Science.gov

Sample records for ignition engines modeling

  1. LOX/Methane Main Engine Igniter Tests and Modeling

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin J.; Ajmani, Kumund

    2008-01-01

    The LOX/methane propellant combination is being considered for the Lunar Surface Access Module ascent main engine propulsion system. The proposed switch from the hypergolic propellants used in the Apollo lunar ascent engine to LOX/methane propellants requires the development of igniters capable of highly reliable performance in a lunar surface environment. An ignition test program was conducted that used an in-house designed LOX/methane spark torch igniter. The testing occurred in Cell 21 of the Research Combustion Laboratory to utilize its altitude capability to simulate a space vacuum environment. Approximately 750 ignition test were performed to evaluate the effects of methane purity, igniter body temperature, spark energy level and frequency, mixture ratio, flowrate, and igniter geometry on the ability to obtain successful ignitions. Ignitions were obtained down to an igniter body temperature of approximately 260 R with a 10 torr back-pressure. The data obtained is also being used to anchor a CFD based igniter model.

  2. Ignition of Hydrogen Balloons by Model-Rocket-Engine Igniters.

    ERIC Educational Resources Information Center

    Hartman, Nicholas T.

    2003-01-01

    Describes an alternative method for exploding hydrogen balloons as a classroom demonstration. Uses the method of igniting the balloons via an electronic match. Includes necessary materials to conduct the demonstration and discusses potential hazards. (SOE)

  3. Modeling Ignition and Combustion in Direct Injection Compression Ignition Engines Employing Very Early Injection Timing

    NASA Astrophysics Data System (ADS)

    Miyamoto, Takeshi; Tsurushima, Tadashi; Shimazaki, Naoki; Harada, Akira; Sasaki, Satoru; Hayashi, Koichi; Asaumi, Yasuo; Aoyagi, Yuzo

    An ignition and combustion model has been developed to predict the heat release rate in direct injection compression ignition engines employing very early injection timing. The model describes the chemical reactions, including low-temperature oxidation. The KIVA II computer code was modified with the present ignition and combustion model. The numerical results indicate that the model developed in this work reproduces major features of two-stage autoignition, as well as experimentally observed trends in NOx and unburned fuel emissions. The computational results show that fuel injection timing significantly influences NOx emissions. Results also indicate that fuel droplets that enter the squish region possibly become unburned fuel emissions. Some graphical results demonstrate the relationships among the in-cylinder fuel spray distributions, fuel-air equivalence ratio, temperature, and mass fractions of NO and unburned fuel.

  4. Multi-dimensional modeling of the application of catalytic combustion to homogeneous charge compression ignition engine

    NASA Astrophysics Data System (ADS)

    Zeng, Wen; Xie, Maozhao

    2006-12-01

    The detailed surface reaction mechanism of methane on rhodium catalyst was analyzed. Comparisons between numerical simulation and experiments showed a basic agreement. The combustion process of homogeneous charge compression ignition (HCCI) engine whose piston surface has been coated with catalyst (rhodium and platinum) was numerically investigated. A multi-dimensional model with detailed chemical kinetics was built. The effects of catalytic combustion on the ignition timing, the temperature and CO concentration fields, and HC, CO and NOx emissions of the HCCI engine were discussed. The results showed the ignition timing of the HCCI engine was advanced and the emissions of HC and CO were decreased by the catalysis.

  5. 40 CFR 1036.620 - Alternate CO2 standards based on model year 2011 compression-ignition engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... year 2011 compression-ignition engines. 1036.620 Section 1036.620 Protection of Environment... model year 2011 compression-ignition engines. For model years 2014 through 2016, you may certify your... alternate CO2 standard for light and medium heavy-duty vocational-certified engines (certified for CO2...

  6. PDF modeling of chemically reacting flows in a compression-ignition engine

    NASA Astrophysics Data System (ADS)

    Raj Mohan, Vivek Raja; Haworth, Daniel; Li, Jian

    2013-11-01

    A transported probability density function (PDF) model is used to simulate the in-cylinder combustion processes in a compression-ignition heavy-duty engine. The flow inside the cylinder in a compression-ignition engine is chemically reacting and highly turbulent. Therefore, the turbulent fluctuations in composition and temperature will influence the mean reaction rates. These turbulence-chemistry interactions (TCI) play an important role in predicting the combustion processes accurately. Recent results from in-cylinder combustion simulations for a compression-ignition engine are compared with measured data for several operating conditions. The PDF model, which takes into account for TCI, predicts the combustion processes more accurately compared to a model which neglects TCI. Marked differences are observed in predicting the flame structure and the pressure and heat-release traces as well as in predicting the emission characteristics.

  7. LOX/Methane Main Engine Glow Plug Igniter Tests and Modeling

    NASA Technical Reports Server (NTRS)

    Breisacher, Kevin; Ajmani, Kumud

    2009-01-01

    Ignition data for tests with a LOX/methane igniter that utilized a glow plug as the ignition source are presented. The tests were conducted in a vacuum can with thermally conditioned (cold) hardware. Data showing the effects of glow plug geometry, type, and igniter operating conditions are discussed. Comparisons between experimental results and multidimensional, transient computer models are also made.

  8. A simple model for cyclic variations in a spark-ignition engine

    SciTech Connect

    Daw, C.S.; Green, J.B. Jr.; Kennel, M.B.; Thomas, J.F.

    1996-11-01

    We propose a simple, physically oriented model that explains important characteristics of cyclic combustion variations in spark-ignited engines. A key model feature is the interaction between stochastic, small-scale fluctuations in engine parameters and nonlinear deterministic coupling between successive engine cycles. Prior-cycle effects are produced by residual cylinder gas which alters volume-average in-cylinder equivalence ratio and subsequent combustion efficiency. The model`s simplicity allows rapid simulation of thousands of engine cycles, permitting in-depth statistical studies of cyclic variation patterns. Additional mechanisms for stochastic and prior-cycle effects can be added to evaluate their impact on overall engine performance. We find good agreement with our experimental data.

  9. Comparisons between thermodynamic and one-dimensional combustion models of spark-ignition engines

    NASA Technical Reports Server (NTRS)

    Ramos, J. I.

    1986-01-01

    Results from a one-dimensional combustion model employing a constant eddy diffusivity and a one-step chemical reaction are compared with those of one-zone and two-zone thermodynamic models to study the flame propagation in a spark-ignition engine. One-dimensional model predictions are found to be very sensitive to the eddy diffusivity and reaction rate data. The average mixing temperature found using the one-zone thermodynamic model is higher than those of the two-zone and one-dimensional models during the compression stroke, and that of the one-dimensional model is higher than those predicted by both thermodynamic models during the expansion stroke. The one-dimensional model is shown to predict an accelerating flame even when the front approaches the cold cylinder wall.

  10. Effect of Hydrogen Addition on Methane HCCI Engine Ignition Timing and Emissions Using a Multi-zone Model

    NASA Astrophysics Data System (ADS)

    Wang, Zi-han; Wang, Chun-mei; Tang, Hua-xin; Zuo, Cheng-ji; Xu, Hong-ming

    2009-06-01

    Ignition timing control is of great importance in homogeneous charge compression ignition engines. The effect of hydrogen addition on methane combustion was investigated using a CHEMKIN multi-zone model. Results show that hydrogen addition advances ignition timing and enhances peak pressure and temperature. A brief analysis of chemical kinetics of methane blending hydrogen is also performed in order to investigate the scope of its application, and the analysis suggests that OH radical plays an important role in the oxidation. Hydrogen addition increases NOx while decreasing HC and CO emissions. Exhaust gas recirculation (EGR) also advances ignition timing; however, its effects on emissions are generally the opposite. By adjusting the hydrogen addition and EGR rate, the ignition timing can be regulated with a low emission level. Investigation into zones suggests that NOx is mostly formed in core zones while HC and CO mostly originate in the crevice and the quench layer.

  11. Stochastic Modelling and Estimation for Cyclic Pressure Variations in Spark Ignition Engines

    NASA Astrophysics Data System (ADS)

    Roberts, J. B.; Peyton Jones, J. C.; Landsborough, K. J.

    2001-03-01

    A new method of fitting linearised, parametric stochastic models of cycle-by-cycle variations of pressure, during the combustion region of a spark ignition petrol engine, is described. The technique is based on stochastically fitting the combustion models to the covariance function of the measured pressure fluctuations, obtained by averaging over the entire ensemble of measured cycles. Comparisons, for two specific combustion models, with corresponding results obtained by deterministic fitting on a cycle-by-cycle basis, show that the new method gives a similar degree of fit, but with much improved computational efficiency. It is also demonstrated that the degree of fit to the data can be further improved by modelling the residual error between the data and the combustion models in terms of Chebyshev polynomials: the parameters in these polynomials may be determined by stochastic fitting. The technique has wider applications in the condition monitoring of rotating machinery.

  12. Ignition process in Diesel engines

    NASA Technical Reports Server (NTRS)

    Wentzel, W

    1936-01-01

    This report analyzes the heating and vaporization process of fuel droplets in a compression-ignition engine on the basis of the theory of similitude - according to which, the period for heating and complete vaporization of the average size fuel drop is only a fraction of the actually observed ignition lag. The result is that ignition takes place in the fuel vapor air mixture rather than on the surface of the drop. The theoretical result is in accord with the experimental observations by Rothrock and Waldron. The combustion shock occurring at lower terminal compression temperature, especially in the combustion of coal-tar oil, is attributable to a simultaneous igniting of a larger fuel-vapor volume formed prior to ignition.

  13. An experimental and modeling study investigating the ignition delay in a military diesel engine running hexadecane (cetane) fuel

    DOE PAGESBeta

    Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; Caton, Patrick A.; Sarathy, S. Mani; Pitz, William J.

    2013-02-01

    In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted withoutmore » any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay

  14. An experimental and modeling study investigating the ignition delay in a military diesel engine running hexadecane (cetane) fuel

    SciTech Connect

    Cowart, Jim S.; Fischer, Warren P.; Hamilton, Leonard J.; Caton, Patrick A.; Sarathy, S. Mani; Pitz, William J.

    2013-02-01

    In an effort aimed at predicting the combustion behavior of a new fuel in a conventional diesel engine, cetane (n-hexadecane) fuel was used in a military engine across the entire speed–load operating range. The ignition delay was characterized for this fuel at each operating condition. A chemical ignition delay was also predicted across the speed–load range using a detailed chemical kinetic mechanism with a constant pressure reactor model. At each operating condition, the measured in-cylinder pressure and predicted temperature at the start of injection were applied to the detailed n-hexadecane kinetic mechanism, and the chemical ignition delay was predicted without any kinetic mechanism calibration. The modeling results show that fuel–air parcels developed from the diesel spray with an equivalence ratio of 4 are the first to ignite. The chemical ignition delay results also showed decreasing igntion delays with increasing engine load and speed, just as the experimental data revealed. At lower engine speeds and loads, the kinetic modeling results show the characteristic two-stage negative temperature coefficient behavior of hydrocarbon fuels. However, at high engine speeds and loads, the reactions do not display negative temperature coefficient behavior, as the reactions proceed directly into high-temperature pathways due to higher temperatures and pressure at injection. A moderate difference between the total and chemical ignition delays was then characterized as a phyical delay period that scales inversely with engine speed. This physical delay time is representative of the diesel spray development time and is seen to become a minority fraction of the total igntion delay at higher engine speeds. In addition, the approach used in this study suggests that the ignition delay and thus start of combustion may be predicted with reasonable accuracy using kinetic modeling to determine the chemical igntion delay. Then, in conjunction with the physical delay time

  15. Engine ignition timing control apparatus

    SciTech Connect

    Takahashi, N.

    1988-03-01

    An apparatus for controlling the timing of ignition of an internal combustion engine including at least one cylinder is described comprising: sensor means sensitive to combustion pressure in the cylinder for providing a sensor signal indicative of a sensed cylinder combustion pressure; and a control circuit including means coupled to the sensor means for measuring a crankshaft angle at which the cylinder combustion pressure is at maximum, means for retarding the ignition timing in response to the measured crankshaft angle being less than a first value, means for retaining the ignition timing in response to the measured crankshaft angle being between the first and a second value greater than the first value, and means for advancing the ignition timing in response to the measured crankshaft angle being greater than the second value.

  16. Plasma Igniter for Reliable Ignition of Combustion in Rocket Engines

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard

    2011-01-01

    A plasma igniter has been developed for initiating combustion in liquid-propellant rocket engines. The device propels a hot, dense plasma jet, consisting of elemental fluorine and fluorine compounds, into the combustion chamber to ignite the cold propellant mixture. The igniter consists of two coaxial, cylindrical electrodes with a cylindrical bar of solid Teflon plastic in the region between them. The outer electrode is a metal (stainless steel) tube; the inner electrode is a metal pin (mild steel, stainless steel, tungsten, or thoriated-tungsten). The Teflon bar fits snugly between the two electrodes and provides electrical insulation between them. The Teflon bar may have either a flat surface, or a concave, conical surface at the open, down-stream end of the igniter (the igniter face). The igniter would be mounted on the combustion chamber of the rocket engine, either on the injector-plate at the upstream side of the engine, or on the sidewalls of the chamber. It also might sit behind a valve that would be opened just prior to ignition, and closed just after, in order to prevent the Teflon from melting due to heating from the combustion chamber.

  17. Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure

    SciTech Connect

    Fieweger, K.; Blumenthal, R.; Adomeit, G.

    1997-06-01

    The self-ignition of several spark-ignition (SI) engine fuels (iso-octane, methanol, methyl tert-butyl ether and three different mixtures of iso-octane and n-heptane), mixed with air, was investigated experimentally under relevant engine conditions by the shock tube technique. Typical modes of the self-ignition process were registered cinematographically. For temperatures relevant to piston engine combustion, the self-ignition process always starts as an inhomogeneous, deflagrative mild ignition. This instant is defined by the ignition delay time, {tau}{sub defl}. The deflagration process in most cases is followed by a secondary explosion (DDT). This transition defines a second ignition delay time, {tau}{sub DDT}, which is a suitable approximation for the chemical ignition delay time, if the change of the thermodynamic conditions of the unburned test gas due to deflagration is taken into account. For iso-octane at p = 40 bar, a NTC (negative temperature coefficient), behavior connected with a two step (cool flame) self-ignition at low temperatures was observed. This process was very pronounced for rich and less pronounced for stoichiometric mixtures. The results of the {tau}{sub DDT} delays of the stoichiometric mixtures were shortened by the primary deflagration process in the temperature range between 800 and 1,000 K. Various mixtures of iso-octane and n-heptane were investigated. The results show a strong influence of the n-heptane fraction in the mixture, both on the ignition delay time and on the mode of self-ignition. The self-ignition of methanol and MTBE (methyl tert-butyl ether) is characterized by a very pronounced initial deflagration. For temperatures below 900 K (methanol: 800 K), no secondary explosion occurs. Taking into account the pressure increase due to deflagration, the measured delays {tau}{sub DDT} of the secondary explosion are shortened by up to one order of magnitude.

  18. Combustion-wave ignition for rocket engines

    NASA Technical Reports Server (NTRS)

    Liou, Larry C.

    1992-01-01

    The combustion wave ignition concept was experimentally studied in order to verify its suitability for application in baffled sections of a large booster engine combustion chamber. Gaseous oxygen/gaseous methane (GOX/GH4) and gaseous oxygen/gaseous hydrogen (GOX/GH2) propellant combinations were evaluated in a subscale combustion wave ignition system. The system included four element tubes capable of carrying ignition energy simultaneously to four locations, simulating four baffled sections. Also, direct ignition of a simulated Main Combustion Chamber (MCC) was performed. Tests were conducted over a range of mixture ratios and tube geometries. Ignition was consistently attained over a wide range of mixture ratios. And at every ignition, the flame propagated through all four element tubes. For GOX/GH4, the ignition system ignited the MCC flow at mixture ratios from 2 to 10 and for GOX/GH2 the ratios is from 2 to 13. The ignition timing was found to be rapid and uniform. The total ignition delay when using the MCC was under 11 ms, with the tube-to-tube, as well as the run-to-run, variation under 1 ms. Tube geometries were found to have negligible effect on the ignition outcome and timing.

  19. Multi-zone modelling of partially premixed low-temperature combustion in pilot-ignited natural-gas engines

    SciTech Connect

    Krishnan, S. R.; inivasan, K. K.

    2010-09-14

    Detailed results from a multi-zone phenomenological simulation of partially premixed advanced-injection low-pilot-ignited natural-gas low-temperature combustion are presented with a focus on early injection timings (the beginning of (pilot) injection (BOI)) and very small diesel quantities (2-3 per cent of total fuel energy). Combining several aspects of diesel and spark ignition engine combustion models, the closed-cycle simulation accounted for diesel autoignition, diesel spray combustion, and natural-gas combustion by premixed turbulent flame propagation. The cylinder contents were divided into an unburned zone, several pilot fuel zones (or 'packets') that modelled diesel evaporation and ignition, a flame zone for natural-gas combustion, and a burned zone. The simulation predicted the onset of ignition, cylinder pressures, and heat release rate profiles satisfactorily over a wide range of BOIs (20-60° before top dead centre (before TDC)) but especially well at early BOIs. Strong coupling was observed between pilot spray combustion in the packets and premixed turbulent combustion in the flame zone and, therefore, the number of ignition centres (packets) profoundly affected flame combustion. The highest local peak temperatures (greater than 2000 K) were observed in the packets, while the flame zone was much cooler (about 1650 K), indicating that pilot diesel spray combustion is probably the dominant source of engine-out emissions of nitrogen oxide (NOx). Further, the 60° before TDC BOI yielded the lowest average peak packet temperatures (about 1720 K) compared with the 20° before TDC BOI (about 2480 K) and 40° before TDC BOI (about 2700 K). These trends support experimental NOx trends, which showed the lowest NOx emissions for the 60°, 20°, and 40° before TDC BOIs in that order. Parametric studies showed that increasing the intake charge temperature, pilot quantity, and natural-gas equivalence ratio all led to higher peak

  20. Spark ignition systems for internal combustion engines

    SciTech Connect

    Gol, G.; Hill, W.F.

    1980-08-26

    An internal combustion engine spark ignition system is provided which ensures that sparks are inhibited if the engine temperature exceeds a maximum safe level. The ignition circuit includes an input transistor which is switched on and off by an engine shaft transducer. The input transistor controls charging and discharging of a capacitor the voltage on which determines whether switching of the input transistor causes a spark to be produced via an output amplifier and ignition coil. A temperature sensing element determines both the rate at which the capacitor can charge and the final voltage to which it can be charged.

  1. Plasma igniter for internal-combustion engines

    NASA Technical Reports Server (NTRS)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  2. Engineering the National Ignition Facility

    SciTech Connect

    Bowers, J; Hackel, R; Larson, D; Manes, K; Murray, J; Sawicki, R

    1998-08-19

    The engineering team of the National Ignition Facility (NIF) has developed a highly optimized hardware design that satisfies stringent cost, performance and schedule requirements. After a 3-year effort, the design will culminate at the end of FY98 with the completion of major Title II design reviews. Every element of the facility from optic configuration, facility layout and hardware specifications to material selection, fabrication techniques and part tolerancing has been examined to assure the minimum cost per joule of laser energy delivered on target. In this paper, the design of the major subsystems will be discussed from the perspective of this optimization emphasis. Focus will be placed on the special equipment hardware which includes laser, beam transport, opto-mechanical , system control and target area systems. Some of the unique features in each of these areas will be discussed to highlight how significant cost savings have been achieved while maintaining reasonable and acceptable performance risk. Key to the success has also been a vigorous development program that commenced nearly 4 years ago and has been highly responsive to the specific needs of the NIF project. Supporting analyses and prototyping work that evolved from these parallel activities will also be discussed.

  3. Ignition brake for an internal combustion engine

    SciTech Connect

    Kandler, W.C.

    1993-07-06

    In an internal combustion engine powered implement having an engine with a piston disposed in a cylinder, a crankshaft, a flywheel secured to the crankshaft, and a sparking device for igniting fuel in the cylinder, a safety device is described comprising: an ignition circuit operable to produce a spark in the sparking device to combust the fuel, the ignition circuit having means for generating a normally timed sparking voltage to normally combust the fuel, and means for generating an advanced timed sparking voltage to prematurely combust the fuel; a switch device for decoupling one of the generating means from the ignition circuit and connecting the other of the generating means in the ignition circuit; and a dead man mechanism operable to actuate the switch device, the dead man mechanism being operator actuable into a first position wherein the switch device decouples the means for generating an advanced timed sparking voltage from the ignition circuit whereby the engine may normally run, the dead man mechanism normally biased into a second position when released by the operator wherein the switch device decouples the means for generating a normally timed sparking voltage from the ignition circuit and connects the means for generating an advanced sparking voltage to cause the engine to rapidly slow and stop under influence of the prematurely combusted fuel.

  4. Combustion of CNG in Charged Spark Ignition Engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, Wladyslaw

    2009-12-01

    The paper describes mixing of injected CNG with air and combustion process in spark ignition internal combustion engine. Because of higher ignition temperature of CNG the SI engines have more effective ignition system than conventional engines. The gas motion, turbulence, charge temperature and obviously electrical energy of the ignition coil have a big influence on the ignition and burning process in the combustion chamber. The paper includes theoretical and experimental investigations of ignition process in the high charged SI engines with direct CNG injection by using LES technique in KIVA program. Simulation of CNG combustion in the caloric chamber was carried in the environment of OpenFOAM program with LES model and also the experimental test was carried out for comparison of results in the chamber with the same geometry. The influence of the "tumble" and "swirl" on the sparking is shown by modelling of this process in premixed charge by using LES technique. The charge motion and also considerably turbulence effect influence strongly on the ignition process.

  5. Future Prospects of Low Compression Ignition Engines

    NASA Astrophysics Data System (ADS)

    Azim, M. A.

    2014-01-01

    This study presents a review and analysis of the effects of compression ratio and inlet air preheating on engine performance in order to assess the future prospects of low compression ignition engines. Regulation of the inlet air preheating allows some control over the combustion process in compression ignition engines. Literature shows that low compression ratio and inlet air preheating are more beneficial to internal combustion engines than detrimental. Even the disadvantages due to low compression ratio are outweighed by the advantages due to inlet air preheating and vice versa.

  6. Ignition apparatus for internal combustion engine

    SciTech Connect

    Imoto, K.; Katada, H.

    1986-10-07

    An ignition apparatus is described for an internal combustion engine having a crankshaft and a camshaft coupled to the crankshaft to be rotated thereby, comprising: crankshaft position signal generating means for detecting that the crankshaft has rotated to a predetermined angular position and for generating crankshaft position signals in response to the detection; camshaft position signal generating means for detecting that the camshaft has rotated to a predetermined angular position and for generating camshaft position signals in response to the detection; command signal generating means coupled to receive the crankshaft position signals, for generating ignition command signals in response to the crankshaft position signals; and ignition circuit means for generating a high ignition voltage in response to the ignition command signals.

  7. Simultaneous dual mode combustion engine operating on spark ignition and homogenous charge compression ignition

    DOEpatents

    Fiveland, Scott B.; Wiggers, Timothy E.

    2004-06-22

    An engine particularly suited to single speed operation environments, such as stationary power generators. The engine includes a plurality of combustion cylinders operable under homogenous charge compression ignition, and at least one combustion cylinder operable on spark ignition concepts. The cylinder operable on spark ignition concepts can be convertible to operate under homogenous charge compression ignition. The engine is started using the cylinders operable under spark ignition concepts.

  8. Propellant-Flow-Actuated Rocket Engine Igniter

    NASA Technical Reports Server (NTRS)

    Wollen, Mark

    2013-01-01

    A rocket engine igniter has been created that uses a pneumatically driven hammer that, by specialized geometry, is induced into an oscillatory state that can be used to either repeatedly impact a piezoelectric crystal with sufficient force to generate a spark capable of initiating combustion, or can be used with any other system capable of generating a spark from direct oscillatory motion. This innovation uses the energy of flowing gaseous propellant, which by means of pressure differentials and kinetic motion, causes a hammer object to oscillate. The concept works by mass flows being induced through orifices on both sides of a cylindrical tube with one or more vent paths. As the mass flow enters the chamber, the pressure differential is caused because the hammer object is supplied with flow on one side and the other side is opened with access to the vent path. The object then crosses the vent opening and begins to slow because the pressure differential across the ball reverses due to the geometry in the tube. Eventually, the object stops because of the increasing pressure differential on the object until all of the kinetic energy has been transferred to the gas via compression. This is the point where the object reverses direction because of the pressure differential. This behavior excites a piezoelectric crystal via direct impact from the hammer object. The hammer strikes a piezoelectric crystal, then reverses direction, and the resultant high voltage created from the crystal is transferred via an electrode to a spark gap in the ignition zone, thereby providing a spark to ignite the engine. Magnets, or other retention methods, might be employed to favorably position the hammer object prior to start, but are not necessary to maintain the oscillatory behavior. Various manifestations of the igniter have been developed and tested to improve device efficiency, and some improved designs are capable of operation at gas flow rates of a fraction of a gram per second (0

  9. Friction of Compression-ignition Engines

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1936-01-01

    The cost in mean effective pressure of generating air flow in the combustion chambers of single-cylinder compression-ignition engines was determined for the prechamber and the displaced-piston types of combustion chamber. For each type a wide range of air-flow quantities, speeds, and boost pressures was investigated. Supplementary tests were made to determine the effect of lubricating-oil temperature, cooling-water temperature, and compression ratio on the friction mean effective pressure of the single-cylinder test engine. Friction curves are included for two 9-cylinder, radial, compression-ignition aircraft engines. The results indicate that generating the optimum forced air flow increased the motoring losses approximately 5 pounds per square inch mean effective pressure regardless of chamber type or engine speed. With a given type of chamber, the rate of increase in friction mean effective pressure with engine speed is independent of the air-flow speed. The effect of boost pressure on the friction cannot be predicted because the friction was decreased, unchanged, or increased depending on the combustion-chamber type and design details. High compression ratio accounts for approximately 5 pounds per square inch mean effective pressure of the friction of these single-cylinder compression-ignition engines. The single-cylinder test engines used in this investigation had a much higher friction mean effective pressure than conventional aircraft engines or than the 9-cylinder, radial, compression-ignition engines tested so that performance should be compared on an indicated basis.

  10. A sustained-arc ignition system for internal combustion engines

    NASA Technical Reports Server (NTRS)

    Birchenough, A. G.

    1977-01-01

    A sustained-arc ignition system was developed for internal combustion engines. It produces a very-long-duration ignition pulse with an energy in the order of 100 millijoules. The ignition pulse waveform can be controlled to predetermined actual ignition requirements. The design of the sustained-arc ignition system is presented in the report.

  11. Laser ignited engines: progress, challenges and prospects.

    PubMed

    Dearden, Geoff; Shenton, Tom

    2013-11-01

    Laser ignition (LI) has been shown to offer many potential benefits compared to spark ignition (SI) for improving the performance of internal combustion (IC) engines. This paper outlines progress made in recent research on laser ignited IC engines, discusses the potential advantages and control opportunities and considers the challenges faced and prospects for its future implementation. An experimental research effort has been underway at the University of Liverpool (UoL) to extend the stratified speed/load operating region of the gasoline direct injection (GDI) engine through LI research, for which an overview of some of the approaches, testing and results to date are presented. These indicate how LI can be used to improve control of the engine for: leaner operation, reductions in emissions, lower idle speed and improved combustion stability. PMID:24514930

  12. Effects of primary breakup modeling on spray and combustion characteristics of compression ignition engines

    SciTech Connect

    Som, S.; Aggarwal, S.K.

    2010-06-15

    Injector flow dynamics and primary breakup processes are known to play a pivotal role in determining combustion and emissions in diesel engines. In the present study, we examine the effects of primary breakup modeling on the spray and combustion characteristics under diesel engine conditions. The commonly used KH model, which considers the aerodynamically induced breakup based on the Kelvin-Helmholtz instability, is modified to include the effects of cavitation and turbulence generated inside the injector. The KH model and the new (KH-ACT) model are extensively evaluated by performing 3-D time-dependent simulations with detailed chemistry under diesel engine conditions. Results indicate that the inclusion of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. Predictions are compared with measurements for non-evaporating and evaporating sprays, as well as with flame measurements. While both the models are able to reproduce the experimentally observed global spray and combustion characteristics, predictions using the KH-ACT model exhibit closer agreement with measurements in terms of liquid penetration, cone angle, spray axial velocity, and liquid mass distribution for non-evaporating sprays. Similarly, the KH-ACT model leads to better agreement with respect to the liquid length and vapor penetration distance for evaporating sprays, and with respect to the flame lift-off location for combusting sprays. The improved agreement is attributed to the ability of the new model to account for the effects of turbulence and cavitation generated inside the injector, which enhance the primary breakup. Results further indicate that the combustion under diesel engine conditions is characterized by a double-flame structure with a rich premixed reaction zone near the flame stabilization region and a non-premixed reaction zone further downstream. This flame structure is

  13. Fuel quantity modulation in pilot ignited engines

    DOEpatents

    May, Andrew

    2006-05-16

    An engine system includes a first fuel regulator adapted to control an amount of a first fuel supplied to the engine, a second fuel regulator adapted to control an amount of a second fuel supplied to the engine concurrently with the first fuel being supplied to the engine, and a controller coupled to at least the second fuel regulator. The controller is adapted to determine the amount of the second fuel supplied to the engine in a relationship to the amount of the first fuel supplied to the engine to operate in igniting the first fuel at a specified time in steady state engine operation and adapted to determine the amount of the second fuel supplied to the engine in a manner different from the relationship at steady state engine operation in transient engine operation.

  14. Particular bi-fuel application of spark ignition engines

    NASA Astrophysics Data System (ADS)

    Raţiu, S.; Alexa, V.; Kiss, I.

    2016-02-01

    This paper presents a comparative test concerning the operation of a spark-ignition engine, make: Dacia 1300, model: 810.99, fuelled alternatively with gasoline and LPG (Liquefied Petroleum Gas). The tests carried out show, on the one hand, the maintenance of power and torque performances in both engine fuelling cases, for all the engine operation regimes, and, on the other hand, a considerable decrease in CO and HC emissions when using poor mixtures related to LPG fuelling.

  15. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine ignition systems. 25.1165 Section 25... Engine ignition systems. (a) Each battery ignition system must be supplemented by a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if...

  16. 14 CFR 23.1165 - Engine ignition systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine ignition systems. 23.1165 Section 23... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... allow continued engine operation if any battery becomes depleted. (b) The capacity of batteries...

  17. 14 CFR 29.1165 - Engine ignition systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engine ignition systems. 29.1165 Section 29... Engine ignition systems. (a) Each battery ignition system must be supplemented with a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if...

  18. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine ignition systems. 25.1165 Section 25... Engine ignition systems. (a) Each battery ignition system must be supplemented by a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if...

  19. 14 CFR 29.1165 - Engine ignition systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine ignition systems. 29.1165 Section 29... Engine ignition systems. (a) Each battery ignition system must be supplemented with a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if...

  20. 14 CFR 23.1165 - Engine ignition systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engine ignition systems. 23.1165 Section 23... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... allow continued engine operation if any battery becomes depleted. (b) The capacity of batteries...

  1. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine ignition systems. 25.1165 Section 25... Engine ignition systems. (a) Each battery ignition system must be supplemented by a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if...

  2. 14 CFR 23.1165 - Engine ignition systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine ignition systems. 23.1165 Section 23... Controls and Accessories § 23.1165 Engine ignition systems. (a) Each battery ignition system must be... allow continued engine operation if any battery becomes depleted. (b) The capacity of batteries...

  3. 14 CFR 29.1165 - Engine ignition systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine ignition systems. 29.1165 Section 29... Engine ignition systems. (a) Each battery ignition system must be supplemented with a generator that is automatically available as an alternate source of electrical energy to allow continued engine operation if...

  4. Prechamber Compression-Ignition Engine Performance

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H , Jr

    1938-01-01

    Single-cylinder compression-ignition engine tests were made to investigate the performance characteristics of prechamber type of cylinder head. Certain fundamental variables influencing engine performance -- clearance distribution, size, shape, and direction of the passage connecting the cylinder and prechamber, shape of prechamber, cylinder clearance, compression ratio, and boosting -- were independently tested. Results of motoring and of power tests, including several typical indicator cards, are presented.

  5. Plasma igniter for internal combustion engine

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  6. The ignition physics study group supports the compact ignition tokamak and engineering test reactor programs

    SciTech Connect

    Sheffield, J.

    1987-01-01

    This report presents a collection of Vugraphs dealing with the Compact Ignition Tokamak (CIT) and the Engineering Test Reactor (ETR). The role of the Ignition Physics Study Group is defined. Several design goals are presented. (JDH)

  7. Diesel engines vs. spark ignition gasoline engines -- Which is ``greener``?

    SciTech Connect

    Fairbanks, J.W.

    1997-12-31

    Criteria emissions, i.e., NO{sub x}, PM, CO, CO{sub 2}, and H{sub 2}, from recently manufactured automobiles, compared on the basis of what actually comes out of the engines, the diesel engine is greener than spark ignition gasoline engines and this advantage for the diesel engine increases with time. SI gasoline engines tend to get out of tune more than diesel engines and 3-way catalytic converters and oxygen sensors degrade with use. Highway measurements of NO{sub 2}, H{sub 2}, and CO revealed that for each model year, 10% of the vehicles produce 50% of the emissions and older model years emit more than recent model year vehicles. Since 1974, cars with SI gasoline engines have uncontrolled emission until the 3-way catalytic converter reaches operating temperature, which occurs after roughly 7 miles of driving. Honda reports a system to be introduced in 1998 that will alleviate this cold start problem by storing the emissions then sending them through the catalytic converter after it reaches operating temperature. Acceleration enrichment, wherein considerable excess fuel is introduced to keep temperatures down of SI gasoline engine in-cylinder components and catalytic converters so these parts meet warranty, results in 2,500 times more CO and 40 times more H{sub 2} being emitted. One cannot kill oneself, accidentally or otherwise, with CO from a diesel engine vehicle in a confined space. There are 2,850 deaths per year attributable to CO from SI gasoline engine cars. Diesel fuel has advantages compared with gasoline. Refinery emissions are lower as catalytic cracking isn`t necessary. The low volatility of diesel fuel results in a much lower probability of fires. Emissions could be improved by further reducing sulfur and aromatics and/or fuel additives. Reformulated fuel has become the term covering reducing the fuels contribution to emissions. Further PM reduction should be anticipated with reformulated diesel and gasoline fuels.

  8. Ignition device for an internal combustion engine

    SciTech Connect

    Tokura, N.; Kawa, H.; Goto, M.; Morino, S.; Soumiya, M.

    1987-10-27

    An ignition device for an internal combustion engine is described comprising: a direct current power source providing a direct current voltage; an ignition coil having first, second and third primary coils and a secondary coil; a first switching element forming a first closed circuit together with the direct current power source and the first primary coil; a second switching element forming a second closed circuit together with the direct current power source and the second primary coil; a reverse current-flow preventive element defining a current-flow direction in one direction in the first and second closed circuits; current detection elements for detecting current-flow in the first and second closed circuits; a third switching element forming a third closed circuit together with the direct current power source and the first and third primary coils; an ignition command signals and a control circuit for causing the first and second switching elements to push-pull operate.

  9. Railplug Ignition System for Enhanced Engine Performance and Reduced Maintenance

    SciTech Connect

    DK Ezekoye; Matt Hall; Ron Matthews

    2005-08-01

    This Final Technical Report discusses the progress that was made on the experimental and numerical tasks over the duration of this project. The primary objectives of the project were to (1) develop an improved understanding of the spark ignition process, and (2) develop the railplug as an improved ignitor for large bore stationary natural gas engines. We performed fundamental experiments on the physical processes occurring during spark ignition and used the results from these experiments to aid our development of the most complete model of the spark ignition process ever devised. The elements in this model include (1) the dynamic response of the ignition circuit, (2) a chemical kinetics mechanism that is suitable for the reactions that occur in the plasma, (3) conventional flame propagation kinetics, and (4) a multi-dimensional formulation so that bulk flow through the spark gap can be incorporated. This model (i.e., a Fortran code that can be used as a subroutine within an engine modeling code such as KIVA) can be obtained from Prof. Ron Matthews at rdmatt{at}mail.utexas.edu or Prof. DK Ezekoye at dezekoye{at}mail.utexas.edu. Fundamental experiments, engine experiments, and modeling tasks were used to help develop the railplug as a new ignitor for large bore natural gas engines. As the result of these studies, we developed a railplug that could extend the Lean Stability Limit (LSL) of an engine operating at full load on natural gas from {phi} = 0.59 for operation on spark plugs down to {phi} = 0.53 using railplugs with the same delivered energy (0.7 J). However, this delivered energy would rapidly wear out the spark plug. For a conventional delivered energy (<0.05 J), the LSL is {phi} = 0.63 for a spark plug. Further, using a permanent magnet to aid the plasma movement, the LSL was extended to {phi} = 0.54 for a railplug with a delivered energy of only 0.15 J/shot, a typical discharge energy for commercial capacitive discharge ignition systems. Here, it should be

  10. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    SciTech Connect

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injection strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still significant

  11. Enhanced Model for Fast Ignition

    SciTech Connect

    Mason, Rodney J.

    2010-10-12

    Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation's energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, "implicitness and fluid modeling," can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

  12. 14 CFR 23.1165 - Engine ignition systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engine ignition systems. 23.1165 Section 23... Controls and Accessories § 23.1165 Engine ignition systems. Link to an amendment published at 76 FR 75759... automatically available as an alternate source of electrical energy to allow continued engine operation if...

  13. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.

  14. Low emissions compression ignited engine technology

    DOEpatents

    Coleman, Gerald N.; Kilkenny, Jonathan P.; Fluga, Eric C.; Duffy, Kevin P.

    2007-04-03

    A method and apparatus for operating a compression ignition engine having a cylinder wall, a piston, and a head defining a combustion chamber. The method and apparatus includes delivering fuel substantially uniformly into the combustion chamber, the fuel being dispersed throughout the combustion chamber and spaced from the cylinder wall, delivering an oxidant into the combustion chamber sufficient to support combustion at a first predetermined combustion duration, and delivering a diluent into the combustion chamber sufficient to change the first predetermined combustion duration to a second predetermined combustion duration different from the first predetermined combustion duration.

  15. Probability density function treatment of turbulence/chemistry interactions during the ignition of a temperature-stratified mixture for application to HCCI engine modeling

    SciTech Connect

    Bisetti, Fabrizio; Chen, J.-Y.; Hawkes, Evatt R.; Chen, Jacqueline H.

    2008-12-15

    Homogeneous charge compression ignition (HCCI) engine technology promises to reduce NO{sub x} and soot emissions while achieving high thermal efficiency. Temperature and mixture stratification are regarded as effective means of controlling the start of combustion and reducing the abrupt pressure rise at high loads. Probability density function methods are currently being pursued as a viable approach to modeling the effects of turbulent mixing and mixture stratification on HCCI ignition. In this paper we present an assessment of the merits of three widely used mixing models in reproducing the moments of reactive scalars during the ignition of a lean hydrogen/air mixture ({phi}=0.1, p=41atm, and T=1070 K) under increasing temperature stratification and subject to decaying turbulence. The results from the solution of the evolution equation for a spatially homogeneous joint PDF of the reactive scalars are compared with available direct numerical simulation (DNS) data [E.R. Hawkes, R. Sankaran, P.P. Pebay, J.H. Chen, Combust. Flame 145 (1-2) (2006) 145-159]. The mixing models are found able to quantitatively reproduce the time history of the heat release rate, first and second moments of temperature, and hydroxyl radical mass fraction from the DNS results. Most importantly, the dependence of the heat release rate on the extent of the initial temperature stratification in the charge is also well captured. (author)

  16. Ignition study of a petrol/CNG single cylinder engine

    NASA Astrophysics Data System (ADS)

    Khan, N.; Saleem, Z.; Mirza, A. A.

    2005-11-01

    Benefits of laser ignition over the electrical ignition system for Compressed Natural Gas (CNG) engines have fuelled automobile industry and led to an extensive research on basic characteristics to switch over to the emerging technologies. This study was undertaken to determine the electrical and physical characteristics of the electric spark ignition of single cylinder petrol/CNG engine to determine minimum ignition requirements and timeline of ignition events to use in subsequent laser ignition study. This communication briefly reviews the ongoing research activities and reports the results of this experimental study. The premixed petrol and CNG mixtures were tested for variation of current and voltage characteristics of the spark with speed of engine. The current magnitude of discharge circuit was found to vary linearly over a wide range of speed but the stroke to stroke fire time was found to vary nonlinearly. The DC voltage profiles were observed to fluctuate randomly during ignition process and staying constant in rest of the combustion cycle. Fire to fire peaks of current amplitudes fluctuated up to 10% of the peak values at constant speed but increased almost linearly with increase in speed. Technical barriers of laser ignition related to threshold minimum ignition energy, inter-pulse durations and firing sequence are discussed. Present findings provide a basic initiative and background information for designing suitable timeline algorithms for laser ignited leaner direct injected CNG engines.

  17. Distributed ignition method and apparatus for a combustion engine

    SciTech Connect

    Willi, Martin L.; Bailey, Brett M.; Fiveland, Scott B.; Gong, Weidong

    2006-03-07

    A method and apparatus for operating an internal combustion engine is provided. The method comprises the steps of introducing a primary fuel into a main combustion chamber of the engine, introducing a pilot fuel into the main combustion chamber of the engine, determining an operating load of the engine, determining a desired spark plug ignition timing based on the engine operating load, and igniting the primary fuel and pilot fuel with a spark plug at the desired spark plug ignition timing. The method is characterized in that the octane number of the pilot fuel is lower than the octane number of the primary fuel.

  18. Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling

    DOE PAGESBeta

    Musculus, Mark P. B.; Kokjohn, Sage L.; Reitz, Rolf D.

    2015-04-23

    We investigated the combustion process in a dual-fuel, reactivity-controlled compression-ignition (RCCI) engine using a combination of optical diagnostics and chemical kinetics modeling to explain the role of equivalence ratio, temperature, and fuel reactivity stratification for heat-release rate control. An optically accessible engine is operated in the RCCI combustion mode using gasoline primary reference fuels (PRF). A well-mixed charge of iso-octane (PRF = 100) is created by injecting fuel into the engine cylinder during the intake stroke using a gasoline-type direct injector. Later in the cycle, n-heptane (PRF = 0) is delivered through a centrally mounted diesel-type common-rail injector. This injectionmore » strategy generates stratification in equivalence ratio, fuel blend, and temperature. The first part of this study uses a high-speed camera to image the injection events and record high-temperature combustion chemiluminescence. Moreover, the chemiluminescence imaging showed that, at the operating condition studied in the present work, mixtures in the squish region ignite first, and the reaction zone proceeds inward toward the center of the combustion chamber. The second part of this study investigates the charge preparation of the RCCI strategy using planar laser-induced fluorescence (PLIF) of a fuel tracer under non-reacting conditions to quantify fuel concentration distributions prior to ignition. The fuel-tracer PLIF data show that the combustion event proceeds down gradients in the n-heptane distribution. The third part of the study uses chemical kinetics modeling over a range of mixtures spanning the distributions observed from the fuel-tracer fluorescence imaging to isolate the roles of temperature, equivalence ratio, and PRF number stratification. The simulations predict that PRF number stratification is the dominant factor controlling the ignition location and growth rate of the reaction zone. Equivalence ratio has a smaller, but still

  19. Ignition and combustion phenomena in Diesel engines

    NASA Technical Reports Server (NTRS)

    Sass, F

    1928-01-01

    Evidences were found that neither gasification nor vaporization of the injected fuel occurs before ignition; also that the hydrogen coefficient has no significance. However the knowledge of the ignition point and of the "time lag" is important. After ignition, the combustion proceeds in a series of reactions, the last of which at least are now known.

  20. Variable valve timing in a homogenous charge compression ignition engine

    DOEpatents

    Lawrence, Keith E.; Faletti, James J.; Funke, Steven J.; Maloney, Ronald P.

    2004-08-03

    The present invention relates generally to the field of homogenous charge compression ignition engines, in which fuel is injected when the cylinder piston is relatively close to the bottom dead center position for its compression stroke. The fuel mixes with air in the cylinder during the compression stroke to create a relatively lean homogeneous mixture that preferably ignites when the piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. The present invention utilizes internal exhaust gas recirculation and/or compression ratio control to control the timing of ignition events and combustion duration in homogeneous charge compression ignition engines. Thus, at least one electro-hydraulic assist actuator is provided that is capable of mechanically engaging at least one cam actuated intake and/or exhaust valve.

  1. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  2. Fundamental Studies of Ignition Process in Large Natural Gas Engines Using Laser Spark Ignition

    SciTech Connect

    Azer Yalin; Bryan Willson

    2008-06-30

    Past research has shown that laser ignition provides a potential means to reduce emissions and improve engine efficiency of gas-fired engines to meet longer-term DOE ARES (Advanced Reciprocating Engine Systems) targets. Despite the potential advantages of laser ignition, the technology is not seeing practical or commercial use. A major impediment in this regard has been the 'open-path' beam delivery used in much of the past research. This mode of delivery is not considered industrially practical owing to safety factors, as well as susceptibility to vibrations, thermal effects etc. The overall goal of our project has been to develop technologies and approaches for practical laser ignition systems. To this end, we are pursuing fiber optically coupled laser ignition system and multiplexing methods for multiple cylinder engine operation. This report summarizes our progress in this regard. A partial summary of our progress includes: development of a figure of merit to guide fiber selection, identification of hollow-core fibers as a potential means of fiber delivery, demonstration of bench-top sparking through hollow-core fibers, single-cylinder engine operation with fiber delivered laser ignition, demonstration of bench-top multiplexing, dual-cylinder engine operation via multiplexed fiber delivered laser ignition, and sparking with fiber lasers. To the best of our knowledge, each of these accomplishments was a first.

  3. Laser ignition in internal-combustion engines: Sparkless initiation

    NASA Astrophysics Data System (ADS)

    Andronov, A. A.; Gurin, V. A.; Marugin, A. V.; Savikin, A. P.; Svyatoshenko, D. E.; Tukhomirov, A. N.; Utkin, Yu. S.; Khimich, V. L.

    2014-08-01

    Laser ignition has been implemented in a single-cylinder internal combustion engine fueled by gasoline. Indicator diagrams (cylinder pressure versus crank angle) were obtained for laser ignition with nano- and microsecond pulses of an Nd:YAG laser. The maximum power of microsecond pulses was below critical for spark initiation, while the radiation wavelength was outside the spectral range of optical absorption by hydrocarbon fuels. Apparently, the ignition starts due to radiation absorption by the oil residues or carbon deposit in the combustion chamber, so that the ability of engine to operate is retained. This initiation of spark-free ignition shows the possibility of using compact semiconductor quantum-cascade lasers operating at wavelengths of about 3.4 μm (for which the optical absorption by fuel mixtures is high) in ignition systems of internal combustion engines.

  4. Analysis of hydrocarbon emissions from conventional spark-ignition engines

    SciTech Connect

    Shyy, W.

    1982-01-01

    The quench layer on the cylinder wall of a spark-ignition engine is modeled for the case where a tangential or swirl velocity exists. Both asymptotic and numerical methods of solution are used. The usual two layer structure is employed for the turbulent boundary layer and Crocco's integral is used to relate the temperature and velocity fields. The quench layer is defined as the region in which the temperature is less than an ignition temperature. In the first analysis only quenching is considered, and it is shown that the resulting concentration of hydrocarbons is much too high compared ot experimental results. Next, the model is extended to allow diffusion, and it is shown that in one stroke time the majority of the mass of unburned mixture in the original quench layer has diffused out and burned. Finally, tow means of replenishing the unburned mixture in the quench layer, consisting of the desorbing of fuel from the oil film and outgassing from the first ring crevice, are included in the model. Calculations are carried out using parameters associated with a typical production engine. Variations of unburned HC in the exhaust with several important engine parameters are presented. In eahc case, the trends of the calculated data agree with those found experimentally.

  5. Device for controlling ignition timing in internal combustion engine

    SciTech Connect

    Tanaka, A.

    1988-01-12

    A device for controlling ignition timing in an internal combustion engine is described comprising: a. combustion state detection means disposed in the vicinity of the combustion chamber of each cylinder of an internal combustion engine for detecting the state of combustion in the combustion chamber, b. crankshaft angle detection means disposed in the vicinity of the rotating member of the internal combustion engine for detecting the angular position of a crankshaft of the internal combustion engine, c. maximum cylinder pressure angle calculation means which receives the outputs of the combustion state detection means and the crankshaft angle detection means and calculates the maximum cylinder pressure angle, d. cylinder pressure calculation means which receives the output of the combustion state detection means and calculates the cylinder pressure, e. ignition timing calculation means which receives the outputs of the crankshaft angle detection means, the maximum cylinder pressure angle calculation means and the cylinder pressure calculation means and calculates the ignition timing such that the maximum cylinder pressure angle converges on a target angle, and f. ignition means which receives the output of the ignition timing calculation means and ignites a fuel and air mixture in the combustion chamber, whereby the ignition timing calculation means detecting transient conditions in the engine driving operation on the basis of the output of the cylinder pressure calculation means.

  6. Modelling piloted ignition of wood and plastics

    SciTech Connect

    Blijderveen, Maarten van; Bramer, Eddy A.; Brem, Gerrit

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer We model piloted ignition times of wood and plastics. Black-Right-Pointing-Pointer The model is applied on a packed bed. Black-Right-Pointing-Pointer When the air flow is above a critical level, no ignition can take place. - Abstract: To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained.

  7. 14 CFR 29.1165 - Engine ignition systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components..., to minimize the probability of the simultaneous failure of two or more wires as a result...

  8. 14 CFR 29.1165 - Engine ignition systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components..., to minimize the probability of the simultaneous failure of two or more wires as a result...

  9. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components... installed, located, or protected, to minimize the probability of simultaneous failure of two or more...

  10. 14 CFR 25.1165 - Engine ignition systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... simultaneous demands of the engine ignition system and the greatest demands of any electrical system components... installed, located, or protected, to minimize the probability of simultaneous failure of two or more...

  11. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    SciTech Connect

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  12. Hydrogen as an Auxiliary Fuel in Compression-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Foster, H

    1936-01-01

    An investigation was made to determine whether a sufficient amount of hydrogen could be efficiently burned in a compression-ignition engine to compensate for the increase of lift of an airship due to the consumption of the fuel oil. The performance of a single-cylinder four-stroke-cycle compression-ignition engine operating on fuel oil alone was compared with its performance when various quantities of hydrogen were inducted with the inlet air. Engine-performance data, indicator cards, and exhaust-gas samples were obtained for each change in engine-operating conditions.

  13. Control of Ignition and Combustion of Dimethyl Ether in Homogeneous Charge Compression Ignition Engine

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung-Oh; Azetsu, Akihiko; Oikawa, Chikashi

    A homogeneous charge compression ignition (HCCI) engine is known to have high thermal efficiency and low nitrogen oxide emission. However, the control of ignition timing and its combustion period over a wide range of engine speeds and loads is one of the barriers to the realization of the engine. On the lean side of the equivalence ratio, control of ignition is difficult due to its long delay of ignition, and there is knocklike problem under high load. In both computations and experiments of HCCI engine operated on dimethyl ether, the operable range (the possible range of fuel input from just ignitable to knock-occurring state) shifted to the rich side with decreasing intake temperature and amount of mixing of carbon dioxide. The range of fuel input was reduced at low intake temperatures, because the hot flame onset angle advanced more quickly than it did at high intake temperatures. However, the mixing of CO2 caused the operable range to shift to the rich side while retaining the same range. The results of this study indicated the possibility of high-load operation or extension of the load range by exhaust gas recirculation.

  14. FUNDAMENTAL STUDIES OF IGNITION PROCESSES IN LARGE NATURAL GAS ENGINES USING LASER SPARK IGNITION

    SciTech Connect

    Azer Yalin; Morgan Defoort; Bryan Willson

    2005-01-01

    The current report details project progress made during the first quarterly reporting period of the DOE sponsored project ''Fundamental studies of ignition processes in large natural gas engines using laser spark ignition''. The goal of the overall research effort is to develop a laser ignition system for natural gas engines, with a particular focus on using fiber optic delivery methods. In this report we present our successful demonstration of spark formation using fiber delivery made possible though the use of novel coated hollow fibers. We present results of (high power) experimental characterizations of light propagation using hollow fibers using both a high power research grade laser as well as a more compact laser. Finally, we present initial designs of the system we are developing for future on-engine testing using the hollow fibers.

