Grallert, H; Baumert, J; Meitinger, T; Kruse, J; Peters, A; Emeny, R; Strauch, K

    2015-01-01

    Despite the fact that mitochondrial dysfunctions are increasingly recognized as key components in stress-related mental disorders, very little is known about the association between posttraumatic stress disorder (PTSD) and mitochondrial variants. To identify susceptibility mitochondrial genes for PTSD, we analyzed a total number of 978 mitochondrial single-nucleotide polymorphisms (mtSNPs) in a sample of 1238 individuals participating in the KORA (Cooperative Health Research in the Region of Augsburg) study. Participants were classified with 'no PTSD', 'partial PTSD' or 'full PTSD' by applying the Posttraumatic Diagnostic Scale and the Impact of Event Scale. To assess PTSD-mtSNP association while taking heteroplasmy into account, we used the raw signal intensity values measured on the microarray and applied linear regression. Significant associations were obtained between full versus no PTSD and two mtSNPs; mt8414C->T (β=-0.954±0.06, Padjusted=0.037) located in adenosine triphosphate (ATP) synthase subunit 8 (MT-ATP8) and mt12501G->A (β=-1.782±0.40, Padjusted=0.015) located in the NADH dehydrogenase subunits 5 (MT-ND5). Heteroplasmy for the two variants towards a larger number of the respective minor alleles increases the risk of having PTSD. NADH dehydrogenase and ATP synthase are both linked to the regulation of reactive oxygen species. Our results highlight the important role of the mitochondrial genome among the factors that contribute to the risk of PTSD. Mitochondrial genetic variants may be more important than has previously been assumed, leading to further insights regarding effects of existing medications, or even to the development of innovative treatments. As this is the first mitochondrial genome-wide association study for PTSDs, further analyses are needed to follow up on the present findings. PMID:25756807

  4. Genetic Determinants of Intrinsic Colistin Tolerance in Acinetobacter baumannii

    PubMed Central

    Hood, M. Indriati; Becker, Kyle W.; Roux, Christelle M.; Dunman, Paul M.

    2013-01-01

    Acinetobacter baumannii is a leading cause of multidrug-resistant infections worldwide. This organism poses a particular challenge due to its ability to acquire resistance to new antibiotics through adaptation or mutation. This study was undertaken to determine the mechanisms governing the adaptability of A. baumannii to the antibiotic colistin. Screening of a transposon mutant library identified over 30 genes involved in inducible colistin resistance in A. baumannii. One of the genes identified was lpsB, which encodes a glycosyltransferase involved in lipopolysaccharide (LPS) synthesis. We demonstrate that loss of LpsB function results in increased sensitivity to both colistin and cationic antimicrobial peptides of the innate immune system. Moreover, LpsB is critical for pathogenesis in a pulmonary model of infection. Taken together, these data define bacterial processes required for intrinsic colistin tolerance in A. baumannii and underscore the importance of outer membrane structure in both antibiotic resistance and the pathogenesis of A. baumannii. PMID:23230287

  5. Identifying future models for delivering genetic services: a nominal group study in primary care

    PubMed Central

    Elwyn, Glyn; Edwards, Adrian; Iredale, Rachel; Davies, Peter; Gray, Jonathon

    2005-01-01

    Background To enable primary care medical practitioners to generate a range of possible service delivery models for genetic counselling services and critically assess their suitability. Methods Modified nominal group technique using in primary care professional development workshops. Results 37 general practitioners in Wales, United Kingdom too part in the nominal group process. The practitioners who attended did not believe current systems were sufficient to meet anticipated demand for genetic services. A wide range of different service models was proposed, although no single option emerged as a clear preference. No argument was put forward for genetic assessment and counselling being central to family practice, neither was there a voice for the view that the family doctor should become skilled at advising patients about predictive genetic testing and be able to counsel patients about the wider implications of genetic testing for patients and their family members, even for areas such as common cancers. Nevertheless, all the preferred models put a high priority on providing the service in the community, and often co-located in primary care, by clinicians who had developed expertise. Conclusion There is a need for a wider debate about how healthcare systems address individual concerns about genetic concerns and risk, especially given the increasing commercial marketing of genetic tests. PMID:15831099