  15. Modeling the spontaneous ignition of coal stockpiles

    SciTech Connect

    Salinger, A.G.; Aris, R.; Derby, J.J. . Dept. of Chemical Engineering and Materials Science)

    1994-06-01

    The spontaneous ignition of coal stockpiles is a serious economic and safety problem. This phenomenon is analyzed using the approach of modern reaction engineering, which is made challenging by the nonlinear interactions of chemical reaction, heat transfer, and buoyancy-driven flows within and around the stockpile. A model developed represents reaction and transport within a realistically-shaped stockpile and transport and flow in the surrounding air. A new methodology based on the Galerkin finite-element allows for efficient solution of flows in both porous and open domains. Bifurcation analysis is used to track steady-state model solutions of relevant parameters, such as the Damkoehler number (dimensionless reaction rate), Rayleigh number (dimensionless driving force for buoyant flow), and dimensionless permeability of the stockpile. The solutions provide an understanding of the roles of various transport mechanisms on the ignition behavior and nonlinear coupling between these mechanisms. Results clearly demonstrate the need for incorporating realistic description of flow and transport in the surrounding air into the model.

  16. Researches on Preliminary Chemical Reactions in Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Muehlner, E.

    1943-01-01

    Chemical reactions can demonstrably occur in a fuel-air mixture compressed in the working cylinder of an Otto-cycle (spark ignition) internal-combustion engine even before the charge is ignited by the flame proceeding from the sparking plug. These are the so-called "prelinminary reactions" ("pre-flame" combustion or oxidation), and an exact knowledge of their characteristic development is of great importance for a correct appreciation of the phenomena of engine-knock (detonation), and consequently for its avoidance. Such reactions can be studied either in a working engine cylinder or in a combustion bomb. The first method necessitates a complicated experimental technique, while the second has the disadvantage of enabling only a single reaction to be studied at one time. Consequently, a new series of experiments was inaugurated, conducted in a motored (externally-driven) experimental engine of mixture-compression type, without ignition, the resulting preliminary reactions being detectable and measurable thermometrically.

  17. Ignition timing control system for internal combustion engines

    SciTech Connect

    Suzuki, Y.; Kimura, S.

    1988-05-31

    An ignition timing control system for an internal combustion engine having a crankshaft is described comprising: magnetic pick-up means for magnetically sensing the angular position of the crankshaft and for generating an output signal indictive thereof; and control means for controlling the ignition timing of the engine based on the output signal from the magnetic pick-up means. The control means includes correction means for correcting a basic ignition timing, which is determined in accordance with at least one engine operating parameter, by the use of a correction value, which is determined in accordance with a time delay in the generation of the output signal from the magnetic pick-up means with respect to the angular position of the crankshaft and which increases with a rise in the rotational speed of the engine.

  18. Torch ignition: Ideal for lean burn premixed-charge engines

    SciTech Connect

    Mavinahally, N.S. ); Assanis, D.N. ); Govinda Mallan, K.R.; Gopalakrishnan, K.V. )

    1994-10-01

    Sluggish flame initiation and propagation, and even potential misfiring, become major problems with lean-fueled, premixed-charge, spark-ignited engines. This work studies torch ignition as a means for improving combustion, fuel economy, and emissions of a retrofitted, large combustion chamber with nonideal spark plug location. A number of alternative configurations, employing different torch chamber designs, spark-plug locations, and materials, were tested under full-load and part-load conditions. Results indicate a considerable extension of the lean operating limit of the engine, especially under part-load conditions. In addition, torch ignition can lead to substantial thermal efficiency gains for either leaner or rich air-fuel ratios than the optimum for the conventional ignition system. On the richer side, in particular, the torch-ignited engine is capable of operating at maximum brake torque spark timings, rather than compromised, knock-limited spark timings used with conventional ignition. This translates into thermal efficiency improvements as high as 8% at an air-fuel ratio of 20:1 and full load.

  19. Ignition points and combustion reactions in Diesel engines. Part I

    NASA Technical Reports Server (NTRS)

    Tausz, J; Schulte, F

    1928-01-01

    The question of whether the fuel should be adapted to the engine or whether it is possible to improve equipment such as carburetors and engines so that as much of the crude oil as possible may be used without further transformation is examined in this report. Various ignition points and fuel mixtures are investigated in this regard.

  20. Plant oils as applied to spark ignition engines

    SciTech Connect

    Hoki, M.; Liljedahl, J.B.; Takeda, S.

    1983-12-01

    Eucalyptus and orange oil blended with gasoline were used to find their burning characteristics and the effect upon engine performance. The appropriate ignition timing for the eucalyptus oil blend fuel for optimum engine performance was investigated as well as the antiknock quality of the fuel.

  1. Modelling piloted ignition of wood and plastics.

    PubMed

    van Blijderveen, Maarten; Bramer, Eddy A; Brem, Gerrit

    2012-09-01

    To gain insight in the startup of an incinerator, this article deals with piloted ignition. A newly developed model is described to predict the piloted ignition times of wood, PMMA and PVC. The model is based on the lower flammability limit and the adiabatic flame temperature at this limit. The incoming radiative heat flux, sample thickness and moisture content are some of the used variables. Not only the ignition time can be calculated with the model, but also the mass flux and surface temperature at ignition. The ignition times for softwoods and PMMA are mainly under-predicted. For hardwoods and PVC the predicted ignition times agree well with experimental results. Due to a significant scatter in the experimental data the mass flux and surface temperature calculated with the model are hard to validate. The model is applied on the startup of a municipal waste incineration plant. For this process a maximum allowable primary air flow is derived. When the primary air flow is above this maximum air flow, no ignition can be obtained. PMID:22595838

  2. A Comparison of Several Methods of Measuring Ignition Lag in a Compression-ignition Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A

    1934-01-01

    The ignition lag of a fuel oil in the combustion chamber of a high speed compression-ignition engine was measured by three different methods. The start of injection of the fuel as observed with a Stoborama was taken as the start of the period of ignition lag in all cases. The end of the period of ignition lag was determined by observation of the appearance of incandescence in the combustion chamber, by inspection of a pressure-time card for evidence of pressure rise, and by analysis of the indicator card for evidence of the combustion of a small but definite quantity of fuel. A comparison of the values for ignition lags obtained by these three methods indicates that the appearance of incandescence is later than other evidences of the start of combustion, that visual inspection of a pressure-time diagram gives consistent and usable values with a minimum requirement of time and/or apparatus, and that analysis of the indicator card is not worth while for ignition lag alone.

  3. 40 CFR 1036.620 - Alternate CO2 standards based on model year 2011 compression-ignition engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-duty engines is equal to the baseline emission rate multiplied by 0.970. The in-use FEL for these... year 2011. If the baseline engine was certified to a NOX FEL above the standard and incorporated the... rate to be equivalent to an engine meeting the 0.20 g/hp-hr NOX standard (or your higher FEL...

  4. 40 CFR 1036.620 - Alternate CO2 standards based on model year 2011 compression-ignition engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-duty engines is equal to the baseline emission rate multiplied by 0.970. The in-use FEL for these... year 2011. If the baseline engine was certified to a NOX FEL above the standard and incorporated the... rate to be equivalent to an engine meeting the 0.20 g/hp-hr NOX standard (or your higher FEL...

  5. Influence of several factors on ignition lag in a compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Voss, Fred

    1932-01-01

    This investigation was made to determine the influence of fuel quality, injection advance angle, injection valve-opening pressure, inlet-air pressure, compression ratio, and engine speed on the time lag of auto-ignition of a Diesel fuel oil in a single-cylinder compression-ignition engine as obtained from an analysis of indicator diagrams. Three cam-operated fuel-injection pumps, two pumps cams, and an automatic injection valve with two different nozzles were used. Ignition lag was considered to be the interval between the start of injection of the fuel as determined with a Stroborama and the start of effective combustion as determined from the indicator diagram, the latter being the point where 4.0 x 10(exp-6) pound of fuel had been effectively burned. For this particular engine and fuel it was found that: (1) for a constant start and the same rate of fuel injection up the point of cut-off, a variation in fuel quantity from 1.2 x 10(exp-4) to 4.1 x 10(exp-4) pound per cycle has no appreciable effect on the ignition lag; (2) injection advance angle increases or decreases the lag according to whether density, temperature, or turbulence has the controlling influence; (3) increase in valve-opening pressure slightly increases the lag; and (4) increase of inlet-air pressure, compression ratio, and engine speed reduces the lag.

  6. A Study on Homogeneous Charge Compression Ignition Gasoline Engines

    NASA Astrophysics Data System (ADS)

    Kaneko, Makoto; Morikawa, Koji; Itoh, Jin; Saishu, Youhei

    A new engine concept consisting of HCCI combustion for low and midrange loads and spark ignition combustion for high loads was introduced. The timing of the intake valve closing was adjusted to alter the negative valve overlap and effective compression ratio to provide suitable HCCI conditions. The effect of mixture formation on auto-ignition was also investigated using a direct injection engine. As a result, HCCI combustion was achieved with a relatively low compression ratio when the intake air was heated by internal EGR. The resulting combustion was at a high thermal efficiency, comparable to that of modern diesel engines, and produced almost no NOx emissions or smoke. The mixture stratification increased the local A/F concentration, resulting in higher reactivity. A wide range of combustible A/F ratios was used to control the compression ignition timing. Photographs showed that the flame filled the entire chamber during combustion, reducing both emissions and fuel consumption.

  7. Hydrogen-fueled diesel engine without timed ignition

    NASA Technical Reports Server (NTRS)

    Homan, H. S.; De Boer, P. C. T.; Mclean, W. J.; Reynolds, R. K.

    1979-01-01

    Experiments were carried out to investigate the feasibility of converting a diesel engine to hydrogen-fueled operation without providing a timed ignition system. Use was made of a glow plug and a multiple-strike spark plug. The glow plug was found to provide reliable ignition and smooth engine operation. It caused the hydrogen to ignite almost immediately upon the start of injection. Indicated mean effective pressures were on the order of 1.3 MPa for equivalence ratios between 0.1 and 0.4 at a compression ratio of 18. This is significantly higher than the corresponding result obtained with diesel oil (about 0.6 MPa for equivalence ratios between 0.3 and 0.9). Indicated thermal efficiencies were on the order of 0.4 for hydrogen and 0.20-0.25 for diesel oil. Operation with the multiple-strike spark system yielded similar values for IMEP and efficiency, but gave rise to large cycle-to-cycle variations in the delay between the beginning of injection and ignition. Large ignition delays were associated with large amplitude pressure waves in the combustion chamber. The measured NO(x) concentrations in the exhaust gas were of the order of 50-100 ppm. This is significantly higher than the corresponding results obtained with premixed hydrogen and air at low equivalence ratios. Compression ignition could not be achieved even at a compression ratio of 29.

  8. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOEpatents

    Flowers, Daniel L.

    2005-08-02

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  9. Turbulent flame propagation and combustion in spark ignition engines

    NASA Technical Reports Server (NTRS)

    Beretta, G. P.; Rashidi, M.; Keck, J. C.

    1983-01-01

    Pressure measurements synchronized with high-speed motion-picture records of flame propagation have been made in a transparent-piston engine. The data show that the initial expansion speed of the flame front is close to that of a laminar flame. As the flame expands, its speed rapidly accelerates to a quasi-steady value comparable with that of the turbulent velocity fluctuations in the unburned gas. During the quasi-steady propagation phase, a significant fraction of the gas behind the visible front is unburned. Final burnout of the charge may be approximated by an exponential decay in time. The data have been analyzed in a model-independent way to obtain a set of empirical equations for calculating mass burning rates in spark-ignition engines. The burning equations contain three parameters: the laminar burning speed, a characteristic speed (uT), and a characteristic length (lT). The laminar burning speed is known from laboratory measurements. Tentative correlations relating uT and lT to engine geometry and operating variables have been derived from the engine data.

  10. Engine ignition timing by combustion pressure harmonic phase difference

    SciTech Connect

    Jensen, E.J.

    1987-10-13

    An ignition timing control for an internal combustion engine is described including a combustion chamber, means effective to ignite a combustible charge in the combustion chamber and power output apparatus including a rotating crankshaft driven in response to the expansion of the ignited combustible charge. The ignition timing control comprises, in combination: pressure sensing mean effective to sense the pressure in the combustion chamber and generate a combustion pressure signal therefrom; means effective to sense the rotational speed of the crankshaft; frequency selective filter means for generating at least two predetermined harmonic signals of the combustion pressure signal, the frequency selective filter means being responsive to the last means to maintain the frequencies of the harmonic signals at whole number multiples of the firing frequency of the engine as the rotational speed of the crankshaft changes; means effective to detect the times of corresponding peaks in the two predetermined harmonic signals and determine the difference therebetween; and means for varying the ignition timing of the engine to reduce the difference to zer in closed loop operation.

  11. Precision distributorless ignition control system for internal combustion engines

    SciTech Connect

    Long, A.

    1987-03-17

    An electronic ignition system is described for controlling as a function of a selected engine parameter the ignition instants of an internal combustion engine having at least one cylinder, a piston, and a rotatable crankshaft coupled to the piston to be rotatably driven as combustions within the cylinder occur at the ignition instants. The crankshaft has at least one first reference position defining a positional relationship of the crankshaft to the cylinder, the crankshaft having a second reference position disposed a fixed angular distance before the first reference position considering the rotational direction of the crankshaft. The ignition instant is intended to occur upon the termination of a variable crankshaft arc beginning at the second reference position, the length of the crankshaft arc determined as a function of the selected engine parameter. The electronic ignition system comprises: (a) a rotor coupled to rotate with the crankshaft and having at least one first reference indicium and N second reference indicia thereon for each first reference indicium, the first reference indicium positionally related to the second reference position. The second reference indicia includes at least one second reference indicium aligned with the first reference indicium, the second reference indicia being spaced from each other by substantially equal angles; and (b) first and second signal generating means disposed at a point fixed in relation to the rotation of the crankshaft for providing respectively a first train of signals and a second train of signals.

  12. Fundamental Interactions in Gasoline Compression Ignition Engines with Fuel Stratification

    NASA Astrophysics Data System (ADS)

    Wolk, Benjamin Matthew

    Transportation accounted for 28% of the total U.S. energy demand in 2011, with 93% of U.S. transportation energy coming from petroleum. The large impact of the transportation sector on global climate change necessitates more-efficient, cleaner-burning internal combustion engine operating strategies. One such strategy that has received substantial research attention in the last decade is Homogeneous Charge Compression Ignition (HCCI). Although the efficiency and emissions benefits of HCCI are well established, practical limits on the operating range of HCCI engines have inhibited their application in consumer vehicles. One such limit is at high load, where the pressure rise rate in the combustion chamber becomes excessively large. Fuel stratification is a potential strategy for reducing the maximum pressure rise rate in HCCI engines. The aim is to introduce reactivity gradients through fuel stratification to promote sequential auto-ignition rather than a bulk-ignition, as in the homogeneous case. A gasoline-fueled compression ignition engine with fuel stratification is termed a Gasoline Compression Ignition (GCI) engine. Although a reasonable amount of experimental research has been performed for fuel stratification in GCI engines, a clear understanding of how the fundamental in-cylinder processes of fuel spray evaporation, mixing, and heat release contribute to the observed phenomena is lacking. Of particular interest is gasoline's pressure sensitive low-temperature chemistry and how it impacts the sequential auto-ignition of the stratified charge. In order to computationally study GCI with fuel stratification using three-dimensional computational fluid dynamics (CFD) and chemical kinetics, two reduced mechanisms have been developed. The reduced mechanisms were developed from a large, detailed mechanism with about 1400 species for a 4-component gasoline surrogate. The two versions of the reduced mechanism developed in this work are: (1) a 96-species version and (2

  13. Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations

    SciTech Connect

    Flowers, D L

    2002-06-07

    Homogeneous charge compression ignition (HCCI) engines are being considered as an alternative to diesel engines. The HCCI concept involves premixing fuel and air prior to induction into the cylinder (as is done in current spark-ignition engine) then igniting the fuel-air mixture through the compression process (as is done in current diesel engines). The combustion occurring in an HCCI engine is fundamentally different from a spark-ignition or Diesel engine in that the heat release occurs as a global autoignition process, as opposed to the turbulent flame propagation or mixing controlled combustion used in current engines. The advantage of this global autoignition is that the temperatures within the cylinder are uniformly low, yielding very low emissions of oxides of nitrogen (NO{sub x}, the chief precursors to photochemical smog). The inherent features of HCCI combustion allows for design of engines with efficiency comparable to, or potentially higher than, diesel engines. While HCCI engines have great potential, several technical barriers exist which currently prevent widespread commercialization of this technology. The most significant challenge is that the combustion timing cannot be controlled by typical in-cylinder means. Means of controlling combustion have been demonstrated, but a robust control methodology that is applicable to the entire range of operation has yet to be developed. This research focuses on understanding basic characteristics of controlling and operating HCCI engines. Experiments and detailed chemical kinetic simulations have been applied to the characterize some of the fundamental operational and design characteristics of HCCI engines. Experiments have been conducted on single and multi-cylinder engines to investigate general features of how combustion timing affects the performance and emissions of HCCI engines. Single-zone modeling has been used to characterize and compare the implementation of different control strategies. Multi

  14. Utilization of Alcohol Fuel in Spark Ignition and Diesel Engines.

    ERIC Educational Resources Information Center

    Berndt, Don; Stengel, Ron

    These five units comprise a course intended to prepare and train students to conduct alcohol fuel utilization seminars in spark ignition and diesel engines. Introductory materials include objectives and a list of instructor requirements. The first four units cover these topics: ethanol as an alternative fuel (technical and economic advantages,…

  15. Automobile Engine: Basic Ignition Timing. Fordson Bilingual Demonstration Project.

    ERIC Educational Resources Information Center

    Vick, James E.

    These two vocational instructional modules on basic automobile ignition timing and on engine operation, four-stroke cycle, are two of eight such modules designed to assist recently arrived Arab students, limited in English proficiency (LEP), in critical instructional areas in a comprehensive high school. Goal stated for this module is for the…

  16. Ignition system for multi-cylinder 4 cycle engine

    SciTech Connect

    Imoto, K.; Kayama, K.

    1987-10-27

    An ignition system for a four cycle ''V'' type combustion engine is described having at least two cylinders and comprising: first pulse generating means for generating first and second pulses. The first pulse is generated when a crankshaft of the engine revolves by a first setting angle from a base position and the first pulse includes a first half-pulse and a second half-pulse whose polarities are different from each other. The second pulse is generated when the crankshaft revolves by a second setting angle which is an angle greater than the first setting angle and is a function of the number of cylinders. Second pulse generating means for generating a third pulse each time the crankshaft of the engine revolves twice and at a position that the crankshaft revolves by a third setting angle. The third setting angle is greater than the first setting angle but smaller than the second setting angle. Ignition generating means for providing an ignition signal to at least one of the two cylinders in response to a first half-pulse and to provide an ignition signal to a second cylinder in response to a second pulse, voltage hold circuit means for developing a first charge state in response to a third pulse and for going to a second charge state in response to a second half-pulse, and means for prohibiting ignition generation for inhibiting a first half-pulse and second pulse from generating ignition signals depending on the charge/discharge state of the voltage hold circuit means during the period from a third pulse to a second half-pulse.

  17. Photographic characterization of spark-ignition engine fuel injectors

    NASA Technical Reports Server (NTRS)

    Evanich, P. L.

    1978-01-01

    Manifold port fuel injectors suitable for use in general aviation spark-ignition engines were evaluated qualitatively on the basis of fuel spray characteristics. Photographs were taken at various fuel flow rates or pressure levels. Mechanically and electronically operated pintle injectors generally produced the most atomization. The plain-orifice injectors used on most fuel-injected general aviation engines did not atomize the fuel when sprayed into quiescent air.

  18. The Quiescent-Chamber Type Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Foster, H H

    1937-01-01

    Report presents the results of performance tests of a single-cylinder 4-stroke-cycle compression-ignition engine having a vertical disk form of combustion chamber without air flow. The number, size, and direction of the orifices of the fuel-injection nozzles used were independently varied. A table and graphs are presented showing the performance of the engine with different nozzles; results of tests at different compression ratios, boost pressures, and coolant temperatures are also included.

  19. High load operation in a homogeneous charge compression ignition engine

    SciTech Connect

    Duffy, Kevin P.; Kieser, Andrew J.; Liechty, Michael P.; Hardy, William L.; Rodman, Anthony; Hergart, Carl-Anders

    2008-12-23

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  20. Engine combustion control with ignition timing by pressure ratio management

    SciTech Connect

    Matekunas, F.A.

    1986-11-18

    This patent describes an ignition timing control for an internal combustion engine of the type having a combustion chamber, a rotating crankshaft and ignition apparatus for the combustion chamber. The control comprises in combination: means responsive to combustion chamber pressure to generate signals for a combustion event indicating combustion pressure and motored pressure at a first predetermined crankshaft rotational angle during combustion and at a second predetermined crankshaft rotational angle at substantially complete combustion; means effective to compute, from the signals, first and second pressure ratios of combustion pressure to motored pressure at the first and second crankshaft rotational angles, respectively; and means responsible to the last means to adjust the ignition timing to maintain a predetermined ratio between the first and second pressure ratios each decreased by one, whereby combustion timing is controlled in closed loop to an MBT value.

  1. LES of an ignition sequence in a gas turbine engine

    SciTech Connect

    Boileau, M.; Staffelbach, G.; Cuenot, B.; Poinsot, T.; Berat, C.

    2008-07-15

    Being able to ignite or reignite a gas turbine engine in a cold and rarefied atmosphere is a critical issue for many manufacturers. From a fundamental point of view, the ignition of the first burner and the flame propagation from one burner to another are phenomena that are usually not studied. The present work is a large eddy simulation (LES) of these phenomena. To simulate a complete ignition sequence in an annular chamber, LES has been applied to the full 360 geometry, including 18 burners. This geometry corresponds to a real gas turbine chamber. Massively parallel computing (700 processors on a Cray XT3 machine) was essential to perform such a large calculation. Results show that liquid fuel injection has a strong influence on the ignition times. Moreover, the rate of flame progress from burner to burner is much higher than the turbulent flame speed due to a major effect of thermal expansion. This flame speed is also strongly modified by the main burner aerodynamics due to the swirled injection. Finally, the variability of the combustor sectors and quadrant ignition times is highlighted. (author)

  2. Precision Engineering within the National Ignition Campaign

    SciTech Connect

    Taylor, J S; Carlisle, K; Klingmann, J L; Geraghty, P; Saito, T T; Montesanti, R C

    2010-02-17

    In this very brief talk, we'll discuss how precision engineering impacts 4 key areas of NIF: (1) Diamond turning of KDP crystals; (2) Mitigation of laser damage on optics; (3) Alignment of lasers, targets, diagnostics; (4) Target fabrication.

  3. Advanced Technology Spark-Ignition Aircraft Piston Engine Design Study

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    The advanced technology, spark ignition, aircraft piston engine design study was conducted to determine the improvements that could be made by taking advantage of technology that could reasonably be expected to be made available for an engine intended for production by January 1, 1990. Two engines were proposed to account for levels of technology considered to be moderate risk and high risk. The moderate risk technology engine is a homogeneous charge engine operating on avgas and offers a 40% improvement in transportation efficiency over present designs. The high risk technology engine, with a stratified charge combustion system using kerosene-based jet fuel, projects a 65% improvement in transportation efficiency. Technology enablement program plans are proposed herein to set a timetable for the successful integration of each item of required advanced technology into the engine design.

  4. Analytical model for fast-shock ignition

    SciTech Connect

    Ghasemi, S. A. Farahbod, A. H.; Sobhanian, S.

    2014-07-15

    A model and its improvements are introduced for a recently proposed approach to inertial confinement fusion, called fast-shock ignition (FSI). The analysis is based upon the gain models of fast ignition, shock ignition and considerations for the fast electrons penetration into the pre-compressed fuel to examine the formation of an effective central hot spot. Calculations of fast electrons penetration into the dense fuel show that if the initial electron kinetic energy is of the order ∼4.5 MeV, the electrons effectively reach the central part of the fuel. To evaluate more realistically the performance of FSI approach, we have used a quasi-two temperature electron energy distribution function of Strozzi (2012) and fast ignitor energy formula of Bellei (2013) that are consistent with 3D PIC simulations for different values of fast ignitor laser wavelength and coupling efficiency. The general advantages of fast-shock ignition in comparison with the shock ignition can be estimated to be better than 1.3 and it is seen that the best results can be obtained for the fuel mass around 1.5 mg, fast ignitor laser wavelength ∼0.3  micron and the shock ignitor energy weight factor about 0.25.

  5. A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications

    SciTech Connect

    Pei, Yuanjiang; Mehl, Marco; Liu, Wei; Lu, Tianfeng; Pitz, William J.; Som, Sibendu

    2015-05-12

    A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multi-component mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine and shock tube, speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in shock tubes and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1 – 80 bar, equivalence ratio of 0.5 – 2.0, and initial temperature of 700 – 1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the Engine Combustion Network (ECN) website. These multi-dimensional simulations were performed using a Representative Interactive Flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regards to the predictions of ignition delay and lift-off length at different ambient temperatures.

  6. The spark-ignition aircraft piston engine of the future

    NASA Technical Reports Server (NTRS)

    Stuckas, K. J.

    1980-01-01

    Areas of advanced technology appropriate to the design of a spark-ignition aircraft piston engine for the late 1980 time period were investigated and defined. Results of the study show that significant improvements in fuel economy, weight and size, safety, reliability, durability and performance may be achieved with a high degree of success, predicated on the continued development of advances in combustion systems, electronics, materials and control systems.

  7. A comparison between direct spark ignition and prechamber ignition in an internal combustion engine

    SciTech Connect

    Cloutman, L.D.

    1993-12-03

    We simulated the flow field and flame propagation near top dead center in a generic large-bore internal combustion engine using the COYOTE computer program, which is based on the full Navier-Stokes equations for a fluid mixture. The combustion chamber is a right circular cylinder, and the main charge is uniformly premixed. The calculations are axisymmetric. The results illustrate the differences in flow patterns, flame propagation, and thermal NO production between ignition with a spark plug and with a small prechamber. In the spark-ignited case, the flame propagates away from the spark plug approximately as a segment of a spherical surface, just as expected. With the prechamber, a high speed jet of hot combustion products shoots into the main chamber, quickly producing a large flame sheet that spreads along the piston face. The prechamber run consumes all of the fuel in half the time required by the spark-ignited case. The two cases produce comparable amounts of thermal NO at the end of fuel combustion.

  8. Experiments and Computational Modeling of Pulverized-Clak Ignition.

    SciTech Connect

    Chen, J.C.

    1997-08-01

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals. It is unclear whether ignition occurs first at the particle-oxygen interface (heterogeneous ignition) or if it occurs in the gas phase due to ignition of the devolatilization products (homogeneous ignition). Furthermore, there have been no previous studies aimed at determining the dependence of the ignition mechanism on variations in experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. We propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition mechanism of various coals by direct observation, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. We propose to use a novel laser-based ignition experiment to achieve our objectives.

  9. Ignition angle advancer for internal combustion engine

    SciTech Connect

    Yamazaki, T.

    1986-08-19

    This patent describes a throttle and spark advance control system for an internal combustion engine having a spark advance mechanism and a throttle valve comprising an operator controlled element, a throttle control lever supported for pivotal movement about an axis and directly connected to the operator controlled element for rotation under operator control. It also includes means for positively connecting the throttle control lever to the throttle valve for positioning the throttle valve in response to movement of the throttle control lever. A spark advance control lever supported for pivotal movement about an axis is included as well as motion transmitting means for operatively connecting the spark advance control lever to the throttle control lever for pivotal movement of the spark advance control lever about its axis in response to pivotal movement of the throttle control lever about its axis and the spark control lever to the spark advance mechanism for controlling the position of the spark advance mechanism in response to the position of the throttle control lever.

  10. Combustion in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1933-01-01

    An investigation conducted to determine the factors which control the combustion in a high-speed compression-ignition engine is presented. Indicator cards were taken with the Farnboro indicator and analyzed according to the tangent method devised by Schweitzer. The analysis show that in a quiescent combustion chamber increasing the time lag of auto-ignition increases the maximum rate of combustion. Increasing the maximum rate of combustion increases the tendency for detonation to occur. The results show that by increasing the air temperature during injection the start of combustion can be forced to take place during injection and so prevent detonation from occurring. It is shown that the rate of fuel injection does not in itself control the rate of combustion.

  11. Reactivity Controlled Compression Ignition (RCCI) Combustion on a Multi-Cylinder Light-Duty Diesel Engine

    SciTech Connect

    Curran, Scott; Hanson, Reed M; Wagner, Robert M

    2012-01-01

    Reactivity controlled compression ignition is a low-temperature combustion technique that has been shown, both in computational fluid dynamics modeling and single-cylinder experiments, to obtain diesel-like efficiency or better with ultra-low nitrogen oxide and soot emissions, while operating primarily on gasoline-like fuels. This paper investigates reactivity controlled compression ignition operation on a four-cylinder light-duty diesel engine with production-viable hardware using conventional gasoline and diesel fuel. Experimental results are presented over a wide speed and load range using a systematic approach for achieving successful steady-state reactivity controlled compression ignition combustion. The results demonstrated diesel-like efficiency or better over the operating range explored with low engine-out nitrogen oxide and soot emissions. A peak brake thermal efficiency of 39.0% was demonstrated for 2600 r/min and 6.9 bar brake mean effective pressure with nitrogen oxide emissions reduced by an order of magnitude compared to conventional diesel combustion operation. Reactivity controlled compression ignition emissions and efficiency results are compared to conventional diesel combustion operation on the same engine.

  12. Emission of a Dual-Fuel Turbocharged Compression Ignition Engine

    NASA Astrophysics Data System (ADS)

    Rózycki, Andrzej

    2012-02-01

    The paper describes the results of a four-cylinder dual fuel turbocharged compression ignition engine. The aim of the study was to determine the maximum CNG share in thefuel mixture delivered into the cylinder. Analysis of the investigation results showed that the CNG energy share in the fuel charge delivered into the cylinder can reach 45%. At that level of CNG energy share a 15% reduction in maximum torque is achieved in comparison with the standard fuelling. The unburnt hydrocarbon emission increases significantly. Emissions of other principal pollutants reach values comparable with those obtained at standard fuelling.

  13. Inevitability of Engine-Out Nox Emissions from Spark-Ignition and Diesel Engines

    SciTech Connect

    Flynn, P F; Hunter, G L; Farrell, L A; Durrett, R P; Akinyemi, O C; Westbrook, C K; Pitz, W J

    2000-01-11

    Internal combustion engines, both spark ignition and Diesel, are dominant types of vehicle power sources and also provide power for other important stationary applications. Overall, these engines are a central part of power generation in modern society. However, these engines, burning hydrocarbon fuels from natural gas to gasoline and Diesel fuel, are also responsible for a great deal of pollutant emissions to the environment, especially oxides of nitrogen (NO{sub x}) and unburned hydrocarbons (UHC). In recent years, pollutant species emissions from internal combustion engines have been the object of steadily more stringent limitations from various governmental agencies. Engine designers have responded by developing engines that reduce emissions to accommodate these tighter limitations. However, as these limits become ever more stringent, the ability of engine design modifications to meet those limits must be questioned. Production of NO{sub x} in internal combustion engines is primarily due to the high temperature extended Zeldovich reaction mechanism: (1) O + N{sub 2} = NO + N; (2) N + O{sub 2} = NO + O; and (3) N + OH = NO + H. The rates of these reactions become significant when combustion temperatures reach or exceed about 2000K. This large temperature dependence, characterized by large activation energies for the rates of the reactions listed here, is a direct result of the need to break apart the tightly bonded oxygen and nitrogen molecules. The strongest bond is the triple bond in the N {triple_bond} N molecule, resulting in an activation energy of about 75 kcal/mole for Reaction (1), which is the principal cause for the large temperature dependence of the extended Zeldovich NO{sub x} mechanism. In most engines, NO{sub x} is therefore produced primarily in the high temperature combustion product gases. Using a reliable kinetic model for NO{sub x} production such as the GRI Mechanism [1] or the Miller-Bowman model [2] with hydrocarbon products at

  14. Perspective of laser-induced plasma ignition of hydrocarbon fuel in Scramjet engine

    NASA Astrophysics Data System (ADS)

    Yang, Leichao; Li, Xiaohui; Liang, Jianhan; Yu, Xin; Li, Xipeng

    2016-01-01

    Laser-induced plasma ignition of an ethylene fuelled cavity was successfully conducted in a model scramjet engine combustor. The ethylene was injected 10mm upstream of cavity flameholder from 3 orifices 60 degree inclined relative to freestream direction. The 1064nm laser beam, from a Q-switched Nd:YAG laser source running at 3Hz and 200mJ per pulse, was focused into cavity for ignition. High speed photography was used to capture the transient ignition process. The laser-induced gas breakdown, flame kernel generation and propagation were all recorded and ensuing stable supersonic combustion was established in cavity. The flame kernel is found rotating anti-clockwise and gradually moves upwards as the entrainment of circulation flow in cavity. The flame is then stretched from leading edge to trailing edge to fully fill the entire cavity. Eventually, a stable combustion is achieved roughly 900μs after the laser pulse. The results show promising potentials for practical application. The perspective of laser-induced plasma ignition of hydrocarbon fuel in scramjet engine is outlined.

  15. Dynamic control of a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P.; Mehresh, Parag; Schuh, David; Kieser, Andrew J.; Hergart, Carl-Anders; Hardy, William L.; Rodman, Anthony; Liechty, Michael P.

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  16. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    SciTech Connect

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  17. Auto-ignition of hydrazine by engineering materials

    NASA Technical Reports Server (NTRS)

    Perkins, J. H.; Riehl, W. A.

    1978-01-01

    Hydrazine, being a monopropellant, can explode and/or detonate in contact with some materials. This has been generally recognized and minimized by testing the compatibility of engineering materials with hydrazine at ambient temperature. Very limited tests have been done at elevated temperatures. To assess the potential hazard of hydrazine leakage into a propulsion compartment (boattail), autoignition characteristics of hydrazine were tested on 18 engineering materials and coatings at temperatures of 120 C to over 330 C. Furthermore, since hydrazine can decompose violently in nitrogen or helium, common purging cannot assure safety. Therefore tests were also made in nitrogen. Detonations occurred on contact with five materials in air. Similar tests in nitrogen did not lead to ignition.

  18. Flatness-based nonlinear embedded control and filtering for spark-ignited engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos; Siano, Pierluigi; Arsie, Ivan

    2014-10-01

    Highly efficient embedded control units for transportation means make use of advanced nonlinear control and estimation methods. In this research article a new nonlinear filtering and control method is applied to spark ignited (SI) engines. The proposed SI engine's control scheme requires the implementation of differential flatness theory together with a new nonlinear filtering approach (known as Derivative-free nonlinear Kalman Filtering). The considered method succeeds the efficient control of the SI engine parameters such as intake pressure and turn speed. To bring the control loop at a working stage additional problems have to be solved. These are for instance that (i) certain variables of the engine's state vector cannot be measured directly (e.g. the ones associated with input pressure), (ii) there are inaccuracies in the dynamic model of the SI engine while external perturbations and disturbances (such as friction torques) are exerted to the engine. The performance of the proposed control scheme is tested through simulation experiments.

  19. Lightweight, low compression aircraft diesel engine. [converting a spark ignition engine to the diesel cycle

    NASA Technical Reports Server (NTRS)

    Gaynor, T. L.; Bottrell, M. S.; Eagle, C. D.; Bachle, C. F.

    1977-01-01

    The feasibility of converting a spark ignition aircraft engine to the diesel cycle was investigated. Procedures necessary for converting a single cylinder GTS10-520 are described as well as a single cylinder diesel engine test program. The modification of the engine for the hot port cooling concept is discussed. A digital computer graphics simulation of a twin engine aircraft incorporating the diesel engine and Hot Fort concept is presented showing some potential gains in aircraft performance. Sample results of the computer program used in the simulation are included.

  20. Spark Ignition Characteristics of a L02/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine s augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  1. Spark Ignition Characteristics of a LO2/LCH4 Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of non-toxic propellants in future exploration vehicles would enable safer, more cost effective mission scenarios. One promising "green" alternative to existing hypergols is liquid methane/liquid oxygen. To demonstrate performance and prove feasibility of this propellant combination, a 100lbf LO2/LCH4 engine was developed and tested under the NASA Propulsion and Cryogenic Advanced Development (PCAD) project. Since high ignition energy is a perceived drawback of this propellant combination, a test program was performed to explore ignition performance and reliability versus delivered spark energy. The sensitivity of ignition to spark timing and repetition rate was also examined. Three different exciter units were used with the engine's augmented (torch) igniter. Propellant temperature was also varied within the liquid range. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks (in quiescent, room air). The escalating pressure and flow environment increases spark impedance and may at some point compromise an exciter.s ability to deliver a spark. Reduced spark energies of these sparks result in more erratic ignitions and adversely affect ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1-6mJ, though multiple, similarly timed sparks of 55-75mJ were required for reliable ignition. An optimum time interval for spark application and ignition coincided with propellant introduction to the igniter and engine. Shifts of ignition timing were manifested by changes in the characteristics of the resulting ignition.

  2. Exhaust Emissions Measured Under Real Traffic Conditions from Vehicles Fitted with Spark Ignition and Compression Ignition Engines

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Lijewski, Piotr; Fuć, Paweł

    2011-06-01

    The tests performed under real traffic conditions provide invaluable information on the relations between the engine parameters, vehicle parameters and traffic conditions (traffic congestion) on one side and the exhaust emissions on the other. The paper presents the result of road tests obtained in an urban and extra-urban cycles for vehicles fitted with different engines, spark ignition engine and compression ignition engine. For the tests a portable emission analyzer SEMTECH DS. by SENSORS was used. This analyzer provides online measurement of the concentrations of exhaust emission components on a vehicle in motion under real traffic conditions. The tests were performed in city traffic. A comparative analysis has been presented of the obtained results for vehicles with individual powertrains.

  3. System and method for controlling ignition timing of an internal combustion engine

    SciTech Connect

    Asano, M.

    1987-04-28

    A method is described for controlling an engine ignition timing, comprising the steps of: detecting an engine crankshaft rotational angle; calculating a deviation between the crankshaft rotational angle detected and a predetermined target value; calculating an error amount based on an accumulation of the deviation calculated; determining whether the error amount exceeds a predetermined allowable limit; and correcting the current ignition advance angle value based on the engine operating condition by an engine crankshaft rotational angle value. A system is described for controlling an engine ignition timing, comprising: first means for detecting an engine crankshaft rotational angle; second means for calculating a deviation between the detected value of the crankshaft rotational angle and a predetermined target value; third means for calculating an error amount based on an accumulated value of the deviation; fourth means for determining whether the error amount exceeds a predetermined allowable limit; and fifth means for correcting the ignition timing by an angle value.

  4. Modeling the Auto-Ignition of Biodiesel Blends with a Multi-Step Model

    SciTech Connect

    Toulson, Dr. Elisa; Allen, Casey M; Miller, Dennis J; McFarlane, Joanna; Schock, Harold; Lee, Tonghun

    2011-01-01

    There is growing interest in using biodiesel in place of or in blends with petrodiesel in diesel engines; however, biodiesel oxidation chemistry is complicated to directly model and existing surrogate kinetic models are very large, making them computationally expensive. The present study describes a method for predicting the ignition behavior of blends of n-heptane and methyl butanoate, fuels whose blends have been used in the past as a surrogate for biodiesel. The autoignition is predicted using a multistep (8-step) model in order to reduce computational time and make this a viable tool for implementation into engine simulation codes. A detailed reaction mechanism for n-heptane-methyl butanoate blends was used as a basis for validating the multistep model results. The ignition delay trends predicted by the multistep model for the n-heptane-methyl butanoate blends matched well with that of the detailed CHEMKIN model for the majority of conditions tested.

  5. Calculations of the Performance of a Compression-Ignition Engine-Compressor Turbine Combination I : Performance of a Highly Supercharged Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Sanders, J. C.; Mendelson, Alexander

    1945-01-01

    Small high-speed single-cylinder compression-ignition engines were tested to determine their performance characteristics under high supercharging. Calculations were made on the energy available in the exhaust gas of the compression-ignition engines. The maximum power at any given maximum cylinder pressure was obtained when the compression pressure was equal to the maximum cylinder pressure. Constant-pressure combustion was found possible at an engine speed of 2200 rpm. Exhaust pressures and temperatures were determined from an analysis of indicator cards. The analysis showed that, at rich mixtures with the exhaust back pressure equal to the inlet-air pressure, there is excess energy available for driving a turbine over that required for supercharging. The presence of this excess energy indicates that a highly supercharged compression-ignition engine might be desirable as a compressor and combustion chamber for a turbine.

  6. Engine ignition timing with knock control by combustion pressure harmonic amplitude ratio

    SciTech Connect

    Jensen, E.J.

    1989-07-11

    An ignition timing control is described for an internal combustion engine including a combustion chamber, means effective to ignite a combustible charge in the combustion chamber and power output apparatus including a rotating crankshaft driven in response to the expansion of the ignited combustible charge. The ignition timing control consists of: means effective to define a normal ignition timing for the engine in the absence of knock; pressure sensing means effective to sense the combustion chamber and generate a combustion pressure signal therefrom; means effective to sense the rotational speed of the crankshaft; frequency selective filter means for generating a plurality of predetermined harmonic signals of the combustion pressure signal, the frequency selective filter means being responsive to the last means to maintain the frequencies of the harmonic signals at whole number multiples of the firing frequency of the engine as the rotational speed of the crankshaft changes.

  7. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    SciTech Connect

    Taylor, J.; Li, H.; Neill, S.

    2006-08-01

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  8. Modelling turbulent flame ignition and blowout

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.; Heywood, J. B.

    1979-01-01

    A statistical mixing model incorporating an overall rate equation to describe the fuel oxidation process was developed for studies of ignition and blowout in a combustor primary zone. This zone is treated as a partially stirred reactor whose composition is described by a statistical ensemble of equal mass fluid elements. This ensemble experiences mixing interactions, which represent the turbulent mixing process, at time intervals governed by an empirically determined mixing frequency. Each mixing interaction is computed by ramdomly selecting two different elements which are then allowed to mix completely so that they reach a mean composition depending on their thermodynamic states prior to mixing. The two elements then separate, and the chemical kinetics proceed depending on their new composition and temperature.

  9. RAILPLUG IGNITION SYSTEM FOR ENHANCED ENGINE PERFORMANCE AND REDUCED MAINTENANCE

    SciTech Connect

    Ron Matthews

    2003-05-29

    During the first 6 months of this project, four subtasks were scheduled. Two of these commenced earlier than originally proposed. The experimental task, development of new railplug designs, was completed on schedule. The three numerical subtasks were not completed on schedule. However, this is not expected to affect the capability to complete the overall project on schedule. Because we are early in the project, no results or conclusions were generated. Our progress included development of new railplug geometries, to be tested during the second 6 months of the project, and development of an initial 3D model. Progress was also made in development of the appropriate chemical kinetics and generation of a model for the ignition circuit.

  10. Flatness-based embedded control in successive loops for spark-ignited engines

    NASA Astrophysics Data System (ADS)

    Rigatos, Gerasimos

    2015-11-01

    Embedded control units for transportation systems make use of advanced nonlinear control methods. In this research article a new nonlinear control method is applied to spark ignited (SI) engines. The proposed SI engine's control scheme is based on differential flatness theory The considered method succeeds the efficient control of the SI engine parameters such as intake pressure and turn speed. The method makes use of a state-space model of the SI-engine in the so-called triangular form. The controller design proceeds by showing that each row of the state-space model of the SI engine stands for a differentially flat system, where the flat output is chosen to be the associated state variable. Next, for each subsystem which is linked with a row of the state-space model, a virtual control input is computed, that can invert the subsystem's dynamics and can eliminate the subsystem's tracking error. From the last row of the state-space description, the control input that is actually applied to the SI engine is found. This control input contains recursively all virtual control inputs which were computed for the individual subsystems associated with the previous rows of the state-space equation. Thus, by tracing the rows of the state-space model backwards, at each iteration of the control algorithm, one can finally obtain the control input that should be applied to the SI-engine so as to assure that all its state vector elements will converge to the desirable setpoints.

  11. An ignition key for atomic-scale engines.

    PubMed

    Dundas, Daniel; Cunningham, Brian; Buchanan, Claire; Terasawa, Asako; Paxton, Anthony T; Todorov, Tchavdar N

    2012-10-10

    A current-carrying resonant nanoscale device, simulated by non-adiabatic molecular dynamics, exhibits sharp activation of non-conservative current-induced forces with bias. The result, above the critical bias, is generalized rotational atomic motion with a large gain in kinetic energy. The activation exploits sharp features in the electronic structure, and constitutes, in effect, an ignition key for atomic-scale motors. A controlling factor for the effect is the non-equilibrium dynamical response matrix for small-amplitude atomic motion under current. This matrix can be found from the steady-state electronic structure by a simpler static calculation, providing a way to detect the likely appearance, or otherwise, of non-conservative dynamics, in advance of real-time modelling. PMID:22987859

  12. Dynamic instabilities in spark-ignited combustion engines with high exhaust gas recirculation

    SciTech Connect

    Daw, C Stuart; FINNEY, Charles E A

    2011-01-01

    We propose a cycle-resolved dynamic model for combustion instabilities in spark-ignition engines operating with high levels of exhaust gas recirculation (EGR). High EGR is important for increasing fuel efficiency and implementing advanced low-emission combustion modes such as homogenous charge compression ignition (HCCI). We account for the complex combustion response to cycle-to-cycle feedback by utilizing a global probability distribution that describes the pre-spark state of in-cylinder fuel mixing. The proposed model does a good job of simulating combustion instabilities observed in both lean-fueling engine experiments and in experiments where nitrogen dilution is used to simulate some of the combustion inhibition of EGR. When used to simulate high internal EGR operation, the model exhibits a range of global bifurcations and chaos that appear to be very robust. We use the model to show that it should be possible to reduce high EGR combustion instabilities by switching from internal to external EGR. We also explain why it might be helpful to deliberately stratify the fuel in the pre-spark gas mixture. It might be possible to extend the simple approach used in this model to other chemical reaction systems with spatial inhomogeneity.

  13. Chemical kinetic simulation of hydrocarbon oxidation through the exhaust port of a spark ignition engine

    SciTech Connect

    Wu, K.C.; Hochgreb, S.

    1996-12-01

    The oxidation of unburned hydrocarbons, remaining in the cylinder of a spark-ignited engine after the main combustion event, takes place both in-cylinder and in the exhaust port. Hydrocarbons emerging from engine tailpipes consist of unburned fuel as well as products of incomplete combustion. This paper addresses the extent of oxidation and the production of nonfuel species in the exhaust port of a single-cylinder spark-ignition engine. Simulations of the unsteady thermal and composition state of the gases emerging from the cylinder were coupled to detailed chemistry models of the oxidation of hydrocarbons (propane, isooctane, methane, and ethane) to determine the change in the average composition of the gas as it passes through the exhaust port. The results are compared to previously measured speciated compositions of the exhaust gases at the exhaust port inlet and outlet. A stratification parameter to represent the growth of the thermal boundary layer due to heat transfer is added to the simplified unsteady plug flow simulation. Comparisons between model and experiment show that the concentration of products of incomplete combustion can only be adequately reproduced if stratification effects are taken into account.

  14. Dual spark plug ignition system for motorcycle internal combustion engine

    SciTech Connect

    Hoeptner, H.W.

    1991-04-02

    This patent describes an ignition system for a motorcycle two cylinder internal combustion engine, the system including magnetically coupled primary and secondary coil means, two spark plugs at each of the cylinders, a source of electrical current, and a single set of contacts controlling electrical current flow to the primary coil means for producing high voltage outputs from the secondary coil means to be delivered to all four of the spark plugs, the secondary coil means including certain secondary coil means operatively connected via the primary coil means with both the of spark plugs at one cylinder, a single cam controlling only the contacts, and a single magnetic core between the primary coil means and both the secondary coil means, and wherein the spark plugs include: two plugs at one cylinder and connected with the certain secondary coil means, two plugs at the second cylinder and connected with the other secondary coil means, the primary coil means including certain primary coil means magnetically coupled to the certain secondary coil means, and other primary coil means magnetically coupled to the other secondary coil means, the certain and other primary coil means being connected in series, electrically, the two spark plugs at one cylinder being electrically connected to opposite ends of the certain secondary coil means, and the two spark plugs at the other cylinder are electrically connected to opposite ends of the other secondary coil means. It comprises the cam driven by the engine for controlling opening of the contacts, the cam rotatable about a first axis, carrier means carrying the contacts, and adjustably rotatable about the axis.

  15. Gasoline surrogate modeling of gasoline ignition in a rapid compression machine and comparison to experiments

    SciTech Connect

    Mehl, M; Kukkadapu, G; Kumar, K; Sarathy, S M; Pitz, W J; Sung, S J

    2011-09-15

    The use of gasoline in homogeneous charge compression ignition engines (HCCI) and in duel fuel diesel - gasoline engines, has increased the need to understand its compression ignition processes under engine-like conditions. These processes need to be studied under well-controlled conditions in order to quantify low temperature heat release and to provide fundamental validation data for chemical kinetic models. With this in mind, an experimental campaign has been undertaken in a rapid compression machine (RCM) to measure the ignition of gasoline mixtures over a wide range of compression temperatures and for different compression pressures. By measuring the pressure history during ignition, information on the first stage ignition (when observed) and second stage ignition are captured along with information on the phasing of the heat release. Heat release processes during ignition are important because gasoline is known to exhibit low temperature heat release, intermediate temperature heat release and high temperature heat release. In an HCCI engine, the occurrence of low-temperature and intermediate-temperature heat release can be exploited to obtain higher load operation and has become a topic of much interest for engine researchers. Consequently, it is important to understand these processes under well-controlled conditions. A four-component gasoline surrogate model (including n-heptane, iso-octane, toluene, and 2-pentene) has been developed to simulate real gasolines. An appropriate surrogate mixture of the four components has been developed to simulate the specific gasoline used in the RCM experiments. This chemical kinetic surrogate model was then used to simulate the RCM experimental results for real gasoline. The experimental and modeling results covered ultra-lean to stoichiometric mixtures, compressed temperatures of 640-950 K, and compression pressures of 20 and 40 bar. The agreement between the experiments and model is encouraging in terms of first

  16. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    SciTech Connect

    2011-01-31

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  17. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  18. Chemical Kinetic Modeling of HMX and TATB Laser Ignition Tests

    SciTech Connect

    Tarver, C M

    2004-03-02

    Recent laser ignition experiments on octahydro-1,3,5,7-tetranitro-1,3,5,7-terrazocine (HMX) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) subjected to laser fluxes ranging from 10 to 800 W/cm{sup 2} produced ignition times from seconds to milliseconds. Global chemical kinetic thermal decomposition models for HMX and TATB have been developed to calculate times to thermal explosion for experiments in the seconds to days time frame. These models are applied to the laser ignition experimental data in this paper. Excellent agreement was obtained for TATB, while the calculated ignition times were longer than experiment for HMX at lower laser fluxes. At the temperatures produced in the laser experiments, HMX melts. Melting generally increases condensed phase reaction rates so faster rates were used for three of the HMX reaction rates. This improved agreement with experiments at the lower laser fluxes but yielded very fast ignition at high fluxes. The calculated times to ignition are in reasonable agreement with the laser ignition experiments, and this justifies the use of these models for estimating reaction times at impact and shock ''hot spot'' temperatures.

  19. A Description and Test Results of a Spark-Ignition and a Compression-Ignition 2-Stroke-Cycle Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Whitney, E G

    1935-01-01

    This report presents performance results of air cooled and water-cooled engines. The results obtained were sufficiently promising to warrant further investigation with fuel injection and spark ignition, with the same arrangement of inlet ports and exhaust valves at the bottom of the cylinder and the exhaust gases discharged through two poppet valves in the cylinder head. The displacement of the engine was 118 cubic inches. Optimum performance was obtained with the inlet air directed into the cylinder at an angle of 20 degrees to the radial.

  20. High-Fidelity Simulation and Analysis of Ignition Regimes and Mixing Characteristics for Low Temperature Combustion Engine Application

    NASA Astrophysics Data System (ADS)

    Gupta, Saurabh

    Computational singular perturbation (CSP) technique is applied as an automated diagnostic tool to classify ignition regimes, especially spontaneous ignition front and deflagration in low temperature combustion (LTC) engine environments. Various model problems representing LTC are simulated using high-fidelity computation with detailed chemistry for hydrogen-air, and the simulation data are then analyzed by CSP. The active reaction zones are first identified by the locus of minimum number of fast exhausted time scales. Subsequently, the relative importance of transport and chemistry is determined in the region ahead of the reaction zone. A new index IT, defined as the sum of the absolute values of the importance indices of diffusion and convection of temperature to the slow dynamics of temperature, serves as a criterion to differentiate spontaneous ignition from deflagration regimes. The same strategy is then used to gain insights into classification of ignition regimes in n-heptane air mixtures. Parametric studies are conducted using high-fidelity simulations with detailed chemistry and transport. The mixture at non-NTC conditions shows initially a deflagration front which is subsequently transitioned into a spontaneous ignition front. For the mixtures at the NTC conditions which exhibit two-stage ignition behavior, the 1 st stage ignition front is found to be more likely in the deflagration regime. On the other hand, the 2nd stage ignition front occurs almost always in the spontaneous regime because the upstream mixture contains active radical species produced by the preceding 1st stage ignition front. The effects of differently correlated equivalence ratio stratification are also considered and the results are shown to be consistent with previous findings. 2D turbulent auto-ignition problems corresponding to NTC and non-NTC chemistry yield similar qualitative results. Finally, we look into the modeling of turbulent mixing, in particular, the

  1. A Preliminary Motion-picture Study of Combustion in a Compression-ignition Engine

    NASA Technical Reports Server (NTRS)

    Buckley, E C; Waldron, C D

    1934-01-01

    Motion pictures were taken at 1,850 frames per second of the spray penetration and combustion occurring in the N.A.C.A. combustion apparatus arranged to operate as a compression-ignition engine. Indicator cards were taken simultaneously with the motion pictures by means of the N.A.C.A. optical indicator. The motion pictures showed that when ignition occurred during injection it started in the spray envelope. If ignition occurred after injection cut-off, however, and after considerable mixing had taken place, it was impossible to predict where the ignition would start. The pictures also showed that ignition usually started at several points in the combustion chamber. With this apparatus, as the injection advance angle increased from 0 degrees to 40 degrees before top center, the rate of flame spread increased and the duration of the burning decreased.

  2. Hohlraum Modeling of Hybrid Shock Ignition Target

    NASA Astrophysics Data System (ADS)

    Dodd, E. S.; Baumgaertel, J. A.; Loomis, E. N.

    2014-10-01

    Hybrid Shock Ignition (HSI) combines a hohlraum driven capsule with a directly driven shock for heating. Unlike standard Shock Ignition, the capsule is imploded with X-rays from a laser driven hohlraum to compress the fuel, which is too cold to ignite. However, as in Shock Ignition, the compressed fuel is subsequently heated to ignition temperatures with a directly-driven shock. The use of indirect and direct drive in the same target necessitates complex beam geometry, and thus HSI is being pursued with spherical hohlraums. More importantly for the NIF, the beam repointing required for polar direct drive will not be needed for the implosion phase with this target. Spherical hohlraums have been fielded previously at the OMEGA laser as a part of the Tetrahedral Hohlraum Campaign. They were originally proposed as an alternative to cylindrical hohlraums to achieve highly symmetric radiation drive. The new HSI hohlraums will require six laser entrance holes in hexahedral symmetry to accommodate all beams. This presentation will show radiation-hydrodynamic calculations of the current hexahedral OMEGA hohlraum design, as well as benchmark calculations of the old tetrahedral targets. Supported under the US DOE by the Los Alamos National Security, LLC under Contract DE-AC52-06NA25396. LA-UR-14-24945.

  3. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    SciTech Connect

    Keating, Edward; Gough, Charles

    2015-07-07

    This report summarizes activities conducted in support of the project “The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability” under COOPERATIVE AGREEMENT NUMBER DE-EE0005654, as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated May 2012.

  4. Impact of Formaldehyde Addition on Auto-Ignition in Internal-Combustion Engines

    NASA Astrophysics Data System (ADS)

    Kuwahara, Kazunari; Ando, Hiromitsu; Furutani, Masahiro; Ohta, Yasuhiko

    By employing a direct-injection diesel engine equipped with a common-rail type of injection system, by adding formaldehyde (CH2O) to the intake air, and by changing the fuel-injection timing, the compression ratio and the intake-air temperature, a mechanism for CH2O as a fuel additive to affect auto-ignition was discussed. Unlike an HCCI type of engine, the diesel engine can expose an air-fuel mixture only to a limited range of the in-cylinder temperature before the ignition, and can separate low- and high-temperature parts of the mechanism. When low-temperature oxidation starts at a temperature above 900K, there are cases that the CH2O advances the ignition timing. Below 900K, to the contrary, it always retards the timing. It is because, above 900K, a part of the CH2O changes into CO together with H2O2 as an ignition promoter. Below 900K, on the other hand, the CH2O itself acts as an OH radical scavenger against cool-flame reaction, from the beginning of low-temperature oxidation. Then, the engine was modified for its extraordinary function as a gasoline-knocking generator, in order that an effect of CH2O on knocking could be discussed. The CH2O retards the onset of auto-ignition of an end gas. Judging from a large degree of the retardation, the ignition is probably triggered below 900K.

  5. Prospectus of ignition enhancement in a two-stroke SI engine

    SciTech Connect

    Manivannan, P.V.; Ramesh, A.; Poola, R.B.; Dhinadgar, S.J.

    1995-12-01

    Conventional two-stroke spark-ignition (SI) engines have difficulty meeting the ignition requirements of lean fuel-air mixtures and high compression ratios, due to their breaker operated, magneto-coil ignition systems. In the present work, a breakerless, high-energy electronic ignition system was developed and tested with and without a platinum-tipped electrode spark plug. The high-energy ignition system showed an improved lean-burn capability at high compression ratios relative to the conventional ignition system. At a high compression ratio of 9:1 with lean fuel-air mixtures, the maximum percentage improvement in the brake thermal efficiency was about 16.5% at 2.7 kW and 3000 rpm. Cylinder peak pressures-were higher ignition delay was lower, and combustion duration was shorter at both normal and high compression ratios. Combustion stability as measured by the coefficient of variation in peak cylinder pressure was also considerably improved with the high-energy ignition system.

  6. A reduced mechanism for biodiesel surrogates with low temperature chemistry for compression ignition engine applications

    NASA Astrophysics Data System (ADS)

    Luo, Zhaoyu; Plomer, Max; Lu, Tianfeng; Som, Sibendu; Longman, Douglas E.

    2012-04-01

    Biodiesel is a promising alternative fuel for compression ignition (CI) engines. It is a renewable energy source that can be used in these engines without significant alteration in design. The detailed chemical kinetics of biodiesel is however highly complex. In the present study, a skeletal mechanism with 123 species and 394 reactions for a tri-component biodiesel surrogate, which consists of methyl decanoate, methyl 9-decanoate and n-heptane was developed for simulations of 3-D turbulent spray combustion under engine-like conditions. The reduction was based on an improved directed relation graph (DRG) method that is particularly suitable for mechanisms with many isomers, followed by isomer lumping and DRG-aided sensitivity analysis (DRGASA). The reduction was performed for pressures from 1 to 100 atm and equivalence ratios from 0.5 to 2 for both extinction and ignition applications. The initial temperatures for ignition were from 700 to 1800 K. The wide parameter range ensures the applicability of the skeletal mechanism under engine-like conditions. As such the skeletal mechanism is applicable for ignition at both low and high temperatures. Compared with the detailed mechanism that consists of 3299 species and 10806 reactions, the skeletal mechanism features a significant reduction in size while still retaining good accuracy and comprehensiveness. The validations of ignition delay time, flame lift-off length and important species profiles were also performed in 3-D engine simulations and compared with the experimental data from Sandia National Laboratories under CI engine conditions.

  7. Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES

    SciTech Connect

    Vermorel, O.; Richard, S.; Colin, O.; Angelberger, C.; Benkenida, A.; Veynante, D.

    2009-08-15

    Large-Eddy Simulation (LES) has been used to analyze the occurrence and the causes of cycle-to-cycle combustion variations in a spark ignited four-valve single cylinder engine fueled with a homogeneous propane-air mixture. The combustion modeling combines an Eulerian model derived from the RANS AKTIM model that mimics the spark ignition and the Extended Coherent Flame Model (ECFM-LES) that describes the flame propagation. The motion of piston and valves is accounted for using an Arbitrary Eulerian Lagrangian (ALE) technique with body-fitted meshes. The computation covers nine consecutive complete four-stroke cycles following an initialization cycle. The obtained LES results are compared with experimental measurements. Although the number of computed cycles is fairly low, LES is shown to be able to reproduce both quantitatively and qualitatively the cyclic variability observed experimentally. The investigation of the possible causes of variability illustrates the unprecedented possibility LES offers for understanding cycle-to-cycle variations. (author)

  8. Ignition of pyrophoric powders: An entry-level model

    NASA Astrophysics Data System (ADS)

    Alymov, M. I.; Seplyarskii, B. S.; Gordopolova, I. S.

    2015-11-01

    Chemically prepared metal nanopowders are normally pyrophoric, i.e. are liable to ignite spontaneously on exposure to air because of high reactivity and developed specific surface. On the other side, reliable theoretical models for spontaneous self-ignition of fine dispersed powders at room temperature have not been suggested so far. A deeper insight into the mechanism of the phenomenon would shed new light on the critical conditions for self-inflammation and thus would provide some clues for optimization of the passivation of fine dispersed powders. In this work, we formulated and analyzed an entry-level model for ignition of pyrophoric powders. Analysis of such a model in terms of the ignition theory gave the following results. Depending on the width of the reaction zone, the ignition may get started in either one or two stages. The duration of each stage was evaluated by using the approximate methods of combustion theory. The parametric limits for the model applicability were derived and the influence of sample length on the ignition process was explored as well.

  9. Neural network controller development and implementation for spark ignition engines with high EGR levels.

    PubMed

    Vance, Jonathan Blake; Singh, Atmika; Kaul, Brian C; Jagannathan, Sarangapani; Drallmeier, James A

    2007-07-01

    Past research has shown substantial reductions in the oxides of nitrogen (NOx) concentrations by using 10%-25% exhaust gas recirculation (EGR) in spark ignition (SI) engines (see Dudek and Sain, 1989). However, under high EGR levels, the engine exhibits strong cyclic dispersion in heat release which may lead to instability and unsatisfactory performance preventing commercial engines to operate with high EGR levels. A neural network (NN)-based output feedback controller is developed to reduce cyclic variation in the heat release under high levels of EGR even when the engine dynamics are unknown by using fuel as the control input. A separate control loop was designed for controlling EGR levels. The stability analysis of the closed-loop system is given and the boundedness of the control input is demonstrated by relaxing separation principle, persistency of excitation condition, certainty equivalence principle, and linear in the unknown parameter assumptions. Online training is used for the adaptive NN and no offline training phase is needed. This online learning feature and model-free approach is used to demonstrate the applicability of the controller on a different engine with minimal effort. Simulation results demonstrate that the cyclic dispersion is reduced significantly using the proposed controller when implemented on an engine model that has been validated experimentally. For a single cylinder research engine fitted with a modern four-valve head (Ricardo engine), experimental results at 15% EGR indicate that cyclic dispersion was reduced 33% by the controller, an improvement of fuel efficiency by 2%, and a 90% drop in NOx from stoichiometric operation without EGR was observed. Moreover, unburned hydrocarbons (uHC) drop by 6% due to NN control as compared to the uncontrolled scenario due to the drop in cyclic dispersion. Similar performance was observed with the controller on a different engine. PMID:17668663

  10. Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines

    NASA Technical Reports Server (NTRS)

    Wollen, Mark A. (Inventor)

    2015-01-01

    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process.

  11. Homogenous charge compression ignition engine having a cylinder including a high compression space

    DOEpatents

    Agama, Jorge R.; Fiveland, Scott B.; Maloney, Ronald P.; Faletti, James J.; Clarke, John M.

    2003-12-30

    The present invention relates generally to the field of homogeneous charge compression engines. In these engines, fuel is injected upstream or directly into the cylinder when the power piston is relatively close to its bottom dead center position. The fuel mixes with air in the cylinder as the power piston advances to create a relatively lean homogeneous mixture that preferably ignites when the power piston is relatively close to the top dead center position. However, if the ignition event occurs either earlier or later than desired, lowered performance, engine misfire, or even engine damage, can result. Thus, the present invention divides the homogeneous charge between a controlled volume higher compression space and a lower compression space to better control the start of ignition.

  12. Fuel mixture stratification as a method for improving homogeneous charge compression ignition engine operation

    DOEpatents

    Dec, John E.; Sjoberg, Carl-Magnus G.

    2006-10-31

    A method for slowing the heat-release rate in homogeneous charge compression ignition ("HCCI") engines that allows operation without excessive knock at higher engine loads than are possible with conventional HCCI. This method comprises injecting a fuel charge in a manner that creates a stratified fuel charge in the engine cylinder to provide a range of fuel concentrations in the in-cylinder gases (typically with enough oxygen for complete combustion) using a fuel with two-stage ignition fuel having appropriate cool-flame chemistry so that regions of different fuel concentrations autoignite sequentially.

  13. Theoretical and Experimental Study of Ignition Lag and Engine Knock

    NASA Technical Reports Server (NTRS)

    Schmidt, Frtiz A F

    1939-01-01

    The author believes, on the basis of experimental ignition-lag data, that the character of a fuel cannot be stated in terms of a single constant (such as octane or cetane number) but that at least two and generally three constants are required. Thus no correlation between knock ratings can be expected if in one set of tests the charge temperature was varied while in the other the charge pressure was varied. For this reason, he favors knock rating being based on an equation characterizing the ignition lag of the fuel as a function of pressure and temperature of the charge.

  14. Method for operating a spark-ignition, direct-injection internal combustion engine

    DOEpatents

    Narayanaswamy, Kushal; Koch, Calvin K.; Najt, Paul M.; Szekely, Jr., Gerald A.; Toner, Joel G.

    2015-06-02

    A spark-ignition, direct-injection internal combustion engine is coupled to an exhaust aftertreatment system including a three-way catalytic converter upstream of an NH3-SCR catalyst. A method for operating the engine includes operating the engine in a fuel cutoff mode and coincidentally executing a second fuel injection control scheme upon detecting an engine load that permits operation in the fuel cutoff mode.

  15. Reactive burn models and ignition & growth concept

    SciTech Connect

    Menikoff, Ralph S; Shaw, Milton S

    2010-01-01

    Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition and Growth concept, introduced by Lee and Tarver in 1980, as the basis for reactive burn models. A homogeneized burn rate needs to account for three mesoscale physical effects (i) the density of burnt hot spots, which depends on the lead shock strength; (ii) the growth of the burn fronts triggered by hot spots, which depends on the local deflagration speed; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent hot spots. These effects can be combined and the burn model defined by specifying the reaction progress variable {lambda}(t) as a function of a dimensionless reaction length {tau}{sub hs}(t)/{ell}{sub hs}, rather than by xpecifying an explicit burn rate. The length scale {ell}{sub hs} is the average distance between hot spots, which is proportional to [N{sub hs}(P{sub s})]{sup -1/3}, where N{sub hs} is the number density of hot spots activated by the lead shock. The reaction length {tau}{sub hs}(t) = {line_integral}{sub 0}{sup t} D(P(t'))dt' is the distance the burn front propagates from a single hot spot, where D is the deflagration speed and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. They have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  16. 78 FR 50412 - California State Nonroad Engine Pollution Control Standards; Amendments to Spark Ignition Marine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... Ignition Engine (``Marine SI'') regulations.'' \\1\\ 72 FR 14546 (March 28, 2007). \\2\\ 76 FR 24872 (May 3...; not-to-exceed limits; revised jet boat engine standards; and new carbon monoxide emission standards.\\5... locomotives. \\7\\ 59 FR 36969 (July 20, 1994). \\8\\ See 62 FR 67733 (December 30, 1997). The...

  17. Progress in modelling ignition implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Marinak, M. M.; Milovich, J. L.; Patel, P. K.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.; Town, R. P. J.

    2016-03-01

    The recently completed National Ignition Campaign on the National Ignition Facility showed significant discrepancies between 2-D simulations predictions of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of implosion degradation within a reasonable 2-D simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories. Since this simulation study was undertaken, more recent experiments have brought to light several effects that can significantly impact implosion performance, in particular large inflight long-wavelength shell asymmetries and larger than expected perturbations seeded by the capsule support tent. These effects are now being included in the simulation model and show improved agreement with observation. In addition, full-capsule 3-D simulations with resolution adequate to model the dominant unstable hydrodynamic modes are being run and show further improvements in agreement with experiment.

  18. Load detecting apparatus and ignition control apparatus for internal combustion engines

    SciTech Connect

    Yoshida, T.; Katada, H.

    1986-12-09

    An ignition control apparatus is described for an internal combustion engine comprising: a crankshaft reference position detector for detecting a plurality of reference angular positions of a crankshaft of an engine and for producing pulse signals at the reference angular positions; means responsive to the pulse signals from the crankshaft reference position detector for determining the interval rotation speed of the engine for each of the intervals between the pulses; means responsive to the interval rotation speeds from the interval rotation speed determining means for determining a speed pulsation value for each revolution of the crankshaft; means for determining the speed of the engine; and means for controlling the ignition of the engine in accordance with the speed pulsation value from the speed pulsation value determining means and the engine speed from the engine speed determining means.

  19. A Preliminary Study of Flame Propagation in a Spark-ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1937-01-01

    The N.A.C.A. combustion apparatus was altered to operate as a fuel-injection, spark-ignition engine, and a preliminary study was made of the combustion of gasoline-air mixtures at various air-fuel ratios. Air-fuel ratios ranging from 10 to 21.6 were investigated. Records from an optical indicator and films from a high-speed motion-picture camera were the chief sources of data. Schlieren photography was used for an additional study. The results show that the altered combustion apparatus has characteristics similar to those of a conventional spark-ignition engine and should be useful in studying phenomena in spark-ignition engines. The photographs show the flame front to be irregularly shaped rather than uniformly curved. With a theoretically correct mixture the reaction, as indicated by the photographs, is not completed in the flame front but continues for some time after the combustion front has traversed the mixture.

  20. Experimental evaluation of the ignition process of carbon monoxide and oxygen in a rocket engine

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.

    1996-01-01

    Carbon monoxide and oxygen ignition boundaries were determined in a spark torch igniter as a function of propellant inlet temperatures. The oxygen temperature was varied from ambient to -258 F, and the carbon monoxide temperature was varied from ambient to -241 F. With the oxygen and carbon monoxide at -253 F and -219 F, respectively, they successfully ignited between mixture ratios of 2.42 and 3.10. Analysis of the results indicated that the lower ignition boundary was more sensitive to oxygen temperature than to carbon monoxide temperature. Another series of tests was performed in a small simulated rocket engine with oxygen at -197 F and carbon monoxide at -193 F. An oxygen/hydrogen flame was used to initiate combustion of the oxygen and carbon monoxide. Tests performed at the optimum operating mixture ratio of 0.55 obtained steady-state combustion in every test.

  1. A University Consortium on Homogeneous Charge Compression Ignition Engine Research

    SciTech Connect

    Assanis, Dennis; Atreya, Arvind; Bowman, Craig; Chen, Jyh-Yuan; Cheng, Wai; Davidson, David; Dibble, Robert; Edwards, Chris; Filipi, Zoran; Golden, David; Green, William; Hanson, Ronald; Hedrick, J Karl; Heywood, John; Im, Hong; Lavoie, George; Sick, Volker; Wooldridge, Margaret

    2007-03-31

    Over the course of this four year project, the consortium team members from UM, MIT, Stanford, and Berkeley along with contributors from Sandia National Labs and LLNL, have produced a wide range of results on gasoline HCCI control and implementation. The work spanned a wide range of activities including engine experiments, fundamental chemical kinetics experiments, and an array of analytical modeling techniques and simulations. Throughout the project a collaborative approach has produced a many significant new insights into HCCI engines and their behavior while at the same time we achieved our key consortium goal: to develop workable strategies for gasoline HCCI control and implementation. The major accomplishments in each task are summarized, followed by detailed discussion.

  2. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    SciTech Connect

    Keller, J.; Blarigan, P. Van

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  3. Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Collins, John H

    1937-01-01

    Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.

  4. Heat transfer model for predicting squib ignition times

    NASA Technical Reports Server (NTRS)

    Sernas, V.

    1974-01-01

    A squib ignition model based on transient heat condition from the hot bridgewire to the pyrotechnic is described. No Arrhenius-type chemical reaction is included. Instead, a thermal contact resistance is postulated to exist between the hot bridgewire and the pyrotechnic. Ignition is assumed to occur when a 2.5 micron layer of pyrotechnic next to the bridgewire reaches a characteristic ignition temperature for that pyrotechnic. This model was applied to the JPL squib, which uses a 50 micron (0.002-in.) diameter Tophet A bridgewire to ignite a boron, potassium perchlorate mix. A computer program was utilized that solves the transient heat condition problem with the boundary conditions stipulated by the model. The thermal contact conductance at the interface was determined by trial and error so that the experimentally determined ignition time for one firing condition would be properly predicted by the model. The agreement was quite good for tests run between -129 C and +93.3 C at current levels of 3.5 and 5 A. Axial heat conduction along the bridgewire is shown to be negligible.

  5. Extending operating range of a homogeneous charge compression ignition engine via cylinder deactivation

    DOEpatents

    Hergart, Carl-Anders; Hardy, William L.; Duffy, Kevin P.; Liechty, Michael P.

    2008-05-27

    An HCCI engine has the ability to operate over a large load range by utilizing a lower cetane distillate diesel fuel to increase ignition delay. This permits more stable operation at high loads by avoidance of premature combustion before top dead center. During low load conditions, a portion of the engines cylinders are deactivated so that the remaining cylinders can operate at a pseudo higher load while the overall engine exhibits behavior typical of a relatively low load.

  6. Optical Diagnostic Equipment for Research on Critical Processes in Spark-Ignition Engines

    SciTech Connect

    Hochgreb, Simone

    1999-08-08

    The equipment requested under grant Contract No. DE-FG02-95TE00065 was used in several projects investigating the behavior of fuel in spark-ignition engines. It has been a crucial piece of these efforts in understanding how new direct-injected engine sprays behave, as well as a key part in the determination of how liquid fuel enters the engine during port-fuel injection.

  7. A Comparison of Ignition Characteristics of Diesel Fuels as Determined in Engines and in a Constant-volume Bomb

    NASA Technical Reports Server (NTRS)

    Selden, Robert F

    1939-01-01

    Ignition-lag data have been obtained for seven fuels injected into heated, compressed air under conditions simulating those in a compression-ignition engine. The results of the bomb tests have been compared with similar engine data, and the differences between the two sets of results are explained in terms of the response of each fuel to variations in air density and temperature.

  8. A Preliminary Study of Fuel Injection and Compression Ignition as Applied to an Aircraft Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W

    1927-01-01

    This report summarizes some results obtained with a single cylinder test engine at the Langley Field Laboratory during a preliminary investigation of the problem of applying fuel injection and compression ignition to aircraft engines. For this work a standard Liberty Engine cylinder was fitted with a high compression, 11.4 : 1 compression ratio, piston, and equipped with an airless injection system, including a primary fuel pump, an injection pump, and an automatic injection valve. The results obtained during this investigation have indicated the possibility of applying airless injection and compression ignition to a cylinder of this size, 8-inch bore by 7-inch stroke, when operating at engine speeds as high as 1,850 R. P. M. A minimum specific fuel consumption with diesel engine fuel oil of 0.30 pound per I. HP. Hour was obtained when developing about 16 B. HP. At 1,730 R. P. M.

  9. Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1933-01-01

    The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

  10. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOEpatents

    Clarke, John M.

    2003-08-05

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  11. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM

    SciTech Connect

    Scott Chase; Daniel Olsen; Ted Bestor

    2005-05-01

    This report documents a 3-year research program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system and prepare the technology for

  12. Illustrations for a Competency Based Curriculum Guide: Ethanol Spark Ignition Engine Conversion.

    ERIC Educational Resources Information Center

    Illinois State Board of Education, Springfield. Dept. of Adult, Vocational and Technical Education.

    This document contains 56 illustrations for use in an Illinois-developed competency-based course in ethanol spark ignition engine conversion. Each illustration is related to a specific competency in the course curriculum guide. Illustrations, which include photographs and line drawings, cover some of the following topics: carburetion, compression,…

  13. Effect of laser pulse energy on the laser ignition of compressed natural gas fueled engine

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Wintner, Ernst; Agarwal, Avinash Kumar

    2014-05-01

    Laser pulses of few a nanoseconds' duration are focused by an appropriate converging lens system, leading to breakdown of the medium (combustible gases), resulting in the formation of intense plasma. Plasma thus induced can be used to initiate the combustion of combustible air-fuel mixtures in a spark ignition engine provided the energy of the plasma spark is high enough. Laser ignition has several advantages over the conventional spark ignition system, especially in case of lean air-fuel mixture. In this study, laser ignition of compressed natural gas was investigated in a constant volume combustion chamber (CVCC) as well as in a single-cylinder engine. Flame kernel visualizations for different pulse energy of natural gas-air mixtures were carried out in the CVCC. The images of the development of early flame kernel stages and its growth with time were recorded by shadowgraphy technique. The effect of laser pulse energy on the engine combustion, performance, and emissions was investigated using different air-fuel mixtures. Increased peak cylinder pressure, higher rate of heat release, faster combustion, and increased combustion stability were observed for higher laser pulse energies. The effect of laser pulse energy on the engine-out emissions was also investigated in this study.

  14. 75 FR 56491 - Technical Amendments for Marine Spark-Ignition Engines and Vessels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... spark-ignition engines, vessels, and equipment (73 FR 59034, October 8, 2008), EPA established first... equipment (73 FR 59034, October 8, 2008), EPA established first-ever evaporative emissions standards for... Executive Order (EO) 12866 (58 FR 51735, October 4, 1993) and is therefore not subject to review under...

  15. Compression-ignition engine performance with undoped and doped fuel oils and alcohol mixtures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1939-01-01

    Several fuel oils, doped fuel oils, and mixtures of alcohol and fuel oil were tested in a high-speed, single-cylinder, compression-ignition engine to determine power output, fuel consumption, and ignition and combustion characteristics. Fuel oils or doped fuel oils of high octane number had shorter ignition lags, lower rates of pressure rise, and gave smoother engine operation than fuel oils or doped fuel oils of low octane number. Higher engine rotative speeds and boost pressures resulted in smoother engine operation and permitted the use of fuel oils of relatively low octane number. Although the addition of a dope to a fuel oil decreased the ignition lag and the rate of pressure rise, the ensuing rate of combustion was somewhat slower than for the undoped fuel oil so that the effectiveness of combustion was practically unchanged. Alcohol used as an auxiliary fuel, either as a mixture or by separate injection, increased the rates of pressure rise and induced roughness. In general, the power output decreased as the proportion of alcohol increased and, below maximum power, varied with the heating value of the total fuel charge.

  16. Analysis of Homogeneous Charge Compression Ignition (HCCI) Engines for Cogeneration Applications

    SciTech Connect

    Aceves, S; Martinez-Frias, J; Reistad, G

    2004-04-30

    This paper presents an evaluation of the applicability of Homogeneous Charge Compression Ignition Engines (HCCI) for small-scale cogeneration (less than 1 MWe) in comparison to five previously analyzed prime movers. The five comparator prime movers include stoichiometric spark-ignited (SI) engines, lean burn SI engines, diesel engines, microturbines and fuel cells. The investigated option, HCCI engines, is a relatively new type of engine that has some fundamental differences with respect to other prime movers. Here, the prime movers are compared by calculating electric and heating efficiency, fuel consumption, nitrogen oxide (NOx) emissions and capital and fuel cost. Two cases are analyzed. In Case 1, the cogeneration facility requires combined power and heating. In Case 2, the requirement is for power and chilling. The results show that the HCCI engines closely approach the very high fuel utilization efficiency of diesel engines without the high emissions of NOx and the expensive diesel fuel. HCCI engines offer a new alternative for cogeneration that provides a unique combination of low cost, high efficiency, low emissions and flexibility in operating temperatures that can be optimally tuned for cogeneration systems. HCCI engines are the most efficient technology that meets the oncoming 2007 CARB NOx standards for cogeneration engines. The HCCI engine appears to be a good option for cogeneration systems and merits more detailed analysis and experimental demonstration.

  17. FIREBALL: Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner

    SciTech Connect

    Martin, Adam K.; Eskridge, Richard H.; Lee, Michael H.; Fimognari, Peter J.

    2006-01-20

    Thermo-nuclear fusion may be the key to a high Isp, high specific power propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the Orion concept, is described. A dense FRC plasmoid is accelerated to high velocity (in excess of 500 km/s) and is compressed into a detached liner (pulse unit). The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion burn in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by a pusher-plate, as in the classic Orion concept. However with this concept, the vehicle does not carry a magazine of autonomous pulse-units. By accelerating a second, heavier FRC, which acts as a piston, right behind the first one, the velocity required to initiate the fusion burn is greatly reduced.

  18. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM-PHASE I

    SciTech Connect

    Ted Bestor

    2003-03-04

    This report documents the first year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase I goals and objectives were met. We intend to proceed with the Phase II research plan, as set forth by the applicable Research Management Plan. The objective for Phase I was to demonstrate the feasibility of micropilot ignition for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase I were to develop a single-cylinder test chamber to study the injection of pilot fuel into a combustion cylinder and to develop, install and test a multi-cylinder micropilot ignition system for a 4-cylinder, natural gas test engine. In all, there were twelve (12) tasks defined and executed to support these two (2) primarily elements in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase I were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. An extensive state-of-art review was conducted to leverage the existing body of knowledge of micropilot ignition with respect to retrofit applications. Additionally, commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The four-cylinder prototype data was encouraging for the micro-pilot ignition technology when compared to spark ignition. Initial testing results showed: (1) Brake specific fuel consumption of natural gas was improved from standard spark ignition across the map, 1% at full load and 5% at 70% load. (2) 0% misfires for all points on micropilot ignition. Fuel savings were most likely due to this percent misfire improvement. (3

  19. Interim report on the assessment of engineering issues for compact high-field ignition devices

    SciTech Connect

    Flanagan, C.A.

    1986-04-01

    The engineering issues addressed at the workshop included the overall configuration, layout, and assembly; limiter and first-wall energy removal; magnet system structure design; fabricability; repairability; and costs. In performing the assessment, the primary features and characteristics of each concept under study were reviewed as representative of this class of ignition device. The emphasis was to understand the key engineering areas of concern for this class of device and deliberately not attempt to define an optimum design or to choose a best approach. The assessment concluded that compact ignition tokamaks, as represented by the three concepts under study, are feasible. A number of critical engineering issues were identified, and all appear to have tractable solutions. The engineering issues appear quite challenging, and to obtain increased confidence in the apparent design solutions requires completion of the next level of design detail, complemented by appropriate development programs and testing.

  20. Some Effects of Injection Advance Angle, Engine-Jacket Temperature, and Speed on Combustion in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1936-01-01

    An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.

  1. Experimental studies on the group ignition of a cloud of coal particles: Volume 2, Pyrolysis and ignition modeling

    SciTech Connect

    Annamalai, K.; Ryan, W.

    1992-01-01

    The primary objectives of this work are to formulate a model to simulate transient coal pyrolysis, ignition, and combustion of a cloud of coal particles and to compare results of the program with those reported in the literature elsewhere.

  2. Schlieren-based temperature measurement inside the cylinder of an optical spark ignition and homogeneous charge compression ignition engine.

    PubMed

    Aleiferis, Pavlos; Charalambides, Alexandros; Hardalupas, Yannis; Soulopoulos, Nikolaos; Taylor, A M K P; Urata, Yunichi

    2015-05-10

    Schlieren [Schlieren and Shadowgraphy Techniques (McGraw-Hill, 2001); Optics of Flames (Butterworths, 1963)] is a non-intrusive technique that can be used to detect density variations in a medium, and thus, under constant pressure and mixture concentration conditions, measure whole-field temperature distributions. The objective of the current work was to design a schlieren system to measure line-of-sight (LOS)-averaged temperature distribution with the final aim to determine the temperature distribution inside the cylinder of internal combustion (IC) engines. In a preliminary step, we assess theoretically the errors arising from the data reduction used to determine temperature from a schlieren measurement and find that the total error, random and systematic, is less than 3% for typical conditions encountered in the present experiments. A Z-type, curved-mirror schlieren system was used to measure the temperature distribution from a hot air jet in an open air environment in order to evaluate the method. Using the Abel transform, the radial distribution of the temperature was reconstructed from the LOS measurements. There was good agreement in the peak temperature between the reconstructed schlieren and thermocouple measurements. Experiments were then conducted in a four-stroke, single-cylinder, optical spark ignition engine with a four-valve, pentroof-type cylinder head to measure the temperature distribution of the reaction zone of an iso-octane-air mixture. The engine optical windows were designed to produce parallel rays and allow accurate application of the technique. The feasibility of the method to measure temperature distributions in IC engines was evaluated with simulations of the deflection angle combined with equilibrium chemistry calculations that estimated the temperature of the reaction zone at the position of maximum ray deflection as recorded in a schlieren image. Further simulations showed that the effects of exhaust gas recirculation and air

  3. Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Fimognari, Peter J., III.

    2005-01-01

    Thermo-nuclear fusion may be the key to a high Isp, high specific power (low alpha) propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the ORION concept, is described. A passive tapered liner is launched behind a vehicle, through a hole in a pusher-plate, that is connected to the vehicle by a shock-absorbing mechanism. A dense FRC plasmoid is then accelerated to high velocity (in excess of 1,000 km/s) and shot through the hole into the liner, when it has reached a given point down-range. The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion bum in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by the pusher-plate, as in the classic ORION concept. However with this concept, the vehicle does not carry a magazine of pre-fabricated pulse-units. A magnetic nozzle may also be used, in place of the pusher-plate. Estimates of the conditions needed to achieve a sufficient gain will be presented, along with a description of the driver characteristics. The incorporation of this concept into the propulsion system of a spacecraft will also be discussed.

  4. Engine performance and emission of compression ignition engine fuelled with emulsified biodiesel-water

    NASA Astrophysics Data System (ADS)

    Maawa, W. N.; Mamat, R.; Najafi, G.; Majeed Ali, O.; Aziz, A.

    2015-12-01

    The depletion of fossil fuel and environmental pollution has become world crucial issues in current era. Biodiesel-water emulsion is one of many possible approaches to reduce emissions. In this study, emulsified biodiesel with 4%, 6% and 8% of water contents were prepared to be used as fuel in a direct injection compression ignition engine. The performance indicator such as brake power, brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) and emissions such as NOx and particulate matter (PM) were investigated. The engine was set at constant speed of 2500 rpm and load from 20% to 60%. All the results were compared to B5 (blend of 95% petroleum diesel and 5% palm oil biodiesel) biodiesel. At low load, the BSFC decrease by 12.75% at 4% water ratio and decreased by 1.5% at 6% water ratio. However, the BSFC increases by 17.19% with increasing water ratio to 8% compared to B5. Furthermore, there was no significant decrease in brake power and BTE at 60% load. For 20% and 40% load there was some variance regarding to brake power and BTE. Significant reduction in NOx and PM emissions by 73.87% and 20.00% respectively were achieved with increasing water ratio to 8%. Overall, it is observed that the emulsified of biodiesel-water is an appropriate alternative fuel method to reduce emissions.

  5. Volatility characterization of nanoparticles from single and dual-fuel low temperature combustion in compression ignition engines

    DOE PAGESBeta

    Lucachick, Glenn; Curran, Scott; Storey, John Morse; Prikhodko, Vitaly Y.; Northrop, William F.

    2016-03-10

    Our work explores the volatility of particles produced from two diesel low temperature combustion (LTC) modes proposed for high-efficiency compression ignition engines. It also explores mechanisms of particulate formation and growth upon dilution in the near-tailpipe environment. Moreover, the number distribution of exhaust particles from low- and mid-load dual-fuel reactivity controlled compression ignition (RCCI) and single-fuel premixed charge compression ignition (PPCI) modes were experimentally studied over a gradient of dilution temperature. Particle volatility of select particle diameters was investigated using volatility tandem differential mobility analysis (V-TDMA). Evaporation rates for exhaust particles were compared with V-TDMA results for candidate pure n-alkanesmore » to identify species with similar volatility characteristics. The results show that LTC particles are mostly comprised of material with volatility similar to engine oil alkanes. V-TDMA results were used as inputs to an aerosol condensation and evaporation model to support the finding that smaller particles in the distribution are comprised of lower volatility material than large particles under primary dilution conditions. Although the results show that saturation levels are high enough to drive condensation of alkanes onto existing particles under the dilution conditions investigated, they are not high We conclude that observed particles from LTC operation must grow from low concentrations of highly non-volatile compounds present in the exhaust.« less

  6. Effects of Ignition and Injection Perturbation under Lean and Dilute GDI Engine Operation

    SciTech Connect

    Wallner, Thomas; Kaul, Brian C; Sevik, James; Scarcelli, Riccardo; Wagner, Robert M

    2015-01-01

    Turbocharged gasoline direct injection (GDI) engines are quickly becoming more prominent in light-duty automotive applications because of their potential improvements in efficiency and fuel economy. While EGR dilute and lean operation serve as potential pathways to further improve efficiencies and emissions in GDI engines, they also pose challenges for stable engine operation. Tests were performed on a single-cylinder research engine that is representative of current automotive-style GDI engines. Baseline cases were performed under steady-state operating conditions where combustion phasing and dilution levels were varied to determine the effects on indicated efficiency and combustion stability. Sensitivity studies were then carried out by introducing binary low-high perturbation of spark timing and injection duration on a cycle-by-cycle basis under EGR dilute and lean operation to determine dominant feedback mechanisms. Ignition perturbation was phased early/late of MBT timing, and injection perturbation was set fuel rich/lean of the given air-to-fuel ratio. COVIMEP was used to define acceptable operation limits when comparing different perturbation cases. Overall sensitivity data shows COVIMEP is more sensitive to injection perturbation over ignition perturbation. This is because of the greater effect injection perturbation has on combustion phasing, ignition delay, and combustion duration.

  7. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM

    SciTech Connect

    Ted Bestor

    2004-06-01

    This report documents the second year's effort towards a 3-year program to develop micropilot ignition systems for existing pipeline compressor engines. In essence, all Phase II goals and objectives were met. We intend to proceed with the Phase III research plan, as set forth by the applicable Research Management Plan. The objective for Phase II was to further develop and optimize the micropilot ignition system for large bore, slow speed engines operating at low compression ratios. The primary elements of Micropilot Phase II were to evaluate the results for the 4-cylinder system prototype developed for Phase I, then optimize this system to demonstrate the technology's readiness for the field demonstration phase. In all, there were twelve (12) tasks defined and executed to support objectives in a stepwise fashion. Task-specific approaches and results are documented in this report. Research activities for Micropilot Phase II were conducted with the understanding that the efforts are expected to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. Modifications to existing engine components were kept to a minimum. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. The optimized four-cylinder system data demonstrated significant progress compared to Phase I results, as well as traditional spark ignition systems. An extensive testing program at the EECL using the GMV-4 test engine demonstrated that: (1) In general, the engine operated more stable fewer misfires and partial combustion events when using the 3-hole injectors compared to the 5-hole injectors used in Phase I. (2) The engine had, in general, a wider range of operation with the 3-hole injectors. Minimum operational boost levels were approximately 5''Hg lower and the

  8. Experimental Investigation of Augmented Spark Ignition of a LO2/LCH4 Reaction Control Engine at Altitude Conditions

    NASA Technical Reports Server (NTRS)

    Kleinhenz, Julie; Sarmiento, Charles; Marshall, William

    2012-01-01

    The use of nontoxic propellants in future exploration vehicles would enable safer, more cost-effective mission scenarios. One promising green alternative to existing hypergols is liquid methane (LCH4) with liquid oxygen (LO2). A 100 lbf LO2/LCH4 engine was developed under the NASA Propulsion and Cryogenic Advanced Development project and tested at the NASA Glenn Research Center Altitude Combustion Stand in a low pressure environment. High ignition energy is a perceived drawback of this propellant combination; so this ignition margin test program examined ignition performance versus delivered spark energy. Sensitivity of ignition to spark timing and repetition rate was also explored. Three different exciter units were used with the engine s augmented (torch) igniter. Captured waveforms indicated spark behavior in hot fire conditions was inconsistent compared to the well-behaved dry sparks. This suggests that rising pressure and flow rate increase spark impedance and may at some point compromise an exciter s ability to complete each spark. The reduced spark energies of such quenched deliveries resulted in more erratic ignitions, decreasing ignition probability. The timing of the sparks relative to the pressure/flow conditions also impacted the probability of ignition. Sparks occurring early in the flow could trigger ignition with energies as low as 1 to 6 mJ, though multiple, similarly timed sparks of 55 to 75 mJ were required for reliable ignition. Delayed spark application and reduced spark repetition rate both correlated with late and occasional failed ignitions. An optimum time interval for spark application and ignition therefore coincides with propellant introduction to the igniter.

  9. Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

    SciTech Connect

    Szybist, James P

    2016-01-01

    Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV of IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.

  10. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    PubMed

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. PMID:26164851

  11. IMPROVEMENT TO PIPELINE COMPRESSOR ENGINE RELIABILITY THROUGH RETROFIT MICRO-PILOT IGNITION SYSTEM -- PHASE III

    SciTech Connect

    Scott Chase; Daniel Olsen; Ted Bestor

    2005-03-01

    This report documents the third year's effort towards a 3-year program conducted by the Engines & Energy Conversion Laboratory (EECL) at Colorado State University (CSU) to develop micropilot ignition systems for existing pipeline compressor engines. Research activities for the overall program were conducted with the understanding that the efforts are to result in a commercial product to capture and disseminate the efficiency and environmental benefits of this new technology. Commercially-available fuel injection products were identified and applied to the program where appropriate. This approach will minimize the overall time-to-market requirements, while meeting performance and cost criteria. Two earlier phases of development precede this report. The objective for Phase I was to demonstrate the feasibility of retrofit micropilot ignition (RMI) systems for large bore, slow speed engines operating at low compression ratios under laboratory conditions at the EECL. The objective for Phase II was to further develop and optimize the micropilot ignition system at the EECL for large bore, slow speed engines operating at low compression ratios. These laboratory results were enhanced, then verified via a field demonstration project during Phase III of the Micropilot Ignition program. An Implementation Team of qualified engine retrofit service providers was assembled to install the retrofit micropilot ignition system for an engine operated by El Paso Pipeline Group at a compressor station near Window Rock, Arizona. Testing of this demonstration unit showed that the same benefits identified by laboratory testing at CSU, i.e., reduced fuel consumption and exhaust emissions (NOx, THC, CO, and CH2O). Installation efforts at Window Rock were completed towards the end of the budget period, which did not leave sufficient time to complete the durability testing. These efforts are ongoing, with funding provided by El Paso Pipeline Group, and the results will be documented in a report

  12. Ignition control system for internal combustion engines with simplified crankshaft sensing and improved coil charging

    SciTech Connect

    Wilens, D.L.; Long, A.

    1988-11-29

    This patent describes an electronic ignition system for controlling as a function of at least one selected engine parameter the ignition instant of an internal combustion engine having at least one cylinder, the cylinder having a piston and a rotatable crankshaft coupled to the piston to be rotatably driven as combustions occur within the cylinder at the ignition instants, the crankshaft having at least one reference position defining a positional relationship of the crankshaft to the cylinder. The electronic ignition system comprising: (a) a rotor affixed to rotate with the crankshaft and having a plurality of reference indicia thereon positionally related with respect to the reference position. The reference indicia being disposed at points equally spaced by a predetermined arc of crankshaft rotation from each other about the rotor, at least one of the points having a missing indicium and disposed in a predetermined relation to the reference position of the crankshaft; (b) a single sensor disposed at a point fixed in relation to the rotation of the crankshaft for providing a train of signals, each signal occurring in time when each of the plurality of reference indicia rotates past the fixed point (c) missing indicium means responsive to each sensor signal of the train for measuring an arc of crankshaft rotation from the corresponding, current indicium and if the measured arc of crankshaft rotation exceeds the predetermined arc of crankshaft rotation, for providing a missing indicium signal.

  13. A Simple HCCI Engine Model for Control

    SciTech Connect

    Killingsworth, N; Aceves, S; Flowers, D; Krstic, M

    2006-06-29

    The homogeneous charge compression ignition (HCCI) engine is an attractive technology because of its high efficiency and low emissions. However, HCCI lacks a direct combustion trigger making control of combustion timing challenging, especially during transients. To aid in HCCI engine control we present a simple model of the HCCI combustion process valid over a range of intake pressures, intake temperatures, equivalence ratios, and engine speeds. The model provides an estimate of the combustion timing on a cycle-by-cycle basis. An ignition threshold, which is a function of the in-cylinder motored temperature and pressure is used to predict start of combustion. This model allows the synthesis of nonlinear control laws, which can be utilized for control of an HCCI engine during transients.

  14. A stirling engine computer model for performance calculations

    NASA Technical Reports Server (NTRS)

    Tew, R.; Jefferies, K.; Miao, D.

    1978-01-01

    To support the development of the Stirling engine as a possible alternative to the automobile spark-ignition engine, the thermodynamic characteristics of the Stirling engine were analyzed and modeled on a computer. The modeling techniques used are presented. The performance of an existing rhombic-drive Stirling engine was simulated by use of this computer program, and some typical results are presented. Engine tests are planned in order to evaluate this model.

  15. Compression ignition engine fuel properties of a used sunflower oil-diesel fuel blend

    SciTech Connect

    Oezaktas, T.

    2000-05-01

    Vegetable oils may be used with dilution modification technique as an alternative diesel fuel. In this study, a used sunflower oil-diesel fuel blend (20:80 {nu}/{nu}%) was investigated in a Pancar Motor E-108-type diesel engine to observe engine characteristics and exhaust emission. The effect of the compression ratio on ignition delay characteristics and smoke emissions of blend fuel was determined in this CFR engine. The results of fuel blends were compared with the reference grade No. 2-D diesel fuel.

  16. Space Shuttle Main Engine fuel preburner augmented spark igniter shutdown detonations

    NASA Technical Reports Server (NTRS)

    Dexter, C. E.; Mccay, T. D.

    1986-01-01

    Detonations were experienced in the Space Shuttle Main Engine fuel preburner (FPB) augmented spark igniter (ASI) during engine cutoff. Several of these resulted in over pressures sufficient to damage the FPB ASI oxidizer system. The detonations initiated in the FPB ASI oxidizer line when residual oxidizer (oxygen) in the line mixed with backflowing fuel (hydrogen) and detonated. This paper reviews the damage history to the FPB ASI oxidizer system, an engineering assessment of the problem cause, a verification of the mechanisms, the hazards associated with the detonations, and the solution implemented.

  17. Challenging and Future of Homogeneous Charge Compression Ignition Engines; an Advanced and Novel Concepts Review

    NASA Astrophysics Data System (ADS)

    Elkelawy, Medhat; Yu-Sheng, Zhang; Hagar, Alm El-Din; Yu, Jing-Zhou

    The potential of HCCI combustion to reduce the internal combustion engines exhaust emissions, particularly NOX and soot emissions, and to delimit the application range of this technique as well as a detailed analysis of previous and current results of combustion chemistry, emission behaviors, the challenging facing this technique, and all controlling parameters including transient states are introduced. From HCCI combustion chemistry and emissions analysis it was found that, the heavy fuels displays two-stage heat release or two stage combustion process involving low temperature oxidation (LTO) stage followed by high temperature oxidation (HTO) stage separated by a time delay between them is attributed to negative temperature coefficient (NTC), the advantage of NOX emissions reduction from HCCI engine diminishing at high load condition, HC production is reduced with increasing the engine load, and the soot ejection is negligible during all operating conditions. Valve timing, compression ratio, inlet air temperature, and EGR show an advanced control on the HCCI combustion behaviors over a wide range of speed and load. The use of EGR in HCCI operation is limited at EGR-rates about 70% at this point the reaction rates and ignition timing are so much reduced and retarded, respectively, and leads to misfiring and production of HC-emissions. Homogenization of fuel, air, and recycled burnt gases prior to ignition in addition to the control of ignition and combustion timing, and heat release rates are obstructs that must be overcome in order to realize the advantages of HCCI engine in the future.

  18. A Competency Based Curriculum Guide: Ethanol Spark Ignition Engine Conversion.

    ERIC Educational Resources Information Center

    Blair, Brittain A.

    This guide is a competency-based vocational curriculum designed to provide educators with viable ethanol (100 percent alcohol) engine conversion procedures stated in simple terms and set in a flexible educational environment. The curriculum is designed so that educators can form various combinations of instructional activities and resource…

  19. Measurement of Knock Characteristics in Spark-ignition Engines

    NASA Technical Reports Server (NTRS)

    Schutz, R

    1940-01-01

    This paper presents a discussion of three potential sources of error in recording engine knocking which are: the natural oscillation of the membrane, the shock process between test contacts, and the danger of burned contacts. Following this discussion, the paper calls attention to various results which make the bouncing-pin indicator appear fundamentally unsuitable for recording knock phenomena.

  20. Compression-ignition engine tests of several fuels

    NASA Technical Reports Server (NTRS)

    Spanogle, J A

    1932-01-01

    The tests reported in this paper were made to devise simple engine tests which would rate fuels as to their comparative value and their suitability for the operating conditions of the individual engine on which the tests are made. Three commercial fuels were used in two test engines having combustion chambers with and without effective air flow. Strictly comparative performance tests gave almost identical results for the three fuels. Analysis of indicator cards allowed a differentiation between fuels on a basis of rates of combustion. The same comparative ratings were obtained by determining the consistent operating range of injection advance angle for the three fuels. The difference in fuels is more pronounced in a quiescent combustion chamber than in one with high-velocity air flow. A fuel is considered suitable for the operating conditions of an engine with a quiescent combustion chamber if it permits the injection of the fuel to be advanced beyond the optimum without exceeding allowable knock or allowable maximum cylinder pressures.

  1. Improvement of non-isobaric model for shock ignition

    NASA Astrophysics Data System (ADS)

    Farahbod, Amir Hossein; Abolfazl Ghasemi, Seyed; Jafar Jafari, Mohammad; Rezaei, Somayeh; Sobhanian, Samad

    2014-10-01

    In this paper, improved relations of total fuel energy, fuel gain, hot-spot radius and total areal density in a non-isobaric model of fuel assembly have been derived and compared with the numerical results of [J. Schmitt, J.W. Bates, S.P. Obenschain, S.T. Zalesak, D.E. Fyfe, Phys. Plasmas 17, 042701 (2010); S. Atzeni, A. Marocchino, A. Schiavi, G. Schurtz, New J. Phys. 15, 045004 (2013)] and several simulations performed by MULTI-1D radiation hydrodynamic code for shock ignition scenario. Our calculations indicate that the approximations made by [M.D. Rosen, J.D. Lindl, A.R. Thiessen, LLNL Laser Program Annual Report, UCRL-50021-83, pp. 3-5 (1983); J. Schmitt, J.W. Bates, S.P. Obenschain, S.T. Zalesak, D.E. Fyfe, Phys. Plasmas 17, 042701 (2010)] for the calculation of burn-up fraction are not accurate enough to give results consistent with simulations. Therefore, we have introduced more appropriate approximations for the burn-up fraction and total areal density of the fuel that are in more agreement with simulation results of shock ignition. Meanwhile, it is shown that the related formulas of the non-isobaric model for total fuel energy, fuel gain and also hot-spot radius cannot determine the model parameters independently, but improved model choose a better selection and less restrictions on determination of the parameters for the non-isobaric model. Such derivations can be used in theoretical studies of the ignition conditions and burn-up fraction of the fuel in shock ignition scenario.

  2. A Photographic Study of Combustion and Knock in a Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1938-01-01

    Report presents the results of a photographic study of the combustion in a spark-ignition engine using both Schlieren and flame photographs taken at high rates of speed. Although shock waves are present after knock occurs, there was no evidence of any type of sonic or supersonic compression waves existing in the combustion gases prior to the occurrence of knock. Artificially induced shock waves in the engine did not in themselves cause knock. The photographs also indicate that, although auto-ignition ahead of the flame front may occur in conjunction with knock, it is not necessary for the occurrence of knock. There is also evidence that the reaction is not completed in the flame front but continues for some time after the flame front has passed through the charge.

  3. Hydrogen as an additive to methane for spark ignition engine applications

    SciTech Connect

    Bade Shrestha, S.O.; Karim, G.A.

    1997-12-31

    It is shown that the performance of a gas fueled spark ignition engine can be enhanced considerably when relatively small amounts of hydrogen are present with methane. This improvement in performance which is especially pronounced at operational equivalence ratios that are much leaner than the stoichiometric value, can be attributed largely to the faster and cleaner burning characteristics of hydrogen in comparison to methane. Through analytical simulation of engine performance, the addition of hydrogen is considered through its production in-situ on board the engine by electrolysis of water with the necessary energy supplied for the production of hydrogen by electrolysis is taken into account, the range of viable operation of such an engine is very narrow. This would render the whole concept of in situ hydrogen production through water electrolysis uneconomical in conjunction with engine operation, even though the presence of additional oxygen produced with the hydrogen tends, in principle, to improve engine performance beyond that observed with hydrogen addition.

  4. DESIGN OF A HIGH COMPRESSION, DIRECT INJECTION, SPARK-IGNITION, METHANOL FUELED RESEARCH ENGINE WITH AN INTEGRAL INJECTOR-IGNITION SOURCE INSERT, SAE PAPER 2001-01-3651

    EPA Science Inventory

    A stratified charge research engine and test stand were designed and built for this work. The primary goal of this project was to evaluate the feasibility of using a removal integral injector ignition source insert which allows a convenient method of charging the relative locat...

  5. Orange oil and its application to spark ignition engine

    SciTech Connect

    Takeda, S.