  6. Genetic determination of the hypothalamic-pituitary-thyroid axis: where do we stand?

    PubMed

    Medici, Marco; Visser, W Edward; Visser, Theo J; Peeters, Robin P

    2015-04-01

    For a long time it has been known that both hypo- and hyperthyroidism are associated with an increased risk of morbidity and mortality. In recent years, it has also become clear that minor variations in thyroid function, including subclinical dysfunction and variation in thyroid function within the reference range, can have important effects on clinical endpoints, such as bone mineral density, depression, metabolic syndrome, and cardiovascular mortality. Serum thyroid parameters show substantial interindividual variability, whereas the intraindividual variability lies within a narrow range. This suggests that every individual has a unique hypothalamus-pituitary-thyroid axis setpoint that is mainly determined by genetic factors, and this heritability has been estimated to be 40-60%. Various mutations in thyroid hormone pathway genes have been identified in persons with thyroid dysfunction or altered thyroid function tests. Because these causes are rare, many candidate gene and linkage studies have been performed over the years to identify more common variants (polymorphisms) associated with thyroid (dys)function, but only a limited number of consistent associations have been found. However, in the past 5 years, advances in genetic research have led to the identification of a large number of new candidate genes. In this review, we provide an overview of the current knowledge about the polygenic basis of thyroid (dys)function. This includes new candidate genes identified by genome-wide approaches, what insights these genes provide into the genetic basis of thyroid (dys)function, and which new techniques will help to further decipher the genetic basis of thyroid (dys)function in the near future. PMID:25751422

  7. Genetic diversity of Cryptosporidium identified in clinical samples from cities in Brazil and Argentina.

    PubMed

    Peralta, Regina Helena Saramago; Velásquez, Jorge Néstor; Cunha, Flavia de Souza; Pantano, María Laura; Sodré, Fernando Campos; Silva, Sidnei da; Astudillo, Osvaldo Germán; Peralta, José Mauro; Carnevale, Silvana

    2016-01-01

    The identification and characterisation of Cryptosporidium genotypes and subtypes are fundamental to the study of cryptosporidiosis epidemiology, aiding in prevention and control strategies. The objective was to determine the genetic diversity of Cryptosporidium in samples obtained from hospitals of Rio de Janeiro, Brazil, and Buenos Aires, Argentina. Samples were analysed by microscopy and TaqMan polymerase chain reaction (PCR) assays for Cryptosporidium detection, genotyped by nested-PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene and subtyped by DNA sequencing of the gp60 gene. Among the 89 samples from Rio de Janeiro, Cryptosporidium spp were detected in 26 by microscopy/TaqMan PCR. In samples from Buenos Aires,Cryptosporidium was diagnosed in 15 patients of the 132 studied. The TaqMan PCR and the nested-PCR-RFLP detected Cryptosporidium parvum, Cryptosporidium hominis, and co-infections of both species. In Brazilian samples, the subtypes IbA10G2 and IIcA5G3 were observed. The subtypes found in Argentinean samples were IbA10G2, IaA10G1R4, IaA11G1R4, and IeA11G3T3, and mixed subtypes of Ia and IIa families were detected in the co-infections. C. hominis was the species more frequently detected, and subtype family Ib was reported in both countries. Subtype diversity was higher in Buenos Aires than in Rio de Janeiro and two new subtypes were described for the first time. PMID:26814641

  8. Genetic diversity of Cryptosporidium identified in clinical samples from cities in Brazil and Argentina

    PubMed Central

    Peralta, Regina Helena Saramago; Velásquez, Jorge Néstor; Cunha, Flavia de Souza; Pantano, María Laura; Sodré, Fernando Campos; da Silva, Sidnei; Astudillo, Osvaldo Germán; Peralta, José Mauro; Carnevale, Silvana