    1982-12-01

    Orange oil can be extracted from the peel of citrus. In Japan the production of orange oil is about 2000 tons per year. No orange oil has been however used for any specific purpose. The main ingredient of orange oil consists of d-limonen. About 0.6-1.0% oil can be extracted from the peel of ''Unshu orange'', which is a kind of typical Japanese tangerine. Orange oil has 106-140 research octane number which is good for running the CFR engine. The flash point of orange oil measured by Pensky-Martens method was at 56/sup 0/C. For the use of orange oil only as fuel without blending, there was found to be some difficulty in engine startability under cold conditions.

  6. Infrared radiation from explosions in a spark-ignition engine

    NASA Technical Reports Server (NTRS)

    Marvin, Charles F , Jr; Caldwell, Frank R; Steele, Sydney

    1935-01-01

    This report presents the results of an investigation to determine the variations in intensity and spectral distribution of the radiant energy emitted by the flames during normal and knocking explosions in an engine. Radiation extending into the infrared was transmitted by a window of fluorite, placed either near the spark plug or over the detonation zone at opposite ends of the combustion chamber. Concave, surface-silvered mirrors focused the beam, first at the slit of a stroboscope which opened for about 2 degrees of crank angle at any desired point in the engine cycle, and then upon the target of a sensitive thermocouple for measuring radiation intensity. Spectral distribution of the radiant energy was determined by placing over the window, one at a time, a series of five filters selected with a view to identifying, as far as possible without the use of a spectrograph, the characteristic emissions of water vapor, carbon dioxide, and incandescent carbon.

  7. CARBON DEFLAGRATION IN TYPE Ia SUPERNOVA. I. CENTRALLY IGNITED MODELS

    SciTech Connect

    Ma, H.; Woosley, S. E.; Malone, C. M.; Almgren, A.; Bell, J.

    2013-07-01

    A leading model for Type Ia supernovae (SNe Ia) begins with a white dwarf near the Chandrasekhar mass that ignites a degenerate thermonuclear runaway close to its center and explodes. In a series of papers, we shall explore the consequences of ignition at several locations within such dwarfs. Here we assume central ignition, which has been explored before, but is worth revisiting, if only to validate those previous studies and to further elucidate the relevant physics for future work. A perturbed sphere of hot iron ash with a radius of {approx}100 km is initialized at the middle of the star. The subsequent explosion is followed in several simulations using a thickened flame model in which the flame speed is either fixed-within the range expected from turbulent combustion-or based on the local turbulent intensity. Global results, including the explosion energy and bulk nucleosynthesis (e.g., {sup 56}Ni of 0.48-0.56 M{sub Sun }) turn out to be insensitive to this speed. In all completed runs, the energy released by the nuclear burning is adequate to unbind the star, but not enough to give the energy and brightness of typical SNe Ia. As found previously, the chemical stratification observed in typical events is not reproduced. These models produce a large amount of unburned carbon and oxygen in central low velocity regions, which is inconsistent with spectroscopic observations, and the intermediate mass elements and iron group elements are strongly mixed during the explosion.

  8. Comparative performance study of spark ignition engines burning alcohols, gasoline, and alcohol-gasoline blends

    SciTech Connect

    Desoky, A.A.; Rabie, L.H.

    1983-12-01

    In recent years it has been clear that the reserves of oil, from which petrol is refined, are becoming limited. In order to conserve these stocks of oil, and to minimize motoring costs as the price of dwindling oil resources escalates, it's obviously desirable to improve the thermal efficiency of the spark ignition engine. There are also obvious benefits to be obtained from making spark ignition engines run efficiently on alternative fuel, (non-crude based fuel). It has been claimed that hydrogen is an ideal fuel for the internal combustion engine it certainly causes little pollution, but is difficult to store, high in price, and difficult to burn efficiently in the engine without it knocking and backfiring. These problems arise because of the very wide flammability limits and the very high flame velocity of hydrogen. Alcohols used an additive or substitute for gasoline could immediately help to solve both energy and pollution problems. An experimental tests were carried out at Mansoura University Laboratories using a small single cylinder SIE, fully instrumented to measure the engine performance. The engine was fueled with pure methonol, pure ethonol, gasoline methanol blends and gasaline ethanol blends. The results showed that in principle, from kechnological aspects it's possible to use alcohols as a gasoline extender or as alcohol's gasoline, blends for automobiles. With regard to energy consumptions alcohols and alcohols gasoline blends lead to interesting results. The fuel economy benefits of using alcohols gasoline blends was found to be interesting in the part throltle operation.

  9. Effect of torch jet direction on combustion and performance of a prechamber spark-ignition engine

    SciTech Connect

    Ryu, H.; Chtsu, A.; Asanuma, T.

    1987-01-01

    To examine the effect of torch jet direction on the combustion characteristics and engine performances, a spark-ignition engine with each divided chamber having a torch nozzle of different flow direction is used by changing the torch nozzle area, prechamber volume and air-fuel ratio, while keeping the engine speed of 1000 rpm. Typical pressure diagrams for different torch jet directions are analyzed to obtain such combustion characteristics as the crank angles of combustion start and finish, heat release rate and mass burned fraction. The engine performances, e.g. mean effective pressure and specific fuel consumption, are also measured. As a result, it can be made clear not only the effect of torch jet direction on the combustion characteristics, but also the relationship between the combustion characteristics and the engine performances for different torch jet directions.

  10. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  11. Performance of a High-Speed Compression-Ignition Engine Using Multiple Orifice Fuel Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Foster, H H

    1930-01-01

    This report presents test results obtained at the Langley Memorial Aeronautical Laboratory of the National Advisory Committee for Aeronautics during an investigation to determine the relative performance of a single-cylinder, high-speed, compression-ignition engine when using fuel injection valve nozzles with different numbers, sizes, and directions of round orifices. A spring-loaded, automatic injection valve was used, centrally located at the top of a vertical disk-type combustion chamber formed between horizontally opposed inlet and exhaust valves of a 5 inch by 7 inch engine.

  12. Compression ignition engine having fuel system for non-sooting combustion and method

    SciTech Connect

    Bazyn, Timothy; Gehrke, Christopher

    2014-10-28

    A direct injection compression ignition internal combustion engine includes a fuel system having a nozzle extending into a cylinder of the engine and a plurality of spray orifices formed in the nozzle. Each of the spray orifices has an inner diameter dimension of about 0.09 mm or less, and define inter-orifice angles between adjacent spray orifice center axes of about 36.degree. or greater such that spray plumes of injected fuel from each of the spray orifices combust within the cylinder according to a non-sooting lifted flame and gas entrainment combustion pattern. Related methodology is also disclosed.

  13. Engineering Status of the Fusion Ignition Research Experiment (FIRE)

    SciTech Connect

    Philip J. Heitzenroeder; Dale Meade; Richard J. Thome

    2000-10-24

    FIRE is a compact, high field tokamak being studied as an option for the next step in the US magnetic fusion energy program. FIRE's programmatic mission is to attain, explore, understand, and optimize alpha-dominated plasmas to provide the knowledge necessary for the design of attractive magnetic fusion energy systems. This study began in 1999 with broad participation of the US fusion community, including several industrial participants. The design under development has a major radius of 2 m, a minor radius of 0.525 m, a field on axis of 10T and capability to operate at 12T with upgrades to power supplies. Toroidal and poloidal field magnets are inertially cooled with liquid nitrogen. An important goal for FIRE is a total project cost in the $1B range. This paper presents an overview of the engineering details which were developed during the FIRE preconceptual design study in FY99 and 00.

  14. Studies on exhaust emissions of catalytic coated spark ignition engine with adulterated gasoline.

    PubMed

    Muralikrishna, M V S; Kishor, K; Venkata Ramana Reddy, Ch

    2006-04-01

    Adulteration of automotive fuels, especially, gasoline with cheaper fuels is widespread throughout south Asia. Some adulterants decrease the performance and life of the engine and increase the emission of harmful pollutants causing environmental and health problems. The present investigation is carried out to study the exhaust emissions from a single cylinder spark ignition (SI) engine with kerosene blended gasoline with different versions of the engine, such as conventional engine and catalytic coated engine with different proportions of the kerosene ranging from 0% to 40% by volume in steps of 10% in the kerosene-gasoline blend. The catalytic coated engine used in the study has copper coating of thickness 400 microns on piston and inner surface of the cylinder head. The pollutants in the exhaust, carbon monoxide (CO) and unburnt hydrocarbons (UBHC) are measured with Netel Chromatograph CO and HC analyzer at peak load operation of the engine. The engine is provided with catalytic converter with sponge iron as a catalyst to control the pollutants from the exhaust of the engine. An air injection is also provided to the catalytic converter to further reduce the pollutants. The pollutants found to increase drastically with adulterated gasoline. Copper-coated engine with catalytic converter significantly reduced pollutants, when compared to conventional engine. PMID:17913184

  15. Ignition models and simulation of solid propellant of thermodynamic undersea vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Jun; Qian, Zhi-Bo; Yang, Jie; Yan, Ping

    2007-06-01

    The starting characteristics of thermodynamic undersea vehicle systems are determined by the geometry, size and combustion area of solid propellants, which directly effect liquid propellant pipeline design. It is necessary to establish accurate burning models for solid propellants. Based on combustion models using powder rings and two different solid ignition grains, namely star-shaped ignition grains and stuffed ignition grains, a mathematic model of the ignition process of the propulsion system was built. With the help of Matlab, a series of calculations were made to determine the effects of different grains on ignition characteristics. The results show that stuffed ignition grain is best suited to be the ignition grain of a thermodynamic undersea vehicle system.

  16. Modeling low energy laser ignition of explosive and pyrotechnic powders

    SciTech Connect

    Glass, M.W.; Merson, J.A.; Salas, F.J.

    1992-01-01

    Laser diode ignition (LDI) of explosives and pyrotechnics is being developed at Sandia National Laboratories as a replacement for low energy hotwire devices. This technology offers significant improvements in device safety due to the insensitivity to electrostatic discharge (ESD) and electromagnetic radiation (EMR). The LDI system incorporates a laser diode source, a fiber optic cable to transmit the laser energy, and the energetic component. The laser energy is volumetrically absorbed by the explosive component causing its temperature to rise to its auto-ignition temperature. Substantial experimental work characterizing the optical ignition mechanism has been undertaken in support of the LDI development work. This work has primarily been focused on the explosive component, CP, 2-(5-cyanotetrazolato) pentaamminecobalt(III) perchlorate, doped with a small amount of carbon black to enhance the laser energy absorptance at the 850 nm wavelength of the laser diode. To support the experimental efforts, numerical modeling of the thermal response of CP to a low energy laser input has been undertaken.

  17. Modeling low energy laser ignition of explosive and pyrotechnic powders

    SciTech Connect

    Glass, M.W.; Merson, J.A.; Salas, F.J.

    1992-07-01

    Laser diode ignition (LDI) of explosives and pyrotechnics is being developed at Sandia National Laboratories as a replacement for low energy hotwire devices. This technology offers significant improvements in device safety due to the insensitivity to electrostatic discharge (ESD) and electromagnetic radiation (EMR). The LDI system incorporates a laser diode source, a fiber optic cable to transmit the laser energy, and the energetic component. The laser energy is volumetrically absorbed by the explosive component causing its temperature to rise to its auto-ignition temperature. Substantial experimental work characterizing the optical ignition mechanism has been undertaken in support of the LDI development work. This work has primarily been focused on the explosive component, CP, 2-(5-cyanotetrazolato) pentaamminecobalt(III) perchlorate, doped with a small amount of carbon black to enhance the laser energy absorptance at the 850 nm wavelength of the laser diode. To support the experimental efforts, numerical modeling of the thermal response of CP to a low energy laser input has been undertaken.

  18. Devices to improve the performance of a conventional two-stroke spark ignition engine

    SciTech Connect

    Poola, R.B.; Nagalingam, B.; Gopalakrishnan, K.V.

    1995-06-01

    This paper presents research efforts made in three different phases with the objective of improving the fuel economy of and reducing exhaust emissions from conventional, carbureted, two-stroke spark ignition (SI) engines, which are widely employed in two-wheel transportation in India. A review concerning the existing two-stroke engine technology for this application is included. In the first phase, a new scavenging system was developed and tested to reduce the loss of fresh charge through the exhaust port. In die second phase, the following measures were carried out to improve the combustion process: (1) using an in-cylinder catalyst, such as copper, chromium, and nickel, in the form of coating; (2) providing moderate thermal insulation in the combustion chamber, either by depositing thin ceramic material or by metal inserts; (3) developing a high-energy ignition system; and (4) employing high-octane fuel, such as methanol, ethanol, eucalyptus oil, and orange oil, as a blending agent with gasoline. Based on the effectiveness of the above measures, an optimized design was developed in the final phase to achieve improved performance. Test results indicate that with an optimized two-stroke SI engine, the maximum percentage improvement in brake thermal efficiency is about 31%, together with a reduction of 3400 ppm in hydrocarbons (HC) and 3% by volume of carbon monoxide (CO) emissions over the normal engine (at 3 kW, 3000 rpm). Higher cylinder peak pressures (3-5 bar), lower ignition delay (2-4{degrees}CA){degrees} and shorter combustion duration (4-10 {degrees}CA) are obtained. The knock-limited power output is also enhanced by 12.7% at a high compression ratio (CR) of 9:1. The proposed modifications in the optimized design are simple, low-cost and easy to adopt for both production and existing engines.

  19. Devices to improve the performance of a conventional two-stroke spark ignition engine

    NASA Astrophysics Data System (ADS)

    Poola, R. B.; Nagalingam, B.; Gopalakrishnan, K. V.

    1995-08-01

    This paper presents research efforts made in three different phases with the objective of improving the fuel economy of and reducing exhaust emissions from conventional, carbureted, two-stroke spark ignition (SI) engines, which are widely employed in two-wheel transportation in India. A review concerning the existing two-stroke engine technology for this application is included. In the first phase, a new scavenging system was developed and tested to reduce the loss of fresh charge through the exhaust port. In the second phase, the following measures were carried out to improve the combustion process: (1) using an in-cylinder catalyst, such as copper, chromium, and nickel, in the form of coating; (2) providing moderate thermal insulation in the combustion chamber, either by depositing thin ceramic material or by metal inserts; (3) developing a high-energy ignition system; and (4) employing high-octane fuel, such as methanol, ethanol, eucalyptus oil, and orange oil, as a blending agent with gasoline. Based on the effectiveness of the above measures, an optimized design was developed in the final phase to achieve improved performance. Test results indicate that with an optimized two-stroke SI engine, the maximum percentage improvement in brake thermal efficiency is about 31%, together with a reduction of 3400 ppm in hydrocarbons (HC) and 3% by volume of carbon monoxide (CO) emissions over the normal engine (at 3 kW, 3000 rpm). Higher cylinder peak pressures (3-5 bar), lower ignition delay (2-4 degrees CA), and shorter combustion duration (4-10 degrees CA) are obtained. The knock-limited power output is also enhanced by 12.7% at a high compression ratio (CR) of 9:1. The proposed modifications in the optimized design are simple, low-cost, and easy to adopt for both production and existing engines.

  20. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    SciTech Connect

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  1. Very Low Thrust Gaseous Oxygen-hydrogen Rocket Engine Ignition Technology

    NASA Technical Reports Server (NTRS)

    Bjorklund, Roy A.

    1983-01-01

    An experimental program was performed to determine the minimum energy per spark for reliable and repeatable ignition of gaseous oxygen (GO2) and gaseous hydrogen (GH2) in very low thrust 0.44 to 2.22-N (0.10 to 0.50-lb sub f) rocket engines or spacecraft and satellite attitude control systems (ACS) application. Initially, the testing was conducted at ambient conditions, with the results subsequently verified under vacuum conditions. An experimental breadboard electrical exciter that delivered 0.2 to 0.3 mj per spark was developed and demonstrated by repeated ignitions of a 2.22-N (0.50-lb sub f) thruster in a vacuum chamber with test durations up to 30 min.

  2. Ignition conditions relaxation for central hot-spot ignition with an ion-electron non-equilibrium model

    NASA Astrophysics Data System (ADS)

    Fan, Zhengfeng; Liu, Jie; Liu, Bin; Yu, Chengxin; He, X. T.

    2016-01-01

    Fusion ignition experiments on the National Ignition Facility have demonstrated >5 keV hot spot with ρRh lower than 0.3 g/cm2 [Döppner et al., Phys. Rev. Lett. 115, 055001 (2015)]. We present an ion-electron non-equilibrium model, in which the hot-spot ion temperature is higher than its electron temperature so that the hot-spot nuclear reactions are enhanced while energy leaks are considerably reduced. Theoretical analysis shows that the ignition region would be significantly enlarged in the hot-spot ρR-T space as compared with the commonly used equilibrium model. Simulations show that shocks could be utilized to create and maintain non-equilibrium conditions within the hot spot, and the hot-spot ρR requirement is remarkably reduced for achieving self-heating.

  3. Breakdown voltage determination of gaseous and near cryogenic fluids with application to rocket engine ignition

    NASA Astrophysics Data System (ADS)

    Nugent, Nicholas Jeremy

    Liquid rocket engines extensively use spark-initiated torch igniters for ignition. As the focus shifts to longer missions that require multiple starts of the main engines, there exists a need to solve the significant problems associated with using spark-initiated devices. Improving the fundamental understanding of predicting the required breakdown voltage in rocket environments along with reducing electrical noise is necessary to ensure that missions can be completed successfully. To better understand spark ignition systems and add to the fundamental research on spark development in rocket applications, several parameter categories of interest were hypothesized to affect breakdown voltage: (i) fluid, (ii) electrode, and (iii) electrical. The fluid properties varied were pressure, temperature, density and mass flow rate. Electrode materials, insert electrode angle and spark gap distance were the electrode properties varied. Polarity was the electrical property investigated. Testing how breakdown voltage is affected by each parameter was conducted using three different isolated insert electrodes fabricated from copper and nickel. A spark plug commonly used in torch igniters was the other electrode. A continuous output power source connected to a large impedance source and capacitance provided the pulsing potential. Temperature, pressure and high voltage measurements were recorded for the 418 tests that were successfully completed. Nitrogen, being inert and similar to oxygen, a propellant widely used in torch igniters, was used as the fluid for the majority of testing. There were 68 tests completed with oxygen and 45 with helium. A regression of the nitrogen data produced a correction coefficient to Paschen's Law that predicts the breakdown voltage to within 3000 volts, better than 20%, compared to an over prediction on the order of 100,000 volts using Paschen's Law. The correction coefficient is based on the parameters most influencing breakdown voltage: fluid

  4. Onboard Hydrogen Generation for a Spark Ignition Engine via Thermochemical Recuperation

    NASA Astrophysics Data System (ADS)

    Silva, Isaac Alexander

    A method of exhaust heat recovery from a spark-ignition internal combustion engine was explored, utilizing a steam reforming thermochemical reactor to produce a hydrogen-rich effluent, which was then consumed in the engine. The effects of hydrogen in the combustion process have been studied extensively, and it has been shown that an extension of the lean stability limit is possible through hydrogen enrichment. The system efficiency and the extension of the operational range of an internal combustion engine were explored through the use of a methane fueled naturally aspirated single cylinder engine co-fueled with syngas produced with an on board methane steam reformer. It was demonstrated that an extension of the lean stability limit is possible using this system.

  5. Combustion process in a spark ignition engine: dynamics and noise level estimation.

    PubMed

    Kaminski, T; Wendeker, M; Urbanowicz, K; Litak, G

    2004-06-01

    We analyze the experimental time series of internal pressure in a four cylinder spark ignition engine. In our experiment, performed for different spark advance angles, apart from the usual cyclic changes of engine pressure we observed additional oscillations. These oscillations are with longer time scales ranging from one to several hundred engine cycles depending on engine working conditions. Based on the pressure time dependence we have calculated the heat released per combustion cycle. Using the time series of heat release to calculate the correlation coarse-grained entropy we estimated the noise level for internal combustion process. Our results show that for a larger spark advance angle the system is more deterministic. PMID:15189073

  6. Experimental investigation of gasoline compression ignition combustion in a light-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Loeper, C. Paul

    Due to increased ignition delay and volatility, low temperature combustion (LTC) research utilizing gasoline fuel has experienced recent interest [1-3]. These characteristics improve air-fuel mixing prior to ignition allowing for reduced emissions of nitrogen oxides (NOx) and soot (or particulate matter, PM). Computational fluid dynamics (CFD) results at the University of Wisconsin-Madison's Engine Research Center (Ra et al. [4, 5]) have validated these attributes and established baseline operating parameters for a gasoline compression ignition (GCI) concept in a light-duty diesel engine over a large load range (3-16 bar net IMEP). In addition to validating these computational results, subsequent experiments at the Engine Research Center utilizing a single cylinder research engine based on a GM 1.9-liter diesel engine have progressed fundamental understanding of gasoline autoignition processes, and established the capability of critical controlling input parameters to better control GCI operation. The focus of this thesis can be divided into three segments: 1) establishment of operating requirements in the low-load operating limit, including operation sensitivities with respect to inlet temperature, and the capabilities of injection strategy to minimize NOx emissions while maintaining good cycle-to-cycle combustion stability; 2) development of novel three-injection strategies to extend the high load limit; and 3) having developed fundamental understanding of gasoline autoignition kinetics, and how changes in physical processes (e.g. engine speed effects, inlet pressure variation, and air-fuel mixture processes) affects operation, develop operating strategies to maintain robust engine operation. Collectively, experimental results have demonstrated the ability of GCI strategies to operate over a large load-speed range (3 bar to 17.8 bar net IMEP and 1300-2500 RPM, respectively) with low emissions (NOx and PM less than 1 g/kg-FI and 0.2 g/kg-FI, respectively), and low

  7. Premixed ignition behavior of C{sub 9} fatty acid esters: A motored engine study

    SciTech Connect

    Zhang, Yu.; Yang, Yi; Boehman, Andre L.

    2009-06-15

    An experimental study on the premixed ignition behavior of C{sub 9} fatty acid esters has been conducted in a motored CFR engine. For each test fuel, the engine compression ratio was gradually increased from the lowest point (4.43) to the point where significant high temperature heat release (HTHR) was observed. The engine exhaust was sampled and analyzed through GC-FID/TCD and GC-MS. Combustion analysis showed that the four C{sub 9} fatty acid esters tested in this study exhibited evidently different ignition behavior. The magnitude of low temperature heat release (LTHR) follows the order, ethyl nonanoate > methyl nonanoate >> methyl 2-nonenoate > methyl 3-nonenoate. The lower oxidation reactivity for the unsaturated fatty acid esters in the low temperature regime can be explained by the reduced amount of six- or seven-membered transition state rings formed during the oxidation of the unsaturated esters due to the presence of a double bond in the aliphatic chain of the esters. The inhibition effect of the double bond on the low temperature oxidation reactivity of fatty acid esters becomes more pronounced as the double bond moves toward the central position of the aliphatic chain. GC-MS analysis of exhaust condensate collected under the engine conditions where only LTHR occurred showed that the alkyl chain of the saturated fatty acid esters participated in typical paraffin-like low temperature oxidation sequences. In contrast, for unsaturated fatty acid esters, the autoignition can undergo olefin ignition pathways. For all test compounds, the ester functional group remains largely intact during the early stage of oxidation. (author)

  8. Experimental cross-correlation nitrogen Q-branch CARS thermometry in a spark ignition engine

    NASA Astrophysics Data System (ADS)

    Lockett, R. D.; Ball, D.; Robertson, G. N.

    2013-07-01

    A purely experimental technique was employed to derive temperatures from nitrogen Q-branch Coherent Anti-Stokes Raman Scattering (CARS) spectra, obtained in a high pressure, high temperature environment (spark ignition Otto engine). This was in order to obviate any errors arising from deficiencies in the spectral scaling laws which are commonly used to represent nitrogen Q-branch CARS spectra at high pressure. The spectra obtained in the engine were compared with spectra obtained in a calibrated high pressure, high temperature cell, using direct cross-correlation in place of the minimisation of sums of squares of residuals. The technique is demonstrated through the measurement of air temperature as a function of crankshaft angle inside the cylinder of a motored single-cylinder Ricardo E6 research engine, followed by the measurement of fuel-air mixture temperatures obtained during the compression stroke in a knocking Ricardo E6 engine. A standard CARS programme (SANDIA's CARSFIT) was employed to calibrate the altered non-resonant background contribution to the CARS spectra that was caused by the alteration to the mole fraction of nitrogen in the unburned fuel-air mixture. The compression temperature profiles were extrapolated in order to predict the auto-ignition temperatures.

  9. Feasibility demonstration of the Thermal Ignition Combustion System (TICS) for high-pressure natural-gas-injected engine

    SciTech Connect

    Kalwani, R.M.; McNulty, D.; Badgley, P.; Kamo, R.

    1989-02-01

    The objective of the program was the feasibility demonstration of the Thermal Ignition Combustion System (TICS) concept for the ignition and combustion of high-pressure injected natural gas. The TICS concept relies on the ignition of fuel by high-temperature combustion chamber walls without external ignition sources like spark plug, glow plug, or pilot diesel fuel. The program was successful in achieving ignition and combustion of natural gas in a single cylinder diesel engine with the TICS concept. An electronically controlled gas injector, designed and fabricated in the program, was used to inject natural gas at 13.8 to 20.7 MPa (2000 to 3000 psig) pressure in the TICS chamber. Cold starting of the test engine was achieved by external heating of the chamber for a few minutes. Natural gas ignition and combustion was then sustained by the high-temperature TICS chamber. The test engine was operated from idle to full load and from 600 to 1400 rpm engine-speed range.

  10. Self-ignition of diesel spray combustion

    NASA Astrophysics Data System (ADS)

    Dhuchakallaya, Isares; Watkins, A. P.

    2009-10-01

    This work presents the development and implementation of auto-ignition modelling for DI diesel engines by using the probability density function-eddy break-up (PDF-EBU) model. The key concept of this approach is to combine the chemical reaction rate dealing with low-temperature mode, and the turbulence reaction rate governing the high-temperature part by a reaction progress variable coupling function which represents the level of reaction. The average reaction rate here is evaluated by a PDF averaging approach. In order to assess the potential of this developed model, the well-known Shell ignition model is chosen to compare in auto-ignition analysis. In comparison, the PDF-EBU ignition model yields the ignition delay time in good agreement with the Shell ignition model prediction. However, the ignition kernel location predicted by the Shell model is slightly nearer injector than that by the PDF-EBU model leading to shorter lift-off length. As a result, the PDF-EBU ignition model developed here are fairly satisfactory in predicting the auto-ignition of diesel engines with the Shell ignition model.

  11. A Laser Spark Plug Ignition System for a Stationary Lean-Burn Natural Gas Reciprocating Engine

    SciTech Connect

    McIntyre, D.L.

    2007-05-01

    To meet the ignition system needs of large bore, high pressure, lean burn, natural gas engines a side pumped, passively Q-switched, Nd:YAG laser was developed and tested. The laser was designed to produce the optical intensities needed to initiate ignition in a lean burn, high compression engine. The laser and associated optics were designed with a passive Q-switch to eliminate the need for high voltage signaling and associated equipment. The laser was diode pumped to eliminate the need for high voltage flash lamps which have poor pumping efficiency. The independent and dependent parameters of the laser were identified and explored in specific combinations that produced consistent robust sparks in laboratory air. Prior research has shown that increasing gas pressure lowers the breakdown threshold for laser initiated ignition. The laser has an overall geometry of 57x57x152 mm with an output beam diameter of approximately 3 mm. The experimentation used a wide range of optical and electrical input parameters that when combined produced ignition in laboratory air. The results show a strong dependence of the output parameters on the output coupler reflectivity, Q-switch initial transmission, and gain media dopant concentration. As these three parameters were lowered the output performance of the laser increased leading to larger more brilliant sparks. The results show peak power levels of up to 3MW and peak focal intensities of up to 560 GW/cm2. Engine testing was performed on a Ricardo Proteus single cylinder research engine. The goal of the engine testing was to show that the test laser performs identically to the commercially available flashlamp pumped actively Q-switched laser used in previous laser ignition testing. The engine testing consisted of a comparison of the in-cylinder, and emissions behavior of the engine using each of the lasers as an ignition system. All engine parameters were kept as constant as possilbe while the equivalence ratio (fueling), and

  12. Evaluation and Characterization Study of Dual Pulse Laser-Induced Spark (DPLIS) for Rocket Engine Ignition System Application

    NASA Technical Reports Server (NTRS)

    Osborne, Robin; Wehrmeyer, Joseph; Trinh, Huu; Early, James

    2003-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Laser ignition has been used at MSFC in recent test series to successfully ignite RP1/GOX propellants in a subscale rocket chamber, and other past studies by NASA GRC have demonstrated the use of laser ignition for rocket engines. Despite the progress made in the study of this ignition method, the logistics of depositing laser sparks inside a rocket chamber have prohibited its use. However, recent advances in laser designs, the use of fiber optics, and studies of multi-pulse laser formats3 have renewed the interest of rocket designers in this state-of the-art technology which offers the potential elimination of torch igniter systems and their associated mechanical parts, as well as toxic hypergolic ignition systems. In support of this interest to develop an alternative ignition system that meets the risk-reduction demands of Next Generation Launch Technology (NGLT), characterization studies of a dual pulse laser format for laser-induced spark ignition are underway at MSFC. Results obtained at MSFC indicate that a dual pulse format can produce plasmas that absorb the laser energy as efficiently as a single pulse format, yet provide a longer plasma lifetime. In an experiments with lean H2/air propellants, the dual pulse laser format, containing the same total energy of a single laser pulse, produced a spark that was superior in its ability to provide sustained ignition of fuel-lean H2/air propellants. The results from these experiments are being used to optimize a dual pulse laser format for future subscale rocket chamber tests. Besides the ignition enhancement, the dual pulse technique provides a practical way to distribute and deliver laser light to the combustion chamber, an important consideration given the limitation of peak power that can be delivered through optical fibers. With this knowledge, scientists and engineers at Los

  13. Modelling of critical phenomena for ignition of metal particles

    NASA Astrophysics Data System (ADS)

    Shchepakina, E.; Sobolev, V.

    2008-11-01

    The singularly perturbed system of differential equations describing metal particle ignition is analyzed. Two general types of combustion reactions are recognized, namely subcritical and supercritical. It is shown that there exists a so-called critical regime, which separates domains of subcritical and supercritical regimes. The critical regime is modelled by the special phase trajectory of the system, which includes the repulsive part with slow variation of the temperature of a metal particle and the thickness of the oxide film. The asymptotic formulae for the calculation of critical values of the modified Semenov number are obtained in the cases of parabolic and cubic laws of oxidation kinetics.

  14. A generalized flame surface density modelling approach for the auto-ignition of a turbulent non-premixed system

    NASA Astrophysics Data System (ADS)

    Tap, F. A.; Hilbert, R.; Thévenin, D.; Veynante, D.

    2004-03-01

    Auto-ignition of turbulent non-premixed systems is encountered in practical devices such as diesel internal combustion engines. It remains a challenge for modellers, as it exhibits specific features such as unsteadiness, flame propagation and combustion far from stoichiometric conditions. In this paper, a two-dimensional DNS database of an igniting H2/O2/N2 mixing layer, including detailed chemistry and transport, is extensively post-processed in order to gain physical insight into the flame structure and dynamics during auto-ignition. The results are used as a framework for the development of a generalized flame surface density modelling approach by integrating the equations over all possible mixture fraction values. The mean reaction rate is split into two contributions: a generalized flame surface density and a mean reaction rate per unit generalized flame surface density. The unsteadiness of the ignition phenomenon is accounted for via a generalized progress variable. Closures for the generalized surface average of the reaction rate and for the generalized progress variable are proposed, and the modelling approach is tested a priori versus the DNS data. The use of a laminar database for the chemistry coupled to the mean turbulent field via the generalized progress variable shows very promising results, capturing the correct ignition delay and the premixed peak in the turbulent mean heat release rate evolution. This allows confidence in future inclusion and validation of this approach in a RANS-CFD code.

  15. A Model based Examination of Conditions for Ignition of Turbidity Currents on Slopes

    NASA Astrophysics Data System (ADS)

    Mehta, A. J.; Krishna, G.

    2009-12-01

    Turbidity currents form a major mechanism for the movement of sediment in the natural environment. Self-accelerating turbidity currents over continental slopes are of considerable scientific and engineering interest due to their role as agents for submarine sediment transportation from the shelf to the seabed. Such currents are called ignitive provided they eventually reach a catastrophic state as acceleration results in high sediment loads due to erosion of the sloping bed. A numerical model, which treats the fluid and the particles as two separate phases, is applied to investigate the effects of particle size, initial flow friction velocity and mild bed slope on the ignitive condition. Laboratory experimental data have been included as part of the analysis for qualitative comparison purposes. Ignition for the smallest of the three selected sizes (0.21mm) of medium sand typical of Florida beaches was found to depend on the initial conditions at the head of the slope as determined by the pressure gradient. Bed slope seemed to be of secondary importance. For the two sands with larger grain sizes (0.28mm and 0.35mm) the slope was found to play a more important role when compared to the initial pressure gradient. For a given pressure gradient, increasing the slope increased the likelihood of self-acceleration. It is concluded that in general ignition cannot be defined merely in terms of positive values of the velocity gradient and the sediment flux gradient along the slope. Depending on particle size the initial pressure gradient can also play a role. For the selected initial conditions (grain size, pressure gradient and bed slope), out of the 54 combinations tested, all except three satisfied the Knapp-Bagnold criterion for auto-suspension irrespective of whether the turbid current was ignitive or non-ignitive. In all 54 cases the current was found to erode the bed. Further use of the model will require accommodation of wider ranges of sediment size and bed density

  16. Increasing the Air Charge and Scavenging the Clearance Volume of a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hicks, C W; Foster, H H

    1934-01-01

    The object of the investigation presented in this report was to determine the effects of increasing the air charge and scavenging the clearance volume of a 4-stroke-cycle compression-ignition engine having a vertical-disk form combustion chamber. Boosting the inlet-air pressure with normal valve timing increased the indicated engine power in proportion to the additional air inducted and resulted in smoother engine operation with less combustion shock. Scavenging the clearance volume by using a valve overlap of 145 degrees and an inlet-air boost pressure of approximately 2 1/2 inches of mercury produced a net increase in performance for clear exhaust operation of 33 percent over that obtained with normal valve timing and the same boost pressure. The improved combustion characteristics result in lower specific fuel consumption, and a clearer exhaust.

  17. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  18. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald K.; Liever, Peter A.

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  19. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  20. In-cylinder catalysts -- A novel approach to reduce hydrocarbon emissions from spark-ignition engines

    SciTech Connect

    Hu, Z.; Ladommatos, N.

    1995-12-31

    A novel approach was proposed and investigated to reduce unburned hydrocarbon emissions from spark-ignition engines using in-cylinder catalysts. The unburned hydrocarbons in spark-ignition engines arise primarily from sources near the combustion chamber walls, such as flame quenching at the entrance of crevice volumes and at the combustion chamber wall, and the absorption and desorption of fuel vapor into oil layers on the cylinder wall. The proximity of these sources of unburned hydrocarbons to the wall means that they can be reduced significantly by simply using in-cylinder catalysts on the combustion chamber walls, in particular on the surfaces of the crevice volumes. A platinum-rhodium coating was deposited on the top and side surfaces of the piston crown, and its effects on the engine combustion and emission characteristics were examined in this experimental investigation. The in-cylinder catalyst gave rise to a reduction of exhaust unburned hydrocarbon emissions by approximately 20% over a wide range of operating conditions.

  1. Effects of ignition location models on the burn patterns of simulated wildfires

    USGS Publications Warehouse

    Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2011-01-01

    Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.

  2. STS-55 pad abort: Engine 2011 oxidizer preburner augmented spark igniter check valve leak

    NASA Astrophysics Data System (ADS)

    1993-03-01

    The STS-55 initial launch attempt of Columbia (OV102) was terminated on KSC launch pad A March 22, 1993 at 9:51 AM E.S.T. due to violation of an ME-3 (Engine 2011) Launch Commit Criteria (LCC) limit exceedance. The event description and timeline are summarized. Propellant loading was initiated on 22 March, 1993 at 1:15 AM EST. All SSME chill parameters and launch commit criteria (LCC) were nominal. At engine start plus 1.44 seconds, a Failure Identification (FID) was posted against Engine 2011 for exceeding the 50 psia Oxidizer Preburner (OPB) purge pressure redline. The engine was shut down at 1.50 seconds followed by Engines 2034 and 2030. All shut down sequences were nominal and the mission was safely aborted. The OPB purge pressure redline violation and the abort profile/overlay for all three engines are depicted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 013-414, OPB purge pressure redline exceeded. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to the oxidizer preburner augmented spark igniter purge check valve not being fully closed due to contamination. The source of the contaminant was traced to a cut segment from a rubber O-ring which was used in a fine clean tool during valve production prior to 1992. The valve was apparently contaminated during its fabrication in 1985. The valve had performed acceptably on four previous flights of the engine, and SSME flight history shows 780 combined check valve flights without failure. The failure of an Engine 3 (SSME No. 2011) check valve to close was sensed by onboard engine instruments even though all other engine operations were normal. This

  3. STS-55 pad abort: Engine 2011 oxidizer preburner augmented spark igniter check valve leak

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The STS-55 initial launch attempt of Columbia (OV102) was terminated on KSC launch pad A March 22, 1993 at 9:51 AM E.S.T. due to violation of an ME-3 (Engine 2011) Launch Commit Criteria (LCC) limit exceedance. The event description and timeline are summarized. Propellant loading was initiated on 22 March, 1993 at 1:15 AM EST. All SSME chill parameters and launch commit criteria (LCC) were nominal. At engine start plus 1.44 seconds, a Failure Identification (FID) was posted against Engine 2011 for exceeding the 50 psia Oxidizer Preburner (OPB) purge pressure redline. The engine was shut down at 1.50 seconds followed by Engines 2034 and 2030. All shut down sequences were nominal and the mission was safely aborted. The OPB purge pressure redline violation and the abort profile/overlay for all three engines are depicted. SSME Avionics hardware and software performed nominally during the incident. A review of vehicle data table (VDT) data and controller software logic revealed no failure indications other than the single FID 013-414, OPB purge pressure redline exceeded. Software logic was executed according to requirements and there was no anomalous controller software operation. Immediately following the abort, a Rocketdyne/NASA failure investigation team was assembled. The team successfully isolated the failure cause to the oxidizer preburner augmented spark igniter purge check valve not being fully closed due to contamination. The source of the contaminant was traced to a cut segment from a rubber O-ring which was used in a fine clean tool during valve production prior to 1992. The valve was apparently contaminated during its fabrication in 1985. The valve had performed acceptably on four previous flights of the engine, and SSME flight history shows 780 combined check valve flights without failure. The failure of an Engine 3 (SSME No. 2011) check valve to close was sensed by onboard engine instruments even though all other engine operations were normal. This

  4. Modeling thermal ignition and the initial conditions for internal burning in PBX 9501

    NASA Astrophysics Data System (ADS)

    Henson, Bryan

    2009-06-01

    Work has been ongoing in our group for several years to produce a thermal ignition model for HMX based plastic bonded explosives valid over the entire temperature range of energetic response. We have made considerable progress recently, resulting in both the first broadly accurate model of this type and the possible identification of a crucial component of the chemical mechanism responsible for thermal ignition and decomposition. I will present a new model of thermal ignition for HMX formulations that is based on this recent progress. The model is similar in kind, but very different in detail from previous models produced by us and others. As has been the case for our previous models it is based entirely on known processes in the decomposition of HMX and is highly constrained by independent measurements. We have applied the model in simple calculations of ignition time over the full temperature range of energetic response for HMX, including directly observed ignition induced by fast shear and compression. I will also present new calculations relevant to the initial conditions for internal burning subsequent to ignition in low boundary temperature thermal explosion experiments. Simplified gas phase chemistry relevant to both dark and bright zone burning in HMX has been included and leads to a second, high temperature and pressure ignition zone in this environment. I will discuss experimental support for these calculations and the ramifications for internal pressures at ignition responsible for driving initial subsonic burning subsequent to ignition.

  5. ENVIRONMENTAL ASSESSMENT OF NOX CONTROL ON A SPARK-IGNITED LARGE BORE RECIPROCATING INTERNAL COMBUSTION ENGINE. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    Volume II of the report is a compendium of detailed emission and test data from field tests of a large-bore, spark-ignited reciprocating engine and laboratory analyses of collected samples. The engine was tested in two operating modes: a baseline (normal) operation, and with incr...

  6. ENVIRONMENTAL ASSESSMENT OF NOX CONTROL ON A COMPRESSION IGNITION LARGE BORE RECIPROCATING INTERNAL COMBUSTION ENGINE. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    Volume I of the report gives emission results from field tests of the exhaust gas from a large-bore, compression-ignition reciprocating engine burning diesel fuel. An objective of the tests was to evaluate the operating efficiency of the engine with combustion modification NOx co...

  7. ENVIRONMENTAL ASSESSMENT OF NOX CONTROL ON A COMPRESSION IGNITION LARGE BORE RECIPROCATING INTERNAL COMBUSTION ENGINE. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    Volume II of the report is a compendium of detailed emission and test data from field tests of a large-bore, compression-ignition reciprocating engine burning diesel fuel. The engine was tested during two operating modes: at baseline (normal operation), and with fuel injection re...

  8. Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite

    NASA Astrophysics Data System (ADS)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2015-06-01

    An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).

  9. Laser-Induced Ignition Modeling and Comparison with Experiments

    NASA Astrophysics Data System (ADS)

    Dors, Ivan; Qin, W.; Chen, Y.-L.; Parigger, C.; Lewis, J. W. L.

    2000-11-01

    We have studied experimentally the ignition resulting from optical breakdowns in mixtures of oxygen and the fuel ammonia induced by a 10 nanosecond pulsewidth laser for a time of hundreds of milliseconds using laser spectroscopy. In these studies, we have for the first time characterized the laser-induced plasma, the formation of the combustion radicals, the detonation wave, the flame front and the combustion process itself. The objective of the modeling is to understand the fluid dynamic and chemical kinetic effects following the nominal 10 ns laser pulse until 1 millisecond after laser breakdown. The calculated images match the experimentally recorded data sets and show spatial details covering volumes of 1/10000 cc to 1000 cc. The code was provided by CFD Research Corporation of Huntsville, Alabama, and was appropriately augmented to compute the observed phenomena. The fully developed computational model now includes a kinetic mechanism that implements plasma equilibrium kinetics in ionized regions, and non-equilibrium, multistep, finite rate reactions in non-ionized regions. The predicted fluid phenomena agree with various flow patterns characteristic of laser spark ignition as measured in the CLA laboratories. Comparison of calculated and measured OH and NH concentration will be presented.

  10. An investigation of the acoustic characteristics of a compression ignition engine operating with biodiesel blends

    NASA Astrophysics Data System (ADS)

    Zhen, D.; Tesfa, B.; Yuan, X.; Wang, R.; Gu, F.; Ball, A. D.

    2012-05-01

    In this paper, an experimental investigation has been carried out on the acoustic characteristics of a compression ignition (CI) engine running with biodiesel blends under steady state operating conditions. The experiment was conducted on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine which runs with biodiesel (B50 and B100) and pure diesel. The signals of acoustic, vibration and in-cylinder pressure were measured during the experiment. To correlate the combustion process and the acoustic characteristics, both phenomena have been investigated. The acoustic analysis resulted in the sound level being increased with increasing of engine loads and speeds as well as the sound characteristics being closely correlated to the combustion process. However, acoustic signals are highly sensitive to the ambient conditions and intrusive background noise. Therefore, the spectral subtraction was employed to minimize the effects of background noise in order to enhance the signal to noise ratio. In addition, the acoustic characteristics of CI engine running with different fuels (biodiesel blends and diesel) was analysed for comparison. The results show that the sound energy level of acoustic signals is slightly higher when the engine fuelled by biodiesel and its blends than that of fuelled by normal diesel. Hence, the acoustic characteristics of the CI engine will have useful information for engine condition monitoring and fuel content estimation.

  11. Analysis of an Increase in the Efficiency of a Spark Ignition Engine Through the Application of an Automotive Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Galant, Marta; Siedlecki, Maciej

    2016-05-01

    We have analyzed the increase of the overall efficiency of a spark ignition engine through energy recovery following the application of an automotive thermoelectric generator (ATEG) of our own design. The design of the generator was developed following emission investigations during vehicle driving under city traffic conditions. The measurement points were defined by actual operation conditions (engine speed and load), subsequently reproduced on an engine dynamometer. Both the vehicle used in the on-road tests and the engine dynamometer were fit with the same, downsized spark ignition engine (with high effective power-to-displacement ratio). The thermodynamic parameters of the exhaust gases (temperature and exhaust gas mass flow) were measured on the engine testbed, along with the fuel consumption and electric current generated by the thermoelectric modules. On this basis, the power of the ATEG and its impact on overall engine efficiency were determined.

  12. Analysis of an Increase in the Efficiency of a Spark Ignition Engine Through the Application of an Automotive Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Galant, Marta; Siedlecki, Maciej

    2016-08-01

    We have analyzed the increase of the overall efficiency of a spark ignition engine through energy recovery following the application of an automotive thermoelectric generator (ATEG) of our own design. The design of the generator was developed following emission investigations during vehicle driving under city traffic conditions. The measurement points were defined by actual operation conditions (engine speed and load), subsequently reproduced on an engine dynamometer. Both the vehicle used in the on-road tests and the engine dynamometer were fit with the same, downsized spark ignition engine (with high effective power-to-displacement ratio). The thermodynamic parameters of the exhaust gases (temperature and exhaust gas mass flow) were measured on the engine testbed, along with the fuel consumption and electric current generated by the thermoelectric modules. On this basis, the power of the ATEG and its impact on overall engine efficiency were determined.

  13. Optical Propagation Modeling for the National Ignition Facility

    SciTech Connect

    Williams, W H; Auerbach, J M; Henesian, M A; Jancaitis, K S; Manes, K R; Mehta, N C; Orth, C D; Sacks, R A; Shaw, M J; Widmayer, C C

    2004-01-12

    Optical propagation modeling of the National Ignition Facility has been utilized extensively from conceptual design several years ago through to early operations today. In practice we routinely (for every shot) model beam propagation starting from the waveform generator through to the target. This includes the regenerative amplifier, the 4-pass rod amplifier, and the large slab amplifiers. Such models have been improved over time to include details such as distances between components, gain profiles in the laser slabs and rods, transient optical distortions due to the flashlamp heating of laser slabs, measured transmitted and reflected wavefronts for all large optics, the adaptive optic feedback loop, and the frequency converter. These calculations allow nearfield and farfield predictions in good agreement with measurements.

  14. Optical propagation modeling for the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Williams, Wade H.; Auerbach, Jerome M.; Henesian, Mark A.; Jancaitis, Kenneth S.; Manes, Kenneth R.; Mehta, Naresh C.; Orth, Charles D.; Sacks, Richard A.; Shaw, Michael J.; Widmayer, Clifford C.

    2004-05-01

    Optical propagation modeling of the National Ignition Facility has been utilized extensively from conceptual design several years ago through to early operations today. In practice we routinely (for every shot) model beam propagation starting from the waveform generator through to the target. This includes the regenerative amplifier, the 4-pass rod amplifier, and the large slab amplifiers. Such models have been improved over time to include details such as distances between components, gain profiles in the laser slabs and rods, transient optical distortions due to the flashlamp heating of laser slabs, measured transmitted and reflected wavefronts for all large optics, the adaptive optic feedback loop, and the frequency converter. These calculations allow nearfield and farfield predictions in good agreement with measurements.

  15. The effect of using 30% iso-butanol-gasoline blend on hydrocarbon emissions from a spark-ignition engine

    SciTech Connect

    Alasfour, F.N.

    1999-06-01

    The level of hydrocarbon (HC) emissions, from a spark-ignition engine using a 30% iso-butanol-gasoline blend was experimentally investigated. Experiments were conducted on a Hydra single-cylinder, spark-ignition, fuel-injection engine. HC emissions were measured as a function of fuel/air equivalence ratio, ignition timing and engine speed. The effect of varying the temperature of cooling water on HC emissions was also investigated under three fuel/air equivalence ratios (lean, stoichiometric, and rich). Results show that retarding ignition timing with respect to maximum break torque (MBT) has a great effect on HC emissions reduction, where for lean mixture, {Phi} = 0.85, retarding ignition timing by 6 degrees from MBT reduces the exhaust HC emissions by 12%. The level of HC emissions is also reduced by 30% at MBT, as the cooling water temperature increase from 55 to 90 C. It is noticed that as the engine speed increases, the level of HC emissions decrease.

  16. Emission of a compression ignition engine fuelled by diesel and imitated syngas

    NASA Astrophysics Data System (ADS)

    Mahgoub, Bahaaddein Kamal M.; Sulaiman, S. A.; Karim, Zainal Ambri B. A.

    2012-06-01

    Biomass can be converted into a useful source of energy through gasification. The gasification product, known as synthesis gas or syngas, composition of syngas may fluctuate due to many factors such as operational errors of the gasifier as well as the type of feedstock used or may be due to the feeding rate fluctuation. Therefore it would be difficult to assess the effect of syngas composition and diesel replacement ratio to the emission when combusted in dual fuel syngas - diesel compression ignition engine. In order to overcome this problem controllable composition and conditions of imitated syngas was used in this study by selective three compositions of syngas close to the real conditions. The objective of this study is to determine the exhaust emissions of a compression ignition engine fuelled with diesel and imitated syngas at different compositions and diesel replacement ratios to determine the most appropriate composition of syngas and diesel replacement ratio which will give less emission. The test results on syngas emission are compared with the results of diesel. CO2 and NOX emission level was reduced on syngas dual fuel mode, but there were increases in CO and THC emissions throughout all syngas compositions examined due to poor combustion efficiency of dual fuel operation.

  17. Coefficients of discharge of fuel-injection nozzles for compression-ignition engines

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1932-01-01

    This report presents the results of an investigation to determine the coefficients of discharge of nozzles with small, round orifices of the size used with high-speed compression-ignition engines. The injection pressures and chamber back pressures employed were comparable to those existing in compression-ignition engines during injection. The construction of the nozzles was varied to determine the effect of the nozzle design on the coefficient. Tests were also made with nozzles assembled in an automatic injection valve, both with a plain and with a helically grooved stem. It was found that a smooth passage before the orifice is requisite for high flow efficiency. A beveled leading edge before the orifice gave a higher coefficient of discharge than a rounded edge. The results with the nozzles assembled in an automatic injection valve having a plain stem duplicated those with the nozzles assembled at the end of a straight tube of constant diameter. Lower coefficients were obtained with the nozzles assembled in an injection valve having a helically grooved stem. When the coefficients of nozzles of any one geometrical shape were plotted against values of corresponding Reynold's numbers for the orifice diameters and rates of flow tested, it was found that experimental points were distributed along a single curve.

  18. Combustion and emissions characteristics of a compression ignition engine fueled with n-butanol blends

    NASA Astrophysics Data System (ADS)

    Yusri, I. M.; Mamat, R.; Ali, O. M.; Aziz, A.; Akasyah, M. K.; Kamarulzaman, M. K.; Ihsan, C. K.; Mahmadul, H. M.; Rosdi, S. M.

    2015-12-01

    The use of biomass based renewable fuel, n-butanol blends for compression ignition (CI) engine has attracted wide attention due to its superior properties such as better miscibility, higher energy content, and cetane number. In this present study the use of n-butanol 10% blends (Bu10) with diesel fuel has been tested using 4-cylinder, 4-stroke common rail direct injection CI engine to investigate the combustion and emissions of the blended fuels. Based on the tested engine at BMEP=3.5Bar Bu10 fuel indicates lower first and second peak pressure by 5.4% and 2.4% for engine speed 1000rpm and 4.4% and 2.1% for engine speed 2500rpm compared to diesel fuel respectively. Percentage reduction relative to diesel fuel at engine speeds 1000rpm and 2500rpm for Bu10: Exhaust temperature was 7.5% and 5.2% respectively; Nitrogen oxides (NOx) 73.4% and 11.3% respectively.

  19. Preknock Vibrations in a Spark-Ignition Engine Cylinder as Revealed by High-Speed Photography

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D; Logan, Walter O , Jr

    1944-01-01

    The high-speed photographic investigation of the mechanics of spark-ignition engine knock recorded in three previous reports has been extended with use of the NACA high-speed camera and combustion apparatus with a piezoelectric pressure pickup in the combustion chamber. The motion pictures of knocking combustion were taken at the rate of 40,000 frames per second. Existence of the preknock vibrations in the engine cylinder suggested in Technical Report no.727 has been definitely proved and the vibrations have been analyzed both in the high-speed motion pictures and the pressure traces. Data are also included to show that the preknock vibrations do not progressively build up to cause knock. The effect of tetraethyl lead on the preknock vibrations has been studied and results of the tests are presented. Photographs are presented which in some cases clearly show evidence of autoignition in the end zone a considerable length of time before knock occurs.

  20. A Home Ignition Assessment Model Applied to Structures in the Wildland-Urban Interface

    SciTech Connect

    Biswas, Kaushik; Werth, David; Gupta, Narendra

    2013-01-01

    The issue of exterior fire threat to buildings, from either wildfires in the wildland-urban interface or neighboring structure fires, is critically important. To address this, theWildfire Ignition Resistant Home Design (WIRHD) program was initiated. The WIRHD program developed a tool, theWildFIREWizard, that will allow homeowners to estimate the external fire threat to their homes based on specific features and characteristics of the homes and yards. The software then makes recommendations to reduce the threat. The inputs include the structural and material features of the home and information about any ignition sources or flammable objects in its immediate vicinity, known as the home ignition zone. The tool comprises an ignition assessment model that performs explicit calculations of the radiant and convective heating of the building envelope from the potential ignition sources. This article describes a series of material ignition and flammability tests that were performed to calibrate and/or validate the ignition assessment model. The tests involved exposing test walls with different external siding types to radiant heating and/or direct flame contact.The responses of the test walls were used to determine the conditions leading to melting, ignition, or any other mode of failure of the walls. Temperature data were used to verify the model predictions of temperature rises and ignition times of the test walls.

  1. Nonlinear torque and air-to-fuel ratio control of spark ignition engines using neuro-sliding mode techniques.

    PubMed

    Huang, Ting; Javaherian, Hossein; Liu, Derong

    2011-06-01

    This paper presents a new approach for the calibration and control of spark ignition engines using a combination of neural networks and sliding mode control technique. Two parallel neural networks are utilized to realize a neuro-sliding mode control (NSLMC) for self-learning control of automotive engines. The equivalent control and the corrective control terms are the outputs of the neural networks. Instead of using error backpropagation algorithm, the network weights of equivalent control are updated using the Levenberg-Marquardt algorithm. Moreover, a new approach is utilized to update the gain of corrective control. Both modifications of the NSLMC are aimed at improving the transient performance and speed of convergence. Using the data from a test vehicle with a V8 engine, we built neural network models for the engine torque (TRQ) and the air-to-fuel ratio (AFR) dynamics and developed NSLMC controllers to achieve tracking control. The goal of TRQ control and AFR control is to track the commanded values under various operating conditions. From simulation studies, the feasibility and efficiency of the approach are illustrated. For both control problems, excellent tracking performance has been achieved. PMID:21656924

  2. Effect of Combustion-chamber Shape on the Performance of a Prechamber Compression-ignition Engine

    NASA Technical Reports Server (NTRS)

    Moore, C S; Collins, J H , Jr

    1934-01-01

    The effect on engine performance of variations in the shape of the prechamber, the shape and direction of the connecting passage, the chamber volume using a tangential passage, the injection system, and the direction od the fuel spray in the chamber was investigated using a 5 by 7 inch single-cylinder compression-ignition engine. The results show that the performance of this engine can be considerably improved by selecting the best combination of variables and incorporating them in a single design. The best combination as determined from these tests consisted of a disk-shaped chamber connected to the cylinder by means of a flared tangential passage. The fuel was injected through a single-orifice nozzle directed normal to the air swirl and in the same plane. At an engine speed of 1,500 r.p.m. and with the theoretical fuel quantity for no excess air, the engine developed a brake mean effective pressure of 115 pounds per square inch with a fuel consumption of 0.49 pound per brake horsepower-hour and an explosion pressure of 820 pounds per square inch. A brake mean effective pressure of 100 pounds per square inch with a brake-fuel consumption of 0.44 pound per horsepower-hour at 1,500 r.p.m. was obtained.

  3. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    DOE PAGESBeta

    Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; Edwards, Kevin Dean; Wagner, Robert M.

    2014-12-29

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy inmore » the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.« less

  4. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    SciTech Connect

    Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; Edwards, Kevin Dean; Wagner, Robert M.

    2014-12-29

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.

  5. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis.

    PubMed

    Daw, C S; Finney, C E A; Kaul, B C; Edwards, K D; Wagner, R M

    2015-02-13

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel economy. One new advanced engine strategy ustilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities. PMID:25548262

  6. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen's significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  7. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    SciTech Connect

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    The objective of the proposed project was to confirm the feasibility of using blends of hydrogen and natural gas to improve the performance, efficiency, controllability and emissions of a homogeneous charge compression ignition (HCCI) engine. The project team utilized both engine simulation and laboratory testing to evaluate and optimize how blends of hydrogen and natural gas fuel might improve control of HCCI combustion. GTI utilized a state-of-the art single-cylinder engine test platform for the experimental work in the project. The testing was designed to evaluate the feasibility of extending the limits of HCCI engine performance (i.e., stable combustion, high efficiency and low emissions) on natural gas by using blends of natural gas and hydrogen. Early in the project Ricardo provided technical support to GTI as we applied their engine performance simulation program, WAVE, to our HCCI research engine. Modeling support was later provided by Digital Engines, LLC to use their proprietary model to predict peak pressures and temperatures for varying operating parameters included in the Design of Experiments test plan. Digital Engines also provided testing support for the hydrogen and natural gas blends. Prof. David Foster of University of Wisconsin-Madison participated early in the project by providing technical guidance on HCCI engine test plans and modeling requirements. The main purpose of the testing was to quantify the effects of hydrogen addition to natural gas HCCI. Directly comparing straight natural gas with the hydrogen enhanced test points is difficult due to the complexity of HCCI combustion. With the same air flow rate and lambda, the hydrogen enriched fuel mass flow rate is lower than the straight natural gas mass flow rate. However, the energy flow rate is higher for the hydrogen enriched fuel due to hydrogen’s significantly greater lower heating value, 120 mJ/kg for hydrogen compared to 45 mJ/kg for natural gas. With these caveats in mind, an

  8. Development of Modeling Capabilities for Launch Pad Acoustics and Ignition Transient Environment Prediction

    NASA Technical Reports Server (NTRS)

    West, Jeff; Strutzenberg, Louise L.; Putnam, Gabriel C.; Liever, Peter A.; Williams, Brandon R.

    2012-01-01

    This paper presents development efforts to establish modeling capabilities for launch vehicle liftoff acoustics and ignition transient environment predictions. Peak acoustic loads experienced by the launch vehicle occur during liftoff with strong interaction between the vehicle and the launch facility. Acoustic prediction engineering tools based on empirical models are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. Modeling approaches are needed that capture the important details of the plume flow environment including the ignition transient, identify the noise generation sources, and allow assessment of the effects of launch pad geometric details and acoustic mitigation measures such as water injection. This paper presents a status of the CFD tools developed by the MSFC Fluid Dynamics Branch featuring advanced multi-physics modeling capabilities developed towards this goal. Validation and application examples are presented along with an overview of application in the prediction of liftoff environments and the design of targeted mitigation measures such as launch pad configuration and sound suppression water placement.

  9. Ignition transient modelling for the Space Shuttle Advanced Solid Rocket Motor

    NASA Astrophysics Data System (ADS)

    Eagar, M. A.; Luke, G. D.; Stockham, L. W.

    1993-06-01

    Prediction of the ignition transient for the Advanced Solid Rocket Motor (ASRM) for the Space Shuttle presents an unusual set of modelling challenges because of its high length-to-diameter ratio and complex internal flow environment. A review of ignition modelling experience on the Shuttle Redesigned Solid Rocket Motor (RSRM), which is similar in size and configuration to the ASRM, reveals that classical igniter design theory and modelling methods under-predict, by a factor of two, the measured pressure and thrust rise rates experienced on the RSRM. This paper (1) reviews the Titan and Shuttle SRM test experience, (2) presents the results of 0-Dimensional (0-D) and 1-Dimensional (1-D) analysis of the RSRM and ASRM motors, and (3) addresses the need for advanced analysis techniques, as they relate to ASRM ignition transient modelling requirements and igniter design drivers.

  10. Space-time modelling of lightning-caused ignitions in the Blue Mountains, Oregon

    USGS Publications Warehouse

    Diaz-Avalos, Carlos; Peterson, D.L.; Alvarado, Ernesto; Ferguson, Sue A.; Besag, Julian E.

    2001-01-01

    Generalized linear mixed models (GLMM) were used to study the effect of vegetation cover, elevation, slope, and precipitation on the probability of ignition in the Blue Mountains, Oregon, and to estimate the probability of ignition occurrence at different locations in space and in time. Data on starting location of lightning-caused ignitions in the Blue Mountains between April 1986 and September 1993 constituted the base for the analysis. The study area was divided into a pixela??time array. For each pixela??time location we associated a value of 1 if at least one ignition occurred and 0 otherwise. Covariate information for each pixel was obtained using a geographic information system. The GLMMs were fitted in a Bayesian framework. Higher ignition probabilities were associated with the following cover types: subalpine herbaceous, alpine tundra, lodgepole pine (Pinus contorta Dougl. ex Loud.), whitebark pine (Pinus albicaulis Engelm.), Engelmann spruce (Picea engelmannii Parry ex Engelm.), subalpine fir (Abies lasiocarpa (Hook.) Nutt.), and grand fir (Abies grandis (Dougl.) Lindl.). Within each vegetation type, higher ignition probabilities occurred at lower elevations. Additionally, ignition probabilities are lower in the northern and southern extremes of the Blue Mountains. The GLMM procedure used here is suitable for analysing ignition occurrence in other forested regions where probabilities of ignition are highly variable because of a spatially complex biophysical environment.

  11. Determination of knock characteristics in spark ignition engines: an approach based on ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Yang, Jianguo; Zhou, Rui; Liang, Caiping

    2016-04-01

    Knock is one of the major constraints to improve the performance and thermal efficiency of spark ignition (SI) engines. It can also result in severe permanent engine damage under certain operating conditions. Based on the ensemble empirical mode decomposition (EEMD), this paper proposes a new approach to determine the knock characteristics in SI engines. By adding a uniformly distributed and finite white Gaussian noise, the EEMD can preserve signal continuity in different scales and therefore alleviates the mode-mixing problem occurring in the classic empirical mode decomposition (EMD). The feasibilities of applying the EEMD to detect the knock signatures of a test SI engine via the pressure signal measured from combustion chamber and the vibration signal measured from cylinder head are investigated. Experimental results show that the EEMD-based method is able to detect the knock signatures from both the pressure signal and vibration signal, even in initial stage of knock. Finally, by comparing the application results with those obtained by short-time Fourier transform (STFT), Wigner-Ville distribution (WVD) and discrete wavelet transform (DWT), the superiority of the EEMD method in determining knock characteristics is demonstrated.

  12. 76 FR 25246 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels; CFR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-04

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and Vessels; CFR Correction Correction In rule document 2011-8794 appearing on pages 20550-20551 in the...

  13. T & I--Small Engine Repair, the Ignition System. Kit No. 7. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Underwood, Earl

    An instructor's manual and student activity guide on the ignition system of small engines are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational offerings:…

  14. ENVIRONMENTAL ASSESSMENT OF NOX CONTROL ON A SPARK-IGNITED LARGE BORE RECIPROCATING INTERNAL COMBUSTION ENGINE. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    Volume I of the report gives emission results for a spark-ignited, largebore, reciprocating, internal-combustion engine operating both under baseline (normal) conditions, and with combustion modification controls to reduce NOx emissions to levels below the proposed new source per...

  15. 75 FR 37310 - Control of Emissions From New and In-Use Nonroad Compression-Ignition Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1039 Control of Emissions From New and In-Use Nonroad Compression- Ignition Engines CFR Correction In Title 40 of the Code of Federal Regulations, Part 1000 to End, revised as of July...

  16. 76 FR 20550 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and... July 1, 2010, on page 240, in Sec. 1042.901, the definition of ``New vessel'' is reinstated to read as follows: Sec. 1042.901 Definitions. * * * * * New vessel means any of the following: (1) A vessel...

  17. 76 FR 26620 - Control of Emissions From New and In-Use Marine Compression-Ignition Engines and Vessels; CFR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-09

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 1042 Control of Emissions From New and In-Use Marine Compression- Ignition Engines and... issue of Wednesday, May 4, 2011, make the following correction: Sec. 1042.901 On page 25246, in...

  18. Modeling the Spatial Pattern of Wildfire Ignition and Burned Area in Southern Californian Mediterranean Ecosystems

    NASA Astrophysics Data System (ADS)

    Faivre, N.; Jin, Y.; Goulden, M.; Randerson, J. T.

    2013-12-01

    Wildfire ignition requires a combination of an ignition source and suitable weather and fuel conditions. Models of fire occurrence and burned area provide a good understanding of the physical and climatic factors that constrain and promote fire spread and recurrence, but information on how humans influence ignition patterns and burned area is still lacking at a scale compatible with integrated fire management. We first investigated the relative importance of the physical, climatic, and human factors regulating ignition probability across Southern California. A 30-year exploratory analysis of one-way relationships indicated that distance to roads, distance to housing, and topographic slope were the major determinants of ignition occurrence and frequency. A logistic regression model explained 70% of spatial variability in ignition occurrence (presence or absence of an ignition in each 3 km grid cell) whereas a Poisson-type regression model explained 45% of the spatial variability in ignition frequency in national forests across Southern California. Predicted ignition probability was a key indicator of the spatial variability of burned area, explaining approximately 9% of the variance for Santa Ana fires and 21% of the variance for non-Santa Ana fires across Southern California. In a second step we combined the previous ignition modeling framework with other data sources to model the spatial distribution of burned area. Preliminary results showed that average wind speed alone explained approximately 30% of the spatial variation in burned area from Santa Ana fires. Further integration of the effects of fuel continuity, moisture, and accumulation and their interaction with wind speed and direction improved our spatial assessment of burned area risk in Southern California. Our results may have implications for strategic fire management in the region.

  19. A simplified model of TiH1.65/KClO4 pyrotechnic ignition.

    SciTech Connect

    Chen, Ken Shuang

    2009-04-01

    A simplified model was developed and is presented in this report for simulating thermal transport coupled with chemical reactions that lead to the pyrotechnic ignition of TiH1.65/KClO4 powder. The model takes into account Joule heating via a bridgewire, thermal contact resistance at the wire/powder interface, convective heat loss to the surroundings, and heat released from the TiH1.65- and KClO4-decomposition and TiO2-oxidation reactions. Chemical kinetic sub-models were put forth to describe the chemical reaction rate(s) and quantify the resultant heat release. The simplified model predicts pyrotechnic ignition when heat from the pyrotechnic reactions is accounted for. Effects of six key parameters on ignition were examined. It was found that the two reaction-rate parameters and the thermal contact resistance significantly affect the dynamic ignition process whereas the convective heat transfer coefficient essentially has no effect on the ignition time. Effects of the initial/ambient temperature and electrical current load through the wire are as expected. Ignition time increases as the initial/ambient temperature is lowered or the wire current load is reduced. Lastly, critical needs such as experiments to determine reaction-rate and other model-input parameters and to measure temperature profiles, time to ignition and burn-rate data for model validation as well as efforts in incorporating reaction-rate dependency on pressure are pointed out.

  20. Modeling the National Ignition Facility neutron imaging system.

    PubMed

    Wilson, D C; Grim, G P; Tregillis, I L; Wilke, M D; Patel, M V; Sepke, S M; Morgan, G L; Hatarik, R; Loomis, E N; Wilde, C H; Oertel, J A; Fatherley, V E; Clark, D D; Fittinghoff, D N; Bower, D E; Schmitt, M J; Marinak, M M; Munro, D H; Merrill, F E; Moran, M J; Wang, T-S F; Danly, C R; Hilko, R A; Batha, S H; Frank, M; Buckles, R

    2010-10-01

    Numerical modeling of the neutron imaging system for the National Ignition Facility (NIF), forward from calculated target neutron emission to a camera image, will guide both the reduction of data and the future development of the system. Located 28 m from target chamber center, the system can produce two images at different neutron energies by gating on neutron arrival time. The brighter image, using neutrons near 14 MeV, reflects the size and symmetry of the implosion "hot spot." A second image in scattered neutrons, 10-12 MeV, reflects the size and symmetry of colder, denser fuel, but with only ∼1%-7% of the neutrons. A misalignment of the pinhole assembly up to ±175 μm is covered by a set of 37 subapertures with different pointings. The model includes the variability of the pinhole point spread function across the field of view. Omega experiments provided absolute calibration, scintillator spatial broadening, and the level of residual light in the down-scattered image from the primary neutrons. Application of the model to light decay measurements of EJ399, BC422, BCF99-55, Xylene, DPAC-30, and Liquid A suggests that DPAC-30 and Liquid A would be preferred over the BCF99-55 scintillator chosen for the first NIF system, if they could be fabricated into detectors with sufficient resolution. PMID:21033855

  1. Boosted performance of a compression-ignition engine with a displaced piston

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1936-01-01

    Performance tests were made using a rectangular displacer arranged so that the combustion air was forced through equal passages at either end of the displacer into the vertical-disk combustion chamber of a single-cylinder, four-stroke-cycle compression-ignition test engine. After making tests to determine optimum displacer height, shape, and fuel-spray arrangement, engine-performance tests were made at 1,500 and 2,000 r.p.m. for a range of boost pressures from 0 to 20 inches of mercury and for maximum cylinder pressures up to 1,150 pounds per square inch. The engine operation for boosted conditions was very smooth, there being no combustion shock even at the highest maximum cylinder pressures. Indicated mean effective pressures of 240 pounds per square inch for fuel consumptions of 0.39 pound per horsepower-hour have been readily reproduced during routine testing at 2,000 r.p.m. at a boost pressure of 20 inches of mercury.

  2. Application of Interval Interpolation for the Description of Compression-Ignition Engine Performance Characteristics

    NASA Astrophysics Data System (ADS)

    Stoeck, Tomasz; Prajwowski, Konrad

    2010-01-01

    In this paper is presented a calculation method based on Lagrange's interpolation formula which has been used for mathematical description of the performance characteristics of a compression-ignition engine of the 359 type of the Polish production. Its application allows simplification of experimental tests through preservation of a minimum number of measuring points and estimation of other data analytically. In order to minimise the interpolation error occurring with polynomials of high degrees and constant node distances, the characteristics were approximated by spline functions with both solutions being shown comparatively in the graphical form. As calculation examples, the curves of specific fuel consumption and infrared radiation absorption coefficient were chosen, which had been obtained during examinations on engine test bench for a drive unit fuelled with four types of fuel. In addition, results of the experiment required for their determination were tabulated. The presented method may be used in further tests of a given engine as well as on other experimental benches, aiding long-lasting and expensive optimisation of operating parameters when using fuels of plant origin. Description of any performance characteristics by means of interval interpolation is convenient from the practical side and does not cause greater calculation problems since polynomials of low degrees are being used in the procedure.

  3. Characterization and effect of using Mahua oil biodiesel as fuel in compression ignition engine

    NASA Astrophysics Data System (ADS)

    Kapilan, N.; Ashok Babu, T. P.; Reddy, R. P.

    2009-12-01

    There is an increasing interest in India, to search for suitable alternative fuels that are environment friendly. This led to the choice of Mahua Oil (MO) as one of the main alternative fuels to diesel. In this investigation, Mahua Oil Biodiesel (MOB) and its blend with diesel were used as fuel in a single cylinder, direct injection and compression ignition engine. The MOB was prepared from MO by transesterification using methanol and potassium hydroxide. The fuel properties of MOB are close to the diesel and confirm to the ASTM standards. From the engine test analysis, it was observed that the MOB, B5 and B20 blend results in lower CO, HC and smoke emissions as compared to diesel. But the B5 and B20 blends results in higher efficiency as compared to MOB. Hence MOB or blends of MOB and diesel (B5 or B20) can be used as a substitute for diesel in diesel engines used in transportation as well as in the agriculture sector.

  4. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    SciTech Connect

    Westbrook, C.K.

    2000-07-07

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another.

  5. Tokamak and RFP ignition requirements

    SciTech Connect

    Werley, K.A.

    1991-01-01

    A plasma model is applied to calculate numerically transport- confinement (n{tau}{sub E}) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f{sub RAD} {approximately} 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the n{tau}{sub E} transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab.

  6. Hydrocarbon formation and oxidation in spark-ignition engines. Volume I: summary. Final report, Sep 76-Aug 79

    SciTech Connect

    Heywood, J.B.; Keck, J.C.; Rife, J.M.

    1980-01-01

    This report summarizes the key results and conceptual findings from a three-year research program on hydrocarbon formation and oxidation mechanisms in spark-ignition engines. Research was carried out in four areas: laminar flame quenching experimental and analytical studies; quench layer studies in a spark-ignition engine using a rapid acting gas sampling valve; flow visualization studies in a transparent engine to determine quench layer and quench crevice gas motion; studies of heat transfer, mixing and HC oxidation in the exhaust port. More detailed descriptions of the individual research activities in these areas can be found in the theses and publications completed to date which form Volumes II to XI of the final report of this program.

  7. Ignition and Growth Modeling of LX-17 Hockey Puck Experiments

    SciTech Connect

    Tarver, C M

    2004-04-19

    Detonating solid plastic bonded explosives (PBX) formulated with the insensitive molecule triaminotrinitrobenzene (TATB) exhibit measurable reaction zone lengths, curved shock fronts, and regions of failing chemical reaction at abrupt changes in the charge geometry. A recent set of ''hockey puck'' experiments measured the breakout times of diverging detonation waves in ambient temperature LX-17 (92.5 % TATB plus 7.5% Kel-F binder) and the breakout times at the lower surfaces of 15 mm thick LX-17 discs placed below the detonator-booster plane. The LX-17 detonation waves in these discs grow outward from the initial wave leaving regions of unreacted or partially reacted TATB in the corners of these charges. This new experimental data is accurately simulated for the first time using the Ignition and Growth reactive flow model for LX-17, which is normalized to a great deal of detonation reaction zone, failure diameter and diverging detonation data. A pressure cubed dependence for the main growth of reaction rate yields excellent agreement with experiment, while a pressure squared rate diverges too quickly and a pressure quadrupled rate diverges too slowly in the LX-17 below the booster equatorial plane.

  8. Mathematical study of methods to reduce emission of nitrogen oxides and particulate from a compression ignited, direct injection engine

    NASA Astrophysics Data System (ADS)

    Gao, Zhiming

    2001-11-01

    A phenomenological model based on the multizone concept and a three-dimensional CFD model were used to predict the effect of engine modification on particulated and NOx emission from a compression ignited direct injection (CIDI) engine. The phenomenological model consisted of a spray model, an evaporation model, a heat release model, NOx formation, soot formation, and oxidation model, and can be used to predict the combustion process and pollutant emission in a CIDI diesel engine. The advantage of the multizone model over the 3-D CFD model is the small CPU and memory it requires for a simulation. In this study, the phenomenological model was used to investigate (1) the effect of increasing the intake-air O2 content on soot and NO x emission as a function of power level and wall temperature; and (2) the effect of exhaust gas recirculation (EGR) and split fuel injection on pollutant emission, and compare their soot penalty at a given NOx emission. The results indicate that EGR with a relatively low temperature can reduce NOx emission with a minimum penalty of soot particle emission. The use of EGR is promising for significantly reducing NOx emission with small or no penalty of soot particle emission. The effect of auxiliary gas injection (AGI) on diesel engine combustion and emission was studied using KIVA 3V, a multidimensional computation fluid dynamics code. AGI enhances the diesel combustion via mixing to reduce the emission of pollutants. The simulation of a high-speed gas jet model with a relatively coarse computational grids was described. The choice of turbulent length scale for optimum simulation suitability is dependent of local mesh grid. The results demonstrate that AGI creates a second-way flow in the cylinder, which improves the mixing of charge in the cylinder. The effect of AGI on combustion and flow movement is significant. The use of exhaust gas on the AGI can reduce soot emission, while NOx emission also can be decreased to some degree. To reduce

  9. Performance tests of a single-cylinder compression-ignition engine with a displacer piston

    NASA Technical Reports Server (NTRS)

    Moore, C S; Foster, H H

    1935-01-01

    Engine performance was investigated using a rectangular displacer on the piston crown to cause a forced air flow in a vertical-disk combustion chamber of a single-cylinder, 4-stroke-cycle compression-ignition engine. The optimum air-flow area was determined first with the area concentrated at one end of the displacer and then with the area equally divided between two passages, one at each end of the displacer. Best performance was obtained with the two-passage air flow arranged to give a calculated maximum air-flow speed of 8 times the linear crank-pin speed. With the same fuel-spray formation as used without the air flow, the maximum clear exhaust brake mean effective pressure at 1,500 r.p.m. was increased from 90 to 115 pounds per square inch and the corresponding fuel consumption reduced from 0.46 to 0.43 pound per brake horsepower-hour. At 1,200 r.p.m., a maximum clear exhaust brake mean effective pressure of 120 pounds per square inch was obtained at a fuel consumption of 0.42 pound per brake horsepower-hour. At higher specific fuel consumption the brake mean effective pressure was still increasing rapidly.

  10. Particle emissions, volatility, and toxicity from an ethanol fumigated compression ignition engine.

    PubMed

    Surawski, Nicholas C; Miljevic, Branka; Roberts, Boyd A; Modini, Robin L; Situ, Rong; Brown, Richard J; Bottle, Steven E; Ristovski, Zoran D

    2010-01-01

    Particle emissions, volatility, and the concentration of reactive oxygen species (ROS) were investigated for a pre-Euro I compression ignition engine to study the potential health impacts of employing ethanol fumigation technology. Engine testing was performed in two separate experimental campaigns with most testing performed at intermediate speed with four different load settings and various ethanol substitutions. A scanning mobility particle sizer (SMPS) was used to determine particle size distributions, a volatilization tandem differential mobility analyzer (V-TDMA) was used to explore particle volatility, and a new profluorescent nitroxide probe, BPEAnit, was used to investigate the potential toxicity of particles. The greatest particulate mass reduction was achieved with ethanol fumigation at full load, which contributed to the formation of a nucleation mode. Ethanol fumigation increased the volatility of particles by coating the particles with organic material or by making extra organic material available as an external mixture. In addition, the particle-related ROS concentrations increased with ethanol fumigation and were associated with the formation of a nucleation mode. The smaller particles, the increased volatility, and the increase in potential particle toxicity with ethanol fumigation may provide a substantial barrier for the uptake of fumigation technology using ethanol as a supplementary fuel. PMID:19994903

  11. Detailed Characterization of Particulates Emitted by Pre-Commercial Single-Cylinder Gasoline Compression Ignition Engine

    SciTech Connect

    Zelenyuk, Alla; Reitz, Paul; Stewart, Mark L.; Imre, D.; Loeper, Paul; Adams, Cory; Andrie, Michael; Rothamer, David; Foster, David E.; Narayanaswamy, Kushal; Najt, Paul M.; Solomon, Arun S.

    2014-08-01

    Gasoline Compression Ignition (GCI) engines have the potential to achieve high fuel efficiency and to significantly reduce both NOx and particulate matter (PM) emissions by operating under dilute partially-premixed conditions. This low temperature combustion strategy is dependent upon direct-injection of gasoline during the compression stroke and potentially near top dead center (TDC). The timing and duration of the in-cylinder injections can be tailored based on speed and load to create optimized conditions that result in a stable combustion. We present the results of advanced aerosol analysis methods that have been used for detailed real-time characterization of PM emitted from a single-cylinder GCI engine operated at different speed, load, timing, and number and duration of near-TDC fuel injections. PM characterization included 28 measurements of size and composition of individual particles sampled directly from the exhaust and after mass and/or mobility classification. We use these data to calculate particle effective density, fractal dimension, dynamic shape factors in free-molecular and transition flow regimes, average diameter of primary spherules, number of spherules, and void fraction of soot agglomerates.

  12. Experimental studies on the group ignition of a cloud of coal particles: Volume 2, Pyrolysis and ignition modeling. Final report, August 15, 1988--October 15, 1991

    SciTech Connect

    Annamalai, K.; Ryan, W.

    1992-01-01

    The primary objectives of this work are to formulate a model to simulate transient coal pyrolysis, ignition, and combustion of a cloud of coal particles and to compare results of the program with those reported in the literature elsewhere.

  13. Electrostatic-discharge ignition

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Miller, C. G.

    1977-01-01

    Electrode in cylinder permits charge to transfer during top dead center compression stroke in modified Otto-cycle engine. Charge transfer produces spark which causes ignition of droplets without resorting to other ignition devices which are incapable of igniting ultralean mixtures.

  14. An analytical investigation of NO sub x control techniques for methanol fueled spark ignition engines

    NASA Technical Reports Server (NTRS)

    Browning, L. H.; Argenbright, L. A.

    1983-01-01

    A thermokinetic SI engine simulation was used to study the effects of simple nitrogen oxide control techniques on performance and emissions of a methanol fueled engine. As part of this simulation, a ring crevice storage model was formulated to predict UBF emissions. The study included spark retard, two methods of compression ratio increase and EGR. The study concludes that use of EGR in high turbulence, high compression engines will both maximize power and thermal efficiency while minimizing harmful exhaust pollutants.

  15. Model Driven Engineering

    NASA Astrophysics Data System (ADS)

    Gaševic, Dragan; Djuric, Dragan; Devedžic, Vladan

    A relevant initiative from the software engineering community called Model Driven Engineering (MDE) is being developed in parallel with the Semantic Web (Mellor et al. 2003a). The MDE approach to software development suggests that one should first develop a model of the system under study, which is then transformed into the real thing (i.e., an executable software entity). The most important research initiative in this area is the Model Driven Architecture (MDA), which is Model Driven Architecture being developed under the umbrella of the Object Management Group (OMG). This chapter describes the basic concepts of this software engineering effort.

  16. A perspective on the range of gasoline compression ignition combustion strategies for high engine efficiency and low NOx and soot emissions: Effects of in-cylinder fuel stratification

    DOE PAGESBeta

    Dempsey, Adam B.; Curran, Scott J.; Wagner, Robert M.

    2016-01-14

    Many research studies have shown that low temperature combustion in compression ignition engines has the ability to yield ultra-low NOx and soot emissions while maintaining high thermal efficiency. To achieve low temperature combustion, sufficient mixing time between the fuel and air in a globally dilute environment is required, thereby avoiding fuel-rich regions and reducing peak combustion temperatures, which significantly reduces soot and NOx formation, respectively. It has been demonstrated that achieving low temperature combustion with diesel fuel over a wide range of conditions is difficult because of its properties, namely, low volatility and high chemical reactivity. On the contrary, gasolinemore » has a high volatility and low chemical reactivity, meaning it is easier to achieve the amount of premixing time required prior to autoignition to achieve low temperature combustion. In order to achieve low temperature combustion while meeting other constraints, such as low pressure rise rates and maintaining control over the timing of combustion, in-cylinder fuel stratification has been widely investigated for gasoline low temperature combustion engines. The level of fuel stratification is, in reality, a continuum ranging from fully premixed (i.e. homogeneous charge of fuel and air) to heavily stratified, heterogeneous operation, such as diesel combustion. However, to illustrate the impact of fuel stratification on gasoline compression ignition, the authors have identified three representative operating strategies: partial, moderate, and heavy fuel stratification. Thus, this article provides an overview and perspective of the current research efforts to develop engine operating strategies for achieving gasoline low temperature combustion in a compression ignition engine via fuel stratification. In this paper, computational fluid dynamics modeling of the in-cylinder processes during the closed valve portion of the cycle was used to illustrate the opportunities

  17. Impact-induced friction ignition of an explosive: Infrared observations and modeling

    NASA Astrophysics Data System (ADS)

    Perry, W. Lee; Gunderson, Jake A.; Balkey, Matthew M.; Dickson, Peter M.

    2010-10-01

    A contaminant (grit) trapped between an explosive and an impacted surface can significantly reduce the impact energy required to initiate a secondary high explosive. Several severe accidents have occurred when an explosive charge was dropped from a height insufficient to cause ignition by heating due only to plastic deformation; the frictional heating from embedded grit has been implicated. Here, we describe an idealization of this situation where a small sample of a polymer-bonded cyclotetramethylenetetranitramine explosive (HMX-PBX 9501), with a 400 μm diameter sphere of silica embedded in the surface, was impacted between instrumented transparent anvils and infrared images were recorded. The instrumentation provided temperature and the work done by the friction between the grit and the anvil surface for the impact process, up to ignition. All experiments were conducted under impact conditions insufficient to cause ignition without grit. Ignition occurred at approximately 500 μs, a grit temperature of 1000 K, and an impact load of 12 kN. A high-fidelity numerical heat transport model, using four-step reversible decomposition kinetics for HMX, clarified the physical mechanism of ignition in the experiment. The model suggested that only a very small part of the silica sphere was heated by the friction process and residual heat in the impacted surface behind the moving grit caused ignition. The model agreed well with the experiment in terms of time and temperature, and we have good confidence in the mechanistic picture provided by the model.

  18. Signal Analysis of Automotive Engine Spark Ignition System using Case-Based Reasoning (CBR) and Case-based Maintenance (CBM)

    SciTech Connect

    Huang, H.; Vong, C. M.; Wong, P. K.

    2010-05-21

    With the development of modern technology, modern vehicles adopt electronic control system for injection and ignition. In traditional way, whenever there is any malfunctioning in an automotive engine, an automotive mechanic usually performs a diagnosis in the ignition system of the engine to check any exceptional symptoms. In this paper, we present a case-based reasoning (CBR) approach to help solve human diagnosis problem. Nevertheless, one drawback of CBR system is that the case library will be expanded gradually after repeatedly running the system, which may cause inaccuracy and longer time for the CBR retrieval. To tackle this problem, case-based maintenance (CBM) framework is employed so that the case library of the CBR system will be compressed by clustering to produce a set of representative cases. As a result, the performance (in retrieval accuracy and time) of the whole CBR system can be improved.

  19. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

  20. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

  1. Modelling Testing and Design Considerations of a GOX-GCH4 Igniter for a Hyprob-SSBB Single Igniter Thrust Chamber

    NASA Astrophysics Data System (ADS)

    Battista, F.

    This paper discusses design, test results and preliminary numerical rebuilding of the GOX-GCH4 igniter for a subscale experimental "breadboard" (SSBB) LOX/Methane rocket engine in the framework of the HYPROB-BREAD project. The igniter architecture takes into account different literature efforts and has been selected with the objective of achieving good performance with low cost. CFD, FEM and system simulations have been performed in order to demonstrate the validity of the design. The main results from the first experimental campaign as well as a preliminary numerical rebuilding analysis are shown.

  2. Ethanol Blends and Engine Operating Strategy Effects on Light-Duty Spark-Ignition Engine Particle Emissions

    SciTech Connect

    Szybist, James P; Youngquist, Adam D; Barone, Teresa L; Storey, John Morse; Moore, Wayne; Foster, Matthew; Confer, Keith

    2011-01-01

    Spark ignition (SI) engines with direct injection (DI) fueling can improve fuel economy and vehicle power beyond that of port fuel injection (PFI). Despite this distinct advantage, DI fueling often increases particle emissions such that SI exhaust may be subject to future particle emissions regulations. Challenges in controlling particle emissions arise as engines encounter varied fuel composition such as intermediate ethanol blends. Furthermore, modern engines are operated using unconventional breathing strategies with advanced cam-based variable valve actuation systems. In this study, we investigate particle emissions from a multi-cylinder DI engine operated with three different breathing strategies, fueling strategies and fuels. The breathing strategies are conventional throttled operation, early intake valve closing (EIVC) and late intake valve closing (LIVC); the fueling strategies are single injection DI (sDI), multi-injection DI (mDI), and PFI; and the fuels are emissions certification gasoline, E20 and E85. The results indicate the dominant factor influencing particle number concentration emissions for the sDI and mDI strategies is the fuel injection timing. Overly advanced injection timing results in particle formation due to fuel spray impingement on the piston, and overly retarded injection timing results in particle formation due to poor fuel and air mixing. In addition, fuel type has a significant effect on particle emissions for the DI fueling strategies. Gasoline and E20 fuels generate comparable levels of particle emissions, but E85 produces dramatically lower particle number concentration. The particle emissions for E85 are near the detection limit for the FSN instrument, and particle number emissions are one to two orders of magnitude lower for E85 relative to gasoline and E20. We found PFI fueling produces very low levels of particle emissions under all conditions and is much less sensitive to engine breathing strategy and fuel type than the DI

  3. The effectiveness of a double-stem injection valve in controlling combustion in a compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Whitney, E G

    1931-01-01

    An investigation was made to determine to what extent the rates of combustion in a compression-ignition engine can be controlled by varying the rates of fuel injection. The tests showed that the double-stem valve operated satisfactorily under all normal injection conditions; the rate of injection has a definite effect on the rate of combustion; the engine performance with the double-stem valve was inferior to that obtained with a single-stem valve; and the control of injection rates permitted by an injection valve of two stages of discharge is not sufficient to effect the desired rates of combustion.

  4. Computer modeling of cool flames and ignition of acetaldehyde

    SciTech Connect

    Cavanagh, J.; Cox, R.A. ); Olson, G. )

    1990-10-01

    A detailed mechanism for the oxidation of acetaldehyde at temperatures between 500-1000 K has been assembled using 77 elementary reactions involving 32 reactant, product, and intermediate species. Rate coefficients were taken from recent critical evaluations of experimental data. Where experimental measurements were not available, the rate parameters were estimated from the body of currently available kinetics information. The mechanism was shown to predict correctly the rates and products observed in CH{sub 3}CHO oxidation studies in a low-pressure in a stirred flow reactor and at high pressure in a rapid compression machine. The oscillatory phenomena in the flow system and the two-stage ignition observed at high pressure were satisfactorily described by the mechanism. It is shown that cool flames are caused by degenerate branching mainly by peracetic acid and that hydrogen peroxide promotes hot ignition.

  5. Ignition experiments and models of a plastic bonded explosive (PBX 9502)

    NASA Astrophysics Data System (ADS)

    Hobbs, M. L.; Kaneshige, M. J.

    2014-03-01

    Ignition experiments from various sources, including our own laboratory, have been used to develop a simple four-step, pressure-dependent ignition model for PBX 9502, which is composed of 95% by mass triaminotrinitrobenzene (TATB) and a 5% by mass chlorotrifluoroethylene/vinylidine fluoride binder. The four-steps include drying, mono-furazan formation, and decomposition of mono-furazan and TATB into equilibrium products. Our experiments were both sealed and vented and included various ullage percentages ranging from 18% to 75% of unfilled confinement volume. Our sample densities ranged from 38% of the theoretical maximum density (TMD) to 98% TMD. We observed a decrease in ignition times with the higher density samples, an increase in ignition times with increased venting, and an increase in ignition times with increased ullage. From our experiments, we conclude that decomposition of PBX 9502 is pressure dependent, open pore decomposition occurs in low-density experiments, and that closed pore decomposition occurs when the samples are pressed to near full density. In some of our confined high-density experiments we have observed for the first time, multiple temperature excursions prior to ignition caused by internal pressure generation.

  6. Ignition experiments and models of a plastic bonded explosive (PBX 9502).

    PubMed

    Hobbs, M L; Kaneshige, M J

    2014-03-28

    Ignition experiments from various sources, including our own laboratory, have been used to develop a simple four-step, pressure-dependent ignition model for PBX 9502, which is composed of 95% by mass triaminotrinitrobenzene (TATB) and a 5% by mass chlorotrifluoroethylene/vinylidine fluoride binder. The four-steps include drying, mono-furazan formation, and decomposition of mono-furazan and TATB into equilibrium products. Our experiments were both sealed and vented and included various ullage percentages ranging from 18% to 75% of unfilled confinement volume. Our sample densities ranged from 38% of the theoretical maximum density (TMD) to 98% TMD. We observed a decrease in ignition times with the higher density samples, an increase in ignition times with increased venting, and an increase in ignition times with increased ullage. From our experiments, we conclude that decomposition of PBX 9502 is pressure dependent, open pore decomposition occurs in low-density experiments, and that closed pore decomposition occurs when the samples are pressed to near full density. In some of our confined high-density experiments we have observed for the first time, multiple temperature excursions prior to ignition caused by internal pressure generation. PMID:24697434

  7. Experiments and computational modeling of pulverized-coal ignition. Semiannual report, Apr 1, 1998--Sep 30, 1998

    SciTech Connect

    John C. Chen; Samuel Owusu-Ofori

    1998-10-31

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals. It is unclear whether ignition occurs first at the particle-oxygen interface (heterogeneous ignition) or if it occurs in the gas phase due to ignition of the devolatilization products (homogeneous ignition). Furthermore, there have been no previous studies aimed at determining the dependence of the ignition mechanism on variations in experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. The authors propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition mechanism of various coals by direct observation, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. They propose to use a novel laser-based ignition experiment to achieve their objectives. The heating source will be a pulsed, carbon dioxide laser in which both the pulse energy and pulse duration are independently variable, allowing for a wide range of heating rates and particle temperatures--both of which are decoupled from each other and from the particle size. This level of control over the experimental conditions is truly novel in ignition and combustion experiments. Laser-ignition experiments also offer the distinct advantage of easy optical access to the particles because of the absence of a furnace or radiating walls, and thus permit direct observation and particle temperature

  8. Characteristics of cyclic heat release variability in the transition from spark ignition to HCCI in a gasoline engine

    SciTech Connect

    Sen, Asok K; Litak, Grzegorz; Edwards, Kevin Dean; FINNEY, Charles E A; Daw, C Stuart; Wagner, Robert M

    2011-01-01

    We study selected examples of previously published cyclic heat-release measurements from a single-cylinder gasoline engine as stepwise valve timing adjustments were made to shift from spark ignited (SI) combustion to homogeneous charge compression ignition (HCCI). Wavelet analysis of the time series, combined with conventional statistics and multifractal analysis, revealed previously undocumented features in the combustion variability as the shift occurred. In the spark-ignition combustion mode, the heat-release variations were very small in amplitude and exhibited more persistent low-frequency oscillations with intermittent high-frequency bursts. In the HCCI combustion mode, the amplitude of the heat-release variations again was small and involved mainly low-frequency oscillations. At intermediate states between SI and HCCI, a wide range of very large-amplitude oscillations occurred, including both persistent low-frequency periodicities and intermittent high-frequency bursts. It appears from these results that real-time wavelet decomposition of engine cylinder pressure measurements may be useful for on-board tracking of SI HCCI combustion regime shifts.

  9. A multi-step reaction model for ignition of fully-dense Al-CuO nanocomposite powders

    NASA Astrophysics Data System (ADS)

    Stamatis, D.; Ermoline, A.; Dreizin, E. L.

    2012-12-01

    A multi-step reaction model is developed to describe heterogeneous processes occurring upon heating of an Al-CuO nanocomposite material prepared by arrested reactive milling. The reaction model couples a previously derived Cabrera-Mott oxidation mechanism describing initial, low temperature processes and an aluminium oxidation model including formation of different alumina polymorphs at increased film thicknesses and higher temperatures. The reaction model is tuned using traces measured by differential scanning calorimetry. Ignition is studied for thin powder layers and individual particles using respectively the heated filament (heating rates of 103-104 K s-1) and laser ignition (heating rate ∼106 K s-1) experiments. The developed heterogeneous reaction model predicts a sharp temperature increase, which can be associated with ignition when the laser power approaches the experimental ignition threshold. In experiments, particles ignited by the laser beam are observed to explode, indicating a substantial gas release accompanying ignition. For the heated filament experiments, the model predicts exothermic reactions at the temperatures, at which ignition is observed experimentally; however, strong thermal contact between the metal filament and powder prevents the model from predicting the thermal runaway. It is suggested that oxygen gas release from decomposing CuO, as observed from particles exploding upon ignition in the laser beam, disrupts the thermal contact of the powder and filament; this phenomenon must be included in the filament ignition model to enable prediction of the temperature runaway.

  10. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect

    Srinivasan, K. K.; Krishnan, S. R.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas–air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed “relative combustion phasing”). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60°BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally

  11. Ignition transient analysis of a solid rocket motor using a one dimensional two fluid model

    NASA Astrophysics Data System (ADS)

    Pardue, Byron A.; Han, Samuel S.

    1992-07-01

    A one dimensional two fluid numerical model has been used to study the ignition transient stage of a Space Shuttle solid rocket motor. During the ignition phase of a solid rocket motor a pressure transient is induced by complex transport processes involving the igniter gas heat transfer to the propellant, chemical reactions at the propellant surface, and the interaction of the fluid with the attached rocket nozzle. One dimensional models used in the past neglected the aluminum oxide particles which are present in the combustion gases. The current model uses the IPSA (Inter-Phase-Slip-Algorithm) to solve the transient compressible flow equations for the rocket chamber and attached nozzle. Numerical results for head end pressure changes and overall thrust are compared with both measurement data and predictions of a one dimensional one fluid model.

  12. Physicochemical characterization of particulate emissions from a compression ignition engine: the influence of biodiesel feedstock.

    PubMed

    Surawski, N C; Miljevic, B; Ayoko, G A; Elbagir, S; Stevanovic, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-12-15

    This study undertook a physicochemical characterization of particle emissions from a single compression ignition engine operated at one test mode with 3 biodiesel fuels made from 3 different feedstocks (i.e., soy, tallow, and canola) at 4 different blend percentages (20%, 40%, 60%, and 80%) to gain insights into their particle-related health effects. Particle physical properties were inferred by measuring particle number size distributions both with and without heating within a thermodenuder (TD) and also by measuring particulate matter (PM) emission factors with an aerodynamic diameter less than 10 μm (PM(10)). The chemical properties of particulates were investigated by measuring particle and vapor phase Polycyclic Aromatic Hydrocarbons (PAHs) and also Reactive Oxygen Species (ROS) concentrations. The particle number size distributions showed strong dependency on feedstock and blend percentage with some fuel types showing increased particle number emissions, while others showed particle number reductions. In addition, the median particle diameter decreased as the blend percentage was increased. Particle and vapor phase PAHs were generally reduced with biodiesel, with the results being relatively independent of the blend percentage. The ROS concentrations increased monotonically with biodiesel blend percentage but did not exhibit strong feedstock variability. Furthermore, the ROS concentrations correlated quite well with the organic volume percentage of particles - a quantity which increased with increasing blend percentage. At higher blend percentages, the particle surface area was significantly reduced, but the particles were internally mixed with a greater organic volume percentage (containing ROS) which has implications for using surface area as a regulatory metric for diesel particulate matter (DPM) emissions. PMID:22039912

  13. Multifractal and statistical analyses of heat release fluctuations in a spark ignition engine.

    PubMed

    Sen, Asok K; Litak, Grzegorz; Kaminski, Tomasz; Wendeker, Mirosław

    2008-09-01

    Using multifractal and statistical analyses, we have investigated the complex dynamics of cycle-to-cycle heat release variations in a spark ignition engine. Three different values of the spark advance angle (Delta beta) are examined. The multifractal complexity is characterized by the singularity spectrum of the heat release time series in terms of the Holder exponent. The broadness of the singularity spectrum gives a measure of the degree of mutifractality or complexity of the time series. The broader the spectrum, the richer and more complex is the structure with a higher degree of multifractality. Using this broadness measure, the complexity in heat release variations is compared for the three spark advance angles (SAAs). Our results reveal that the heat release data are most complex for Delta beta=30 degrees followed in order by Delta beta=15 degrees and 5 degrees. In other words, the complexity increases with increasing SAA. In addition, we found that for all the SAAs considered, the heat release fluctuations behave like an antipersistent or a negatively correlated process, becoming more antipersistent with decreasing SAA. We have also performed a statistical analysis of the heat release variations by calculating the kurtosis of their probability density functions (pdfs). It is found that for the smallest SAA considered, Delta beta=5 degrees, the pdf is nearly Gaussian with a kurtosis of 3.42. As the value of the SAA increases, the pdf deviates from a Gaussian distribution and tends to be more peaked with larger values of kurtosis. In particular, the kurtosis has values of 3.94 and 6.69, for Delta beta=15 degrees and 30 degrees, respectively. A non-Gaussian density function with kurtosis in excess of 3 is indicative of intermittency. A larger value of kurtosis implies a higher degree of intermittency. PMID:19045453

  14. Identification of Knock in NACA High-Speed Photographs of Combustion in a Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D; Olsen, H Lowell

    1943-01-01

    Report presents the results of a study of combustion in a spark-ignition engine given in NACA Technical Reports 704 and 727. The present investigation was made with the NACA high-speed motion-picture camera, operating at 40,000 photographs a second, and with a cathode-ray oscillograph operating on a piezoelectric pick-up in the combustion chamber. Photographs are presented showing that the origin of knock is not necessarily in the end gas. The data obtained indicates that knock takes place only in a part of the cylinder charge which has been previously ignited either by autoignition or by the passage of the flame fronts but which has not burned to completion. Mottled regions in the high-speed Schlieren photographs are demonstrated to represent combustion regions.

  15. Liquid Oxygen Rotating Friction Ignition Testing of Aluminum and Titanium with Monel and Inconel for Rocket Engine Propulsion System Contamination Investigation

    NASA Technical Reports Server (NTRS)

    Peralta, S.; Rosales, Keisa R.; Stoltzfus, Joel M.

    2009-01-01

    Metallic contaminant was found in the liquid oxygen (LOX) pre-valve screen of the shuttle main engine propulsion system on two orbiter vehicles. To investigate the potential for an ignition, NASA Johnson Space Center White Sands Test Facility performed (modified) rotating friction ignition testing in LOX. This testing simulated a contaminant particle in the low-pressure oxygen turbo pump (LPOTP) and the high-pressure oxygen turbo pump (HPOTP) of the shuttle main propulsion system. Monel(R) K-500 and Inconel(R) 718 samples represented the LPOTP and HPOTP materials. Aluminum foil tape and titanium foil represented the contaminant particles. In both the Monel(R) and Inconel(R) material configurations, the aluminum foil tape samples did not ignite after 30 s of rubbing. In contrast, all of the titanium foil samples ignited regardless of the rubbing duration or material configuration. However, the titanium foil ignitions did not propagate to the Monel and Inconel materials.

  16. Laser induced ignition

    NASA Astrophysics Data System (ADS)

    Liedl, G.; Schuöcker, D.; Geringer, B.; Graf, J.; Klawatsch, D.; Lenz, H. P.; Piock, W. F.; Jetzinger, M.; Kapus, P.

    2007-05-01

    Nowadays, combustion engines and other combustion processes play an overwhelming and important role in everyday life. As a result, ignition of combustion processes is of great importance, too. Usually, ignition of a combustible material is defined in such a way that an ignition initiates a self-sustained reaction which propagates through the inflammable material even in the case that the ignition source has been removed. In most cases, a well defined ignition location and ignition time is of crucial importance. Spark plugs are well suited for such tasks but suffer from some disadvantages, like erosion of electrodes or restricted positioning possibilities. In some cases, ignition of combustible materials by means of high power laser pulses could be beneficial. High power lasers offer several different possibilities to ignite combustible materials, like thermal ignition, resonant ignition or optical breakdown ignition. Since thermal and resonant ignitions are not well suited on the requirements mentioned previously, only optical breakdown ignition will be discussed further. Optical breakdown of a gas within the focal spot of a high power laser allows a very distinct localization of the ignition spot in a combustible material. Since pulse duration is usually in the range of several nanoseconds, requirements on the ignition time are fulfilled easily, too. Laser peak intensities required for such an optical breakdown are in the range of 10 11 W/cm2. The hot plasma which forms during this breakdown initiates the following self-propagating combustion process. It has been shown previously that laser ignition of direct injection engines improves the fuel consumption as well as the exhaust emissions of such engines significantly. The work presented here gives a brief overview on the basics of laser induced ignition. Flame propagation which follows a successful ignition event can be distinguished into two diffrent regimes. Combustion processes within an engine are usually

  17. Report from the Integrated Modeling Panel at the Workshop on the Science of Ignition on NIF

    SciTech Connect

    Marinak, M; Lamb, D

    2012-07-03

    This section deals with multiphysics radiation hydrodynamics codes used to design and simulate targets in the ignition campaign. These topics encompass all the physical processes they model, and include consideration of any approximations necessary due to finite computer resources. The section focuses on what developments would have the highest impact on reducing uncertainties in modeling most relevant to experimental observations. It considers how the ICF codes should be employed in the ignition campaign. This includes a consideration of how the experiments can be best structured to test the physical models the codes employ.

  18. Numerical model of the thermal processes leading to ignition in a pyrotechnic device

    SciTech Connect

    Pierce, K.G.; Leith, J.R.

    1986-01-01

    The predicted ignition behavior of a hot-wire initiated pyrotechnic device, as obtained from simple numerical models, is presented. The models are based on the heat diffusion equation with temperature dependent properties. The predictions of the model for the short-term responses of a specific pyrotechnic device are consistent with experimental results. The predictions of the long-term response differ significantly from experimental data. The causes of this difference are discussed, and a parametric study of the variables which have an effect on the ignition process is presented.

  19. Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels

    SciTech Connect

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-10-05

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (Ω pilot ∼ 0.2-0.6 and Ω overall ∼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant Ω pilot (> 0.5), increasing Ω overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing Ω overall (at constant Ω pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  20. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign

    NASA Astrophysics Data System (ADS)

    Clark, D. S.; Marinak, M. M.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.

    2015-02-01

    The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies and that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.

  1. Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign

    SciTech Connect

    Clark, D. S.; Marinak, M. M.; Weber, C. R.; Eder, D. C.; Haan, S. W.; Hammel, B. A.; Hinkel, D. E.; Jones, O. S.; Milovich, J. L.; Patel, P. K.; Robey, H. F.; Salmonson, J. D.; Sepke, S. M.; Thomas, C. A.