    2016-01-01

    The identification and characterisation of Cryptosporidiumgenotypes and subtypes are fundamental to the study of cryptosporidiosis epidemiology, aiding in prevention and control strategies. The objective was to determine the genetic diversity ofCryptosporidium in samples obtained from hospitals of Rio de Janeiro, Brazil, and Buenos Aires, Argentina. Samples were analysed by microscopy and TaqMan polymerase chain reaction (PCR) assays forCryptosporidium detection, genotyped by nested-PCR-restriction fragment length polymorphism (RFLP) analysis of the 18S rRNA gene and subtyped by DNA sequencing of the gp60 gene. Among the 89 samples from Rio de Janeiro, Cryptosporidium spp were detected in 26 by microscopy/TaqMan PCR. In samples from Buenos Aires,Cryptosporidium was diagnosed in 15 patients of the 132 studied. The TaqMan PCR and the nested-PCR-RFLP detected Cryptosporidium parvum, Cryptosporidium hominis, and co-infections of both species. In Brazilian samples, the subtypes IbA10G2 and IIcA5G3 were observed. The subtypes found in Argentinean samples were IbA10G2, IaA10G1R4, IaA11G1R4, and IeA11G3T3, and mixed subtypes of Ia and IIa families were detected in the co-infections. C. hominis was the species more frequently detected, and subtype family Ib was reported in both countries. Subtype diversity was higher in Buenos Aires than in Rio de Janeiro and two new subtypes were described for the first time. PMID:26814641

  9. Genetic Essentialism: On the Deceptive Determinism of DNA

    ERIC Educational Resources Information Center

    Dar-Nimrod, Ilan; Heine, Steven J.

    2011-01-01

    This article introduces the notion of genetic essentialist biases: cognitive biases associated with essentialist thinking that are elicited when people encounter arguments that genes are relevant for a behavior, condition, or social group. Learning about genetic attributions for various human conditions leads to a particular set of thoughts…

  10. Variation in Salamander Tail Regeneration Is Associated with Genetic Factors That Determine Tail Morphology

    PubMed Central

    Voss, Gareth J.; Kump, D. Kevin; Walker, John A.; Voss, S. Randal

    2013-01-01

    Very little is known about the factors that cause variation in regenerative potential within and between species. Here, we used a genetic approach to identify heritable genetic factors that explain variation in tail regenerative outgrowth. A hybrid ambystomatid salamander (Ambystoma mexicanum x A. andersoni) was crossed to an A. mexicanum and 217 offspring were induced to undergo metamorphosis and attain terrestrial adult morphology using thyroid hormone. Following metamorphosis, each salamander’s tail tip was amputated and allowed to regenerate, and then amputated a second time and allowed to regenerate. Also, DNA was isolated from all individuals and genotypes were determined for 187 molecular markers distributed throughout the genome. The area of tissue that regenerated after the first and second amputations was highly positively correlated across males and females. Males presented wider tails and regenerated more tail tissue during both episodes of regeneration. Approximately 66–68% of the variation in regenerative outgrowth was explained by tail width, while tail length and genetic sex did not explain a significant amount of variation. A small effect QTL was identified as having a sex-independent effect on tail regeneration, but this QTL was only identified for the first episode of regeneration. Several molecular markers significantly affected regenerative outgrowth during both episodes of regeneration, but the effect sizes were small (<4%) and correlated with tail width. The results show that ambysex and minor effect QTL explain variation in adult tail morphology and importantly, tail width. In turn, tail width at the amputation plane largely determines the rate of regenerative outgrowth. Because amputations in this study were made at approximately the same position of the tail, our results resolve an outstanding question in regenerative biology: regenerative outgrowth positively co-varies as a function of tail width at the amputation site. PMID:23843997