    2015-02-15

    The recently completed National Ignition Campaign (NIC) on the National Ignition Facility (NIF) showed significant discrepancies between post-shot simulations of implosion performance and experimentally measured performance, particularly in thermonuclear yield. This discrepancy between simulation and observation persisted despite concerted efforts to include all of the known sources of performance degradation within a reasonable two-dimensional (2-D), and even three-dimensional (3-D), simulation model, e.g., using measured surface imperfections and radiation drives adjusted to reproduce observed implosion trajectories [Clark et al., Phys. Plasmas 20, 056318 (2013)]. Since the completion of the NIC, several effects have been identified that could explain these discrepancies and that were omitted in previous simulations. In particular, there is now clear evidence for larger than anticipated long-wavelength radiation drive asymmetries and a larger than expected perturbation seeded by the capsule support tent. This paper describes an updated suite of one-dimensional (1-D), 2-D, and 3-D simulations that include the current best understanding of these effects identified since the NIC, as applied to a specific NIC shot. The relative importance of each effect on the experimental observables is compared. In combination, these effects reduce the simulated-to-measured yield ratio from 125:1 in 1-D to 1.5:1 in 3-D, as compared to 15:1 in the best 2-D simulations published previously. While the agreement with the experimental data remains imperfect, the comparison to the data is significantly improved and suggests that the largest sources for the previous discrepancies between simulation and experiment are now being included.

  2. Advanced ignition and propulsion technology program

    SciTech Connect

    Oldenborg, R.; Early, J.; Lester, C.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

  3. Radiation attenuation characteristics of pyrolysis volatiles of solid fuels and their effect for radiant ignition model

    SciTech Connect

    Zhou, Yupeng; Yang, Lizhong; Dai, Jiakun; Wang, Yafei; Deng, Zhihua

    2010-01-15

    Radiation attenuation characteristics of pyrolysis volatiles from heated solid fuels, a neglected physical effect in radiant ignition process, are studied by simulated experiment and mathematical models. Firstly, it is experimentally found the radiation attenuation of an incident heat flux when pine or Polymethyl Methacrylate (PMMA) is heated occurs before flaming ignition (6-14%), especially for the one in the experiment of the Cone Calorimeter style apparatus with a shorter test radiation distance (D < 100 mm). Then, a more reasonable parameter using Beer's law for determining the radiation absorptivity of pyrolysis volatiles of different fuels is presented. It is found the radiation absorptivity of pyrolysis volatiles of PMMA is actually larger than the one of pine and the ignition of PMMA more depends on the gas-phase heating by radiation absorption. Finally, the calculated results with the experimental radiation attenuation data illustrates that consideration of the radiation attenuation by pyrolysis volatiles in radiant ignition models is necessary. A constant radiation attenuation coefficient G = 0.1 is approximately accepted for the general calculation of radiant ignition model. (author)

  4. Understanding Piloted Ignition of Solid Combustibles in Spacecraft Environments through Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Fereres, S.; Fernandez-Pello, C.; Ruff, G.; Urban, D.

    2012-01-01

    Space exploration vehicles can present internal atmospheres different from sea level standard atmospheric conditions (100 kPa, 21%O2). In NASA's most recent human space exploration crew vehicles the cabin environments were designed to have reduced ambient pressure and increased oxygen concentration (around 55 kPa, 32%O2,). These distinct ambient conditions, in addition to the absence of gravity, may increase the fire risk of combustible materials on board. Enhancing the oxygen concentration will lead to higher flame temperatures. Reducing the ambient pressure will decrease convective heat losses from heated surfaces but also will reduce the amount of pyrolyzate required to reach a flammable mixture near the pilot. This study explores the effect of ambient variables such as reduced pressure, oxygen concentration or microgravity on the physical mechanisms that lead to the piloted ignition of solid combustibles through numerical analysis. Two-dimensional simulations of piloted ignition of thermally irradiated samples of PMMA (polymethyl- methacrylate) were performed with the Fire Dynamics Simulator (FDS5) code. Finite-rate single-step combustion kinetics is used in the gas-phase and a single step Arrhenius type reaction rate describes the solid pyrolysis. Oxidative pyrolysis is not considered and the in-depth formed pyrolyzate is assumed to flow unrestricted through the PMMA. The model correctly describes the thermo-physical mechanisms leading to the piloted ignition of solid fuels. It is shown that as the ambient pressure is reduced or the oxygen concentration enhanced, both the time to ignition and the fuel mass loss rate at ignition are reduced, increasing the fire hazard of the material when externally heated. The calculated ignition times and mass loss rates at ignition are compared to those measured experimentally in a laboratory-scale combustion wind tunnel. It is also shown that with appropriate kinetic parameters the model agrees qualitatively well with the

  5. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug

    DOE PAGESBeta

    Rapp, Vi H.; DeFilippo, Anthony; Saxena, Samveg; Chen, Jyh-Yuan; Dibble, Robert W.; Nishiyama, Atsushi; Moon, Ahsa; Ikeda, Yuji

    2012-01-01

    Amore » microwave-assisted spark plug was used to extend the lean operating limit (lean limit) and reduce emissions of an engine burning methane-air. In-cylinder pressure data were collected at normalized air-fuel ratios of λ = 1.46, λ = 1.51, λ = 1.57, λ = 1.68, and λ = 1.75. For each λ, microwave energy (power supplied to the magnetron per engine cycle) was varied from 0 mJ (spark discharge alone) to 1600 mJ. At lean conditions, the results showed adding microwave energy to a standard spark plug discharge increased the number of complete combustion cycles, improving engine stability as compared to spark-only operation. Addition of microwave energy also increased the indicated thermal efficiency by 4% at λ = 1.68. At λ = 1.75, the spark discharge alone was unable to consistently ignite the air-fuel mixture, resulting in frequent misfires. Although microwave energy produced more consistent ignition than spark discharge alone at λ = 1.75, 59% of the cycles only partially burned. Overall, the microwave-assisted spark plug increased engine performance under lean operating conditions (λ = 1.68) but did not affect operation at conditions closer to stoichiometric.« less

  6. Principles of models based engineering

    SciTech Connect

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  7. Catalytic ignition model in a monolithic reactor with in-depth reaction

    NASA Technical Reports Server (NTRS)

    Tien, Ta-Ching; Tien, James S.

    1990-01-01

    Two transient models have been developed to study the catalytic ignition in a monolithic catalytic reactor. The special feature in these models is the inclusion of thermal and species structures in the porous catalytic layer. There are many time scales involved in the catalytic ignition problem, and these two models are developed with different time scales. In the full transient model, the equations are non-dimensionalized by the shortest time scale (mass diffusion across the catalytic layer). It is therefore accurate but is computationally costly. In the energy-integral model, only the slowest process (solid heat-up) is taken as nonsteady. It is approximate but computationally efficient. In the computations performed, the catalyst is platinum and the reactants are rich mixtures of hydrogen and oxygen. One-step global chemical reaction rates are used for both gas-phase homogeneous reaction and catalytic heterogeneous reaction. The computed results reveal the transient ignition processes in detail, including the structure variation with time in the reactive catalytic layer. An ignition map using reactor length and catalyst loading is constructed. The comparison of computed results between the two transient models verifies the applicability of the energy-integral model when the time is greater than the second largest time scale of the system. It also suggests that a proper combined use of the two models can catch all the transient phenomena while minimizing the computational cost.

  8. Modeling Thermal Ignition and the Initial Conditions for Internal Burning in PBX 9501

    NASA Astrophysics Data System (ADS)

    Henson, B. F.; Smilowitz, L.; Romero, J. J.; Asay, B. W.

    2009-12-01

    Work has been ongoing in our group for several years to produce a global chemistry model of thermal ignition for octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) based plastic bonded explosives valid over the entire temperature range of energetic response. We have made considerable progress recently, resulting in both the first broadly accurate model of this type and the possible identification of a crucial component of the chemical mechanism governing thermal decomposition and ignition. The model is similar in kind, but very different in detail from previous models produced by us and others. The model is based on independently measured parameters for known processes in the chemistry of HMX decomposition. We have applied the model in simple calculations of ignition time over the full temperature range of energetic response for HMX, including directly observed ignition induced by fast shear and compression. In this paper we present the model and new calculations relevant to the parameterization of the model to the formulation PBX 9501.

  9. Hot-spot contributions in shocked high explosives from mesoscale ignition models

    NASA Astrophysics Data System (ADS)

    Levesque, G.; Vitello, P.; Howard, W. M.

    2013-06-01

    High explosive performance and sensitivity is strongly related to the mesoscale defect densities. Bracketing the population of mesoscale hot spots that are active in the shocked ignition of explosives is important for the development of predictive reactive flow models. By coupling a multiphysics-capable hydrodynamics code (ale3d) with a chemical kinetics solver (cheetah), we can parametrically analyze different pore sizes undergoing collapse in high pressure shock conditions with evolving physical parameter fields. Implementing first-principles based decomposition kinetics, burning hot spots are monitored, and the regimes of pore sizes that contribute significantly to burnt mass faction and those that survive thermal conduction on the time scales of ignition are elucidated. Comparisons are drawn between the thermal explosion theory and the multiphysics models for the determination of nominal pore sizes that burn significantly during ignition for the explosive 1,3,5-triamino-2,4,6-trinitrobenzene.

  10. Ignition and Growth Modeling of Short Pulse Duration Shock Initiation Experiments on HNS IV

    NASA Astrophysics Data System (ADS)

    Tarver, Craig; Chidester, Steven

    2013-06-01

    Short pulse duration shock initiation experiments on 1.60 g/cm3 density (92% TMD) HNS IV have been reported by Schwarz, Bowden et al., Dudley et al., Goveas et al., Greenaway et al., and others. This flyer threshold velocity for detonation/failure data plus measured unreacted HNS Hugoniot data and detonation cylinder test product expansion data were used as the experimental basis for the development of an Ignition and Growth reactive flow model for the shock initiation of HNS IV. The resulting Ignition and Growth HNS IV model parameters yielded good overall agreement with all of this experimental data. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.: Explosive, HNS IV, shock to detonation transition, Ignition and Growth: 82.33.Vx, 82.40.Fp.

  11. Thermal Ignition

    NASA Astrophysics Data System (ADS)

    Boettcher, Philipp Andreas

    Accidental ignition of flammable gases is a critical safety concern in many industrial applications. Particularly in the aviation industry, the main areas of concern on an aircraft are the fuel tank and adjoining regions, where spilled fuel has a high likelihood of creating a flammable mixture. To this end, a fundamental understanding of the ignition phenomenon is necessary in order to develop more accurate test methods and standards as a means of designing safer air vehicles. The focus of this work is thermal ignition, particularly auto-ignition with emphasis on the effect of heating rate, hot surface ignition and flame propagation, and puffing flames. Combustion of hydrocarbon fuels is traditionally separated into slow reaction, cool flame, and ignition regimes based on pressure and temperature. Standard tests, such as the ASTM E659, are used to determine the lowest temperature required to ignite a specific fuel mixed with air at atmospheric pressure. It is expected that the initial pressure and the rate at which the mixture is heated also influences the limiting temperature and the type of combustion. This study investigates the effect of heating rate, between 4 and 15 K/min, and initial pressure, in the range of 25 to 100 kPa, on ignition of n-hexane air mixtures. Mixtures with equivalence ratio ranging from 0.6 to 1.2 were investigated. The problem is also modeled computationally using an extension of Semenov's classical auto-ignition theory with a detailed chemical mechanism. Experiments and simulations both show that in the same reactor either a slow reaction or an ignition event can take place depending on the heating rate. Analysis of the detailed chemistry demonstrates that a mixture which approaches the ignition region slowly undergoes a significant modification of its composition. This change in composition induces a progressive shift of the explosion limit until the mixture is no longer flammable. A mixture that approaches the ignition region

  12. DNS of the effects of thermal stratication and turbulent mixing on H2/air ignition in a constant volume, and comparison with the multi-zone model.

    SciTech Connect

    Sankaran, Ramanan; Chen, Jacqueline H.; Hawkes, Evatt R.; Im, Hong G.

    2005-01-01

    The influence of thermal stratification on auto-ignition at constant volume and high pressure is studied by Direct Numerical Simulation (DNS) with complex H{sub 2}/air chemistry with a view to providing better understanding of combustion processes in homogeneous charge compression ignition engines. In particular the dependence of overall ignition progress on initial mixture conditions is determined. The propagation speed of ignition fronts that emanate from 'hot spots' given by a temperature spectrum is monitored by using the displacement velocity of a scalar that tracks the location of maximum heat release. The evolution of the front velocity is compared for different initial temperature distributions and the role of scalar dissipation of heat and mass is identified. It is observed that both deagrative as well as spontaneous ignition front propagation occur depending upon the local temperature gradient. It is found that the ratio of the instantaneous front speed to the deflagrative speed is a good measure of the local mode of propagation. This is verified by examining the energy and species balances. A parametric study in the amplitudes of the initial temperature fluctuation is performed and shows that this parameter has a significant influence on the observed combustion mode. Higher levels of stratification lead to more front-like structures. Predictions of the multi-zone model are presented and explained using the diagnostics developed.

  13. Performance and combustion modeling of heterogeneous charge engines

    SciTech Connect

    Primus, R.J.; Wong, V.W.

    1985-01-01

    This paper reviews the phenomoneological modeling of the combustion processes for the diesel and fuel-injected stratified charge engines. Distinctions are made between phenomenological and multi-dimensional finite-difference approaches. The modeling methodologies and the basic components in these models are described. These include characterization of the fuel spray, fuel-air mixing, ignition, burning and heat transfer processes. An attempt is made in the paper to highlight the similarities and contrasts of various models and relate to their utility in addressing emission research and engine performance development objectives.

  14. Combustion behaviors of a compression-ignition engine fueled with diesel/methanol blends under various fuel delivery advance angles.

    PubMed

    Huang, Zuohua; Lu, Hongbing; Jiang, Deming; Zeng, Ke; Liu, Bing; Zhang, Junqiang; Wang, Xibin

    2004-12-01

    A stabilized diesel/methanol blend was described and the basic combustion behaviors based on the cylinder pressure analysis was conducted in a compression-ignition engine. The study showed that increasing methanol mass fraction of the diesel/methanol blends would increase the heat release rate in the premixed burning phase and shorten the combustion duration of the diffusive burning phase. The ignition delay increased with the advancing of the fuel delivery advance angle for both the diesel fuel and the diesel/methanol blends. For a specific fuel delivery advance angle, the ignition delay increased with the increase of the methanol mass fraction (oxygen mass fraction) in the fuel blends and the behaviors were more obvious at low engine load and/or high engine speed. The rapid burn duration and the total combustion duration increased with the advancing of the fuel delivery advance angle. The centre of the heat release curve was close to the top-dead-centre with the advancing of the fuel delivery advance angle. Maximum cylinder gas pressure increased with the advancing of the fuel delivery advance angle, and the maximum cylinder gas pressure of the diesel/methanol blends gave a higher value than that of the diesel fuel. The maximum mean gas temperature remained almost unchanged or had a slight increase with the advancing of the fuel delivery advance angle, and it only slightly increased for the diesel/methanol blends compared to that of the diesel fuel. The maximum rate of pressure rise and the maximum rate of heat release increased with the advancing of the fuel delivery advance angle of the diesel/methanol blends and the value was highest for the diesel/methanol blends. PMID:15288277

  15. Laser-induced breakdown spectroscopy for in-cylinder equivalence ratio measurements in laser-ignited natural gas engines.

    PubMed

    Joshi, Sachin; Olsen, Daniel B; Dumitrescu, Cosmin; Puzinauskas, Paulius V; Yalin, Azer P

    2009-05-01

    In this contribution we present the first demonstration of simultaneous use of laser sparks for engine ignition and laser-induced breakdown spectroscopy (LIBS) measurements of in-cylinder equivalence ratios. A 1064 nm neodynium yttrium aluminum garnet (Nd:YAG) laser beam is used with an optical spark plug to ignite a single cylinder natural gas engine. The optical emission from the combustion initiating laser spark is collected through the optical spark plug and cycle-by-cycle spectra are analyzed for H(alpha)(656 nm), O(777 nm), and N(742 nm, 744 nm, and 746 nm) neutral atomic lines. The line area ratios of H(alpha)/O(777), H(alpha)/N(746), and H(alpha)/N(tot) (where N(tot) is the sum of areas of the aforementioned N lines) are correlated with equivalence ratios measured by a wide band universal exhaust gas oxygen (UEGO) sensor. Experiments are performed for input laser energy levels of 21 mJ and 26 mJ, compression ratios of 9 and 11, and equivalence ratios between 0.6 and 0.95. The results show a linear correlation (R(2) > 0.99) of line intensity ratio with equivalence ratio, thereby suggesting an engine diagnostic method for cylinder resolved equivalence ratio measurements. PMID:19470212

  16. Analysis of Spark-Ignition Engine Knock as Seen in Photographs Taken at 200,000 Frames Per Second

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D; Olsen, H Lowell; Logan, Walter O , Jr; Osterstrom, Gordon E

    1946-01-01

    A motion picture of the development of knock in a spark-ignition engine is presented, which consists of 20 photographs taken at intervals of 5 microseconds, or at a rate of 200,000 photographs per second, with an equivalent wide-open exposure time of 6.4 microseconds for each photograph. A motion picture of a complete combustion process, including the development of knock, taken at the rate of 40,000 photographs per second is also presented to assist the reader in orienting the photographs of the knock development taken at 200,000 frames per second.

  17. Modeling of Thermophysical Processes in the Ignition of a Small Wooden Plank

    NASA Astrophysics Data System (ADS)

    Loboda, E. L.; Kasymov, D. P.; Yakimov, A. S.

    2015-01-01

    A formulation and a numerical solution based on a mathematical model of a porous reactive medium are given to the problem of ignition of a wooden plank by the action of a fire source. It is found that the ignition of the original reactant is determined by the processes of heat and mass exchange with the fire source, drying, and pyrolysis (decomposition and synthesis reactions) of a dry plank, by the reaction of oxidation of carbon dioxide, and also by the thermophysical properties of wood.

  18. Crevice flow and combustion visualization in a direct-injection spark-ignition engine using laser imaging techniques

    SciTech Connect

    Drake, M.C.; Fansler, T.D.; French, D.T.

    1995-12-31

    Crevice flows of hydrocarbon fuel (both liquid and vapor) have been observed directly from fuel-injector mounting and nozzle-exit crevices in an optically-accessible single-cylinder direct-injection two-stroke engine burning commercial gasoline. Fuel trapped in crevices escapes combustion during the high-pressure portions of the engine cycle, exits the crevice as the cylinder pressure decreases, partially reacts when mixed with hot combustion gases in the cylinder, and contributes to unburned hydrocarbon emissions. High-speed laser Mie-scattering imaging reveals substantial liquid crevice flow in a cold engine at light load, decreasing as the engine warms up and as load is increased. Single-shot laser induced fluorescence imaging of fuel (both vapor and liquid) shows that substantial fuel vapor emanates from fuel injector crevices during every engine cycle and for all operating conditions. Early in the crevice-flow process, some of the emerging fuel vapor (imaged by laser-induced fluorescence) burns as a rich diffusion flame (imaged by flame luminosity), but most of the crevice flow fails to burn as the cylinder pressure and temperature fall. Crevice HC`s are a significant (but not the predominant) source of hydrocarbon emissions in this two-stroke engine, since most of the crevice flow hydrocarbons are retained as residual fuel in the combustion chamber. Similar laser-imaging techniques are applicable to four-stroke spark-ignition engines, where crevice flows are believed to be the dominant hydrocarbon-emissions source.

  19. Realization of the Atkinson-Miller cycle in spark-ignition engine by means of the fully variable inlet valve control system

    NASA Astrophysics Data System (ADS)

    Żmudka, Zbigniew; Postrzednik, Stefan; Przybyła, Grzegorz

    2014-09-01

    The theoretical analysis of the charge exchange process in a spark ignition engine has been presented. This process has significant impact on the effectiveness of engine operation because it is related to the necessity of overcoming the flow resistance, followed by the necessity of doing a work, so-called the charge exchange work. The flow resistance caused by the throttling valve is especially high during the part load operation. The open Atkinson-Miller cycle has been assumed as a model of processes taking place in the engine. Using fully variable inlet valve timing the A-M cycle can be realized according to two systems: system with late inlet valve closing and system with early inlet valve closing. The systems have been analysed individually and comparatively with the open Seiliger-Sabathe cycle which is a theoretical cycle for the classical throttle governing of the engine load. Benefits resulting from application of the systems with independent inlet valve control have been assessed on the basis of the selected parameters: fuel dose, cycle work, charge exchange work and a cycle efficiency. The use of the analysed systems to governing of the SI engine load will enable to eliminate a throttling valve from the system inlet and reduce the charge exchange work, especially within the range of part load operation.

  20. Ignition Rate Measurement of Laser-Ignited Coals

    SciTech Connect

    John C. Chen; Vinayak Kabadi

    1997-10-31

    We established a novel experiment to study the ignition of pulverized coals under conditions relevant to utility boilers. Specifically, we determined the ignition mechanism of pulverized-coal particles under various conditions of particle size, coal type, and freestream oxygen concentration. We also measured the ignition rate constant of a Pittsburgh #8 high-volatile bituminous coal by direct measurement of the particle temperature at ignition, and incorporating this measurement into a mathematical model for the ignition process. The model, called Distributed Activation Energy Model of Ignition, was developed previously by our group to interpret conventional drop-tube ignition experiments, and was modified to accommodate the present study.

  1. Mathematical modeling for the forest fuel layer ignition caused by focused solar radiation flux

    NASA Astrophysics Data System (ADS)

    Baranovskiy, Nikolay V.

    2015-11-01

    Forest fuel layer ignition conditions analysis by focused flow of sunlight is lead. Scenarios of simulation corresponds to occurrence of forest fire as result of focused flux of sunlight influence on forest fuel layer. Scenarios calculations taking into account various intensity of radiation are lead. Recommendations on the further development of this component of determined model are submitted.

  2. 40 CFR 90.615 - Model year restrictions related to imported engines and equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Model year restrictions related to imported engines and equipment. 90.615 Section 90.615 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Importation...

  3. Supercomputer modeling of hydrogen combustion in rocket engines

    NASA Astrophysics Data System (ADS)

    Betelin, V. B.; Nikitin, V. F.; Altukhov, D. I.; Dushin, V. R.; Koo, Jaye

    2013-08-01

    Hydrogen being an ecological fuel is very attractive now for rocket engines designers. However, peculiarities of hydrogen combustion kinetics, the presence of zones of inverse dependence of reaction rate on pressure, etc. prevents from using hydrogen engines in all stages not being supported by other types of engines, which often brings the ecological gains back to zero from using hydrogen. Computer aided design of new effective and clean hydrogen engines needs mathematical tools for supercomputer modeling of hydrogen-oxygen components mixing and combustion in rocket engines. The paper presents the results of developing verification and validation of mathematical model making it possible to simulate unsteady processes of ignition and combustion in rocket engines.

  4. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture

    PubMed Central

    Zeng, Wen; Ma, Hongan; Liang, Yuntao; Hu, Erjiang

    2014-01-01

    The ignition delay times of methane/air mixture diluted by N2 and CO2 were experimentally measured in a chemical shock tube. The experiments were performed over the temperature range of 1300–2100 K, pressure range of 0.1–1.0 MPa, equivalence ratio range of 0.5–2.0 and for the dilution coefficients of 0%, 20% and 50%. The results suggest that a linear relationship exists between the reciprocal of temperature and the logarithm of the ignition delay times. Meanwhile, with ignition temperature and pressure increasing, the measured ignition delay times of methane/air mixture are decreasing. Furthermore, an increase in the dilution coefficient of N2 or CO2 results in increasing ignition delays and the inhibition effect of CO2 on methane/air mixture ignition is stronger than that of N2. Simulated ignition delays of methane/air mixture using three kinetic models were compared to the experimental data. Results show that GRI_3.0 mechanism gives the best prediction on ignition delays of methane/air mixture and it was selected to identify the effects of N2 and CO2 on ignition delays and the key elementary reactions in the ignition chemistry of methane/air mixture. Comparisons of the calculated ignition delays with the experimental data of methane/air mixture diluted by N2 and CO2 show excellent agreement, and sensitivity coefficients of chain branching reactions which promote mixture ignition decrease with increasing dilution coefficient of N2 or CO2. PMID:25750753

  5. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture.

    PubMed

    Zeng, Wen; Ma, Hongan; Liang, Yuntao; Hu, Erjiang

    2015-03-01

    The ignition delay times of methane/air mixture diluted by N2 and CO2 were experimentally measured in a chemical shock tube. The experiments were performed over the temperature range of 1300-2100 K, pressure range of 0.1-1.0 MPa, equivalence ratio range of 0.5-2.0 and for the dilution coefficients of 0%, 20% and 50%. The results suggest that a linear relationship exists between the reciprocal of temperature and the logarithm of the ignition delay times. Meanwhile, with ignition temperature and pressure increasing, the measured ignition delay times of methane/air mixture are decreasing. Furthermore, an increase in the dilution coefficient of N2 or CO2 results in increasing ignition delays and the inhibition effect of CO2 on methane/air mixture ignition is stronger than that of N2. Simulated ignition delays of methane/air mixture using three kinetic models were compared to the experimental data. Results show that GRI_3.0 mechanism gives the best prediction on ignition delays of methane/air mixture and it was selected to identify the effects of N2 and CO2 on ignition delays and the key elementary reactions in the ignition chemistry of methane/air mixture. Comparisons of the calculated ignition delays with the experimental data of methane/air mixture diluted by N2 and CO2 show excellent agreement, and sensitivity coefficients of chain branching reactions which promote mixture ignition decrease with increasing dilution coefficient of N2 or CO2. PMID:25750753

  6. Data Analysis, Pre-Ignition Assessment, and Post-Ignition Modeling of the Large-Scale Annular Cookoff Tests

    SciTech Connect

    G. Terrones; F.J. Souto; R.F. Shea; M.W.Burkett; E.S. Idar

    2005-09-30

    In order to understand the implications that cookoff of plastic-bonded explosive-9501 could have on safety assessments, we analyzed the available data from the large-scale annular cookoff (LSAC) assembly series of experiments. In addition, we examined recent data regarding hypotheses about pre-ignition that may be relevant to post-ignition behavior. Based on the post-ignition data from Shot 6, which had the most complete set of data, we developed an approximate equation of state (EOS) for the gaseous products of deflagration. Implementation of this EOS into the multimaterial hydrodynamics computer program PAGOSA yielded good agreement with the inner-liner collapse sequence for Shot 6 and with other data, such as velocity interferometer system for any reflector and resistance wires. A metric to establish the degree of symmetry based on the concept of time of arrival to pin locations was used to compare numerical simulations with experimental data. Several simulations were performed to elucidate the mode of ignition in the LSAC and to determine the possible compression levels that the metal assembly could have been subjected to during post-ignition.

  7. Effect of Nozzle Design on Fuel Spray and Flame Formation in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    Fuel was injected from different type of injection nozzles into the combustion chamber of the NACA combustion apparatus, operated as a compression-ignition engine. High speed motion pictures were taken of the fuel sprays and combustion. Single-orifice nozzles of 0.008, 0.020, and 0.040 inch diameter, and multiorifice nozzles having 2, 6, and 16 orifices were tested. Nozzles having impinging jets and slit orifices were also included. The photographs indicate that the rate of vapor diffusion from the spray is comparatively slow and that this slow rate of diffusion for combustion chambers with little or no air flow prevents the compression-ignition engine from giving the high performance inherent in the high compression ratios. The sprays from the multiorifice nozzles destroyed the air movement to a greater extent than did those from single orifice nozzles. It is concluded that high performance cannot be realized until the methods of distributing the fuel are improved by means of the injection-nozzle design, air flow, or both.

  8. A Study by High-Speed Photography of Combustion and Knock in a Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D

    1942-01-01

    The study of combustion in a spark-ignition engine given in Technical Report no. 704 has been continued. The investigation was made with the NACA high-speed motion-picture camera and the NACA optical engine indicator. The camera operates at the rate of 40,000 photographs a second and makes possible the study of phenomena occurring in time intervals as short as 0.000025 second. Photographs are presented of combustion without knock and with both light and heavy knocks, the end zone of combustion being within the field of view. Time-pressure records covering the same conditions as the photographs are presented and their relations to the photographs are studied. Photographs with ignition at various advance angles are compared with a view to observing any possible relationship between pressure and flame depth. A tentative explanation of knock is suggested, which is designed to agree with the indications of the high-speed photographs and the time-pressure records.

  9. The Effect of Clearance Distribution on the Performance of a Compression-ignition Engine with a Precombustion Chamber

    NASA Technical Reports Server (NTRS)

    Moore, C. S.; Collins, J. H. Jr

    1932-01-01

    The clearance distribution in a precombustion chamber cylinder head was varied so that for a constant compression ratio of 13.5 the spherical auxiliary chambers contained 20, 35, 50, and 70 per cent of the total clearance volume. Each chamber was connected to the cylinder by a single circular passage, flared at both ends, and of a cross-sectional area proportional to the chamber volume, thereby giving the same calculated air-flow velocity through each passage. Results of engine-performance tests are presented with variations of power, fuel consumption, explosion pressure, rate of pressure rise, ignition lag, heat loss to the cooling water, and motoring characteristics. For good performance the minimum auxiliary chamber volume, with the cylinder head design used, was 35 per cent of the total clearance volume; for larger volumes the performance improves but slightly. With the auxiliary chamber that contained 35 percent of the clearance volume there were obtained the lowest explosion pressures, medium rates of pressure rise, and slightly less than the maximum power. For all clearance distributions an increase in engine speed decreased the ignition lag in seconds and increased the rate of pressure rise.

  10. Analysis of Spark-Ignition Engine Knock as Seen in Photographs Taken at 200,000 Frames Per Second

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D.; Olsen, H. Lowell; Logan, Walter O., Jr.; Osterstrom, Gordon E

    1946-01-01

    A motion picture of the development of knock in a spark-ignition engine, is presented, which consists of 20 photographs taken at intervals of 5 microseconds, or at a rate of 200,000 photographs a second, with an equivalent wide-open exposure time of 6.4 microseconds for each photograph. A motion picture of a complete combustion process, including the development of knock, taken at the rate of 40,000 photographs a second is also presented to assist the reader in orienting the photographs of the knock development taken at 200,000 frames per second. The photographs taken at 200,000 frames per second are analyzed and the conclusion is made that the type of knock in the spark-ignition engine involving violent gas vibration originates as self-propagating disturbance starting at a point in the.burn1ig or autoigniting gases and spreading out from that point through the incompletely burned gases at a rate as high as 6800 feet per second, or about twice the speed of sound in the burned gases. Apparent formation of free carbon particles in both the burning and the burned gas is observed within 10 microseconds after passage of the knock disturbance through the gases.

  11. Relation Between Spark-Ignition Engine Knock, Detonation Waves, and Autoignition as Shown by High-Speed Photography

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D

    1946-01-01

    A critical review of literature bearing on the autoignition and detonation-wave theories of spark-ignition engine knock and on the nature of gas vibrations associated with combustion and knock results in the conclusion that neither the autoignition theory nor the detonation-wave theory is an adequate explanation of spark-ignition engine knock. A knock theory is proposed, combining the autoignition and detonation-wave theories, which introduces the idea that the detonation wave develops in autoignited or after-burning gases, and ascribes comparatively low-pitched heavy knocks to autoignition but high-pitched pinging knocks to detonation waves with the possibility of combinations of the two types of knocks. Analysis of five shots of knocking combustion, taken with the NACA high-speed motion-picture camera at the rate of 40,000 photographs per second reveals propagation speeds ranging from 3250 to more than 5500 feet per second. The range of propagation speeds from 3250 to more than 5500 feet per second is held to be considered with the proposed combined theory but not with either the simple autoignition theory or the simple detonation-wave theory.

  12. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    PubMed

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission. PMID:24383396

  13. The Effect of Compression Ratio, Fuel Octane Rating, and Ethanol Content on Spark-Ignition Engine Efficiency.

    PubMed

    Leone, Thomas G; Anderson, James E; Davis, Richard S; Iqbal, Asim; Reese, Ronald A; Shelby, Michael H; Studzinski, William M

    2015-09-15

    Light-duty vehicles (LDVs) in the United States and elsewhere are required to meet increasingly challenging regulations on fuel economy and greenhouse gas (GHG) emissions as well as criteria pollutant emissions. New vehicle trends to improve efficiency include higher compression ratio, downsizing, turbocharging, downspeeding, and hybridization, each involving greater operation of spark-ignited (SI) engines under higher-load, knock-limited conditions. Higher octane ratings for regular-grade gasoline (with greater knock resistance) are an enabler for these technologies. This literature review discusses both fuel and engine factors affecting knock resistance and their contribution to higher engine efficiency and lower tailpipe CO2 emissions. Increasing compression ratios for future SI engines would be the primary response to a significant increase in fuel octane ratings. Existing LDVs would see more advanced spark timing and more efficient combustion phasing. Higher ethanol content is one available option for increasing the octane ratings of gasoline and would provide additional engine efficiency benefits for part and full load operation. An empirical calculation method is provided that allows estimation of expected vehicle efficiency, volumetric fuel economy, and CO2 emission benefits for future LDVs through higher compression ratios for different assumptions on fuel properties and engine types. Accurate "tank-to-wheel" estimates of this type are necessary for "well-to-wheel" analyses of increased gasoline octane ratings in the context of light duty vehicle transportation. PMID:26237538

  14. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect

    Matthias, Nicholas; Farron, Carolyn; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun; Zelenyuk, Alla

    2011-08-30

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition

  15. Application of multicriteria decision making methods to compression ignition engine efficiency and gaseous, particulate, and greenhouse gas emissions.

    PubMed

    Surawski, Nicholas C; Miljevic, Branka; Bodisco, Timothy A; Brown, Richard J; Ristovski, Zoran D; Ayoko, Godwin A

    2013-02-19

    Compression ignition (CI) engine design is subject to many constraints, which present a multicriteria optimization problem that the engine researcher must solve. In particular, the modern CI engine must not only be efficient but must also deliver low gaseous, particulate, and life cycle greenhouse gas emissions so that its impact on urban air quality, human health, and global warming is minimized. Consequently, this study undertakes a multicriteria analysis, which seeks to identify alternative fuels, injection technologies, and combustion strategies that could potentially satisfy these CI engine design constraints. Three data sets are analyzed with the Preference Ranking Organization Method for Enrichment Evaluations and Geometrical Analysis for Interactive Aid (PROMETHEE-GAIA) algorithm to explore the impact of (1) an ethanol fumigation system, (2) alternative fuels (20% biodiesel and synthetic diesel) and alternative injection technologies (mechanical direct injection and common rail injection), and (3) various biodiesel fuels made from 3 feedstocks (i.e., soy, tallow, and canola) tested at several blend percentages (20-100%) on the resulting emissions and efficiency profile of the various test engines. The results show that moderate ethanol substitutions (~20% by energy) at moderate load, high percentage soy blends (60-100%), and alternative fuels (biodiesel and synthetic diesel) provide an efficiency and emissions profile that yields the most "preferred" solutions to this multicriteria engine design problem. Further research is, however, required to reduce reactive oxygen species (ROS) emissions with alternative fuels and to deliver technologies that do not significantly reduce the median diameter of particle emissions. PMID:23343018

  16. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect

    Matthias, Nicholas; Farron, Carrie; Foster, David E.; Andrie, Michael; Krieger, Roger; Najt, Paul M.; Narayanaswamy, Kushal; Solomon, Arun S.; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented in an engine test cell with a spark ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion. SIDI is of particular interest for improved fuel efficiency compared to other SI engines, however, the efficiency benefit comes with greater PM emissions and may therefore be subject to the proposed number based PM regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition.

  17. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2002-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

  18. Laser ignition

    DOEpatents

    Early, James W.; Lester, Charles S.

    2003-01-01

    In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

  19. The method of solid rocket motors firings environmental engineering model

    NASA Astrophysics Data System (ADS)

    Pang, Baojun; Xu, Ke; Peng, Keke; Mi, Yaoqi

    The solid rocket motors firings is one main source of space debris, the solid rocket motors firings model is a part of space debris engineering model. In this paper, researching the NASA and ESA model to achieve an appropriate firing model, using the discrete method to model the solid rocket motors firings; application of the long-term approximation orbit evolution algorithm to calculate the evolution of firings generated by a single solid rocket motors ignition event in space; finally, application of space debris environment space debris density algorithm to calculate the distribution of firings generated by a single solid rocket motors ignition event in space, analysing the influence on the space environment and spacecraft.

  20. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    NASA Astrophysics Data System (ADS)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  1. Residual Fuel Expulsion from a Simulated 50,000 Pound Thrust Liquid-Propellant Rocket Engine Having a Continuous Rocket-Type Igniter

    NASA Technical Reports Server (NTRS)

    Messing, Wesley E.

    1959-01-01

    Tests have been conducted to determine the starting characteristics of a 50,000-pound-thrust rocket engine with the conditions of a quantity of fuel lying dormant in the simulated main thrust chamber. Ignition was provided by a smaller rocket firing rearwardly along the center line. Both alcohol-water and anhydrous ammonia were used as the residual fuel. The igniter successfully expelled the maximum amount of residual fuel (3 1/2 gal) in 2.9 seconds when the igniter.was equipped with a sonic discharge nozzle operating at propellant flow rates of 3 pounds per second. Lesser amounts of residual fuel required correspondingly lower expulsion times. When the igniter was equipped with a supersonic exhaust nozzle operating at a flow of 4 pounds per second, a slightly less effective expulsion rate was encountered.

  2. Modeling and cold start in alcohol-fueled engines

    SciTech Connect

    Markel, A.J.; Bailey, B.K.

    1998-05-01

    Neat alcohol fuels offer several benefits over conventional gasoline in automotive applications. However, their low vapor pressure and high heat of vaporization make it difficult to produce a flammable vapor composition from a neat alcohol fuel during a start under cold ambient conditions. Various methods have been introduced to compensate for this deficiency. In this study, the authors applied computer modeling and simulation to evaluate the potential of four cold-start technologies for engines fueled by near-neat alcohol. The four technologies were a rich combustor device, a partial oxidation reactor, a catalytic reformer, and an enhanced ignition system. The authors ranked the competing technologies by their ability to meet two primary criteria for cold starting an engine at {minus}25 deg C and also by several secondary parameters related to commercialization. Their analysis results suggest that of the four technologies evaluated, the enhanced ignition system is the best option for further development.

  3. Cycle-by-cycle combustion variations in spark-ignited engines

    SciTech Connect

    Daw, C.S.; Finney, C.E.A.; Connolly, F.T.

    1997-09-01

    Under constant nominal operating conditions, internal combustion engines can exhibit substantial variation in combustion efficiency from one cycle to the next. Previous researchers have attempted to explain these variations as resulting from stochastic, linear, or chaotic physical processes. Our investigations indicate that cyclic combustion variations can be explained as the result of interactions between a global low-dimensional nonlinearity and small-scale, high-dimensional processes that perturb the nonlinearity. Using this approach, we have proposed a simple model that accurately simulates experimentally observed patterns in cyclic combustion variations. Our model also explains the apparent discrepancies among previous investigators regarding the basic nature of cyclic variations. Further, it appears that symbol dynamics are useful for characterizing the observed model and experimental behavior.

  4. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    NASA Astrophysics Data System (ADS)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  5. One-dimensional Numerical Model of Transient Discharges in Air of a Spatial Plasma Ignition Device

    NASA Astrophysics Data System (ADS)

    Saceleanu, Florin N.

    This thesis examines the modes of discharge of a plasma ignition device. Oscilloscope data of the discharge voltage and current are analyzed for various pressures in air at ambient temperature. It is determined that the discharge operates in 2 modes: a glow discharge and a postulated streamer discharge. Subsequently, a 1-dimensional fluid simulation of plasma using the finite volume method (FVM) is developed to gain insight into the particle kinetics. Transient results of the simulation agree with theories of electric discharges; however, quasi-steady state results were not reached due to high diffusion time of ions in air. Next, an ordinary differential equation (ODE) is derived to understand the discharge transition. Simulated results were used to estimate the voltage waveform, which describes the ODE's forcing function; additional simulated results were used to estimate the discharge current and the ODE's non-linearity. It is found that the ODE's non-linearity increases exponentially for capacitive discharges. It is postulated that the non-linearity defines the mode transition observed experimentally. The research is motivated by Spatial Plasma Discharge Ignition (SPDI), an innovative ignition system postulated to increase combustion efficiency in automobile engines for up to 9%. The research thus far can only hypothesize SPDI's benefits on combustion, based on the literature review and the modes of discharge.

  6. ALE3D Simulations of Gap Closure and Surface Ignition for Cookoff Modeling

    SciTech Connect

    Howard, W M; McClelland, M A; Nichols, A L

    2006-06-22

    We are developing ALE3D models to describe the thermal, chemical and mechanical behavior during the heating, ignition and explosive phases of various cookoff phenomena. The candidate models and numerical strategies are being evaluated using benchmark cookoff experiments. ALE3D is a three-dimensional computer code capable of solving the model equations in a coupled fashion through all the phases of the cookoff in a single calculation. For the cookoff experiments, we are interested in representing behavior on widely varying timescales. We have used an implicit hydrodynamics option during the heating phase and an explicit solution method during the explosive phase. To complicate the modeling problem, high heat fluxes cause rapid temperature increases in boundary layers and lead to the formation of gaps between energetic and structural materials and ignition on surfaces. The initially solid energetic and structural materials react to produce gases, which fill the gaps. These materials can also melt and flow. Since an implicit solution method is used, simple no-strength materials models can no longer be used for liquids and gases. In this paper, we discuss and demonstrate choices of materials models for solid/liquid/gas mixtures to be used in conjunction with the implicit solution method. In addition, results are given for mesh movement strategies applied to the opening, closing, and surface ignition within gaps.

  7. Mathematical modeling of ignition of woodlands resulted from accident on the pipeline

    NASA Astrophysics Data System (ADS)

    Perminov, V. A.; Loboda, E. L.; Reyno, V. V.

    2014-11-01

    Accidents occurring at the sites of pipelines, accompanied by environmental damage, economic loss, and sometimes loss of life. In this paper we calculated the sizes of the possible ignition zones in emergency situations on pipelines located close to the forest, accompanied by the appearance of fireballs. In this paper, using the method of mathematical modeling calculates the maximum size of the ignition zones of vegetation as a result of accidental releases of flammable substances. The paper suggested in the context of the general mathematical model of forest fires give a new mathematical setting and method of numerical solution of a problem of a forest fire modeling. The boundary-value problem is solved numerically using the method of splitting according to physical processes. The dependences of the size of the forest fuel for different amounts of leaked flammable substances and moisture content of vegetation.

  8. Ignition-and-Growth Modeling of NASA Standard Detonator and a Linear Shaped Charge

    NASA Technical Reports Server (NTRS)

    Oguz, Sirri

    2010-01-01

    The main objective of this study is to quantitatively investigate the ignition and shock sensitivity of NASA Standard Detonator (NSD) and the shock wave propagation of a linear shaped charge (LSC) after being shocked by NSD flyer plate. This combined explosive train was modeled as a coupled Arbitrary Lagrangian-Eulerian (ALE) model with LS-DYNA hydro code. An ignition-and-growth (I&G) reactive model based on unreacted and reacted Jones-Wilkins-Lee (JWL) equations of state was used to simulate the shock initiation. Various NSD-to-LSC stand-off distances were analyzed to calculate the shock initiation (or failure to initiate) and detonation wave propagation along the shaped charge. Simulation results were verified by experimental data which included VISAR tests for NSD flyer plate velocity measurement and an aluminum target severance test for LSC performance verification. Parameters used for the analysis were obtained from various published data or by using CHEETAH thermo-chemical code.

  9. High-speed fuel tracer fluorescence and OH radical chemiluminescence imaging in a spark-ignition direct-injection engine.

    PubMed

    Smith, James D; Sick, Volker

    2005-11-01

    An innovative technique has been demonstrated to achieve crank-angle-resolved planar laser-induced fluorescence (PLIF) of fuel followed by OH* chemiluminescence imaging in a firing direct-injected spark-ignition engine. This study used two standard KrF excimer lasers to excite toluene for tracking fuel distribution. The intensified camera system was operated at single crank-angle resolution at 2000 revolutions per minute (RPM) for 500 consecutive cycles. Through this work, it has been demonstrated that toluene and OH* can be imaged through the same optical setup while similar signal levels are obtained from both species, even at these high rates. The technique is useful for studying correlations between fuel distribution and subsequent ignition and flame propagation without the limitations of phase-averaging imaging approaches. This technique is illustrated for the effect of exhaust gas recirculation on combustion and will be useful for studies of misfire causes. Finally, a few general observations are presented as to the effect of preignition fuel distribution on subsequent combustion. PMID:16270557

  10. Effect of air-entry angle on performance of a 2-stroke-cycle compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Earle, Sherod L; Dutee, Francis J

    1937-01-01

    An investigation was made to determine the effect of variations in the horizontal and vertical air-entry angles on the performance characteristics of a single-cylinder 2-stroke-cycle compression-ignition test engine. Performance data were obtained over a wide range of engine speed, scavenging pressure, fuel quantity, and injection advance angle with the optimum guide vanes. Friction and blower-power curves are included for calculating the indicated and net performances. The optimum horizontal air-entry angle was found to be 60 degrees from the radial and the optimum vertical angle to be zero, under which conditions a maximum power output of 77 gross brake horsepower for a specific fuel consumption of 0.52 pound per brake horsepower-hour was obtained at 1,800 r.p.m. and 16-1/2 inches of Hg scavenging pressure. The corresponding specific output was 0.65 gross brake horsepower per cubic inch of piston displacement. Tests revealed that the optimum scavenging pressure increased linearly with engine speed. The brake mean effective pressure increased uniformly with air quantity per cycle for any given vane angle and was independent of engine speed and scavenging pressure.

  11. Effect of NLTE emissivity models on NIF ignition hohlraum power requirements

    NASA Astrophysics Data System (ADS)

    Suter, L.; Hansen, S.; Rosen, M.; Springer, P.; Callahan, D.

    2008-11-01

    It's well known that the NLTE atomic physics model can significantly affect the power requirements and plasma conditions in ignition hohlraums. This is because the emissivity(Te,ne) is a significant factor in determining the time dependent coronal temperature of the hot blow-off plasma filling ignition hohlraums which, in turn, determines the total energy stored in that coronal plasma at any instant. In this talk we present best estimates of NLTE emissivity using the SCRAM model, including the range of uncertainty, and compare them with the emissivity of the model used to design NIF ignition hohlraums and set the NIF pulse shape. We then present pulse shapes derived from hohlraum simulations using an atomic physics model that approximates the SCRAM emissivities. We discuss the differences in coronal energetics and show how this affects the pulse shape and decreases the peak power requirement. Finally, we present design simulations of potential NIF-commissioning scaling experiments that could distinguish among emissivity models. Prepared by LLNL under Contract DE-AC52-07NA27344.

  12. Ignition problems in scramjet testing

    SciTech Connect

    Mitani, Tohru

    1995-05-01

    Ignition of H{sub 2} in heated air containing H{sub 2}O, radicals, and dust was investigated for scramjet testing. Using a reduced kinetic model for H{sub 2}{minus}O{sub 2} systems, the effects of H{sub 2}O and radicals in nozzles are discussed in relation to engine testing with vitiation heaters. Analysis using linearized rate-equations suggested that the addition of O atoms was 1.5 times more effective than the addition of H atoms for ignition. This result can be applied to the problem of premature ignition caused by residual radicals and to plasma-jet igniters. Thermal and chemical effects of dust, inevitable in storage air heaters, were studied next. The effects of heat capacity and size of dust were expressed in terms of an exponential integral function. It was found that the radical termination on the surface of dust produces an effect equivalent to heat loss. The inhibition of ignition by dust may result, if the mass fraction of dust becomes 10{sup {minus}3}.

  13. Models to estimate the minimum ignition temperature of dusts and hybrid mixtures.

    PubMed

    Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich

    2016-03-01

    The minimum ignition temperatures (MIT) of hybrid mixtures have been investigated by performing several series of tests in a modified Godbert-Greenwald furnace. Five dusts as well as three perfect gases and three real were used in different combinations as test samples. Further, seven mathematical models for prediction of the MIT of dust/air mixtures were presented of which three were chosen for deeper study and comparison with the experimental results based on the availability of the input quantities needed and their applicability. Additionally, two alternative models were proposed to calculate the MIT of hybrid mixtures and were validated against the experimental results. A significant decrease of the minimum ignition temperature of either the gas or the vapor as well as an increase in the explosion likelihood could be observed when a small amount of dust which was either below its minimum explosible concentration or not ignitable itself at that particular temperature was mixed with the gas. The various models developed by Cassel, Krishma and Mitsui to predict the MIT of dust were in good agreement with the experimental results as well as the two models proposed to predict the MIT of hybrid mixtures were also in agreement with the experimental value. PMID:26546706

  14. SHOCK INITIATION EXPERIMENTS ON PBX9501 EXPLOSIVE AT 150?C FOR IGNITION AND GROWTH MODELING

    SciTech Connect

    Vandersall, K S; Tarver, C M; Garcia, F; Urtiew, P A

    2005-07-19

    Shock initiation experiments on the explosive PBX9501 (95% HMX, 2.5% estane, and 2.5% nitroplasticizer by weight) were performed at 150 C to obtain in-situ pressure gauge data and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the PBX9501 explosive with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data and Ignition and Growth modeling parameters were obtained with a good fit to the experimental data. This parameter set will allow accurate code predictions to be calculated for safety scenarios involving PBX9501 explosives at temperatures close to 150 C.

  15. SHOCK INITIATION EXPERIMENTS ON THE TATB BASED EXPLOSIVE RX-03-GO WITH IGNITION AND GROWTH MODELING

    SciTech Connect

    Vandersall, K S; Garcia, F; Tarver, C M

    2009-06-23

    Shock initiation experiments on the TATB based explosive RX-03-GO (92.5% TATB, 7.5% Cytop A by weight) were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and calculate Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive sample with manganin piezoresistive pressure gauge packages placed between sample slices. The RX-03-GO formulation utilized is similar to that of LX-17 (92.5% TATB, 7.5% Kel-f by weight) with the notable differences of a new binder material and TATB that has been dissolved and recrystallized in order to improve the purity and morphology. The shock sensitivity will be compared with that of prior data on LX-17 and other TATB formulations. Ignition and Growth modeling parameters were obtained with a reasonable fit to the experimental data.

  16. A High-Speed Motion-Picture Study of Normal Combustion, Knock and Preignition in a Spark-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C; Miller, Cearcy D

    1941-01-01

    Combustion in a spark-ignition engine was investigated by means of the NACA high-speed motion-picture cameras. This camera is operated at a speed of 40,000 photographs a second and therefore makes possible the study of changes that take place in the intervals as short as 0.000025 second. When the motion pictures are projected at the normal speed of 16 frames a second, any rate of movement shown is slowed down 2500 times. Photographs are presented of normal combustion, of combustion from preignitions, and of knock both with and without preignition. The photographs of combustion show that knock may be preceded by a period of exothermic reaction in the end zone that persists for a time interval of as much as 0.0006 second. The knock takes place in 0.00005 second or less.

  17. Spectroscopic modeling of an argon-doped shock-ignition implosion

    SciTech Connect

    Florido, R.; Mancini, R. C.; Nagayama, T.; Tommasini, R.; Delettrez, J. A.; Regan, S. P.; Yaakobi, B.

    2010-10-15

    We present results from the spectral postprocessing of a one-dimensional hydrodynamic simulation of an argon-doped, warm-shell shock-ignition implosion with a detailed atomic and radiation physics model. The argon tracer is added to the deuterium filling in the core for diagnostic purposes. Spectral features in the emergent intensity distribution in the photon energy range of the argon K-shell spectrum that have potential for diagnostic application are discussed.

  18. Ignition of an automobile engine by high-peak power Nd:YAG/Cr⁴⁺:YAG laser-spark devices.

    PubMed

    Pavel, Nicolaie; Dascalu, Traian; Salamu, Gabriela; Dinca, Mihai; Boicea, Niculae; Birtas, Adrian

    2015-12-28

    Laser sparks that were built with high-peak power passively Q-switched Nd:YAG/Cr(4+):YAG lasers have been used to operate a Renault automobile engine. The design of such a laser spark igniter is discussed. The Nd:YAG/Cr(4+):YAG laser delivered pulses with energy of 4 mJ and 0.8-ns duration, corresponding to pulse peak power of 5 MW. The coefficients of variability of maximum pressure (COV(Pmax)) and of indicated mean effective pressure (COV(IMEP)) and specific emissions like hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NO(x)) and carbon dioxide (CO2) were measured at various engine speeds and high loads. Improved engine stability in terms of COV(Pmax) and COV(Pmax) and decreased emissions of CO and HC were obtained for the engine that was run by laser sparks in comparison with classical ignition by electrical spark plugs. PMID:26831972

  19. Experiment and modeling: Ignition of aluminum particles with a carbon dioxide laser

    NASA Astrophysics Data System (ADS)

    Mohan, Salil

    Aluminum is a promising ingredient for high energy density compositions used in propulsion systems, explosives, and pyrotechnics. Aluminum powder fuel additives enable one to achieve higher combustion enthalpies and reaction temperatures. Therefore, to develop aluminum based novel and customized high density energetic materials, understanding of ignition and combustion kinetics of aluminum powders is required. In most practical systems, metal ignition and combustion occur in environments with rapidly changing temperatures and gas compositions. The kinetics of exothermic reactions in related energetic materials is commonly characterized by thermal analysis, where the heating rates are very low, on the order of 1--50 K/min. The extrapolation of the identified kinetics to the high heating rates is difficult and requires direct experimental verification. This difficulty led to development of new experimental approaches to directly characterize ignition kinetics for the heating rates in the range of 103--104 K/s. However, the practically interesting heating rates of 106 K/s range have not been achieved. This work is directed at development of an experimental technique and respective heat transfer model for studying ignition of aluminum and other micron-sized metallic particles at heating rates varied around 106 K/s. The experimental setup uses a focused CO2 laser as a heating source and a plate capacitor aerosolizer to feed the aluminum particles into the laser beam. The setup allows using different environment for particle aerosolization. The velocities of particles in the jet are in the range of 0.1 --0 3 m/s. For each selected jet velocity, the laser power is increased until the particles are observed to ignite. The ignition is detected optically using a digital camera and a photomultiplier. The ignition thresholds for spherical aluminum powder were measured at three different particle jet velocities, in air environment. A single particle heat transfer model was

  20. Landfill gas application development of the Caterpillar G3600 spark-ignited gas engine

    SciTech Connect

    Mueller, G.P.

    1995-10-01

    A G3600 engine was developed to operate on landfill gas to demonstrate engine performance and identify any operational problems caused by this application. Fuel system and engine performance development were completed using simulated landfill gas containing carbon dioxide and natural gas at the Caterpillar Technical Center. The engine was packaged as a generator set and has operated for 12,000 hours on landfill gas. Engine performance goals similar to those for G3600 natural gas applications were achieved during development and were attained during the field test. Development work and field test endurance results are presented in this paper.

  1. Ignition and combustion of lunar propellants

    NASA Technical Reports Server (NTRS)

    Burton, Rodney L.; Roberts, Ted A.; Krier, Herman

    1993-01-01

    The ignition and combustion of Al, Mg, and Al/Mg alloy particles in 99 percent O2/1 percent N2 mixtures is investigated at high temperatures and pressures for rocket engine applications. The 20 micron particles contain 0, 5, 10, 20, 40, 60, 80, and 100 weight percent Mg alloyed with Al, and are ignited in oxygen using the reflected shock in a shock tube near the endwall. Using this technique, the ignition delay and combustion times of the particles are measured at temperatures up to 3250 K as a function of Mg content for oxygen pressures of 8.5, 17, and 34 atm. An ignition model is developed which employs a simple lumped capacitance energy equation and temperature and pressure dependent particle and gas properties. Good agreement is achieved between the measured and predicted trends in the ignition delay times. For the particles investigated, the contribution of heterogeneous reaction to the heating of the particle is found to be significant at lower temperatures, but may be neglected as gas temperatures above 3000 K. As little as 10 percent Mg reduces the ignition delay time substantially at all pressures tested. The particle ignition delay times decrease with increasing Mg content, and this reduction becomes less pronounced as oxidizer temperature and pressure are increased.

  2. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  3. Investigation on the gaseous and particulate emissions of a compression ignition engine fueled with diesel-dimethyl carbonate blends.

    PubMed

    Cheung, C S; Zhu, Ruijun; Huang, Zuohua

    2011-01-01

    The effect of dimethyl carbonate (DMC) on the gaseous and particulate emissions of a diesel engine was investigated using Euro V diesel fuel blended with different proportions of DMC. Combustion analysis shows that, with the blended fuel, the ignition delay and the heat release rate in the premixed combustion phase increase, while the total combustion duration and the fuel consumed in the diffusion combustion phase decrease. Compared with diesel fuel, with an increase of DMC in the blended fuel, the brake thermal efficiency is slightly improved but the brake specific fuel consumption increases. On the emission side, CO increases significantly at low engine load but decreases at high engine load while HC decreases slightly. NO(x) reduces slightly but the reduction is not statistically significant, while NO(2) increases slightly. Particulate mass and number concentrations decrease upon using the blended fuel while the geometric mean diameter of the particles shifts towards smaller size. Overall speaking, diesel-DMC blends lead to significant improvement in particulate emissions while the impact on CO, HC and NO(x) emissions is small. PMID:21081245

  4. Physicochemical characterization of particulate emissions from a compression ignition engine employing two injection technologies and three fuels.

    PubMed

    Surawski, N C; Miljevic, B; Ayoko, G A; Roberts, B A; Elbagir, S; Fairfull-Smith, K E; Bottle, S E; Ristovski, Z D

    2011-07-01

    Alternative fuels and injection technologies are a necessary component of particulate emission reduction strategies for compression ignition engines. Consequently, this study undertakes a physicochemical characterization of diesel particulate matter (DPM) for engines equipped with alternative injection technologies (direct injection and common rail) and alternative fuels (ultra low sulfur diesel, a 20% biodiesel blend, and a synthetic diesel). Particle physical properties were addressed by measuring particle number size distributions, and particle chemical properties were addressed by measuring polycyclic aromatic hydrocarbons (PAHs) and reactive oxygen species (ROS). Particle volatility was determined by passing the polydisperse size distribution through a thermodenuder set to 300 °C. The results from this study, conducted over a four point test cycle, showed that both fuel type and injection technology have an impact on particle emissions, but injection technology was the more important factor. Significant particle number emission (54%-84%) reductions were achieved at half load operation (1% increase-43% decrease at full load) with the common rail injection system; however, the particles had a significantly higher PAH fraction (by a factor of 2 to 4) and ROS concentrations (by a factor of 6 to 16) both expressed on a test-cycle averaged basis. The results of this study have significant implications for the health effects of DPM emissions from both direct injection and common rail engines utilizing various alternative fuels. PMID:21627159

  5. Engineering workstation: Sensor modeling

    NASA Technical Reports Server (NTRS)

    Pavel, M; Sweet, B.

    1993-01-01

    The purpose of the engineering workstation is to provide an environment for rapid prototyping and evaluation of fusion and image processing algorithms. Ideally, the algorithms are designed to optimize the extraction of information that is useful to a pilot for all phases of flight operations. Successful design of effective fusion algorithms depends on the ability to characterize both the information available from the sensors and the information useful to a pilot. The workstation is comprised of subsystems for simulation of sensor-generated images, image processing, image enhancement, and fusion algorithms. As such, the workstation can be used to implement and evaluate both short-term solutions and long-term solutions. The short-term solutions are being developed to enhance a pilot's situational awareness by providing information in addition to his direct vision. The long term solutions are aimed at the development of complete synthetic vision systems. One of the important functions of the engineering workstation is to simulate the images that would be generated by the sensors. The simulation system is designed to use the graphics modeling and rendering capabilities of various workstations manufactured by Silicon Graphics Inc. The workstation simulates various aspects of the sensor-generated images arising from phenomenology of the sensors. In addition, the workstation can be used to simulate a variety of impairments due to mechanical limitations of the sensor placement and due to the motion of the airplane. Although the simulation is currently not performed in real-time, sequences of individual frames can be processed, stored, and recorded in a video format. In that way, it is possible to examine the appearance of different dynamic sensor-generated and fused images.

  6. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    NASA Astrophysics Data System (ADS)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  7. Numerical Analysis of Autoignition and Combustion of n-Butane and Air Mixture in Homogeneous-Charge Compression-Ignition Engine Using Elementary Reactions

    NASA Astrophysics Data System (ADS)

    Yamasaki, Yudai; Iida, Norimasa

    The present study focuses on clarifying the combustion mechanism of the homogeneous-charge compression-ignition (HCCI) engine in order to control ignition and combustion as well as to reduce HC and CO emissions and to maintain high combustion efficiency by calculating the chemical kinetics of elementary reactions. For the calculations, n-butane was selected as fuel since it is a fuel with the smallest carbon number in the alkane family that shows two-stage autoignition (heat release with low-temperature reaction (LTR) and with high-temperature reaction (HTR)) similarly to higher hydrocarbons such as gasoline. The CHEMKIN code was used for the calculations assuming zero dimensions in the combustion chamber and adiabatic change. The results reveal the heat release mechanism of the LTR and HTR, the control factor of ignition timing and combustion speed, and the condition need to reduce HC and CO emissions and to maintain high combustion efficiency.

  8. Fabrication and testing of an enhanced ignition system to reduce cold-start emissions in an ethanol (E85) light-duty truck engine

    SciTech Connect

    Gardiner, D; Mallory, R; Todesco, M

    1997-09-01

    This report describes an experimental investigation of the potential for an enhanced ignition system to lower the cold-start emissions of a light-duty vehicle engine using fuel ethanol (commonly referred to as E85). Plasma jet ignition and conventional inductive ignition were compared for a General Motors 4-cylinder, alcohol-compatible engine. Emission and combustion stability measurements were made over a range of air/fuel ratios and spark timing settings using a steady-state, cold-idle experimental technique in which the engine coolant was maintained at 25 C to simulate cold-running conditions. These tests were aimed at identifying the degree to which calibration strategies such as mixture enleanment and retarded spark timing could lower engine-out hydrocarbon emissions and raise exhaust temperatures, as well as determining how such calibration changes would affect the combustion stability of the engine (as quantified by the coefficient of variation, or COV, of indicated mean effective pressure calculated from successive cylinder pressure measurements). 44 refs., 39 figs.

  9. Performance and Emission Characteristics of a Compression Ignition Engine Operating on Blends of Castor Oil Biodiesel-Diesel

    NASA Astrophysics Data System (ADS)

    Kanwar, Roopesh; Sharma, Pushpendra Kumar; Singh, Aditya Narayan; Agrawal, Yadvendra Kumar

    2016-06-01

    Diesel vehicles are the nerves and veins of transportation, particularly in developing countries. With the rapid rate of modernization, increasing demand of fuel is inevitable. The exponential increase in fuel prices and the scarcity of its supply from the environment have promoted interest in the development of alternative sources of fuel. In this work, genus Ricinus communis L. was studied in order to delimit their potential as a raw material for biodiesel production. Further, castor oil, ethyl ester were prepared by transesterification using potassium hydroxide (KOH) as a catalyst and tested on a four-stroke, single-cylinder compression ignition engine. The test was carried out at a constant speed of 3000 rpm at different loads. The results represent a substantial decrease in carbon monoxide (CO) emission with an increasing biodiesel percentage. The reduction of CO in B05, B10, B15 and B20 averaged 11.75, 22.02, 24.23 and 28.79 %, respectively, compared to mineral diesel. The emission results of the comparative test indicated that CO, oxygen (O2) and smoke density emissions are found to be lower when the engine is filled with B05, B10, B15 and B20 as compared to mineral diesel, while carbon dioxide (CO2) and nitrogen oxide (NOx) with B05, B10, B15 and B20 are found to increase marginally. Brake thermal efficiency and brake specific fuel consumption decrease and increase respectively in biodiesel with different blends in comparison of mineral diesel.

  10. An analysis of a highly compounded two-stroke-cycle compression-ignition engine

    NASA Technical Reports Server (NTRS)

    Tauschek, Max J; Sather, Bernard I; Biermann, Arnold E

    1949-01-01

    Presents an analysis of a compound engine operating with manifold pressures ranging from 60 to 110 lb/sq in. absolute. The effects of engine limits (peak cylinder pressure and turbine-inlet temperature) and component efficiency are discussed. A range analysis is used to evaluate the merit of the engine. The analysis indicates that specific-fuel-consumption values of 0.32 lb/bhp-hr and specific weights of 0.8 lb/bhp are obtainable at high manifold pressures.

  11. Model study of DC ignition of fluorescent tubes

    NASA Astrophysics Data System (ADS)

    Brok, W. J. M.; Gendre, M. F.; van der Mullen, J. J. A. M.

    2007-01-01

    Breakdown in a discharge tube is investigated by means of a fluid model. The discharge tube is similar to a compact fluorescent lamp tube, containing argon at 3 Torr and mercury at a few millitorr. It was found that the minimum breakdown voltage is decreased substantially compared with a tube containing pure argon. Penning ionization of mercury via an argon metastable state plays an important role in this effect. This is illustrated for a lamp operated on a DC voltage, where significant Penning ionization takes place in the wake of the ionization front. Furthermore, contrary to what is suggested in earlier literature, the development of the surface potential of the lamp is shown to be not only determined by surface charges, but also by volume charges.

  12. Heavy-Duty Stoichiometric Compression Ignition Engine with Improved Fuel Economy over Alternative Technologies for Meeting 2010 On-Highway Emission

    SciTech Connect

    Kirby J. Baumgard; Richard E. Winsor

    2009-12-31

    The objectives of the reported work were: to apply the stoichiometric compression ignition (SCI) concept to a 9.0 liter diesel engine; to obtain engine-out NO{sub x} and PM exhaust emissions so that the engine can meet 2010 on-highway emission standards by applying a three-way catalyst for NO{sub x} control and a particulate filter for PM control; and to simulate an optimize the engine and air system to approach 50% thermal efficiency using variable valve actuation and electric turbo compounding. The work demonstrated that an advanced diesel engine can be operated at stoichiometric conditions with reasonable particulate and NOx emissions at full power and peak torque conditions; calculated that the SCI engine will operate at 42% brake thermal efficiency without advanced hardware, turbocompounding, or waste heat recovery; and determined that EGR is not necessary for this advanced concept engine, and this greatly simplifies the concept.

  13. Caterpillar 3406 spark-ignited natural-gas-engine emissions on EPA (Environmental Protection Agency) heavy-duty transient test cycle. Topical report, March-December 1988

    SciTech Connect

    Waldman, D.J.; Gladden, J.R.; Endicott, D.L.; Cull, B.A.

    1989-01-01

    The emissions of a lean-burn natural-gas-fueled 3406 spark-ignited engine were determined on the EPA transient emission cycle for heavy-duty vehicle engines. The engine was rated at 350 hp at 1800 rpm. The engine was a minimally modified generator-set engine developed under the same GRI contract and was not optimized for truck applications or transient emissions. Transient emissions in g/hp-hr were 4.1 NOx, 9.2 total hydrocarbons, 0.84 non-methane hydrocarbons, 3.2 CO, 0.42 aldehydes, and 0.60 particulates. Steady-state emissions were also measured. The results indicate lean-burn spark-ignited engine technology is a promising approach to meeting 1994 EPA truck-engine-emission standards. NOx and CO standards can be readily met. Hydrocarbon emissions exceed the standard in the engine as presently configured but are believed to be controllable by improved air/fuel ratio control, combustion-system modification and/or an oxidation catalyst. The particulates were primarily from the lubricating oil and should be controllable with piston ring and valve-seal improvements and/or an oxidation catalyst.

  14. Active flow control for maximizing performance of spark ignited stratified charge engines. Final report

    SciTech Connect

    Fedewa, Andrew; Stuecken, Tom; Timm, Edward; Schock, Harold J.; Shih, Tom-I.P.; Koochesfahani, Manooch; Brereton, Giles

    2002-10-15

    Reducing the cycle-to-cycle variability present in stratified-charge engines is an important step in the process of increasing their efficiency. As a result of this cycle-to-cycle variability, fuel injection systems are calibrated to inject more fuel than necessary, in an attempt to ensure that the engines fire on every cycle. When the cycle-to-cycle variability is lowered, the variation of work per cycle is reduced and the lean operating limit decreases, resulting in increased fuel economy. In this study an active flow control device is used to excite the intake flow of an engine at various frequencies. The goal of this excitation is to control the way in which vortices shed off of the intake valve, thus lowering the cycle-to-cycle variability in the flow field. This method of controlling flow is investigated through the use of three engines. The results of this study show that the active flow control device did help to lower the cycle-to-cycle variability of the in-cylinder flow field; however, the reduction did not translate directly into improved engine performance.

  15. Ignition calculations using a reduced coupled-mode electron- ion energy exchange model*

    NASA Astrophysics Data System (ADS)

    Garbett, W. J.; Chapman, D. A.

    2016-03-01

    Coupled-mode models for electron-ion energy exchange can predict large deviations from standard binary collision models in some regimes. A recently developed reduced coupled-mode model for electron-ion energy exchange, which accurately reproduces full numerical results over a wide range of density and temperature space, has been implemented in the Nym hydrocode and used to assess the impact on ICF capsule fuel assembly and performance. Simulations show a lack of sensitivity to the model, consistent with results from a range of simpler alternative models. Since the coupled-mode model is conceptually distinct to models based on binary collision theory, this result provides increased confidence that uncertainty in electron-ion energy exchange will not impact ignition attempts.

  16. Non-LTE modeling for the National Ignition Facility (and beyond)

    NASA Astrophysics Data System (ADS)

    Scott, H. A.; Hammel, B. A.; Hansen, S. B.

    2012-05-01

    Considerable progress has been made in the last year in the study of laser-driven inertial confinement fusion at the National Ignition Facility (NIF). Experiments have demonstrated symmetric capsule implosions with plasma conditions approaching those required for ignition. Improvements in computational models - in large part due to advances in non-LTE modeling - have resulted in simulations that match experimental results quite well for the X-ray drive, implosion symmetry and total wall emission [1]. Non-LTE modeling is a key part of the NIF simulation effort, affecting several aspects of experimental design and diagnostics. The X-rays that drive the capsule arise from high-Z material ablated off the hohlraum wall. Current capsule designs avoid excessive preheat from high-energy X-rays by shielding the fuel with a mid-Z dopant, which affects the capsule dynamics. The dopant also mixes into the hot spot through hydrodynamic instabilities, providing diagnostic possibilities but potentially impacting the energy balance of the capsule [2]. Looking beyond the NIF, a proposed design for a fusion reactor chamber depends on lowdensity high-Z gas absorbing X-rays and particles to protect the first wall [3]. These situations encompass a large range of temperatures, densities and spatial scales. They each emphasize different aspects of atomic physics and present a variety of challenges for non-LTE modeling. We discuss the relevant issues and summarize the current state of the modeling effort for these applications.

  17. Catalytic converter applications for two stroke, spark-ignited marine engines

    SciTech Connect

    Fujimoto, Hiroaki; Isogawa, Atsushi; Matsumoto, Naoto

    1995-12-31

    When catalytic converters are used for cleansing of exhaust gas from two-stroke marine engines, new issues must be brought up in combination with prior technology. Therefore, a study was made of V6, 2600cc engine having a large volume of hydrocarbon emissions with respect to three issues: (1) To what degree seawater effects catalytic converter performance and possible countermeasures; (2) Effects attained on cleansing level and catalyst temperature; (3) Finding abatement levels for catalyst deterioration and exhaust emission output in the marine mode. It was found that physical adsorption was a significant factor in catalytic degradation resulting from direct contact with seawater. The cleansing levels obtained when a marine engine is equipped with a catalyst converter were found by clarifying the extent of effects of catalyst volume, performance and temperature. The reduction obtained in exhaust emission allowing for a deterioration factor, is shown in a catalytic converter heated to the maximum temperature of 960 C.

  18. Studies on exhaust emissions of mahua oil operated compression ignition engine.

    PubMed

    Kapilan, N; Reddy, R P

    2009-07-01

    The world is confronted with fossil fuel depletion and environmental degradation. The energy demand and pollution problems lead to research for an alternative renewable energy sources. Vegetable oils and biodiesel present a very promising alternative fuel to diesel. In this work, an experimental work was carried out to study the feasibility of using raw mahua oil (MO) as a substitute for diesel in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas (LPG) was used as primary fuel and mahua oil was used as pilot fuel. The results show that the performance of the dual fuel engine at the injector opening pressure of 220 bar and the advanced injection timing of 30 degrees bTDC results in performance close to diesel base line (DBL) operation and lower smoke and oxides of nitrogen emission. PMID:21117439

  19. Application for certification 1982 model year heavy-duty diesel engines - Mercedes-Benz

    SciTech Connect

    Not Available

    1982-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing.

  20. Emissions and new technology programs for conventional spark-ignition aircraft engines

    NASA Technical Reports Server (NTRS)

    Wintucky, W. T.

    1976-01-01

    A long-range technology plan in support of general aviation engines was formulated and is being implemented at the Lewis Research Center. The overall program was described, and that part of the program that represents the in-house effort at Lewis was presented in detail. Three areas of government and industry effort involving conventional general-aviation piston engines were part of a coordinated overall plan: (1) FAA/NASA joint program, (2) NASA contract exhaust emissions pollution reduction program, and (3) NASA in-house emissions reduction and new technology program.

  1. A rapid compression machine investigation of oxidation and auto-ignition of n-heptane: Measurements and modeling

    SciTech Connect

    Minetti, R.; Carlier, M.; Ribaucour, M.; Therssen, E.; Sochet, L.R.

    1995-08-01

    n-Heptane oxidation and auto-ignition in a rapid compression machine is studied in the low and intermediate temperature regimes at high pressures. Experimental ignition delay times and some phenomenological aspects related to knock in engines are presented, providing additional information at lower temperatures on previously published delays from shock tube experiments. The products of oxidation are identified and time profiles are measured during a two-stage ignition process. Eight C{sub 7} heterocycles, heptenes, lower 1-alkenes, aldehydes, and carbon monoxide are the main species. Their origin is discussed in relation to the isomerization and decomposition of heptylperoxy radicals. The high selectivity observed in the formation of lower 1-alkenes is explained by the scission of the {beta} C-C bond of the {beta}-hydroperoxyheptyl radicals weakened by the presence of oxygen atoms. Numerical simulation of the experiments with Warnatz`a comprehensive chemical mechanism gives satisfactory results for cool flame and total ignition delays, but fails to reproduce the detailed chemistry before auto-ignition.

  2. Three-dimensional modeling of diesel engine intake flow, combustion and emissions

    NASA Technical Reports Server (NTRS)

    Reitz, R. D.; Rutland, C. J.

    1992-01-01

    A three-dimensional computer code (KIVA) is being modified to include state-of-the-art submodels for diesel engine flow and combustion: spray atomization, drop breakup/coalescence, multi-component fuel vaporization, spray/wall interaction, ignition and combustion, wall heat transfer, unburned HC and NOx formation, soot and radiation, and the intake flow process. Improved and/or new submodels which were completed are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Results to date show that adding the effects of unsteadiness and compressibility improves the accuracy of heat transfer predictions; spray drop rebound can occur from walls at low impingement velocities (e.g., in cold-starting); larger spray drops are formed at the nozzle due to the influence of vaporization on the atomization process; a laminar-and-turbulent characteristic time combustion model has the flexibility to match measured engine combustion data over a wide range of operating conditions; and finally, the characteristic time combustion model can also be extended to allow predictions of ignition. The accuracy of the predictions is being assessed by comparisons with available measurements. Additional supporting experiments are also described briefly. To date, comparisons with measured engine cylinder pressure and heat flux data were made for homogeneous charge, spark-ignited and compression-ignited engines. The model results are in good agreement with the experiments.

  3. 75 FR 47520 - Standards of Performance for Stationary Compression Ignition and Spark Ignition Internal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-06

    ... rulemaking published in the Federal Register on June 8, 2010 (75 FR 32612). That notice proposed revisions to... Compression Ignition and Spark Ignition Internal Combustion Engines AGENCY: Environmental Protection Agency... the standards of performance for stationary compression ignition and spark ignition...

  4. A High-Resolution Integrated Model of the National Ignition Campaign Cryogenic Layered Experiments

    SciTech Connect

    Jones, O. S.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Dixit, S. M.; Dopppner, T.; Dylla-Spears, R. J.; Dzentitis, E. G.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Haan, S. W.; Haid, B. J.; Haynam, C. A.; Hicks, D. G.; Kozioziemski, B. J.; LaFortune, K. N.; Landen, O. L.; Mapoles, E. R.; MacKinnon, A. J.; McNaney, J. M.; Meezan, N. B.; Michel, P. A.; Moody, J. D.; Moran, M. J.; Munro, D. H.; Patel, M. V.; Parham, T. G.; Sater, J. D.; Sepke, S. M.; Spears, B. K.; Town, R. J.; Weber, S. V.; Widmann, K.; Widmayer, C. C.; Williams, E. A.; Atherton, L. J.; Edwards, M. J.; Lindl, J. D.; MacGowan, B. J.; Suter, L. J.; Olson, R. E.; Herrmann, H. W.; Kline, J. L.; Kyrala, G. A.; Wilson, D. C.; Frenje, J.; Boehly, T. R.; Glebov, V.; Knauer, J. P.; Nikroo, A.; Wilkens, H.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Callahan, D. A.; Caggiano, J. A.; Celliers, P. M.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Springer, P. T.; Kilkenny, J. D.

    2012-05-29

    A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-40% of the calculated yields.

  5. A High-Resolution Integrated Model of the National Ignition Campaign Cryogenic Layered Experiments

    DOE PAGESBeta

    Jones, O. S.; Callahan, D. A.; Cerjan, C. J.; Clark, D. S.; Dixit, S. M.; Dopppner, T.; Dylla-Spears, R. J.; Dzentitis, E. G.; Farley, D. R.; Glenn, S. M.; et al

    2012-05-29

    A detailed simulation-based model of the June 2011 National Ignition Campaign (NIC) cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60.more » Simulated experimental values were extracted from the simulation and compared against the experiment. The model adjustments brought much of the simulated data into closer agreement with the experiment, with the notable exception of the measured yields, which were 15-40% of the calculated yields.« less

  6. Investigation of a Spark Ignition Internal Combustion Engine via IR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakai, Stephen; White, Allen R.; Gross, Kevin; Devasher, Rebecca B.

    2010-06-01

    Previous work has shown that the automotive fuel components of isopropanoland ethanol can be excited by a 10.2 um and 9.3 um CO2 lasers, respectively. Through the use of a monochromator and an indium antimonide detector, the decay time of the excited molecules was measured and found to be significantly long enough to allow for the possibility of experimentation in an internal combustion (IC) engine. In order to pursue In Situ measurements in an internal combustion engine, a MegaTech Mark III transparent engine was modified with a sapphire combustion chamber. This modification will allow the transmission of infrared radiation for time-resolved spectroscopic measurements by an infrared spectrometer. By using a Telops FIRST-MWE imaging Fourier transform spectrometer, temporally and spatially resolved infrared spectral data can be acquired and compared for combustion in the engine both with and without laser excitation. Measurements performed with system provide insight into the energy transfer vectors that precede combustion as well as provide an in situ measurement of the progress of combustion.

  7. General Thermodynamic Heat Engine Models

    NASA Astrophysics Data System (ADS)

    Nuwayhid, R. Y.; Moukalled, F.; Denton, J. C.

    2002-11-01

    Heat engine models, starting from the most fundamental Carnot case, are analyzed. Two major methods of viewing the power plant as a thermodynamic heat engine are presented and studied. Realistic models are sought by introducing internal heat transport or bypass heat leak treatments. Simple treatments are presented to convey the general modeling ideas without unnecessary complications. Some new results are obtained and certain old results are commented on.

  8. Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy.

    PubMed

    Weikl, Markus C; Beyrau, Frank; Leipertz, Alfred

    2006-05-20

    Pure rotational coherent anti-Stokes Raman spectroscopy was used for the simultaneous determination of temperature and exhaust-gas recirculation in a homogeneous charge-compression ignition engine. Measurements were performed in a production-line four-cylinder gasoline engine operated with standard gasoline fuel through small optical line-of-sight accesses. The homogenization process of fresh intake air with recirculated exhaust gas was observed during the compression stroke, and the effect of charge temperature on combustion timing is shown. Single-pulse coherent anti-Stokes Raman spectroscopy spectra could not only be taken in the compression stroke but also during the gas-exchange cycle and after combustion. Consequently, the used method has been shown to be suitable for the investigation of two of the key parameters for self-ignition, namely temperature and charge composition. PMID:16708111

  9. Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

    SciTech Connect

    Matthias, Nick; Farron, Carrie; Foster, David E.; Andrie, Mike; Krieger, Roger; Najt, Paul; Narayanaswamy, Kushal; Solomon, Arun; Zelenyuk, Alla

    2012-01-01

    More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs) from an aerosol sample. One method is a Dekati Thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample handling methods have been implemented for this project in an engine test cell built around a direct injection spark ignited (DISI) engine. The engine was designed for stoichiometric, homogeneous combustion. Direct injection is of particular interest for improved fuel efficiency but this comes with the production of a significant amount of (PM) and may therefore be subject to the proposed number based regulation. Another aspect of this project is to characterize PM from this engine in terms of particle number and composition. The first interesting observation is that PM number distributions, acquired using a TSI SMPS, have a large accumulation mode (30-294 nm) but a very small nuclei mode (8-30 nm). This is understood to represent a lack of condensation particles meaning that neither the exhaust conditions nor the sample handling conditions are conducive to condensation. This lack of nuclei mode does not, however, represent a lack of VOCs in the sample. It has been observed, using mass spectral analysis (limited to PM>50 nm), that PM from the DISI engine has approximately 40% organic content through varying operating conditions. This begs the question of how effective different sample handling methods are at removing these VOCs. For one specific operating condition, called Cold Start, the un-treated PM was 40% organic. The TD

  10. Application of a four-step HMX kinetic model to an impact-induced fraction ignition problems

    SciTech Connect

    Perry, William L; Gunderson, Jake A; Dickson, Peter M

    2010-01-01

    There has been a long history of interest in the decomposition kinetics of HMX and HMX-based formulations due to the widespread use of this explosive in high performance systems. The kinetics allow us to predict, or attempt to predict, the behavior of the explosive when subjected to thermal hazard scenarios that lead to ignition via impact, spark, friction or external heat. The latter, commonly referred to as 'cook off', has been widely studied and contemporary kinetic and transport models accurately predict time and location of ignition for simple geometries. However, there has been relatively little attention given to the problem of localized ignition that results from the first three ignition sources of impact, spark and friction. The use of a zero-order single-rate expression describing the exothermic decomposition of explosives dates to the early work of Frank-Kamanetskii in the late 1930s and continued through the 60's and 70's. This expression provides very general qualitative insight, but cannot provide accurate spatial or timing details of slow cook off ignition. In the 70s, Catalano, et al., noted that single step kinetics would not accurately predict time to ignition in the one-dimensional time to explosion apparatus (ODTX). In the early 80s, Tarver and McGuire published their well-known three step kinetic expression that included an endothermic decomposition step. This scheme significantly improved the accuracy of ignition time prediction for the ODTX. However, the Tarver/McGuire model could not produce the internal temperature profiles observed in the small-scale radial experiments nor could it accurately predict the location of ignition. Those factors are suspected to significantly affect the post-ignition behavior and better models were needed. Brill, et al. noted that the enthalpy change due to the beta-delta crystal phase transition was similar to the assumed endothermic decomposition step in the Tarver/McGuire model. Henson, et al., deduced the

  11. THREE-DIMENSIONAL IGNITION AND GROWTH REACTIVE FLOW MODELING OF PRISM FAILURE TESTS ON PBX 9502

    SciTech Connect

    Garcia, M L; Tarver, C M

    2006-06-20

    The Ignition and Growth reactive flow model for shock initiation and detonation of solid explosives based on triaminotirnitrobenzene (TATB) is applied to three-dimensional detonation wave propagation. The most comprehensive set of three-dimensional detonation wave propagation data is that measured using the trapezoidal prism test. In this test, a PBX 9501 (95% HMX, 2.5% Estane, and 2.5% BDNPA/F) line detonator initiates a detonation wave along the trapezoidal face of a PBX 9502 (95% TATB and 5% Kel-F binder) prism. The failure thickness, which has been shown experimentally to be roughly half of the failure diameter of a long cylindrical charge, is measured after 50 mm of detonation wave propagation by impact with an aluminum witness plate. The effects of confinement impedance on the PBX 9502 failure thickness have been measured using air (unconfined), water, PMMA, magnesium, aluminum, lead, and copper placed in contact with the rectangular faces of the prism parallel to the direction of detonation propagation. These prism test results are modeled using the two-dimensional PBX 9502 Ignition and Growth model parameters determined by calculating failure diameter and tested on recent corner turning experiments. Good agreement between experimentally measured and calculated prism failure thicknesses for unconfined and confined PBX 9502 is reported.

  12. Shock tube ignition of ethanol, isobutene and MTBE: Experiments and modeling

    SciTech Connect

    Curran, H.J.; Dunphy, M.P.; Simmie, J.M. . Dept. of Chemistry); Westbrook, C.K.; Pitz, W.J. )

    1991-11-22

    The ignition of ethanol, isobutene and methyl tert-butyl ether (MTBE) has been studied experimentally in a shock tube and computationally with a detailed chemical kinetic model. Experimental results, consisting of ignition delay measurements, were obtained for a range of fuel/oxygen mixtures diluted in Argon, with temperatures varying over a range of 1100--1900 K. The numerical model consisted of a detailed kinetic reaction mechanism with more than 400 elementary reactions, chosen to describe reactions of each fuel and the smaller hydrocarbon and other species produced during their oxidation. The overall agreement between experimental and computed results was excellent, particularly for mixtures with greater than 0.3% fuel. The greatest sensitivity in the computed results was found to falloff parameters in the dissociation reactions of isobutene, ethane, methane, and ethyl and vinyl radicals, to the C{sub 3}H{sub 4} and C{sub 3}H{sub 5} reaction submechanisms in the model, and to the reactions in the H{sub 2}-O{sub 2}-Co submechanism.

  13. Fractal approach to the evaluation of burning rates in the vicinity of the piston in a spark-ignition engine

    SciTech Connect

    Foucher, F.; Mounaim-Rousselle, C.

    2005-11-01

    The burning rate in the vicinity of a piston is estimated from a fractal analysis. The fractal parameters are determined from laser sheet tomography flame images for methane-air mixtures with three equivalence ratios (1, 0.9, 0.8) in a transparent spark-ignition engine. Two imaging configurations were used: five horizontal planes placed at different distances from the piston (0, 1, 2, 3, and 5 mm) and a vertical one passed through the center of the combustion chamber. The methodology proposed by Foucher et al. [F. Foucher, S. Burnel, C. Mounaim-Rousselle, Proc. Combust. Inst. 29 (2002) 751-757] allows the effect of cyclic variations to be avoided. The fractal formulation is modified to take into account the flame-piston distance and flame quenching. Far from the piston, evolution of the fractal dimension versus q{sup '}/S{sub L}{sup 0} is found to be in good agreement with literature results. Near the piston, the fractal dimension evolves significantly when the distance is about twice the integral length scale and tends toward 2, the fractal dimension of a laminar flame front. The quenching ratio parameter Q{sub R} is introduced to consider the quenching of the flame by the piston. Finally, the burning rate is determined as a function of the distance between the wall and the mean flame contour and compared to a flame density approach, and similar results are found.

  14. Workshop on Engineering Turbulence Modeling

    SciTech Connect

    Povinelli, L.A.; Liou, W.W.; Shabbir, A.; Shih, T.H.

    1992-03-01

    Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.

  15. Workshop on Engineering Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)

    1992-01-01

    Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.

  16. Knock-limited performance of ethanol blends in a spark-ignition engine

    SciTech Connect

    Ferfecki, F.J.; Sorenson, S.C.

    1981-01-01

    An experimental study was performed to determine the effect of varying percentages of ethanol in fuel using a CFR engine operated at knock-limited compression ratio and maximum power spark timing. Blends of 85 octane primary reference fuel and ethanol in concentrations between 10 and 25% by volume were tested for performance, fuel economy, and exhaust emissions. The results indicated that when the engine was operated at knock-limited conditions at a constant equivalence ratio, the use of ethanol resulted in a reduction in petroleum fuel usage of 10% greater than the volumetric percentage of the ethanol used in the blend. These results were independent of the amount of ethanol used in the blend. Under these conditions, as the ethanol concentration was increased, BMEP and BSHC increased, BSNO and BSCO remained essentially constant, and exhaust temperature decreased.

  17. Combustion parameters of spark ignition engine using waste potato bioethanol and gasoline blended fuels

    NASA Astrophysics Data System (ADS)

    Ghobadian, B.; Najafi, G.; Abasian, M.; Mamat, R.

    2015-12-01

    The purpose of this study is to investigate the combustion parameters of a SI engine operating on bioethanol-gasoline blends (E0-E20: 20% bioethanol and 80% gasoline by volume). A reactor was designed, fabricated and evaluated for bioethanol production from potato wastes. The results showed that increasing the bioethanol content in the blend fuel will decrease the heating value of the blended fuel and increase the octane number. Combustion parameters were evaluated and analyzed at different engine speeds and loads (1000-5000 rpm). The results revealed that using bioethanol-gasoline blended fuels will increase the cylinder pressure and its 1st and 2nd derivatives (P(θ), P•(θ) and P••(θ)). Moreover, using bioethanol- gasoline blends will increase the heat release (Q•(θ)) and worked of the cycle. This improvement was due to the high oxygen percentage in the ethanol.

  18. Flame imaging studies in a spark-ignition four-stroke internal combustion optical engine

    SciTech Connect

    Bates, S.C.

    1989-01-01

    In this paper the behavior of combustion in a realistic SI Four-Stroke engine with a transparent liner and piston top is studied using stereo gated image-intensified NTSC video cameras to record instantaneous flame position. Flame development is measured by double exposing each frame at different crank angles in a single cycle. The images are digitized and analysed with a PC-based image processing system. A complete cylinder pressure history of the propane fuelled combustion is combined with the flame images to study each cycle at different equivalence ratios, concentrating on lean combustion. Cycle-by-cycle variation is explored at 500 rpm, and a generic lean-limit combustion oscillation caused by changing residual gas is described and explained. The effect of engine swirl on the flame is shown.

  19. Experimental Study of Ignition by Hot Spot in Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Serruys, Max

    1938-01-01

    In order to carry out the contemplated study, it was first necessary to provide hot spots in the combustion chamber, which could be measured and whose temperature could be changed. It seemed difficult to realize both conditions working solely on the temperature of the cooling water in a way so as to produce hot spots on the cylinder wall capable of provoking autoignition. Moreover, in the majority of practical cases, autoignition is produced by the spark plug, one of the least cooled parts in the engine. The first procedure therefore did not resemble that which most generally occurs in actual engine operation. All of these considerations caused us to reproduce similar hot spots at the spark plugs. The hot spots produced were of two kinds and designated with the name of thermo-electric spark plug and of metallic hot spot.

  20. Performance of a Fuel-Injection Spark-Ignition Engine Using a Hydrogenated Safety Fuel

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1934-01-01

    This report presents the performance of a single-cylinder test engine using a hydrogenated safety fuel. The safety fuel has a flash point of 125 degrees f. (Cleveland open-dup method), which is high enough to remove most of the fire hazard, and an octane number of 95, which permits higher compression ratios to be used than are permissible with most undoped gasolines.

  1. Combustion characteristics of a turbocharged DI compression ignition engine fueled with petroleum diesel fuels and biodiesel.

    PubMed

    Canakci, Mustafa

    2007-04-01

    In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The tests were performed at steady state conditions in a four-cylinder turbocharged DI diesel engine at full load at 1400-rpm engine speed. The experimental results compared with No. 2 diesel fuel showed that biodiesel provided significant reductions in PM, CO, and unburned HC, the NO(x) increased by 11.2%. Biodiesel had a 13.8% increase in brake-specific fuel consumption due to its lower heating value. However, using No. 1 diesel fuel gave better emission results, NO(x) and brake-specific fuel consumption reduced by 16.1% and 1.2%, respectively. The values of the principal combustion characteristics of the biodiesel were obtained between two petroleum diesel fuels. The results indicated that biodiesel may be blended with No. 1 diesel fuel to be used without any modification on the engine. PMID:16822672

  2. Hypersonic research engine project. Phase 2: Aerothermodynamic Integration Model (AIM) test report

    NASA Technical Reports Server (NTRS)

    Andersen, W. L.; Kado, L.

    1975-01-01

    The Hypersonic Research Engine-Aerothermodynamic Integration Model (HRE-AIM) was designed, fabricated, and tested in the Hypersonic Tunnel Facility. The HRE-AIM is described along with its installation in the wind tunnel facility. Test conditions to which the HRE-AIM was subjected and observations made during the tests are discussed. The overall engine performance, component interaction, and ignition limits for the design are evaluated.

  3. Modeling pollution formation in diesel engines

    SciTech Connect

    Brown, N.

    1997-12-31

    Modeling combustion under conditions that prevail in Diesel engine presents a great challenge. Lawrence Berkeley National Laboratory has invested Laboratory Directed Research and Development Funds to accelerate progress in this area. Research has been concerned with building a chemical mechanism to interface with a high fidelity fluid code to describe aspects of Diesel combustion. The complexity of these models requires implementation on massively parallel machines. The author will describe his efforts concerned with building such a complex mechanism. He begins with C and CO{sub 2} chemistry and adds sequentially higher hydrocarbon chemistry, aromatic production chemistry, soot chemistry, and chemistry describing NO{sub x} production. The metrics against which this chemistry is evaluated are flame velocities, induction times, ignition delay times, flammability limits, flame structure measurements, and light scattering. He assembles a set of elementary reactions, kinetic rate coefficients, and thermochemistry. He modifies existing Sandia codes to be able to investigate the behavior of the mechanism in well-stirred reactors, plug flow reactors, and one-dimensional flames. The modified combustion code with a chemical mechanism at the appropriate level of complexity is then interfaced with the high fidelity fluids code. The fluids code is distinguished by its ability to solve the requisite partial differential equations with adaptively refined grids necessary to describe the strong variation in spatial scales in combustion.

  4. Shock Initiation Experiments with Ignition and Growth Modeling on Low Density Composition B

    NASA Astrophysics Data System (ADS)

    Vandersall, Kevin S.; Garcia, Frank; Tarver, Craig M.

    2015-06-01

    Shock initiation experiments on low density (~1.2 and ~1.5 g/cm3) Composition B were performed to obtain in-situ pressure gauge data, characterize the run-distance-to-detonation behavior, and provide a basis for Ignition and Growth reactive flow modeling. A 101 mm diameter gas gun was utilized to initiate the explosive charges with manganin piezoresistive pressure gauge packages placed between packed layers (~1.2 g/cm3) confined in Teflon rings or sample disks pressed to low density (~1.5 g/cm3) . The shock sensitivity was found to increase with decreasing density as expected. Ignition and Growth model parameters were derived that yielded reasonable agreement with the experimental data at both initial densities. The shock sensitivity at the tested densities will be compared to prior work published as near full density material. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded in part by the Joint DoD-DOE Munitions Program.

  5. Considerations of Air Flow in Combustion Chambers of High-Speed Compression-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1932-01-01

    The air flow in combustion chambers is divided into three fundamental classes - induced, forced, and residual. A generalized resume is given of the present status of air flow investigations and of the work done at this and other laboratories to determine the direction and velocity of air movement in auxiliary and integral combustion chambers. The effects of air flow on engine performance are mentioned to show that although air flow improves the combustion efficiency, considerable induction, friction, and thermal losses must be guarded against.

  6. Advanced aircraft ignition CRADA final report

    SciTech Connect

    Early, J.W.

    1997-03-01

    Conventional commercial and military turbo-jet aircraft engines use capacitive discharge ignition systems to initiate fuel combustion. The fuel-rich conditions required to ensure engine re-ignition during flight yield less than optimal engine performance, which in turn reduces fuel economy and generates considerable pollution in the exhaust. Los Alamos investigated two approaches to advanced ignition: laser based and microwave based. The laser based approach is fuel ignition via laser-spark breakdown and via photo-dissociation of fuel hydrocarbons and oxygen. The microwave approach involves modeling, and if necessary redesigning, a combustor shape to form a low-Q microwave cavity, which will ensure microwave breakdown of the air/fuel mixture just ahead of the nozzle with or without a catalyst coating. This approach will also conduct radio-frequency (RF) heating of ceramic elements that have large loss tangents. Replacing conventional systems with either of these two new systems should yield combustion in leaner jet fuel/air mixtures. As a result, the aircraft would operate with (1) considerable less exhaust pollution, (2) lower engine maintenance, and (3) significantly higher fuel economy.

  7. Technology Development of a Fiber Optic-Coupled Laser Ignition System for Multi-Combustor Rocket Engines

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew E.; Bossard, John A.

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). The first two years of the project focus on comprehensive assessments and evaluations of a novel dual-pulse laser concept, flight- qualified laser system, and the technology required to integrate the laser ignition system to a rocket chamber. With collaborations of the Department of Energy/Los Alamos National Laboratory (LANL) and CFD Research Corporation (CFDRC), MSFC has conducted 26 hot fire ignition tests with lab-scale laser systems. These tests demonstrate the concept feasibility of dual-pulse laser ignition to initiate gaseous oxygen (GOX)/liquid kerosene (RP-1) combustion in a rocket chamber. Presently, a fiber optic- coupled miniaturized laser ignition prototype is being implemented at the rocket chamber test rig for future testing. Future work is guided by a technology road map that outlines the work required for maturing a laser ignition system. This road map defines activities for the next six years, with the goal of developing a flight-ready laser ignition system.

  8. Conversion of a micro, glow-ignition, two-stroke engine from nitromethane-methanol blend fuel to military jet propellant (JP-8)

    NASA Astrophysics Data System (ADS)

    Wiegand, Andrew L.

    The goal of the thesis "Conversion of a Micro, Glow-Ignition, Two-Stroke Engine from Nitromethane-Methanol Blend Fuel to Military Jet Propellant (JP-8)" was to demonstrate the ability to operate a small engine on JP-8 and was completed in two phases. The first phase included choosing, developing a test stand for, and baseline testing a nitromethane-methanol-fueled engine. The chosen engine was an 11.5 cc, glow-ignition, two-stroke engine designed for remote-controlled helicopters. A micro engine test stand was developed to load and motor the engine. Instrumentation specific to the low flow rates and high speeds of the micro engine was developed and used to document engine behavior. The second phase included converting the engine to operate on JP-8, completing JP-8-fueled steady-state testing, and comparing the performance of the JP-8-fueled engine to the nitromethane-methanol-fueled engine. The conversion was accomplished through a novel crankcase heating method; by heating the crankcase for an extended period of time, a flammable fuel-air mixture was generated in the crankcase scavenged engine, which greatly improved starting times. To aid in starting and steady-state operation, yttrium-zirconia impregnated resin (i.e. ceramic coating) was applied to the combustion surfaces. This also improved the starting times of the JP-8-fueled engine and ultimately allowed for a 34-second starting time. Finally, the steady-state data from both the nitromethane-methanol and JP-8-fueled micro engine were compared. The JP-8-fueled engine showed signs of increased engine friction while having higher indicated fuel conversion efficiency and a higher overall system efficiency. The minimal ability of JP-8 to cool the engine via evaporative effects, however, created the necessity of increased cooling air flow. The conclusion reached was that JP-8-fueled micro engines could be viable in application, but not without additional research being conducted on combustion phenomenon and

  9. Pulse Detonation Engine Modeled

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2001-01-01

    Pulse Detonation Engine Technology is currently being investigated at Glenn for both airbreathing and rocket propulsion applications. The potential for both mechanical simplicity and high efficiency due to the inherent near-constant-volume combustion process, may make Pulse Detonation Engines (PDE's) well suited for a number of mission profiles. Assessment of PDE cycles requires a simulation capability that is both fast and accurate. It should capture the essential physics of the system, yet run at speeds that allow parametric analysis. A quasi-one-dimensional, computational-fluid-dynamics-based simulation has been developed that may meet these requirements. The Euler equations of mass, momentum, and energy have been used along with a single reactive species transport equation, and submodels to account for dominant loss mechanisms (e.g., viscous losses, heat transfer, and valving) to successfully simulate PDE cycles. A high-resolution numerical integration scheme was chosen to capture the discontinuities associated with detonation, and robust boundary condition procedures were incorporated to accommodate flow reversals that may arise during a given cycle. The accompanying graphs compare experimentally measured and computed performance over a range of operating conditions for a particular PDE. Experimental data were supplied by Fred Schauer and Jeff Stutrud from the Air Force Research Laboratory at Wright-Patterson AFB and by Royce Bradley from Innovative Scientific Solutions, Inc. The left graph shows thrust and specific impulse, Isp, as functions of equivalence ratio for a PDE cycle in which the tube is completely filled with a detonable hydrogen/air mixture. The right graph shows thrust and specific impulse as functions of the fraction of the tube that is filled with a stoichiometric mixture of hydrogen and air. For both figures, the operating frequency was 16 Hz. The agreement between measured and computed values is quite good, both in terms of trend and

  10. Practical Possibilities of High-Altitude Flight with Exhaust-Gas Turbines in Connection with Spark Ignition Engines Comparative Thermodynamic and Flight Mechanical Investigations

    NASA Technical Reports Server (NTRS)

    Weise, A.

    1947-01-01

    As a means of preparing for high-altitude flight with spark-ignition engines in conjunction with exhaust-gas turbosuperchargers, various methods of modifying the exhaust-gas temperatures, which are initially higher than a turbine can withstand are mathematically compared. The thermodynamic results first obtained are then examined with respect to the effect on flight speed, climbing speed, ceiling, economy, and cruising range. The results are so presented in a generalized form that they may be applied to every appropriate type of aircraft design and a comparison with the supercharged engine without exhaust-gas turbine can be made.

  11. Ignition of Aluminum Particles and Clouds

    SciTech Connect

    Kuhl, A L; Boiko, V M

    2010-04-07

    Here we review experimental data and models of the ignition of aluminum (Al) particles and clouds in explosion fields. The review considers: (i) ignition temperatures measured for single Al particles in torch experiments; (ii) thermal explosion models of the ignition of single Al particles; and (iii) the unsteady ignition Al particles clouds in reflected shock environments. These are used to develop an empirical ignition model appropriate for numerical simulations of Al particle combustion in shock dispersed fuel explosions.

  12. A study of combustion of hydrogen-enriched gasoline in a spark ignition engine

    SciTech Connect

    Apostolescu, N.; Chiriac, R.

    1996-09-01

    An investigation has been done on the influence of small amounts of hydrogen added to hydrocarbons-air mixtures on combustion characteristics. The effect of hydrogen addition to a hydrocarbon-air mixture was firstly approached in an experimental bomb, to measure the laminar burning velocity and the shift of lean flammability limit. Experiments carried out with a single-cylinder four stroke SI engine confirmed the possibility of expanding the combustion stability limit, which correlates well with the general trend of enhancing the rate of combustion. An increase of brake thermal efficiency has been obtained with a reduction of HC emissions; the NO{sub x} emissions were higher, except for very lean mixtures.

  13. Status on Technology Development of Optic Fiber-Coupled Laser Ignition System for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin; Thomas, Matthew; Bossard, John

    2003-01-01

    To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for liquid rocket engine applications. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concept: not only offer system simplicity, but also enhance the combustion performance. Test results have shown that chamber performance is markedly high even at a low chamber length-to-diameter ratio. This incentive can be translated to a convenience in the thrust chamber packaging.

  14. Short Shock Pulse Duration Experiments Plus Ignition and Growth Modeling on Composition B

    NASA Astrophysics Data System (ADS)

    May, Chadd; Tarver, Craig

    2013-06-01

    Short pulse duration shock initiation experiments were performed on 1.71 g/cm3 Composition B using electrically driven kapton flyer plates. Critical impact velocities for initiation at several flyer plate thicknesses and diameters were determined. For 2 mm diameter flyers, the critical velocities for shock initiation ranged from 4.06 to 4.72 km/s for flyer thicknesses ranging from 127 to 50.8 microns. Since the failure diameter of Composition B is approximately 4 mm, the kapton flyers imparted sufficient energy to overcome the effects of both rear and size rarefaction wave energy loses and cause detonation. The Ignition and Growth reactive flow model parameters for Composition B were modified to include unreacted Hugoniot, detonation reaction zone, and overdriven detonation experimental data and then applied to the kapton flyer data with good results. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.: Explosive, Composition B, shock to detonation transition, Ignition and Growth: 82.33.Vx, 82.40.Fp.

  15. SHOCK INITIATION EXPERIMENTS PLUS IGNITION AND GROWTH MODELING OF DAMAGED LX-04 CHARGES

    SciTech Connect

    Chidester, S K; Garcia, F; Vandersall, K S; Tarver, C M

    2009-06-23

    Shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX and 15% Viton by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. The LX-04 charges were damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermal damaged LX-04 charges were heated to 190 C for a long enough time for the beta to delta phase transition to occur and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while the thermally damaged LX-04 was much more shock sensitive. The pristine LX-04 Ignition and Growth model, modified only by igniting a larger amount of explosive during shock compression based on the damaged charge density, accurately calculated the increased shock sensitivity of the three damaged charges.

  16. Modeling laser ignition of explosives and pyrotechnics: Effects and characterization of radiative transfer

    SciTech Connect

    Skocypec, R.D.; Mahoney, A.R.; Glass, M.W.; Jungst, R.G.; Evans, N.A.; Erickson, K.L.

    1990-01-01

    The ignition of explosives and pyrotechnics using commercial diode lasers has been demonstrated and is of interest as a potential replacement for hot-wire ignition. Initial laser diode ignitor (LDI) test results using the detonation-to-deflagration transition(DDT) explosive CP (2-(5-cyanotetrazolato) pentaamminecobalt (III) perchlorate, C{sub 2}H{sub 15}N{sub 10}Co--Cl{sub 2}O{sub 8}) doped with carbon black and graphite have reinforced the need for a better understanding of the interaction of the radiant energy transfer within the pressed material. The present work is directed toward developing a model to predict the transfer of laser energy in the pressed particulate charges. It is shown here that scattering can have a major effect on the volumetric absorption of laser energy, significantly affecting the thermal response of the granular energetic material. This paper describes an effort to characterize the radiative properties of compacted granular beds of CP and CP doped with carbon black or graphite that were prepared using normal pressing techniques. Current estimates of the radiative properties are presented and indicate dramatic in absorption for CP when even a minute amount of carbon black or graphite is added. Initial data indicate pressed, undoped CP scatters radiative energy significantly. The radiative properties are dependent upon both wavelength and packing density; the less-densely packed samples exhibit more scattering. Doped samples exhibit essentially wavelength-independent characteristics. 14 refs., 7 figs., 1 tab.

  17. Ignition Quality Tester (IQT): An Alternative for Characterizing the Combustion Kinetics of Low Volatility Fuels

    SciTech Connect

    Osecky, E.; Bogin, G.; Ratcliff, M.; Luecke, J.; Chen, J. Y.; Zigler, B. T.

    2013-01-01

    The Ignition Quality Tester (IQT) is a constant volume spray combustion system that can be heated and pressurized to conditions that are similar to a diesel engine at top dead center. With no moving parts and the ability to handle low volatility fuels, the IQT can be a bridge between engines and traditional methods for studying chemical kinetics. By comparing experimental data with model predictions, the IQT has been used to validate skeletal kinetic models of ignition. CFD modeling of the IQT using KIVA-3V was used to predict ignition of n-heptane accurately. Operating the IQT in a regime where chemical kinetics dominates (long ignition delays) allowed NTC behavior to be observed for some isomers of heptane. Experimental results with the low volatility fuel heptamethylnonane also show NTC behavior. At long ignition delays, experimental results can be compared with 0-D detailed chemical mechanisms.

  18. Ignition of CO/H{sub 2}/N{sub 2} versus heated air in counterflow: Experimental and modeling results

    SciTech Connect

    Fotache, C.G.; Tan, Y.; Sung, C.J.; Law, C.K.

    2000-03-01

    Nonpremixed ignition in counterflowing CO/H{sub 2} vs. heated air jets is experimentally and computationally investigated. The experiments confirm the numerical modeling observation of the existence of three ignition regimes as a function of the hydrogen concentration. In all three regimes, the authors first detect experimentally the onset of chemiluminescent glow due to excited CO{sub 2} followed by flame ignition, as the temperature of the air jet is raised gradually. The temperature extent of the glow regime, however, is progressively reduced with increasing hydrogen addition; no glow is detected for H{sub 2} concentrations in excess of {approximately}73%. The temperatures for glow onset and flame ignition are represented by the boundary air temperatures for each threshold. The variation of these temperatures with system pressure and flow strain rate is explored, for pressures between 0.16 and 5 atm, and strain rates of 100 to 600 s{sup {minus}1}. The pressure variation is found to result in three p-T ignition limits, similar to the ignition limits observed in the H{sub 2}/O{sub 2} system. This similarity is also observed on the effects of aerodynamic transport on ignition: within the second limit the ignition temperatures are found to be essentially insensitive to flow strain rate, whereas the other two limits are significantly affected by strain. The transport insensitivity is maintained even in the limit of very low H{sub 2} concentrations, where an analogous H{sub 2}N{sub 2} mixture would fail to ignite. This behavior is explained computationally by the replacement of the shift reaction OH + H{sub 2} {yields} H{sub 2}O + H with the reaction CO + OH {yields} CO{sub 2} + H, thereby minimizing the effect of diminishing H{sub 2} concentration. The experimental data are found to agree well with the calculated results, although discrepancies are noted in modeling the onset of chemiluminescence and its response to pressure variations.

  19. Parallel processor engine model program

    NASA Technical Reports Server (NTRS)

    Mclaughlin, P.

    1984-01-01

    The Parallel Processor Engine Model Program is a generalized engineering tool intended to aid in the design of parallel processing real-time simulations of turbofan engines. It is written in the FORTRAN programming language and executes as a subset of the SOAPP simulation system. Input/output and execution control are provided by SOAPP; however, the analysis, emulation and simulation functions are completely self-contained. A framework in which a wide variety of parallel processing architectures could be evaluated and tools with which the parallel implementation of a real-time simulation technique could be assessed are provided.

  20. Particle-In-Cell modeling of Fast Ignition experiments on the Titan Laser

    NASA Astrophysics Data System (ADS)

    Link, Anthony; Akli, K. U.; Beg, F.; Chen, C. D.; Davies, J. R.; Freeman, R. R.; Kemp, G. E.; Li, K.; McLean, H. S.; Morace, A.; Patel, P. K.; Schumacher, D. W.; Sorokovikova, A. V.; Stephens, R.; Streeter, M. J. V.; Wertepny, D.; Westhover, B.

    2012-10-01

    We report on particle-in-cell-modeling (PIC) of fast ignition experiments conducted on the Titan laser. The Titan laser was used to irradiate multilayer planar targets at intensities greater than 10^20 Wcm-2 to diagnose the laser to electron coupling, electron beam divergence, and energy spectrum of the hot electrons at relativistic intensities. Hot electron beam properties were inferred through buried fluors, escaping electrons and bremsstrahlung measurements. The PIC simulations of the experiment were conducted in two stages: a high resolution laser plasma interaction (LPI) simulation using measured on shot laser parameters but with a subscale target; and a lower resolution transport simulation containing the full scale multilayer target. The transport simulation utilized the electron source based on the output of the LPI simulation and included necessary models to simulate the experimental diagnostics. Comparison of the predicted electron source properties and the experimental data will be presented.

  1. On thermonuclear ignition criterion at the National Ignition Facility

    SciTech Connect

    Cheng, Baolian; Kwan, Thomas J. T.; Wang, Yi-Ming; Batha, Steven H.

    2014-10-15

    Sustained thermonuclear fusion at the National Ignition Facility remains elusive. Although recent experiments approached or exceeded the anticipated ignition thresholds, the nuclear performance of the laser-driven capsules was well below predictions in terms of energy and neutron production. Such discrepancies between expectations and reality motivate a reassessment of the physics of ignition. We have developed a predictive analytical model from fundamental physics principles. Based on the model, we obtained a general thermonuclear ignition criterion in terms of the areal density and temperature of the hot fuel. This newly derived ignition threshold and its alternative forms explicitly show the minimum requirements of the hot fuel pressure, mass, areal density, and burn fraction for achieving ignition. Comparison of our criterion with existing theories, simulations, and the experimental data shows that our ignition threshold is more stringent than those in the existing literature and that our results are consistent with the experiments.

  2. Engineering architecture of the neutron Time-of-Flight (nToF) diagnostic suite at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Clancy, T. J.; Caggiano, J.; McNaney, J.; Eckart, M.; Moran, M.; Glebov, V. Y.; Knauer, J.; Hatarik, R.; Friedrich, S.; Zacharias, R.; Carpenter, A.; Shoup, M. J.; Buczek, T.; Yeoman, M.; Zeid, Z.; Zaitseva, N.; Talison, B.; Worden, J.; Rice, B.; Duffy, T.; Pruyne, A.; Marshall, K.

    2014-09-01

    This paper describes the engineering architecture and function of the neutron Time-of-Flight (nToF) diagnostic suite installed on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). These instruments provide key measures of neutron yield, ion temperature, drift velocity, neutron bang-time, and neutron downscatter ratio. Currently, there are five nToFs on three collimated lines-of-site (LOS) from 18m to 27m from Target Chamber Center, and three positioned 4.5m from TCC, within the NIF Target Chamber but outside the vacuum and confinement boundary by use of re-entrant wells on three other LOS. NIF nToFs measure the time history and equivalent energy spectrum of reaction generated neutrons from a NIF experiment. Neutrons are transduced to electrical signals, which are then carried either by coaxial or Mach-Zehnder transmission systems that feed divider assemblies and fiducially timed digitizing oscilloscopes outside the NIF Target Bay (TB) radiation shield wall. One method of transduction employs a two-stage process wherein a neutron is converted to scintillation photons in hydrogen doped plastic (20x40mm) or bibenzyl crystals (280x1050mm), which are subsequently converted to an electrical signal via a photomultiplier tube or a photo-diode. An alternative approach uses a single-stage conversion of neutrons-to-electrons by use of a thin (0.25 to 2 mm) Chemical Vapor Deposition Diamond (CVDD) disc (2 to 24mm radius) under high voltage bias. In comparison to the scintillator method, CVDDs have fast rise and decay times (

  3. Ignition Delay Experiments with Small-scale Rocket Engine at Simulated Altitude Conditions Using Various Fuels with Nitric Acid Oxidants / Dezso J. Ladanyi

    NASA Technical Reports Server (NTRS)

    Ladanyi, Dezso J

    1952-01-01

    Ignition delay determinations of several fuels with nitric oxidants were made at simulated altitude conditions utilizing a small-scale rocket engine of approximately 50 pounds thrust. Included in the fuels were aniline, hydrazine hydrate, furfuryl alcohol, furfuryl mercaptan, turpentine, and mixtures of triethylamine with mixed xylidines and diallyaniline. Red fuming, white fuming, and anhydrous nitric acids were used with and without additives. A diallylaniline - triethylamine mixture and a red fuming nitric acid analyzing 3.5 percent water and 16 percent NO2 by weight was found to have a wide temperature-pressure ignition range, yielding average delays from 13 milliseconds at 110 degrees F to 55 milliseconds at -95 degrees F regardless of the initial ambient pressure that ranged from sea-level pressure altitude of 94,000 feet.

  4. Updating the Behavior Engineering Model.

    ERIC Educational Resources Information Center

    Chevalier, Roger

    2003-01-01

    Considers Thomas Gilbert's Behavior Engineering Model as a tool for systematically identifying barriers to individual and organizational performance. Includes a detailed case study and a performance aid that incorporates gap analysis, cause analysis, and force field analysis to update the original model. (Author/LRW)

  5. Comparative combustion studies on various plant oil esters and the long term effects of an ethyl ester on a compression ignition engine

    SciTech Connect

    Hawkins, C.S.; Fuls, J.

    1982-01-01

    Combustion studies on both ethyl and methyl esters of various plant oils were carried out using the same engine for all the tests so that comparative studies could be achieved. Twelve esters were tested and the pertinent data was recorded. Some of the more important results are published in this paper to serve as a comparative guide to the study of plant oil esters as fuel. Bruwer et. al. (1980) suggested the use of plant oil esters to prevent injector coking in modern compression ignition engines. Very little information is available on the long term effects of such ester use. Cyclic endurance tests have been carried out on Perkins engines running on ethyl esters of sunflower oil. The exciting results of this work are reported, with specific reference to one tractor engine which has recorded more than 1 300 trouble free hours. 3 tables.

  6. ZMOTTO- MODELING THE INTERNAL COMBUSTION ENGINE

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1994-01-01

    The ZMOTTO program was developed to model mathematically a spark-ignited internal combustion engine. ZMOTTO is a large, general purpose program whose calculations can be established at five levels of sophistication. These five models range from an ideal cycle requiring only thermodynamic properties, to a very complex representation demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. ZMOTTO is a flexible and computationally economical program based on a system of ordinary differential equations for cylinder-averaged properties. The calculations assume that heat transfer is expressed in terms of a heat transfer coefficient and that the cylinder average of kinetic plus potential energies remains constant. During combustion, the pressures of burned and unburned gases are assumed equal and their heat transfer areas are assumed proportional to their respective mass fractions. Even the simplest ZMOTTO model provides for residual gas effects, spark advance, exhaust gas recirculation, supercharging, and throttling. In the more complex models, 1) finite rate chemistry replaces equilibrium chemistry in descriptions of both the flame and the burned gases, 2) poppet valve formulas represent fluid flow instead of a zero pressure drop flow, and 3) flame propagation is modeled by mass burning equations instead of as an instantaneous process. Input to ZMOTTO is determined by the model chosen. Thermodynamic data is required for all models. Transport properties and chemical kinetics data are required only as the model complexity grows. Other input includes engine geometry, working fluid composition, operating characteristics, and intake/exhaust data. ZMOTTO accommodates a broad spectrum of reactants. The program will calculate many Otto cycle performance parameters for a number of consecutive cycles (a cycle being an interval of 720 crankangle degrees). A typical case will have a number of initial ideal cycles and progress through levels

  7. Ignition timing control

    SciTech Connect

    Lambert, J.E.; Bedross, G.M.

    1993-05-25

    An engine ignition control system for controlling the timing of the spark for initiating burning in the combustion chamber of a four stroke cycle, single cylinder, internal combustion engine is described; said engine having a cylinder, a piston in said cylinder, a crankshaft connected to said piston, said piston being adapted to reciprocate between a top dead center position and a bottom dead center position; a speed sensor means for developing periodic sensor voltage timing pulses, the cycle time between timing pulses being an indication of engine crankshaft speed; means for developing ignition timing pulses, each timing pulse having a leading edge corresponding to a voltage change in a timing voltage pulse and a trailing edge corresponding to an opposite voltage change in a timing voltage pulse; means for developing a spark voltage including an ignition coil and a source of ignition coil current, said spark voltage occurring at a coil primary current interrupt point; means for measuring in real-time, cycle time and a timing pulse time for one engine cycle; and means for computing an optimum delay time from the leading edge of a timing pulse for said one cycle to said interrupt point whereby combustion is initiated at a time in advance of the top dead center position.

  8. A Review of Sub-Scale Test Methods to Evaluate the Friction and Wear of Ring and Liner Materials for Spark- and Compression Ignition Engines

    SciTech Connect

    Blau, P.J.

    2002-01-22

    A review was conducted of past laboratory-scale test methods and to assess their validity for ranking materials and lubricants for use as piston and liner materials in compression-ignition (CI) and spark-ignition (SI) engines. Most of the previous work was aimed at simulating SI engine environments. This report begins with a discussion of the numerous factors that can affect the validity of an approach to simulating engine conditions in a laboratory. These include not only mechanical, chemical and thermal factors, but also human factors as regards how the vehicle is operated and maintained. The next section provides an annotated review of open literature publications that address the issues of laboratory simulation of engine components. A comparison of these studies indicates a lack of sufficient standardization in procedures to enable a systematic comparison of one publication to another. There were just a few studies that compared several laboratory test methods to engine test results, and these indicated that some test methods correlate, at least qualitatively, better than others. The last section provides a series of recommendations for improving the accuracy and validity of laboratory-scale simulations of engine behavior. It became clear that much of the engine wear damage occurs during start-up when the engine is cold, and this calls into the question the usefulness of test methods that attempt to simulate steady-state running conditions. It is recommended that a new standard test method, perhaps developed with the help of the ASTM wear and erosion committee, be developed. It would use cold start-up conditions in the presence of degraded oil, or simulated degraded oil.

  9. Conceptual Models for Search Engines

    NASA Astrophysics Data System (ADS)

    Hendry, D. G.; Efthimiadis, E. N.

    Search engines have entered popular culture. They touch people in diverse private and public settings and thus heighten the importance of such important social matters as information privacy and control, censorship, and equitable access. To fully benefit from search engines and to participate in debate about their merits, people necessarily appeal to their understandings for how they function. In this chapter we examine the conceptual understandings that people have of search engines by performing a content analysis on the sketches that 200 undergraduate and graduate students drew when asked to draw a sketch of how a search engine works. Analysis of the sketches reveals a diverse range of conceptual approaches, metaphors, representations, and misconceptions. On the whole, the conceptual models articulated by these students are simplistic. However, students with higher levels of academic achievement sketched more complete models. This research calls attention to the importance of improving students' technical knowledge of how search engines work so they can be better equipped to develop and advocate policies for how search engines should be embedded in, and restricted from, various private and public information settings.

  10. Model experiments of fast ignition with coaxial high-power laser beams

    NASA Astrophysics Data System (ADS)

    Fujita, Katsumasa; Sunahara, A.; Tanaka, Kazuo A.; Izumi, Nobuhiko; Jitsuno, Takahisa; Miyanaga, Noriaki; Miyakoshi, Takeshi; Otani, H.; Fukao, Mitsuhiro; Heya, Manabu; Ochi, Yoshihiro; Kitagawa, Yoneyoshi; Kodama, Ryosuke; Mima, Kunioki; Nishimura, Hiroaki; Norimatsu, Takayoshi; Sentoku, Yasuhiko; Takabe, Hideaki; Yamanaka, Tatsuhiko

    2001-04-01

    An imploded plasma core is irradiated by a 100 ps laser pulse in a model experiments of fast ignition. Additional laser pulses for drilling and heating are introduced co- axially with the laser beams for the implosion. The preformed imploded core is created by the 12 beams of 0.53 micrometers laser with the total energy of 800 J. The additional heating pluses contain 100 ps pulses separated by 300 ps at the wavelength of 1.06 micrometers with the total energy of 320J. The first pulse is intended for drilling the coronal pulses surrounding the core and the second is for addition heating of the core. We measured the imploded core additionally heated with 100 ps pulses.

  11. SHOCK INITIATION EXPERIMENTS ON THE HMX BASED EXPLOSIVE LX-10 WITH ASSOCIATED IGNITION AND GROWTH MODELING

    SciTech Connect

    Vandersall, K S; Tarver, C M; Garcia, F; Urtiew, P A; Chidester, S K

    2007-06-15

    Shock initiation experiments on the HMX based explosives LX-10 (95% HMX, 5% Viton by weight) and LX-07 (90% HMX, 10% Viton by weight) were performed to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. A 101 mm diameter propellant driven gas gun was utilized to initiate the explosive samples with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments and prior experiments on another HMX based explosive LX LX-04 (85% HMX, 15% Viton by weight) will be shown, discussed, and compared as a function of the binder content. This parameter set will provide additional information to ensure accurate code predictions for safety scenarios involving HMX explosives with different percent binder content additions.

  12. Ignition and Growth Reactive Flow Modeling of Recent HMX/TATB Detonation Experiments

    NASA Astrophysics Data System (ADS)

    Tarver, Craig

    2015-06-01

    Ignition and Growth model parameters for detonating PBX 9501 (95%HMX, 2.5 %Estane, 2.5%BDNPAF) and PBX 9502 (95%TATB, 5%Kel-F800) are used to simulate two experiments in which detonating HMX-based PBX's accelerate slower detonating TATB PBX's. The measured HMX and TATB detonation velocities, the angles produced in the detonating TATB charges by the leading HMX detonation waves, the arrival times of the complex detonation wave front, and the PDV records measured at several positions along the interfaces between the two explosives and LiF windows are accurately calculated. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  13. Ignition and Growth Modeling of Detonation Reaction Zone Experiments on Single Crystals of PETN and HMX

    NASA Astrophysics Data System (ADS)

    White, Bradley; Tarver, Craig

    2015-06-01

    Fedorov et al. reported nanosecond time resolved interface particle velocity records for detonation reaction zone profiles of single crystals of PETN and HMX with adjoining LiF windows. Von Neumann spike and Chapman-Jouguet pressures were measured, and reaction zone lengths and times wereinferred. The single crystal detonation velocities and von Neumann spike pressures are higher than those measured for heterogeneous PETN and HMX-based explosives pressed to 98-99% theoretical maximum density. Due to the absence of voids, the single crystal detonation reaction zone lengths and times for both PETN and HMX were longer than those for their heterogeneous explosives. Ignition and Growth modeling results are compared to the single crystal PETN and HMX measurements and to previous experimental results for pressed PETN and HMX charges. This work was performed under the auspices of the U. S. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  14. A transient SI engine model for vehicle dynamic simulation. Ph.D. Thesis

    SciTech Connect

    Huang, R.W.

    1994-01-01

    This study details an investigation into the modeling and simulation of spark-ignition (SI) engines, engine components, and vehicle powertrain systems. The work expands on previous studies in three areas: the description of powertrain system and its components, the formulation of SI engine component models and overall engine model, and lastly, the sensitivity analysis of the engine model and the simulation of powertrain systems. A mathematical model of SI engines, with either carburator, single-port fuel injection, or multi-port fuel injection systems, is derived. In the present engine model, the engine internal torque is a function of air/fuel ratio, engine speed, and throttle plate position. This engine model can account for the sudden change in throttle plate angle and estimate the engine transient behavior. The powertrain subsystems are also described to a certain extent, and the integration of the present engine model and a specific powertrain system is verified by further computer simulation. The Taguchi method is applied in sensitivity analysis (constant engine speed) which allows for an understanding of the engine parameters that are necessary to include in the model. In addition, the control variables which affect the engine dynamics and states can be examined. Using the simulation results, a simple fuel enrichment strategy is derived in order to compensate air-fuel mixture lean/rich tendency when the throttle plate is opened/closed rapidly. This confirms the controllability of the present engine model. Furthermore, a flywheel is attached to the engine crankshaft to emulate a powertrain system and account for the change in engine speed. Finally, the present engine model and a specific powertrain system are integrated and simulated to demonstrate their application in full-vehicle simulation.

  15. Microgravity ignition experiment

    NASA Technical Reports Server (NTRS)

    Motevalli, Vahid; Elliott, William; Garrant, Keith

    1992-01-01

    The purpose of this project is to develop a flight ready apparatus of the microgravity ignition experiment for the GASCan 2 program. This involved redesigning, testing, and making final modifications to the existing apparatus. The microgravity ignition experiment is intended to test the effect of microgravity on the time to ignition of a sample of alpha-cellulose paper. An infrared heat lamp is used to heat the paper sample within a sealed canister. The interior of the canister was redesigned to increase stability and minimize conductive heat transfer to the sample. This design was fabricated and tested and a heat transfer model of the paper sample was developed.

  16. Stirling Engine Dynamic System Modeling

    NASA Technical Reports Server (NTRS)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  17. A Study of Detonation Diffraction in the Ignition-and-Growth Model

    SciTech Connect

    Kapila, A K; Schwendeman, D W; Bdzil, J B; Henshaw, W D

    2006-04-14

    Heterogeneous high-energy explosives are morphologically, mechanically and chemically complex. As such, their ab-initio modeling, in which well-characterized phenomena at the scale of the microstructure lead to a rationally homogenized description at the scale of observation, is a subject of active research but not yet a reality. An alternative approach is to construct phenomenological models, in which forms of constitutive behavior are postulated with an eye on the perceived picture of the micro-scale phenomena, and which are strongly linked to experimental calibration. Most prominent among these is the ignition-and-growth model conceived by Lee and Tarver. The model treats the explosive as a homogeneous mixture of two distinct constituents, the unreacted explosive and the products of reaction. To each constituent is assigned an equation of state, and a single reaction-rate law is prescribed for the conversion of the explosive to products. It is assumed that the two constituents are always in pressure and temperature equilibrium. The purpose of this paper is to investigate in detail the behavior of the model in situations where a detonation turns a corner and undergoes diffraction. A set of parameters appropriate for the explosive LX-17 is selected. The model is first examined analytically for steady, planar, 1-D solutions and the reaction-zone structure of Chapman-Jouguet detonations is determined. A computational study of two classes of problems is then undertaken. The first class corresponds to planar, 1-D initiation by an impact, and the second to corner turning and diffraction in planar and axisymmetric geometries. The 1-D initiation, although interesting in its own right, is utilized here as a means for interpretation of the 2-D results. It is found that there are two generic ways in which 1-D detonations are initiated in the model, and that these scenarios play a part in the post-diffraction evolution as well. For the parameter set under study the model

  18. 75 FR 61820 - Model Specifications for Breath Alcohol Ignition Interlock Devices (BAIIDs)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... Specifications for Breath Alcohol Ignition Interlock Devices (BAIIDs). (57 FR 11772.) Ignition interlocks are..., NHTSA published a request for comments on February 15, 2006. (71 FR 8047.) NHTSA explained that it was... Specifications for Calibrating Units (72 FR 34742)). \\2\\ See NBS Special Publication 480-41, July 1981....

  19. Evaluation and Characterization Study of Dual Pulse Laser-Induced Spark (DPLIS) For Rocket Engine Ignition System Application

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Early, Jim; Osborne, Robin

    2002-01-01

    This paper addresses the progress of technology development of a laser ignition system at NASA Marshall Space Flight Center (MSFC). Initial hot-fire tests in a small-scale rocket chamber at MSFC have demonstrated the DPLIS concept having two main advantages over existing laser ignition concepts. First, the DPLIS can be potentially optimized its laser pulse format to maximize the initial plasma volume, the plasma lifetime, as well as the flame kernel growth rate. Characterization studies of the laser pulse format are now underway with experiments of igniting gaseous hydrogen/air in a Hencken burner. Once ignition is achieved, the flame is open to the atmosphere. This open environment allows easy access for diagnostics of the ignition phenomenon. The quick turn-around time of conducting experiments on this burner make it more amenable for conducting a large number of experiments for statistical analysis of the sensitivity of the test parameters. The results from these experiments will help optimize the laser format for future testing in an H2/O2 subscale rocket chamber.

  20. Multicomponent liquid and vapor fuel distribution measurements in the cylinder of a port-injected, spark- ignition engine

    NASA Astrophysics Data System (ADS)

    Styron, Joshua Putman

    Over the last twenty years, much of the innovation in automotive engine design has been directed towards meeting lower emissions standards as required by the federal government. Correlations used to tune engines that are based on engine-out hydrocarbon measurements alone often fail to be portable to other engine designs because the testing procedures provide little information on in-cylinder fuel/air mixing and combustion processes. A better understanding of in-cylinder processes should improve the applicability of emissions correlations, reducing the amount of engine testing required and providing additional emissions improvements. A 2.5 L, V-6, port-injected engine was modified for optical access by separating one head from the block. The engine could be fitted with one of two heads that produced either a swirling flow or a tumbling flow in the engine. An extended piston with a window in its crown rides in a transparent cylinder liner of fused silica. This arrangement is suitable for laser imaging techniques. Planar laser-induced exciplex fluorescence, which allows the simultaneous, but separate, imaging of liquid and vapor fuel, was extended to capture components of different volatilities in a model fuel designed to simulate the distillation curve of a typical gasoline. Accurate representation of both phases and more than one volatility was demonstrated to be necessary for drawing complete conclusions from fuel distribution data. The exciplex fluorescence technique was calibrated in a separate, calibration cell where careful control of mixture composition, temperature, and pressure was possible. Fluorescence was measured as a function of total pressure from 0 to 1450 kPa, temperature from 18 to 200°C, and fuel-to-air ratio from 0 to twice stoichiometric. The calibrated technique applied to the engine provided both qualitative and quantitative data for improving our understanding of in-cylinder mixing and comparison with engine simulation codes. The engine

  1. Ignition of combustible fluids by heated surfaces

    NASA Astrophysics Data System (ADS)

    Bennett, Joseph Michael

    The ignition of flammable fluids leaking onto hot machinery components is a common cause of fires and property loss to society. For example, the U.S. Air Force has over 100 engine fires per year. There is a comparable number in the civilian air fleet. Many of these fires are due to ruptured fuel, oil or hydraulic lines impinging on hot engine components. Also, over 500,000 vehicle fires occur each year on U.S. roads. Many of these are due to leaking fluids onto hot exhaust manifolds or other exhaust components. The design of fire protection systems for aircraft and road vehicles must take into account the problems of hot surface ignition as well as re-ignition that can occur once the fire is initially extinguished. The lack of understanding of ignition and re-ignition results in heavy, high-capacity fire extinguishers to address the fire threat. It is desired to better understand the mechanisms that control this phenomenon, and exploit this understanding in producing machinery designs that can mitigate this threat. The purpose of this effort is to gain a fundamental understanding of ignition by heated surfaces. This is done by performing experimental measurements on the impingement of vertical streams of combustible fluids onto horizontal heated surfaces, and then determine the mechanisms that control the process, in terms of physical, controllable parameters (such as fuel type, flow rate and surface temperature). An initial exhaustive review of the literature revealed a small sample of pertinent findings of previous investigators, focused on droplet ignition. Boiling modes present during contact with the heated surface were also shown to control evaporation rates and ignition delays, in addition to surface temperatures and fluid properties. An experimental apparatus was designed and constructed to create the scenario of interest in a controllable fashion, with a 20 cm horizontal heated plate with variable heating supply. Fuels were applied as streams ranging from

  2. An Investigation Into Bayesian Networks for Modeling National Ignition Facility Capsule Implosions

    SciTech Connect

    Mitrani, J

    2008-08-18

    Bayesian networks (BN) are an excellent tool for modeling uncertainties in systems with several interdependent variables. A BN is a directed acyclic graph, and consists of a structure, or the set of directional links between variables that depend on other variables, and conditional probabilities (CP) for each variable. In this project, we apply BN's to understand uncertainties in NIF ignition experiments. One can represent various physical properties of National Ignition Facility (NIF) capsule implosions as variables in a BN. A dataset containing simulations of NIF capsule implosions was provided. The dataset was generated from a radiation hydrodynamics code, and it contained 120 simulations of 16 variables. Relevant knowledge about the physics of NIF capsule implosions and greedy search algorithms were used to search for hypothetical structures for a BN. Our preliminary results found 6 links between variables in the dataset. However, we thought there should have been more links between the dataset variables based on the physics of NIF capsule implosions. Important reasons for the paucity of links are the relatively small size of the dataset, and the sampling of the values for dataset variables. Another factor that might have caused the paucity of links is the fact that in the dataset, 20% of the simulations represented successful fusion, and 80% didn't, (simulations of unsuccessful fusion are useful for measuring certain diagnostics) which skewed the distributions of several variables, and possibly reduced the number of links. Nevertheless, by illustrating the interdependencies and conditional probabilities of several parameters and diagnostics, an accurate and complete BN built from an appropriate simulation set would provide uncertainty quantification for NIF capsule implosions.

  3. Ignition and Growth Modeling of Shock Initiation of Different Particle Size Formulations of PBXC03 Explosive

    NASA Astrophysics Data System (ADS)

    Hussain, Tariq; Liu, Yan; Huang, Fenglei; Duan, Zhuoping

    2016-01-01

    The change in shock sensitivity of explosives having various explosive grain sizes is discussed. Along with other parameters, explosive grain size is one of the key parameters controlling the macroscopic behavior of shocked pressed explosives. Ignition and growth reactive flow modeling is performed for the shock initiation experiments carried out by using the in situ manganin piezoresistive pressure gauge technique to investigate the influences of the octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) particle size on the shock initiation and the subsequent detonation growth process for the three explosive formulations of pressed PBXC03 (87% HMX, 7% 1,3,5-trichloro-2,4,6-trinitrobenzene (TATB), 6% Viton by weight). All of the formulation studied had the same density but different explosive grain sizes. A set of ignition and growth parameters was obtained for all three formulations. Only the coefficient G1 of the first growth term in the reaction rate equation was varied with the grain size; all other parameters were kept the same for all formulations. It was found that G1 decreases almost linearly with HMX particle size for PBXC03. However, the equation of state (EOS) for solid explosive had to be adjusted to fit the experimental data. Both experimental and numerical simulation results show that the shock sensitivity of PBXC03 decreases with increasing HMX particle size for the sustained pressure pulses (around 4 GPa) as obtained in the experiment. This result is in accordance with the results reported elsewhere in literature. For future work, a better approach may be to find standard solid Grüneisen EOS and product Jones-Wilkins-Lee (JWL) EOS for each formulation for the best fit to the experimental data.

  4. Microscopic modeling of ignition and burning for well-arranged energetic crystals in response to drop-weight impact

    NASA Astrophysics Data System (ADS)

    Wu, Yanqing; Huang, Fenglei

    2013-06-01

    It has long been recognized that during impact of energetic crystalline solids, some form of energy localization must focus the impact energy into hot spots. However, it was insufficient to obtain just the energy required to cause ignition of an individual hot spot. Hot-spots ignition as well as the subsequent burning together determines the possible occurrence of explosion. A micromechanics theoretical approach was developed, to model hot-spots formation and growth to burning for a single layer of impacted energetic particles. To provide supporting evidence for theoretical analyses, numerical simulations were performed to investigate the thermo-mechanical interactions among the well-arranged energetic crystals. Once hot- spots ignition occurs, the macrokinetics of chemical reactions can be determined by hot-spots density, combustion wave velocity and geometric factor. Considering the micro-particle plasticity, frictional heating, melting, fracture, and chemical reaction at particle level, effects of loading parameters and sample characteristics on ignition and burning were discussed. The resulting reaction may or may not develop into a violent event, may be sustained or be extinguished, which can be predicted by the present model. Visual information obtained by high-speed photography and measured pressure-time data using our self-established experimental device are used to validate the calculated results. National Natural Science Foundation of China (11172044).

  5. Knocking Combustion Observed in a Spark-Ignition Engine with Simultaneous Direct and Schlieren High-Speed Motion Pictures and Pressure Records

    NASA Technical Reports Server (NTRS)

    Osterstrom, Gordon E

    1948-01-01

    Simultaneous direct and Schlieren photographs at 40,000 frames per second and correlated pressure records were taken of knocking combustion in a special spark-ignition engine to ascertain the intensity of certain end-zone reactions previously noted from Schlieren photography alone. A violent propagated homogeneous autoignition, or a similar phenomenon, previously observed, was again observed. The pressure records show autoignition of varying violence before the passage of a probable detonation wave. Extensive autoignition without occurrence of gas vibrations was seen in one explosion.

  6. DRIVE CYCLE EFFICIENCY AND EMISSIONS ESTIMATES FOR REACTIVITY CONTROLLED COMPRESSION IGNITION IN A MULTI-CYLINDER LIGHT-DUTY DIESEL ENGINE

    SciTech Connect

    Curran, Scott; Briggs, Thomas E; Cho, Kukwon; Wagner, Robert M

    2011-01-01

    In-cylinder blending of gasoline and diesel to achieve Reactivity Controlled Compression Ignition (RCCI) has been shown to reduce NOx and PM emissions while maintaining or improving brake thermal efficiency as compared to conventional diesel combustion (CDC). The RCCI concept has an advantage over many advanced combustion strategies in that by varying both the percent of premixed gasoline and EGR rate, stable combustion can be extended over more of the light-duty drive cycle load range. Changing the percent premixed gasoline changes the fuel reactivity stratification in the cylinder providing further control of combustion phasing and pressure rise rate than the use of EGR alone. This paper examines the combustion and emissions performance of light-duty diesel engine using direct injected diesel fuel and port injected gasoline to carry out RCCI for steady-state engine conditions which are consistent with a light-duty drive cycle. A GM 1.9L four-cylinder engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure EGR system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline. Engine-out emissions, engine performance and combustion behavior for RCCI operation is compared against both CDC and a premixed charge compression ignition (PCCI) strategy which relies on high levels of EGR dilution. The effect of percent of premixed gasoline, EGR rate, boost level, intake mixture temperature, combustion phasing and pressure rise rate is investigated for RCCI combustion for the light-duty modal points. Engine-out emissions of NOx and PM were found to be considerably lower for RCCI operation as compared to CDC and PCCI, while HC and CO emissions were higher. Brake thermal efficiency was similar or higher for many of the modal conditions for RCCI operation. The emissions results are used to estimate hot-start FTP-75 emissions levels with RCCI and are compared against CDC and PCCI modes.

  7. Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments

    SciTech Connect

    MacFarlane, Joseph J

    2009-08-07

    This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’s PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for

  8. Model-Driven Useware Engineering

    NASA Astrophysics Data System (ADS)

    Meixner, Gerrit; Seissler, Marc; Breiner, Kai

    User-oriented hardware and software development relies on a systematic development process based on a comprehensive analysis focusing on the users' requirements and preferences. Such a development process calls for the integration of numerous disciplines, from psychology and ergonomics to computer sciences and mechanical engineering. Hence, a correspondingly interdisciplinary team must be equipped with suitable software tools to allow it to handle the complexity of a multimodal and multi-device user interface development approach. An abstract, model-based development approach seems to be adequate for handling this complexity. This approach comprises different levels of abstraction requiring adequate tool support. Thus, in this chapter, we present the current state of our model-based software tool chain. We introduce the use model as the core model of our model-based process, transformation processes, and a model-based architecture, and we present different software tools that provide support for creating and maintaining the models or performing the necessary model transformations.

  9. The Automotive Ignition Coil

    NASA Technical Reports Server (NTRS)

    Darnell, T H

    1932-01-01

    This report gives the results of a series of measurements on the secondary voltage induced in an ignition coil of typical construction under a variety of operating conditions. These results show that the theoretical predictions hitherto made as to the behavior of this type of apparatus are in satisfactory agreement with the observed facts. The large mass of data obtained is here published both for the use of other investigators who may wish to compare them with other theoretical predictions and for the use of automotive engineers who will here find definite experimental results showing the effect of secondary capacity and resistance on the crest voltage produced by ignition apparatus.

  10. Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects

    SciTech Connect

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-12

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  11. Physics design options for compact ignition experiments

    SciTech Connect

    Uckan, N.A.

    1985-01-01

    This paper considers the following topics: (1) physics assessments-design and engineering impact, (2) zero-dimensional confinement studies relating to physics requirements and options for ignited plasmas, classes of devices with equivalent performance, and sensitivity to variations in confinement models, and (3) one and one-half dimensional confinement studies relating to dynamic simulations, critical physics issues, startup analyses, and volt-second consumption. (MOW)

  12. 40 CFR Table 1 to Subpart IIIi of... - Emission Standards for Stationary Pre-2007 Model Year Engines With a Displacement of

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... NEW STATIONARY SOURCES Standards of Performance for Stationary Compression Ignition Internal Combustion Engines Part 60, Subpt. IIII, Table 1 Table 1 to Subpart IIII of Part 60—Emission Standards for...-2007 Model Year Engines With a Displacement of 1 Table 1 to Subpart IIII of Part 60 Protection...

  13. 40 CFR Table 1 to Subpart IIIi of... - Emission Standards for Stationary Pre-2007 Model Year Engines With a Displacement of

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... NEW STATIONARY SOURCES Standards of Performance for Stationary Compression Ignition Internal Combustion Engines Part 60, Subpt. IIII, Table 1 Table 1 to Subpart IIII of Part 60—Emission Standards for...-2007 Model Year Engines With a Displacement of 1 Table 1 to Subpart IIII of Part 60 Protection...

  14. 40 CFR Table 1 to Subpart IIIi of... - Emission Standards for Stationary Pre-2007 Model Year Engines With a Displacement of

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... NEW STATIONARY SOURCES Standards of Performance for Stationary Compression Ignition Internal Combustion Engines Pt. 60, Subpt. IIII, Table 1 Table 1 to Subpart IIII of Part 60—Emission Standards for...-2007 Model Year Engines With a Displacement of 1 Table 1 to Subpart IIII of Part 60 Protection...

  15. 40 CFR Table 1 to Subpart IIIi of... - Emission Standards for Stationary Pre-2007 Model Year Engines With a Displacement of

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... NEW STATIONARY SOURCES Standards of Performance for Stationary Compression Ignition Internal Combustion Engines Pt. 60, Subpt. IIII, Table 1 Table 1 to Subpart IIII of Part 60—Emission Standards for...-2007 Model Year Engines With a Displacement of 1 Table 1 to Subpart IIII of Part 60 Protection...

  16. Investigation of Ignition and Combustion Processes of Diesel Engines Operating with Turbulence and Air-storage Chambers

    NASA Technical Reports Server (NTRS)

    Petersen, Hans

    1938-01-01

    The flame photographs obtained with combustion-chamber models of engines operating respectively, with turbulence chamber and air-storage chambers or cells, provide an insight into the air and fuel movements that take place before and during combustion in the combustion chamber. The relation between air velocity, start of injection, and time of combustion was determined for the combustion process employing a turbulence chamber.

  17. Ignition system monitoring assembly

    DOEpatents

    Brushwood, John Samuel

    2003-11-04

    An ignition system monitoring assembly for use in a combustion engine is disclosed. The assembly includes an igniter having at least one positioning guide with at least one transmittal member being maintained in a preferred orientation by one of the positioning guides. The transmittal member is in optical communication with a corresponding target region, and optical information about the target region is conveyed to the reception member via the transmittal member. The device allows real-time observation of optical characteristics of the target region. The target region may be the spark gap between the igniter electrodes, or other predetermined locations in optical communication with the transmittal member. The reception member may send an output signal to a processing member which, in turn, may produce a response to the output signal.

  18. Engineered Swine Models of Cancer.

    PubMed

    Watson, Adrienne L; Carlson, Daniel F; Largaespada, David A; Hackett, Perry B; Fahrenkrug, Scott C

    2016-01-01

    Over the past decade, the technology to engineer genetically modified swine has seen many advancements, and because their physiology is remarkably similar to that of humans, swine models of cancer may be extremely valuable for preclinical safety studies as well as toxicity testing of pharmaceuticals prior to the start of human clinical trials. Hence, the benefits of using swine as a large animal model in cancer research and the potential applications and future opportunities of utilizing pigs in cancer modeling are immense. In this review, we discuss how pigs have been and can be used as a biomedical models for cancer research, with an emphasis on current technologies. We have focused on applications of precision genetics that can provide models that mimic human cancer predisposition syndromes. In particular, we describe the advantages of targeted gene-editing using custom endonucleases, specifically TALENs and CRISPRs, and transposon systems, to make novel pig models of cancer with broad preclinical applications. PMID:27242889

  19. Engineered Swine Models of Cancer

    PubMed Central

    Watson, Adrienne L.; Carlson, Daniel F.; Largaespada, David A.; Hackett, Perry B.; Fahrenkrug, Scott C.

    2016-01-01

    Over the past decade, the technology to engineer genetically modified swine has seen many advancements, and because their physiology is remarkably similar to that of humans, swine models of cancer may be extremely valuable for preclinical safety studies as well as toxicity testing of pharmaceuticals prior to the start of human clinical trials. Hence, the benefits of using swine as a large animal model in cancer research and the potential applications and future opportunities of utilizing pigs in cancer modeling are immense. In this review, we discuss how pigs have been and can be used as a biomedical models for cancer research, with an emphasis on current technologies. We have focused on applications of precision genetics that can provide models that mimic human cancer predisposition syndromes. In particular, we describe the advantages of targeted gene-editing using custom endonucleases, specifically TALENs and CRISPRs, and transposon systems, to make novel pig models of cancer with broad preclinical applications. PMID:27242889

  20. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    DOE PAGESBeta

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane andmore » at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.« less

  1. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    SciTech Connect

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

  2. An Investigation of the Effect of Charge Inhomogeneity on the Ignition and Combustion Processes in a HCCI Engine Using Chemiluminescence Imaging

    NASA Astrophysics Data System (ADS)

    Kumano, Kengo; Yamasaki, Yudai; Iida, Norimasa

    In the HCCI (Homogeneous Charge Compression Ignition) engines, inhomogeneity in fuel distribution and temperature in the pre-mixture exists microscopically and has possibility to affect the ignition and combustion process. In this study, the effect of charge inhomogeneity in fuel distribution on the HCCI combustion process was investigated. Pressure profiles were measured and two dimensional chemiluminescence images were captured by using a framing camera with a 4-stroke optically accessible engine in order to understand the spatial distribution of the combustion. DME (di-methyl ether) was used as the test fuel. By changing the way of mixing air and fuel in the intake manifold, inhomogeneity in fuel distribution in the pre-mixture was varied. The result shows that luminescence is observed in a very short time in a large part of the combustion chamber under the homogeneous condition, while luminescence appears locally with considerable time differences under the inhomogeneous condition. It is also shown that the local luminescence durations are almost the same under both conditions.

  3. Research of some operating parameters and the emissions level variation in a spark ignited engine through on-board investigation methods in different loading conditions

    NASA Astrophysics Data System (ADS)

    Iosif, Ferenti; Baldean, Doru Laurean

    2014-06-01

    The present paper shows research made on a spark ignited engine with port fuel injection in different operation conditions in order to improve the comprehension about the cold start sequence, acceleration when changing the gear ratios, quality of combustion process and also any measures to be taken for pollutant reduction in such cases. The engineering endeavor encompasses the pollutants investigation during the operation time of gasoline supplied engine with four inline cylinders in different conditions. The temperature and any other parameters were measured with specific sensors installed on the engine or in the exhaust pipes. All the data collected has been evaluated using electronic investigation systems and highly developed equipment. In this manner it has enabled the outline of the idea of how pollutants of engine vary in different operating conditions. Air quality in the everyday environment is very important for the human health, and thus the ambient air quality has a well-known importance in the European pollution standards and legislation. The high level of attention directed to the pollution problem in the European lifestyle is a driving force for all kinds of studies in the field of the reduction of engine emission.

  4. Ignition characterization of LOX/hydrocarbon propellants

    NASA Technical Reports Server (NTRS)

    Lawver, B. R.; Rousar, D. C.; Wong, K. Y.

    1985-01-01

    The results of an evaluation of the ignition characteristics of the gaseous oxygen (Gox)/Ethanol propellant combination are presented. Ignition characterization was accomplished through the analysis, design, fabrication and testing of a spark initiated torch igniter and prototype 620 lbF thruster/igniter assembly. The igniter was tested over a chamber pressure range of 74 to 197 psia and mixture ratio range of 0.778 to 3.29. Cold (-92 to -165 F) and ambient (44 to 80 F) propellant temperatures were used. Spark igniter ignition limits and thruster steady state and pulse mode, performance, cooling and stability data are presented. Spark igniter ignition limits are presented in terms of cold flow pressure, ignition chamber diameter and mixture ratio. Thruster performance is presented in terms of vacuum specific impulse versus engine mixture ratio. Gox/Ethanol propellants were shown to be ignitable over a wide range of mixture ratios. Cold propellants were shown to have a minor effect on igniter ignition limits. Thruster pulse mode capability was demonstrated with multiple pulses of 0.08 sec duration and less.

  5. Advancements in engineering turbulence modeling

    NASA Technical Reports Server (NTRS)

    Shih, T.-H.

    1991-01-01

    Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.

  6. Ignition target design for the National Ignition Facility

    SciTech Connect

    Haan, S.W.; Pollaine, S.M.; Lindl, J.D.

    1996-06-01

    The goal of inertial confinement fusion (ICF) is to produce significant thermonuclear burn from a target driven with a laser or ion beam. To achieve that goal, the national ICF Program has proposed a laser capable of producing ignition and intermediate gain. The facility is called the National Ignition Facility (NIF). This article describes ignition targets designed for the NIF and their modeling. Although the baseline NIF target design, described herein, is indirect drive, the facility will also be capable of doing direct-drive ignition targets - currently being developed at the University of Rochester.

  7. A computational investigation of diesel and biodiesel combustion and NOx formation in a light-duty compression ignition engine

    SciTech Connect

    Wang, Zihan; Srinivasan, Kalyan K.; Krishnan, Sundar R.; Som, Sibendu

    2012-04-24

    Diesel and biodiesel combustion in a multi-cylinder light duty diesel engine were simulated during a closed cycle (from IVC to EVO), using a commercial computational fluid dynamics (CFD) code, CONVERGE, coupled with detailed chemical kinetics. The computational domain was constructed based on engine geometry and compression ratio measurements. A skeletal n-heptane-based diesel mechanism developed by researchers at Chalmers University of Technology and a reduced biodiesel mechanism derived and validated by Luo and co-workers were applied to model the combustion chemistry. The biodiesel mechanism contains 89 species and 364 reactions and uses methyl decanoate, methyl-9- decenoate, and n-heptane as the surrogate fuel mixture. The Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) spray breakup model for diesel and biodiesel was calibrated to account for the differences in physical properties of the fuels which result in variations in atomization and spray development characteristics. The simulations were able to capture the experimentally observed pressure and apparent heat release rate trends for both the fuels over a range of engine loads (BMEPs from 2.5 to 10 bar) and fuel injection timings (from 0° BTDC to 10° BTDC), thus validating the overall modeling approach as well as the chemical kinetic models of diesel and biodiesel surrogates. Moreover, quantitative NOx predictions for diesel combustion and qualitative NOx predictions for biodiesel combustion were obtained with the CFD simulations and the in-cylinder temperature trends were correlated to the NOx trends."

  8. SHOCK INITIATION EXPERIMENTS ON PBX 9501 EXPLOSIVE AT PRESSURES BELOW 3 GPa WITH ASSOCIATED IGNITION AND GROWTH MODELING

    SciTech Connect

    Chidester, S K; Thompson, D G; Vandersall, K S; Idar, D J; Tarver, C M; Garcia, F; Urtiew, P A

    2007-06-13

    Shock initiation experiments on the explosive PBX 9501 (95% HMX, 2.5% estane, and 2.5% nitroplasticizer by weight) were performed at pressures below 3 GPa to obtain in-situ pressure gauge data, run-distance-to-detonation thresholds, and Ignition and Growth modeling parameters. Propellant driven gas guns (101 mm and 155 mm) were utilized to initiate the PBX 9501 explosive with manganin piezoresistive pressure gauge packages placed between sample slices. The run-distance-to-detonation points on the Pop-plot for these experiments showed agreement with previously published data and Ignition and Growth modeling parameters were obtained with a good fit to the experimental data. This parameter set will allow accurate code predictions to be calculated for safety scenarios in the low-pressure regime (below 3 GPa) involving PBX 9501 explosive.

  9. A comprehensive combustion model for biodiesel-fueled engine simulations

    NASA Astrophysics Data System (ADS)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel

  10. Short pulse duration shock initiation experiments plus ignition and growth modeling on Composition B

    NASA Astrophysics Data System (ADS)

    May, Chadd M.; Tarver, Craig M.

    2014-05-01

    Composition B (63% RDX, 36% TNT, 1% wax) is still a widely used energetic material whose shock initiation characteristics are necessary to understand. It is now possible to shock initiate Composition B and other secondary explosives at diameters well below their characteristic failure diameters for unconfined self-sustaining detonation. This is done using very high velocity, very thin, small diameter flyer plates accelerated by electric or laser power sources. Recently experimental detonation versus failure to detonate threshold flyer velocity curves for Composition B using several KaptonTM flyer thicknesses and diameters were measured. Flyer plates with diameters of 2 mm successfully detonated Composition B, which has a nominal failure diameter of 4.3 mm. The shock pressures required for these initiations are greater than the Chapman-Jouguet (C-J) pressure in self-sustaining Composition B detonation waves. The initiation process is two-dimensional, because both rear and side rarefactions can affect the shocked Composition B reaction rates. The Ignition and Growth reactive flow model for Composition B is extended to yield accurate simulations of this new threshold velocity data for various flyer thicknesses.

  11. A Model for Freshman Engineering Retention

    ERIC Educational Resources Information Center

    Veenstra, Cindy P.; Dey, Eric L.; Herrin, Gary D.

    2009-01-01

    With the current concern over the growing need for more engineers, there is an immediate need to improve freshman engineering retention. A working model for freshman engineering retention is needed. This paper proposes such a model based on Tinto's Interactionalist Theory. Emphasis in this model is placed on pre-college characteristics as…

  12. Application for certification, 1992 model-year heavy-duty diesel engines - Mercedes Benz

    SciTech Connect

    Not Available

    1991-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines that he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  13. Application for certification, 1986 model year heavy-duty vehicles/engines - Mercedes-Benz truck

    SciTech Connect

    Not Available

    1986-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  14. Application for certification 1984 model year heavy-duty engines - Mercedes-Benz

    SciTech Connect

    Not Available

    1984-01-01

    Every year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement of compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  15. Application for certification 1992 model year heavy-duty diesel engines - Mercedes-Benz

    SciTech Connect

    Not Available

    1992-01-01

    Each year, each manufacturer of passenger cars, light-duty trucks, motorcycles, or heavy-duty engines submits to EPA an application for certification. In the application, the manufacturer gives a detailed technical description of the vehicles or engines he intends to market during the upcoming model year. These engineering data include explanations and/or drawings which describe engine/vehicle parameters such as basic engine design, fuel systems, ignition systems and exhaust and evaporative emission control systems. It also provides information on emission test procedures, service accumulation procedures, fuels to be used, and proposed maintenance requirements to be followed during testing. Section 16 of the application contains the results of emission testing, a statement or compliance to the regulations, production engine parameters, and a Summary Sheet Input Form on which issuance of a Certificate of Conformity is based.

  16. 14 CFR 33.37 - Ignition system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Ignition system. 33.37 Section 33.37 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Reciprocating Aircraft Engines § 33.37 Ignition...

  17. 14 CFR 33.69 - Ignitions system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Ignitions system. 33.69 Section 33.69 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system....

  18. 14 CFR 33.69 - Ignitions system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Ignitions system. 33.69 Section 33.69 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system....

  19. 14 CFR 33.69 - Ignitions system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Ignitions system. 33.69 Section 33.69 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system....

  20. 14 CFR 33.69 - Ignitions system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Ignitions system. 33.69 Section 33.69 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.69 Ignitions system....